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Introduction 

Studying scientific discovery from a machine learning point of view is still a relatively 
new idea. So fCU" there have been only a few systems which attempt to model aspects of 
this area [5,7]. In this paper we will discuss NGLAUBER, a system which searches for 
regularities in scientific data and makes predictions about them. NGLAUBER is based 
on an earlier system called GLAUBER [6] but contains a number of differences from that 
system. NGLAUBER accepts its input incrementally and proposes experiments to improve 
its characterizations of the input. We will discuss NGLAUBER's architecture and give a 
simplified example of NGLAUBER at work. Finally, we will discuss NGLAUBER's relation 
to other systems in the area of machine learning. These include conceptual clustering 
systems and systems which model scientific discovery. 

Data representation in NGLAUBER 

To begin our discussion of the NGLAUBER system we will describe the data repre­
sentation scheme. NGLAUBER deals with four basic entities. These are facts, non/acts, 
predictions and classes. The two basic units of data are objects and statements. Objects 
are the items which are described by statements. Anything can be an object, from a block 
to a chemical to a qualitative description. Every statement is composed of a relation name, 
a set of input objects (or independent variables), and a set of output objects (or dependent 
variables). The general form is relation( {Inp1, ... ,lnpm}, {Out1, ... ,Outn} ). For example, 
a statement describing the taste of the chemical NaCl would look like 

taste( {NaCl}, {salty}) 

which simply means that NaCl tastes salty. 

Statements may also be quantified over any classes that have been formed. For instance 
if the salts were the class of all chemicals which taste salty, then the following fact might 
appear in memory: 

Vx Esalts: taste( { x }, {salty} 

If some - but not all - of the salts tasted salty, this statement would be existentially 
quantified (3) rather than universally quantified ('v'). 

Facts, nonfacts and predictions are just sets of statements which have special meanings 
to NG LAUBER. A fact simply represents a statement which NG LAUBER knows is true. In 
contrast, a nonfact looks just like a fact, but it represents a statement which NGLAUBER 
knows is not true. A prediction is represented as a pair of statements (Prediction, For), 
where Prediction is a statement which NGLAUBER believes may be true and For is a 
statement which is true if the Prediction is true. An example is the prediction 

Prediction: taste( {KCl}, {salty}) 
For: 'v'x E salts: taste({x},{salty}). 
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ff NGLAUBER makes this prediction it is saying that it will know that all salts taste 
salty if it sees that KCl tastes salty (KCl is a member of the class of salts). Th~ Prediction 
part of a prediction is always an instantiation of the For part. 

Classes are-sets of objects which appear as input or output values in various statements. 
A class is formed when a set of objects is found to have properties in common based on 
existing facts. The class of salts might be stored in memory as 

salts = {NaCl, KCl} 

The classes are used to allow simple statements to be rewritten as quantified statements 
as shown above. The exact methods for forming classes and quantifying statements will 
be detailed later. 

The four mechanisms of NGLAUBER 

NGLAUBER is an incremental discovery system with the ability to make predictions 
about the data it is given.1 These two properties are natural companions for a number 
of reasons. It is unnecessary to make predictions with an all-at-once system because the 
system knows no more data is coming. The ability to make predictions is made possi­
ble by incrementality. For NGLAUBER's task, making predictions is not only desirable, 
but necessary. This is because when facts are quantified some information can be lost. 
Predictions allow that information to be retained. This problem will be discussed more 
completely later. 

Langley, et al [6] describe GLAUBER as a set of operators being applied cyclically 
to a working memory. The same approach could be used to describe NGLAUBER but 
there is so much interaction between various rules that it is more convenient to divide 
the system into four main mechanisms. We will describe each of these mechanisms in 
turn. They are referred to as the introduction mechanism, the prediction mechanism, 
the prediction satisfaction mechanism, and the denial mechanism. These mechanisms can 
also be considered in two separate groups. The introduction, prediction, and prediction 
satisfaction mechanisms work together in a highly recursive manner to create classes and 
quantified facts. The denial mechanism works separately to prune down the number of 
predictions in memory and to handle the nonfacts. 

The introduction mechanism 

This is the main section of the NGLAUBER system. When a new fact is input to the 
system, the introduction mechanism decides what will happen to it. The most interesting 
thing that may happen is that the fact will cause a new class to be formed. NGLAUBER 

1 The GLAUBER system has neither of these properties. It can form classes and de­
scriptive facts as NGLAUBER does, but it uses a much different method and must have 
all its data available at once. 
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does not have the advantage of knowing all the facts it is going to see when it is time to 
form a class.2 However, this should not keep the system from forming classes whenever 
possible. Currently a simple heuristic is used to solve this problem. When two facts are 
identical in all but one position, a new class is formed containing the two differing objects. 
Using this rule, the two facts can be combined to form one universally quantified fact 
because they define the class at this point. Any other facts involving the objects in the 
class can be existentially quantified. 

The introduction mechanism takes care of all of these activities. Every fact in mem­
ory (and every future fact) which involves an object in some class becomes existentially 
quantified. As an example, suppose NGLAUBER's memory contains the two facts 

color( {blockl}, {blue}) 
shape( {blockl}, {cube}) 

and the following fact is introduced to the system: 

color( {block2}, {blue}) 

At this point the class {blockl,block2} is formed and the facts are quantified. Now 
NGLAUBER's memory would look something like: 

classl = {blockl,block2} 
Vx Eclassl: color( {x }, {blue}) 
:Jx Eclassl: shape( {x}, {cube}) 

It can be seen that some information has been lost during this operation. NGLAUBER 
now knows that there is some object in classl which is cube shaped, but has seemingly 
forgotten which object the fact is true for. This problem is conveniently taken care of when 
the ability to make predictions is added. This is our next topic of discussion. 

The prediction mechanism 

There are certain problems associated with NGLAUBER's introduction mechanism 
due to its incrementality. At any given point in time, the system does not know if it has 
seen all the data it is going to see. Therefore, it assumes that it will receive no more input 
when forming its classes and facts. However, it must also be flexible enough to alter its 
memory in a correct and appropriate manner if it does receive more input. 

A desirable characteristic for such a system is to have some expectation of what it 
will see in the future. When possible, NGLAUBER's prediction mechanism performs this 
task. Predictions are made which will allow the system to easily expand its facts when the 
predictions are satisfied. 

2 In contrast, GLAUBER is an all-at-once system. Because of this, NGLAUBER's cri­
terion for forming a new class is quite a bit different from GLAUBER's. 
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The prediction mechanism works on the assumption that every existentially quantified 
fact can eventually become a universally quantified fact if the proper data is seen. Referring 
to the example in the previous section, when class1 is formed the following prediction is 
also made: 

prediction: shape( {block2}, {cube}) 
for: Vx Eclassl: shape({x},{cube}) 

The implicit assumption in this type of prediction making is that the domain is highly 
regular. NGLAUBER believes that if objects have one thing in common then they will 
probably have many things in common. Therefore, when it sees that blockl and block2 
are both blue and that blockl is a cube, it decides that block2 will probably be a cube 
too. 

The predictions in NGLAUBER's memory are generally highly interrelated. There 
can be many predictions with the same prediction part. Likewise, there can be many 
predictions with the same for part. The set of predictions with the same for part is called 
a prediction group. Also, the for statement that is common to every prediction in a group is 
called the hypothesis of the group. Another way to think of the predictions in a prediction 
group is as a conjunctive implication. To know that the for statement in a prediction is 
true, it is not enough for just one prediction to be satisfied. Rather, every prediction in the 
same group must be satisfied before it is known that the for statement (i.e. the hypothesis) 
is true. 

It can be seen that the predictions also conveniently solve the loss of information 
problem mentioned earlier. When the fact shape({blockl}, {cube}) is quantified to :lx E 
classl: shape( {x }, {cube}), predictions are made at the same time. These predictions act as 
sort of a sieve. They tell NGLAUBER which statements have not yet been seen, so it also 
knows which statements have been seen. The net result is a reorganization of information 
with no loss. A benefit of this is that NGLAUBER will come up with the same classes 
and facts for a given input set regardless of the order of the input. This is a trait which is 
often not exhibited by incremental systems. 

The prediction satisfaction mechanism 

Working hand in hand with the prediction mechanism is the prediction satisfaction 
mechanism. The prediction satisfaction mechanism is invoked by the introduction mecha­
nism to see if the current fact has been predicted by the system. Satisfying a prediction is 
usually just a matter of 'checking off' the fact from the list of predictions kept in memory. 
When a predicted fact is introduced to the system, all predictions of that fact are removed 
from memory. Often this is the only thing that happens when this mechanism is invoked. 

A special case occurs when the last prediction in a prediction group is removed from 
memory. As explained earlier, NGLAUBER knows at this point that the hypothesis of the 
prediction group is true. This allows NGLAUBER to make stronger claims about the data 
it is considering. When this occurs, the prediction mechanism invokes the introduction 
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mechanism with the newly confir:med fact. This completes the recursive cycle between 
the first three mechanisms. When NGLAUBER introduces a new fact to itself via the 
prediction satisfaction mechanism, the cycle begins again. New predictions may be made 
or satisfied, and new classes may be formed by the introduction of the new fact. 

The denial mechanism 

The final mechanism to be discussed is a bit different from the previous three. It 
is a separate entity which cannot be invoked by the other mechanisms. Neither does it 
call any of them into action. The task of the denial mechanism is to correctly reshape 
NGLAUBER's memory when a prediction has been made which turns out to be false. 
This mechanism does not do anything to the facts in memory. This is because the facts 
only summarize everything which NGLAUBER knows to be true. To deny something 
NG LAUBER knows to be a fact would mean that the data is noisy. Currently NGLAUBER 
is not designed to deal with noise so there would be unpredictable consequences. 

The real effect of the denial mechanism is to prune down the number of predictions in 
memory. We saw earlier that all the predictions in a prediction group had to be satisfied 
in order for the hypothesis of the group to be true. By way of the denial mechanism, we 
can tell NGLAUBER that one of these predictions is not true. If that is the case, then 
NGLAUBER knows that the hypothesis can never be true. 

This revelation allows the denial mechanism to perform two tasks. The first is to 
eliminate all predictions in the same group as the denied statement. At the same time, 
the statement is recorded as a nonfact to keep any future prediction groups involving the 
statement from being formed. The reason for eliminating the predictions is not because 
they have been satisfied. Rather, NGLAUBER no longer cares whether they are true 
because it already knows that the hypothesis of the group is not true. 

This knowledge is also the justification for the second task of the denial mechanism. 
Since the hypothesis of the prediction group cannot be true, it also qualifies as a nonfact. 
Therefore, the denial mechanism loops back, using the hypothesis as the denied statement. 
This can lead to more predictions being removed from memory. The cycle will continue 
until there are no more predictions left which can be removed. All the while, nonfacts will 
be recorded in memory but the classes and facts will never be touched. 

An example of NGLAUBER at work 

In this section we give a simplified example of NGLAUBER at work on a task. We will 
use the same input data as used for GLAUBER by Langley, et al [6]. The example is from 
the domain of eighteenth century chemistry. Given a set of reactions between elements 
and descriptions of the tastes of the chemicals, NGLAUBER forms the classes of acids, 
alkalis and salts. The system also comes up with a set of facts which describe these classes 
and the interactions between the classes. 
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Following are the data input .to the system. They were entered in the order shown, 
but it should be reemphasized that NGLAUBER is order-independent. No matter which 
order the facts are input, the system will end up in the same state. 

1. reacts({HCl,NaOH}, {NaCl}) 
2. reacts( {HCl,KOH}, {KCl}) 
3. reacts( {HNOa ,NaOH}, {NaNOa}) 
4. reacts( {HNOa ,KOH}, {KNOa}) 
5. taste({HCl},{sour}) 
6. taste({HNOa},{sour}) 
7. taste({NaCl},{salty}) 
8. taste( {KCl}, {salty}) 
9. taste({NaNOa}, {salty}) 

10. taste( {KNOa}, {salty}) 
11. taste( {NaOH}, {bitter}) 
12. taste( {KOH}, {bitter}) 

The first five facts listed are just added into NGLAUBER's memory unchanged because 
NGLAUBER has found no reason to form a class. However, when fact number six is 
introduced more interesting things start to happen. To begin with, NGLAUBER notices 
that both HCl and HNOa taste sour. Using this knowledge a class containing those two 
objects is formed. We will refer to the class as 'acids' although NGLAUBER would use 
a generic name like 'classl '. The generalization process of the introduction mechanism 
then alters the reacts facts to describe the new class. For instance, facts one and three are 
changed to 

3x Eacids: reacts({x,NaOH},{NaCl}) 
3x Eacids : reacts( {x,NaOH}, {NaNOa}) 

Facts two and four are changed similarly. Notice now that NGLAUBER can form 
two new classes based on these new reacts facts. Using the new facts one and three, 
the class saltsl = {NaCl, NaNOa} will be formed. Likewise, using facts two and four, 
NGLAUBER comes up with salts2 = {KCl, KNOa}. After everything has been completed, 
NGLAUBER's memory will look something like this: 

acids = {HCl, HNOa} 
saltsl = {NaCl, NaNOa} 
salts2 = {KCl, KNOa} 

-+ Vz E saltsl 3x E acids: reacts({x, NaOH},{z}) 
-+ \Ix E acids 3z E saltsl: reacts({x, NaOH}, {z}) 

Vz E salts2 3x E acids: reacts({x, KOH},{z}) 
\Ix E acids :Jz E salts2: reacts({x, KOH},{z}) 
\Ix E acids: taste({y},{sour}) 
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Now is a good time to point .out that the space of quantified facts is only partially 
ordered. By examining the new facts marked by arrows, for example, we see two descrip­
tions which summarize the data and yet do not subsume each other. It would be possible 
for one of thes~ facts to be true without the other. This partial ordering is discussed more 
in the next section. NGLAUBER finds all the characterizations which apply to a given set 
of data.3 

During this whole process predictions are being made about future data. We have 
omitted listing them because most of them are not true and will never be useful. On 
this and similar example runs, sixty to eighty-five percent of NGLAUBER's predictions 
turned out to be false.'' These will later be removed with the denial mechanism. However, 
when fact seven is introduced, a useful prediction is made. When NGLAUBER sees that 
NaCl tastes salty, it predicts that NaN03 will also taste salty. The same occurs with fact 
eight. KN03 is predicted to taste salty. There is a great deal more that happens when 
fact number eight is introduced. 

At this point, NGLAUBER has two distinct classes - we are calling them saltsl and 
salts2. When NGLAUBER sees that members of each class have something in common 
(i.e. they both taste salty), it decides that these two classes should really be one class and 
merges them. We will refer to this new class simply as 'salts'. A consequence of this merger 
is that facts currently in memory now describe only one class rather than two. This means 
that a new class can be formed containing NaOH and KOH. This is the class of 'alkalis'. 
After all appropriate quantifications have been made to the existing facts, NGLAUBER's 
memory contains: 

• acids = {HCl, HN03} 
• alkalis = {NaOH, KOH} 
• salts = {NaCl, KCl, NaN03, KN03} 
• Vx E acids Vy E alkalis :Jz E salts: reacts({x,y},{z}) 
• Vx E acids :Jz E salts :ly E alkalis: reacts({x,y},{z}) 
• Vy E alkalis Vx E acids :Jz E salts : reacts( {x, y }, {z}) 
• Vy E alkalis :Jz E salts :Jx E acids: reacts({x,y},{z}) 
• Vz E salts :Jx E acids 3y E alkalis: reacts({x,y},{z}) 
• Vz E salts 3x E acids 3y E alkalis: reacts({x,y},{z}) 
• Vx E acids : taste( {x }, {sour}) 

3z E salts: taste({z},{salty}) 

NGLAUBER's memory will also contain two important predictions, that NaN03 and 
KN03 taste salty. This ensures that when facts nine and ten are seen, the last fact in 

3 This is something which GLAUBER does not do. It stops when it has found one of 
the characterizations which apply. 

4 Of course it is possible to tailor examples where all of the predictions are false or none 
of them are. 
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NGLAUBER's memory will be ch.anged to 

• Vz E salts : taste( {z }, {salty}) 

Facts eleven ana twelve now simply result in the fact 

• Vy E alkalis : taste( {y}, {bitter}) 

being added to memory. The only job left is to get rid of all the useless predictions lying 
around. By denying all the false predictions NGLAUBER has made, such as 

reacts( {HNOa, NaOH}, {NaCl}) 

NGLAUBER's final contents will consist only of the classes and quantified facts that are 
marked with bullets (•). These final quantified facts represent the relationship between 
the classes of acids, alkalis, and salts that was discovered in the eighteenth century. 

NGLAUBER as a conceptual clustering system 

In this section, we will examine the NGLAUBER system using Fisher and Langley's 
framework for conceptual clustering algorithms [2,3]. This framework includes three classes 
of techniques used in conceptual clustering and divides the conceptual clustering task into 
two main problems. The three types of techniques are: 
1. Optimization - Partitioning the object set into disjoint clusters, 
2. Hierarchical - Creating a tree, where each leaf is an individual object and each internal 

node is a cluster and 
3. Clumping - Creating independent clusters which may overlap. 

The two problems of conceptual clustering are defined as: 
1. Aggregation - The problem of deciding which objects will be in which clusters and 
2. Characterization - The problem of describing the clusters once they have been formed. 

NGLAUBER uses an optimization technique because its classes are simply partitions 
of the set of objects. The classes are disjoint, but they cover all the objects. Actually, it 
is possible for objects to end up unclassified but each of these can be considered as a class 
of one object. 

The aggregation problem is solved for NGLAUBER by the heuristic used for forming 
classes. As stated previously, classes are formed when two facts are found to differ in exactly 
one position. This problem has actually become simpler because of the incrementality of 
the system. When a new fact is input, it only has to be compared to the existing facts in 
memory in order to possibly form a new class. 

The new class is then characterized by the quantification process which changes facts 
describing objects into facts describing classes. This problem is also relatively simple since 
the initial facts are used as templates to form the new facts. 
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An important difference in ch&!acterization from other systems is in the quantified facts 
which describe the classes. Existing conceptual clustering systems form clusters and come 
up with one defining characterization for each cluster [1,8]. In contrast, there is usually 
not just one fact which defines a class in NGLAUBER (or GLAUBER). More often, there 
is a set of facts involving a class which describes its relationships with other classes. The 
reason this occurs is that classes are formed and described using the relationships between 
objects. In other systems, clusters are formed strictly by examining the attributes of each 
object. 

This type of description requires the use of existential quantifiers. However, existen­
tial quantifiers are desirable because they increase the power of the description language. 
Without them, facts like 

\fx E acids 'Vy Ealkalis 3z E salts: reacts({x,y}, {z}) 

are not possible. Most existing conceptual clustering systems would have trouble generat­
ing this type of description. 

This brings us to the discussion of NGLAUBER's characterization space. As men­
tioned previously, the concept descriptions used by NGLAUBER are partially ordered 
with respect to generality. For this reason there is usually more than one applicable char­
acterization for a given set of data. Consider statements which have two quantifiers. We 
can draw a direct analogy to mathematical logic with predicates of two variables. Following 
is a diagram of the partial ordering involving a predicate P(x, y) from general to specific, 
where the truth of more general statements imply the truth of more specific statements. 

\fx\fy : P(x, y) 
\fy\fx: P(x, y) 

Most general 

3x\fy: P(x, y) ..--\fy3x: P(x, y) 

3y\fx: P(x,y) ..--\fx3y: P(x,y) 

3x3y: P(x, y) 
3y3x: P(x, y) 

Most specific 

This same ordering holds on the characterization space of NGLAUBER. When more 
than one characterization applies to a set of data given to NGLAUBER, it will generate 
every maximally general quantified description which is true. 

NGLAUBER as a discovery system 

The GLAUBER system was designed to model the discovery of qualitative empirical 
laws. This is just one important aspect of the general field of scientific discovery [5,6]. 
Since NGLAUBER is based on GLAUBER, it is meant to address and expand on these 
same issues. 

9 



NGLAUBER examines a set ~f scientific data and attempts to characterize the regu­
larities occuring within the data. This is considered to be an important first step in the 
scientific discovery process. One can envision NGLAUBER as part of a larger discovery 
system. NGLl\UBER's task might be to search for qualitative regularities and prompt 
another system, such as BACON [4], to do a more in-depth quantitative analysis. 

The main improvement of NGLAUBER over GLAUBER is its ability to make predic­
tions. When NGLAUBER makes a prediction, it is effectively proposing an experiment 
to be carried out and asking for the results. By proposing experiments, the system is 
telling the user what it thinks is interesting and should be looked at more closely. It is 
obviously desirable for a discovery system to guide its own search for regularities. The 
prediction mechanism of NGLAUBER is a step in that direction. Most current discovery 
systems (and conceptual clustering systems) are completely passive. They simply char­
acterize data without attempting to report which data would be more helpful to know 
about. 

A notable exception to this rule is Lenat's AM [7]. AM not only proposes experiments 
in arithmetic but carries them out itself. AM also searches for regularities among data to 
form special classes. In theory, AM could come up with the same classes as NGLAUBER 
does but it would complete this task in a very different manner. The philosophy in AM is to 
explore a concept space looking for 'interesting' things. However, unless the interestingness 
functions built in to AM were highly specific, it seems unlikely that the concepts discovered 
by NGLAUBER would be discovered by AM in a short amount of time (if ever). The main 
difference between the systems is that NGLAUBER has a well-defined goal to attain. It 
is attempting to change a set of input facts which describe objects into a set of maximally 
general quantified facts which describe classes of objects. In contra.st, AM has no specific 
state it is trying to reach. It just performs a search through the space of possible concepts 
led by its interest functions. This works wonderfully in the domain of pure mathematics, 
but does not seem easily transferable to more applied domains. 

Summary 

We have examined a system called NG LAUBER. Although NG LAUBER was originally 
designed as a scientific discovery system, it can also be viewed as a conceptual clustering 
system. It should be clear that at least part of scientific discovery involves searching for 
regularities in data and creating clusters based upon these regularities. 

NGLAUBER's main contributions involve its incremental nature. Previous discovery 
systems need all their data at the outset and perform all-at-once computations. In contra.st, 
NGLAUBER examines its data a piece at a time, allowing it to be more flexible in its 
characterizations of the data. Incrementality also allows NGLAUBER ,to interact with 
the user by making predictions or proposing experiments about the data it has seen so 
far. In this way, the system can guide itself through the data space until the proper 
characterizations are found. 
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In the field of conceptual clu~tering, incrementality is also seldom used.. As stated 
above, NGLAUBER's characterizations are more flexible to change as more data comes in. 
This may lead to non-optimal classes in some cases but the trade-off is the ability to make 
predictions about future data. NGLAUBER also bases its classes (or clusters) on relational 
information rather than information about the attributes of objects. This is something that 
has not been seen in other conceptual clustering systems. Finally, NGLAUBER has a more 
powerful description language through the use of existential quantifiers. This allows the 
system to describe relations between classes rather than just giving definitions for each 
class separately. 

Future work 

There are many directions in which this work can be extended. NGLAUBER is an im­
portant first step toward discovery systems which design their own experiments. However, 
to become really useful it must be made more sophisticated in some areas. One needed 
improvement is in the heuristic used to form classes. This rule is simple and cheap since 
it allows NGLAUBER to complete its task using no search (and therefore no backtrack­
ing). However, the rule is also rather naive. A more sophisticated version of NGLAUBER 
might form classes from facts which differ in more than one position. In this case, a num­
ber of hypotheses for the "best" classes (according to some evaluation function) would be 
remembered. Unfortunately, this method would also require search. 

Viewing NGLAUBER's classes as clusters and the quantified facts as characterizations 
we can consider NGLAUBER to be a conceptual clustering system. Using this knowledge, 
we should be able to look to the conceptual clustering literature for possible extensions 
to NGLAUBER. Another important improvement would be to incorporate a hierarchical 
technique or perhaps a clumping technique for clustering rather than the current opti­
mization technique. Arranging the classes as a tree would allow more flexible clusters 
and characterizations to be formed. This is something we hope to do in the near future. 
We envision a version of NGLAUBER which will be able to construct a periodic table of 
elements when given sets of reactions similar to those given in our example. To complete 
this task, NGLAUBER would need to have a class for each row of the table and a class for 
each column. 

More research needs to be done in the area of prediction-making. NGLAUBER's cur­
rent method simply uses the goal of changing existentially quantified facts into universally 
quantified facts. Although this method has turned out to be useful, more intelligent and 
complicated predictions could be made by adding some domain-specific knowledge to the 
system. Currently, NGLAUBER just looks for obvious regularities in the data and usu­
ally generates a large number of predictions. A little intelligence about the domain being 
examined would limit the number of predictions made and allow NGLAUBER to propose 
a few specific experiments to be performed. 

Finally, an ideal NGLAUBER system would be able to deal with a certain amount of 
noise. Currently the system demands absolute regularity in the data to form classes and 
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universally quantified facts. A mor.e flexible system would be able to make rules. describing 
how most of the items in a class behave. This would remove the assumption that all items 
in a class have everything in common. This problem is closely tied with the problem 
of making morejntelligent predictions. A future version of NGLAUBER might carefully 
select a set of experiments to perform. If most of these experiments succeed or fail then 
NGLAUBER can come up with a statement that is generally true or false. However, if 
some experiments succeed and some fail, it would imply that the system has an improper 
understanding of the true concept. In this case, NGLAUBER would design more specific 
experiments to come up with more refined classes and characterizations. 
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