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Abstract

Machine learning (ML) applications in soil science have significantly increased over 

the past two decades, reflecting a growing trend towards data-driven research 

addressing soil security. This extensive application has mainly focused on enhancing

predictions of soil properties, particularly soil organic carbon, and improving the 

accuracy of digital soil mapping (DSM). Despite these advancements, the 

application of ML in soil science faces challenges related to data scarcity and the 

interpretability of ML models. There is a need for a shift towards Soil Science-

Informed ML (SoilML) models that use the power of ML but also incorporate soil 

science knowledge in the training process to make predictions more reliable and 

generalisable. This paper proposes methodologies for embedding ML models with 

soil science knowledge to overcome current limitations. Incorporating soil science 

knowledge into ML models involves using observational priors to enhance training 

datasets, designing model structures which reflect soil science principles, and 

supervising model training with soil science-informed loss functions. The informed 

loss functions include observational constraints, coherency rules such as 

regularisation to avoid overfitting, and prior or soil-knowledge constraints that 

incorporate existing information about the parameters or outputs. By way of 

illustration, we present examples from four fields: digital soil mapping, soil 

spectroscopy, pedotransfer functions, and dynamic soil property models. We discuss

the potential to integrate process-based models for improved prediction, the use of 

physics-informed neural networks, limitations, and the issue of overparametrisation.

These approaches improve the relevance of ML predictions in soil science and 

enhance the models' ability to generalise across different scenarios while 

maintaining soil science principles, transparency and reliability. 
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1. Introduction

The 2024 Nobel Prize in Physics was awarded to researchers who utilised physics-

based tools to develop methods that advance machine learning through artificial 

neural networks. Over the past two decades, the use of machine learning (ML) in 

soil research has surged. In 2023, an average of 8 papers per day were published on

topics related to “machine learning” and “soil” (Scopus, June 2024). These 

advancements, highlight the growing importance of ML in various scientific fields, 

including soil research. (See Box 1 for the definition of ML.) Past reviews show that 

the application of ML in soil science spans various areas, including soil organic 

carbon (SOC), hydrology, contamination, remote sensing, erosion, ML methods and 

modelling, spectroscopy, and crops (Li et al., 2024; Padarian et al., 2020b). In 

particular, the application of ML is extensive in digital soil mapping (DSM) studies. 

The review by Wadoux et al. (2020) on ML in DSM indicated that most studies 

emphasise predicting soil properties (in particular SOC) and improving prediction 

accuracy. However, only a few studies account for existing soil knowledge in the 

modelling processes.

Undoubtedly, machine learning has revolutionised the processing of large soil 

databases, finding patterns which are difficult to uncover using traditional statistical

models (Heung et al., 2016). Soil observational data, collected via field and 

laboratory techniques and numerous sensors, provide extensive datasets that 

conventional statistical models may not efficiently handle (Safanelli et al., 2021; 

Tziolas et al., 2020). ML models excel in discovering patterns within spatiotemporal 

soil data, which are often challenging for process-based models to address. In 

addition, ML facilitates the generation of detailed soil information, scaling from field-

level observations to global insights (Helfenstein et al., 2024; Padarian et al., 2022b;

Poggio et al., 2021; Rosin et al., 2023). 

While ML can replicate observed patterns in training data, it often falls short of 

explaining observed phenomena, and the learned patterns are usually not 

generalisable. ML models require substantial volumes of data, yet soil data are 

limited and sparse. The efficacy of ML models is constrained by the quantity and 

quality of training data, hindering their ability to predict “unseen” phenomena. 

(Read Box 2 “Six Dangers of ML in Soil Science”.) There is an ongoing discussion on 
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incorporating soil knowledge in ML models and the interpretability of the calibrated 

ML models (Ma et al., 2019; Wadoux et al., 2020). There is growing interest in 

applying interpretable ML models to explain how models predict certain attributes, 

addressing the “black box” issue. Weindorf and Chakraborty (2024) argued for a 

balance between ML modeling with human insight and knowledge for 

contextualising findings, and ensuring the completeness, validity, and interpretation

of AI-generated results. Increasingly, there is a call to incorporate fundamental 

domain knowledge and physical rules into ML models to enhance their reliability and

accuracy by providing theoretical constraints and informative priors (von Rueden et 

al., 2023). Concurrently, there is a push to model soil biogeochemical processes 

using physical rules, foundational to numerous achievements in computational 

physics and chemistry (Tang et al., 2024). In physics, hydrology, and related fields, 

there is increasing interest in physics-informed machine learning, aiming to guide 

ML models towards solutions that are physically plausible (Karniadakis et al., 2021; 

Kashinath et al., 2021).  Notably, physics-informed ML models have been 

investigated to model soil water movement (Bandai and Ghezzehei, 2022).

We propose Soil Science-Informed ML (SoilML), which integrates soil-specific 

knowledge—including pedology, physical, chemical, and biological, processes into 

ML models, expanding the scope beyond Physics-Informed ML (PIML). SoilML 

prioritises modelling soil systems, accounting for interactions such as water cycling, 

soil-water-plant dynamics, and biogeochemical transformations. This approach aims

to enhance model interpretability, improve predictions in data-scarce environments,

and ensure that outputs are consistent with real-world soil behavior.

The paper is structured as follows. Section 2 demonstrates ways for incorporating 

soil science knowledge or principles in ML models, moving beyond merely 

identifying important predictors.  Subsequently in Section 3, we present specific 

examples from four key fields: pedotransfer functions, digital soil mapping, soil 

spectroscopy, and modelling soil properties in space and time. We discuss the 

capabilities and limitations of conventional approaches and explore the potential to 

integrate soil science knowledge under the SoilML framework, followed by 

implications (Kashinath et al., 2021). Section 4 provides a discussion of SoilML 

models to address the unique 3D structure and interactions in soil systems, the 
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issue of overfitting, enhancing model interpretability, reliability, and predictive 

accuracy for soil science applications. 

Box 1. Definitions

Artificial Intelligence (AI) is the field of study focused on designing and 

developing intelligent machines capable of performing tasks which mimic human 

intelligence.

Machine Learning (ML) is a subset of AI that uses algorithms to perform specific 

tasks without explicit instructions. The models learn and make predictions based 

on patterns and inferences derived from data, focusing on prediction accuracy. In 

this context, we do not consider statistical models such as linear regression and 

partial least squares regression as ML as they rely on predefined functional 

assumptions.

Deep learning is a subset of ML that involves a type of algorithm called artificial 

neural networks. These neural networks are designed to recognise patterns in 

data by processing data through multiple layers of processing units.

Physical rules are fundamental principles that describe how physical systems 

behave and interact in the natural world based on scientific observations, 

experiments, theories, and mathematical models.

Mechanistic or process-based models are mathematical models that describe

one or multiple processes based on the underlying mechanisms and interactions 
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among system components. Based on the principles of physics, chemistry, 

biology, and related sciences, combined with empirical relationships, these 

models aim to represent how different components of a system work together to 

produce observed behaviours.  

Box 2. Six Dangers of Machine Learning in Soil Science

(1)Data science of soil materials, ML models without soil science 

context

ML modelling often follows a workflow of processes that apparently do not require 

in-depth soil knowledge. A simple search on Google Scholar for "machine learning 

in soil classification" yields numerous papers, primarily from the computer science

field, that apply ML techniques to predict soil types based on properties or images

of soil. These studies often treat soil merely as a material with inadequately 

informed labels. This approach can result in information that lacks practical 

relevance and does not contribute to a deeper understanding of soil science or 

soil.

(2)Unscrutinised machine-learned soil prediction models

Defining the objective of an ML modelling exercise is essential. If the goal is to 

achieve the highest accuracy for a specific problem, interpretability may not be a 

priority. Considering the complexity of natural phenomena and human limitations 

in understanding complex relationships, demanding complete transparency from 

ML models may not be feasible. Nonetheless, it is crucial to ensure that the model

provides a valid generalisation of the phenomenon being studied. Overreliance on

automated outputs without sufficient scrutiny could lead to misinterpretations. 

Many papers in soil science literature use ML modelling without attempting 

interpretability, raising questions about the utility of such work for advancing soil 
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science knowledge.

(3)Lack of transparency in proprietary soil models

The utility of ML spans beyond research into commercial domains, such as 

predicting soil properties using near-infrared spectroscopy or an online platform 

for predicting soil properties using remote sensing images. This is particularly 

relevant in agronomic, soil contamination and soil carbon accounting applications.

While research settings often require transparency regarding methods and data, 

commercial entities tend to be secretive to maintain a competitive edge, raising 

concerns about the reliability of their model predictions. Consequently, soil 

prediction becomes proprietary. Addressing these concerns may require 

implementing methods like uncertainty assessment, independent validation tests,

and reporting on the diversity of soil types used in training the models. 

(4)Stagnation of theoretical advancement

The focus on applying ML to predict and model soil properties and processes could

overshadow the need to develop new theoretical frameworks in soil science. 

Without ongoing theoretical advancements, soil science may become overly 

dependent on data analytics without fostering innovative ideas. Theory generates

hypotheses and generally leads to efficient experimentation and data generation. 

It’s not clear at this stage that this is the case for ML-generated prediction 

models.

(5)Doing too much with too little

There is a tendency to produce regional or global maps of various interesting soil 

characteristics without acknowledging the limited data and the risk of 

extrapolating these models in areas where data is sparse or of poor quality, 

leading to unreliable or misleading results. Another tendency is solely relying on 

ML models to infer controls of soil properties prediction. This overextension can 

compromise the integrity of soil science research and its applications. Sensible 

guidelines are required for the data density required for such predictions; for 

example, global maps based on several hundred observations are probably 

questionable, whereas those based on tens of thousands of observations inspire 

more confidence.  

7



(6)Decline in direct soil observations and human fieldwork 

Overreliance on ML might lead to overconfidence and decreased fieldwork and the

gathering of new observations of soil, which are important for understanding soil 

in its natural conditions and accurately interpreting data and models. This shift 

could reduce the practical understanding of soil conditions and processes, 

diminishing the empirical grounding of soil science. Since soil is dynamic and 

responds to human forcings, continued widespread real-world observation is 

essential. Often, modelling and prediction can be better improved by accruing 

new observations at key locations rather than through incremental improvements 

of new ML methods.
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2. Incorporating soil science knowledge in ML models

Figure 1. (a) The general workflow for ML applications in soil science. (b) the 

iterative and problem-specific nature of soil science-informed models. Conventional 

steps are in black circles, with steps involving soil science supervision in brown 

circles. 

The steps for conducting an ML analysis on soil data typically follow the procedure 

depicted in Figure 1(a). The process starts with data collection and pre-processing to

check for outliers, selection of covariates or predictors, followed by training of an ML

model, which could include tuning the hyperparameters. The model is then tested 

on a proportion of the dataset which was not used in the training process. Finally, 

the model is interpreted using procedures such as variables of importance or 

Shapley values. (In ML, Shapley values quantify the relative contribution of each 
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predictor to a model’s output, for more details, see Padarian et al. (2020a) and

Wadoux and Molnar (2022)). The entire procedure follows a standard ML workflow.

Most studies have utilised supervised learning, where ML algorithms are tasked with

predicting labels based on a set of features. However, the concept of 'supervision' 

should extend beyond mere labels to encompass a broader prior knowledge 

framework. This knowledge is often embodied in functions or sets of rules that may 

depend on specific “labels”. Such supervision incorporates domain-specific insights 

that guide the learning process, enabling the algorithm to make more informed and 

contextually appropriate predictions. ML models should not only learn from 

observation data points but also integrate structured forms of knowledge 

effectively, thereby enhancing their predictive accuracy and relevance to soil 

science (see Figure 1(b), soil science supervision steps).

There is a lack of discussion on how to effectively incorporate soil science 

knowledge or physical rules in ML models. Here, we argue that ML models need to 

be iteratively designed and problem-specific, and they should be supervised to 

predict patterns conforming to soil phenomena.  SoilML could deliver predictive 

models grounded in soil science, which not only achieve higher prediction accuracy 

but also enhance the models' ability to generalise predictions. Additionally, SoilML 

could improve transparency, thereby increasing the plausibility and reliability of 

these models (Kashinath et al., 2021; Wadoux et al., 2020).

2.1.1 Source of knowledge

The fields of Informed Machine Learning and Physics-Informed Machine Learning 

have emerged to address the empirical nature of current ML models by 

incorporating prior knowledge into the training process. von Rueden et al. (2023) 

discuss the source of knowledge, its representation, and how it is integrated into ML

algorithms (Figure 2). The source of knowledge can be in three forms: specific 

scientific knowledge (in our case, soil science), general knowledge, and expert 

knowledge. Soil science knowledge could include laws or equations, principles, and 

rules. General knowledge is often intuitive and implicitly validated by human 

reasoning or empirical studies. Expert knowledge tends to be based on experience, 

for example, the relationship between certain soil properties and their covariates
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(Lark et al., 2007) or mental models embedded in soil maps and their legends (Bui, 

2004; Qi and Zhu, 2003). 

These sources of knowledge can be represented as algebraic forms (e.g. Philip’s 

infiltration equation) or differential equations (Richardson-Richards equation), 

simulation results, pseudo-observations, soil maps, rules, or probabilistic 

relationships (Hudson, 1992). In turn, these forms of knowledge can be integrated 

into the ML workflow through training data, model structure design, learning 

algorithms, and final evaluation. Current approaches to incorporating soil science 

knowledge in ML models involve several strategies. For example, in DSM, covariates

may be selected to conform to soil-forming factors or scorpan covariates (See 

section 3.1).  In soil moisture dynamics modelling, predictors could be selected 

based on components of a water-balance model. Another idea is incorporating 

pseudo-observations based on expert opinion on soil properties in areas which lack 

observations such as in high-elevation areas or extreme environments. Finally, 

interpretative tools such as Shapley value could interpret how predictors contribute 

to ML predictions, aligning predictions with existing knowledge (Padarian et al., 

2020a; Wadoux and Molnar, 2022).

2.1.2 Incorporating soil science knowledge in ML models

Karniadakis et al. (2021) advocate three ways of incorporating soil science 

knowledge in ML models: observational priors, model structure design, and learning 

guidance (Figure 2).

(1)Observational priors 

This approach involves augmenting training data to reflect underlying knowledge 

about the subject. Expert knowledge is mostly represented in DSM studies, 

including the addition of synthetic or pseudo-observations to the training data. DSM 

commonly relies on legacy soil data derived from laboratory measurements, which 

can be limited in spatial coverage. Field observations such as hand texture can 

provide a dense and complementary source of soil data, capturing variability across 

the landscape that laboratory data may miss. Eymard et al. (2024) demonstrated 

that integrating field observations of soil texture, even with potential biases, can 
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improve DSM predictions by identifying unique landscape features not represented 

in laboratory datasets, ultimately enhancing both model accuracy and the 

understanding of soil processes. 

In addition, soil survey can be spatially biased due to preferential sampling patterns,

and may have gaps in coverage due to inaccessible areas, such as steep terrain or 

remote regions. For example, Koch et al. (2019) used 13,000 boreholes to map the 

depth to the redox layer across Denmark using random forest regression kriging, 

but found that lowland areas were underrepresented. To address this, synthetic 

observations were added in these regions based on hydrogeological knowledge, 

improving lowland representation. Similarly, outputs from soil process-based models

can be used to fill temporal gaps in observations, which will be discussed in Section 

3.4. See also Box 3 on reducing overparametrisation in ML models via data 

augmentation.

(2)Model structure design 

The architecture of ML models should be designed to ensure that their predictions 

are consistent with established soil science principles. This involves selecting 

appropriate model types, designing input and output layers and connections that 

can process and interpret soil data, and implementing mechanisms that incorporate

domain-specific knowledge into the learning process. For example, ML structure 

needs to accommodate soil profile information. In the case of predicting soil at 

multiple depths within a profile, a multitasking ML model that predicts soil 

properties at multiple depths simultaneously would be preferable to creating 

independent soil depth prediction functions (Padarian et al., 2019b). In another 

example, conventional maps are updated or disaggregated using ML models with 

expert knowledge inputs, such as defining soil-landscape conditions in which a 

particular soil type could occur (Holmes et al., 2015; Lamichhane et al., 2021; 

Odgers et al., 2014; van Zijl et al., 2019).

(3)Learning guidance

The training of ML models can be directed using loss functions and constraints to 

ensure that the solutions align with soil science processes. Typically, ML models are 
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trained to minimise a loss or cost function; commonly, this involves adjusting the 

model parameters to minimise the mean squared error between the observed and 

predicted values. 

Following Tang et al. (2024) we could define the loss function of an ML model as:

 L = observational constraints + coherency rules + prior constraints (1)

Observational constraints are usually defined as the mean squared error 

between observed and predicted values for continuous variables or classification 

error for categorical variables. For example, an ML model predicting the parameters 

of a soil water retention function would minimise the difference between measured 

and observed water retention at defined pressure heads. 

Coherency rules, also known as regularisation or penalty function, aim to 

constrain the parameters to obey physical processes related to model parameters, 

thus avoiding overfitting. For instance, in water retention prediction, the relationship

between water content and pressure head must adhere to the monotonicity of the 

curve (van Genuchten, 1980). 

Prior or knowledge-based constraints, involve incorporating soil science and 

general knowledge or assumptions about the parameters or outputs, guiding the 

model towards more plausible solutions.  For example, specifying ranges within 

which certain parameters must lie based on prior studies or expert knowledge, and 

imposing non-negativity constraints on parameters or outputs (e.g., ensuring that 

soil moisture content or soil thickness cannot be negative).

The three terms of the loss function can be weighted differentially, depending on 

the problem being solved.

The three approaches of knowledge incorporation outlined above are not standalone

but could be combined to incorporate prior soil information and model constraints.  

Finally, soil scientists should evaluate the final outputs of the models in terms of the

feasibility of the prediction or maps to evaluate against soil science knowledge or 

principles. For example, soil scientists could identify the congruency of soil-

landscapes maps created by DSM or select digital maps of soil classes and 
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properties for implementing land suitability rules (Bui et al., 2020; Holmes et al., 

2021).

Model structure design and learning guidance are typically applied together by 

modifying the ML input-output architecture and loss functions to be minimised. This 

approach requires a flexible ML framework that allows the structure and model loss 

function to be customised.  ML models with a fixed structure, such as tree models, 

e.g. Cubist or random forest, may not be well-suited for such applications. 

Nevertheless, efforts could be made to modify the algorithms such as the spatial 

random forest model by Talebi et al. (2022). 

A flexible ML framework that can accommodate these requirements includes neural 

networks with a generic input layer, one or several hidden layers and an output 

layer. The layers consist of multiple units connected via weights, allowing the model

to learn a variety of functions. The structure of inputs and outputs can be modified 

to fit different dimensions of soil prediction, such as a 1-D, 2-D or 3-D. Additionally, 

convolutional layers could be added for filtering purposes, and custom objective or 

loss functions could be defined to align with specific goals. In the next section, we 

will explore examples of these models in greater detail.
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Figure 2. Soil Science-Informed ML, pathways to supervise ML models with soil 

science knowledge (adapted from von Rueden et al. (2023)). 
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Figure  3.  A  comparison  of  peat  thickness  prediction  in  European  peatlands  (a)

without and (b) with observational priors, the addition of data points from national

peat thickness maps (adapted from Widyastuti et al. (2024)). 

3. Applications of Soil Science-Informed Machine Learning (SoilML)

In this section, we introduce examples representing the application of SoilML 

through various forms of knowledge and their incorporation in ML models in several 

soil science domains, including digital soil mapping, soil spectroscopy, pedotransfer 

functions, and modelling dynamic soil properties. All these examples address soil 

security in terms of biomass production, carbon sequestration, and water cycling.

3.1 Digital Soil Mapping

Digital soil mapping (DSM) is a process of creating soil maps using spatial covariates

that are combined with field observations, expressed as the "scorpan" model

(McBratney et al., 2003)

S = f(s, c, o, r, p, a, n), (2)
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where S represents soil classes or attributes. This model provides empirical 

quantitative descriptions of relationships between soil and other spatially-

referenced factors: soil (s), climate (c), organisms (o), topography (r), parent 

material (p), age (a), and spatial position (n). 

In DSM, the procedures involved collecting geo-referenced soil observations that are

intersected with environmental (scorpan) covariates. A spatial soil prediction 

function is built to relate observed soil properties of interest to these environmental 

covariables using ML models. The calibrated spatial soil prediction function can then

predict and map soil properties across the area (Arrouays et al., 2020).

As discussed in Wadoux et al. (2020), examples of incorporating soil science 

knowledge in DSM procedures include experts selection of scorpan covariates which

conform to the soil-forming processes of the region to be mapped. Pseudo 

observations could also be added in areas that lack field observations. In the global 

peat thickness mapping study by Widyastuti et al. (2024), many regions of the world

lacked direct field observations. Incorporating pseudo-observations derived from 

national peat thickness maps can help guide the model. Figure 3 shows an example 

of peat thickness prediction using a random forest model. Initially, the random 

forest model was trained only with available field observations, which resulted in 

the peat thickness values being overpredicted by 2-3 m over the Netherlands and 

Germany. Incorporating 500 points from peat maps of Sweden, the Netherlands, and

Denmark reduced the mean predicted thickness by over half (mean = 1.08 m), 

resulting in a more accurate and realistic map (Figure 3).

3.1.1 Case study: Contextual information for soil mapping using convolutional 

neural networks

Conventional approach: DSM models typically use point observations intersected 

with pixel-wise spatial covariates for calibration. Ideally, contextual information 

around the observations should be included as covariates. Studies include relative 

elevation around a point to provide contextual information. For example, Behrens et

al. (2010) used differences in elevation from observation points to each of the 

surrounding neighbourhoods as predictors to capture the relative position of the 
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observation point on the landscape. Other approaches include calculating terrain 

attributes at various neighbourhood window sizes (Miller et al., 2015).

SoilML: Padarian et al. (2019b) demonstrated that a convolutional neural network 

(CNN) model using images of covariates (terrain and climate variables) can 

effectively explore spatial relationships between a point observation and its 

neighbouring pixels (Figure 4). The model also includes a 3-D stack of images as 

input, data augmentation to reduce overfitting, and simultaneous prediction of 

multiple depths.

Using a soil mapping example in Chile, the CNN model was trained to 

simultaneously predict SOC at multiple depths across the country. To increase data 

representation, data augmentation was employed to generate new samples by 

modifying the original data without changing its meaning. This included rotating a 

3-D array by 90, 180, and 270 degrees. This step also acted as regularisation, 

reducing model variance and overfitting, and induced rotation invariance by 

ensuring the model responds similarly to rotated data, such as a soil profile next to 

a gully. The results showed that the CNN model reduced the error by 30% compared

to conventional techniques that only used point information of covariates. For 

country-wide mapping at a 100 m resolution, a neighbourhood size of 3 to 9 pixels 

proved more effective than using a single point or larger neighbourhood sizes. 

Additionally, the CNN model produced less prediction uncertainty and more 

accurately predicted soil carbon at deeper layers.  

Implications: The CNN framework is designed to accept images as input, capturing 

information about the observation and its spatial context. Its convolutional layers 

apply various filters, in the case of a DEM, it effectively mimics the calculation of 

terrain attributes across different window sizes (Taghizadeh-Mehrjardi et al., 2020). 

This contrasts with other ML models that require algorithm modifications to handle 

spatial data. For example, Talebi et al. (2022) developed a spatial random forest 

model that uses local spatial covariates, which were transformed into vectorised 

spatial patterns, as predictors. In addition, regularisation, or the addition of a 

penalty function to the loss function (Eq. 1), could constrain the model to follow 

certain soil-landscape rules, e.g. a penalty could be added to the loss function when

soil thickness on the top of the hill is predicted to be larger than on the lower slope.
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Figure 4. A deep learning framework for digital soil mapping incorporating 

contextual information and data augmentation for training a CNN model to predict 

soil properties at multiple depths.

3.1.2 Case study: 3-D soil mapping

Conventional approaches: The topic of mapping soil properties across space and 

depth has gained wide interest. However, soil profiles are usually observed via 

horizons, which vary in thickness and depth. In DSM, the variation of soil properties 

down a profile is often harmonised using the equal-area spline depth function 

approach. Soil observations at various depth intervals are first harmonised to pre-

determined depth intervals. To create maps of soil at these defined depth intervals, 

models are trained to predict soil properties at several depth intervals 

simultaneously using either neural networks or other ML models capable of 

multivariate outputs. 

Other studies propose that soil properties at any depth can be mapped using a 

model that incorporates depth along with spatial covariates as predictor variables, 

creating a ‘3D’ model. However, ML models consider depth as one of the covariates,
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indifferent to spatial covariates. Due to the limited depth inputs, tree models such 

as random forest are sensitive to the training data and tend to predict soil 

properties at depths as stepped values (Ma et al., 2021).

SoilML: We propose designing a neural network to predict soil properties at regular 

depth intervals to alleviate such a problem. The model would take spatial covariates

as inputs, and the training of the model disaggregates and predicts soil properties 

at all depths simultaneously. 

For example, 59 soil cores, varying in depth between 85 and 130 cm were used in a 

study by (Fajardo et al., 2016). The cores had SOC measurements via visible-near-

infrared (vis-NIR) and shortwave infrared (SWIR) spectroscopy (wavelengths 

between 350 and 2500 nm) at every 2 cm down to a depth of 1 m. To simulate 

horizon sampling, SOC observations were grouped by soil horizons (S). The spatial 

prediction model used the following covariates as inputs: terrain (elevation, wetness

index, mid-slope position, altitude above channel network), remote sensing images 

(Vis-NIR and SWIR bands), and predicted SOC every 2 cm from the surface to 1 m. 

Simulating soil observations by layers, the training data of SOC observations were 

grouped by soil horizons. Thus, the loss function for the model is: 

 L=∑
i=1

n

(∑j=1

m (i)

(S ij−^́sij )
2) (3)

where n is the number of soil cores, m is the number of layer observations per core, 

and S is the observed SOC value per layer of observations. Note that the model 

predicts SOC at specific points and ^́sij refers to the aggregated or averaged 

predicted value corresponding to each observed layer. Figure 5 shows an example of

the predicted SOC values across the profile.  

Implications and prospects: Although numerous studies have incorporated depth as 

a covariate to generate 3D maps, it is important to be cautious about combining 

spatial covariates (covering geographical areas with grid spacing ranging from 

approximately 1 to 1000 m) with depth, which varies from about 0.01 to 2 m. ML 

models may struggle to distinguish the significant differences in scale and 

continuity between these types of measurements. Formal geostatistical approaches 

which predict in 3D by disaggregating the bulk depth measurements (Orton et al., 
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2020), or using the Gaussian process regression (Wang et al., 2024), provide more 

robust solutions.

While soil properties at various depth intervals have been extensively mapped over 

the years, there remains a gap in mapping the distribution patterns of soil horizons 

and representing soil as a 3-D continuum. Soil is fundamentally a three-dimensional 

body composed of distinct horizons. Various studies have employed techniques such

as electromagnetic induction and interpolation based on cone penetrometer 

resistance to map soil layers (Grunwald et al., 2001) and the thickness of soil 

horizons (Chaplot et al., 2010). For instance, Mendonça Santos et al. (2000) mapped

the thickness of each of the 12 horizons in a Swiss floodplain in two dimensions, 

then stacked these results to represent a three-dimensional volume. Similarly,

Gastaldi et al. (2012) combined logistic regression with ordinary regression to first 

model the occurrence of each horizon and subsequently their thickness. 

Advancements in ML, particularly neural networks, now offer the potential to model 

soil as a profile of horizons and predict each horizon's thickness and composition as 

observed.
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Figure 5. An example of a neural network model that predicts point soil observations

along the soil profile depth using environmental covariates. The neural networks 

model was trained using soil profile data, with the loss function minimising the 

difference between the averaged predicted layer values and the observed soil layer 

values. The figure below shows the prediction of SOC across the Hunter Valley in 

NSW, Australia. The observed (blue dots), the predicted (red line), and the 

prediction interval (green dashed-line).  

3.1.3 Case study:   Soil class mapping incorporating taxonomic distance

Conventional approaches: Digital soil class mapping typically begins with the 

description of soil profiles and allocating the profiles to soil classes according to an 

established soil classification system. This process continues with correlating the 

observed soil classes with co-located covariates at each observation site. Most ML 

training in supervised classification involves minimising classification errors: 
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L=
1
n ∑i=1

n

∑
k=1

c

I ( yi≠k ) (4)

where i = 1, 2, … n is the number of observations, and k = 1, 2, … c is the number

of classes, I ( yi≠k )is an indicator when observed class yi is not equal to class k. This

error criterion assumes that the errors across all classes are of equal importance.

However, this is not valid for soil classes and does not allow for situations where

some errors are more important than others. 

SoilML: Taxonomic distance between soil classes can be incorporated into a 

supervised classification routine. Minasny and McBratney (2007) calculated the 

taxonomic distance between soil classes based on a central concept, e.g. to define 

a modal soil profile for each soil class. The taxonomic distance matrix between soil 

classes can be represented as D, with D j , k, represent the distance between class j 

and class k. The supervised classification loss function could be defined as the 

average misclassification cost:

La=
1
n∑i=1

n

D (C i , Ĉ i ) (5)

where La is the average taxonomic distance error, D (C , Ĉ )is the taxonomic distance

between observed class C and predicted class Ĉ.  By using classification trees that

minimise the taxonomic distance over misclassification error, the methodology is

refined to model soil class relationships. 

Implications: Defining taxonomic distance extends beyond predicting soil classes to 

encompass the development of soil classification units. While early numerical soil 

classification methods in the 1950s were constrained by limited data and 

technology, modern advances now allow taxonomic distance calculations to explore 

correlations between national systems and global frameworks like the World 

Reference Base or USDA Soil Taxonomy. For example, Michéli et al. (2016) used 

taxonomic distance to differentiate USDA soil great groups, demonstrating its utility 

in objectively refining classification criteria. Similarly, Hughes et al. (2017) showed 

that taxonomic distance calculations can aid in translating soil classes across 

various classification systems, enhancing global comparability and consistency.
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Laborczi et al. (2019) compared topsoil (0-30 cm) texture classes in Hungary using 

two methods: directly compiled maps of clay, silt, and sand content for the 0–30 cm 

depth, and synthesised maps derived from the thickness-weighted average of the 

0–5, 5–15, 15–30 cm layers. While the soil texture class maps produced by both 

methods are similar, taxonomic distances between the two maps reveal more 

pronounced discrepancies in certain regions. Significant differences are observed 

particularly in hilly and mountainous areas, which could pose challenges in erosion 

and sedimentation modelling and the prediction of flash floods. Additionally, 

inaccuracies in mapping salt-affected and hydromorphic soils could impact water 

management and irrigation planning. Nevertheless, DSM of soil classes still rarely 

considered the taxonomic distance in the ML training workflow.

3.2 Soil Spectroscopy

Soil can reflect, scatter, or emit electromagnetic radiation, resulting in a unique 

spectral signature. Soil responds uniquely to infrared radiation, making infrared 

spectrometers suitable for soil analysis because they can measure rapidly, cost-

effectively, and non-destructively. An infrared spectrometer can predict multiple soil

properties from a single-spectrum measurement. However, soil is a complex mixture

of mineral and organic constituents, it is challenging to assign specific spectral 

features to particular physical, chemical, or biological components. Therefore, 

empirical multivariate calibration techniques are commonly employed to predict soil

properties by relating spectra data to observed soil characteristics (Chen et al., 

2023b; Hutengs et al., 2021; Vohland et al., 2022). 

3.2.1 Case study: Physical model for soil spectra response to moisture and hydraulic

properties

One major  factor  affecting soil  reflectance is  the presence of  water  (Lobell  and

Asner, 2002). Wet soil typically reflects less light than dry soil. This sensitivity of soil

reflectance to moisture allows for the rapid estimation of soil water content through

vis-NIR and SWIR reflectance measurements (Liu et al., 2002). 

Conventional approaches: Various empirical models have been developed to relate

soil reflectance to soil water content in the Vis-NIR-SWIR spectra  (Babaeian et al.,
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2019). These models include partial least squares regression (Bogrekci and S. Lee,

2006; Castaldi et al., 2015), principal component regression  (Chang et al., 2001),

and ML models  (Hassan-Esfahani  et al.,  2015; Zaman et al.,  2012). While these

models  are  effective,  they  require  extensive  databases  for  calibration  and their

applicability  is  restricted  to  the  specific  soil  conditions  under  which  they  were

developed,  as  moisture  response  to  NIR  radiation  depends  on  soil  types  and

constituents (Babaeian et al., 2019).

SoilML: Radiative transfer models can effectively describe diffuse infrared radiation

in soil. The Kubelka and Munk (KM) model  (Kubelka and Munk, 1931) is a two-flux

radiative transfer model that describes light transfer through a particulate medium,

characterised by absorption (𝑘) and scattering (𝑘) coefficients. The model uses a set

of differential equations to account for light travelling in two opposing directions and

yields reflectance and transmittance as a function of  k,  s, and depth. The optical

depth is assumed to be infinite for soil,  and therefore the transmission becomes

negligible. 

Sadeghi et al. (2015) applied the KM model to explore the relationship between soil

water content and reflectance. They proposed that the optical properties (k and s)

of soil can be expressed by a linear volume averaging of the optical properties of its

constituents,  i.e.,  solid  particles,  water,  and  air.  Based  on  this  approach,  they

derived a physically based and linear equation that explicitly expresses SWIR to

water content:

θ
θs

=
r−r d

r s−r d
(6)

where θ is the volumetric water content (m3 m-3), θ s is the saturated water content

(m3 m-3), and  r is the transformed reflectance. The parameters  r d, and  r s are the

transformed  reflectance  of  soil  in  dry  and  saturated  states,  respectively.

Transformed reflectance (r) can be calculated from the measured reflectance (R) as

follows:

r=
(1−R)

2

2 R (7)

Norouzi et al. (2022) hypothesised that the two distinct forms of soil  water, i.e.,

capillary and adsorbed water, impact soil reflectance differently (Figure 6). Building
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on this  hypothesis,  they considered different  optical  properties  for  capillary  and

adsorbed water and derived a new model to describe the relationship between soil

reflectance and water content:

r=r d+caθa
pa⏞

r a

+ccθc
pc⏞

r c

(8)

The total  transformed reflectance of  wet  soil  (r)  can be decomposed into three

components:  r d,  r a, and r c corresponding  to  the  dry  soil,  adsorptive  water,  and

capillary  water,  respectively.  Parameters  ca,  pa,  cc,  pc are  the  optical  properties

related  to  adsorbed  and  capillary  water.  In  this  equation,  θa and  θc are  the

volumetric water contents of adsorbed and capillary water that can be derived from

the soil retention curve. Norouzi et al. (2022) used the model by Lebeau and Konrad

(2010) for soil water retention curve to partition the total water content (θ) into its

components θa and θc:

(9)θ=θc+θa

where the capillary component is modelled based on Kosugi (1996): 

(10)θc=
1
2 θ

s
erfc[

ln (h /hm )

√2 σ ]
where h is the pressure head, θs is the saturated volumetric water content, and erfc

denotes the complementary error function;  hm, σ , and θo are fitting parameters.

The adsorptive component is represented using the Campbell and Shiozawa (1992)

model for extremely low matric potentials, which linearly diminishes as the amount

of capillary water increases:

(11)θa=θo(1−
ln|h|
ln|hd|)(1−

θc

θ s )

where hd is the pressure head at oven dryness and generally corresponds to a finite

value of -107 cm (Campbell and Shiozawa, 1992). Equation (8), in combination with

Equations (10) and (11), directly connects soil reflectance to the soil water retention

curve. 
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Figure 6. (a)  An illustration of reflections and refractions of light beams (indicated

by red arrows) as they interact with adsorbed and capillary water. (b) Effects of

capillary and adsorbed water (left axis) on transformed reflectance measurements

at 2210 nm (right axis) for two Arizona soils with 0.6% and 52.2% clay content. The

black arrows indicate the points where the reflectance slope (shown by green

arrows) changes sharply, marking the transition from capillary to adsorbed water

regimes. 

Norouzi et al. (2022) demonstrated that soil reflectance is influenced not only by the

amount of  water  in  the  soil  but  also  by the structure of  water,  specifically  the

capillary  and  adsorbed  components.   They  showed  that  when  the  soil  water

retention  curve  is  known,  Equation  (8)  accurately  describes  the  relationship

between soil moisture and reflectance. As shown in Figure 6b, a noticeable change

in reflectance at 2100 nm occurred at a specific point marked by a black arrow. The

slope of the reflectance, marked by a green arrow, changes before and after this

point,  indicating  that  the  shift  corresponds  to  the  maximum  water  content  for

adsorbed water, as seen when compared to the water components on the left axis.

This transition signifies where capillary water recedes, and adsorbed water becomes

the  dominant  component  at  the  surface.  This  reflectance  change  is  highly

dependent on soil texture, occurring at lower water content for coarse-textured soils

(e.g., at ~0.05 m3 m-3 for AZ2) and at a higher water content for fine-textured soils

(e.g., at ~0.3 m3 m-3 for AZ18). 

This also means that Equation (8) can be inverted to derive the soil water retention

curve using NIR spectra of soil reflectance and moisture content measured during

an  evaporation  experiment,  optimising  retention  curve  parameters  and  optical

properties to match observed NIR reflectance. Validation with 21 soils of varying

textures and mineralogy  demonstrated accurate retrieval  of  the entire  retention

curve, from saturation to oven dryness (Norouzi et al., 2023). 

Implications and prospect:  Considering that the SWIR of a drying thin soil sample

from saturation to air-dry can be measured within a few hours, the physics-based

approach  proposed  by  Norouzi  et  al.  (2023) can  be  an  efficient  method  for
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measuring  the  soil  water  retention  curve,  which  often  takes  several  weeks.

Although the above example is not an ML model, the water retention function could

be  defined  as  a  neural  network.  This  model  can  be  further  constrained  by

Richardson-Richards' equation to align with water content and time measurements

collected during the evaporation experiment. Moreover, the radiation transfer model

can integrate factors such as soil water content, particle size, and organic matter

effect.  It  has the potential  to predict soil  texture and organic matter content by

calibrating  optical,  absorption,  and  scattering  coefficients  (Wu  et  al.,  2023).  In

combination  with  physics-informed  ML,  these  models  can  improve  both  the

predictability and interpretability of soil spectra models.

3.2.2 Case study: Building soil-based spectra functions

Conventional approaches: Soil spectra are typically pre-processed with smoothing or

transformation to remove noise and serve as inputs of regression models or ML 

algorithms. The models are trained to minimise root mean square error (RMSE) and 

maximize the coefficient of determination (R2). The working of the models can be 

explained by the importance or usage of variables in the model. For example, 

variable importance in projection (VIP) score is used in partial least square 

regression modelling to help identify which wavelength is mostly related to the soil 

property, and the model usage rate can be used to evaluate Cubist models (Chen et

al., 2023a; Seidel et al., 2022). However, there is no information input from soil 

science knowledge when training the model, and the prediction result will merely 

depend on the relationship between the spectra features and the soil properties. In 

this way, soil science knowledge only serves the purpose of explaining outcomes, 

rather than being directly involved in model building.

SoilML: Prior soil information, e.g. morphological and mineralogical characteristics, 

can help divide the samples into homogeneous groups before modelling, and 

models will therefore be trained based on soils with shared properties. By 

comparing the effects of models trained on (1) all samples and (2) sample sets 

divided by prior information, this case study demonstrated the possibility of 

including soil knowledge in the modelling process.
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In this case study, 370 Bt horizon soil samples with 0–5% carbon content were 

extracted from the Kellogg Soil Survey Laboratory (KSSL) dataset (Soil Survey Staff, 

2014). X-ray diffraction analysis revealed kaolinite and montmorillonite as the 

dominant clay minerals. Modelling of total carbon content was conducted separately

on 185 kaolinite-dominant samples and 185 montmorillonite-dominant samples with

mid-infrared spectra and the Cubist regression tree model. Spectra were pre-

processed with Savitzky-Golay smoothing, SNV transformation, and trimming off the

CO2 peak. Samples were randomly divided into a 70% calibration set and a 30% 

validation set for the training and testing of Cubist models, and this process was 

performed 10 times to get a distribution of results. 

Results show that individual models based on dominant mineralogical components 

were more accurate than the total model (Figure 7a). The model created using all 

samples tended to have higher spread in the boxplot, which indicated less 

robustness than models from the pre-divided training set. The kaolinite model 

mainly used wavenumbers around 2000 cm-1 (Figure 7b), and the montmorillonite 

model more relied on multiple wavenumbers across the spectrum (Figure 7c). The 

combined model, on the other hand, utilised more conditions and variables than the

individual models (Figure 7d), which might be due to the heterogeneity of soils 

dominated by different mineralogical characteristics. By including prior soil 

information in modelling, grouping the samples based on their mineralogical 

component improved the performance of models and enabled clearer differentiation

of wavelengths used in the models.  
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Figure 7. (a) Boxplots of root mean square error (RMSE) results from ten repetitions 
of Cubist modelling using various input data. (b)-(d) Variable importance of Cubist 
models to predict total carbon content with mid-infrared spectra using: (b) kaolinite-
dominant samples for calibration, (c) montmorillonite-dominant samples for 
calibration, and (c) combined kaolinite-dominant and montmorillonite-dominant 
samples for calibration. Black lines are the mean spectra of calibration samples, 
purple vertical lines are the variables used as predictors, while the blue vertical 
lines are the conditions of Cubist models. 

Implications: Analysing soil spectra alongside soil science knowledge enables the 

identification of specific soil components, enhancing the effectiveness of statistical 

methods and improving the understanding of soil properties and processes. By 

grouping soils based on pedological information, such as soil order or soil horizon or 

mineralogical component, researchers can refine models to achieve more accurate 

and interpretable predictions. This approach encourages soil scientists to look 

beyond mere prediction accuracy and develop a deeper understanding of the soil. 

Incorporating soil knowledge can involve pre- or post-machine learning calibration, 

such as inspecting spectra or grouping soils by mineralogy to guide the models. 

After modelling, verifying that predictions align with soil science principles is crucial,
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ensuring that ML applications do not overshadow the fundamental soil 

understanding  (Ma et al., 2023).

3.3 Pedotransfer functions

Pedotransfer functions (PTFs) translate basic soil data into more complex, labour-

intensive, and costly soil properties (Weber et al., 2024). They serve as predictive 

tools for estimating certain soil properties from easily measured or available data, 

thereby bridging the gap between available and required data. A prominent 

application of PTFs is in predicting the soil water retention curve, which describes 

the soil water content (θ), i.e., the volume of water per volume of soil under 

equilibrium at a given pressure head (h). Since measuring a soil water retention 

curve is time-consuming, PTFs offer a practical alternative by estimating it based on

soil physical properties such as texture, bulk density, and SOC (Bagnall et al., 2022; 

Weber et al., 2024). PTFs are also used in various applications, including assessing 

irrigation, drainage, and evapotranspiration, enhancing DSM, and providing inputs 

for process-based simulation models to evaluate soil functions.

3.3.1 Case study: Prediction of water retention and hydraulic conductivity curves

Conventional approaches: The structure of a PTF typically involves using ML models

to  relate  predictors  (input  data,  such  as  soil  texture  and  bulk  density)  to  a

predictand  (output,  such  as  water  content  at  field  capacity).  In  the  context  of

predicting  water  retention  curves  using  neural  networks,  there  are  three  main

model configurations (Figure 8):

Point PTFs: a point PTF predicts water contents (θ) at specific pressure heads (h)

from basic  soil  properties  such  as  sand,  silt,  clay,  SOC,  and  bulk  density.  They

require a training dataset that includes measurements of water retention at the

specified pressure heads along with the basic soil properties.

Parametric PTFs: This configuration uses a hydraulic model capable of representing

the data,  focusing on predicting parameters  of  the hydraulic  model.  The output

parameters are then used to form a continuous function describing the relationship

between the dependent variable (θ) and the independent variable (h). This method
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is favoured for its ability to provide a continuous prediction curve and is commonly

employed in water retention modelling.

Direct Neural Network PTFs: In this setup, neural networks are directly applied to

model water retention. The pressure head, along with basic soil properties, are used

as inputs, allowing the model to learn a non-specific form of the soil water retention

curve.

Figure 8. Three configurations of PTFs predicting soil retention: point, parametric,

and direct neural networks (based on Haghverdi et al. (2012)).

In  parametric  PTFs,  the  van  Genuchten  equation  (van  Genuchten,  1980) is

commonly used to model the water retention curve:

θ (h )=θ r+(θs−θr )Se (h )
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Se (h )=([1+|αh|n ] )
−m

(12)

where the water content (θ ¿as a function of pressure head (h ¿ is described by four

parameters: θ r, residual water content; θs, saturated water content; α ,the inverse of

air-entry pressure; and n, curve shape factor, with m defined as m=1−1 /n. The van

Genuchten  model  can  be  combined  with the  capillary  theory  model  of  Mualem

(1976) to  predict  the  unsaturated  hydraulic  conductivity curve,  known  as  the

Mualem-van Genuchten model. 

Creating  a  parametric  PTF  first  involves  fitting  the  van  Genuchten  equation  to

observations to estimate the parameter vector  ϕ = [θr , θs , α , n¿ . This is followed by

forming relationships between basic soil properties (sand, clay, bulk density) and

the  parameters using  neural  networks  (or  other  ML  models)  by  minimising  the

following loss function:

L=∑
i=1

n

(∑k=1

p

(ϕik−ϕ̂ik )
2) , (13)

where  n is the number of observations, and  p is the number of parameters to be

estimated. The drawback of this approach is that the predicted parameters here do

not necessarily bear a physical relationship. 

SoilML: We can incorporate the van Genuchten function in training the ML model by

requiring the estimated parameters to predict the observed water retention  [θ (h ) ]

rather  than  predicting  each  parameter  of  the  van  Genuchten  equation

independently. Minasny and McBratney (2002) used neural networks to predict the

parameters of the van Genuchten function using soil properties (sand, clay, bulk

density).  The  neural  networks  model  predicted  the  van  Genuchten  parameters

[ θ̂r ,  θ̂ s ,  α̂ ,  n̂]but was trained to minimise the difference between the observed and

predicted water content:

Lθ=∑ (θ (h )−θ̂ (h∨θ̂r ,  θ̂ s ,  α̂ ,  n̂ ))
2

(14)

In this case, the ML model is constrained to predict parameters that fit the water

retention data (Figure 9). This led to more realistic prediction values and a more

accurate estimation of the water retention relationship. Using soil water retention
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data from Australia,  Minasny and McBratney (2002) demonstrated that the PTFs

trained using Eq. (14) predicted water retention much better compared to models

that were trained using Eq. (13). In addition, the parameters of the van Genuchten

model were better constrained according to theoretical expected values.

Figure 9. A physics-informed pedotransfer function for predicting a water retention 

curve function.

Recent research, such as that by Peters et al. (2024) and Weber et al. (2020), have

highlighted the shortcomings of the Mualem-van Genuchten model  (1976; 1980),

particularly  under dry conditions.  With  the residual  water  content  θ r as  a fitted

parameter, the model implies that the water content would never be lower than

that value. It also focuses on hydraulic conductivity driven by capillarity and fails to
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provide  a  reliable  description  of  water  retention  and  conductivity  across  the

complete range of soil water content levels. 

Rudiyanto et al. (2021) employed a comprehensive water retention and hydraulic

conductivity model, referred to as the FXW model. It is based on the Fredlund and

Xing (1994) water retention model and the hydraulic conductivity model of Wang et

al. (2018). The FXW model can calculate the retention and hydraulic conductivity

curves  across  the  entire  range  of  matric  heads,  from  saturation  to  complete

dryness.  The water  retention follows a series  of  functions that  aim to scale the

water content from saturation  θsto complete dryness (θ=0¿at a defined pressure

head h0 at -6.3 x 106 cm, as shown in Eq. (A1) – (A6).

While more complicated, the number of parameters of the water retention curve [

θs , α , n , m¿is  the  same  as  the  van  Genuchten  model.Rudiyanto  et  al.  (2021)

developed a PTF called neuroFX that predicts parameters of the water retention

curve using a neural network that takes sand, silt, clay, and bulk density as inputs.

The loss function of the neural networks is defined in terms of measured versus

predicted water content (Eq. A7).

Once the water retention parameters PTF was predicted [θ̂ s ,  α̂ ,  n̂ , m̂ ¿, the predicted

parameters were used to calculate the effective saturation Sek .The FXW parameters

for hydraulic conductivity [log (K s),  L] were then estimated using another neural

network function trained to minimise the difference in hydraulic conductivity values

(Eq. A8).

These PTFs were shown to describe water retention and hydraulic conductivity more

accurately  than  conventional  PTFs.  In  sandy  to  loamy  soils,  conventional  PTFs

trained  to  predict  the  Mualem-van  Genuchten  parameters  (ROSETTA)  show  an

under-prediction  of  hydraulic  conductivity  in  the dry  range by  several  orders  of

magnitude (Zhang and Schaap, 2017). Moreover, ROSETTA produced non-zero water

content at the dry end. The neuroFX PTF fits both water retention and hydraulic

conductivity data well across the entire range of water contents (Figure 10).  
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Figure 10.  An example of  water  retention and hydraulic  conductivity  curve  of  a

sandy loam predicted with PTF using neuroFX compared to the conventional Rosetta

model. The Rosetta model uses the Mualem-van Genuchten model, where the water

content does not reach zero as the soil is drying and the conductivity drops rapidly

at dry potentials.

In the direct neural networks PTFs, the neural networks are trained to model the

water retention function directly (Haghverdi et al., 2012). Since the neural network

learns the shape of the retention curve solely from measurements, the performance

of such PTFs is highly dependent on the quality, density, and distribution of the soil

water  retention  curve  measurements  within  the  training  set  (Haghverdi  et  al.,

2014).  Norouzi et al. (2024) addressed this issue by imposing physical constraints

on the relationship between the pressure head in the input layer and water content

in the output  layer.  Specifically,  four  constraints  were imposed: a monotonically

decreasing  constraint  between  log (|h|) and  water  content  (θ),  enforcing  linear

behaviour at the dry end of the retention curve, setting a specified range for the

pressure head at zero water content (h0), and enforcing a constant water content

constraint above air-entry pressure.  The loss function used for training the neural

network is given as:
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J=
λ1

Nwet
∑
i=1

Nwet

[ θ̂ (i )
−θ(i)]

2
+

λ2

N dry
∑
i=1

Ndry

[ θ̂ (i )
−θ(i)]

2
+
λ3

S1
∑
i=1

S 1

¿¿¿¿¿
(1

5)

where pF  is defined as the logarithm of the absolute value of the pressure head in

centimetres. The first two terms focus on the mean squared error (MSE) between

predicted and measured volumetric water contents, differentiated by wet-end (pF ≤

4.2) and dry-end (𝑘𝑘 > 4.2) conditions. The parameters N wetand N dry are defined as

the number of training examples from the wet-end and dry-end, respectively. The

next four terms ensure the model adheres to physical laws. In particular, the third

term enforces linearity at  the dry end by setting the second derivatives in that

region to zero for set 1 of the residual points (S1). These residual points are specific

combinations of data points generated within the input space (including sand, silt,

clay, SOC, bulk density, and pF ) that are used to enforce physical laws. The fourth

and fifth terms bound the range of pressure head at zero water content using sets 2

and 3 of  residual  points,  and the last  term forces  the water  content  to  remain

constant  above  the  air-entry  pressure  using  set  4  of  the  residual  points.  The

monotonicity  constraint  is  enforced  by  constructing  inherently  monotonic  neural

network architectures  (Runje and Shankaranarayana, 2023). The Lambdas (λ) are

weights that determine the relative contribution of each term in the loss function.

The resulting neural network PTF is capable of predicting a non-specific form of the

soil  water  retention  curve  from saturation  to  dryness  and  is  differentiable  with

respect to the pressure head.

Implications and prospect: Overall, rather than predicting parameters of a soil 

function independently, incorporating the physical model in the training process can

guide and constrain the ML models to predict physically-based values more 

accurately. Additional criteria could be added to the loss function to impose physical

constraints. For example, the predicted soil water retention curve could be 

constrained to satisfy a realistic soil evaporation characteristic length calculated 

from the same water retention parameters. The characteristic length values must 

be in a realistic range (e.g. < 1 m) due to the limitation of capillary continuity of an 

evaporating soil surface (Or, 2020). This approach could also be used to map soil 

water retention curves. If we have observations of water retention data over an 

area, we could predict the water retention parameters from spatial covariates by 
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minimising the observed water retention data using Eq. (A7) or Eq. (15). Yang et al. 

(2015) provided an example of this using Bayesian hierarchical models.

3.4 Modelling soil properties in space and time

Modelling dynamic soil properties is crucial for understanding how soil changes over

time and for improving land management practices. Static soil properties, which are

assumed to be relatively constant over time, are mapped based on their spatial 

relationships with the landscape. In contrast, dynamic properties, such as soil water 

content, SOC, and nutrient availability, vary with time due to environmental and 

anthropogenic factors. Some properties change more rapidly than others (e.g. soil 

temperature versus soil pH), making it important to gauge the timescale of their 

prediction. Process-based models are effective in accounting for major soil 

processes within specific soil profiles or layers, but they require calibration to local 

conditions. The spatial application of these models can be challenging due to limited

data for model initialisation and parameterisation and significant computational 

demands. On the other hand, ML models excel in spatial modelling but lack the 

capability to simulate processes.

To model the dynamic soil properties in space and time using the SoilML framework,

several techniques can be used:

- Residual models: This approach involves using a ML model to predict the residuals 

of a physical-based model. It involves learning the errors in the physical-based 

model prediction as compared to observations and using this information to correct 

the predictions of the physical model (Willard et al., 2020). This residual modelling 

approach only learns what components are missing from the physical model and 

does not incorporate any informed knowledge. 

- Meta or surrogate models: This approach involves using ML models to emulate 

physical-based models. This involves generating scenarios of various input soil and 

climate variables and running them through a simulation model to obtain simulation

results that can be used as training data. An ML model is then trained to model the 

output as a function of these inputs (Perlman et al., 2014). The ML could identify the

39

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854



sensitivity of the physical model and key variables influencing the model output, 

identifying under- or overrepresented inputs (Luo et al., 2019). 

- Hybrid models (combination of ML and process-based models): Integrating ML 

models with process-based models can significantly improve the capacity to model 

soil properties across space and time. Soil data are often spatially well represented 

but temporally sparse. One approach involves using the outputs of the process-

based model as additional training data (both spatially and temporally) for the ML 

model (Ma et al., 2019). Zhang et al. (2023) and Zhang et al. (2024) demonstrated 

that incorporating process-based model outputs as supplementary training data for 

ML models leads to higher prediction accuracy for soil carbon than using standalone

ML models. Another approach is to use the output of process-based models over an 

area as a dynamic covariate, in combination with other static covariates, in an ML 

model. Xie et al. (2022) integrated the predictions of process-based soil carbon as a 

dynamic covariate into a DSM model and found improved prediction accuracy 

compared to both the standalone ML models and process-based models.

- Physics-Informed Neural Networks (PINN): Neural networks are used as function 

approximators by embedding physical laws in the learning process. The physical 

laws can be described using partial differential equations (PDE), allowing neural 

networks to model complex behaviours and dynamics accurately. PINN uses the 

backpropagation method of neural networks to calculate the partial derivative of the

differential equations, and thus, the neural network solution adheres to the physical 

equations and observations during training (Bandai and Ghezzehei, 2021; Cai et al., 

2021). Applications of PINN in soil studies include retrieval of soil moisture using 

GNSS reflectometry (Kilane, 2024) and soil water and heat flow (Wang et al., 

2023b).

3.4.1 Case study: Modelling soil water flow using Physics-Informed Neural Network 

(PINN)

Conventional approaches: Soil moisture dynamics can be described by the 

Richardson-Richards’ equation (Richards, 1931; Richardson, 1922), which is based 

on the conservation of mass and the Darcy-Buckingham law (Buckingham, 1907). 

The Richards equation incorporates water retention curves and hydraulic 
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conductivity functions to encode macroscopic soil hydraulic properties on the scale 

of interest. Commonly, parametric models (e.g., the Mualem- van Genuchten model)

are used to represent the soil hydraulic functions. Their parameters are estimated 

via inverse modelling, where the parameters are adjusted by repeatedly solving 

Richards’ equation to match the model output with the data. A widely used 

software, HYDRUS, has such an inverse modelling capability, where a finite element 

method solves Richards' equation (Šimůnek et al., 2016). A limitation of this 

approach is the inflexibility of the parametric models used to represent the soil 

hydraulic functions. For example, if the Mualem-van Genuchten model is used as 

the parametric model, inverse modelling would fail if the target soil's water 

retention curve exhibits a bimodal shape.

SoilML: Several studies have proposed a physics-informed neural network (PINN) 

approach for inverse modelling based on Richards’ equation to improve the 

capability to analyse soil moisture data. In the original PINNs proposed by Raissi et 

al. (2019), fully-connected neural networks are used to represent the solution to 

partial differential equations as a function of the temporal and spatial coordinates. 

The neural networks are trained to minimise a loss function consisting of an 

observation constraint term and a PDE residual term (see Eq. 1). The PDE residual 

term can be computed by automatic differentiation (Baydin et al., 2018), which is 

implemented in the neural networks framework. Tartakovsky et al. (2020) employed

PINNs to estimate the hydraulic conductivity function for a time-independent two-

dimensional Richards’ equation. Subsequently, Bandai and Ghezzehei (2021) 

developed PINNs for the time-dependent one-dimensional Richards’ equation to 

estimate both water retention curves and hydraulic conductivity functions. In their 

framework (Figure 11), two monotonically constrained neural networks (Daniels and 

Velikova, 2010) are used to represent the soil hydraulic functions. 

Through numerical experiments, they demonstrated that the PINNs framework has 

the potential to estimate soil hydraulic functions without initial and boundary 

conditions. Furthermore, several studies have improved upon their PINNs 

framework. To improve the stability of PINNs against sparse and noisy data, Depina 

et al. (2021) replaced the monotonic neural networks with the Mualem-van 

Genuchten model and estimated the model’s parameters via a global optimisation 

algorithm. They validated their approach using both synthetic data and laboratory 
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infiltration experimental data. The model has been extended to model layered soils

(Bandai and Ghezzehei, 2022). Recently, the PINNs approach has been extended to 

multi-physics problems in vadose zone hydrology, such as solute transport in 

unsaturated soils (Haruzi and Moreno, 2023) and coupled heat and water transport

(Wang et al., 2023b). 

While PINNs have shown some success using synthetic data and laboratory 

experimental data, it remains difficult to train PINNs and obtain consistent results 

with field-observed soil moisture data due to the limited amount and accuracy of 

the data. Additionally, training PINNs for long temporal domains is challenging 

because the original formulation of PINNs does not encode the temporal causality of

dynamical systems. Although many methods have been proposed to alleviate those 

issues, as discussed in Wang et al. (2023a), they have not yet been applied to soil 

processes.

As an alternative approach, Bandai et al. (2024) proposed a hybrid method where 

the Richards’ equation is solved using a traditional numerical method (i.e., finite 

volume method with Backward Euler method), and neural networks are embedded 

in the numerical model to represent soil hydraulic functions. This approach 

leverages the flexibility of neural networks to represent unknown functions in 

physics-based models (e.g., soil hydraulic functions) while ensuring the basic 

physics encoded in Richards’ equation is maintained. This contrasts with the PINNs 

approaches, where Richards’ equation is enforced in a soft manner as a loss term in 

the loss function, and therefore, the basic physics laws, such as the conservation of 

mass, Buckingham-Darcy law, and temporal causality, are not guaranteed. They 

demonstrated that their neural network approach better fit infiltration experimental 

data than using the Mualem- van Genuchten model. 
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Figure 11. Physics-informed neural networks for the Richardson-Richards equation. 

The temporal and space coordinates (t and z) are fed into a fully connected neural 

network (a) to calculate the water potential h, which is then further converted into 

the hydraulic conductivity K and the volumetric water content θ by two monotonic 

neural networks ((b) and (c)), respectively. The three neural networks are trained 

simultaneously by minimising the loss function consisting of the data misfit term 

and the residual of the Richardson-Richards equation (Bandai and Ghezzehei, 2021).

3.4.2 Case study: Soil temperature modelling

Soil  temperature  is  influenced  by  various  soil  properties,  such  as  thermal

conductivity  and  heat  capacity,  which  are  affected  by  factors  like  bulk  density,

moisture content, and organic matter (Jury and Horton, 2004). While ML models are

often used to predict soil temperature based on historical data, these models can be

limited by their reliance on specific observation periods and may not fully capture

the underlying causes of temperature variations (Lembrechts et al., 2022). Although
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ML algorithms can identify nonlinear relationships between soil temperature and air

temperature along with  other  climate  variables,  they are  generally  incapable  of

showing  the  physical  processes  involved.  Another  drawback  of  uninformed  ML

models is their reliance on large amounts of data for reliable calibration and lack

generalisability.  Time series  of  soil  temperature data are  commonly recorded at

meteorological stations, providing complete temporal coverage but sparse spatial

coverage. 

Soil  temperature  is  governed  by  soil  thermal  properties,  which  vary  with  soil

moisture  level  (assuming  constant  organic  matter  and  bulk  density  over  time)

(Ochsner et al., 2001). The soil heat capacity and thermal conductivity determine

the heat flow rate and, consequently, temperature change and fluctuations over

time. Considering a static moisture level (i.e., at field capacity or wilting point), soil

heat flow rate can vary due to spatial variations in soil bulk density, organic matter

content, texture, and mineralogy, as these variables affect soil thermal diffusivity

even under constant solar radiation and other environmental conditions. 

Soil  heat  capacity  and  thermal  conductivity  can  be  used  to  calculate  soil

temperature in space and time using a physical rules-informed model such as the

standard heat flow equation. The volumetric heat capacity of soil is defined as the

amount  of  heat  required  to  raise  a  unit  volume  of  soil  by  one  degree  of

temperature.  As  soil  is  a  composite  of  air,  water,  and solid  materials,  soil  heat

capacity is described by the heat capacities of all  the constituents, weighted by

their volumetric fractions. Thus, volumetric soil heat capacity can be expressed as:

C soil=X aC a+XwCw+∑
j=1

N

X sjC sj (16)

where  X refers  to  the  volume  fraction,  C is  volumetric  heat  capacity,  and  the

subscripts a, w, and sj refer to air, water, and solid constituent j (for N different solid

materials in the soil).  Soil  thermal conductivity quantifies the rate at which heat

energy is conducted through a unit area of soil under a unit temperature gradient in

a direction perpendicular to the area. While soil thermal conductivity can be directly

measured, it can also be estimated using PTFs (e.g. He et al., 2020; Wessolek et al.,

2023; Zhang and Wang, 2017).
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The amount of thermal energy that moves through an area of soil in a unit of time is

known as soil heat flux or heat flux density. The ability of a soil to conduct heat

determines how fast its temperature changes during the day or between seasons.

The  magnitude  of  this  heat  energy  is  a  component  of  the  soil  surface  energy

balance, which varies with surface cover, moisture content,  and solar irradiance.

Heat  energy  is  transported  through  soil  by  several  mechanisms,  including

conduction, convection of heat by flowing liquid water and moving air, convection of

latent heat, and radiation. However, the most important heat transfer in soil is by

conduction,  which  refers  to  the  heat  transported  by  molecular  collisions.  The

conductive heat flux for a pure substance in one dimension is described by Fourier’s

law:

JHC= λ
dT
dz (17)

where JHC is the amount of thermal energy, λ is thermal conductivity, T  is 

temperature, and z is soil depth. Combined with the continuity equation, we have 

the general heat transport equation that describes the change in temperature with 

time (Carslaw and Jaeger, 1959):

C
∂T
∂ t = λ

∂2T
∂ z2 (18)

Figure 12 demonstrates that using physics-based equations, we could calculate soil

temperature from air temperature directly by considering soil thermal properties.

Since heat transport governs soil temperature, a danger of blind use of ML in soil

temperature modelling is the lack of physical rules in the prediction. For example,

the  boundary  conditions  (at  the  soil  surface  and  different  depths),  temporal

fluctuations of surface temperature, and heat flow variation to varying depths due

to  differences in  soil  thermal  properties  can  significantly  affect  soil  temperature

estimation (Cichota et al., 2004; Gao et al., 2017; Ouzzane et al., 2014). 

Implications and prospects: The nature of soil temperature dynamics and its spatio-

temporal variations often prevent ML models from recognising the underlying 

phenomena and understanding why they vary at different scales. While efforts have

been made to incorporate physical knowledge into ML to make it interpretable (e.g. 

Abimbola et al., 2021; Li et al., 2022), the specific physical rules driving soil 
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temperature within ML are still not well recognised. Xie et al. (2024) derived a PINN 

model for soil temperature prediction based on the heat transport equation (Eq. 18).

Trained using historical soil temperature data, they were able to predict one-

dimensional soil temperature at multiple soil depths accurately. ML models 

incorporating remote sensing products (such as land cover and land surface 

temperature) can help determine related soil and environmental properties that are 

not considered in the physical model. These properties include land cover, the rate 

of heat transport from the atmosphere, and other factors influencing soil 

temperature. Future work should focus on combining physical rules within ML 

algorithms to improve the accuracy and reliability of soil temperature predictions.

Figure  12.  The  figure  shows  an  example  of  soil  heat  capacity  and  thermal

conductivity for New South Wales state, Australia, at 5─15 cm soil depth layer with a

moisture level of 60% of the field capacity. The lower map is the February 2022
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average temperature map for the 5─15cm soil depth, obtained using a steady-state

analytical method. 

3.4.3 Prospective case study of modelling soil carbon dynamics

Conventional approaches: There is increasing interest in modelling SOC dynamics 

and SOC changes to infer carbon emission or sequestration from the atmosphere. 

Both physical rules-based and ML models are used to estimate SOC changes across 

regions. Physical rules-based models typically define several SOC pools, each 

characterised by a mean residence time derived from first-order kinetics. 

Conversely, ML models are often trained on sparse temporal soil data along with 

both static and dynamic covariates (Sun et al., 2021; Yang et al., 2022). Static 

covariates include soil characteristics, topography, and long-term climate patterns. 

Dynamic covariates often involve temporal data like land use or land cover and 

vegetation indices from remote sensing images. There are also cumulative temporal

indices such as total rainfall since a specific period, and years since land cover 

changes to reflect temporal dynamics (Padarian et al., 2022b). These dynamic 

covariates track SOC dynamics from one state to another to infer SOC changes. 

However, the time scale of the changes in the remotely-sensed images is not 

aligned with the SOC dynamic changes, and fails to explain the underlying 

processes behind SOC changes. For example, a change in land cover from forest to 

cropping field will cause SOC to decline rapidly but this process could take several 

years to reach a steady state. Similarly, a change from cropping field to pasture 

could accumulate SOC slowly and take several years to achieve equilibrium. In 

addition, SOC changes can occur over shorter periods, such as crop rotation (Fang 

et al., 2018), or longer periods, such as decomposition. Furthermore, surface 

conditions detected by remote sensing may not adequately represent subsurface 

processes. Integrating these processes into models is crucial for a more 

comprehensive understanding of SOC changes.

SoilML: Physical rules-based SOC models often struggle to accurately resolve spatial

information because decomposition constants may vary with soil types and 

topography. Conversely, ML models, lacking process-based insights, tend to produce

abrupt changes in SOC when there is a shift in land use from one period to the next.

47

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068



Physical rules-based approaches can be particularly useful in addressing the 

problem of limited observational data in soil carbon dynamics modelling. We can 

create an ML model that allows SOC dynamics to follow physical rules. Here, we 

provide a framework for integrating various soil properties and environmental 

factors, offering a way to enhance model reliability in predicting soil carbon 

changes.

SOC is observed in space and time Cx,t
 and can be modelled as a mass balance of 

production and input (I), decomposition (k). The evolution of the organic carbon 

content (C) for a particular soil depth through space and time can therefore be 

expressed as (Andrén and Kätterer, 1997): 

dC
dt =I−k1C 1+hk 1C1−k2C2 (19)

Soil carbon change over time (
dC
dt ) can be modelled as consisting of a fast pool (C1)

and a slow pool (C2). Carbon input I enters the fast pool with a rate constant of k1,

which in turn becomes humified and mineral-associated at a rate of h into the slow

pool, which has a rate constant of k2. The input I depends on the types of organic

matter,  above  and  below-ground,  climate,  soil  type,  depth,  and  management

practices. The humification and decomposition constants vary in space and time,

influenced by temperature, clay content, and moisture levels.  

First, we build a neural network model which will predict parameters  ϕ=[h , k1 , k 2]

from soil characteristics and factors related to climate, topography, vegetation and

human activities:

ϕ= f (soil ,topography , climate , vegetation) (20)

A second neural network can be constructed to predict soil C in space and time that 

conforms to the C dynamics equation. The neural networks would incorporate static 

inputs such as soil texture, topography, long-term mean rainfall, and temperature, 

along with dynamic inputs such as land use and vegetation indices, together with 

output from the first neural network:

C x ,t= f (soil ,topography , climate , vegetation , I x , t , k 1x , k2 x , hx ) (21)

where the input I is a function of: 
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I x ,t= f (soil , topography , climate , vegetation) (22)

The network can be trained based on observed C concentration, with a loss 

function:

L=w1∑ (C x , t−Ĉ x , t )
2
+¿w2∑ ( dCdt +

d Ĉ
dt )

2

¿ (23)

The first term accounts for the sparsely observed carbon in space and time, and the

second term provides a constraint that the model will adhere to the dynamics 

defined in Equation (19), based on a series of long-term experimental data or 

simulated data. The termsw1 and w2 refer to the weights for the first and second 

terms.

4. Discussion, Assumptions and Limitations

We have demonstrated a variety of forms of soil science knowledge and how they 

can be incorporated into the ML training process. Here, we discuss aspects of ML 

that can improve soil science understanding.

Soil is a unique 3-D volume and ML models should be soil science-informed. It is 

important to design ML model applications that specifically accommodate the 

multidimensional nature of soil (Poggio and Gimona, 2014). Soil is not just a simple 

substrate but a three-dimensional body with unique properties varying by depth. 

Thus, when developing ML models, they need to be soil science-informed, 

incorporating architecture, variables, and data layers that reflect the unique 

characteristics of the soil.

Modify the ML models to suit our needs, not modify our data to suit ML needs. This 

means a shift in how we approach ML development. Traditionally, much of the focus 

in ML has been on adjusting, filtering, or transforming soil data to fit the 

requirements of existing algorithms and models. This approach could lead to loss of 

information or oversimplification of soil data. Instead, we should adapt ML models to

work with soil data, such as modifying and regularising their loss functions. This soil-

centric approach in model development ensures that the technology serves the 

specific needs of its applications, rather than forcing data into predefined, 

potentially limiting frameworks.
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Overparametrisation and interpolation. Classical statistics promotes Occam's razor 

principle, which suggests selecting the hypothesis with the fewest assumptions 

among competing hypotheses. This translates to the preference for models with 

fewer parameters, as they are easier to interpret and less likely to overfit the data. 

However, ML models are usually overparametrised, having many more parameters 

compared to the size of the training data (Belkin, 2021). Some models (such as 

random forest and boosting methods) are designed to perfectly fit (interpolate) the 

training data, which is usually noisy. Interpolating noisy data using ML models, 

traditionally associated with detrimental overfitting, has been demonstrated to 

perform well on test data (Belkin, 2021). 

Belkin et al. (2019) proposed the double descent phenomenon in ML where the 

error, when plotted against model complexity, shows a two-phase behaviour 

contrary to the traditional U-shaped bias-variance trade-off (Figure 13). Initially, as 

model complexity increases, the test error decreases up to an interpolation 

threshold where the model perfectly fits the training data, causing the test error to 

peak. Unexpectedly, if the complexity continues to increase beyond this point, the 

test error decreases again, leading to a second descent. This phenomenon has been

observed across various ML models. However, the ability of ML modes to interpolate

does not necessarily mean the model is more accurate and generalisable. Practices 

that focus on regularising the training rather than achieving a perfect fit are being 

advocated (See Box 3). Currently, there is still a lack of metrics to quantify an ML 

model’s complexity with respect to its ability to generalise (Dar et al., 2021). Soil 

science data are usually relatively small compared to disciplines such as image or 

language processing. There is still a lack of understanding of the interpolation effect

of ML models trained on a relatively small dataset (e.g. less than 100 observations). 

Overparametrisation and the double descent phenomena do not necessarily lead to 

improved accuracy. Thus, an independent validation dataset is needed to evaluate 

the generalisability of the ML models.
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Figure 13. The double-descent error curve with “classical” and “modern 

interpolating” regimes, showing training error (red dashed line) and test error (solid 

line) as a function of model complexity. The left curve is the classical U-shaped risk 

curve arising from the bias–variance trade-off. The right curve, separated by the 

interpolation threshold, represents ML models with interpolation or zero training 

error. From Belkin et al. (2019).

Uncertainty analysis. This analysis helps acknowledge the limits of models. In soil 

science, these challenges are magnified due to the limited, sparse, and often 

heterogeneous nature of soil data (Libohova et al., 2019). In ML, uncertainties can 

stem from uncertain data and incomplete knowledge. Although some studies report 

prediction intervals and confidence levels, a comprehensive approach to uncertainty

quantification remains a challenge, emphasising the need for better methods to 

evaluate and communicate the reliability of soil property predictions. Uncertainty 

quantification is essential for assessing prediction reliability, especially under 

unseen scenarios. Bayesian approaches are the standard method; however, the 

computational demands of modelling the full posterior distribution are very high. 

This challenge can be mitigated by using dropout techniques to approximate the 

posterior distribution. For example, Padarian et al. (2022a) used the Monte Carlo 
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dropout method for the prediction of SOC using vis-NIR-SWIR data, and 

demonstrated its capability to identify large uncertainty when new data presented is

different from the data used during training.

Interpretability. Soil scientists are also interested in using ML models to have a 

better understanding of soil processes and formulate hypotheses (Padarian et al., 

2020a; Wadoux and Molnar, 2022). The prevailing assumption in ML models is that, 

with sufficiently covariate capturing spatial dependence relationships, the spatial 

patterns of soils can be predicted, and the drivers of those spatial patterns can be 

identified (Bui, 2004; Bui et al., 2020). Interpretable ML models help clarify the 

significance of specific predictors in estimating soil properties, tackling the "black 

box" nature of many ML algorithms (Roscher et al., 2020). Post hoc analysis—

including interpreting, visualising, and evaluating ML predictions—can determine 

how well a model aligns with established soil science knowledge. However, while ML

primarily aims to minimise prediction error, soil scientists are more interested in 

uncovering underlying processes. Interpretability relies on human judgment, and 

just because a model highlights certain predictors as important doesn't necessarily 

mean they cause the observed effects or offer new insights. Techniques like Shapley

values, while useful for generating hypotheses, could lead to biased conclusions if 

not carefully handled. Therefore, interpretability should not be conflated as a 

verification of a model’s generalisability.  It also should not be viewed as a 

confirmation of a model’s accuracy but must be integrated with domain knowledge 

to validate and enhance predictions thoroughly.

Dynamic soil properties prediction in space and time. Soil data are often 

incomplete, noisy, and sparse in space and time. ML models, especially tree models,

often struggle to interpolate these sparse data effectively. To overcome these 

limitations, it is beneficial to define the model's structure consistent with soil 

science principles, incorporate prior knowledge of soil in space (and time), and 

define a loss function that obeys physical principles. ML models are also often used 

to predict soil carbon fate under future climate scenarios, yet ML models usually 

perform poorly when used for extrapolation or predicting unseen or rare events.

Finally, SoilML should ensure Reproducibility, which involves a systematic approach 

to documenting, sharing, and verifying the processes and results of analysis. This 
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includes making the codes, and methodologies accessible to other researchers so 

that they can replicate the findings. Thorough evaluations are also crucial to identify

any biases inherent in the model, data, or methodology. This might involve testing 

the model under various conditions, using diverse datasets to check for consistency,

and scrutinising the assumptions underlying the model's predictions.  

Box 3. Reducing overparametrisation in ML models

As ML is a data-hungry model, efforts are being made to reduce 

overparametrisation by either increasing the number of observations or simplifying 

the model architecture. Some of the approaches include (Dar et al., 2021):

- Data augmentation, generating additional synthetic data can increase the 

diversity of training data, which can help reduce overparametrisation. Data 

augmentation could include applying various covariates transformations (such as 

rotations) to existing data or based on prior information (see Figure 4).

- Transfer learning, involves using a pre-trained deep neural network (DNN) on 

a related problem to improve training efficiency and performance on a target 

problem with less data (Padarian et al., 2019a). Transfer learning is done by 

transferring and fine-tuning one or more layers from the source DNN. This approach 

can mitigate overparametrisation by leveraging the learned parameters from the 

source task.

- Pruning models, pruning highly parametrised ML models into less complex 

forms can improve the trade-off between generalisation performance and 

computational requirements. This approach is also useful for applications with 

limited storage space, computation time, and energy consumption.  

5. Outlook

SoilML have been applied in four key areas: digital soil mapping, soil spectroscopy, 

pedotransfer functions, and dynamic soil property modeling. These applications 
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demonstrate how SoilML enhances model accuracy, improves interpretability, and 

preserves the principles of soil science. 

ML approaches have successfully produced digital soil maps of continents and the 

world, but there is still a lack of modelling soil processes. Soil processes are 

commonly predicted statically using ML models without considering temporal 

processes. Currently most ML-derived outputs of soil maps are used as inputs of 

baseline data for assessing future conditions using process-based models. While 

physics-informed ML models are growing in environmental and earth modelling, 

their application in soil science is still minimal. With an increasing demand for 

quantifying soil functions, there is a need and potential to upscale our physical and 

chemical process models to a larger extent. SoilML has the potential to accelerate 

advancements in soil science by integrating soil-specific knowledge into the ML 

process. This can be achieved through the use of observational priors, tailored 

model structures, and informed loss functions that incorporate physical constraints 

and coherency rules. 

There are still practical challenges of SoilML include high computational demands, 

the need for soil-specific priors, and difficulties in integrating multi-source data with 

varying spatial and temporal resolutions. Effective collaboration among the 

communities, including process-based modellers, pedometricians, remote sensing 

experts, and data scientists, is essential to advance the growth of SoilML for soil 

security assessment.
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Appendix

The following are the equations of the water retention and hydraulic conductivity 

curves according to the FXW model.

The water retention curve according to Fredlund and Xing (1994):

θ (h )=θsSe (h ) (A1)

where θ s is the saturated water content and Se (h ) is the effective saturation, 

calculated as:

Se (h )=C f (h ) Γ (h ) (A2)

With C f (h )=[1−
ln (1+

h
hr )

ln(1+
h0

hr ) ] and  Γ (h )=( ln [exp (1 )+|αh|n ] )
−m

(A3)

The unsaturated hydraulic function, K(h), based on Wang et al. (2018) is defined as:

K (h )=K sK r (h ) (A4)

where Ks is the saturated hydraulic conductivity and

K r (h )=Sek
L γ 2 (A5)

Sek ( h )=
Γ (h )−Γ (h0 )

1−Γ ( h0 )
 and γ=[1−(1−Γ

1
m )

1− 1
n ]

2

(A6)

The neuroFX model minimises the following functions:

Min:  Lθ=∑ (θ (h )−θ̂ (h∨θ̂s ,  α̂ ,  n̂ , m̂ ))
2

(A7)

Min:LK=∑ ( log K (h )−log K̂ (h∨θ̂ s , α̂ ,  n̂ , m̂ , K̂ s , L ) )
2

(A8)
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