Lawrence Berkeley National Laboratory

Recent Work

Title THE DISPERSION OF BACTERIA

Permalink https://escholarship.org/uc/item/8qf5360g

Authors Rust, Francis G. Wilke, Charles R.

Publication Date 1966-09-01

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California. Special thesis - M.S. thesis of Francis G. Rust

UCRL-17208 Preprint

UNIVERSITY OF CALIFORNIA

Lawrence Radiation Laboratory Berkeley, California

AEC Contract No. W-7405-eng-48

THE DISPERSION OF BACTERIA Francis G. Rust and Charles R. Wilke September 1966 <u>Contents</u>

Abstract	· · · · · · · · · · · · · · · · · · ·						
I.	Introduction						
II.	Characteristics of Bacterial Cultures						
III.	Diffusivities by the Mean Square Displacement Method 7						
	A. Theory						
	B. Equipment						
· · · ·	C. Experimental Procedure						
· .	D. Discussion of Data						
IV.	Diffusivity from the Measured Concentration Profiles 16						
	A. Experimental Procedure and Equipment 16						
	B. Calculation of Concentration Profiles 18						
	C. Discussion of Results						
	D. Experiment to Evaluate Flow in the Diffusion Chamber 29						
٧.	Diffusion from a Capillary Tube						
s e e su	A. Experimental Procedure						
.]	B. Numerical Solution to the Diffusion Equation 34						
(C. Discussion of Results						
VI.	Conclusions						
VII. I	Examples of the Spread of Bacteria by Diffusion 43						
VIII. S	Summary						
Acknowled	lgments						
Appendice	e^{s}						
A	Appendix A						
A	ppendix B						
Α	ppendix C						
A	ppendix D						
Reference	s						

THE DISPERSION OF BACTERIA

Francis G. Rust and Charles R. Wilke

Department of Chemical Engineering and Lawrence Radiation Laboratory University of California Berkeley, California

September 1966

ABSTRACT

The dispersion of bacteria by their own motility was measured by three methods and was found to follow the behavior predicted by diffusion. The diffusivity was found to range from 2 to 3×10^{-5} cm²/sec at 26° C in a uniform nutrient medium. Methods are presented for estimating the rate of dispersion of motile bacteria that are multiplying as they diffuse.

I. INTRODUCTION

On large scale, bacterial transport is accomplished by convection or sedimentation, both of which can be handled by conventional engineering methods. Some bacteria also move by their own motility so that in a uniform medium that is free from convection, bacteria will disperse by a random motion which could be characterized as a diffusional mechanism. The dispersion of bacteria by this diffusive process has not been investigated previously, and is the primary subject of this report. The dispersion of bacteria will be shown to follow the behavior predicted by diffusion provided that the following necessary conditions are met.

1. Suitable medium for motility

2. Absence of convection currents or force fields

3. Absence of areas depleted in a nutrient Even in the absence of motility, bacteria will slowly diffuse by Brownian motion. Bacteria are so large that transport by this mechanism is not significant.

The diffusive transport of bacteria is of engineering interest in cracks, along the interior surfaces of pipes, in packed beds, and in any case where convective forces have been damped out by the presence of solid surfaces.

The maintenance of sterility can be of great importance in biological operations such as fermentation, for one bacterium can spoil the entire contents of a feed tank in less than a day. A knowledge of all mechanisms of bacterial transport is necessary to evaluate the probability of bacteria gaining access to a sterile process.

Three different experimental methods were used to measure the dispersion of bacteria. In the first experimental method, the location of individual bacteria was recorded at different times by multiple exposure photography. The displacement of the bacteria from their original position was measured, and the diffusivity was calculated

using the Einstein relationship.¹ The extent to which the motion of the bacteria had become random could also be evaluated in this experiment.

In the second experimental method, a steep bacterial concentration gradient was established on a microscope slide and was photographed at various times for counting. From these photographs bacterial concentration profiles were obtained. Different diffusivities were then used in a numerical solution to the diffusion equation, each diffusivity gave a different concentration profile. The calculated profiles were matched with the measured profile to see which diffusivity gave a profile that matched the measured profile.

In the third experimental method, a capillary tube was filled with a bacterial suspension and was immersed in stirred nutrient. After allowing time for diffusion of bacteria from the tube to occur, the tube was removed and the number of bacteria in the tube and the number of bacteria in the solution was determined by plating on nutrient agar and counting the colonies of bacteria that grew from each viable bacterium. The diffusivities were obtained by solving the partial differential equation for diffusion, sedimentation, and growth numerically to give concentration profiles at many different times. These concentration profiles were integrated to give the fraction of the bacteria remaining in the tube as a function of dimensionless time, $Dt/1^2$. The diffusivity could be determined from this function once the fraction of the bacteria remaining in the tube had been experimentally measured, provided that the time for diffusion, and the length of the tube were known.

The experimentally determined diffusivity of bacteria was used to calculate the rate at which contamination by motile bacteria would spread through a crack filled with quiescent medium. An example was also calculated for the diffusion along the inside surface of a feed line against the flow of medium.

-2-

II. CHARACTERISTICS OF THE BACTERIAL CULTURES

For the proposed experiments to be valid, it is essential that such properties as bacterial motility and multiplication rate be constant during an experiment. Scouting experiments were made on several strains of <u>E. coli</u> to determined how the multiplication rate, percent of bacteria that are motile and bacterial velocity were affected by temperature, stage of growth and composition of the medium.

The cultures used were three strains of <u>E. coli</u> obtained from the Department of Bacteriology at the University of California. They were:

> <u>E. coli</u> U. C. 27, a highly motile strain isolated in 1958 <u>E. coli</u> 3000, motile but slightly less motile than U. C. 27 E. coli B (Hershey), a non motile strain.

<u>E. coli</u> U. C. 27 was selected for the diffusion measurements because the fraction of motile bacteria was highest in this strain.

Nutrient medium (5 g. peptone, 3 g. beef extract, 2 g. glucose, to l l. water) was used in all experiments because in the absence of peptone only about half of the bacteria were motile at 20° C. This decrease in motility was observed in all defined media regardless of sugar energy source and was not due to contamination, for the definitive test for <u>E. coli</u> was made on all samples. The disadvantage of nutrient medium was that the growth rate was so high that the diffusion experiments had to be limited to three hours. Anticonvectants such as gelatine, agar, and methyl cellulose were not used because they are reported to accumulate on flagella and make them large enough to be seen with a light microscope.² Since flagella are believed to be the motor organs of bacteria, the heavy deposites might affect bacterial motility and diffusivity.

The diffusion experiments in this report are based on the premise that bacteria move randomly. Bacteria would not be expected

to move in a random manner if there were zones in the medium that were depleted in some essential nutrient. Under conditions of unfavorable environment bacteria often undergo a "shock reaction", their motion is erratic and characterized by rapid, random changes in direction until they locate a favorable environment. The term chemotaxis is used to describe this ability of bacteria to locate and move preferentially toward a favorable environment. Adler³ recently described the ability of <u>E. coli</u> to deplete the nutrient at one end of a tube and then migrate down the tube in a band following the oxygen and energy source front; a depleted region was left behind the migrating bacteria.

-4-

A typical growth curve based on optical counts is shown (Fig. 1) for E. coli U. C. 27 at 20°C in nutrient medium. The percent of bacteria that are motile can be seen to remain constant from early exponential phase to stationary phase. At the onset of stationary phase the velocity of the bacteria was observed to decrease rapidly. A growth rate discontinuity in which the bacteria ceased to divide for a two hour period can be seen in the growth curve at a concentration of 5x10 bacteria/ml. Catherine Fowler has observed a similar discontinuity in the growth of E. coli at 37°C, and has demonstrated that this failure to multiply occurs coincident with the depletion of oxygen in the medium. At 37°C she observed that there was a 30 to 50 minute lag before growth continued in the . absence of oxygen. After 70 minutes, the anerobic growth rate was the same as the previous aerobic rate. Based on the work of Adler? and Fowler, 4 it would be anticipated that nutrient medium (exposed to air for a week after autoclaving) would have sufficient dissolved oxygen for E. coli to grow aerobically to a concentration of about 5x10' bacteria/ml. The depletion of oxygen would result in the nonrandom behavior of chemotaxis, and would be signaled by failure of the E. coli to multiply.

Fig. 1. A typical growth curve from optical counts for <u>E. coli</u> 27 in nutrient medium at 20°C. Growth is aerobic until the oxygen is depleted. No further multiplication occurs until anerobic growth has started. The upper graph shows that a high percentage of the bacteria are motile until the onset of stationary phase. The microscope lamp was found to stimulate motility during the onset of stationary phase. Multiple exposure photo-micrographs showed that about half of the bacteria were either stopped or moving very slowly. These bacteria accelerated to within 70 percent of their final velocity during the first second of exposure to the intense microscope lamp, which had been off for an hour. Continuous illumination was found to have no effect on the growth rate or motion during the majority of the exponential growth phase.

-6-

The heating caused by the microscope lamp was measured with a copper-constantan thermocouple in the medium between the slide and coverslip. The temperature rise for a 100 micron depth of medium was $0.2^{\circ}C$ during multiple exposures, and $1.7^{\circ}C$ during continuous exposure. The motion of nonmotile <u>E. coli</u> B in the slide chamber when it is vertical is evidence that the microscope lamp will cause convection currents in a vertical slide chamber.

A wide range of bacteria lengths was observed at all stages of growth. There was no significant effect of size on bacterial velocity. The majority of bacteria stay in the close proximity of a surface, vertical or horozontal, once they have encountered it. The surface might be expected to exert a drag on the moving bacteria; however, no significant change in velocity was observed at different distances from the surface.

III. DIFFUSIVITIES BY THE MEAN SQUARE DISPLACEMENT METHOD

Multiple exposure photographs were taken of bacteria in a thin film of nutrient medium between two microscope slides. The photographic images of a tacterium appeared as a series of dots (Fig. 2). From these photographs the distance that a bacterium traveled in a given time interval could be measured (Fig. 3). Thus sufficient information was available to treat the dispersion of bacteria in the same manner as Brownian motion had been originally treated by the Stokes-Einstein relationship.¹

A. Theory

Diffusion can be thought of as a random walk of particles, and treated in the same manner as Brownian motion. At the turn of the century Einstein derived the relationship that relates the displacement of a particle that moves randomly to the diffusivity.¹ This relationship is:

$$\frac{x}{2}$$
 = 5D

 $\overline{r}^2 = 4Dt$

where

or

D = Diffusivity (cm^2/sec) t = the time increment of observation (sec)

 \overline{X}^2 = the mean of the squares of the displacement in a fixed arbitrary direction (cm²)

² = the mean of the squares of the distances between the initial and final positions on a surface (cm²)

For short times, before the particles have made their first turn, \overline{X} is proportional to t, and the apparent D will increase linearly with t. As the particles make more turns their motion approaches random motion and the dependence of D on t decreases to the limiting case where motion is completely random and there is no dependence of D on t.

XBH671 13

Fig. 2. Multiple exposure photomicrograph of <u>E. coli</u> 27 in nutrient medium at 18 X lens magnification. The <u>multiple</u> images start with a 3 exposure sequence and end with a 5 exposure sequence. The 85 multiple exposures were taken one per second on pan film.

MUB-13212

Fig. 3. Schematic diagram showing the experimental procedure used in the mean square displacement method.

The calculations can easily be accomplished by hand. \mathbf{x}^{\perp} is determined by squaring the x-components of all of the displacements at a given time, and averaging them. The diffusivity is obtained by dividing the \mathbf{x}^2 by twice the time interval for the displacements. The same calculations can be accomplished on a computer; a program to do this is given in Appendix A.

B. Equipment

The multiple exposure photomicrographs were made by using a rotary shutter to interrupt the beam of light from the microscope lamp. The rotary shutter was a disk with a slot cut in it; the disk was driven by a clock motor at 1 rps. With a dark field condenser, the bacteria appeared as bright spots moving against a black background. Every second the slot in the rotary disk permitted the light from the bacteria to reach the film. The image of a bacterium in motion is a string of bright spots. A good dark field condenser permits over 200 multiple exposures to be made on one negative, with no noticable washing out of the image by the background.

A Bausch and Lomb microscope with a low power dark field condenser and a large area light source was used for all runs in this experiment. Both high speed "Polaroid" film and medium speed panchromatic films were used with equal success. All optical systems were calebrated with a stage micrometer at the time of an experiment.

Experimental Procedure

Preliminary experiments quickly established that an individual bacterium would have to be followed for more than a minute for its motion to be random. During a minute an <u>E. coli</u> travels two milimeters. These long distances require that the magnification be decreased to the lower limit. At 18X the area of illumination limited further reduction in magnification. Construction of a large dark field condenser would permit the bacteria to be followed for longer periods of time.

The bacteria were grown for six hours in exponential phase by frequent dilution before they were placed in the microscope viewing chamber. These chambers (Fig. 4) were made by separating two carefully cleaned glass slides with a thin spacer. After partially coating the edges with hot paraffin, the spacer was removed, and the rest of the edge was coated except for filling and venting holes. Capillary action sucked the bacterial suspension into the chamber. After the fill and vent holes were coated; the suspension was completely enclosed in a chamber of uniform thickness.

Multiple exposure photomicrographs were taken (Fig. 2). Several reference points were made in the tracks by closing the mechanical shutter briefly during the multiple exposure photomicrographs. These reference points simplified measurements and permitted the direction of travel to be determined.

The displacements of a bacterium from the initial image to the image at time t was measured at times t = 5, 10, 20, 40, 60, and 80 sec by projecting the prints in a microcard reader and tracing the tracks on graph paper. A photomicrograph of the stage micrometer was also projected to give a scale factor. The introduction of bias was prevented by selecting only those tracks that could not have reached the edge of field if they had moved directly towards the nearest edge from their origin. The other tracks discarded were those that could not be followed at all because they moved in tight circles.

-11-

Fig. 4. Diagram showing the technique for the fabrication of the microscope chambers used for observing bacteria.

D. Discussion of Data

-13-

The diffusivities calculated from the mean square displacements are initially proportional to time (Fig. 5). As expected, the time dependence decreases with the increasing size of the time interval. The data are compared to the straight line that would have resulted if the bacteria had gone in a straight line at a velocity equal to the velocity measured over a 5 second interval.

Since the time increment could not be increased, the data was extrapolated to infinite time with the assumption of an exponential approach to the time independent diffusivity. The results are shown in (Fig. 6).

The data were tested for movement of the fluid by plotting the end points of the tracks on a scatter diagram where all tracks have the same origin (Appendix A). The centers of gravity of all of the scatter diagrams were very close to the origin. Bulk flow would have displaced the center of gravity. The data and calculations for one experiment are included in Appendix A.

- MUB13214
- Fig. 5. The diffusivities calculated from the mean square displacement of bacteria are plotted against the time interval over which the displacement was measured. As the number of direction changes increases, the diffusivity becomes less dependent on the size of the time increment. The average bacterial velocity is $20.7 \mu/\text{sec.}$

MUB13215

Fig. 6. The log of the diffusivities from five different runs are plotted against reciprocal time and are extrapolated to an infinite time interval. Run no.
D (cm²/sec) at t = ∞

Run no.	D (cm ² /sec) a	at t
1		3.3x10-	2
2		5.4×10-	<u>2</u> . : 1:
3		2.0×10-	200
4		5.8×10-	2 · · · · ·
Ave.		4.1×10 ⁻)

IV. DIFFUSION FROM MEASURED CONCENTRATION PROFILES A. Experimental Procedure and Equipment

-16-

In this series of experiments microscope chambers were built that would permit direct observation of the diffusion of motile bacteria into a channel filled with nutrient medium. The concentration profiles of the bacteria were obtained by counting the number of bacteria on photographs taken at various positions along the channel. The diffusivities were obtained by matching the measured profiles to profiles calculated from different, known diffusivities.

The diffusion chambers for this experiment (Fig. 7) were similar in construction to the chambers in the previous experiment, except that "Mylar" spacers 2 or 3 mils thick were left in the chamber to form a channel at the right hand end of the slide. The open chamber on the left end formed an unstirred reservoir. The channel was then filled with fresh medium. Many chambers had to be discarded at stage because of overfilling or the inclusion of air bubbles. Once the channel was filled, a suspension of <u>E. coli</u> was added to the reservoir. The filling and vent holes were waxed over so that the entire chamber was sealed. The initial distribution was immediately photographed for subsequent counting.

A Reichert "Zetopan" research microscope was used in all of these experiments because the calibrated stage permitted the same locations to be photographed at different times. The objective lenses were stopped down by placing an aluminum foil, fixed aperature above the lens. This modification gave the lenses a depth of field of 100 microns without excessive loss of resolution. Two different magnifications were used for the counting, 256 X for high concentrations, and 48 X for low concentrations. This combination of lenses enabled a concentration range of ten thousand to be covered. The most accurate measurements were made at high concentrations where as many as two thousand bacteria were counted. For high counts the photograph was covered with a grid

-17-

MUB13216

Fig. 7. Chamber for the direct observation of bacterial concentration gradients with a microscope. The chamber was made by separating two microscope slides with thin sheets of "Mylar" then waxing the edges of the slides. The bacterial suspension was placed in the left hand chamber and fresh medium was placed in the channel on the right. Diffusion occured down the channel and could be recorded by photomicrographs. and projected in a microcard reader. At low concentrations of bacteria the rotary shutter was used so that the characteristic short strings of images (Fig. 8) would positively identify the motile bacteria. In Fig. 8 the rotary shutter had two additional slots that were one fifth as large as the main slot. The smaller slots produced two additional dimmer images between the usual bright images. The additional images facilitated the identification of the tracks of a bacterium when many different tracks overlapped.

B. Calculation of Concentration Profiles

The diffusion chambers used for this experiment approximate the case of one dimensional diffusion into a finite slab that contains some of the diffusing substance. The partial differential equation that applies to this case which was used to calculate the concentration profiles at various times was:

$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2} + R C$$

Boundary Conditions are:

Initial condition: the measured initial distribution Boundary condition no. 1 $C = C_0 \cdot e^{Rt}$, x < 0, all t Boundary condition no. 2 $\frac{dC}{dx} = 0$, $x = \ell$, all t

C = Concentration (number bacteria/ml)
t = Time (sec)
D = Diffusivity (cm²/sec)
x = Distance from reservoir (cm)
R = Growth rate (l/sec)
l = Total length of channel (cm)
m = Distance segment number

n = Time increment number

-18-

ZN-5991

Fig. 8. A multiple exposure photomicrograph of E. coli in nutrient medium. Three exposures were taken per second at 256 X lens magnification on polaroid film. The shutter speed was 1/40 sec for the bright exposures. Concentration profiles can be calculated numerically by finite difference equations which can be derived from a material balance around a typical section m.

out: $\frac{D\Delta t}{\Delta x} (C_{m,n} - C_{m+1,n})$

accumulation: $\Delta x (C_{m,n+1} - C_{m,n})$

Combining and collecting terms

$$C_{m,n+1} = \frac{D\Delta t}{\Delta x^{2}} \cdot C_{m-1,n} + (1.0 - \frac{2Dat}{\Delta x^{2}} + tR) \cdot C_{m,n}$$
$$+ \frac{D\Delta t}{\Delta x^{2}} C_{m+1,m}$$

Accuracy of this method is greatest when $D\Delta t/\Delta x^2 = 1/6$. This substitution gives:

$$C_{m,n+1} = \frac{C_{m-1,n}}{6} + (2/3 + \Delta tR) C_{m,n} + \frac{C_{m+1,n}}{6}$$

(1)

The channel of length CAPL was divided into 100 equal sections.

 $\Delta x = CAPL/100$ since $Mt/\Delta x^2 = 1/6$, then $\Delta t = TK = CAPL^2 10^{-4}/6D$

The initial concentration profile was determined experimentally so that the concentration in all 100 sections, $C_{m,1}$, is initially known. The concentrations in all segments, $C_{m,2}$, at time Δt later can be calculated from $C_{m,1}$ by Eq.(1) except for the first segment concentrations which are equal to $(1.0 + \Sigma R \Delta t)$. In order to calculate the concentration in the last segment, $C_{1,2}$, the concentration in the segment $C_{1+1,1}$ must be known. For the boundary condition that no diffusion occurs through the end of the channel $C_{1+1} = C_{1-1}$. In like manner the concentration profiles after succeeding Δt 's can be calculated by Eq. (1) from the previous concentrations. A computer program that permits calculation of concentration profiles at many different times from a given diffusivity and initial distribution is contained in Appendix B.

-21-

C. Discussion of Results

The concentration profiles measured at seven different times in one run are shown (Figs. 9 - 11). The solid lines are the calculated profiles at the indicated diffusivities. The dashed curves join the experimentally determined points. Short horozontal lines are drawn through the data points that were taken from low magnification photomicrographs; the length of the horozontal lines is the width of the photograph.

The similarity between the shape of the calculated profiles and the measured profiles is evidence that the dispersion of these motile bacteria is following the behavior predicted by diffusion. However, by 285 minutes (Fig. 10) the band of bacteria caused by chemotaxis is beginning to form in the region from 0 to 1.0 cm. By 330 minutes (Fig. 11) the band is very distinct and has moved to 1.5 cm; under these experimental conditions the bacteria should be following the receding oxygen supply, depleting it as they migrate.³ By 285 minutes it can be concluded that the motion of the bacteria is no longer random, and diffusivities measured at the corresponding concentrations of 3×10^7 or greater are probably not valid.

The growth rates of the bacteria in the chamber reservoir were compared to the growth rates, obtained by optical counts, of the rest of the innoculum which was stored in a glass bottle at $26^{\circ}C(Fig. 12)$. The slopes of the two curves, the growth rates, are the same within the same limit of experimental error. If there were effects of the high surface area, or if heating by the microscope lamp increased the cell temperature by more than $2^{\circ}C$, then the growth rates in the samples would have been significantly different. Fairly high concentrations were reached in the bottle before the multiplication rate slowed. Since the bottle contained some air and was shaken prior to sampling, oxygen starvation would be less significant in the bottle than in the chamber which was sealed from the air. At a concentration of 3×10^7

MUB13218

Fig. 10. Comparison of observed distributions with calculated distributions of bacteria at 100 and 285 min, for a growth rate of $R = 2.32 \times 10^{-4}$ /sec. At 285 min there is evidence of the start of a non diffusional migration down the channel following the oxygen.

5

Bacteria per

Fig. 11. Comparison of the observed distribution of bacteria with the calculated distribution at 5, 175, 330 min, for a growth rate $R = 2.32 \times 10^{-4}$ /sec. At 330 min there is a very pronounced migration of bacteria down the channel.

MUB13220

Fig. 12. Comparison of the growth of <u>E. coli</u> in the microscope chamber to the growth rate of the rest of the sample in a bottle at 25°C. The agreement is good until apparent depletion of oxygen stopped multiplication in the chamber. Shaking the bottle prior to sampling replenished some oxygen consumed by the bacteria and permitted a higher concentration at 350 min in the bottle then in the chamber. bacteria/ml, the bacteria in the chamber stopped multiplying. Fowler⁴ has shown that the cessation of multiplication is caused by the depletion of oxygen in the medium. Adler's experiments³ show that chemotaxis and the formation of bands of bacteria begin when oxygen in part of the medium is depleted. In this experiment the cessation of multiplication and the movement of the bacteria to form bands occur at the same time and are probably caused by oxygen starvation.

-27

As was previously mentioned, the reservoir of the microscope chamber could not be stirred. This means that the bacteria that diffuse into the channel have to be replaced by the two dimensional diffusion of bacteria in the reservoir to the depleted zone around the opening of the channel. The lack of stirring in the reservoir would cause the measured diffusivities to be low.

The diffusivities calculated for the individual data points for three runs are shown on a summary graph (Fig. 13). There does not appear to be an effect of length of time for diffusion on the value of the diffusivity. The scatter in the data is much more pronounced at short distances than at long distances. This scatter at short distances is probably inherent in the method.

MUB 13221

Fig. 13. The diffusivities from three concentration gradient runs at times where migration was not significant are summarized on a single plot.

D. Experiment to Evaluate Flow in the Diffusion Chamber

The possible presence of convection currents in the diffusion chamber was evaluated by measuring the rate of dispersion of 1.3 micron diameter polyvinyl toluene latex spheres. The spheres were suspended in 8 wt/NaCl, a solution that had the same density as the spheres. The suspension was then centrifuged to remove anything that might settle or float during the experiment. A suspension of spheres was loaded into a microscope chamber in the same manner as the bacterial suspensions had been loaded.

The diffusion of these spheres of neutral density can be calculated from kinetic theory by the Stokes-Einstein equation.⁵

D	=	kT Z	_			'				: :
k	=	The	l ges	cons	tent	for	one	mcl	ecul	Le
т	=	The	abso	olute	tem	pera	ture	•	• • •	•
a		The	part	cicle	rad	ius				
η	=	The	visc	osit	У					

For the experimental case of the 1.3 micron spheres, the diffusivity would be about 4×10^{-9} cm²/sec.

The diffusivities of the spheres could not be measured accurately because the spheres stuck to the surface of the glass slide when they encountered it in the course of their random motion. After several days equal numbers of spheres were stuck to top and bottom surfaces. The experiment revealed a very slight flow of about 7×10^{-7} cm/sec into the channel. Flow of this magnitude would have no effect on bacterial diffusivities. The total displacement by flow in a three hour diffusion experiment would be less than the accuracy of position measurement. The distribution of spheres is shown in (Fig. 14). From the calculated concentration profiles, the solid lines, it can be seen that the diffusivity is substantially less than $10^{-7} \text{cm}^2/\text{sec}$, but the calculated diffusivity of $4\times10^{-9} \text{cm}^2/\text{sec}$ cannot be verified.

Distance (cm)

MUB-13222

Fig. 14. Dispersion of 1.3 micron latex spheres by Borwnian motion. The dotted lines show the measured initial and final distributions. The solid lines show the calculated final distributions if the dispersion were caused only by Brownian motion. The poor fit by the calculated curves and the shape of the curve for 1660 min shows that there must have been bulk flow of fluid down the channel as well as diffusion, and that the diffusivity must have been less than 10^{-7} cm²/sec.
V. DIFFUSION FROM A CAPILLARY TUBE

-31-

In this set of experiments a capillary tube that was closed at the bottom was filled with a bacterial suspension and was immersed in bacteria free nutrient medium. Some of the motile bacteria diffused out of the capillary. After a known length of time the capillary tube was removed from the medium and the number of viable bacteria in the tube and in the medium was determined by plating on nutrient agar and counting the colonies that resulted. Thus for a known time for diffusion the fraction ϕ of the bacteria remaining in the tube could be experimentally measured. A diagram of the experimental procedure for determining ϕ is shown in (Fig. 15). The diffusivity was obtained by solving the partial differential equation for diffusion, sedimentation, and growth to give ϕ as a function of dimensionless time, $Dt/1^2$. Thus the diffusivity could be determined if the fraction remaining ϕ , the time for diffusion t, the capillary length 1, sedimentation velocity, and growth rate were all known.

A. Experimental Procedure

The selection of experimental conditions was based on experiments using NaCl in place of bacteria. NaCl was used because of simplicity of analysis, well established diffusivity, and freedom from the requirements of sterility. The conditions finally selected were vertical capillary tubes 0.17 cm in diameter and 2 cm long with the bottom closed. Larger diameter tubes were not used because the salt solution was washed out of the end of the capillary tube by the motion of the bulk fluid. Smaller diameter tubes did not permit the diffusion of sufficient material for analysis. The stirring rate used was 2rps; higher stirring rates washed salt solution out of the end of the tube. Lower stirring rates caused a decrease in the measured diffusivity, probably because a concentration gradient was established in the bulk medium around the entrance of the capillary tube. When

-32-

 $\cdot t = 4$ hrs

MUB13223

Fig. 15. Diagram of the experiment used in the tube diffusion method. Usually the diffusivities were measured over four different time intervals, and the growth rate was measured in the two extremes of concentration.

bacteria were used, the tubes were kept vertical because inclined surfaces are reported to increase sedimentation rates by the Boycott effect. 6

. -33-

The procedure used in these experiments (Fig. 15) was to fill a sterilized capillary tube with a bacterial suspension of E. coli that was in exponential growth. The filled capillary was then partially immersed in 125 ml of sterile medium in a 150 ml Erlenmeyer flask. The system was allowed to come to thermal equilibrium with a 26°C constant temperature bath before the tube was completely immersed and the experiment started. The medium was sampled both before and after complete immersion of the capillary tube. Usually, five duplicate capillary setups were used with each experiment. One capillary was never immersed and the other four were immersed and removed at time intervals ranging from five minutes to four hours. The contents of the tubes and the concentrations in the flasks were measured by dilution and plating in nutrient agar. The fraction remaining in the tube was the measured contents of the tube divided by the total number of bacteria found in the tube and bulk medium. Some samples of the bulk medium were withdrawn at times prior to the removal of the tube from the medium. Since the contents of the tube could not be measured directly, the fraction remaining in the tube was based on the total number of bacteria originally placed in the tube and the known rate of multiplication of the bacteria.

If the growth rate in the tube were different from the growth rate in the bulk medium, the fraction remaining in the tube would be a function of the growth rate as well as the diffusivity. The growth rates were measured in both concentrated and dilute suspensions to ascertain that the multiplication rate was not a function of concentration in the range of the experiment. These growth rate blanks also indicated the depletion of oxygen and the end of the period of random motion of the bacteria.

B. <u>Numerical Solution to the Diffusion Equation</u>

In this experiment bacteria are multiplying as they diffuse up out of the capillary tube against the force of gravity (Fig. 16). The partial differential equation representing this system is:

$$\frac{\partial C}{\partial t} = \frac{D\partial^2 C}{\partial x^2} + \frac{U\partial C}{\partial x} + R($$

The boundary conditions are:

Initial Condition		$C = C_{0}$	all x	t = 0
Boundary Condition	l	C = 0	$x \leq 0$	all t
Boundary Condition	2	$\frac{\mathrm{d}\mathbf{C}}{\mathrm{d}\mathbf{x}}=0,\ \mathbf{U}=0.$	$\mathbf{x} = \boldsymbol{\ell}$	all t

Program	Equation
C	C = Concentration (bacteria/ml)
	t = Time (sec)
D	$D = Diffusivity (cm^2/sec)$
U	U = Sedimentation velocity (cm/sec)
R,	R = Growth rate constant (1/sec)
	x = Distance from the top of the capillary (cm)
CAPL	ℓ = Length of the capillary (cm)
К	m = Distance position
J	n = Time position
T	Δt = Time increment
H	$\Delta x = Distance increment$
THETA D	t/ℓ^2 = Dimensionless time
PHI	ϕ = Fraction remaining in the tube
CTO	= Concentration in the tube if no diffusion
TMAX	= Total time for diffusion
AMOD	$\frac{D\Delta t}{2}$ = Dimensionless time increment

BMOD $\frac{U\Delta t}{2\Delta x}$ = Dimensionless sedimentation velocityDH= Number of distance segmentsDT= Number of time increments

-36-

The procedure used in the numerical solution to the partial differential equation is to divide the capillary tube into DH equal segments. The finite difference equation is then derived from a material balance around a typical segment m. The finite difference equation can be used directly to calculate the concentration profiles at many different times. These concentration profiles can be integrated numerically to give the total number of bacteria in the tube. The fraction remaining in the tube, ϕ , was then calculated as a function of the dimensionless time Dt/ℓ^2 (Fig. 17). This plot permits evaluation of D from measured values of ϕ and t , from a tube of known ℓ .

The material balance around segment m is:

Diffusion Sedimentation Growth in: $\frac{D \wedge t}{\Delta x} (C_{m+1,n} - C_{m,n}) + \frac{U \wedge t}{2} (C_{m-1,n} + C_{m,n}) + R \wedge x \wedge t C_{m,n}$ out: $\frac{D \wedge t}{\Delta x} (C_{m,n} - C_{m-1,n}) + \frac{U \wedge t}{2} (C_{m,n} + C_{m+1,n})$

accumulation: $\Delta x(C_{m,n+1} - C_{m,n})$

Fig. 17. The effect of sedimentation and growth on diffusion out of a tube is shown. The fraction of the bacteria calculated to be out of the tube is plotted against dimensionless time. For the conditions of these experiments there is little effect of sedimentation on diffusion. ($D = 2 \times 10^{-5} \text{cm}^2/\text{sec}$, $R = 2.8 \times 10^{-4}/\text{sec}$, $U = 1.0 \times 10^{-5} \text{cm}/\text{sec}$, 1 = 1.98 cm)

27

combining and collecting terms

 $C_{m,n+1} = \left(\frac{D\Delta t}{\Delta x^2} - \frac{U\Delta t}{2\Delta x}\right) C_{m+1,n} + \left(1.0 \quad \Delta tR - \frac{2D\Delta t}{\Delta x^2}\right) C_{m,n} +$ (2) $\left(\frac{D\Delta t}{\Delta r^2} + \frac{U\Delta t}{2\Delta x}\right) C_{m-1,n}$

-38-

The boundary conditions for the tube diffusion method are that the initial concentration in the tube is one. The concentration at the entrance of the tube is zero at all times. The sedimentation of the bacteria causes accumulation in the bottom segment of the tube. The condition for accumulation was handled by assuming that accumulation occured in the bottom 5 percent of the capillary, and that this bottom 5 percent was well mixed. In actually the sedimentation zone would be smaller and the concentration gradient in the bottom of the tube would be very steep and would introduce errors into the subsequent numerical integration. The assumption that sediment collects in 5 percent of the volume will not affect the diffusion at the open end of the capillary tube. To satisfy the boundary condition of no transport through the bottom of the tube, the sedimentation velocity and the concentration gradient were set equal to zero.

The finite difference equation for the boundary condition at the bottom of the capillary can be derived from a material balance around the bottom segment of the capillary. The volume of the bottom segment is one twentieth of the tube volume, and is larger than the rest of the sections. Since the tube is divided into DH sections, the bottom segment contains DH/20 regular size sections. The finite difference equation is derived from the material balance around segment ℓ .

Diffusion out. sedimentation in Accumulation . + $\frac{DH\Delta x}{20}(C_{\ell,n+1} - Cl,n) = \frac{\Delta tD}{\Delta x}(C_{\ell,n} - C_{\ell-1,n}) + \frac{\Delta tU}{2}(C_{\ell,n} + C_{\ell-1,n})$

+ $\Delta x \Delta t R \frac{DH}{20} C_{\ell} n$

Combining and collecting terms gives the finite difference equation for the sedimentation section at the bottom of the tube.

 $C_{\ell,n+1} = \frac{20}{DH} \left\{ \left(\frac{\Delta t D}{\Delta x} + \frac{\Delta t U}{2\Delta x} \right) C_{\ell-1,n} + \left(\frac{\Delta t U}{2\Delta x} - \frac{D\Delta t}{\Delta x^2} \right) C_{\ell,n} \right\}$ (3) + $(1.0 + \Delta tR)C_{l,n}$

The actual calculation of the concentration profiles is very simple. The initial concentration in all of the segments is known. The concentrations at time Δt later are zero for the first segment and calculated by Eq. (2) for the rest of the segments except for the last five percent of the segments which are all equal and are calculated by Eq. (3).

After the concentration profiles have been calculated the total number of bacteria contained in the tube was determined by summing and averaging the incremental concentrations. The total that would have been in the tube with growth but without diffusion, CTO, was calculated. The ratio of the contents of the tube with diffusion to the contents without diffusion is, PHI, the fraction remaining. The computer program for the above numerical calculations is included in Appendix C. The numerical calculations are summarized by the plot of 1.0 - ϕ as a function of Dt/ℓ^2 in (Fig. 17). The calculated curve is compared to the curve that would have resulted had there been only diffusion. The analytical solution for diffusion into a semi-infinite slab 1.0 - $\phi = 2(Dt/\pi \ell^2)^{1/2}$ is valid up to $Dt/\ell^2 = 0.3$ with an error of less than 1.3 percent.

The value of the sedimentation velocities used in the numerical solution were measured by allowing a culture of nonmotile $\underline{E. \ coli} B$

to settle in a tube that was thermostated. The position of the interface between clear medium and suspension was measured at several time intervals. The sedimentation velocities ranged from 0.05 to 0.1 micron/sec.

C. Discussion of Results

The diffusivities obtained in the tube diffusion experiment are shown plotted against the length of time allowed for diffusion to occur (Fig. 18). The X's and the solid dots are based on actual measurement of the tube concentrations whereas the open dots are calculated from the number of bacteria loaded into the tubes. There does not appear to be any additional scatter caused by use of the calculated values. This observation is not surprising since the percent recovery of bacteria, based on the total number of bacteria accounted for with a correction for growth, ranged from 85 to 105 percent. The spread in the recovery rates is not unusual considering the inherent errors in both plating and in growth rate measurement.

The diffusivities measured over short periods of time are considerably higher than the diffusivities measured from runs lasting two hours or more. The short time diffusivity measurements would be much more sensitive to some mechanism such as the bulk flow of medium washing the suspension out of the top of the capillary tube. The diffusivity measurements made at longer periods of time should be more accurate.

The validity of this experiment is contingent on the condition that the growth rate in the tube at high concentration be the same as the growth rate of the diffused bacteria in the dilute medium. The measured growth rates agree within experimental error.

There are several significant differences between this set of experiments and the two previous methods. In this experiment diffusion occurs in three dimensions in the capillary tube instead of in two dimensions across a surface. In this experiment viable bacteria are counted rather than only motile bacteria. The selection of a strain that is highly motile minimizes the effect of this difference.

MUB13226

VI. - CONCLUSIONS

-42-

The lack of understanding of diffusive transport has led to: some apparent contradictions in the literature. For example, Ogiuti measured the velocities of many strains of E. coli directly with a microscope and observed that the strains had velocities which fell into two groups differing by a factor of two. A different technique was used by Clowes, Furness, and Rowley^{8,9} and independently by Mazloum and Abdel-Maguid¹⁰ to measure the speed of <u>E</u>. coli. They measured the speeds by innoculating one end of a capillary filled with sloppy agar, incubating the capillary, then extruding and segmenting the agar to determine how far the bacteria had traveled. The speeds of the strains measured by this method differed widely rather than falling into two distinct groups. The agar experiment actually measured the diffusion of a growing culture. The differences in the two types of experiments are substantial. The first experiment measured bacterial velocity whereas the second experiment measured the diffusive transport which is a function of velocity and the frequency of direction

change.

VII. EXAMPLES OF THE SPREAD OF BACTERIA BY DIFFUSION

-43-

From an engineering point of view the diffusion of bacteria is most significant in cracks, such as on a gasket seal, in a thin almost stagnant film along the inside surface of a feed line, or perhaps in a porous bed. The diffusivities that were measured in the previous sections of this report can now be used to determine the importance of diffusive transport in engineering problems. A rather general partial differential equation was solved which is very useful in estimating how fast motile bacteria can diffuse into a sterile system.

The equation solved in this section is the equation governing the dispersion of multiplying bacteria up a film of finite length, counter to bulk flow of the fluid. At the upper end of this film is a well stirred reservoir. The growth rate is G in the film and R in the reservoir. The boundary conditions, shown in (Fig. 19), are that one end of the film is at zero concentration and the other end is at a constant concentration, TOP. Growth occurs in the film, which is initially sterile, until it reaches concentration TOP. This behavior would be anticipated from a knowledge of batch cultures and is confirmed by experiments by Mazloum¹⁰ in which he innoculated one end of a tube filled with sloppy agar, permitted diffusion to occur, then extruded the agar, sectioned it and measured the concentration of organisms. There is no back diffusion or loss from the reservoir; all bacteria entering the reservoir stay there and multiply at growth rate R.

The numerical solution to the partial differential equation is solved by first dividing the fluid film into a finite number of sections. The finite difference equations are then derived from the material balances around the individual sections. Section $C_{\ell-1}$ is typical for all sections from the second through the next to last section.

MUB13227

Diagram of Fluxs

Diffusive Flux Convective Flux Growth

$$D_{3} = \frac{\Delta t D}{\Delta x} (C_{\ell-2,n} - C_{\ell-1,n}) \quad U_{3} = \frac{\Delta t U}{2} (C_{\ell-2,n} + C_{\ell-1,n}) \quad G_{3} = \Delta x \Delta t G C_{\ell-1,n}$$

$$D_{2} = \frac{\Delta t D}{\Delta x} (C_{\ell-1,n} - C_{\ell,n}) \quad U_{2} = \frac{\Delta t U}{2} (C_{\ell-1,n} + C_{\ell,n}) \quad G_{2} = \Delta x \Delta t G C_{\ell,n}$$

$$D_{1} = \frac{\Delta t D}{\Delta x} (C_{\ell,n} - 0) \quad U_{1} = \frac{\Delta t U}{2} (C_{\ell,n} + 0) \quad G_{1} = \Delta x \Delta t G C_{\ell+1,n}$$

$$D_{0} = 0 \quad U_{0} = 0$$

Material Balance for Typical Section (C_{l-1})

$$\Delta x(C_{\ell-1,n+1} - C_{\ell-1,n}) = (D_3 - D_2) + (U_2 - U_3) + G_3$$

substituting and simplifying

$$C_{\ell-1,n+1} = \left(\frac{\Delta tD}{\Delta x^2} - \frac{\Delta tU}{2\Delta x}\right) C_{\ell-2,n} + \left(1.0 - \frac{2\Delta tD}{\Delta x^2} + \Delta tG\right) C_{\ell-1,n} + \left(\frac{\Delta tD}{\Delta x^2} + \frac{\Delta tU}{2\Delta x}\right) C_{\ell,n}$$

$$(4)$$

Material Balance for last Section (C)

$$\Delta x (C_{\ell,n+1} - C_{\ell,n}) = (D_2 - D_1) + (U_1 - U_2) + G_2$$

$$C_{\ell,n+1} = \left(\frac{\Delta t D}{\Delta x^2} - \frac{\Delta t U}{2\Delta x}\right) C_{\ell-1,n} + \left(1 \cdot 0 - \frac{2AtD}{4x^2} + \Delta t G\right) C_{\ell,n}$$
(5)

Material Balance for Reservoir (C_{l+1})

$$\mathbf{x}(C_{\ell-1,n+1}) = D_{1} - U_{1} + G_{1}$$

$$C_{\ell+1,n+1} = \left(\frac{\Delta tD}{\Delta x^{2}} - \frac{\Delta tU}{2\Delta x}\right)C_{\ell,n} + (1.0 + \Delta tR)C_{\ell+1,n}$$
(6)

substiting

Λ

$$AMOD = D\Delta t / \Delta x^{2}$$

$$BMOD = \Delta t U / 2 \Delta x$$

$$AL = AMOD - BMOD$$

$$AN = AMOD + BMOD$$

$$AM = (1.0 - 2AMOD + \Delta tG)$$

$$CM = (1.0 + \Delta tR)$$

Typical Section

Eq. (4)
$$C_{m,n+1} = AL C_{m-1,n} + AM C_{m,n} + AN C_{m+1,n}$$

Last Section

Eq. (5)
$$C_{\ell,n+1} = AL C_{\ell-1,n} + AM C_{\ell,n}$$

Reservoir Section

Eq. (6)
$$C_{\ell+1,n+1} = AL C_{\ell,n} + CM C_{\ell+1,n}$$

The above three equations are the equations used to calculate the concentrations along the path of diffusion at any given time, n+1from the previous concentrations at time, n. For example at time Δt after the initial conditions, the concentration in the first section is zero, from the boundary condition. The concentration in the second through the next to last section can be directly calculated from Eq. (4). The concentration in the last section can be calculated from Eq. (5). The concentration in the reservoir, if it were the same volume as any typical section, can be calculated from Eq. (6). The explanation of the program is written directly in the program as comments. The program for the above calculations is included in Appendix D.

-47-

The first example is the case where motile <u>E. coli</u> diffuse through initially sterile medium in a crack at room temperature. Figs. 20 and 21 show the calculated distances at which a given low concentration of <u>E. coli</u> would be expected to travel in a given length of time. Mazloum's data¹⁰ for several strains of <u>E. coli</u> diffusing in sloppy agar are shown in Fig. 20 and are in good agreement, considering that the sloppy agar slowed the bacteria.

Figures 20 and 21 can be used to make estimates of the progress of motile bacteria through a crack in the absence of flow of the bulk fluid. For example the concentration C of bacteria 5 cm from the entrance of a crack can be estimated at a time 5 hours after sterilization and innoculation of the crack entrance with a concentration C of $10^8 \frac{\text{E. coli}}{\text{ml.}}$ From Fig. 21, C/C is found to be 10^{-6} at 5 cm and 5 hours. The concentration C of bacteria at the desired location is then equal to 100 bacteria/ml.

In the event that the bulk fluid is in motion, the penetration rate of bacteria by diffusion and convection will be changed. The effect of a bulk flow rate of 1 micron/sec is shown in Fig. 22.

An interesting application of diffusion counter to convection is the dispersion of motile bacteria through the fluid along the wall

- MUB13230
- Fig. 22. Growth and convection effect the dispersion of bacteria. The effect of growth is to increase the dispersion of bacteria, where as bulk flow counter to diffusion decreases the dispersion. $(D = 2 \times 10^{-5} \text{ cm}^2/\text{sec}, R = 2.8 \times 10^{-4}/\text{sec}, U = 1.0 \times 10^{-4} \text{ cm/sec } \text{C/C}_0 = 10^{-3})$

of a feed line counter to the bulk flow of the feed. The bacteria in the fluid nearest to the wall (5 to 10 microns) would disperse faster since the fluid velocity is slow there. For example laminar flow in a pipe has a parabolic velocity profile.

> $V_z \propto 1.0 - (\frac{r}{R})^2$ $V_z \max_{max} \text{ occurs at } r = 0$ $V_z \sup_{ave} = V_{zmax}/2$

for a one inch pipe, R = 1.333 cm

r = 1.3325 cm, 5 microns from the wall

$$\frac{V_{5microns}}{V_{z max}} = 1 - \left(\frac{r}{R}\right)^2 = 0.00075$$

if $V_{5 \text{ microns}} = 1 \text{ micron/sec}$ then $V_{z \text{ max}} = 0.133 \text{ cm/sec}$ and $V_{ave} = 2 \text{ cm/min}$

Thus it can be seen that if the velocity in a 1 inch pipe is 2 cm/min, the velocity 5 microns from the wall will be 1 micron/sec. From Fig. 22 it can be seen that this low flow rate would decrease the distance traveled up a feed line in two days from 26 to 9 cm. It can therefore be concluded that the motility of bacteria normally would not be a major factor in the movement of bacteria through pipes counter to any appreciable flow in the pipes.

VIII. SUMMARY

The average diffusivities of <u>E. coli</u> obtained by the three different experimental methods were:

Mean square displacement method	$4.1 \times 10^{-5} \text{ cm}^2/\text{sec}$
Measured concentration gradient method	$1.7 \times 10^{-5} \text{ cm}^2/\text{sec}$
Diffusion out of a capillary tube	$2.5 \times 10^{-5} \text{ cm}^2/\text{sec}$

In the mean square displacement method the bacteria which moved in tight circles could not be evaluated. The exclusion of these bacteria would to make the diffusivity high. In the concentration gradient method the reservior of cells could not be stirred. The lack of stirring would make the measured diffusivities low. Probably the best range of values for the diffusivity of <u>E. coli</u> is 2 to $3 \times 10^{-5} \text{ cm}^2/\text{sec.}$ These values hold for <u>E. coli</u> subject to the following necessary conditions.

- 1. 90 to 100 percent motility
- 2. Cells in exponential growth at 26°C.
- 3. The medium have excess nutrients and no concentration gradients
- 4. Absence of convection

Several hundred individual bacteria were followed as they dispersed across a surface. Multiple exposure photomicrographs revealed that as a group their motion was random provided they met the above necessary conditions. It was found that when bacteria were subject to a gradient in bacterial concentration that they dispersed following typical diffusion behavior.

The diffusional transport of bacteria is usually secondary to convective transport. However, near surfaces, in cracks or in packed beds, the diffusion becomes potentially significant, particularly when rapid growth occurs in conjunction with the diffusion. The solution of the partial differential equation for diffusion convection and growth yields a method of estimating the probability of contamination by diffusional transport. The examples calculated show that bacteria could diffuse through a crack to a sterile system in a few hours. It can also be concluded that bacteria would not make much headway back up a feed line against any significant flow of medium.

ACKNOWLEDGMENTS

This work was done under the auspices of the U. S. Atomic Energy Commission.

APPENDIX A

-55-

Data and Calculations for the Mean Square Displacement Method

The data that represents the X, Y, coordinates of an individual bacterium at six different times, were read in and corrected to centimeter units. The straight line distances and velocities between the time intervals were then calculated. Since the velocity of a given bacteria is fairly constant, a change in velocity was a good indication of an error in the data. For all the runs the diffusivities were calculated from the X and Y components and from the calculated directional displacement for each time interval by summing the squares and averaging them. The average total of the X and Y displacements were calculated. These averages should approach zero for a large random sample. The data were plotted on a scatter diagram for each time interval; one such figure is included in the following program.

The complete explanation of the program is included as comments written directly into the following program. The title contains the run number, date, organism, medium, microscope objective and eyepiece, and temperature in degrees centigrade.

The following program was used for calculating diffusivities in the mean square displacement method from the X, Y coordinates of data points from N bacteria tracks at six different times after the initial exposure. The circled numbers refer to the location of the listed step in the program.

> Read in the data, the X, Y coordinates (relative to t = 0) for the location of each bacterium at t = 5; 10, 20, 40, 60, and 80 sec for all N tracks Echo print data

Multiply input data by CF (converts input measurements to cm)

Print corrected data

Sum all X and Y values at each time

Square and sum X and Y values at each time

-56-

6

- Calculate distance from origin to X, Y, and the sum $R = (x^{2} + y^{2})^{1/2}$
- Square and sum the R displacements for each time. Average all X, Y, R, X^2 , Y^2 , R^2 Calculate the diffusivities $D = \overline{X}^2/2t$, $D = \overline{R}^2/4t$ Calculate the incremental velocities, $R/\Delta t$ Print diffusivities

Print scatter diagram of data for each time

(INPUT,CUTPUT,TAPE 3= OUTPUT) PREGRAM CLICK THIS PROGRAM SQUARES THE X-Y COORDINATES OF THE LOCATION OF BACTERIA AT DIFFERENT TIMES AND CALCULATES THE DIFFUSIVITY FRCM THE MEAN SQUARE DISPLACEMENT x(n, J) = x coordinate of track N at time J y(n, J) = y coordinate of track N at time J r(n, J) = distance from origion to the point x-y···•• . T(J) = LENGTH ON TIME INCREMENT AN(J) = NUMBER OF POINTS. AT EACH TIME CIMENSICN X(200,6), Y(200,6), SX(10), SY(10), SXC(10), SYC(10), -- 1CR(10), AN(200), T(10), BX(10), BY(10), BX(10), BX2(10), BY(10), R2(200,6), 1CX(10), R2S(100), R(200,6), V(200,6), CY(10), IRS(200), VS(200), RAV(10), VAV(10) \$,XMIN(1C), XMAX(10), YMIN(10), YMAX(1C) \$.CC(2C),UT(20) \$+55(200,10) ,T5(10) SET INITIAL VALUE OF ALL SUMMATIONS = 0.0 EATA (SX(J), SY(J), SXC(J), SYC(J), R2S(J), J=1,6)/30+0.0/ DATA (AN(J), KS(J), VS(J), J=1,6)/18*0./ CAIA (TS(J), J=1,6)/6*C./ 11C FCRMAT (1H1,113H THESE NEXT 3 CARES WERE CHANGEE FOR EACH RUN \$RUN NC. 4 7/11/66 E CCLI 27 NUTR. 2.*8. TEMP= 24. CATA (T(J), J=1,6)/5., 1C.,20., 40., 60., 80./ 111 CF=5.33E-04 START PRINTING PAGE 1 ECHO PRINT OF CATA PRINT 110 PFINT 1C4 训 FRINT 106, (T(J), J=1,6) PRINT 109 OC 15 N=1,200 READ IN DATA () READ IN DATA READ 1, (X(N,J), Y(N,J), J=1,6) IF ((X(N,1).EU.O.).ANC.(Y(N,1).EQ.O.)) GO TO 16 ECHO PRINT OF DATA 15 CENTINUE 16 CENTINUE N=N-1 START PRINTING PAGE 2 CORRECTED CATA PRINT 105, CF FRINT 110

FRINT 100 PRINT 100, (T(J), J=1,6) PRINT 109 CC 4C K=1,N CC 30 J=1,6

			•
\sim			
(3)	CENV	ERT RAW DATA BY CF TO CH UNITS	10 C 10 C 10 C
\cup	X(K,J)=X(K.J.J.+CF	
	Y(K.J)=Y(K	
•			
	FIND	THE NUMBER OF POINTS AT EACH TIME	· · ·
	AN(J)=AN(J)+1.	, ⁻ •
	IF LIXIK.	J) - EQ. D. J. ANC. (Y(K. 1), EC. 0. 1) AN(1) = AN(1) = 1	· .
		914C610111WD011(W4011C610111 _ W4(01-W4(01-1-	
			· ·
(5)	SUM (OF ALL X VALUES, SLM OF ALL Y VALUES	
\sim	5×(J)=5×(.	J)+X(K.J)	· · · ·
	57111-571	114418-11	
•		J/*/(K)J/	
<u></u>		•	• • •
(6)	SUM I	UF X-SQUARES AND Y-SQUARES	
\sim	SXC(J)=SXG	û(J)+X(K.J}≠X(K.J)	
	SYC(1)=SY	$(1(1)+Y(K,1)\pm Y(K,1)$	
			• .
(7)	CALCI	ULATE THE DISTANCE FROM CRIGION TO X-Y AND SUM	
\sim	$R(K_{+}J) = SQP$	RT(X(K,J)#X(K,J)+Y(K,J)#Y(K,J))	
	RS(.1)=RS(.	11 + R(K.J)	•
		of a new joi	•
.*			•
	CALCU	ULATE THE AVERAGE VELOCITY TO EACH POINT AND SU	JM
	· V{K,J}=P{}	K,JJ/T(J)	
	VS(J)=VS(.	$J \rightarrow V(K_{*}, I)$	
	10107-1510	57 7 7 (K 1 5)	
\bigcirc			
(8)	SCUAF	RE AND SUM THE CISPLACEMENTS	
\sim	R2(X,J)=R((K,J)*R(K,J)	
	R25(1)=R25	S(1)+R2(K. 1)	
20	CONTINUE	J. UT - KEINTUT	
50	CONTINUE		······································
\sim	•		•
(4)	PRINT	T CORRECTED VALUES FOR ALL X. AND Y	
U.	PRINT 3. ($(X(K_{1})), Y(K_{1}), [=1.6]$	
_ ~ v		· · ·	
	OC 5C J=1,	,6	
	CC SC J=1,	,6	· · · · · · · · · · · · · · · · · · ·
ଭ	CCNTINCE CC SC J=1, FIND	,6 AVERAGES OF X, Y, R, VELOCITIES, X-SQUARES, A	ND Y-SOUARES
9	EC 5C J=1, FIND BX(J)=SX(J)	,6 AVERAGES OF X, Y, R, VELOCITIES, X-SQUARES, A	ND Y-SQUARES
9	FIND BX(J)=SX(J	,6 AVERAGES OF X, Y, R, VELOCITIES, X-SQUARES, A J)/AN(J)	ND Y-SQUARES
9	FIND BX(J)=SX(J PY(J)=SY(J	,6 AVERAGES OF X, Y, R, VELOCITIES, X-SQUARES, A J)/AN(J) J)/AN(J)	ND Y-SQUARES
9	ECKTINGE DC 5C J=1, FIND BX(J)=SX(J EY(J)=SY(J RAV(J)=RS(,6 AVERAGES OF X, Y, R, VELOCITIES, X-SQUARES, A J)/AN(J) J)/AN(J) J)/AN(J)	ND Y-SQUARES
9	CC FIND FIND BX(J)=SX(J EY(J)=SX(J RAV(J)=RS(VAV(J)=VS(,6 AVERAGES OF X, Y, R, VELOCITIES, X-SQUARES, A J)/AN(J) J)/AN(J) J)/AN(J) J)/AN(J)	ND Y-SQUARES
9	CC FIRD CC 5C J=1, FIND BX(J)=SX(J) EY(J)=SY(J) RAV(J)=RS(VAV(J)=VS(- BXC(J)=SX	,6 AVERAGES OF X, Y, R, VELOCITIES, X-SQUARES, A J)/AN(J) J)/AN(J) J)/AN(J) J}/AN(J) J}/AN(J)	ND Y-SQUARES
9	CC FIND FIND BX(J)=SX(J) EY(J)=SY(J) RAV(J)=SY(J) RAV(J)=VS(-BXC(J)=SXQ BXC(J)=SXQ	,6 AVERAGES OF X, Y, R, VELOCITIES, X-SQUARES, A JJ/AN(J) JJ/AN(J) JJ/AN(J) JJ/AN(J) X(J)/AN(J)	ND Y-SQUARES
9	CC FIND FIND BX(J)=SX(J PY(J)=SY(J RAV(J)=SY(J RAV(J)=SY(J BXG(J)=SXQ BYC(J)=SYQ	,6 AVERAGES OF X, Y, R, VELOCITIES, X-SQUARES, A J)/AN(J) (J)/AN(J) (J)/AN(J) (J)/AN(J) {(J)/AN(J) {(J)/AN(J)	ND Y-SQUARES
9	CC 1 [[[]] CC 5C J=1, FIND BX(J)=SX(J) EY(J)=SY(J) RAV(J)=RS(VAV(J)=VS(BXC(J)=SYU EYC(J)=SYU	,6 AVERAGES OF X, Y, R, VELOCITIES, X-SQUARES, A J)/AN(J) (J)/AN(J) (J)/AN(J) (J)/AN(J) (J)/AN(J)	ND Y-SQUARES
(10)	CCNTINUE CC 5C J=1, FIND BX(J)=SX(J) EY(J)=SY(J) RAV(J)=RS(VA(J)=SXQ EXC(J)=SYQ CALCU	,6 AVERAGES OF X, Y, R, VELOCITIES, X-SQUARES, A J)/AN(J) (J)/AN(J) (J)/AN(J) 2(J)/AN(J) 2(J)/AN(J) 1(J)/AN(J) ILATE DIFFUSIVITY	ND Y-SQUARES
(9)(10)	CC FIND FIND BX(J)=SX(J) EY(J)=SY(J) RAV(J)=RS(VAV(J)=RS(VAV(J)=SXQ EYC(J)=SYQ CALCU CXLCU CX(J)=EXQ(,6 AVERAGES OF X, Y, R, VELOCITIES, X-SQUARES, A J)/AN(J) (J)/AN(J) (J)/AN(J) (J)/AN(J) ((J)/AN(J) ((J)/AN(J) (LATE DIFFUSIVITY J)/(2.+T(J))	ND Y-SQUARES
(9)(10)	CK (I (KE CC 5C J=1, FIND BX(J)=SX(J) EY(J)=SY(J) RAV(J)=RS('VAV(J)=VS(-BXC(J)=SYQ EYC(J)=EXQ(CX(J)=EXQ(CY(J)=EXQ(,6 AVERAGES OF X, Y, R, VELOCITIES, X-SQUARES, A J)/AN(J) (J)/AN(J) (J)/AN(J) (J)/AN(J) 2(J)/AN(J) 2(J)/AN(J) 1LATE DIFFUSIVITY J)/(2.*T(J))	ND Y-SQUARES
(9)(10)	CKNIKUE CC 5C J=1, FIND BX(J)=SX(J) EY(J)=SY(J) RAV(J)=RS(VAV(J)=RS(DXC(J)=SYQ CALCU CX(J)=EXQ(CY(J)=BYQ(CY(J)=BYQ(CY(J)=BYQ(,6 AVERAGES OF X, Y, R, VELOCITIES, X-SQUARES, A J)/AN(J) (J)/AN(J) (J)/AN(J) 2(J)/AN(J) 2(J)/AN(J) 2(J)/AN(J) 1(LATE DIFFUSIVITY J)/(2.*T(J)) J)/(2.*T(J))	ND Y-SQUARES
(9)(10)	CKNIKCE CC 5C J=1, FIND BX(J)=SX(J) EY(J)=SY	<pre>,6 AVERAGES OF X, Y, R, VELOCITIES, X-SQUARES, A J)/AN(J) (J)/AN(J) (J)/AN(J) (J)/AN(J) ((J)/AN(J)) (LATE DIFFUSIVITY J)/(2.*T(J)) J)/(2.*T(J)) J)/(4.*T(J)*AN(J))</pre>	ND Y-SQUARES
 (9) (10) 50 	CKTIKE CC 5C J=1, FIND BX(J)=SX(J) EY(J)=SY(J) RAV(J)=RS(VAV(J)=RS(VAV(J)=SXQ EYC(J)=SYQ CALCU CX(J)=EXQ(CY(J)=BYQ(CR(J)=R2S(CCNTINUE	<pre>,6 AVERAGES OF X, Y, R, VELOCITIES, X-SQUARES, A))/AN(J) (J)/AN(J) (J)/AN(J) 2(J)/AN(J) 2(J)/AN(J) 2(J)/AN(J) J)/(2.*T(J)) J)/(2.*T(J)) J)/(4.*T(J)*AN(J))</pre>	ND Y-SQUARES
 (10) 5 c 	CKNIKUE CC 5C J=1, FIND BX(J)=SX(J) EY(J)=SY(J) RAV(J)=RS(VAV(J)=RS(DX(J)=SXQ EYC(J)=SYQ CALCU CX(J)=EXQ(CX(J)=EXQ(CY(J)=BYQ(-BR(J)=R2S(CCNINUE DC 19 K=1,	,6 AVERAGES OF X, Y, R, VELOCITIES, X-SQUARES, A J)/AN(J) (J)/AN(J) (J)/AN(J) 2(J)/AN(J) 2(J)/AN(J) 2(J)/AN(J) J)/(2.*T(J)) J)/(2.*T(J)) J)/(4.*T(J)*AN{J}) -	ND Y-SQUARES
 (9) (10) 50 	CKTIKUE CC 5C J=1, FIND BX(J)=SX(J) EY(J)=SY(J) RAV(J)=RS('VAV(J)=RS('VAV(J)=SYQ EYC(J)=SYQ CALCU CX(J)=EXQ(CY(J)=BYQ(-ER(J)=R2S(CCNTINUE CC 19 K=1,	<pre>,6 AVERAGES OF X, Y, R, VELOCITIES, X-SQUARES, A J)/AN(J) (J)/AN(J) (J)/AN(J) ((J)/AN(J) ((J)/AN(J))(LATE DIFFUSIVITY (J)/(2.*T(J)) (J)/(2.*T(J)) (J)/(4.*T(J)*AN(J)) N</pre>	ND Y-SQUARES
() () 50 ()	CKTIKUE CC 5C J=1, FIND BX(J)=SX(J) EY(J)=SY	<pre>,6 AVERAGES OF X, Y, R, VELOCITIES, X-SQUARES, A J)/AN(J) (J)/AN(J) (J)/AN(J) 2(J)/AN(J) 2(J)/AN(J) 2(J)/AN(J) J)/(2.*T(J)) J)/(2.*T(J)) J)/(4.*T(J))AN(J)) N</pre>	ND Y-SQUARES
(1) (1)	CKNIKUE CC 5C J=1, FIND BX(J)=SX(J) EY(J)=SY(J) RAV(J)=RS(VAV(J)=RS(UAV(J)=SYQ EYC(J)=SYQ CALCU CX(J)=EYQ(CX(J)=EYQ(CX(J)=EYQ(CX(J)=RYQ(CX(J)=	,6 AVERAGES OF X, Y, R, VELOCITIES, X-SQUARES, A J)/AN(J) (J)/AN(J) (J)/AN(J) 2(J)/AN(J) 2(J)/AN(J) 2(J)/AN(J) J)/(2.*T(J)) J)/(2.*T(J)) J)/(2.*T(J)) J)/(4.*T(J)*AN(J)) N LATE THE INCREMENTAL VELOCITIES OF EACH BACTER:	ND Y-SQUARES
 (9) (10) 50 (11) 	CKNIKCE CC 5C J=1, FIND BX(J)=SX(J) EY(J)=SY(J) RAV(J)=RS(VA\(J)=RS(VA\(J)=SXQ EYC(J)=SYQ CALCU CX(J)=EYQ(CX(J)=EYQ(CX(J)=EYQ(CALCU CC 19 K=1, CALCU SS(K,1)=S	,6 AVERAGES OF X, Y, R, VELOCITIES, X-SQUARES, A J)/AN(J) (J)/AN(J) (J)/AN(J) (J)/AN(J) (J)/AN(J) (J)/(2.*T(J)) J)/(2.*T(J)) J)/(2.*T(J)) J)/(4.*T(J)*AN(J)) N N ILATE THE INCREMENTAL VELOCITIES OF EACH BACTER: (QRT(X(K,1)*X(K,1) + Y(K,1)*Y(K,1))/T(1)	ND Y-SQUARES
 (9) (1) 	CKTINUE GC 5C J=1, FIND BX(J)=SX(J) EY(J)=SY(J) RAV(J)=RS(VAV(J)=RS(VAV(J)=SXQ EYC(J)=SYQ CALCU CX(J)=EYQ(CY(J)=BYQ(CY(J)=BYQ(CY(J)=BYQ(CY(J)=EXQ(CY(J)=EXQ(CY(J)=EXQ(CY(J)=EXQ(CALCU SS(K,1)=S CC-10 J=2*	,6 AVERAGES OF X, Y, R, VELOCITIES, X-SQUARES, A J)/AN(J) (J)/AN(J) (J)/AN(J) 2(J)/AN	ND Y-SQUARES
 (10) 50 (11) 	CKNIKUE CC 5C J=1, FIND BX(J)=SX(J) EY(J)=SY(J) RAV(J)=RS(VAV(J)=RS(VAV(J)=SYQ EXC(J)=SYQ CALCU CX(J)=EYQ(CX(J)=EYQ(CX(J)=EYQ(CX(J)=EYQ(CX(J)=EYQ(CX(J)=EYQ(CX(J)=EYQ(CX(J)=EYQ(CX(J)=EYQ(CX(J)=EYQ(CALCU SC(K,1)=S SC(K,1)=SC	AVERAGES OF X, Y, R, VELOCITIES, X-SQUARES, A J)/AN(J) (J)/AN(J) (J)/AN(J) (J)/AN(J) (J)/AN(J) (J)/AN(J) (J)/AN(J) (J)/(2.*T(J)) J)/(2.*T(J)) J)/(2.*T(J)) J)/(2.*T(J)) (J)/(2	ND Y-SQUARES
 (1) (1) 	CKNIKCE CC 5C J=1, FIND BX(J)=SX(J) EY(J)=SY(J) RAV(J)=RS(VA\(J)=RS(VA\(J)=SXQ EYC(J)=SYQ CALCU CX(J)=EXQ(CY(J)=EYQ(CALCU CX(J)=R2S(CCNIKUE DC 19 K=1, CALCU SS(K,1)=S CALCU SS(K,J)=SQ	<pre>,6 AVERAGES OF X, Y, R, VELOCITIES, X-SQUARES, A J)/AN(J) J)/AN(J) J)/AN(J) J)/AN(J) J)/AN(J) J)/(2.*T(J)) J)/(2.*T(J)) J)/(2.*T(J)) J)/(4.*T(J)*AN(J)) N N LATE THE INCREMENTAL VELOCITIES OF EACH BACTER) QRT(X(K,1)*X(K,1) + Y(K,1)*Y(K,1)) /T(1) G</pre>	ND Y-SQUARES
 (1) 	CKTINE CC 5C J=1, FIND BX(J)=SX(J) EY(J)=SY(J) RAV(J)=RS(VA\(J)=RS(VA\(J)=SXQ(BXC(J)=SYQ CALCU CX(J)=EXQ(CY(J)=BYQ(CALCU CY(J)=BYQ(CALCU SC(K,1)=S CALCU SS(K,1)=S CC-10 J=2, SS(K,J)=SQ V(T(J)-T(J)-T(J)	<pre>,6 AVERAGES OF X, Y, R, VELOCITIES, X-SQUARES, A J)/AN(J) (J)/AN(J) (J)/AN(J) (J)/AN(J) (J)/AN(J) (J)/AN(J) (J)/(2.*T(J)) (J)/(2.*T(J)) (J)/(2.*T(J)) (J)/(2.*T(J)) (J)/(4.*T(J)) (</pre>	ND Y-SQUARES
 (10) 50 (11) 	CKNIKUE CC 5C J=1, FIND BX(J)=SX(J) EY(J)=SY(J) RAV(J)=RS(VAV(J)=RS(VAV(J)=SYQ EYC(J)=SYQ CALCU CX(J)=EXQ(CY(J)=EYQ(CALCU CX(J)=EXQ(CALCU CX(J)=R2S(CCNTINUE CC 19 K=1, CALCU SS(K,1)=S CC-18 J=2, SS(K,J)=SQ I(T(J)-T(J) IF ((X(K,J)))	<pre>,6 AVERAGES OF X, Y, R, VELOCITIES, X-SQUARES, A J)/AN(J) (J)/AN(J) (J)/AN(J) 2(J)/AN(J) 2(J)/AN(J) 2(J)/AN(J) 2(J)/AN(J) 1(2.*T(J)) J)/(2.*T(J)) J)/(2.*T(J)) J)/(2.*T(J)) J)/(4.*T(J)*AN(J)) N N LATE THE INCREMENTAL VELOCITIES OF EACH BACTER: QRT(X(K,1)*X(K,1) + Y(K,1)*Y(K,1)) /T(1) 6 M T(X(K,J)-X(K,J-1))**2+(Y(K,J)-Y(K,J-1))**2) -1) 1.EQ.0.J.ANC.(Y(K,J).EQ.0.)) SS(K,J)=0.</pre>	ND Y-SQUARES
 (9) (10) 5c (11) 1e 	CKNIKUE CC 5C J=1, FIND BX(J)=SX(J) EY(J)=SY(J) RAV(J)=RS(VA\(J)=RS(VA\(J)=SXQ EYC(J)=SYQ CALCU CX(J)=EXQ(CY(J)=EYQ(CALCU SX(K,1)=SC CALCU SS(K,1)=SC CALCU SS(K,1)=SC If ((X(K,J))=SC If ((X(K,J))) F((X(K,J))) F((X(K,J))) CALCU SC(K,1)=SC CALCU SS(K,1)=SC SS(K,1)=	<pre>,6 AVERAGES OF X, Y, R, VELOCITIES, X-SQUARES, A J)/AN(J) (J)/AN(J) (J)/AN(J) (J)/AN(J) (J)/AN(J) (J)/(2.*T(J)) (J)/(2.*T(J)) J)/(2.*T(J)) J)/(4.*T(J)*AN(J)) N N NLATE THE INCREMENTAL VELOCITIES OF EACH BACTER: QRT(X(K,1)*X(K,1) + Y(K,1)*Y(K,1)) /T(1) 6</pre>	ND Y-SQUARES
(1) 12 12 15	CKTINUE CC 5C J=1, FIND BX(J)=SX(J) EY(J)=SY(J) RAV(J)=RS(VA\(J)=VS(<pre>,6 AVERAGES OF X, Y, R, VELOCITIES, X-SQUARES, A J)/AN(J) (J)/AN(J) (J)/AN(J) (J)/AN(J) (J)/AN(J) (J)/AN(J) (J)/(2.*T(J)) (</pre>	ND Y-SQUARES
 (9) (10) 5c (11) 1e 15 	CKNINUE CC 5C J=1, FIND BX(J)=SX(J) EY(J)=SY(J) RAV(J)=RS(VAV(J)=RS(VAV(J)=SYQ EYC(J)=SYQ CALCU CX(J)=EXQ(CY(J)=EYQ(CALCU CX(J)=EXQ(CY(J)=EYQ(CALCU SS(K,1)=S CC-10 J=2, SS(K,J)=SQ I/(T(J)-T(J) IF ((X(K,J) CCNTINUE CCNTINUE CCNTINUE CCNTINUE	<pre>,6 AVERAGES OF X, Y, R, VELOCITIES, X-SQUARES, A J)/AN(J) (J)/AN(J) (J)/AN(J) 2(J)/AN(J) 2(J)/AN(J) 2(J)/AN(J) 2(J)/AN(J) 1(2.*T(J)) J)/(2.*T(J)) J)/(2.*T(J)) J)/(2.*T(J)) J)/(4.*T(J)*AN(J)) N N NLATE THE INCREMENTAL VELOCITIES OF EACH BACTER: QRT(X(K,J)*X(K,1) + Y(K,1)*Y(K,1)) /T(1) 6- RT((X(K,J)-X(K,J-1))**2+(Y(K,J)-Y(K,J-1))**2) -1) 1.EQ.0.J.ANC.(Y(K,J).EQ.0.)) SS(K,J)=0. </pre>	ND Y-SQUARES
 (9) (10) 5c (11) 1e 15 	CKNINCE CC 5C J=1, FIND BX(J)=SX(J) EY(J)=SY(J) RAV(J)=RS(VA\(J)=RS(VA\(J)=SXQ EYC(J)=SYQ CALCU CX(J)=EXQ(CY(J)=EYQ(CALCU SY(J)=EYQ(CALCU SY(J)=EYQ(CALCU SY(K,1)=S SY(K,1)=S SY(K,1)	<pre>,6 AVERAGES OF X, Y, R, VELOCITIES, X-SQUARES, A J)/AN(J) (J)/AN(J) (J)/AN(J) (J)/AN(J) (J)/AN(J) (J)/(2.*T(J)) J)/(2.*T(J)) J)/(2.*T(J)) J)/(4.*T(J)*AN(J)) N NLATE THE INCREMENTAL VELOCITIES OF EACH BACTER: QRT(X(K,1)*X(K,1) + Y(K,1)*Y(K,1)) /T(1) 6- RT((X(K,J)-X(K,J-1))**2+(Y(K,J)-Y(K,J-1))**2) -1)) 3.EQ.0.J.ANC.(Y(K,J).EQ.0.)) SS(K,J)=0. 6- </pre>	ND Y-SQUARES
(1) 10 5 c (1) 12 15	CKNIKUE CC 5C J=1, FIND BX(J)=SX(J) EY(J)=SY(J) RAV(J)=RS(VA\(J)=VS(BX(J)=SXQ EYC(J)=SYQ CALCU CX(J)=EYQ(CALCU CX(J)=EYQ(CALCU CX(J)=EYQ(CALCU SS(K,1)=S SS(K,1)=S CALCU SS(K,1)=S CALCU SS(K,1)=S	<pre>,6 AVERAGES OF X, Y, R, VELOCITIES, X-SQUARES, A J)/AN(J) (J)/AN(J) (J)/AN(J) (J)/AN(J) (J)/AN(J) (J)/AN(J) (J)/(2.*T(J)) J)/(2.*T(J)) J)/(2.*T(J)) J)/(4.*T(J)*AN(J)) N N N N N N N N N N N N N N N N N N</pre>	ND Y-SQUARES

SUN AND AVERAGE INCREMENTAL VELOCITIES

TS(J)=TS(J)+SS(K,J).43 CENTINUE TS(J)=TS(J)/AN(J) 44 CENTINUE PRINT PAGE 3, INCREMENTAL VELOCITIES INC AVERAGE FRINT 110 PRINT 2 - PRINT-103; (1(J); J=1,6)-PRINT 4, ((SS(K, J), J=1,6), K=1,N) PRINT 111 PRINT 4, (TS(J), J=1,6) PRINT 110 (12) PRINT PAGE 4 SUPPARY OF DATA CALCULATED PRINT S PRINT 103, (T(J), J=1,6) PRINT 5 ----- PRINT 4, f SxtJ}, J=1,6) .PEINT 4. (5Y(J), J=1,6)PEINT 6 {SXQ(J}, J=1,6} (SYQ(J), J=1,6} PRINT 4, PRINT 4, PRINT 8 - PRINT 112, (AN(J); J=1,6) PFINT 1C (BX(J), J=1.6) (BY(J); J=1.6) PRINT 4; PRINT 4. PRINT 11 PRINT 4. (BXQ(J), J=1,6) --- PRINT 4. (BYQ(J), J=1,6) PRINT 12 PRINT 4, (DX(J), J=1,6) PRINT 4. (DY(J), J=1,6) PEINT 4. (DR(J), J=1,6) PRINT 107 PFINT 4, (RAV(J), J=1,6) PFINT 108 PFINT 4, (VAV(J), J=1,6) 捫 FFINT 111 PRINT 4, (TS(J), J=1,6) PRINT PAGE 5. CISPLACEMENTS FROM ORIGION AND AVERAGE PRINT 110 PRINT 1C1 PRINT 1C3, (T(J), J=1,6) PRINT 4,((R(K,J),J=1,6),K=1,N) PRINT 107 PRINT 4, (RAV(J), J=1,6) PRINT PAGE 6, AVERAGE VELOCITY FRCM THE ORIGION AND AVERAGE PRINT 110 PRINT 102 PRINT 1C3, (T(J), J=1,6) PRINT 4,((V(K,J),J=1,6),K=1,N)-PRINT 108 PFINT 4, (VAV(J), J=1,6) 1 F(PMAT (9X,12F5.0)

2	FERNAL LOUY - 20HINEREVENTAL VELOCITYA		· · ·
5	CCEWAT /1V 10C10 01	•	
Ē			•
4	F(FFAI (1X,6E15.3)		
5	FCFMAT(/20X,11HSUM OF CATA)		
£	FERFAT (/20X,21HSUM /F SQUARE OF DATA)	,	
3	FERMAT(/20X,21HNUMBER OF CATA POINTS)	. · ·	
S	FLRMAT (/20X, 21HTIME FOR DISPLACEMENT)		
10	FERMAT (20X, 20HAVERAGE CISPLACEMENT)	•	
- 11	FCRMAT(/20X,24HMEAN SCUARE CISPLACEMENT)		1
12	FERMAT(/20X,11HDIFFUSIVITY)	* *	•••••
100	FERMAT (1X.F6.1.1)F1C.1)	1	
101	FERMAT / //21HABSCILTE DISPLACEMENT//)		
102	ECREAT (//20X-16HAVERAGE VELOCITY)		
101	$ \begin{array}{c} \mathbf{C} \mathbf{C} \mathbf{D} \mathbf{A} \mathbf{T} \mathbf{T} \mathbf{T} \mathbf{T} \mathbf{T} \mathbf{T} \mathbf{T} T$		•
105	FURFAL VILAGELDALATE IN ISCUALIZA	•	
104	FUFFAI (ZUX, IBFELEU PRINI®UF LAIA)		
10:	FERMAT (20X, 21HX-Y DISPLACEMENTICM.), 5X, 2CP(CU)	VERSION	FACTOR =
:	(E1C.3,2X,7HCM/DIV))	-	• •
16	FCRMAT (/1X,10HTIME (SEC),F4.0,5F20.0) -		
167	FERMAT (//20X,16HMEAN RADIUS (CM)//)	•	•
331	FCFMAT (//20X,22HMEAN VELCCITY (CM/SEC)//)		• •
165	FCRPAT (6X,1HX,9X,1HY,5X,1HX,9X,1HY,7H _ ETC.)		.*
111	FURMAT (/20X.28HAVERAGE INCREMENTAL VELOCITY//) · · · ·	· .
112	F(RMAT (/1X.6F15.1//)	· • • · · · ·	

IN THIS SECTION ROLGH PLOTS ARE MADE BY THE COMPUTER USING PLOTTING SUBROUTINE PPLT

PLOT PAGE 7 DIFFUSIVITY VS TIME

DC 71 J=1.6 QC(J)=CX(J) 71 CT(J)=T(J) CC72 J=7.12 CC72 J=7.12		
72 • CT (J) = T (J-6) CC 74 J=13,10		
CT(J)=T(J-12) 74 CC(J)=DR(J-12) CMAX=CC(1)		
	DMAX=QD(J)	ili.
CMAX=1.2*DMAX TM&X=T(6)*1.2 AP=C.		
NC=18		

CALL PPLT (CT, QD, AB, TMAX, AB, CHAX, NO) PLCT PAGES 8-13 SCATTER DIAGRAMS OF X-Y AT DIFFERENT TIMES

ŀ

					L															
		CI	3.	-19	.								-		•					
	X۲	INC	J)=	: X	ίι,	J }									·		•			
	X۲	6 X (J)=	:X (1,J)									•					
	Y٢	INE	J]=	Y (1,J	}												. :		
	77	& X (J)=	Y (1,J)							•				•			
	. CC	eo	K=	2.	N														·	
<u>`</u>	IF	-1 X	ť×,	{t,	.LT	• XI	۹IN	٤J	} }	•	×۲	٤N	ŧЭ	}=;	({)	(; } ·			-
	IF	(Y	{K,	11	LT	-Y!	1 I N	IJ))		ΥM	IN	(J) = \	r (*	(11			
	1 F	۲)	{×,	11	• GT	.Y!	IAX	IJ) ;		۲٢	AΧ	(J)=)	r (†	())		•	
	1F	(X	ł×,	11	GI	• X1	1A X	(J	11		×۲	ΑX	٤J)=)	()	(1)			
											•									

-60-

EC CENTINUE
EX=AMAX1 (ABS(XMAX(J)), AES(XMIN(J)), ABS(YMAX(J)), ABS(YMIN(J)))
YMAX(J)=EX
YMIN(J)=-EX
CENTER CENTER FOR THE FACT THAT THE VERTICAL SPACES ARE

CCRRECT THE SCALES FOR THE FACT THAT THE VERTICAL SPACES ARE NOT EQUAL TO HOROZONTAL SPACES XM#X(J)=1.2*EX XMIN(J)=-1.2*EX NLM=N CALL PPLT(X(1,J),Y(1,J),XMIN(J),XMAX(J),YMIN(J),YMAX(J),NUM) E1 CONTINUE STCP END

. -

. . 1 ...

• . •

-- - - - - - - - -

•• •

-61-

```
SLERCUTINE PPLT (X, Y, XMIN, XMAX, YMIN, YMAX, NUM)
    THIS SUBROUTINE, GIVEN A SET OF N X-Y COORDINATES, WILL PLOT THEM
     CN A 51-101 X-Y GRID, THUS MAKING AFPARENT THE CHARACTERISTICS OF
THE ECUATION FROM WHICH THEY WERE DETAINED OR REPRESENT
            X = X COURDINATE OF EACH POINT
           Y = Y COORDINATE OF EACH POINT
XMIN = MINIMUM VALLE FOR X SCALE
            YMIN = MINIMUM VALUE FOR Y SCALE
            XMAX = MAXIMUM VALLE OF X SCALE
YMAX = MAXIMUM VALUE OF Y SCALE
          . NUM = NUMBER OF CATA POINTS
     CIMENSION X(1), Y(1), XCRID(11), YGRIC(11); GRID(101)
     CATA ELNK, XXXXX/1H ,1HX/
     T1= (XMAX-XMIN)/10.
     T2 = (YPAX - YMIN) / 1C.
     XGRID(1) = XMIN
     YGRID(1) = YMAX
     CC 25 I = 2, 11
     XGRID(1) = XGRID(1 - 1) + T1
  25 \text{ YGRIC(I)} = \text{YGRIC(I} - 1) - T2
     WRITE (3, 35)
 35 FCFMAT (1H1)
 \begin{array}{c} \text{CC} & 4\text{C} & 1 = 1, 3 \\ \text{4C} & \text{WFITE} & (3, 45) \end{array}
 45 FCFMAT (20X, 1H#, 10(9X, 1H#))
     L = 1
     ۲ = ۱
     DC \ 65 \ K = 1, 10
CC \ 5C \ I = 1, 101
 SC GRID(1) = BLNK
     A = FLCAT(M)
     $ = (YMAX + 151. - A) + YMIN + (A - 1.))/ 50.
    CC 53 IL = 1, NUM
IF (AES(Q - Y(IL)) - (YMAX - YMIN) / 1CC.) 41, 53, 53
 41 IXF = 100. # (X(IL) - XMIN) / (XMAX - XMIN) + 1.5
     GRID(IYP) = XXXXX
 53 CONTINUE
    WRITE (3,75) YGRID(L), (GRID(I), I = 1, 101)
    N = M + 1
     M = N + 3
    CC \ CC \ J = N, M
CC \ 55 \ I = 1, 101
 55 GRIC(1) = BLNK
    A = FLCAT(J)
    C = (YMAX + 151. - A) + YMIN + (A - 1.))/ 50.
    CC 57 IL = 1, NUM
IF (ARS(U - Y(IL)) - (YMAX - YMIN) / 100.1 46, 57, 57
 46 I>F = 100. * (X(1L) - XMIN) / (XMAX - XMIN) + 1.5
    IF (IXP .GT. 101)
                           PRINT. 4682, IXP
682 FCFM4T(6H IXP =,022)
    GFIC(IXP) = XXXXX
 57 CENTINUE
/C #RITE (3,76)(GRID(1), I = 1, 101)
    ¥ = ¥ + 1
\xi = L + L
    CC \ 66 \ I = 1, 101
```

EE CFIC(I) = BLNK
DC 72 IL = 1, NUM
IF (ABS(YMIN - Y(IL)) - (YMAX - YMIN) / 100.1 69, 72, 72
ES J>P = 100. * (X(IL) - XMIN) / (XMAX - XMIN) + 1.5
GRID(IXP) = XXXXX 72 CENTINUE kRITE (3,75) YGRID(11),(GRID(1), 1 = 1, 101)
75 FCRMAT (10X, 1PE9.2, 1X, 101A1) 76 FCRMAT (10X, 1PE9.2, 1X, 101A1) 76 FCRMAT (20X, 101A1) 77 C 80 I = 1, 3 76 KRITE (3, 45) FRITE (3, 85) (XGRID(I), I = 1, 11) 75 FCRMAT (16X, 11(1PE9.2, 1X)) 76 FCRMAT (16X, 11(1PE9.2, 1X)) RETURN ENC 2

UN NC. 4 7/11/66 E COLI 27 NUTR. 2.+8. TEMP= 24.

	TIPE FUR DISP	LACEMENT				
5.C	10.0	20.0	40.0	60.0	80.0	(SEC.
•			•	· ·	•	
· · .			•			
	SUP OF DATA					
4.4ECE-C2	-3.312E-02	-1.232E-01	8.350E-02	-2.146E-02	-7.044E-02	
6.624E-C2	1.343E-01	3.0286-01	4.236E-01	2.799E-01	1.493E-02	
	SEP ZE SCUARE	OF CATA				
3.6556-63	1.359E-02	5.C75E-02	1.5598-01	2.387E-01	1.899E-01	
4.7188-03	1.879E-02	6.961E-02	2-171E-01	1.868E-01	1.438E-01	
	NUMBER OF DAT	A PETRICS		· .		•.
•			· · · ·	•		
£C.C	80.0	80.0	75.0	56.0	29.0	
				· · · · · · · · · · · · · · · · · · ·	•	-
•	AVERAGE DISPLA	CEMENT				
5.5758-64	-4-140E-04	-1.5398-03	1.057E-03	-3.8326-04	-2.429E-03	
E.2ECE-C4	1.6858-03	3.784E-03	5.3622-03	4.998E-03	5.148E-04	· · ·
	MEAN SOUARE OF	SOLACENENT				
4-5748-05	1-0485-04	6-3435-04	1-5735-03	4,262E-03	6-548E-03	
5.6576-05	2.3496-04	8.7C2E-04	2.7482-03	3.336E-03	4.960E-03	
1				· · · ·		
	CIFFUSIVITY					
4.574E-CE	8.491E-06	1.586E-05	2.467E-05	3.552E-05	4.093E-05	•
5.857E-CE	1.174E-05	2.175E-C5	3.435E-05	2.780E-05	3.100E-05	
-235E-CE	1.0126-05	1.881E-05	2.951E-05	3.1668-05	3.596E-05	•••••••••••••••••••••••••••••••••••••••
	•	· · · · · · · · · · · · · · · · · · ·	•	· · · ·		
	MEAN RADIUS (C	(M)		•		۰.
· .						
S.EE3E-C3	1.950E-02	3.726E-02	6.402E-02	7.909E-02	9.702E-02	
			. •			
•.	MEAN VELOCITY	(CH/SEC)		•	· .	
.s77E-C2	1.4568-03	1.863E-03	1.6018-03	1.318E-03	1.213E-03	
	AVERAGE INCREM	IENTAL VELOCITY		•		
		•			. .	
•577E-C3	2-110E-03	2.0068-03	1.771E-03	1.723E-03	1.832E-03	

RUN NO. 4 7/11/66 E COLT 27 NUTR. 2.+8. TEMP= 24

		X-Y DISPLA	CEMENTICS.	1 (CON	VERSION FAC	TOR = 9.3	30E-04 CH.	/DIV)	• .	•	
TIPE ISECI	5		10		20		40		60 -		80 .
¥.,	Y	X	Y I	ETC.		•	·· ·				
-8.868-03	3-646-0	3 -1_67E-C	2 3.73E-C	3 -3.738-0.	2 -3.73E-03	3 -6.900-02	2 -2.338-0	2 -9.805-02	-1.21E-02	-1.C9E-01	2.61E-02
7.46E-C3	-4-668-0	3 1.49E-02	2 -6.06E-C	3 '9.80E-0	3 1.40E-03	5.50E-03	3 -3.45E-0.	2 5.605-03	-6.902-02	3.738-03	-1.02E-01
-1.03E-02	3.73E-C	3 -1.35E-02	2 1.268-0.	2 ~8.40E-C	3 1.878-02	2 3.276-03	4.20E-0	3 -1.87E-C3	-2.43E-02	1.402-02	-4-20E-02
2.336-03	7.46E-0	3 4.66E-03	1.68E-0	2 9-335-0	3 2.386-02	2 3.55E-02	2 1.77E-0.	2 5.052-02	5.138-03	9-526-02	1-128-02
-5.338-03	-1.408-03	3 -1.596-02	2 -4.20E-C	3 -3.55E-C	2 -8.40E-03	-1.595-02	2 -5.608-0	-4.20E-02	7.465-03	-4-C1F-02	4.11E-02
E.86E-03	1.4CE-C	3 2.106-02	2.338-0	3 3-64E-0	-1.40E-01	2.52F-02	-4-48E-0	0.	0.	6.	A.
-1.318-02	- 8.401-0	-2.52E-02	-1.62E-C	2 -5-136-02	2 -2.615-02	0.	0.		0.	0.	0.
1-875-03	- E. E6E-C	4.665-0	-1.77F-C	2 1.595-0	2 -2.89F-02	6.53F-01			0	0.	0.
7-465-63	E-ACE-D	1-315-02	1.736-0	2 3.175-02	2.996-02	6.725-02	4.435-0	0.	0.		~
-1-036-02	+5.578-0	-1-126-02	-9.336-0	3 -2.895-02	2 - 7. ROF-07	-5.505-02	-4.205-02		-3.975-02	· ·	N
\$-05F+03	7-745-01	1.316-02	1.776-01	2 1.215-03	A 20E-02	4.135-07	5 885-0	1 606-02	4 795-02		. .
-4-646-03-	-/.*?=-C?	-7.465-03	-1.316-01	2 -1 975-01	-1 316-03			-7 005-02	4.270-02	- 2 /// 02	3.376 .03
-1.276-03	6. 605-01		1 505-0	2 - 2 436-01		1.516-02			3 036.03	-7.402-03	1.376-02
7	-6 336-63	0 136-02		2 -2.430-02	3.040-02	-0.292-02	3.092-32	-2.335-02	3.332-62	2.802-03	-4.39E-02
1 405-03	-3-332-03		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		-3.736-02	-1.952-02	-3.326-04	. U.	0.	0.	0.
1.402-03	1.210-02		2.332-64	2 1.402-02		3.332-02	8-21E-04	·u.	0.	0.	0.
4 436-63		2.150-02	1.316-04	4.45E-64	3.45E-02	9.33E-G2	3.36E-02	1.35E-01	1-49E-02	0.	0
C.532-C3	-1.312-04	1.215-02	-2-SCE-C2	1.965-02	-5-131-02	1.956-02	-1-09E-01	0.	0.	0.	o.
-1-126-02	-4.661-03	-2-032-02	-1-40E-02	2 -3.92E-C2	-3.556-02	-5-602-02	-5.41E-02	-5.88E-0Z	-5-326-02	ο.	0.
e-53E-C3	1-032-02	1-87E-02	1.21E-02	4.29E-C2	1.828-02	8.595-02	3.63E-02	8.30E-02	8.582-02	0.	0.
-1.031-02	4.CEE-04	-2-158-02	-2. CCE-C3	3 -4.112-02	2-2-158-02	-8.028-02	-5-136-02	• •	0.	e.	0.
2.802-03	1-076-02	7.465-03	1-965-02	2 -3.27E-03	2.248-02	-3.926-02	4.66E-03	-6.53E-02	-2.15E-02	-9.246-02	-4.4BE-0Z
2.73E-C3	1.631-62	E-86E-03	1.968-02	2.52E-C2	3.36E-02	6.728-02	2.998-02	0.	0.	٥.	o.
-1-036-02	1.878-03	-2.058-02	3.27⊱03	3 -4.2CE-02	4.65E-03	-6.125-02	-2.332-03	-1.192-01	-1.87E-02	0.	0.
5.328-04	\$.338-03	4.208-03	1.828-02	8.40E-03	3.365-02	8.40E-03	5.50E-02	1.268-02	2.338-02	0	0.
-4-668-04	E.12E-03	9.33E-04	1.54E-02	2 1-40E-02	1.73E-02	3.366-02	3.736-02	4.01E-02	2.528-02	3.176-02	1.875-02
-2.278-03	- E. 4CE-03	-6.53E-03	-1.68E-02	? -2.33E-C2	-2.158-02	-3.085-02	-5.13E-02	-1.49E-02	-4.29E-02	G.	0.
-4.66E-C3 -	-3.73E-C3	-4.666-03	-1.318-02	-1.87E-03	-2.83E-03	-1.87E-03	-1.68E-02	-3.732-03	-1.878-02	0	0.
-1.12E-02	2.332-03	-2-438-02	-2.808-03	-4.66E-02	3.738-03	~8.77E-02	-9.338-04	0.	0.	0.	0 .
-7.46E-C3 ·	-5-338-64	-1.408-02	-9-336-04	-2-89E-02	8.40E-03	-5.50E-02	2.716-02	-4.11E-02	6.05E-02	-4.768-02	1.04E-01
5.338-04	1.466-03	7.468-03	1.966-02	5-60E-03	3.83E-02	1.87E-02	7.462-02	D.	0.	0.	0.
7-462-63	c.	2-526-02	2-802-03	4-116-02	1.316-02	8.586-02	2.80E-CZ	1.285-01	3.928-02	1.325-01	7-84E-02
1.876-03 -	-5-231-03	3.732-03	-1.87E-02	7.002-03	-3-45E-02	2.435-02	-6.90F-07	0.	0.	. 0	0.
	9.338-03	1-40E-02	1.495-02	3.648-02	1.591-02	7.74E-02	3.175-02	7.28F-02	7-655-02	0.	0.
1.878-03 -	-1-128-62	-1.87E-03	-1-68E-C2	-1-96E-02	-2-058-02	-2.43F-02	-2.71E-02	0.	0.	0.	0.
-1.878-03 -	-1-318-02	-4.60E-03	-2-436-02	9-336-04	-4.48E-02	3-55E-02	-5.506-02	7.165-02	-3-085-02	8-945-02	1.405-02
5-136-03	5.336-03	1.315-02	1.875-02	3-035-07	3.836-02	4.66E-07	8 076-02	9 145-02	9 895-02	0	A
۲	-1-12E-CZ	-1.735-03	-2.15F+C2	-1.595-07	-4-48E-02	-4-485-02	-6-506-02	-9.146-02	-5.075-07	-1.055-01 -	
5-33E-03	3-731-03	1-965-02	9-805-03	3-41E-07	2.575+02	5 A9E-02	5 605-02	0	0	-11032-01 -	
-1-635-62 -	· 3 . 736-C3	-1-876-02	-8-405-03	-2.99F-02	-2.335-02	-6.06E-02	-6.34E-02	-8.545-07	-0 426-02	-1 216-01 -	1 145-01
-2-736-03	5-335-03	-5-135-03	1-965-02	-3.276-03	4.20E-02	-7 465-01	A 775-02	-6.745-07	1 096-01	-1.210-01 -	-1-10E-01
-8-468-03 -	1.136-03	+1-776-02	-9.335-04	-7 156-07	1 775-07	1 135-03	3 095-02	7 745-02	-4 636-03		
-4-665-64	1.455-02	1 875-01	2 805-03	7 005-02	5 335-02	1 121-02	3.080-02	2+240-02.	-0.552-03	.	
-1.215-02	5 400-02	-1 976-03	2 6/5-62	-7.615-03	3.325-02	1.122-02	1.072-01	0.	U.	U	0.
A 525-02	5 4/6-03	-1.0/1-02	1.342-62	-2.010-02	4.110-02	4.332-64	8.02E-02	0.	0.	U. .	0.
	1 626-63	-1.016-02	1.312-02	1.496-02	2.802-02	3-172-02	5-601-02	0.	0.	0.	0.
-1.1.1.1.1.4	· 136 - 64	- 10 9 32-03	-1.0/0-02	-2.010-02	-2.528-02	+2.89E-02	5-132-03	-1.492-02	3.211-02	0 • .	0.
-1.015-07	1 (15-01	-6.1202-03	-9.336-03	9-332-04	-2-71E-02	2.802-03	-6.44E-0Z	-5.605-03	-6.81E-02	0.	0.
-7 015-03	4 446-01	-1-130-03	1.316-02	-3.132-03	3-032-02	-1-035-02	0.44E-02	-2.992-02	9-05E-CZ	0-	0.
	4.605-04	-0.332-03	9-33E-C3	-1-495-02	2-805-02	1.686-02	3.08E+02	-2.15E-02	0.	0.	0.
-4.CCE-03	L.	1.126-02	4.66E-C3	Z.47E-02	1.402-02	3.78E-02	4.946-02	7-568-02	5.88E-02	0.	0.
##ACE-03 -	3-33E-03	1-12E-02	-1.87E-02	1.216-02	-3.738-02	-9.336-04	-6.628-02	2.80E-03	-1.03E-01	1.872-02 -	1.458-01
e-532-63	3-132-03	1.265-02	1.03E-02	2-43E-02	2-575-02	5-41E-02	4.666-02	0.	0.	C.	0
-2-738-03	1-216-02	-8.40E-C3	Z.521-C2	-2.998-02	2-61E-02	-2.158-02	-2.718-02	0.	0.	0.	0.
-1.40E-03 -	1.402-03	-1.128-02	-1-408-03	-5.138-03	1.96E-02	1.318-02	8.40E-03	-1.31E-02	2.805-02	-2.806-02	6.728-0;
£-53E-C3	5.338-04	1.54E-02	1.876-03	3.178-02	1.31E-02	6.16E-02	3.92E-02	8.776-02	6.902-02	1.13E-0L	1.02E-01
-1-21E-C2 -	5-136-03	-2-43E-02	-9.336-03	-4.858-02	-1-218-02	-9.802-02	-2.996-02	-1-42E-01	-3.832-02	0	0.

-5.332-04	-1.126-02	-1.1ZE-02	-1-59E-02	-3.45E-02	-2.61E-02	-3.35E-02	-1.96E-02	-6.81E-02	-5.13E-02	-4.76E-0Z	-4-202-02
4-865-04	~1.4CE-03	-5-606-03	-1.31E-02	-1-21E-02	-3.36E-02	-2-52E-02	0.	.0.	C.	0.	0.
5.338-04	-E-40E-03	4.665-04	-1.652-02	-6.538-03	-3.C8E-02	-1.598-02	-6.16E-02	0.	0.	0.	0.
۲.	-7.46E-C3	1.876-03	-1-45E-02	1-498-02	-1.77E-02	3.556-02	-2.806-02	3-278-02	-5-418-02	0.	0.
-2-338-03	-6.066-03	9.336-04	-1-408-02	-4.665-03	-3.73E-CZ	-1.65E-02	-8.21E-02	-1.872-02	+1.15E-01	-1.128-02	-1.426-01
2.338-03	1.272-03	3.27E-03	1-128-02	-9-338-04	2-995-02	-2.71E-02	2.335-02	-5.97E-02	2.05E-02	0.	0.
6.53E-C3	4-208-03	-4.20E-03	7.93E-03	-1.77E-02	1.872-03	-2.158-02	1.405-03	-3.838-02	-2.336-02	-4.292-02	-4.396-02
1.358-02	-3-738-03	2.24E-02	-1-21E-02	2.24E-02	-4-20E-C2	9.33E-04	-9.24E-02	0.	0.	0.	C. ·
1-072-02	4.468-03	2.156-02	9.332-03	4.205-02	1.45E-02	2.245-02	2.24E-02	7.93E-03	1.456-02	4. \$4E- CZ	1.776-02
-4-662-03	\$.328-03	-6-532-03	2.056-02	-1.59E-02	4. CI E- C2	-2.618-02	8-652-02	0.	0.	0.	0
1-408-03	-6.666-03	-1-87E-C3	-1.598-02	-1.125-02	-2.89E-02	1.495-02	-3.73E-02	3.735-03	-4.765-02	2.15E-02	-2.61E-02
1.008-03	8.868-63	1.216-02	1.77E-C2	2.336-02	3-27E-02	9-335-04	5.602-02	-3.27E-02	7.468-02	0.	0.
3.235-01	5.808-03	4.53E-03	.1-87E-C2	1.315+02	3-648-02	2.528-02	7.005-02	6.25E-02	7.002-02	C.	0.
5.3 3E-03	S.23E-03	1-126-02	2.336-02	2.528-02	3.456-02	6.345-02	2.61E-02	8-405-02	-1.77E-02	٥.	0.
-4.626-63	5.238-03	-3.736-03	1-876-02	1.07E-03	4-01E-02	1.965-02	7.84E-02	4.85E-02	1.09E-C1	0.	G.
-1.808-03	-1.316-02	-4-202-03	+2.89E+02	-1.406-02	-5-415-02	9.338-03	-8.026-02	4.942-02	-5.13E-02	7.65E-02	-9.332-03
-7-468-03	2.2CE-C3	-2-808-03	7.462-03	-2.806-03	-1-03E-02	1.356-02	-2.615-02	2.895-02	-3.83E-02	٥.	0
1.872-63	1-126-62	#-40E-03	2.05E-02	1.128-02	4.01E-02	2.806-03	8.305-02	2.52E-02	1.146-01	0.	0.
-E.4CE-C3	с.	-1.685-02	-1.87E-03	-3.08E-C2	-8.40E-03	-5.972-02	~1.03E-02	-6.21E-02	6.53[~03	-9.61E-02	3.64E-02
2.73E-03	5.33E-C3	5.602-03	1-968-02	1-126-02	4.296-02	5-41E-02	7.65E-02	9.70E-02	1.062-01	1.18E-01	1-56E-01
-1-218-02	-4.662-03	-2-15E-02	-5-13E-03	-4.48E-02	-2.8CE-03	-9-528-02	3.732-03	-1.406-01	5-136-03	-1.626+01	-3.64E-02
-7.608-03	-2.402-03	-1-598-02	-1-31E-02	-2-598-02	-2-52E-02	-3.36E-02	-6.342-02	4.66E-03	-6.53E-32	-3.272-03	-2.89E-02
7_46E-63	-4.666-03	1-076-02	-1.40E-02	1.59E-02	-3.55E-C2	-1.03E-02	-5.69E-02	-4-66E-02	-3.458-02	-6.348-02	9:336-04
\$.00-303	¢.	2.05E-02	1.405-03	4.20E-02	S.33E-03	7.65E-02	2.805-03	1-128-01	8.40E-03	1.465-01	1.59E-02
-7.7°F-C3	1.035-03	-1 035-07	1 046-07	-1 505-07	1 025-02	-1 125-02	0 035-03	^	•	•	A .

-66-	
------	--
RUN NO. 4 7/11/66 E COLI 27 NUTR. 2 T

-		 	 	
	•			

				• •		
	INCREMENTAL VE	LOCITY				•
5-0	10-0	20+0	40.0	60+0	80.0	(SEC.)
	et al construction de la constru		• • •			
1-5165-03	1-9595-03	7-0105-03	1-864E-03	1.5516-03	1.9336-03	· •
1.760E-03	1-5195-03	9.058E-04	1.805E-03	1.7265-03	1.6356-03	
2.1848-03	1.8895-03	7-944E-04	9-2892-04	1.446E-03	1.189E-03	
1.564E-03	1.9235-03	8.4105-04	1.3415-03	1.325E-03	1.844E-03	
1.8875-03	1.4216-03	2.0048-03	9.896E-04	1.460E-03	1.6828-03	and the second second
1.7558-03	2-4336-03	1.5846-03	2.2408-03	0.	0	
3.1068-03	2.950E-G3	2.774E-03	0.	0.	0.	
1.812E-C3	1.8596-03	1.5838-03	4-870E-04	. 0	0.	•
2.2476-03	2.097E-03	2-2518-03	1.914E-03	0.	Q	•
2+375E-C3	6.9725-04	2.5742-03	1.482E-03	5.262E-04	0.	
2.3828-03	2.152E-03	2.4282-03	1.672E-03	1.488E-03	0.	
1.6056-03	1-421E-03	5.5988-04	1.507E-03	1.586E-03	1.850E-03	
2-UCSE-03	1.8526-03	2.4848-03	1.913E-03	1.961E-03 ·	1.336E-03	
1.0002-03	2-0512-03	1.7685-03	1.2072-03	0.	0.	
2 3336-03	2.3322-03	2.2000-03	2.1936-03	2 2026 02	0.	· · ·
2.9216-67	3.1896-03	2 4495-03	2.8975-03	2+2972-03		-
2.4265+03	2.6395-03	2.8445-03	1.2555-03	1.4755-04	· 0.	
2-4336-01	2-4545-03	2-5005-03	2.3695-03	2.3836-03	0.	
2-055E-C3	2-3328-03	2-706E-03	2-463E-03	0.	0.	
2.21EE-C2	2.003E-03	1.109E-03	2.003E-03	1.8476-03	1.786E-03	
2-1848-03	2-130E-03	2.150E-03	2.108E-03	0.	0.	
2.0868-03	2.072E-03	2.150E-03	1.990E-03	2.0802-03	0.	· · ·
1.875E-03	1.8895-03	1.596E-03	1.073E-03	1.6008-03	0.	
· 1.626E+03	1.482E-03	1.319E-03	1.402E-03	6.888E-04	5.3196-04	•
1-8C2E-C3	1-8028-03	1.7436-03	1.5398-03	8.973E-04	0.	• •
1.1958-03	1-8665-03	1.064E-03	6.997E-04	1.319E-04	0.	-
2.2676-03	2.807E-03	2.3326-03	2.0662-03	0.	0.	
1.5042-03	1.306E-03	1.76CE-03	1.605E-03	1.819E-03	2.217E-03	• •
1.5042-03	2.7558-03	1.875E-03	1.933E-03	0.	0.	· · ·
1+4556-03 -	3-5895-03	1.8892-03	2.380E-03	2.173E-03	1.9732-03	
1-9036-03	2.5475-03	2 2415-03	1-9305-03	2 2616-03		
2.270F-03	1-3465-03	1.8175-03	4 0136-04	业 0	0	
2.6395-03	2.3085-03	2.1285-03	1.2015-04	2-1875-03	2.4095-03	
- Z-130E-07	2-4495-03	2.6175-03	2.2526-03	2.4265-03	0.	
2.235E-03	2-1845-03	2-629F-03	1-887E-03	2-379E-03	2-3465-03	
2.01CE-03	2.3846-03	2.146E-03	1.8995-03	0.	0.	
2.1842-03	1.9216-03	1-866E-03	2.5298-03	2.0815-03	1.954E-03	•
2.01CE-C3	2.072E-03	2.247E-03	2.2958-03	2.2758-03	0.	1 .
1-8388-C3	1.9486-03	1.903E-03	1.759E-03	. 1.948E-C3	0.	•
2.5672-03	2.6542-03	2.571E-03	2.714E-03	0.	0.	
2.6728-03	2.355E-03	2.672E-03	2.381E-03	0.	0.	· · · ·
1-7202-02	1.866E-03	1-519E-03	1-632E-03	. 0.	0.	
2.CEIE-C3	2.186E-03	1.933E-03	1-523E-03	1.544E-03	0.	
1+1356-63	2.0725-03	1.8458-03	1.868E-03	4.594E-04	0.	•
1 6805-07	1.0705-03	1.1/8E-03	1.711E-03	1.033E-03	0.	
1.00000-03	1.9/96-03	2.0462-03	1.5926-03	2.455E-03	0.	•
2-350F+C3	2.0105-02	1.8685-03	1.5075-03	1.9402-03	U. 2 2446-02	
1.6615-03	1.5805-03	1.0310-03	1.0255-03	1+8295-03	2+2++=-03	
2.7176-03	2.5995-03	2.1485+02	1.0275-03	0	0	
3-9566-04	1.9592-03	2-185F-03	1.0685-03	V. 1.6335-02	2-0975-03	
1.3198-03	1.7826-03	1-9806-03	1.9846-03	1.9846-03	2.0625-03	
		1. 3CVC-UJ	143046-03	1.7045-03	2+0025-03	

6

· · ·		•		· .
•		· • . •		•
2.5575-03	2.4425-03	2.6278-03	2.2326-03	0.
2-2558-03	2.548E-03	3-2998-04	2.344E-03	1.127E-03
2-6255-63	2-154E-03	1.8025-03	0.	0.
1-6826-03	1.5652-03	1.609E-03	0.	0.
1-4485-03	1.346E-03	1.147E-03	1.314E-03'	0.
1.715E-03	2-359E-03	2.3208-03	1.635E-03	1.403E-03
1.8755-03	1.513E-03	1.3468-03	1.6396-03	0.
2.272E-03	1.4836-03	1.6815-04	1.4946-03	1.052E-03
2-442E-03	2.986E-03	2.7382-03	0.	0.
2-340E-03	2.128E-C3	1.0485-03	8.247E-04	2.082E-03
2.270E-03	2.170E-03	2.4798-03	0.	0.
1.544E-03	1.6056-03	4.5948-04	1.065E-03	1.392E-03
2.0485-03	1.8668-03	1.6176-03	1.921E-03	0.
1.859E-03	1-889E-03	1.786E-03	1.866E-03	0.
2-8245-03	1.792E-03	1.9582-03	2.421E-03	0.
1.575E-03	2.216E-03	2.1088-03	2.112E-03	0.
3.1855-03	2.7032-03	1.7516-03	2.473E-03	2.4978-03
1.3195-03	1.7732-03	1.138E-03		0.
2-278E-03	1.979E-03	2.187E-03	1.904E-03	0.
1.7205-03	1.544E-03	1.4496-03	1.3996-03	1.649E-03
2.0866-03	2.3996-03	2.7258-03	2.614E-03	2.695E-03
1.868E-03	2.3448-03	2.5402-03	Z.240E-03	2.504E-03
2-003E-03	1.852E-03	1.922E-03	1.915E-03	1.862E-03
1.977E-03	2.2068-03	1.6902-03	2.136E-03	1.9626-03
2.1648-03	2.28BE-03	1.757E-03	1.795E-03	1.766E-03
2.278E-03	2.038E-03	2.0668-03	0.	0.
	$2 \cdot 567E - 03$ $2 \cdot 255E - 03$ $2 \cdot 625E - 03$ $1 \cdot 648E - 03$ $1 \cdot 715E - 03$ $2 \cdot 72E - 03$ $2 \cdot 72E - 03$ $2 \cdot 442E - 03$ $2 \cdot 340E - 03$ $2 \cdot 70E - 03$ $1 \cdot 544E - 03$ $2 \cdot 048E - 03$ $1 \cdot 859E - 03$ $3 \cdot 185E - 03$ $1 \cdot 319E - 03$ $2 \cdot 278E - 03$ $1 \cdot 903E - 03$ $2 \cdot 03E - 03$ $1 \cdot 977E - 03$ $2 \cdot 03E - 03E$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

AVERAGE INCREMENTAL VELOCITY

-68-

	1-977E-03	2.110E-03	2.006E-03	1-771E-03	1.723E-03	1.8328-03
			• • •			
•		•			·	

-69-

-5.e7E-C2 X X XX -E.SIE-C2 X X XX -1.12E-C1

-1.42E-C1. -1.70E-C1 -1.30t-U1 -1.C2E-01 -6.E1E-C2 -3.4GE-02 D. 3.40E-02 6.BLE-02 1.02E-01 1.36E-01 1.70E-01

APPENDIX B

-70-

The following program was used in the concentration gradient method for calculating the concentration profiles from a given initial profile and from an assumed value for the diffusivity.

1 Read in values for the constants used

- Trial value of bacterial diffusivity (cm^2/sec) a.
- Growth rate of the bacteria (1/sec) Ъ.

Time limit, TMAX, for the duration of the diffusion (min) с. Set the values of the initial concentration in all sections, if not zero use measured values.

Calculate the concentration in all sections Δt later than the last profile using the boundary conditions and Eq. (1) Section number m = $C_{l,n+1} = C_{l,n}(1.0 + \Delta tR)$ $C_{m,n+1} = C_{m+1,n}/6 (2/3 + \Delta tR)C_{m,n} + C_{m,n}$

Repeat

2,

+ C_{m-1,n}/6 ì+1 $C_{l+1,n+1} = C_{l-1,n+1}$ Calulate elapsed time for diffusion Time (n+1) = Time (N)+ $\frac{\Delta t}{60}$ (min) Print every fiftieth profile Set $C_{m,n} = C_{m,n+1}$ When time = TMAX, STOP

2 through 1

PREGRAM TAH (LIMPUT: OUTPUT) DIFFUSION INTO A FINITE SLAS WITH GIVEN INITIAL DISTRIBUTION D= DIFFUSIVITY (CM*CM/SEC) R = GRUHTH RATE (1/SEC) TMAX = FUTAL FIME FOR DIFFUSION (MIN) CAPL = LENGHT OF DIFFUSION CHANNEL (CH) FL(J) = DISTANCE LOCATION OF PRINTS (PERCENT OF CAPL) C(M,N) = CONCENTRATION AT DISTANCE M AND TIME N TN = WUMBER OF PRINTS (1/50 TIME INCREMENTS) TK = LENGTH OF TIME INCREMENT (SEC), EASED ON D*TK/(H+H) = 1/6 NUMBER OF DISTANCE INCREMENTS = 100 ULHENSION C(105,2), FL(16), CH(16), P(17) () READ IN U.L. 6, READ 9, D.R. TMAX 8=0. C(1,1)=1.0 CATA (FL(J), J=1,15)/0., 3., 5.,10., 15., 20., 25., 30., \$35., 40., 45., 50., 60., 70., 100./ IF ITMAX.EQ.U.OJ STOP 10 FERMAT (141,113H THE FOLLOWING RUN SECTION IS CHANGED WITH EACH RUN 8/1/66 E. COLI 27 NUTR .32*4.5*.0050 1 FUN NO. E CAFL=4.5 TIME=5.0 THE GUSERVED INITIAL DISTRIBUTION IS PROGRAMED ASSUMING LINEAR. (2)VARIATION BETWEEN DATA POINTS 86 42 M=2,4 C(M,1)=C(H-1,1)-0.019 IF (C(M,1)_LT.0.0) C(M,1)=0.0 42 CONTINUE OL 43 M=2,12 C(M,1)=C(A-1,1)-0.120 IF (C(M, L).LT.U.U) ((M, 1)=0.0 43 CENTINUE DG 44 H=13,102 C(M+1)=C(M-1+1)-U.00906 IF (C(M,1).LT.0.0) C(M,1)=0.0 44 CENTINUE END OF RUN SECTION ECHO PRINT OF DATA PRINT 10 PRINT 8, U.R.CAPL.TMAX CALCULATE CONSTANTS USED IN PROGRAM TK = CAPL#UAPL/(5.0E+04*D) TN=1.2*TMAX/TK 00 41 J=1,15 41 CH(J)= CAPL#FL(J)/100. PRINT PERCENT OF LENGTH AND ACTUAL LENGTH PRINT 90, (FL(J), J=1,15)

```
PRINT 91, (CA(J), J=1,157
      PRINT 92
      P(1)=TIME
      DG 60 J=1.15
         SELECT AND PRINT CONSTANTS USED IN PROGRAM
      H=FL(J)+1.
   6C P[J+1]=C(H.1)
      PRINT 100, (P(J), J=1,16)
 3
         START MAIN TIME LOOP, TIME INCREASES BY T EACH TIME THROUGH
      CC 83 N=1,4000
         CALUULATE BUUNDARY CONCENTRATION AT OPEN END OF DIFFUSION CHANNEL.
      C[1,2)=C(1,1)+TK#K#C(1,1)
      JC 55 M=2,101
         SOUNDARY CONDITION THAT DIFFUSION FLUX EQUALS ZERO CLOSED END
     C(102,1)=C(100,1)
         CALCULATE CUNCENTRATION , C(M, 2) IN ALL DISTANCE INCREMENTS
         FROM PREVIOUS CUNCENTRATIONS, C(M,1)
  55 C(M,2)=C(H+1,1)/o. +(2./3.+TK=R)*C(M,1) +C(M-1,1)/6.
     8=8+1.
      TIME=TK/OU. +TIME
{\binom{4}{7}}
      IF LTIME.GT.FMAXI GD TO 87
         SELECT 50 PROFILE'S FOR PRINTING
     IF IB.LT.INE OU TU 81
\mathfrak{G}
     8=C.
     P(1)=TIME
     DC 61 J=1,15
     M=FL(J)+1.
  61 P(J+1)=((M,2)
        PRINT CUNCENTRATION PROFILES
     PRINT 100, (P(J), J=1,16)
  E1 CENTINUE
     CC 62 M=1,102
(6)E2 ((+,1)=C(M,2)
  83 CONTINUE
        END OF TIME LOUP
  87 CONTINUE
        FRINT THE FUTAL NUMBER OF TIMES THROUGH THE TIME LOOP
     PRINT 7; N
     GC TG 6
   7 FORMAT (/)UX, 16, 2X, 10HITERATIONS)
   & FURMAT (/1x, 2HU=, 10.3, 3X, 2HR=, E10.3, 3X, 5HCAPL=, F7.3, 3X,
    $5HTMAX=+E7+1 //1-
  5 FLRMAT 11X, 2010.3, F10.3)
  SO FURMAT ( 1X, THPERCENT, 2X, 15F8.1)
  S1 FLRMAT (/LX, /MLENGTH CM, 2X, 15F8.3 /)
52 FLRMAT (1X, 10HTLME (MIN))
100 FGRMAT(1X, F9.2,15F6.4)
     END
```

5 . . . t

	RUN NO. E	8/1/60	£. COLI 27	NUTK : . 3244.5=.CUS	a i
				· · · · · · · · · · · · · · · · · · ·	

		· •		•	· .										:
	٤.	3		10.0	15.0	20.0	25.0	30.0	35.0	40.0) 45.C	50.0	60.0	70.0	100.0
L1+67+ CP	٢.		2. در	10 .4	50 .61	75 .90	3 5 1.1	25 1.3	50 1.5	575 1.6	00 Z.C	25 2.29	io 2.7,0	0 3.15	4.500
7186 (83K	1							•					1.11		•
5.00	1.0000	9430	utot. I	.1030	ΰ.	0.	0.	0.	٥.	0.	đ.	· 0.	0.	0.	9. '
13.10	1.1205	4213	+++++++++++++++++++++++++++++++++++++++	.1260	LU174	.0032	.0000	.0000	.0000) 0.	0.	٥.	ò.	0.	c.
21.31	1.2544	. 4430	.0444	و 25 و .	.0005	.3044	10201	.0000	.0000	.0000	.0000	-0000	.0000	0.	0.
29.47	1.4649	1.0471	. / 040	. 4034	•1112	- 7193	.0012	-0030	.0000	> .0000	.0000	.0000	.0000	-0000	0
31.02	1.2124	1		- 424	+1073		.0045	-0003	.0000	.0000	-0000	.0000	.0000	-0000	.0000
47476	1 614	1.2014	1.0140	+ 5436	-2295	. 3615	.0110	-0013	-0031	.0000	-0030	.0000	.0000	.0000	-0000
AZ.06	1.51.4	1.3301	1.1031	. / 0 34	• 2 4 4 1	.0942	.0212	.0033	.000-	.0000	-0000	.0000	.0000	.0000	
20.24	5 4 1 5 1		1 51 44				10357	-0070	10010		.0000	.0000	.0000	.0000	-0003
20.41		1.101.1	1.5132		490/3	-1913	-0551	-0128	.0023	.0003	.0000	-0000	.0000	.0000	.0000
56.56	4.1644	2 . 2 3 . 3	1-1234	1.1234	. 30 4 3	.23/3	-0/48	•021J	.0044	-0007	-0001	.0000	.0000	.0000	.0000
64.72	3 4 3 45	2.5105	1 1 1 2 1 2 1	1.3034	.0574		-1108		.0074	.0015	.0002	-0000	.0000	.0000	.0000
102.87	3.4545	1.1501	2.22277	1 7344		. 3507		.0483	-0124	.0026		.0001	.0000	.0000	.0000
111.02	4.7126	1.5945	2-2291	1.6.84	1.1451	. 75.4	7505	.0002	.0200		-0010	.0002	.0000	.0000	-0000
419.19	4.66.21		1. () (1	1. 2841	1 . 3437		-2500	134	.0240			-0003	.0000	.0000	.0000
127.34	5.97.3	4.5514	3.0/40	2.0254	1.5702		. 3950	-1635	-0584	.0142	.0046		0000		
135.50	6-1204	2.1.0.	4.10.3.1	3.0021	1.02.02	1.2012		-2100	.0797	.0263	-0074	-0010	.0001	. 0000	
143.66	0.064.	3.10-0	4.7012	3.4271	2.1222	1.1490	. 5977	.2076	1061	-01/0	.0113	.0030	.0001	- 0000	-0000
151.01	7.0610	0.4011	2.3140	3.9312	2.4507	1.4052	.7257	.3361	.1364	-0549	.0165	. 0047	-0003	.0000	- 0000
154.57	6.0104	1.2000	0.00/0	4.4443	2.6373	1.0539	.6753	. 4160	.1791	.0686	-0234	.0071	-0204	.0000	-0030
168.12	\$. 6 4 3 3	6-1004	J. 7600	>.6014	1.2700	1.9395	1.0495	.5153	.2284	-0410	.0325	.0104	.0007	.0000	.0000
170.20	10.6644	7.1900	1.0501	5.7521	3.7015	2.2070	1.2521	.6305	2851	.1190	.04+2	-0148	-0012	.0001	.0200
184.44	12.650:	10.3343	3.0/00	0.5315	4.3195	2.6+23	1.4071	.7644	.3601	.1537	.0594	.0207	-0018	-0001	.0000
192.59	13.5470	11.00/-	7.120V	7.41.05	4.4529	3.0/17	1.75+1	.9262	.4405	1964	.0756	.0286	.0028	.0002	.0000
200.75	15.1120	12.0324	よい。すのタン	0-4021	5.0712	3.5627	2.0735	1.1135	.5497	.2480	1027	20367	.0041	.0003	.0000
268.91	10.5535	14.03.2	12-3761	9.5230	0.4356	4.12.5	2.4363	1.3325	.6724	.3120	.1328	.0517	.0360	.0005	+0000
217.66	14.0352	10.4324	13.4152	10.7831	1.4284	4.7035	2.8543	1.5551	.8178	665E.	.1700		.0085	.0007	-0000
125.22	el el luc	14.4511	10.0007	12.2002	6.4537	5.4935	3.3351	1.8650	.9895	.4807	.2157	-0892	.0119	.0011	-0000
- 233-37	23.6756	50.1114	11.0333	11-9-7-	4*0315	0.3253	7.8491.	2.2312	1.1416	.5911	.271E	-1153	.0163	.0017	-0000
491433	20.7326	23.2473	24-0402	12.6031	13.9767	7.2720	4.5227	2-6321	1.4295	.7226	. 3395	-1478	.0222	.0024	-0000
249.09	23.9001	16 27.5	22-3334	17.0330	12.4922	6.1205	5.2505	3.0962	1.7050	.6794	-4217	-1660	.0298	.0035	-0000
444 61	33.5574	21.21.4	63+1631	19.9263	14.2003	9.5/08	6.0942	3.0329	2.0337	1.0650	.5207	-2373	.0397	-0049	-0000
174.14	43 43639	34 45 3	20.2012	22.4750	10.1442	10.9707	1-0385	4.2524	2.4137	1.2844	.6396	.2975	.0522	.0069	40000
242.21	A7 11/C	3046047	31.1624	43.3430	16.3347	12.3343	8.1244	4.40.04	2.8554	1-5431	-7816	-3708	-0681	.0095	.0000
200.47	62.7.1.4	41.3007	33.1303	28.0702	20.8047	14.3725	9.3771	5.1691	3.3711	1.8474	.9513	-4596	-0581	.0129	-0000
248.43	56.17.16	52.055-	40.1703	34.3202	23.0330	10.343/	10.0013	6./303	3-9086	2.2045	1-1526	. 366 7	-1131	.0174	•0000
366.24	64-164-	56.44	61.1012		20.1031	26.7044	12.9203	1.8242	4.0012	2.0228	1-3411	.0454	-1443	.0232	.0000
214.54	74.1246	65.4475	37.0503	41.1042	34. 4519	21,3333	14.3012	9-0731	5.4030	3.1111	1.0/42	- 0497	.1828	-0308	+0001 /
323.05	64.6215	73.4436	04.444	32.2225	44.8930	27.6857	18.7944	12.1677	7 4 4 0 3	3.0023	1 3006	1-0341	-2303	.0404	-0001
331.25	52.5536	62.3750	14.VUTA	34.8144	46.0104	31.50627 2	21.5144	14.0280	8.6945	5.1202	2.8407	1.5144	1504	.0320	-0001
339.411	6411525	42.4070	84.0435	00.2001	47.7457	25.4334 2	4.0494	16.1795	10.1173	6.0113	3.4012	1.6240	-4464	-0176	.0003
347.561	10.64751	103.0325	Vu.buns	14.0462	56.3135	43.7312	20.1416	18.6397	11.7545	7.0601	4-0334	2.1899	-5514	-1120	.0005
155.721	16.64361	110-215/1	102.001Z	04-0502	01.0628	40.2735	2.2178	21.4504	13.6377	8.2671	4.7730	2.6217	.078+	-1423	-0007
363.871	40.31861	36.321/1	44.62.1	44.6330	71.9481	52.5433	36.7919	24.6611	15.8003	9.6637	5.6356	3.1303	-8314	1799	-0010
372.031	63-67-48	40.13++1	20.71/01	46.5227	01.2070	59.6340 4	1.9364	28.3248	18.2835	11.2790	6.4434	3.7282	1.0152	.2263	-0014
3ec. 191	83.13611	43.85401	44.55241	19.8070	41.0117 0	67.6522 4	7.8829	32.5035	21.1317	13.1420	7.2096	4.4300	1.2355	. 2833	.0020
308-346	63.55771	63.72041	46602.20	34.93741	01.6738	16.7149 5	4.5738	37.2671	24.3963	15.2920	9.1686	5.2522	1.4988	. 3532	.0028
350.362	30.22112	200.0000	82.19741	51.18781	17-0315 6	86.9564 6	2.1033	2.6945	28.1355	17.7676	10.7446	6.2141	1.8128	.4386	.0039
										_	-				

14CS LTERATIONS

٤=

.....

4.500

184

APPENDIX C

-74

The following program was used in the tube diffusion method for calculating the fraction remaining, ϕ , as a function of the dimensionless time, $\mathrm{Dt}/\mathfrak{p}^2$

1) Read in the values of the constants used.

a. Bacterial diffusivity, D (cm²/sec)

- b. Multiplication rate of bacteria, R (1/sec)
- c. Sedimentation velocity of bacteria, U (cm/sec)
- d. Length of capillary tube, CAPL (cm)
- e. Length of time for diffusion, TMAX (sec)
- f. Number of length segments in the tube, DH
- g. Number of Δt iterations, DT

DT was usually selected by setting

 $1/6 = AMOD = \frac{\Delta tD}{\Delta x^2}$ or $\frac{DH^2 TMAX \cdot D}{CAPL^2 DT}$

AMOD must be greater than EMOD,

$$\Delta t U$$
, or $\frac{TMAX \cdot DH}{2 \cdot DT \cdot CAPL}$

(2) (3) Print AMOD and echo print input Calculate constants used in program for Eq. (2) $AL = \frac{D\Delta t}{\Delta x^2} - \frac{\Delta t U}{2\Delta x} , \quad AM = 1 \quad R\Delta t - \frac{2D\Delta t}{\Delta x^2}$

$$AN = \frac{1230}{\Delta x^2} + \frac{200}{2\Delta x}$$

4)

Set initial concentrations in the sections of the tube equal to 1.0

Calculate the concentrations, C m,n+1, from the known concentrations C for all sections, m , of the tube at time, m,n. n+1, Δt later than time n. 5) First section, $C_{m,n+1} = 0.0$ Second through the first 95% of the sections Eq. (2) $C_{m,n+1} = AN C_{m-1,n} + AM C_{m,n} + AL C_{m+1,n}$ Last 5% of sections are equal to: Eq. (3) $C_{m,n+1} = (AN C_{m-1,n} - AL C_{m,n}) 20/DH + (1 + R\Delta t) C_{m,n}$ <u><</u> 50 8. After calculating every fiftietn profile make the following calculations Calculate elapsed time 9.) time (min) = $\Sigma \Delta t/60$ Calculate THETA 10 Theta = $D t/l^2 = D time(sec)/CAPL^2$ (11)Integrate the profile and find average concentration $C_{ave} = \Sigma C_{m,n}/m$ PHI = $C_{ave}/exp(R \cdot time)$ (12) Calculate PHI Print final concentration profile Print: time, PHI, THETA

-75-

PROGRAM BONES [[19007, JUTPUT] RESTRICTED DIFFUSION OF BAGTERIA OUT OF A CAPILLARY TUBE WITH SEDIMENTATION AND GROWTH D = DIFFUSIVITY R = GROWTH RATE (1/SEC) U = SEDIMENTATION RATE (C4/SEC) C(M+N) = CONCL AT POSITION M AT TIME N CAPL = LENGTH DF CAPILLARY TUBE (C4) CAVE = AVERAGE CONCENTRATION IN TUBE CTD = A4DUNT IN TUBE IF NONE ESCAPE PHI = FRACTION LEFT IN TJBE THETA = 0 + TIME / SAPL + SAPL TMAX = TOTAL TIME FOR DIFFUSION (SED) DH = NUMBER OF DISTANCE INCREMENTS. DT . NUNBER OF TIME INCREMENTS DIMENSION C(999,2), TINE(100), CAVE(100), CTO(100), PHI (100), 1THETA(100) + CSCLV(100) + PHIC(100) READ IN DATA $(\mathbf{1})$ 6 READ 9, D, R, U, CAPL , TMAX, D4, DT IFI(THAX.EQ.O.).OR. (CAPL.ED.O.)) STJP 4=CAPL/D4 T=TMAX/DT AMOD=T+D/(H+H) B400 = U + T / (2.+H)IF (AMOD.GT.0.51 30 TO 6 ECHO PRINT OF DATA 2 PRINT 8. D.R. U. CAPL . THAX . AMOD. DH. DT CALCULATE CONSTANTS USED IN PROGRAM (3) AL = ANOD - BHID AM=1.-2. + AMOD+F +R AN = A400 + 8830 SET COUNTERS EQUAL TO ZERO A=0. 8=0. L=0 STARTING VALUE SELECTED AT INTERSECTION OF BOUNDARY CONDITION C(M+1) = 1.0 AND C(1+N) = 3.0 C(1,1)=.5 1=04+1. IF (1.GT.1000) SJ TO 84 SET INITIAL CONDITIONS THAT TUBE CONC EQUALS 1.0 00 45 M=2,1 45 C(M,1)=1. CT=1.0 J=DT : START WAIN TIME LOOP. TIME INCREASES BY T EACH TIME THROUGH

00 83 N=1,J

(5) · C(1,2)=0. I=0+ + 1.0 KO=0.95+DH CALCULATE CONSENTRATION, SIM, 2) IN ALL DISTANCES INCREMENTS FROM PREVIOUS CONCENTRATIONS, C(4.1) 00 54 M=2,40 (6) \$ 4 C(M, 2)=AV*C(M-1,1)+AV*C(V,1)+AL*C(4+1,1) MY=M0+1 C(MY, 2)= (AN+C(MY-1,1) - AL+C(MY,1))+20./04 +(1.+R+T)+C(MY,1) DO 57 M=HY.I 57 C(M, 2)=C(MY, 2) CT={1.0+T*R}*CT 50 A=A+L. B=B+1. SELECT FIFTY EVENLY SPACED CONCENTRATION PROFILES FOR PRINTING 6 IF (B.LT.DT/5).) GO TO 81 L=L+1 ୭ TIME(L)=(A+T)TH= TINE(L) /60. 10)74 THETA(LI=D*TIME(LI/CAPL**Z 8=0. CTO(L)=CT I=DH . INTEGRATE THE SELECTED CONCENTRATION PROFILES. SUM=2(1+1,2)/2. (11) DO 78 4=1.1 78 SUM=SUH+C(M,2) CALCULATE AND SFORE QUANTITIES BASED DN INTEGRATION CAVE(L)=SUH/DH CSOLV(L)=CTO(L)-CAVE(L) (12) PHI(L)=CAVE(L)/CTO(L) PHIC(L)=1.0-PHI(L) 81 CONTINUE I=D4+1. D3 82 4=1+1 82 C(M,1)=C(H,2) **83 CONTINUE** END OF FIME LOOP 84 CONTINUE PRINT 99 M=D4/10.+1. J=0H/10. K=D++1. (13) PRINT CONCENTRATION PROFILE. PRINT 100, (C(I,2),I=2,6), (C(I,2),I=M,K,J) J=L PRINT 101 (14) PRINT INTEGRATED QUANTATIES PRINT 102, (TIME(L),CAVE(L),STO(L),PHI(L),THETA(L),PHIC(L), \$CSOLV(L).L=1.J) CE=EXP(R#THAX) CR=100. + (CT-CE)/CE PERCENT ERROR CAUSED BY JSING FINITE DIFFERENCE INSTEAD OF AN EXPONENTIAL TO SALCULATE GROWTH

-77-

```
PRINT 103, CR

I=D4 + 1.0

B FORMAT(1H1, 2HD=, E10.3, 3X, 2H3=, E10.3, 3X,

$2HU=,E10.3, 3X, 5HCAPL=,F7.3, 3X, 5HTM4X=,

$E10.3, 3X, 5HAMOD=,E10.3, 2X, 34D4=,F7.0, 2X, 34DT=,F7.0//}

9 FORMAT (1X, 3E10.3, F10.3, E10.3, 2F10.1)

99 FORMAT (3X, 2H1., 6X, 242., 6X, 243., 6X, 244., 5X, 34 5., 5X, 3H10.,

$5X, 3H20., 5X, 3H30., 5X, 3H40., 5X, 3H50.,

$5X, 3H60., 5X, 3H70., 5X, 3H40., 5X, 3H90., 4X, 4H100. /}

100 FOPMAT (1X, F7.4, 13F8.3, F8.2//}

101 FORMAT( 15X, 4HTIME,11X, 4HCAVE, 12X, 3HCT3, 12X, 3HPHI,12X,

$5HTHETA,8X, 7H1.0-P4I,10X,543SOLV /}

102 FORMAT (RX,7E15.5)

103 FORMAT( /80X,234PERJENT ERROR IN TIME =,E10.3)

GO TO 6

END
```

-78-

· · · · · ·

D= 2.533E-05 R= 2.800E-34 J= 1.000E-35 34PL+ 1.993 THET= 1.909E+04 ANDD+ 1.593E-31 34+ 233 DT+ 27123 L. 2. 3. 4. 5. 13. 23. 33. 40. 50. 60. 70. 80. 73. 135. L+0393 2.052 3.129 4.179 5.234 21.419 43.635 55.706 87.007 107.044 125.553 142.343 159.233 174.793 181.55

•	TINE	SAVE.	C13	PHI	THETA	1-3-PHE	CSDLV
			1 104172130	3.443575-11	2.22372E-33	5.374728-32	5.85914F-97
	3.63442E+02	1.06744.000	1 1001111000	0 755415-31	4. 59615F-33	1.443728-32	2-131126-15
	7.237955+32	1.192922.930	1 363636.33	1.33151F-31	6.194575-33	9.05477F-02	1.226967-01
	1.081195+03	1.237535+30		A DE4145-31	9.19789F-03	1.351578-31	1.557538+31
	1.44159E+03	1. 341262+00			1 140115-07	1.159585-31	1.920575-71
	1.431004+03	1.455112+20	1.556178930		1.173335-17	1.25557E-21	2.319538-01
	2.15239F+03	1.61016:+00	1. #32011000		1.408745-02	1.36274E-01	2.7525 PF-71
	2_52279E+D3	1.753452+30	2.026916+00		1 438585-02	1.451526-31	3.25404F-01
	2,483191+03	1.916761+00	2.241951+37	1. 3 4 3 3 3 5 - 7 1	7 0444 05-07	1.415155-11	1.535348-31
	3.263586+03	2.077726+33	2.014025.034	4. 4D443:-VI	7 708776-17	1-613445-01	4.425545-71
	3.603985+03	2.303351+30	2.742926+37	3.3333777711	3 434366-03	1.417575-31	5-123535-31
	3.4643RE+03	2. 522371+00	3,034139+07	7.312331-31	3 767676.03	1.75818-01	5. 233495-11
	4,374765+03	2. 75517E+33	3,356752+20	5.241022-71	7.017435-37	1-92364F-31	5.7771 6F-01
	4.685105+03	3.034175400	3.712545+07	5.[74542-72	2.43/34/-32	1.883885-01	7-751755-31
	5.0435AE+03	3.317516+70	4.13674E+00	8.11012:-01	5.211712-02	1.051755-01	8.865365-01
	5.40597E+03	3.656112+00	4.542752+00	9.344242-71	3,441345-02	3 311145-31	1.313735+33
	5.75637E+03	4.01434E+70	5.025041+00	7.985662-01	3.8//102-01	3 341335-31	1.1.3376433
	6.12677F+03	4.475575+00	5.558545+07	7.931175-71	3.135756-31	2 124445-01	1.135756413
	6.457176+03	4.81211E+33	5.164598+33	7.47555-01	•.IJ6#05+02	2.17.44401	1 481575400
•	6. F4757E+03	5.319913+00	5.90148=+00	7. #21 70E-01	4.355525-12	2 22264E-01	1 6721 05411
	7.20796E+03	5.8%5395+30	7.523585+00	7.769424-91	4. 790935-02	2.230386-01	1
	. 7.565361+03	4. 423715+00	5.122356+30	7.715525-31	4.876278-32	/.//!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	
	7-929765+03	7.050195+00	a.205925+00	7.669185-31	5.056091-02	6-133368-31	2 4 3 3 4 4 5 4 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
	8. 289165+03	7.753775+33	1.318335+71	7.52101E-31	5.205716-02	2	2. 4225
	8.647566+03	8.531713+00	1.126445+01	7.5740?E-31	5.51574E-22	2.323715-31	
	4.039962+33	9.393332+30	1.268368+31	7.528135-31	5. 745545-02	2.4714/2-01	5. 353347733
	9. 370355+03	1.031445+01	1.376336+31	7.443276-71	5.97534E-32	2.515732-31	1. 4033 / 2 400
•	8.737755+01	1.134265+31	1.52466F+01	7.439391-31	6.2052DE-02	7.963518-31	
	4 1.009121+04	1. 247431+01	1.58653E+01	7.375628-31	5.435338-32	2.6035PE-01	4.34174-400
	1.065156+04	1.372015+01	1.865595+01	7,354305-31	6.66485E+02	2.55377E-71	
	1.051195+04	1.539152+01	2.35365F+31	7.313036-31	6.994576-37	2.687005-01	3.345347+30
	1.117735+04	1.66012:+01	2. 282758+01	7.277475-31	7.126678-32	>.7?753E-31	\$.2752***77
	1-153276435	1.826325+01	2.525118+31	7.232665-01	7.354326-02	2. 76734 01	5. 737 5 5 6 7 7
	1.189117404	2.009295+01	2.793195+31	7.L7354E-71	· 7.59114F-32	2.93545E-DL	7.035475+00
	1.125356406	2.212736+31	3-08774E+01	7.15508E-71	7_813965-07	7. #4492E-01	3.193318+13
	1. 241 3014 04	7. 417517+01	3.417778+31	7.117248-31	8.34375F-02	2.852762-01	4.85757E+30
	1.287435404	2. 676695+01	8.783635+01	7.079995-31	8.273602-02	*. **331E-31	1.171758+71
	1. 1334 7F+ 04	2.955172+01	\$.182028+01	7.04331E-31	4 . 5334 32+37	7.955599-01	1.23669F+NL
	1.348515404	3. 761 537 + 01	4.626018+01	7.007171-31	. R.73325E-32	». 99?33E-31	1.336575+71
	1.445661444	3.55765F431	5-11715F+71	5.971545-31	A.96307E-02	3.028465-01	1.569715+71
	8 441 6 8C + 04	3.976317+01	5.660535121	6. 73661F-31	9.192392-32	3.253578-01	1.7341 3F+31
	1 477435434	A. 12165F + 51	A-261395+01	6.901745-01	9.422728-02	3.398268-01	1.733718+71
	1 4114 724.04	4. 354545401	A. 9261 5E+31	5.557538-31	9.652548-02	3.13747E-01	2.164505+01
	5.548716404	5. 23 56 75 #31	7.661495121	6.811755-01	9.82362-02	3.155236-31	2.42537E+71
		4.751765 +91	8-676935+31	5.833378-31	1.011226-01	3.199615-01	2.71154F+31
	1. 353 / 3E V UV	A. 344731401	9. 37466F+01	4.767428-31	1.034738-31	3.23758E-01	3.030635+01
	1 44783C-A4	A. 014335431	1.017006+37	5.734845-31	1.057185-01	3.265L6E-01	3.33575F+71
	1 487 / 8 35 / 04	7.486538401	1.147095+02	5.732515-31	1.0#017E-31	3.297378-31	3.782346+01
	1.0410/2+U4	8-455395491	1.26888F+07	6.670775-01	1.103152-01	3.32923E-31	\$.22534E+71
	F*164416404		1 4 6 3 6 6 6 4 6 7	4 430716-11	1-126135-31	3.360746-01	4,71711E+01

PERSENT ERROR IN THE -----

-79-

-80-

ATTENDIX D
The following program was used for calculating the diffusion
of E. coli into a crack filled with nutrient medium.
1) Read in the values of the constants used
a. Bacterial diffusivity, D (cm ² /sec)
b. Multiplication rate of the bacteria in the reservoir,
R (l/sec)
c. Multiplication rate of the bacteria in the crack
G (1/sec)
d. Velocity of the flow of the bulk medium, U(cm/sec)
e. Length of time for diffusion, TMAX (sec)
f. Length of capillary crack, CAPL (cm)
g Number of length segments in crack, DH
h. Number of Δt iterations, DT
DT was usually selected by setting AMOD = $1/6$
and AM OD > BMOD, as in Appendix C
2. Print AMOD and echo print input constants
3. Calculate constants used in the program.
4.) Set the values of the initial concentrations in all
sections equal to zero, except for the first section
which equals 1.0 at all times.
\sim (5) Calculate the concentration in all sections Δt later than
the last profile using Eqs. (4,5,6)
6. Calculate the concentration in section 2 through
section <i>l</i> -1, use Eq. (4)
Calculate the concentration in the last section, Eq.(5)
(8.) Calculate the concentration in the reservoir, Eq. (6)
9. Set any concentrations that are greater than the entrance
concentration equal to the entrance concentration.
(10) Print every fiftieth concentration profile
Locate the increment number and position of the first sec-
tion whose concentration is less than 1, 10^{-7} , 10^{-9} , 10^{-9} ,
and 10. ⁺⁺

Print the increment number and the distance to the above

concentrations.

•

-81-

-82-

高端被告诉 机碱碱 化硫酸铵 医花花 医前侧侧的 化合同分子 化合合合金

```
D= DIFFUSIVITY (CH/SEC)
            R= GROWTH RATE IN RESERVOIR (1/SEC)
            G= GROWTH RATE IN THE TUBE (1/SEC)
            TMAX = TOTAL FIME FOR DIFFUSION - (SEC)
            CAPLE LENGTH OF CAPILLARY TUBES (CH)
            DH = NUMBER OF LENGTH INCREMENTS.
            DT = NUMBER OF TIME INCREMENTS
            FL(J) =LODATION FOR PRINTOUTS, PERCENT OF LENGTH
      DIMENSION 1(1005,2), FL(15), P(17), Q(100,11), 2(5)
(1) 6 READ 9. 2, 2, 6, J, FHAX, CAPL, 04, DT
      IF (TMAX.ED.O.) STOP
     DATA (FL(J), J=1,153/0., 5., 10., 15., 20., 25., 30., 40., $50., 60., 70., 80., 90., 100., 101./
      H=CAPL/DH
      T=THAX/DT
      AMOD=T=O/(H+H)
     IF (AMOD.GT.0.49) GO TO 5
PRINT 8, D.R.G.U.FMAX,CAPL,AMOD.DH.DT
(\mathbf{z})
      PRINT 90, (FL(J), J=1,15)
      PRINT 92
(3)
            CALCULATE CONSTANTS USED IN THIS PROGRAM.
      8M00=U#T#0.5/H
      AL=AMOD-BM3D
      AM=1.0-2.*AMOD+T*G
      AN=AMOD+3MOD
      CM={1.0+T=3}
      I=D4+2.0
(4)
            SET INITIAL VALUES FOR ALL CONCENTRATION INCREMENTS
      DO 45 M=2.1
  45 C(M+1)=0.
      C(1.1)=1.0
            SET CONSTANTS AND COUNTERS
      TOP=1.0
      TIME=0.
     11=0
      3=0.
      JQ=DT
            MAIN TIME LODP, EACH TIME BY HERE INCREASES TIME BY DT.
      00 83 N=1,10
      C(1,2)=C(1,1)+R*T
      I=DH
          START CALCULATING THE CONCENTRATIONS, C(M, 2), FOR THE VEXT
TIME INTERVAL FROM THE CONCENTRATIONS, C(M, 1), ATTHE
PREVIOUS TIME INTERVAL
{}^{\odot}
```

15

DO 54 H=2.I C(M,2)=AN+C(M+1,1)+AM+C(M,1)+AL+C(M-1,1) 6) 54 CONTINUE C(I+1+2)=AM =C(I+1+1)+AL =C(I+1) (8) C(I+2+2)=C4+C(I+2+1)+AL +C(I+1+1) I=D-1+2.0 TEST MAGNITUDE OF NEW CONCENTRATIONS 00 57 H=1.1 IF (C(M,2).GT.TOP) C(M,2)=TOP ୭ IF (C(M,2).LT.).) C(M,2)=). 57 CONTINUE TIME=TIME+T B=B+1. PRINT ONLY 50 OF THE CALCULATED PROFILES IF (B.LT.DT/50.) GD TD 81 (10) B=0. P(1)=TIME/3600. DO 50 J=2,15 LOCATE THE INCERMENTS TO BE PRINTED M=FL(J-1)+0H/100.+1.0 60 P(J)=C(M,2) P(16)=C(M+1,2) PRINT THE SELECTED CONCENTRATIONS PRINT 100, (P(J), J=1,16) IT=IT+1 Q(IT,1)=TIME/3500. I=DH+2.0 DO 813 M=1.I LOCATE INDREMENT NUMBER OF THE FIRST CONC. LESS THAN 1.0 (11) IF (C(M,2).LT.TOP) GD TD 814 813 CONTINUE 814 Z(1)=M JL=M 00 815 M=JL+I LOCATE INTREMENT NUMBER OF THE FIRST CONC. LESS THAN 1.E-03 IF (C(M,2).LT.1.5-)3) GO TO 816 (11) 815 CONTINUE 816 Z(2)=M JL=1 00 817 M=JL,I -LOCATE INCREMENT NUMBER OF THE FIRST CONC. LESS THAN 1.E-06 (11) IF (C(M,2).LT.1.E-)6) GD TD 818 **917 CONTINUE** 818 Z(3)=M JL=4 DO 819 M=JL.1 LOCATE INDREMENT NUMBER OF THE FIRST CONC. LESS THAN 1.E-09 (11) IF (CIM,2).LT.1.E-39) 50 T3 820 819 CONTINUE 820 Z141=M JL=M 00 921 4-11 1

LOCATE INDREMENT NUMBER OF THE FIRST CONC. LESS THAN 1.E-12 (11) IF (C(M,2).LT.1.E-12) 50 TO 822 821 CONTINUE 822 Z(5)=M DO 824 MT=2.6 CALCULATE THE DISTANCE TO THE CONC. OF INTEREST Q(IT,MT)= (2(MT-1) -1.5)*4 Q(IT+MT+5)= Z(MT-1) -1.5 824 CONTINUE 81 CONTINUE I=D++2.0 DO 82 M=1,1 CALL NEW JONG. BLD COND. AND REPEAT TIME LOOP 82 C(M,1)=C(M,2) 83 CONTINUE PRINT HEADINGS PRINTS , D, R, G, J, TMAX, CAPL, AMOD, DH, DT PRINT 101 PRINT 102 PRINT TIME, DISTANCES, AND INCREMENT NUMBERS (12) PRINT 103. ((J(L,<),K=1,11), L=1,IT) PRINT 104, IT GO TO 6 9 FORMAT (1X, E9.2, 4E10.2, F10.3, 2F10.1) 8 FORMAT (/1H1,24D=,E9.2,3X,24R=,E9.2,3X,24G=,E9.2,3X,24J=,E9.2, \$3X,54TMAX=,E9.2,3X,5HCAPL=,F5.2,3X, 5HAMDD=,E9.2, \$3X,3HDH=,F5.0, 3X,3HDT=,F6.0//1 90 FORMAT (1X, 7+PERCENT, 2X, 15F8.1) 92 FORMAT (1X, 10HTIME (HRS)) 100 FORMAT(1X, F9.2,15E3.1) 101 FORMAT (2X+10HTIME (HRS)+ SX+13HDISTANCE (CM)+ s 50X,16HINCREMENT NUMBER) 102 FORMAT {/5X,94L0G C/C0=,2X,240.,8X,2H3.,3X,2H5.,3X,249.,7X,3412., \$ 23X, 2H0., 8X, 243., 8X, 246., 8X, 247., 7X, 3412. //1 103 FORMAT (1X, F9.3, 5210.2, 13X, 5F10.1) 104 FORMAT (//1X, 341T=, 16) END

-84-

C=	2.005-0		• 3	2.PCE-C4	G= ?.	8CF-04	G= 1.00	F-04 .1	PAX- 2.8	R F +04	CAPL* 10	.00 AN	30= 1.65	-01 D	400	DT= 5	600
PER	CENT	n			10.0	14.0	20.0	75.0	30.0	40.0	50.0	60.0	70.0	8C. 0	90.0	100.0	101-0
T [4	E CHOSI	۱. 				1		2 05-44		•	n	n. '	0.	₽.	G.	0.	٥.
		1.05 4	00	4 44-43	3 15-07	7 75-14	0 05-73	4 75-74	. A.3F-49	5.85-84	6.4-135	2	0.	0.	ē.	Ö	0.
		1.054		2.05-02	1 55-25	3 45-10	2.45-14	4.55-74	2.35-13	8.65-57	6.5F-87	5 125	8.1-173	3.0-236	0.	0.	0.
	• • •	1.05 4		3. 65 - 02	1.16-64	2.55-08	4.15-13	4.45-10	3.45-26	6-2E-44	1.65-66	3.96-94	3.9-127	3-5-106	1. 9-212	1.8-768	5.1-270
•		1.05 4	5.	4.45 +07	1. 55-64	3.45-77	3-85-11	5-0E-16	7.75-22	2.95-36	1.78-54	1.48-76	1.2-102	7. 3-133	1.4-167	2.9-207	3.0-204
	. 96	1.95.4	50	7. = - 07	5-1F-C4	2.05-64	P.1F-10	5.45-14	6.2F-19	3.75-71	1.65-46	4.95-65	8.85-87	6-0-112	2140	2.4-172	·4.8-173
	1.12	1.05 +	00	6.9F-02	1.75-07	7.4E-04	7.4F-09	1.65-12	7.48-17	1.75-27	8.1F-41	7.76-57	1.4E-75	4.4E-97	2. 1-121	1.2-149	3.7-149
	1.2*	1.95 +	50	1.15-01	2.45-03	2.1F+15	4.0F-08	2.15-11	2.446-15	9.98-75	1.65-36	1.16-50	3.3t-67	4. IE- 86	1.9-107	3.0-131	1.3-131
	1.44	1.05+	00	1.25-01	4.37-03	4.65-05	1.55-07	1.65-10	5.0E-14	1.45-22	3.45-33	6.7E-45	1.05-60	1.35-77	1. 26-96	7.1-119	4.0-11
	1.60	1.95+	ba i	1.4-01	6. (F-E7	8.75-05	4.61-97	9.2F-10	5.0F-13	7.85-21	1.65-30	4.65-42	1.76-55	8. OE - 71	4. 3E-98	3.1-107	2.2-10
	1.74	1.05 +1	10	1.65-01	F-15-C?	1.50-04	1.1F-06	3.28-09	: ?.4E-12	2.18-19	2.55-28	· * • 46- 39	3.18-51	2.95-65	5. 78-51	1.58-98	1.35-96
	1.92	1.0F +	50	1.7-01	1. OF - C2	2.55-04	2.5F-04	1.05-05	1.76-11	3.34-14	1.9E-26	2.85-36	1.15-47	1.35+60	3. 42-75	2	2.01-41
	2.00	1.05 +	20	1.95+01	1.35-02	3.95-74	4.85-05	2.75-05	6.75-11	3.56-17	6.7E-75	4.7E-34	1.2E-44	1.1E-56	3. 55-70	3.21-85	4.01-82
	2.74	1.0F+	cn.	2.16-01	1.64-02	*.4F-{4	8.65-06	6.3E-0	2.2F-10	7.7F-16	1.58-23	3.98-32	4.75-42	2.65-53	6. 3E-66	3.35-80	P.11-80
	2.40	1.05+	ŋn	2.25-01	1.95-02	7.5F-04	1.48-05	1.38-07	+.2E-10	1.66-15	2.28-22	1.86-30	8.52-40	2.2E-50	3.16-02	1.95-75	3.36-73
	2.54	1.0F+	10	7.4°-Cl	2.25-02	1.05-00	2.35-05	2.6F-01	1.65-09	7.45-15	2.46-21	5.46-29	8.1E-38	B-11-48	3. 35-34	1.82-/1	2.75-11
	2.72	1.05 +	n	2.45-01	2.FF-C2	1.35-77	3.50-05	4.9E-01	3.6F-09	3.06-14	2.0E-20	1.11-27	4.01-10	1. 25 - 43	4. 12-30	7 85-46	2 05-44
	2.84	1.05+	.0	2.4F+01	3-05-02	1.78-01	5.05-05	5.7E-07	7.FF-09	1.08-13	1.46-10	1.00-25	1.72-34	1.02-43	1. 10-53	5 05 47	1 41-41
	3.04	1.05+	10	3. 0° - 01	3.55-57	2.16-13	7.17-05	1.4F-06	1.58-78		7.36-19	1.16-23	7 75 - 33	1.10-41	3 75-40	1.45-59	5.16-60
	3.20	1.0E+	32	3.1F-01	3.95-02	Z. 4E-01	9. RE-05	2.1E-06	2.7.0		3.45-14	1.35-23	1.16-30	1 45- 38	3 36 -4 7	3.25-57	1.16-56
	3.34	1.45.44	0	3.30-01	4.45-07	3.78-113	1.31-04	3.78-06	A.82-0P	6 36-12	5 05-17	1.10-23	1 26-26	3. 25 - 17	1. 26-45	3.8F-55	1.4E-54
	3452	1.05+0	10	3.54-01	5. PE-C2	1,11-01	3 35-04	A 05-04	1 35-07	1.75-12	1.65-16	3.45+22	1.16-28	5-65-36	4.36-44	3.1E-53	1.35-52
•		1.01 +0	30		A 15-62	5 A 5 - 01	2.05-04	0 76-04	2 15-07	7.45-11	4-95-16	1.45-21	8. AE - 28	7.75-35	1.2E-42	1.75-51	7.76-51
	2.14	1.01 +	212	4 0 4 01	0.1F-U2	4 35-03	2 46-04	1 36-05	3 16-07	4.85-11	1.16-15	A. 4F- 21	5.65-27	8- 8F - 34	2.45-41	6.9E-50	3.46-49
	4 14	1.000	55	4 45-01	2.55-01	7 15-01	4 55-04	1.85-05	4.75-07	9.05-11	3.4F-15	7.41-20	3.25-26	6.38-33	4.1E-40	2-16-49	1.16-47
		1 05 40	50	4 76-01	0.75-77	8.55-03	5.55-04	2.45-05	A.75-07	1.65-10	A.1F-15	9.0E-20	1.6E-25	6.7E-32	5.55-39	5.1E-47	2.98-46
		1.0540	50	6. 97 - 11	S. 05-02	9.75-03	A-7F-04	3-1F-05	9.45-07	2-7F-10	1.8F-14	2.5E-19	7.48-25	4. TE-31	6.35-38	9.96-45	6.18-45
	4.44	1.05.4	'n	5.25-01	C. #C	1-16+01	1.15-04	4.0F-05	1.35-06	4.8F-10	3.96-14	7.35-19	3.05-24	2.92-30	6.18-37	1.68-44	1.02-43
	4.90	1-0F+6	50	5-45-01	1-15-01	1-35-07	9.75-04	5-16-05	1.05-06	7.05-10	R.15-14	7.05-15	1.16-23	1.68-29	5. 2E-36	2.18-43	1.58-42
	4.96	1.0F+1	0	5.7-01	1. 25-01	1.45-07	1-25-03	6.45-05	7-58-96	1.35-09	1.6E-13	5.1E-10	4.0E-23	7.62-29	3.88-35	2.36-47	1.8E-41
	5-12	1.05+0	:0	6.05-01	1. 35-0)	1.45-72	1.45-03	P. 05 -05	3,36-06	2.05-00	3.16-17	1.26-17	1.36-22	3.52-28	2.5E-34	2.3E-41	1.08-40
	5.24	1.0F+	20	6-35-01	1.4F-01	1.45-01	1.6F-03	9. 8F-05	4.7E-06	3-05-09	5.6E-13	7.9E-17	3.98-22	1.5E-27	1. 58-13	1.9E-40	1.78-39
	5.44	1.05+0) T	e. # - C1	1. **-01	2.05-07	1.98-03	1.28-04	5.66-05	4.5E-09	1.06-12	6.36-17	1.16-21	5.68-27	7.7E-33	1.48-39	1.35-36
	5.60	1.05+0	00	€.¶C+01	1.08-61	7.38-07	2.2F-03	1.55-04	7.28-96	6.6E-09	1.76-12	1.36-10	3.0E-21	2.06-26	3.88-32	9.75-19	9.58-36
	5.76	1.0F+0	10	7.2F-C1	1.7-01	2.5E-02	2.58-03	1.01-04	•.1E-06	9.55-09	3.05-12	2.06-10	7.8E-21	6. E- 20	1. 75-31	5.98-34	6.11-37
	4.92	1.05+1	۱ŋ	7.5-01	1.95-01	7.9F+02	2.95-03	2.15-04	1.18-05	1.46-08	4.96-12	5.56-16	1.9E-20	2.15-25	7. OE - 31	3.32-37	3.01-30
	6.08	1.00+0	00	7.96-01	2.00-01	3.1E-02	3.3F-03	2.55-04	1+48-75	1.96-08	7.98-12	1.08-15	4.5E-20	0-1e-25	2. 75-30	1. /6-36	1.96-33
	6.74	1.0F+0	00	P.15-01	2.7F-C1	3.5F-07	3.PF-03	3.02-04	.1.05-05	-5-4E-08	1.25-11	2.0E-15	1.0E-19	1. TE-24	4. BE-30	1.55-30	4.01-17
	6.40	1.0E+0	30	e.40-01	2-35-61	3.98-77	4.3F-03	3.46-04	2.25-05	3.65-08	1.98-11	3.6E-15	2.28-19	4. /t-24	3. :	3.42-33	
	6.56	1.0F+	10	#•7E-01	2.56-01	4.2F-17	4.95-03	4.26-04	Z.7E-05	4. RE-08	3.08-11	6.3E-15	4.12-19	1-25-23	1.18-25	1.42-34	7 45-33
	6.72	1.05+	10	8.9F-01	2.75-01	4. AE-02	5.6E-03	4.9F-04	7.35-05	6. F-CR	4.5E-11	1.16-14	9.5E-19	3.02-23	3. 20-27	1 05-33	7.02-33
	6.**	1.0F+(10	9.2F-01	2. 98-01	5.1E-12	6.7F-03	5.7E-04	4.05-05	1.6F-09	6.61-11	1-85-14	1.92-18	1-25-23	3 76 - 77	4 45-11	1.05-31
	7.04	1.0E+1	20	5.45-01	3-15-01	5.6E-07	7.16-03	6.7E-04	4.81-05	1.110-07	9.62-11	1.15-14	3.00-10	1+05-22	7. 5-27	2.15+12	3.65-31
	7.20	1. OF +0	20	<-65-C1	1.31-01	6-14-02	R.01-03	1.75-04		1.05-07	1.41-10		1 35 - 17	7.85-22	1.95-26	A.75+32	1.25-30
	7.36	1. OF +0	20	5. TE - Cl	3. 7F-01	0.70-07	4.01-01	n.4t-04	C.FE-05	2 45-07	2 86-10	1.35-13	2.35-17	1_46-21	4. AF-74	2-0E-31	3.65-10
	7.52	1. DE +0	10	N.9E-01		1.4t-07	1.02-02	1.25-07	0 45-05	1 15-47	3.95-10	2.06-13	6.0E-17	3-36-21	1.18-25	5.6E-31	1.18-29
	7.69	1+0+40		1.0-+70		0.05-07	1 36-03	1 45-03	1.16-04	3.05-07	5.35-10	3.05-13	6.95-17	6.65-21	2.6E-25	1.58-30	3.01-29
		1.05.40		1.05.400	4 55-51	6 45 -07	1 46-02	1.55-03	1.35-04	4-95-07	7-35-10	4-5F-13	1.2E-16	1-3E-20	5.8E-25	4. CE-30	8.3E-29
	r.00	1.01+0	1.0	1000 400			10-2-02										
				•													•

. . .

-85-

C= 7.07f-	OF 8. 7	• PCE - C4	S. P. POF-0	4 U= 1.0	75-04 T+6X=	?.*RE+94	CAPL- 10.00	440D+	1.65-01	DH= 400	DT- 560
T145 (Po	53 7	ISTANCE (C	-,				140	EMENT NUM	BER		-
Lng c	/5700 0.	٦.	6.	•••	12.		. 0.	3.	6.	9.	. 12.
140		· · · · · ·	· · ·								
	1 345 - 0		* P75-C	1 •. •7F-n	1.745+00		.5	18.5	27.5	15.5	
	1 755-63		5.675-0	1 1=216+0	1 1.44F+00			24.5	38.5	48.6	47 4
640	1 167 - 4	2 7.475-0	1.145+0	C 1.46F+0	7 1.718+00		.5	29.5	45.5	58.5	, 27 4 2
	1		1.775+0	1.645+0	1 1.945+00		.5	33.5	51.5	66.5	78 6
94.7	1 767 - 0		1.445+0	0 1.045+00) 2.14F+00			36.5	57.5	73.5	44 6
1 120	1 255-0		1.745+6	1.005+0/	2.35F+00		.5	39.5	67.5	79.5	04.5
1.740	1 155 - 61		1.555+00	2.14[+00	2.54F+00		.5	42.5	66.5	85.5	101.6
1.440	1		3 . /	2.245+0) ?•47F+CO		.5	44.5	70.5	90.5	107 6
1 400	1 100 - 01		1.041+00	2.768+0/) 7."IF+00		.5	47.5	73.5	94.5	112 6
1 740	1 36 - 67		1.441+01	7.49r+h0) C.96f+00		.5	49.5	77.5	00.5	
1.970	265-07		· · · · · · · · · · ·	5.205+04) j*03E+00		.5	51.5	60.5	103.5	121 6
2 040	1 366		2 - 2 - C - C - C	2.35r+00	3.215+00		.5	53.5	83.5	107-5	128 6
2.240	1.354-63		2.14E+00	2.791+01	3.318+00		.4	54.5	66.5	111.5	137.6
2.400	1 365-03		2.2474.70	2.945+00	2.41f+nn		.5	56.5	89.5	114.5	174.6
7 540	1 350 03	1.000000	7.25F+C	7. 04F+00	3.548+00		.5	58.5	91.5	111.5	141 6
2.750	3 765 - 63	1.1240	2.345+00	3-045+00	2+64F+00		.*	60.5	94.5	121.5	141.5
	1 755-03			1.110+00	3.71E+00		.5	61.5	96.5	124.5	140 5
3 040	1 150 00	1	2.455+00	3.102+00	3.417+00		.5	63.5	99.5	127.6	167 6
3, 200	1 755-07	1.0010400	7. 14F+ CC	1.7cF+00	***16+00		.5	64.5	101.5	130.5	154 4
7 740	1 250.03	1.519400	2+216+CC	". "4F+00	3.776+00		.5	66.5	101.5	133.5	160 6
3 5 70	1.757-07	1.00000	2.645+00	3.415+00	4.04F+00		. ٩	67.5	105.5	136.5	147 8
3 480	1 345 43	1.744455	2.495+00	3,495+00	4.157+00		.5	69.5	107.5	139.6	144 6
3.840	1 765 . 03	1.758+01	2.747+00	**24E+00	4.74F+00		.5	70.5	110.5	141.5	140.5
A 000	1 367.07	+	24 41 5 + 00	3+415+00	4.31F+00		. *	71.5	112.5	144.5	177 5
4 140	3 365 . 63	1	7. E+E+ CO	3.697+00	4 . 19F+00		1.5	73.5	114.5	7 47 6	176.6
4.759	4 355-63		2.946+00	7.74E+00	4.46F+00		1.5	74.5	115.5	145.5	178 6
			7.745+00	3.775+30	4.54F+00		2.5	75.5	117.5	151.5	141 6
4 4 4 6		1.147.00	5+ JeL+00	3.961+00	4.61E+00		3.5	17.5	119.5	154.6	10100
4 900	1 1 2 0 0 0 0	1.500+00	3. (4 - + 00	3.91 F+00	4 • 4 SE +00		4.5	78.6	121.5	154.5	104.5
4 040	1 12 01	1.4544.00	1.02+00	1. 2/ 5+ 20	4.745+03		4.5	79.5	121.5	158.5	100.0
6 1 20	1.37-01	2+045+00	14F+CC	4.045+00	4.916+00		5.5	81.5	125.5	1 43 8	102.8
	1.035.01	2.04F+CA	3.145+00	4.0°°+00	4.852+00		6.5	82.5	120.5	1 41 4	192.5
		-C4++nn	**31E+00	4.145+00	4.945+00		7.5	83.5	124.5	145 8	107.6
8 400	3 1 2 - 01	2-11-+00	3.755+00	4.1°F+00	5.71F+00		7.5	64.5	1 30. 5	167.5	200 6
8 740	1 1 2 4 1 1	2.100000	4.31E+00	4.748+00	5.14F+00		8.5	16.5	1 32.5	146.5	200.5
5 6 20	3 + 30 - 01	2.1 SF + 0C	345+00	4.275+00	11E+00		9,5	87.5	1 33.5	171.5	207.43
4 000		2.211+00	3,35F+00	4.345+08	5.195+00	•	10.5	88.5	135.5	172 6	204.7
	2.1.20	2.242+00	3+415+00	4.3°F+00	5.748.00		11.5	89.5	136.5	175.5	20143
4 400	121,-01	7.765+00	3.445+00	4_44F+03	5+31F+00		12.5	90.5	136.5	177 6	209.3
		2+315+65	3+515+00	4.495+00	5.34F+00		12.5	92.5	160.5	170 6	212.7
0.700	2	5. 4E+CU	3. 541.+00	4.54F+00	5.418+00		13.5	93.5	141.5 1	1 4 1 4	21947
6 800	7472-01	7-345+00	". SGF+0.0	4.595+00	5.456+00		14.5	94.5	141.5	1 43. 5	210.3
0.880	1.475-11	2.755+00.	7+61E+00	4. 64E+00	5.54F+00 .		15.5	95.5	144 6	103.3	210.0
7 300	-16-01	7.415+00	***** 00	4.691+03	5.59E+00		16.5	96.5	144-5	107.5	2/1.3
1.207	1	7.44E+CR	* + <r +="" 00<="" td=""><td>4.74F+00</td><td>5.646.00</td><td></td><td>17.5</td><td>97.5</td><td>147.5</td><td>101.7</td><td>223.7</td></r>	4.74F+00	5.646.00		17.5	97.5	147.5	101.7	223.7
7.360	•••?F=01	2.450+00	3. 74F+0C	4.798+00	5.69E+00		18.5	99.5	140.6	101.0	223.3
7.570		2.115+00	3.765+00	4.º1F+00	5.74F+00		15.5	100.5	150.5	1 1 1 1 1	227.3
1.050	**#75=01	7.545+05	3.915+00	4.86F+00	5.796+00		19.5	101.5	152.5	104 6	229.3
7	-12F-01	2.545+00	3. P4F+ CC	4.715+00	5.84E+00		20.5	102.5	153 6	194.7	231.3
4.000		2.155+00	3. P SF + CO	4.75F+30	5.57E+00		21.5	101.5	165 6	140.7	233.5

ET- 50

-86-

REFERENCES

-87-

- E. H. Kennard, <u>Kinetic Theory of Gases</u> (Mc Graw-Hill Book Co., Inc., New York, New York, 1938), p. 280.
- A Pijper, "Methyl Cellulose and Bacterial Motility", J. Bact.
 <u>53</u>, 257 (1957).
- Julius Adler, "Chemotaxis in Bacteria", Science <u>153</u>, 708 (1966).
 Catherine B. Fowler, "Relationship between Fermentation and
 - Enzymatic Adaption", Biochim. Biophys. Acta. 7, 563 (1951).
- 5. W. Jost, <u>Diffusion in Solids</u>, <u>Liquids</u>, <u>Gases</u>, (Academic Press Inc., New York, 1960), 283.
- K. W. Pearce, "Settling in the Presence of Downward-Facing Surfaces", <u>Interaction Between Fluids and Particles</u> (London Instn. Chem. Engrs, 1962), p. 30.
- Dr. K. Ögiuti, "Untersuchungen "ber de Geschwindigkeit der Eigenbewegung von Bakterien", Japan J. of Expt. Med. <u>14</u>, 19 (1936).
- R. C. Clowes and D. Rowley, "Small Colony Varients of <u>E. coli</u>" J. Gen. Microbiol. <u>13</u> 461 (1955).
- R. C. Clowes, G. Furness and D. Rowley, "Measurements of the Speed of Motility in <u>E. coli</u>", J. Gen. Microbiol. <u>13</u> (1955)
 H. A. Mazloum, R. Abdel-Maguid, "Factors and Drugs Affecting
 - Bacterial Motility as Measured by the Capillary Tube Method", J. Egypt. Med. Assoc. <u>42</u>, 309 (1959)

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

- A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.