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Asymmetric coding of reward prediction
errors in human insula and dorsomedial
prefrontal cortex

Colin W. Hoy 1,2,9 , David R. Quiroga-Martinez2,3,9, Eduardo Sandoval 2,
David King-Stephens4,5, Kenneth D. Laxer4, Peter Weber 4, Jack J. Lin6,7 &
Robert T. Knight 2,8

The signed value and unsigned salience of reward prediction errors (RPEs) are
critical to understanding reinforcement learning (RL) and cognitive control.
Dorsomedial prefrontal cortex (dMPFC) and insula (INS) are key regions for
integrating reward and surprise information, but conflicting evidence for both
signed and unsigned activity has led to multiple proposals for the nature of
RPE representations in these brain areas. Recently developed RLmodels allow
neurons to respond differently to positive and negative RPEs. Here, we use
intracranially recorded high frequency activity (HFA) to test whether this
flexible asymmetric coding strategy captures RPE coding diversity in human
INS and dMPFC. At the region level, we found a bias towards positive RPEs in
both areas which paralleled behavioral adaptation. At the local level, we found
spatially interleaved neural populations responding to unsigned RPE salience
and valence-specific positive and negative RPEs. Furthermore, directional
connectivity estimates revealed a leading role of INS in communicating posi-
tive and unsigned RPEs to dMPFC. These findings support asymmetric coding
across distinct but intermingled neural populations as a core principle of RPE
processing and inform theories of the role of dMPFC and INS in RL and cog-
nitive control.

Adaptive behavior requires predicting the stimuli or actions associated
with valuable outcomes. Surprising violations of these predictions (i.e.,
reward prediction errors, or RPEs) are used to learn and update such
associations1. The scalar value of RPEs has both signed valence (better
or worse than expected?), which reinforces either approach or avoid-
ance behavior, as well as unsigned salience (absolute magnitude, or
total surprise) that drives motivation, arousal, and motor preparation2.
Dorsomedial prefrontal cortex (dMPFC) and the insula (INS) are twokey

brain regions that respond to both RPE valence and salience3,4. These
areas have strong anatomical and functional connections and together
form the salience network (also referred to as cingulo-opercular control
network), which is involved in performancemonitoring and integrating
feedback to adjust cognitive control5–9. However, conflicting reports
linking dMPFC and INS activity to a diverse range of signed and
unsigned RPE signals have fueled multiple theoretical proposals about
their role in reward learning and cognitive control10–15.
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Theories of salience network function have focused primarily on
explaining dMPFC activity and can be classified into three families.
In one family, theories posit dMPFC encodes positive and negative RPEs
together as a “common currency” value or utility signal to inform action
selection16–19. A second family suggests dMPFC is specialized for pro-
cessingnegativeRPEs to coordinate responses to threats andpain20–22. A
third family of alternative theories argue that dMPFC primarily
responds to various unsigned salience signals, either to adjust cognitive
control23,24, orient towards novel or surprising stimuli25, or track
uncertainty in the environment related to exploration and foraging26.

One barrier to adjudicating between these different theories is
that studies often assume positive and negative RPEs are represented
together on a symmetric, linear scale relative to a single mean expec-
ted value. This classical reinforcement learning (RL) model is partly
inspired by foundational observations of dopaminergic neurons that
increase their firing rate to positive RPEs and decrease it to negative
RPEs27,28. However, recent single unit studies in animals have demon-
strated that different subpopulations of midbrain dopaminergic neu-
rons separately code for positive RPEs, negative RPEs, and unsigned
RPE salience29–33. These reports require alternative RPE coding strate-
gies to account for this unexplainedRPE codingdiversity and reconcile
theoretical debates on dMPFC and salience network function.

One possible coding strategy entails allowing different neurons
and populations to respond to negative and positive RPEs with dif-
ferent strengths. This asymmetric coding principle has been observed
in rodents and non-human primates34,35 and has been used to improve
the performance of deep RL models35–37. However, whether asym-
metric coding underlies signed and unsigned RPE processing in the
human cortex is unclear.

Another challenge for assessing theories of neural RPE coding
is that non-human primate studies indicate populations of single
units tracking positive and negative RPEs are intermingled within
dMPFC17,34,38,39. These populations can represent information with
heterogeneous coding schemes using both increases and decreases of
activity10,40, which can confound valence-specific responses. Common
analysis strategies in human neuroscience measure the average activ-
ity within a region and are not well suited for resolving overlapping
circuits with opposite valence coding and/or directionality of activity
changes, particularly for data with lower spatial resolution such as
scalp electroencephalography (EEG).

Intracranial EEG (iEEG) recordings with high spatiotemporal
resolution overcome some of the limitations of non-invasive human
methods. A recent human iEEG study reported an anatomical dis-
sociation betweenpositive andnegative RPEprocessing across regions
associated with value-based decision making, including a bias for
negative RPEs in anterior INS41. However, this study did not record
from dMPFC and focused on region-level analyses that may obscure
the different contributions of overlapping circuits and diverse coding
schemes within each region.

A final important challenge in elucidating dMPFC function is to
understand the flow of information in the salience network. Tradi-
tionally, dMPFC has been regarded as a control hubwhere information
about task performance, conflict, and reward is computed. However,
similar representations of signed and unsigned RPE variables are also
reported in the relatively less studied INS13–15,42,43, and recent human
neuroimaging and iEEG evidence suggests that the INS may lead
information transfer to dMPFC44–46. Experimental designs and com-
putational models that dissociate signed (positive and/or negative)
and unsigned RPEs are required to elucidate the role of the INS in RPE
processing and communication.

Here, we bridge these gaps between species, recording mod-
alities, analysis methods, and RPE coding hypotheses by testing whe-
ther the asymmetric coding principle can dissociate signed positive
and negative, as well as unsigned, RPE responses in local populations
of human dMPFC and INS. We recorded iEEG data from 10 epilepsy

patients with combined coverage in dMPFC and INS while they per-
formed an interval timing task that used difficulty to manipulate
expected outcomes and provide the critical dissociation of RPE
valence and salience47–49. Using high-frequency activity (HFA) power as
a marker of local population dynamics50–53, we compared the perfor-
mance of three different linear mixed models in explaining single-trial
dMPFC and INS responses to positive, negative, and neutral feedback
during the task. We contrasted an RPE value model with linear RPE
estimates as a classical RL predictor; an RPE salience model with
absolute RPE magnitude as a surprise-related predictor; and an
asymmetric model in which absolute negative and positive RPE mag-
nitude were entered as separate predictors. In the asymmetric model,
different regression slopes for positive and negative predictors would
indicate asymmetric coding of RPEs.

We found that the asymmetric model explained behavior and RPE
signals in dMPFC and INS better than traditional RPE value and salience
models. Furthermore, individual electrode sites showed differential
responsiveness to positive and negative RPEs, such that spatially inter-
mingled neuronal populations separately encoded positive RPEs,
negative RPEs, and unsigned RPE salience. Signed RPE value codingwas
relatively rare, arguing against theories claiming dMPFC primarily
represents RPEs in a symmetric, linear scheme. Finally, directed con-
nectivity measures suggested positive and unsigned RPE information
was primarily transmitted from INS to dMPFC, while negative and
signed RPEs showed limited connectivity modulations. These results
resolve competing theories of dMPFC function by demonstrating that
asymmetric coding enables both valence-specific and unsigned RPE
salience signals to coexist within overlapping dMPFC and INS circuits,
while also suggesting that INS plays a leading role in positive and
unsigned RPE processing within the salience network.

Results
We collected behavioral data from 10 patients while recording from
implanted SEEG and ECoG electrodes in dMPFC (primarily mid-
cingulate cortex with some nearby supplementary motor complex
and anterior cingulate sites) and INS (Fig. 1a; see Methods for patient
demographics, electrode coverage, and behavior). These patients
performed an interval timing task that dissociates valenced RPE value
and non-valenced RPE magnitude by using task difficulty manipula-
tions to modulate reward expectations (Fig. 1b). Easy and hard trials
were presented in separate blockswith self-pacedbreaks in between to
minimize fatigue. Error tolerance was adjusted after each trial by two
staircase algorithms to clamp accuracy at 74.4 ± 6.9% and 19.5 ± 2.6%
(mean± SD) in easy and hard blocks, respectively. This design dis-
sociates outcome valence and probability by manipulating whether
wins or losses are surprising, allowing separation of valenced and non-
valenced RPE features. Four patients performed a version of the task
that delivered neutral outcomes with no response time (RT) feedback
on 12% of trials as an additional source of surprise (see Methods).

Behavioral adaptation to feedback and positive RPEs
In order to quantify valenced and non-valenced RPE features, we used
computational modeling of individual patient behavior to derive
single-trial estimates of expected value, RPE value, andRPEmagnitude.
For each patient, we used logistic regression to predict binarywin/loss
outcomes across the entire session using error tolerance (Fig. 1c). This
model yields patient-specific win probabilities for a given tolerance,
whichwas linearly scaled to the reward function (1, 0, or−1 forwinning,
neutral, or losing outcomes) to quantify expected value for every trial.
Single-trial RPE values were computed by subtracting the expected
value from the outcome value, and RPE magnitudes were defined as
the absolute value of RPEs. Notably, different reward expectations
across easy and hard conditions shift the RPE valence of neutral out-
comes to negative in easy blocks and positive in hard blocks (see
model predictions in Fig. 1d).
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We investigated the impact that the outcome of the previous trial
had on the performance of the current trial. We used linear mixed
modeling to predict adjustments in RT relative to the target based on
direct RT and outcome feedback, as well as RPEs (Table 1). First, we
established that previous trial RTs predicted the adjustment in the
current trial (χ2(1) = 2587.269, p <0.001). Second, we observed a main
effect of previous trial outcome (win, neutral, loss; χ2(2) = 12.24,
p =0.002) and an interaction between previous RT and previous out-
come (χ2(2) = 43.961, p < 0.001).

Having established relationships between the two sources
of feedback and RT adjustments, we next investigated whether RPEs
had an impact on behavior. We compared a null model (with only
previous RT and feedback predictors, but no RPEs) against an RPE
value model (with a signed RPE predictor), an RPE salience model
(with an unsigned RPE magnitude predictor), and an asymmetric RPE
model (with separate positive and negative RPE magnitude pre-
dictors). We found that the asymmetric RPE model predicted RT
adjustments better than the null model (χ2(2) = 13.441, p = 0.001) and

theRPE valuemodel (χ2(2) = 10.746,p =0.001). Comparedwith theRPE
salience model, the asymmetric RPE model fit was not significantly
different (χ2(1) = 2.556, p =0.109), although it performed slightly better
according to Akaike Information Criterion (AIC) (Table 1). To corro-
borate these results and further adjudicate between RPE salience
and asymmetric RPE models, we replicated our analyses using RT
data from a larger sample of healthy participants (n = 32) performing
the same task during a previously published EEG experiment (see
Methods)49. Using the enhanced statistical power in this prior dataset,
we found that the asymmetric RPE model predicted RT adjustments
better than the RPE salience model (χ2(1) = 58.888, p <0.001), provid-
ing evidence for valence-dependent effects of RPE on behavior.

Coefficients in the asymmetric RPE model of the current iEEG
dataset indicated that RT inversely predicted the adjustment in the
following trial (β = −0.75, p <0.001; Fig. 1e; see Supplementary Table 1
for full report of parameters). Thus, if a participant was early, the
following RT tended to be longer, whereas if a participant was late,
the followingRT tended to be shorter, bringingRTs closer to target. An
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Fig. 1 | iEEG recording sites, task design, and behavioral modeling.
a Reconstruction of iEEG recording sites in dMPFC (top) and INS (bottom) across
all participants plotted on a standardized group brain after mirroring all channels
to the right hemisphere for dMPFC and left hemisphere for INS. b Participants
pressed a button to estimate the time when lights finishedmoving around a circle.
The gray target zone cue displayed error tolerance around the 1 s target interval.
Audiovisual feedback is indicated by the tolerance cue turning green for wins and
red for losses. A black tickmark displayedRT feedback. For 4 patients, blue neutral
feedback was given with no RT marker on 12% of randomly selected trials.
c Tolerance and outcome data for an example participant. Larger markers show

block level accuracy; smaller markers show binary single trial outcomes. Model fit
using logistic regression provides single trial estimates of win probability, which is
converted to expected value. d Predictions for RL model predictors. Error bars
indicate group means with standard deviation between participants. Gray dots
indicate means for each participant (n = 10). e Effect of previous RT (left) and
previousRPEmagnitude (right) on current trial RTchange. fConvergent results are
shown for a larger behavioral dataset from a previous study49. Slopes depict
regression coefficients. Shaded areas depict 95% confidence intervals around the
fitted coefficients. pRPE= positive reward prediction error, nRPE= negative reward
prediction error. Source data are provided as a Source Data file.
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interaction between previous RT and outcome showed this effect was
larger following losses (β = −0.27, p =0.001), suggesting a win-stay/
lose-switch strategy. Lastly, a slowing of RTs was observed after posi-
tive (β = 0.02, p <0.001) but not negative (β = 0.01, p = 0.22) RPEs,
supporting a positive bias in the impact of surprising outcomes on
behavior. Each of these effects was replicated in the larger sample of
healthy participants (Fig. 1f and Supplementary Table 2).

Positive and negative RPEs are encoded in a separate, valence-
specific manner
To determine how neural populations encode RPEs, we assessed how
well different sets of RL variables predicted the neural data. We
extracted and normalized high frequency band activity (HFA) power
from 70-150Hz at each electrode in dMPFC and INS as a proxy for local
population activity (Fig. 2a)50,53. Single-trial HFA power was averaged in

50ms windows sliding by 25ms from 0 to 600ms after feedback
onset, and these averaged HFA power values were predicted by the
different RL variables using linear mixed-effects models across chan-
nels and subjects per region andwindow (Table 2). The resulting fixed-
effects model coefficients for each window provide a time series
depicting the evolution of the different predictors for a given region.

For both regions, the asymmetric RPEmodel (separate predictors
for positive and negative RPEs) predicted HFA power best, followed by
RPE salience (unsigned RPEs) and then RPE value (signed RPEs)
(Fig. 2b). Model coefficients (Fig. 2c) indicate RPE value was sig-
nificantly above zero only in INS (qFDR at peak = .004), while RPE sal-
ience was above zero in both regions (qFDR at peak <.001). This
suggests HFA power increases with larger RPE magnitudes. However,
while the salience RPE model performed well, the asymmetric model
described the data best by allowing different coefficients for positive

Table 1 | Linear mixed-effects modeling of behavioral adaptation

Model Name Wilkinson notation Null Df χ2 p AIC

b0 Intercept only RT change ~ 1 + (1|sub) – – – – −1217.4

b1 Previous RT RT change ~ previous RT + (1 + previous RT|sub) b0 3 2587.27 <0.001 −3798.6

b2 Outcome RT change ~ previous RT + outcome + (1 + previous RT|sub) b1 2 12.24 0.002 −3806.9

b3 Interaction RT change ~ previous RT*outcome + (1 + previous RT|sub) b2 2 43.96 <0.001 −3846.8

b4 RPE value RT change ~ previous RT*outcome + sRPE + (1 + previous RT|sub) b3 1 2.69 0.1 −3847.5

b5 RPE salience RTchange ~ previous RT*outcome+ uRPE + (1 + previous RT|sub) b3 1 10.88 0.001 −3855.7

b6 Asymmetric RPE RT change ~ previous RT*outcome + pRPE + nRPE + (1 + previous
RT|sub)

b3 2 13.441 0.001 −3856.3

Model structure is given inWilkinsonnotation. Eachmodelwas comparedwith a “null”model excluding theparameter of interest. Degrees of freedom (Df), chi-squared statistics (χ2) andp-values (p)
are reported for one-sided likelihood ratio tests. Models with significantly improved fits have p-values highlighted in bold. Akaike Information Criterion (AIC) is also shown for each model. pRPE
positive reward prediction error, nRPE negative reward prediction error, sRPE signed reward prediction error, uRPE unsigned reward prediction error, sub subject. Source data are provided as a
Source Data file.
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and negative RPEs. Specifically, positive RPEs were associated with an
increase in HFA power in both regions, peaking around 275ms in INS
and 300ms in dMPFC after feedback onset (qFDR at peak <.001). In
contrast, the negative RPE effect, although qualitatively similar, was
weaker in both regions and significant in dMPFC (qFDR at peak = .036)
but not INS (qFDR at peak = .14). The fact that the asymmetric model
performs best indicates that RPE value and RPE magnitude alone
cannot explain HFA activity and that neuronal populations exhibit
asymmetric coding of negative and positive RPEs.

Diverse responsiveness of neuronal populations to negative and
positive RPEs
To understand how different RPE features are coded by neuronal
populations in each region, we classified channels with significant
responses to positive and/or negative RPEs into four categories
(Fig. 3a)34. First, we selected positive RPE channels as those significantly

predicted by positive RPE estimates only. Similarly, negative RPE
channels were those significantly predicted by negative RPE only. A
third category, signed RPE, included channels that responded by sig-
nificantly increasing their activity with positive RPE, while significantly
decreasing activity with negative RPE, or vice versa. Finally, we defined
unsignedRPE channels as those that either increased or decreased their
activity in response to both positive and negative RPEmagnitude. Note
that, for each category, RPE can be encoded with both decreases and
increases in HFA. This goes beyond classical, bipolar RPE coding in
which positive RPEs are represented in activity increases and negative
RPEs are represented in decreases (henceforth called “regular coding”).
Thismeans that RL theories, including those that allow asymmetric RPE
coding (see Discussion for details), account for only three of the eight
possible coding strategies using combinations of increases and
decreases of HFA (Fig. 3a). Other strategies, such as unsigned RPE
coding, aswell as cases inwhichneuronsdecrease theirfiring topositive

Table 2 | Structure of linear mixed-effects model included in the HFA analyses

Model name Wilkinson notation

RPE value HFA ~ sRPE + EV + (1 + sRPE + EV | sub) + (1 + sRPE + EV | sub:chan)

RPE salience HFA ~ uRPE + EV + (1 + uRPE + EV | sub) + (1 + uRPE + EV | sub:chan)

Asymmetric RPE HFA ~ nRPE + pRPE + EV + (1 + nRPE + pRPE + EV | sub) + (1 + nRPE + pRPE + EV | sub:chan)

EV expected value,HFA high frequency activity,pRPEpositive rewardprediction error, nRPE negative rewardprediction error, sRPE signed rewardprediction error, uRPE unsigned rewardprediction
error, sub subject, chan channel.
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dMPFC, bottom: INS). All channels were mirrored to the right hemisphere for
dMPFC and left hemisphere for INS. Source data are provided as a Source Data file.
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RPE or increase it to negative RPE (henceforth called “inverted coding”),
are not accounted for in classical RL. In the following, we evaluate the
extent to which different representations arising from asymmetric RPE
coding are present in the salience network.

In both regions, the most frequent response profile encoded
positive RPE, with amedian of 30.00% (IQR = 22.60–44.79) of channels
in INS and 33.46%(IQR = 25.00–50.00) of channels in dMPFC (Fig. 3b).
A similar proportion of channels encoded unsigned RPE (i.e., RPE sal-
ience; MDN= 25.00%, IQR = 22.60–44.79 in INS and MDN= 25.00%,
IQR = 20.00–43.75 in dMPFC) while a minority of channels encoded
signed RPE (i.e., RPE value; MDN=0.00%, IQR =0.00–13.75 in INS
and MDN=6.25%, IQR =0.00–12.50 in dMPFC) and negative RPE
only (MDN=0.00%, IQR =0.00–10.63 in INS and MDN= 2.94%,
IQR =0.00–11.1 in dMPFC). When pooling all channels, there were 36
(34%) purely positive RPE channels, 6 (6%) purely negative RPE chan-
nels, 9 (8%) signed RPE channels and 39 (37%) unsigned RPE channels
among the 106 sites in dMPFC. Similarly, there were 21 (33%) purely
positive RPE channels, 3 (15%) purely negative RPE channels, 6 (9%)
signed RPE channels and 27 (42%) unsigned RPE channels among the
64 sites in INS. We did not find significant differences in category
proportions between regions (all qFDR = .8), suggesting similar coding
schemes in INS and dMPFC (Fig. 3c). However, there were differences
between categories in the proportion of responsive channels when
averaged across regions (χ2(3) = 23.86, p < 0.001). Post-hoc, pairwise
comparisons revealed higher proportions for unsigned RPE compared
to negative RPE (qFDR= .016) and signed RPE (qFDR= .012) and for
positive RPE compared to negative RPE (qFDR = .012) and unsigned RPE
(qFDR = .012). No other significant differences were found between
categories (all qFDR > .8). The proportion of categories did not sig-
nificantly change along any of the three spatial dimensions (x: p ≥ 0.11,
y: p ≥ 0.24, z: p ≥ 0.14), suggesting that they were spatially interleaved.
This indicatesmixed coding of RPE features across the cortical surface
of both regions (Fig. 3d).

Next, we evaluated the extent to which different channels
exhibited inverted coding strategies relative to classical RL the-
ories, as defined above. We found that only 1/66 (2%) of unsigned
RPE channels decreased activity with both positive and negative
RPE magnitude. Similarly, few positive RPE channels (1/57; 2%)
and signed RPE channels (2/15; 15%) decreased their activity with
increasing positive RPE magnitude. In contrast, 6/9 (66.7%) of
negative RPE channels used inverted coding (i.e., increased their
activity with increasing negative RPE magnitude). Physiologically,
this means that 33.3% of nRPE channels decreased HFA with
increasing negative RPE magnitude, as demonstrated by time
courses of significant expected value, positive RPE, and negative
RPE coefficients for individual channels plotted in Supplementary
Fig. 2. This indicates that key variables such as RPE salience and
value can be represented by populations of neurons that sepa-
rately code for negative and positive RPE using both increases
and decreases in activity, though coding via decreases in HFA is
most prominent for negative RPEs.

RPE variables predominantly modulate directed connectivity
from INS to dMPFC
Given previous reports indicating that INS might lead information
transfer in the salience network, we next asked how different RPE
variables were communicated between regions by estimating direc-
ted functional connectivity between INS and dMPFC. Using cross-
correlation, we calculated, for each participant, how well activity in
each channel of one region predicted the activity of each channel
in the other region, at different time lags. We found that, at the
region level, positive and negative RPE magnitude increased corre-
lation between INS and dMPFC channels with a peak lag of 75ms,
indicating that INS activity predicted dMPFC activity best at a 75ms
delay (Fig. 4a).

To investigate communication of RPE variables, we classified
between-region channel pairs into the same four categories used for
HFA analyses. In this case, channel pairs that significantly decreased or
increased their correlation as a function of negative and/or positive
RPEs were classified according to their peak coefficient value. We
found significant differences between categories in the proportions of
channel pairs (χ2(3) = 22.10, p < 0.001; Fig. 4b), with a majority
responding to unsigned RPE (MDN= 21.88%, IQR = 18.26−34.78) fol-
lowed closely by purely positive RPE (MDN= 20.00%, IQR =
17.09−25.87). Fewer pairs responded to purely negative RPE (MDN=
1.85%, IQR =0−6.28) and a minority responded to signed RPE
(MDN=0.00%, IQR =0.00−3.40). Pairwise contrasts between cate-
gories revealed a significantly higher proportion of pRPE compared to
nRPE (qFDR =0.012) and sRPE (qFDR=0.016); and a significantly higher
proportion of uRPE compared to nRPE (qFDR =0.012) and sRPE
(p = 0.039, before FDR correction). This pattern of results is similar to
that found in HFA analyses.

To investigate whether the direction of communication was dif-
ferent across RPE features, we next tested for differences in peak lags
between RPE categories. We found that lags were predominantly
positive, with uRPE (MDN= 100ms, IQR = 30–180) and sRPE (MDN=
100ms, IQR = −340−270) having the longest median peak lag for
positive RPE coefficients, followed closely by pRPE (MDN=80ms,
IQR = −50 − 180). For negative RPE coefficients, uRPE had the longest
median peak lag (MDN= 100ms, IQR = 50 − 200ms) followed by nRPE
(MDN=0ms, IQR = −260−100) and then sRPE (MDN= −180 ms, IQR =
−380−50). This suggests that information predominantly flowed from
INS to dMPFC (Fig. 4c). However, we found significant differences in
peak lags among categories for both negative (χ2(3) = 31.855, p <0.001)
and positive (χ2(3) = 9.71, p = 0.02) RPE coefficients. For negative
RPE coefficients, sRPE (qFDR<0.001) and nRPE (qFDR =0.001) lags
were more negative than uRPE lags. For positive coefficients, pRPE
lags were slightly more negative than sRPE lags (qFDR=0.001). These
results suggest potential bidirectional communication such that sRPE
and nRPE may have also been communicated from dMPFC to INS.

We also observed individual pairs whose correlation showed an
inverted coding scheme as defined above.We observed 17/124 (14%) of
pRPE pairs and 15/210 (7%) of uRPE pairs decreased their correlation
with an increase in their corresponding RPE variable. For nRPE pairs,
22/24 (92%) showed inverted coding relative to classical RL theory,
which means only 8% decreased their correlation with increasing
negative RPE magnitude. Moreover, 6/11 (55%) of sRPE pairs showed
inverted coding by decreasing their correlation with increasing RPE
value. Finally, channel pairs involved in RPE communication between
INS and dMPFC were also spatially interleaved and category propor-
tions did not change depending on the subregion of dMPFC involved
(anterior vs posterior; Supplementary Note 1), which agrees with the
aforementioned mixed coding scheme for RPEs in neuronal popula-
tions (Fig. 4c).

Discussion
The valence and salience of RPEs are critical components of reinfor-
cement learning and cognitive control. However, it is unclear how the
salience network (dMPFC and INS) represents these variables to facil-
itate behavioral adaptation. Using HFA power as a proxy for local
population activity, we show that a model utilizing asymmetric posi-
tive and negative RPE coding explained feedback-related activity in
dMPFC and INS better than models including only RPE value or RPE
salience. While positive RPE signals were robustly encoded in both
regions, negative RPE signals were less prominent and only significant
in dMPFC. This positive bias parallels themodulation of RT adaptation
by positive but not negative RPEs, which underscores the behavioral
relevance of neural RPE coding in these areas. Moreover, neuronal
populations at individual channel sites exhibited distinct response
profiles, allowing flexible encoding of RPE value and saliencewith both
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increases and decreases in activity. A plurality of channels responded
to RPE salience (37% in dMPFC, 42% in INS), as well as purely positive
RPEs (34% in dMPFC, 33% in INS). A lower proportion of sites encoded
negative RPEs (6% in dMPFC, 15% in INS), and few encoded signed RPE
(8% in dMPFC, 9% in INS). This indicates that non-linear, hetero-
geneous representations of reward information are the dominant
coding scheme in dMPFC and INS. Finally, directed connectivity
measures indicated channel pairs were primarily modulated by posi-
tive RPEs andRPE salience, and that communication for these variables
flowed predominantly from INS to dMPFC. Collectively, these results
demonstrate that neuronal populations respond differently to positive
andnegative RPEs, enablingRPE codingdiversity in humandMPFC and
INS. Below, we discuss how these findings inform theoretical debates
in reward learning and cognitive control and their conceptual and
methodological implications for principles of neural coding.

Our findings that a model with valence-specific RPEs better
explains dMPFC and INS activity has several implications for theories
of neural coding and function in the salience network. First, they align
with and expand upon recent advances in computational and systems
neuroscience by showing that asymmetric coding principles can
explain heterogeneous responses to reward and punishment29,31,34–36.
Asymmetric RPE coding is the strategy used in distributional RL, a
recently proposed computational framework that improves model
performance by allowing individual units (e.g., neurons) to learn dif-
ferent expected values. This feature takes advantage of neuron-
specific learning rates for positive and negative feedback (i.e., asym-
metric coding) and enables the population to encode the full dis-
tribution of rewards rather than a single mean. Distributional RL has
been applied to explain the diverse response profiles of single units in
subcortical dopaminergic circuits of rodents35,36. Our findings provide

evidence that neuronal populations in the human cortex exhibit
asymmetric coding, one of the core principles underlying distribu-
tional RL. Future studies using single unit recordings are needed to
directly test whether diverse coding schemes for expected value and
RPEs in these regions correspond with distributional RL predictions.

Our analyses also revealed that reward and salience information
were predominantly represented with increases of HFA power and
connectivity. This is consistent with prior studies that observed single
units in rodents and non-human primates with elevated firing rates for
positive, negative, and salience RPEs in dMPFC10,11,38,54 and dopami-
nergic midbrain regions27,29–33,55. However, our observation of increas-
ing HFA and connectivity for larger negative RPEs, which accounts for
the majority of both RPE salience and valence-specific negative RPE
coding, is not accounted for by current RL models (including dis-
tributional RL, Fig. 3a), which operationalize negative RPEs as decrea-
ses in neuronal activity35. Therefore, incorporating asymmetric and
inverted coding principles into more biologically consistent RL
mechanisms provides an opportunity to enhance representations of
reward and salience information in these models.

Notably, we also found representations of larger negative RPEs via
decreases in HFA and connectivity, which aligns with classical obser-
vations of decreased firing rates of dopaminergic neurons following
negative RPEs27,28. Importantly, many studies do not typically use
asymmetric models that can distinguish this form of bidirectional
coding of a single variable using increases and decreases in activity
from opponent coding schemes that increase activity to positive ver-
sus negative RPEs, which is necessary to avoid confounding inter-
pretations of signed RPE value48. Furthermore, spiking and HFA
contain complementary but dissociable information52,53, and they are
also modulated by low frequency oscillations12,56, which may have
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Fig. 4 | RPE features predominantly modulate directed connectivity from INS
to dMPFC. a Region-level, fixed-effects coefficients depicting the effect of
expected value (E. Val.), positive (p) RPE, and negative (n) RPE on the correlation
between INS and dMPFC activity at different time lags. Positive lags indicate INS
activity precedes dMPFC activity, whereas negative lags indicate dMPFC activity
precedes INS activity. Significant model coefficients (qFDR < 0.05) are plotted in
bold. Error bars correspond to 95% confidence intervals around fixed effect coef-
ficients. b Negative RPE and positive RPE peak coefficients grouped by category:
Positive RPE (pRPE, red), negative RPE (nRPE, blue), unsigned RPE (uRPE, green)

and signed RPE (sRPE, gold). c Peak coefficients and the respective peak time lags,
grouped by category. Significantly responsive channel pairs are displayed in color
(F test, uncorrected p <0.05). Marginal distributions of peak time lags and coef-
ficients are plotted on x and y axes, respectively. The anatomical location of sig-
nificant channel pairs is shown for each category, separately for the two directions
of communication. Channel positions have been projected to the right/left hemi-
sphere for dMPFC and the left/right hemisphere for INS in the case of positive/
negative RPE coefficients. See Supplementary Fig. 3 for subject-specific con-
nectivity results. Source data are provided as a Source Data file.
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different information coding and transmission properties. Future
studies examining simultaneously recorded singleunits,HFA, andLFPs
are needed to understand how diverse representations of valence-
specific and salienceRPEs in individual neuronsgive rise to asymmetric
and inverted coding at the population level.

Importantly, we leveraged the flexibility allowed by asymmetric
coding to categorize combinations of positive and negative coeffi-
cients corresponding to the key variables underlying central theories
of dMPFC function, including RPE value and salience. We found that a
plurality of individual sites within and connectivity pairs between
dMPFC and INS responded to the salience of RPEs, including many of
the strongest responses. This observation supports the proposed
central role of dMPFC and INS network in coding salience to enable
adjustments of cognitive control5–7,9,23,25,57. In contrast to signed RPE
theories of dMPFC function16–19, valenced RPE information was rarely
encoded in either neural activity or connectivity responses in amanner
consistent with signed RPE value. Notably, our findings are compatible
with accounts suggesting dMPFC integrates the positive, negative, and
salience RPE variables required to update cognitive control, since
separate representations of this information can be read out by
downstream regions to support adjustments in approach, avoidance,
or motivation. However, our data suggest that most neural popula-
tions in dMPFC and INS do not represent these variables together as a
combined “common currency” value signal with symmetric but
opposite coding of positive and negative RPEs. This finding is con-
sistent with recent proposals that neural representations of value are
better understood as related to attention, action plans, goals, vigor, or
other choice-related variables58–60.

Another important result from our channel-level analyses is that
diverse populations coding for different RPE variables are spatially
interleaved within each region. This observation revealed a more
nuanced picture than region-level analyses, which can obscure local
heterogeneitywithin regions. Reconciling population- and region-level
results may explain seemingly contradictory evidence supporting
different theories of dMPFC function, particularly between single unit
studies in systems neuroscience and experiments using functional
magnetic resonance imaging or EEG in cognitive neuroscience, which
typically average over intermingled populations. Indeed, our
population-level results align with non-human primate studies that
identified single units sensitive to valence-specific and unsigned sal-
ience RPEs within dMPFC17,34,38, suggesting these circuits are anatomi-
cally nonseparable39. In contrast, a recent human iEEG study reported
an anatomical dissociation between positive and negative RPE
processing41. However, this study reported region-level effects, leaving
the diversity in local population coding of RPE salience and valence
unexplored. This emphasizes the need to disentangle spatially inter-
mingled circuits performing different computations within a given
region, which is characteristic of previous human iEEG findings in
language and attention61,62. Furthermore, we found that the propor-
tions of channel sites coding RPE salience, RPE value, and positive and
negative RPEs were equivalent in dMPFC and INS. This result supports
the view that neural computations underlying reward learning, value-
based decision making, and cognitive control unfold in parallel across
distributed circuits58,63–65.

Our results also indicate that population activity within and con-
nectivity between dMPFC and INS have stronger representations for
positive than negative RPEs in our task. Modeling RT adaptation
showed a slowing effect specifically following positive RPEs that
occurred above behavioral adjustments explained by the previous RT
and outcome. A recent behavioral study showed effort can enhance
learning from positive RPEs and suppress learning from negative
RPEs66, suggesting this neural bias towards positive RPE coding in HFA
may reflect the behavioral relevance of those learning signals, parti-
cularly in the hard condition. This finding fits with evidence from
non-human primate single unit studies10,17,34 and some human iEEG

results67. However, a variety of conflicting evidence from other prior
studies argues dMPFC and INS show a bias for processing negative
valence22,41,43,68. In particular, Gueguen et al. report a bias for negative
RPEs in HFA responses in anterior INS41. This discrepancy could be due
to methodological differences such as region- rather than population-
level measures and models that did not control for salience. For
example, many of the individual and pairs of channels that responded
to negative RPEs in our analyses were revealed to code for salience
once we accounted for their response to positive RPEs. Additionally,
RPE representations are likely influenced by features of our timing
task, including interactions between effort and reward driven by dif-
ferent control demands across easy/hard conditions66, the absence of
learning effects precluding use of traditional temporal difference RL
algorithms to estimate value, differences between positive versus
negative punishment (i.e., delivering aversive stimuli versus omitting
positive rewards), or potential effects of attention and fatigue. Future
studies are needed to understand how task demands are integrated
with actions to influence the specific relationships between neural
activity and RL variables.

Another potential factor influencing the proportion of positive,
negative, and salience responses is where our specific recording sites
are located relative to functional gradients within dMPFC and INS. For
example, the strong representations of salience in our results may be
due to the majority of our recording sites falling in mid-cingulate and
insular cortices overlapping with the salience network, which is asso-
ciated with control and performance monitoring9,57,69,70. In contrast,
single units recorded in non-human primates from anterior cingulate
cortex, which is anterior to dMPFC, show reduced salience coding and
mostly responded to positive and negative RPEs34. This difference in
the relative strength of signed and unsigned RPE coding is potentially
due to the fact that anterior cingulate cortex is connected to limbic
circuits linked to learning, comparing, and choosing values rather than
action control26,70–73. Similarly, our results showed some negative RPE
coding in the INS that aligns with previous studies reporting a bias
towards negative RPEs in the anterior portion of this region4,41,68,74,75.
However, this contrast with the bias towards positive RPE coding
found in our INS data may be explained by differences in spatial
sampling, which was determined solely based on clinical needs of the
patient and covered primarily mid- and posterior INS in our dataset.
Interestingly, this potential shift in sensitivity fromnegative to positive
bias across the anterior-posterior axis fits with observations from
rodent research of a hedonic “hot spot” in the INS where stimulation
induces “liking”, which is found posterior to a hedonic “cold spot” in
more anterior INS76,77. Overall, our converging results from both indi-
vidual channels and between-region connectivity indicate that dMPFC
and INS are predominantly modulated by positive RPEs and RPE sal-
ience. Further researchwith denser sampling within these regionsmay
reveal the fine-grained spatial organization of these RPE variables
across subregions.

Lastly, the results of our directed connectivity analyses revealed
INS-to-dMPFC communication for positive RPEs and RPE salience
processing,whichprovides direct evidence for hypotheses that the INS
plays a leading role in the salience network44,78,79. Our findings build
upon two recent human iEEG studies showing INS-to-dMPFC con-
nectivity for salience45,46. However, these studies used tasks that did
not dissociate the valence and salience of feedback. Here, we
demonstrate that INS-to-dMPFC directed connectivity predominantly
conveys both salience and positive RPE information. Thus, in addition
to facilitating salience processing between these two control regions,
INS-to-dMPFC communication of positive RPEsmay reflect integration
of affective information from ventral reward systems including the INS
into action processing in dorsal control systems including mid-
cingulate cortex80,81. Unfortunately, too few channel pairs were sig-
nificantly modulated to draw firm conclusions about the directionality
of negative RPE and RPE value communication. Overall, these results
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confirm and expand the role for INS as a source of multiple RPE vari-
ables processed in dMPFC, emphasizing the need to shift from an
excessive focus on dMPFC towards including the INS in empirical
research and theory building.

In conclusion, our results demonstrate that incorporating asym-
metric coding principles can capture positive, negative, and salience
RPE coding in human dMPFC and INS. Moreover, individual channel
analysis strategies similar to those used in non-human systems neu-
roscience revealed that these populations are interleaved in anatomi-
cally overlapping circuits within dMPFC and INS. Importantly, we
found that accounting for valence-specific RPE coding using both
increases and decreases in activity established that few sites or channel
pairs were modulated by signed RPE, arguing against hypotheses that
these regions integrate reward and punishment into a common value
signal. Instead, our results support a combination of valence-specific
and unsigned salience theories of dMPFC and INS function. Finally, our
directed connectivity results emphasize the leading role of the INS in
both positive and unsigned RPE processing. Overall, these findings
bridge region-level analyses common in human neuroscience with
population-level analyses in animal models and inform theories
regarding neural coding of RPEs in dMPFC and INS.

Methods
Participants
Data was collected from ten patients undergoing neurosurgical treat-
ment for medically refractory epilepsy (mean± SD [range]: 35.2 ± 13.1
[21-57] years old; 1 woman; see Table 3 for patient demographics and
electrode coverage). Patients were implanted with stereotactic (SEEG)
or subdural grid or strip (ECoG) electrodes, and electrode placement
and medical decisions were determined solely by the clinical needs of
the patient. Patients were observed in the hospital for approximately a
week, and those willing to participate performed the behavioral task
during breaks in their clinical treatment. Informed consent was
obtained according to experimental protocols approved by the Uni-
versity of California, Berkeley, University of California, Irvine, and
California Pacific Medical Center Committees on Human Research.
Patients had normal IQ (>85) and spoke fluent English.

Behavioral Task
The interval timing task was written in PsychoPy82 (v1.85.3) and con-
sisted of four blocks (two easy and two hard) of 75 trials each (see
Fig. 1a for task schematic), with an initial instruction cue before each
block started indicating the difficulty level. Two patients completed

the task twice, and one patient completed the task three times. The
order of block difficulty was fixed as either two easy followed by two
hard or alternating from easy to hard (Table 4). Following central
fixation and a randomly chosen inter-trial interval ranging from 0.2 to
1.2 s (see Table 4), trials beganwith presentation of a visualmotion cue
at a constant speed to arrive at a target at the one-second temporal
interval. Participants estimated the interval via button press using the
space bar on a keyboard or an RTBox (v5/6) response device83. In the
first version of the task (n = 6), the motion cue was a blue dot moving
continuously upwards in a straight line towards a bullseye target
(Supplementary Fig. 1), and in a second version (n = 4), themotion cue
was individual lights flickering on then off again in a counter-clockwise
order starting and ending at the bottom of a ring of dots on which a
gray target zone was centered (Fig. 1b). Participants were instructed
that “Your goal is to respond at the exact moment when the ball hits
the middle of the target.” or “…when [the light] completes the circle.”
for the first and second versions, respectively. The size of the bullseye
in the first version and the width of a gray target zone in the second
version indicated the tolerance for successful responses. Veridical win/
loss feedback was presented from 1.8 s to either 2.6 or 2.8 s (Table 4)
and composed of (1) the tolerance cue turning green/red, (2) cash
register/descending tones auditory cues, and (3) a black tick mark
denoting the response time (RT) on the ring. Participants received
±100 points for wins/losses. Tolerance was bounded at ± 15–200 or
15–400ms (Table 4), and separate staircase algorithms for easy and
hard blocks adjusted tolerance by −3/+12 and −12/+3ms following
wins/losses, respectively. Participants learned the interval in five initial
training trials in which visual motion completed the full linear track or
circle. For all subsequent trials, dot motion halted after 400ms to
prevent visuo-motor integration, forcing participants to rely on
external feedback. Training concludedwith 15 easy and 15 hard trials to
initialize both staircase algorithms to individual performance levels.
Note that our designminimizes surprise related to task transitions due
to the blockwise nature of the difficulty manipulation, presentation of
an explicit cue for difficulty level (“Easy”/”Hard”) before each block
started, and participants’ learning of reward probabilities during
training. For the second task version, main task blocks introduced
neutral outcomes on a random 12% of trials that consisted of blue
target zone feedback, a novel oddball auditory stimulus, noRTmarker,
and no score change.

Behavioral modeling
The relationship between the tolerance around the target interval and
expected value was fit to individual participant behavior using logistic
regression. Specifically, tolerance was used to predict binary win/loss
outcomes across trials using the MATLAB function glmfit with a
binomial distribution and logit linking function. Trials with neutral
outcomes were not used to fit the models as they were delivered
randomly and thus not reflective of performance. The probability of
winning (pwin) for each participant was computed as:

pwin =
1

1 + e�ðβ0 +β1tÞ
ð1Þ

where β0 is the intercept and β1 is the slope from the logistic regres-
sion, and t is the tolerance on a given trial. Expected value was derived
by linearly scaling the probability of winning to the reward function
ranging from −1 to 1. RPE value was then computed by subtracting
expected value from the actual reward value, and RPE magnitude was
computed as the absolute value of RPE value. See Fig. 1c for model
predictions by condition. Note that our task minimizes learning by
providing an explicit tolerance cue (gray target zone) on each trial
after the initial expectations are learned during easy and hard training
blocks. Consequently, values were estimated using a logistic regres-
sion model instead of traditional temporal difference RL algorithms.

Table 3 | Patient demographics, electrode coverage, and
behavior

SBJ Sex Task
Version

Button Number of
Electrodes

Number of
Trials

Accuracy
(%)

dMPFC Insula Easy Hard Easy Hard

S01 M 1.8.7 Kb 16 0 299 297 81.6 23.9

S02 M 1.8.2 Kb 16 13 140 138 67.9 18.8

S03 M 1.8.7 Kb 18 3 132 149 75.0 20.1

S04 M 1.8.7 Kb 17 6 145 149 62.8 21.5

S05 M 1.8.7 Kb 5 5 147 147 70.1 19.7

S06 M 1.8.8 Kb 8 6 141 133 77.3 21.8

S07 F 2.4.5 RTBox 9 8 144 143 68.3 20.0

S08 M 2.4.5 Kb 8 10 145 143 75.6 15.9

S09 M 2.4.7 RTBox* 8 8 444 446 83.9 15.6

S10 M 2.4.8 RTBox 1 5 286 282 81.2 17.4

For Button column, “Kb” indicates responses were collected using the space bar on the built-in
laptop keyboard, while “RTBox” indicates a USB button boxwas used. *For IR87, three runs used
the RTbox device, while the keyboard was used to capture responses on the fourth run. Source
data are provided in the open data repository.
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To understand participants’ behavioral strategies and their rela-
tionship to control and reward variables, we used linearmixedmodels
(R 2022.12.0 + 353, lme4 package 1.1.31) to predict adjustments in RT
from previous trial outcomes. RT adjustment was calculated as the
difference inRTbetween the current andprevious trial. Thefirst trial of
each block and trials following missing responses were dropped from
the analysis. In all models, we included by-participant random inter-
cepts and random slopes for the effect of previous trial RT.

A hierarchical model comparison approach was used, starting
with a by-subject intercept-only model and building up to full models,
as shown in Table 1. Predictors were added incrementally and differ-
ences inmodel performance were assessed using likelihood ratio tests
and Akaike Information Criterion (AIC). The computation of p-values
for the individual coefficients of the winning model (Supplementary
Tables 1 and 2) is based on conditional Wald tests with Kenward-Roger
approximations using the pbkrtest-package in R. We first tested whe-
ther previous trial RT, type of feedback (positive, negative, neutral), or
their interaction influenced RT adjustments. Next, we tested whether
previous trial RPEs influenced RT adjustments. Here we compared
three different models: anRPE valuemodel including signed RPEs, an
RPE saliencemodel including unsignedRPEs, and an asymmetric RPE
model including positive and negative RPEs as separate predictors.
Since RPE value and RPE salience models have the same degrees of
freedom, AIC values, but not likelihood ratio tests, were used to
compare them. Finally, we replicated these analyses in a dataset from a
previous EEG experiment in which 32 healthy participants performed
the second version (v2.4.8) of this task49. We used the enhanced sta-
tistical power of this larger dataset to compareperformanceof the RPE
salience and asymmetric RPE models, as well as to replicate the sig-
nificant main effects and interactions from the current iEEG dataset.

iEEG data collection, localization, and preprocessing
The data were recorded at either the University of California Irvine
Medical Center (n = 9), USA or California PacificMedical Center (n = 1),
USA. Patients at Irvine were implanted with stereo-EEG (SEEG) elec-
trodeswith 5mmspacing, and the patient at CPMCwas implantedwith
strips of electrocorticography (ECoG) electrodes with 1 cm spacing. At
both sites, electrophysiology and analog photodiode event channels
were recorded using a 256-channel Nihon Kohden Neurofax EEG-1200
recording system and sampled at 500 (n = 3), 1000 (n = 3), or 5000Hz
(n = 4). For five patients, analog photodiode channels and a subset of
iEEG channelswere recorded in a separate Neuralynx ATLAS recording
system at Irvine at 4000 (n = 1) or 8000Hz (n = 4). For these cases,
photodiode events were then aligned to the iEEG data acquired in
parallel via the Nihon Kohden clinical amplifier via cross-correlation of
shared iEEG channels.

Pre-operative T1 MRI and post-implantation CT scans were col-
lected as part of standard clinical care, and recording sites were
reconstructed in native patient space by aligning these scans via rigid-
body co-registration according to the procedure described in Stolk
et al.84. Anatomical locations of electrodes were determined bymanual
inspection in native patient space under supervision of a neurologist.
Electrode positions were then normalized to group space by warping

the patient MRI to a standard MNI 152 template brain using volume-
based registration in SPM 12 as implemented in Fieldtrip84. Group-level
electrode positions are plotted in MNI coordinates relative to the
cortical surface of the fsaverage brain template from FreeSurfer85.

Data cleaning, preprocessing, and analyses were conducted using
the Fieldtrip toolbox86 (version d073bb2de) and custom Python (2.7)
and MATLAB (2017b) code. Raw iEEG traces were manually inspected
by a neurologist for epileptic spiking and spread, as well as artifacts
(e.g., machine noise, signal drift, amplifier saturation, etc.). Data in
regions or epochs with epileptiform or artifactual activity were
excluded from further analyses. Preprocessing included resampling
data to 1000Hz (for datasets recorded at sampling frequencies >
1000Hz), bandpassfiltered using a Butterworthfilter from0.5-300Hz,
re-referenced (bipolar to adjacent electrodes for SEEG data; common
average reference across all channels for ECoG data), and bandstop
filtered at 60, 120, 180, 240, and 300Hz (Butterworth filter with 2Hz
bandwidth) to remove line noise andharmonics.Continuousdatawere
then visually inspected to ensure all epochs with artifacts or spread
from epileptic activity were removed. Finally, trials were rejected for
task interruptions and behavioral outliers (RTs missing, <0.5 s, > 1.5 s,
or >3 standard deviations from that patient’s mean), resulting in 274-
890 trials per patient (mean ± S.D.: 405.0 ± 210.6).

High frequency broadband power extraction and modeling
Time series data were filtered to high-frequency band activity (HFA)
ranges known to correlate with local multi-unit activity50,52,53. Speci-
fically, data were segmented from −0.25 to 1.2 s relative to feedback
onset, and multitaper time-frequency transformations with 50ms
windows were used to extract power from sub-bands ranging from
70 to 150Hz in 10Hz steps. These HFA power values were then log
transformed to account for their log-normal distribution87 in pre-
paration for linear modeling. To normalize these power values
against baseline activity, permutation distributions were created for
each channel by taking the mean and standard deviation of baseline
power values from −0.25 to −0.05 s relative to stimulus onset from
500 iterations of sampling trials with replacement. Feedback-locked
power values were then z-scored using the average mean and stan-
dard deviation values from those permutation distributions of pre-
stimulus baseline power values. This process avoids normalizingHFA
power to pre-feedback data which may contain post-response
activity and is robust to noisy outlier trials that can skew the base-
line data. Finally, sub-bandswere averaged together to create a single
HFA power time series.

A sliding window approach was then used to average normalized
single-trial HFA power values in 50ms windows stepping by 25ms
from 0 to 0.6 s post-feedback. Mixed-effects models with subject and
channel as nested randomeffects were then used to predict single-trial
HFA power data for each timewindow and brain region.We compared
three different RL models using AIC as a performance metric. Note
that, due to the large amount of data points, likelihood ratio tests
resulted in significant differences between the models at all time
points, even after FDR correction, thereby rendering p-values unin-
formative. We therefore relied on AIC values for model comparisons.

Table 4 | Behavioral paradigm parameters

Task Version Motion Cue Inter-Trial Intervals (s) Block Order Error Tolerance Limits (s) Neutral Outcomes

1.8.2 Linear 0.5, 0.85, 1.2 EEHH 0.2, 0.015 No

1.8.7 Linear 0.2, 0.4, 0.7, 1.0 EEHH 0.2, 0.015 No

1.8.8 Linear 0.2, 0.4, 0.7, 1.0 EEHH 0.2, 0.015 No

2.4.5 Circular 0.2, 0.4, 0.7, 1.0 EEHH 0.2, 0.015 Yes

2.4.7 Circular 0.7, 1.0 EHEH 0.4, 0.015 Yes

2.4.8 Circular 0.7, 1.0 EHEH 0.4, 0.015 Yes

For Block Order, E refers to easy blocks and H refers to hard blocks.
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Allmodels contained expected value and a unique set of RPE estimates
as predictors (Table 2), identical to those used in behavioralmodeling:
The RPE value model included valenced RPE magnitude estimates (i.e.
signed RPE); the RPE saliencemodel included absolute RPEmagnitude
estimates (i.e. unsigned RPE); and the asymmetric RPEmodel included
separate predictors for positive and negative RPE magnitude esti-
mates. Note that the asymmetric RPE model is mathematically
equivalent to a model in which both RPE value and salience are intro-
duced as predictors. That is, RPE value and salience emerge as a linear
combination of positive and negative RPE. The asymmetric model was
added to operationalize our hypothesis and improve interpretability.
Furthermore, in previouswork,wehave shown that separatingpositive
and negative RPE magnitude helps to disentangle event-related com-
ponents that are heavily mixed in scalp EEG data49.

Confidence intervals and two-sided p-values for both fixed (i.e.,
region level) and random (i.e., subject/channel-specific) effects coef-
ficients were obtained from the standard error estimates for each time
window. p-values of region-level fixed effects were corrected for
multiple comparisons across time using the false discovery rate (FDR)
methods of Benjamini & Hochberg88 for each channel. Corrected p-
values are referred to as qFDR throughout the manuscript. p-values of
channel-specific random effects were left uncorrected, since the reg-
ularizing properties of mixed-effects models result in conservative
coefficient estimates that protect against false positives and over-
fitting. Channels were considered to be significantly predicted by a
model regressor if any HFA power window had a model coefficient
with p <0.05.

We evaluated the conformity of linear mixed-effects models with
the assumption of gaussian residuals using quantile-quantile plots and
histograms. We observed a slight skewness of residuals towards the
positive end. To ensure correct estimates and inferences, we fitted the
models with a robust procedure in which data points with residuals
stronglydeviating fromnormalitywere given lessweight duringmodel
fitting. In addition, we performed a sensitivity analysis in which HFA
values were transformed into “rankit” estimates to ensure normality
(see Supplementary Note 2 and Supplementary Figs. 4 and 5 for
details). The results converged with the original analysis.

Estimation and inference on channel responsiveness categories
We classified the channels into four categories according to their
responsiveness: (1) positive RPE (increasing/decreasing HFA power
with positive RPE magnitude and no significant response to negative
RPEs); (2) negative RPE (increasing/decreasing HFA power with nega-
tive RPE magnitude and no significant response to positive RPEs); (3)
signed RPE (increasing HFA with positive RPE and decreasing HFA
power with negative RPE, or vice versa); and 4) unsigned RPE
(increasing/decreasingHFApowerwith both positive andnegative RPE
magnitude). Because responsiveness changed over time, in a handful
of cases a channel could be classified in both the signed and unsigned
RPE categories. In those instances, we classified the channel according
to the sign of their peak significant coefficients.

To evaluate differences between regions and channel categories,
we calculated the proportions of all channels belonging to each cate-
gory for each subject and region. One subject was excluded from this
analysis as they had no electrodes in INS. At the group level, we used
Wilcoxon signed-rank tests to compare channel proportions between
regions for each category separately. The resulting p-values were FDR-
corrected across the four between-region tests. After confirming no
significant differences between regions for any category, we averaged
proportions across regions and tested for differences between cate-
gories with a Kruskal-Wallis test followed by post-hoc, FDR-corrected
pairwise comparisons with Wilcoxon signed-rank tests. Finally, we
used multinomial logistic regression to test for possible spatial gra-
dients in the proportion of categories, employing the x, y and z
coordinates of the electrodes as regressors. The multinomial

coefficients of pRPE, nRPE and sRPEwere estimatedwith respect to the
uRPE category as a reference.

Estimation of directed connectivity between INS and dMPFC
We estimated the directed functional connectivity between dMPFC
and INS using time-lagged cross-correlation of HFA power time series
between all channels in one region and all channels in the other region
for each subject. Lags ranged from −400 to 400ms in 25ms steps. In
our case, positive lags indicate activity in INS precedes activity in
dMPFC, whereas negative lags indicate dMPFC activity precedes INS
activity. Zero lag indicates no delay between regions.

The resulting correlation-coefficient time-lag series were then
predicted by the asymmetric RPE model including expected value,
positive RPE magnitude, and negative RPE magnitude as regressors
(Table 4). For each time lag, a mixed-effects model was estimated
including subject and channel pair as nested random effects. p-values
for (region level) fixed effects and (channel-pair level) random effects
were obtained based on standard error estimates. For fixed effects, p-
values were FDR-corrected across time-lags for each predictor sepa-
rately. For random effects, p-values were left uncorrected due to the
regularizing properties ofmixed-effectsmodels. Because the residuals
of the model were heavy-tailed, we used robust estimation and sensi-
tivity analyses, as indicated above, to ensure inferences were correct
(see Supplementary Note 2 and Supplementary Fig. 6 for details).

For each channel pair and region, we extracted the time lags at
which positive and negative RPE magnitude best predicted directed
connectivity by finding the peak of the absolute correlation coeffi-
cients.We classified channel pairs into the same four categories (pRPE,
nRPE, sRPE, uRPE) used for HFA analyses, according to their modula-
tion by negative RPE and/or positive RPE, as indicated above. To
evaluate differences in category proportions, we calculated the per-
centage of all channel pairs belonging to each category for each sub-
ject. We tested for differences between categories with a Kruskal-
Wallis test followed by post-hoc, FDR-corrected pairwise comparisons
with Wilcoxon rank-sum tests. The same statistical procedure was
followed to test for differences in peak lags between categories.

Citation Diversity
Recent work in several fields of science has identified a bias in citation
practices such that papers fromwomen and otherminority scholars are
under-cited relative to the number of such papers in the field89–92. Here
we sought to proactively consider choosing references that reflect the
diversity of the field in thought, form of contribution, gender, race,
ethnicity, and other factors. First, we obtained the predicted gender of
the first and last author of each reference by using databases that store
the probability of a first name being carried by a woman89,93. By this
measure and excluding self-citations to the first and last authors of our
current paper, our references contain 6.1% woman(first)/woman(last),
14.31% man/woman, 19.92% woman/man, and 59.67% man/man. This
method is limited in that a) names, pronouns, and social media profiles
used to construct the databases may not, in every case, be indicative of
gender identity and b) it cannot account for intersex, non-binary, or
transgender people. Second, we obtained a predicted racial/ethnic
category of the first and last author of each reference by databases that
store the probability of a first and last name being carried by an author
of color94,95. By this measure (and excluding self-citations), our refer-
ences contain 12.94% author of color (first)/author of color(last), 12.81%
white author/author of color, 16.75% author of color/white author, and
57.49% white author/white author. This method is limited in that a)
names and Florida Voter Data to make the predictions may not be
indicative of racial/ethnic identity, and b) it cannot account for Indi-
genous and mixed-race authors, or those who may face differential
biases due to the ambiguous racialization or ethnicization of their
names. We look forward to future work that could help us to better
understand how to support equitable practices in science.
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Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw intracranial and anatomical datasets generated during the
current study are not publicly available to preserve patient anonymity.
The preprocessed behavioral and intracranial datasets generated and
analyzed during the current study are available as a publicly repository
in the Zenodo database (https://doi.org/10.5281/zenodo.10023443).96

The EEG datasets from healthy participants used for behavioral mod-
eling are available in the Open Science Foundation repository and can
be found at https://doi.org/10.17605/OSF. IO/JGXFR.97 Source data are
provided with this paper.

Code availability
Custom Python, R, and MATLAB code used for preprocessing and
analysis is available as a GitHub repository (https://github.com/hoycw/
asymmetric_RPE_paper), which includes system requirements and
dependencies.98
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