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Macaque Models of Human Infectious Disease

Murray B. Gardner and Paul A. Luciw

Abstract

Macagues have served as models for more than 70 human
infectious diseases of diverse etiologies, including a multi-
tude of agents—bacteria, viruses, fungi, parasites, prions.
The remarkable diversity of human infectious diseases that
have been modeled in the macaque includes global, child-
hood, and tropical diseases aswell as newly emergent, sexu-
ally transmitted, oncogenic, degenerative neurologic,
potential bioterrorism, and miscellaneous other diseases.
Historically, macaques played a major role in establishing
the etiology of yellow fever, polio, and prion diseases. With
rare exceptions (Chagas disease, bartonellosis), al of the
infectious diseases in this review are of Old World origin.
Perhaps most surprising is the large number of tropical (16),
newly emergent (7), and bioterrorism diseases (9) that have
been modeled in macagues. Many of these human diseases
(e.g., AIDS, hepatitis E, bartonellosis) are a consequence of
zoonotic infection. However, infectious agents of certain
diseases, including measles and tubercul osis, can sometimes
go both ways, and thus several human pathogens are threats
to nonhuman primates including macaques. Through ex-
perimental studies in macaques, researchers have gained
insight into pathogenic mechanisms and novel treatment
and vaccine approaches for many human infectious dis-
eases, most notably acquired immunodeficiency syndrome
(AIDS), which is caused by infection with human immuno-
deficiency virus (HIV). Other infectious agents for which
macaques have been a uniquely valuable resource for bio-
medical research, and particularly vaccinology, include in-
fluenza virus, paramyxoviruses, flaviviruses, arenaviruses,
hepatitis E virus, papillomavirus, smallpox virus, Mycobac-
teria, Bacillus anthracis, Helicobacter pylori, Yersinia pes-
tis, and Plasmodium species. This review summarizes the
extensive past and present research on macague models of
human infectious disease.

Key Words: comparative medicine; human pathogens; in-
fectious disease; macague
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Introduction

acagques represent the major nonhuman primate

(NHP") resource for biomedical research. The Na-

tional Institutes of Health (NIH)—supported Na-
tional Primate Research Centers (NPRCs) provide an
effective infrastructure to supply and house NHPs—about
40,000 total and mostly macaques (Macaca)—for the ben-
efit of research into human disease. Other NHP speciesfrom
Africa (e.g., African green and sooty mangabey monkeys,
baboons, and chimpanzees) and the New World (e.g., mar-
mosets, spider and owl monkeys) are also housed in NPRCs
and other facilities and have contributed significantly to
research on AIDS and other infectious diseases. When ap-
plicable, we mention these other NHP species in the rel-
evant infectious disease section.

The 16 species of macaques are found primarily in
southern Asia (Napier and Napier 1985). They are omnivo-
rous, adaptable to aimost any ecological niche, and adapt
well to captivity. The species most commonly used in bio-
medical research are rhesus macaques (M. mulatta; from
India, but no longer imported); cynomolgus, long-tailed, or
crab-eating macaques (M. fascicularis; from southern
Asia); and pigtail macaques (M. nemestrina; from Southeast
Asid). The NIH National Center for Research Resources
(NCRR) plans to increase the number of macague breeding
colonies, including specific pathogen-free (SPF) animals,
and set up a database to enable researchers to locate animals
with particular characteristics (NCRR 2004-2008).

By experimentally inducing infectious diseasesin such a
closely related primate or occasionally studying naturally
occurring infection, investigators hope, of course, to gain
valuable insight, relevant to humans, into disease mecha-
nisms so as to develop improved therapies, diagnostics, and
vaccines. The opportunity is at hand to better achieve these
goals because of the recent availability of the sequence of
the macague genome (Rhesus Macagque Genome Seguenc-
ing and Analysis Consortium 2007) and of the genomes of
many infectious pathogens and their insect vectors. In par-
ticular, much new information can be obtained about the
agent-host relationship through the use of macaque-specific
nucleic acid and protein assays.

In this article we review the various human infectious
diseases for which macaques have served as models over

1Abbreviations used in this article: AIDS, acquired immunodeficiency syn-
drome; CMV, cytomegalovirus, CNS, central nervous system; HIV/SIV,
human/simian immunodeficiency virus; IL, interleukin; NHP, nonhuman
primate; PCR, polymerase chain reaction
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the past century. These models represent diverse pathogens
including bacteria, viruses, fungi, parasites, and prions. The
categorization of specific agents in Table 1 is based on a
recent survey that explores the origins of human infectious
diseases (Wolfe et al. 2007). Under each broad category, the
diseases are ordered according to viral, bacterial, and para-
sitic etiology, and according to historical precedent or re-
lated infectious agents and diseases. We have also included
several NHP infectious agents that produce disease similar
to related human pathogens.

Many pathogens of humans are zoonoses (diseases
transmitted from animals to humans), and several zoonotic
pathogens are transmitted directly from human to human. In
particular, zoonotic infections are the major source of
emerging and reemerging diseases worldwide (Murphy
1998; Palmer et al. 2005; Wolfe et al. 2005). Furthermore,
some human pathogens, called anthropozoonoses, can
spread accidentally to NHPs.

For most of the macaque models of infectious pathogens
described in this review, we mention important historical

events or current relevance to human disease and focus on
the most up-to-date research accomplishments. Because of
space limitations, we describe primarily recent and novel
examples of infectious disease modeling in captive macaque
species. Accordingly, cited references are representative
and by no means comprehensive. We refer readers to other
published resources for further information on human in-
fectious agents, including viruses (Graffe 1991; Knipe et al.
2006), bacteria (Mandell et al. 2005), and parasites (Mar-
quardt et al. 2000), as well as for the historical impact of
these pathogens (Karlen 1995; Oldstone 1998). Our goal is
to focus on the macaque as an immensely valuable resource
for a wide spectrum of comparative infectious disease re-
search that benefits both humans and animals.

Global Diseases

Several infectious diseases of viral or bacterial etiology are
distributed worldwide and either are the cause of current
epidemics or have the potential for worldwide spread.

Table 1 Human infectious diseases and agents studied in the macaque model?

Global Diseases

Acquired immunodeficiency syndrome
Influenza

Hepatitis

Tuberculosis

Gastritis, gastric cancer

Childhood diseases
Polio
Measles
Chickenpox
Respiratory syncytial virus
Metapneumovirus
Cytomegalovirus
Herpes simplex virus
Human herpesvirus 6

Tropical diseases
Yellow fever
Dengue fever
Japanese encephalitis
Rift valley fever
Arenaviruses (lassa fever, lymphocytic

choriomeningitis virus)

Typhus
Leprosy
Buruli ulcer
Malaria
Schistosomiasis
Chagas disease
African sleeping sickness
Ascariasis
Lymphatic filariasis
Onchocerciasis

Sexually transmitted diseases
Syphilis
Chlamydia
Papillomavirus

Newly emergent diseases
West Nile virus
Hantaviruses
Severe acute respiratory syndrome
Granulocytic ehrlichiosis
Lyme disease
Bartonellosis
Melioidosis

Potential bioterrorism agents
Smallpox
Monkeypox
Rabies
Marburg virus
Ebola virus
Anthrax
Tularemia
Plague
Brucellosis

Transmissible spongiform encephalopathies

Kuru
Creutzfeldt-Jakob disease
Bovine spongiform encephalopathy

Oncogenic viruses
Simian T lymphotropic virus
Simian type D retrovirus
Simian foamy virus
Epstein-Barr virus
Kaposi's sarcoma herpesvirus

Other infectious diseases
Rotavirus
Norwalk virus
Tick-borne encephalitis
Simian hemorrhagic fever virus
Simian parvovirus
Polyomavirus
Q fever
Escherichia coli
Campylobacter
Listeria
Legionnaires disease
Bacillary dysentery (shigellosis)
Streptococcal pneumonia
Streptococcal pharyngitis
Chronic enterocolitis
Trichinosis
Toxoplasmosis
Periodontal disease

2Under the broad categories, diseases are ordered according to viral, bacterial, and parasitic etiology, and according to historical precedent or
related infectious agents and diseases. This list includes several nonhuman primate agents that produce disease similar to related human

pathogens.
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Acquired Immunodeficiency Syndrome
(AIDS)/Simian Immunodeficiency Virus
(SIV) (Retroviridae)

The founders of the National Primate Research Centers
could not have envisioned a more suitable example of the
value of NHPs in biomedical research than that of simian
acquired immunodeficiency syndrome (SAIDS) as a model
for human AIDS!. SAIDS was initially (1983-1985) the
designation for a fatal immunosuppressive disease induced
by an indigenous type D retrovirus in many macaques
(Letvin and King 1984; Gardner et al. 1988). Simian im-
munodeficiency virus (SIV?), a lentivirus closely related to
human immunodeficiency virus (HIV?Y), was discovered in
just a few macaques with immunosuppression and lympho-
mas at the New England center (Apetrei et al. 2005; Letvin
et al. 1985). SIV does not occur in Asian macaques in the
wild, but was acquired in captive macaques by accidental or
purposeful cross-species infection from sooty mangabeys or
African green monkeys (Apetrei et al. 2004). In their natural
African hosts, which number about 36 different Cercopithe-
cine species, SIV strains are asymptomatic and transmitted
mainly through wounds or bites acquired in fights and
through sexual contact.

The major difference in the host-virus relationship be-
tween African monkeys and Asian macaques is the presence
in the latter of a much stronger anti-SIV immune response
associated with T and B cell activation and a loss of CD4*
T lymphocytes. In the different species of macaques tested,
SIV (mainly of sooty mangabey origin) causes an AIDS-
like disease with remarkable similarities to HIV-1/AIDS
(Gardner et al. 2004; Letvin et al. 1985). However, the
SIV-induced macaque disease usually has a much shorter
incubation period (2 months to 3 years) than does HIV-
induced AIDS in humans. SIV from sooty mangabeys is
also responsible for spreading by contact to humans in west-
ern Africa to cause HIV-2-associated AIDS, which is still
largely confined to West Africa (Apetrei et al. 2004; Hirsch
et al. 1989). Similarly but more dramatically, the HIV-1
pandemic almost certainly arose by cross-species spread of
SIV from chimpanzees via the bushmeat trade (Keele et al.
2006; Van Heuverswyn and Peeters 2007).

The value of the macaque model for AIDS research is
highlighted by the lack of persistent infection and develop-
ment of signs of immunodeficiency in macaques experi-
mentally infected with HIV-1 (Agy et al. 1997). Although
certain strains of HIV-2 induce SAIDS in macaques (Mc-
Clure et al. 2000), infection of these animals with patho-
genic strains and clones of SIV has been the experimental
system of choice for comparative research on HIV/AIDS
(Levy 2007 provides comprehensive coverage of HIV and
AIDS). In every aspect of their molecular makeup, patho-
genesis, and pathology, SIV and HIV are similar in the
respective susceptible host (Lackner and Veazey 2007). The
macaque model first demonstrated the importance of the
gastrointestinal tract in acute infection as a focus of SIV
replication (Heise et al. 1993) and T cell depletion (Smit-
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McBride et al. 1998; Veazey et al. 1998). Opportunistic
infections and tumors also are virtually identical in AIDS
and SAIDS. Included among the opportunistic infections
are cytomegalovirus (CMV), simian vacuolating virus 40
(SV40), avian mycobacteria, pneumocystis, and cryptospo-
ridia. Opportunistic tumors include B cell lymphoma and
retroperitoneal fibromatosis; the latter is the counterpart of
Kaposi’s sarcoma (see the sections on simian type D retro-
virus and on Kaposi’s sarcoma herpesvirus).

Worth mentioning are two exceptions where HIV has
induced AIDS in captive NHPs other than macaques. A
single chimpanzee among many inoculated with HIV-1 de-
veloped an AIDS-like condition after 10 years (Novembre
et al. 1997), and several baboons exhibited an AIDS-like
condition 18 to 24 months after inoculation with HIV-2
(Barnett et al. 1994). Also noteworthy is the induction of
SAIDS in captive macaques after serial passage of SIV
derived from naturally infected African green monkeys
(Goldstein et al. 2005). In addition, a single captive sooty
mangabey naturally infected with SIV developed SAIDS
at 18 years of age (Ling et al. 2004). Clearly, however,
infection of macaque species with SIV of initial sooty
mangabey origin remains the animal model of choice for
AIDS research.

Investigators have used macaque models to compare
different routes of SIV challenge with SIVs of different cell
tropisms, including mucosal membranes (Haase 2005;
Miller et al. 1989), and to study both mutated versions and
recombinants of this virus (Kestler 1991; Mankowski et al.
1997; Marthas et al. 1993). Pediatric AIDS has been mod-
eled in newborn and infant macaques infected with SIV
(Klumpp et al. 1993; Marthas et al. 1995). Accordingly, the
macaque model now plays a prominent role for evaluating
antiviral therapies ( North et al. 2006; Van Rompay 2005)
and vaccines for AIDS (McMichael 2006; Nathanson and
Mathieson 2000). Although HIV-1 does not productively
infect macaques, chimeric viruses, designated simian/
human immunodeficiency viruses (SHIV), bearing HIV-1
envelope (Reimann et al. 1996) or reverse transcriptase
genes (Uberla et al. 1995), do so and can induce SAIDS.
Recently, an HIV-1 derivative with 7% SIV genetic content
has been shown to establish infection in nemestrina ma-
caques (lgarashi et al. 2007). Thus, it is possible to test
therapies and vaccines targeted to HIV gene products in the
macaque.

The SIV/SAIDS model has revealed the molecular path-
ways of infected T lymphocytes that are affected by prod-
ucts of certain viral genes, such as nef and vif, and has
provided information about the role of env glycoprotein in
determining cell tropism and cytopathology. Additional
studies of immune responses in macaques have defined epi-
topes of the env glycoprotein that are targeted by neutral-
izing antibodies or antibody-dependent cell cytotoxicity
(Hessell et al. 2007). Investigators have gained a better un-
derstanding of the viral-specific epitopes expressed on in-
fected cells that serve as targets of cytotoxic T lymphocytes,
and of the point mutations in these epitopes that allow the
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virus to escape this cellular immune surveillance (Allen et
al. 2000; Barouch et al. 2002). This model has provided
deeper insight into cellular processes that restrain virus rep-
lication, knowledge that might lead to improved therapy.

An important anti-HIV drug, tenofovir, was developed
in the SAIDS model (Van Rompay 2005) and is now in
early trials with the goal of preventing the sexual transmis-
sion of HIV in Africa. Strong vaccine protection against
SIV challenge was first shown with a live attenuated SIV
deleted of the nef gene (Daniel et al. 1992); however, a low
level of virulence, particularly in newborn macaques,
proved that this vaccine strategy would be too unsafe for
humans (Whitney and Ruprecht 2004). Many versions of
SIV and SHIV vaccines, including whole inactivated virus,
live attenuated recombinant virus, and viral DNA, in vari-
ous combinations and with different adjuvants, remain to be
tested in this model. In short, if experimental conditions are
optimal and the immunizing and challenge virus are ho-
mologous, some degree of vaccine protection, albeit not
sterilizing, is possible; however, long-lasting protection
against heterologous strains remains an elusive goal.

The SIV macaque model did point the way to the even-
tual failure in humans of nonneutralizing antibodies induced
by a recombinant env vaccine that was intended to protect
against HIV-1 infection (Graham and Mascola 2005). The
model also correctly predicted the failure of therapeutic
(i.e., postexposure) HIV vaccines to lower virus load or
delay disease (Gardner et al. 1989). However, it remains
possible that therapeutic vaccination may be beneficial
when given early after infection, preferably when the drugs
have markedly reduced viral load. Whether or not an effec-
tive HIV-1 vaccine is ultimately developed, the macaque
model of AIDS will be required for validation of the im-
munogenicity, safety, and efficacy of future candidate for-
mulations (Letvin 2006; McMichael 2006).

Questions about long-term antiviral therapy, develop-
ment of viral resistance, reservoirs of residual virus produc-
tion or latent virus, and testing of novel antiviral drugs will
continue to rely on this animal resource. A deeper under-
standing of the pathogenesis of AIDS and of the correlates
of protective innate and adaptive immunity will depend on
this immensely valuable animal model of simian AIDS
(Ahmed et al. 2005).

Influenza/Influenza Virus (Orthomyxoviridae)

Although F.M. Burnet showed in the early 1940s that ma-
caques were susceptible to influenza A virus (Graffe 1991,
121), the principal animal models for extensive immuniza-
tion trials and strain typing remained ferrets and mice. Re-
cently, researchers have used macaques to compare the
pathogenesis of highly virulent influenza strains, such as the
reconstructed 1918 pandemic strain and the pathogenic bird
flu strain (H5N1), with a nonvirulent conventional strain
(HIN1) (Rimmelzwaan et al. 2001). Genomics and pro-
teomics technologies, with macaque-specific reagents, have
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shown dramatic differences in gene expression in pulmo-
nary lesions induced by the H5N1 influenza virus and
tightly co-regulated genes expressed in peripheral white
blood cells that might prove a marker of early infection
(Baas et al. 2006). Apparent cytokine storms, triggered by
alveolar damage from H5N1 virus replication in the lungs,
induced an acute respiratory distress syndrome and multiple
organ dysfunction at remote sites that were free of virus
(Rimmelzwaan et al. 2003). A similar transcriptome ap-
proach revealed that the virulent 1918 strain of influenza
virus induced a lethal respiratory infection associated with
an atypical innate immune response and an abnormal anti-
viral response (Kobasa et al. 2007). A better understanding
of the virus-host interaction in the macaque will aid devel-
opment of interventions to modulate the host’s innate im-
mune response to virulent influenza virus and facilitate
early diagnosis. A novel live vaccine, incorporating the
H5N1 hemagglutinin influenza virus gene in an avian New-
castle disease virus vector and given via the respiratory tract
to African green monkeys, has induced high levels of HSN1
neutralizing antibodies and is therefore considered a candi-
date for clinical evaluation in humans (DiNapoli et al.
2007).

Hepatitis A/Hepatitis A Virus
(HAV) (Picornaviridae)

Natural infection with HAV, associated with mild clinical
disease, has been detected in newly caught macaques (Le
Bras et al. 1984; Shevtsova et al. 1988). Whether of rhesus
or human origin, HAV also causes experimental infection
with little or no evidence of mild hepatitis in macaques
(Mao et al. 1981). However, newly captured monkeys can
be very sensitive to HAV and its associated acute and
chronic liver disease, presumably due to the stress of accli-
matization. There is no compelling need to advance a ma-
caque model as an efficacious HAV vaccine has been
licensed since 1992.

Hepatitis B/Hepatitis B Virus
(HBV) (Hepadnaviridae)

Natural infection with HBV-like virus, associated with mild
hepatitis, has been observed in recently imported cynomol-
gus macaques from Indonesia (Kornegay et al. 1985). Rhe-
sus macaques can be experimentally infected with human
HBV with no evidence of liver damage (Barker et al. 1975;
Zuckerman et al. 1975). However, macaques from Morocco
(M. sylvanus) developed liver pathology after intrahepatic
inoculation with a replication-competent HBV DNA plas-
mid construct (Gheit et al. 2002). Highly effective HBV
vaccines have been licensed since 1982, so there is no need
for an animal model for this virus.
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Hepatitis C/Hepatitis C Virus
(HCV) (Flaviviridae)

HCV, the major cause of post-transfusion hepatitis, was
isolated and cloned in 1989 (Choo et al. 1989). Mutations in
the HCV genome allow this virus to avoid immune surveil-
lance; the outcome is chronic infection and difficulty in
producing an effective vaccine. Cynomolgus, rhesus, and
Japanese macaques are resistant to experimental HCV in-
fection (Abe et al. 1993); therefore, the chimpanzee, which
is susceptible, remains the animal model of choice for HCV
vaccine research. However, researchers are using the ma-
caque model for HCV immunogenicity studies, particularly
in an effort to define vaccine regimens that produce stronger
cellular immune responses (Capone et al. 2006a,b; Li et al.
2003; Rollier et al. 2005).

Hepatitis E/Hepatitis E Virus
(HEV) (Hepeviridae)

HEYV is an emerging human pathogen endemic to Southwest
and Central Asia, the Middle East, North Africa, and
Mexico. This virus, which spreads by the fecal-oral route,
causes a significant number of acute hepatitis cases in hu-
mans, including epidemics with high (20%) mortality. Gen-
erally, however, most patients recover, and chronic HEV
infection does not develop. Natural HEV infection occurs
asymptomatically in Japanese macaques (M. fuscata) and
may be transmissible to humans (Hirano et al. 2003). Cy-
nomolgus and rhesus macaques are quite susceptible to hu-
man HEV subclinical infection (Aggarwal et al. 2001; Graff
et al. 2005; Kawai et al. 1999) and have been extensively
used in recent years to demonstrate the protective efficacy
of several antiviral recombinant and DNA vaccines (Kamili
et al. 2004, Li et al. 2005b; Purcell et al. 2003; Zhang et al.
2002).

Hepatitis G/Hepatitis G Virus
(HGV) (Flaviviridae)

HGV, isolated in 1995-1996, is distantly related to HCV. It
is readily transmitted by blood transfusion, with a carrier
rate of 2-5% in the general NHP population. Rhesus ma-
caques are susceptible to experimental infection and disease
with HGV or genomic RNA (Ren et al. 2005; Xu et al.
2001). However, because there is no evidence that HGV is
harmful to humans, there is no need to develop anti-HGV
vaccines, tests, or drugs.

Tuberculosis (TB)
(Mycobacterium tuberculosis)

The resurgence of Mycobacterium tuberculosis (M.th.) as a
major global cause of death has been accelerated by the HIV
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epidemic and the appearance of multidrug-resistant M.tb.
strains. Improved diagnostics, drugs, and vaccines are
needed.

Macaques are highly susceptible to human M.th. (as
well as bovine and avian Mycobacteria) and manifest the
complete spectrum of clinical and pathologic manifestations
of human TB—extending from active, progressive disease
to latency and healing (Capuano et al. 2003; Walsh et al.
1996). Natural outbreaks of human, bovine, or avian TB
have occurred repeatedly over the years in captive ma-
caques (Zumpe et al. 1980). Fifty years ago, macaques were
used to demonstrate the efficacy of the bacillus Calmette-
Guerin (BCG) vaccine, an attenuated strain of M. bovis, and
to evaluate other vaccine approaches and test new drugs
against lethal challenge with M.tb. (Good 1968; Schmidt
1956). Although researchers have confirmed these results in
recent years (Langermans et al. 2001), neither the BCG
vaccine nor drugs have curtailed the global spread of TB.
But with modern macaque-specific reagents on hand, this
model is being resurrected. Interferon gamma release from
antigen-specific T cells provides a useful immunologic cor-
relate of protection against M.th. infection (Baskin et al.
2004).

The macaque model is helping to better define immu-
nodominant antigens, conserved in different M.th. strains,
that induce maximum protection when given alone or to-
gether with BCG (Brusasca et al. 2003; McShane et al.
2004). Such antigens could become the basis for better di-
agnostics and vaccines. The macaque model can also be
useful for the study of coinfection with SIV, the counterpart
of HIV. Macaques experimentally coinfected with SIV and
BCG exhibit a fatal disseminated disease characterized by
BCG granulomas in multiple organs (Chen 2004; Shen et al.
2002). Because HIV-infected human infants vaccinated
with BCG also experience a high risk of developing dis-
seminated BCG disease (von Reyn 2006), the World Health
Organization (WHO) does not recommend BCG vaccina-
tion for HIV-infected children (WHO 2007). An SIV-
induced compromise of adaptive T cell responses may
contribute to this tuberculosis-like disease (Zhou et al.
2003). Understanding M.th. pathogenesis in the macaque
can lead to better management and control of the human TB
epidemic.

Gastritis/Gastric Cancer (Helicobacter pylori)

The macaque is a superior animal model for investigating
the pathogenesis of H. pylori—associated gastritis and gas-
tric cancer (Kodama et al. 2005). About half of the world’s
population is infected with H. pylori, a bacterium that grows
only in the stomach and is acquired orally in childhood.
About 3% of those infected exhibit gastritis and stomach
ulcers, and about 1% progress to stomach cancer. H. pylori
secretes urease, which converts urea to ammonia and re-
duces gastric acidity, thus enhancing gastric colonization.
H. pylori injects a toxin (cagA gene product) in gastric

ILAR Journal



epithelial cells, leading to their disorganization (Saadat et al.
2007). Antibiotics are effective in eliminating the bacterium
from the host, thereby preventing complications.

The macaque has proven to be a suitable model for
understanding the biology and molecular pathogenesis of H.
pylori. Macaques are naturally infected with several strains
closely related to that of humans and are also highly sus-
ceptible to the human strain (Doi et al. 2005; Dubois et al.
1994, 1995; Solnick et al. 1999, 2003). They develop gas-
tritis and antral erosions indistinguishable from those that
occur in humans (Reindel et al. 1999; Shuto et al. 1993).
Macaques also exhibit atrophic gastritis, a precursor to ad-
enocarcinoma in humans. Captive rhesus monkeys are fre-
quently colonized with a related species, H. cinaedi, either
asymptomatically or in association with chronic colitis and
hepatitis (Fernandez et al. 2002).

A modification of the H. pylori outer membrane protein
expression that occurs during experimental infection (Sol-
nick et al. 2004) may facilitate epithelial adherence and
promote chronic infection. Analysis of the gastric transcrip-
tional profile has revealed an expected upregulation of cell
structural elements and inflammatory and immune re-
sponses, as well as a novel downregulation of heat shock
protein (Huff et al. 2004). These studies also demonstrated
an increased expression of virulence genes thought to en-
code the H. pylori type IV structural pilus and its accessory
proteins (Boonjakuakul et al. 2005). A predominant Thl-
type immune response is induced early after infection and
may be associated with apoptosis of gastric lymphocytes
and epithelial cells (Mattapallil et al. 2000; Tanaka et al.
2005). Researchers have evaluated the result of short-term
antibiotic treatment on H. pylori infection and intestinal
microflora in macaques (Tanaka et al. 2005); several vac-
cination strategies, including recombinant H. pylori urease,
partially protect macaques against infection with this agent
(Dubois et al. 1998).

Childhood Diseases

This section covers viral diseases commonly acquired in
childhood.

Poliomyelitis/Poliovirus (Picornaviridae)

Macaques have played a major role in poliomyelitis (polio)
research, particularly vaccine development (Graffe 1991).
The first indication that the poliomyelitis agent was a fil-
terable virus came in 1908-1909 when the disease, known
since prehistory, was experimentally induced in macaques
by inoculation of filtered spinal cord from an infected in-
dividual. Humans are the only known natural host for po-
liovirus, and it was not until 1949 that the virus could be
grown in tissue cultures of nonhuman primate kidney cells
(African green monkey Vero cells).

In order to type different strains of poliovirus, about
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30,000 rhesus macaques were used over a 3-year period for
experimental infection. The serotyping drew on about 100
“wild” virus strains from numerous anatomical sources.
Monkey sera were typed by virus neutralization assays, and
by 1951 scientists had identified three predominant immu-
logical types of virus, with type 1 the most prevalent and
most virulent. Such cell cultures also allowed the demon-
stration of viremia in monkeys and humans in 1951-1952.
Based on this research in the NHP model, the Salk inacti-
vated (1955) vaccine as well as the Koprowski and later
Sabin (1962) attenuated polio vaccines were tested for im-
munogenicity, safety, and efficacy in many thousands of
human children and were proven to be protective and safe.

Simian vacuolating virus 40 (SV40), a polyomavirus,
was discovered in 1959 as a contaminant of inactivated
poliovirus vaccine prepared in macaque cell cultures. How-
ever, there is no conclusive evidence to implicate SV40
virus of polio vaccine origin in any human disease (Shah
2007). The detection of SV40-related sequences by poly-
merase chain reaction (PCR') in some mesotheliomas and
meningiomas suggests an association with a related agent in
certain human cancers (Carbone and Pass 2006; White et al.
2005). There is no evidence of HIV or SIV in polio vaccine
stocks used in the first US polio immunization campaigns
(Rizzo et al. 2001). In an example of reverse zoonosis, in
1957 a polio type 2 outbreak, presumably of human origin,
affected six monkeys in the NHP colony in Sukhumie, Rus-
sia (Lapin and Andreevna 1963).

No human infection or cases of “wild” polio have oc-
curred in this country since 1979, and the Americas were
declared polio-free in 1994. However, polio is still a con-
cern in some poor, underdeveloped countries in Africa and
Asia. Use of the macaque is therefore still necessary for
monitoring the potential neurovirulence of the live attenu-
ated Sabin polio vaccine, which is now administered pri-
marily in developing countries (Rezapkin et al. 1999).
(Because reversion to virulence remains a problem with this
live attenuated vaccine, it is no longer given in the United
States.) A transgenic mouse carrying the human polio virus
receptor gene (CD155) has been developed for neurogenic
virulence testing (Abe et al. 1995; Nagata et al. 2001), but
the global drive to eradicate polio will probably continue to
depend on the macaque model to test for neurogenic viru-
lence of the oral vaccine. Importantly, the macaque has been
used recently in poliovirus pathogenicity studies (Samuel et
al. 1993) and in efforts to develop a hexavalent vaccine
against inactivated poliovirus, influenza, hepatitis B, diph-
theria, tetanus, and pertussis (Caulfield et al. 2000).

Measles (Paramyxoviridae)

Despite the availability of a licensed vaccine since 1963,
measles is the leading cause of vaccine-preventable child-
hood mortality worldwide, responsible for an estimated
345,000 deaths in 2005. Inadvertent transmission of either
this virus (from humans) or the closely related distemper
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virus (from dogs) to captive macaques has caused numerous
outbreaks with significant morbidity and mortality (Choi et
al. 1999; Jones-Engel et al. 2006; Willy et al. 1999). Ex-
perimental inoculation of “wild” measles virus strains in
macaques produces a disease that closely mimics human
measles in its clinical and pathologic manifestations, includ-
ing immunosuppression and occasional central nervous sys-
tem (CNS') complications (Albrecht et al. 1977; Kobune et
al. 1996). Undetected CNS infection of macaques with
measles virus may have affected the results of neurovirulence
tests done with some oral poliovirus vaccines (Contreras and
Furesz 1992). This animal model has been particularly valu-
able for studying measles virus pathogenesis in the normal and
immunocompromised host (Hicks et al. 1977; Polack et al.
1999; Zhu et al. 1997b). Cellular immunity appears more im-
portant than humoral immunity in clearance of the virus (Pahar
et al. 2005; Permar et al. 2003).

During the past decade, investigators have taken advan-
tage of this excellent disease model to test new vaccine
strategies. Adult macaques, immunized with either the hu-
man measles virus vaccine (Attenuvax) or the canine dis-
temper virus vaccine, were protected against challenge
infection by human measles virus (Christe et al. 2002). Be-
cause maternal measles virus antibody can interfere with the
active immune response, experiments were done in infant
macaques to compare several recombinant vaccines given in
the presence or absence of preexisting immunity. At least
partial protection against challenge infection and disease
was achieved in infant macaques in the presence of maternal
antibody to measles virus by vaccination with (1) replica-
tion-competent or -defective vaccinia virus expressing
measles virus hemagglutinin and fusion proteins (Stittelaar
et al. 2000; Zhu et al. 2000), (2) recombinant BCG express-
ing the measles virus nucleoprotein (Zhu et al. 1997a), or
(3) a measles virus DNA vaccine (Premenko-Lanier et al.
2004). Addition of interleukin (IL*)-12 to a recombinant
measles virus vaccine altered the T helper type 2 immune
response but did not improve the immunosuppression asso-
ciated with challenge infection (Hoffman et al. 2003). Very
recently, a live attenuated measles virus vaccine given by
aerosol administration has been efficacious in macaques
(De Swart et al. 2006).

The goal of the Global Initiative Against Measles is to
reduce measles mortality through the use of the current
vaccine in countries with high measles deaths, such as India,
Indonesia, and Pakistan. The macaque model is essential for
defining an effective antimeasles vaccine regimen to
achieve this goal.

Chickenpox/Varicella Zoster (VZV)/Simian
Varicella Virus (SVV) (Herpesviridae)

Simian varicella virus (SVV) shares 70-75% genetic iden-
tity with human varicella (chickenpox) and herpes zoster
(shingles) virus (VZV) (Gray and Oakes 1984). Simian vari-
cella virus (SVV) causes a highly contagious disease, often
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fatal, in Old World monkeys, including macaques (Wenner
et al. 1975). It is not known whether these monkeys are the
natural host for the virus, nor is there any evidence that SVV
infects humans.

SVV infection of macaques is very similar in clinical
symptoms and pathogenesis to VZV infection in humans
and therefore provides an excellent model (Gray 2004).
Like VZV, SVV establishes lifelong latent infection in neu-
ral ganglia, where it may be reactivated (e.g., after gamma
irradiation). Antiviral therapy has been effective in limiting
fatalities in SVV epizootics (Lake-Bakaar et al. 1988). The
entire SVV genome has been cloned, sequenced, and trans-
fected into Vero cells to yield infectious virus, allowing
site-specific mutagenesis and insertion of foreign genes to
study pathogenesis and viral latency and to develop vac-
cines (Gray et al. 2001). The current live attenuated VZV
vaccine is generally safe in humans but there are some
concerns about duration of efficacy and safety; macaques
offer an opportunity to evaluate new attenuated VZV vac-
cines as well as subunit or DNA vaccines.

Respiratory Syncytial Virus
(RSV) (Paramyxoviridae)

Respiratory syncytial virus (RSV) is a major cause of severe
respiratory disease in infant and elderly humans. Young
macaques are susceptible to experimental RSV infection
and exhibit mild clinical disease (McArthur-Vaughan and
Gershwin 2002; Simoes et al. 1999). An inactivated RSV
vaccine, developed in the 1960s, caused enhanced disease
after natural infection. Researchers reproduced this immu-
nopathological phenomenon in macaques and showed that it
was caused by antibody-dependent enhancement of RSV
replication (Ponnuraj et al. 2003). A vaccine-induced IL-
13-mediated hypersensitivity to subsequent RSV infection
also contributed, at least in part, to this adverse reaction (De
Swart et al. 2002). The macaque model is now proving
helpful for assessing the safety of novel RSV vaccines de-
signed to prevent the immunopathology that occurs after
RSV infection (De Waal et al. 2004).

Metapneumovirus (Paramyxoviridae)

This newly discovered human paramyxovirus is a causative
agent of acute lower respiratory tract infection in very
young children, the elderly, and immunocompromised pa-
tients. The virus is ubiquitous, acquired early in life, and
readily cultured in rhesus monkey kidney cells. Very re-
cently, experimental infection of macaques with metapneu-
movirus induced an asymptomatic infection with transient
protective immunity against reinfection with the homolo-
gous virus strain (Kuiken et al. 2004; van den Hoogen et al.
2007).
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Cytomegalovirus (CMV) (Herpesviridae)

Cytomegalovirus (CMV?) infection of macaques closely re-
sembles that of humans in its prevalence and natural history.
Congenital CMV infection in humans is the leading infec-
tious cause of birth defects in newborns. As in humans,
macaque CMV is generally present after puberty as an
asymptomatic lifelong infection (Vogel et al. 1994). Naive
rhesus macaques experimentally infected with rhesus CMV
seroconverted and became infected but remained healthy
(Lockridge et al. 1999).

Rhesus CMV has been completely sequenced and its
proteins are 60% similar to human CMV proteins (Hansen
et al. 2003). Rhesus CMV encodes an IL-10-like protein
that has immunosuppressive properties (Lockridge et al.
2000; Spencer et al. 2002). Reactivation of CMV, with as-
sociated inflammation, occurs in immunosuppressed hu-
mans and macaques, most dramatically evident in human
and simian AIDS. Naive macaques experimentally infected
with rhesus CMV and SIV show an augmented SIV patho-
genesis (Sequar et al. 2002). Rhesus CMV has a strong
affinity for endothelial cells encoded by a viral cyclooxy-
genase-2 homologue (Carlson et al. 2005; Rue et al. 2004).
A macaque model of intrauterine rhesus CMV infection
exhibits a range of developmental abnormalities similar to
those observed in humans congenitally infected with CMV
(Barry et al. 2006; Tarantal et al. 1998).

Development of an effective CMV vaccine to prevent
congenital infection is a high public health priority. Initial
results indicate that a rhesus CMV DNA vaccine targeting
the glycoprotein B, phosphoprotein pp65, and viral IL-10
induces low levels of neutralizing antibody and decreases
viral load after challenge (Yue et al. 2007). Further work in
this macaque model requires improving the level of vaccine
protection.

Herpes B Virus (Herpesviridae)

B virus, an alphaherpesvirus that is now completely se-
quenced (Perelygina et al. 2003), is the macaque counterpart
of herpes simplex virus (HSV) in humans. Like HSV, B
virus produces a ubiquitous lifelong infection in macaques
and is present in almost all colony-bred animals in enzooti-
cally infected populations by the time they reach sexual
maturity (Jainkittivong and Langlais 1998). Reactivation of
the virus is usually asymptomatic but may occasionally
cause a “cold sore,” gingivitis, or even fatal systemic infec-
tion (Carlson et al. 1997). Interestingly, coinfection of ma-
caques with SIV (or simian type D retrovirus) seldom
causes activation of latent B virus despite the frequent ac-
tivation of other latent herpesviruses (e.g., CMV and Ep-
stein-Barr virus).

Among 35 herpesviruses identified in nonhuman pri-
mates, B virus is the only one known to be pathogenic for
humans. About 40 cases of zoonotic B virus infection have
been reported over about four decades, with a high inci-
dence of encephalitis and death (Ostrowski et al. 1998).
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Rapid treatment with antiviral medications prevents disease
complications, and new antiviral drugs are in development
(Focher et al. 2007).

A vaccine that could prevent or limit B virus infection in
macaques would lessen the occupational risk for individuals
that handle these animals. To that end an inactivated B virus
vaccine was tested for immunogenicity in macaques in the
1960s (Hull 1971), and in the 1990s a vaccinia virus ex-
pressing glycoprotein D given to rabbits conferred good
protection against B virus challenge infection (Bennett et al.
1999). Most recently, the immunogenicity of a DNA vac-
cine against B virus has been tested in mice and uninfected
rhesus macaques (Loomis-Huff et al. 2001); a low level of
B virus neutralizing antibodies was induced in the monkeys
that were not challenged. Future vaccine combinations will
include live vectors, such as vaccinia virus, aimed at elic-
iting cell-mediated immunity, which is important for pro-
tecting against B virus.

Human Herpesvirus 6 (HHV-6) (Herpesviridae)

This lymphotropic herpesvirus causes roseola infantum in
humans. To determine whether HHV-6 might accelerate
progression to AIDS in HIV-infected people, researchers
coinfected pigtail macaques with HHV-6 and SIV. HHV-6
infection alone in this species was asymptomatic (Yalcin et
al. 1992), but in the presence of SIV it appeared to accel-
erate AIDS progression (Lusso et al. 2007; Yalcin et al.
1992). Also, in vitro infection of macaque T lymphocytes
with HHV-6 increased the levels of SIV replication (Lusso
et al. 1994). This macaque model may help in investigations
of both viral and host factors that influence the interaction
between HHV-6 and HIV in progression to AIDS. Based on
serology, a related but as yet unidentified herpesvirus may
be present in squirrel monkeys and a few macaques (Higa-
shi et al. 1989).

Tropical Diseases

Many infectious diseases, of viral or parasitic etiology and
often involving both an animal reservoir and insect vector,
are mostly confined to tropical areas of the world.

Yellow Fever (Flaviviridae)

Yellow fever virus was the first described human pathogen
transmitted by an insect (Aedes aegypti mosquito). In 1927
researchers found that rhesus macaques were susceptible to
the experimental induction of classical yellow fever from
filtered human blood and used this animal model to suc-
cessfully apply Koch’s postulates to a virus infection for the
first time in virology (Stokes et al. 1928, 2001). Almost 100
years later, the complete genome sequence of Ae. aegypti
has just been reported (Nene et al. 2007). The natural
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sources of yellow fever virus are monkeys, originally from
tropical West Africa. With the spread of infected humans
and Aedes mosquitoes, the virus has adapted to the Ameri-
cas. Interestingly, yellow fever virus has never been re-
ported in Asia, despite the presence of Ae. aegypti.
Mosquito control led to eradication of the virus in Cuba and
Panama at the beginning of the 20" century.

The first yellow fever vaccine was made in 1939 from
the brains of experimentally infected macaques (Graffe
1991). Later an attenuated live vaccine (17D) was prepared
in chick embryos, and its neurotropic and immunogenic
properties were tested in macaques (Mason et al. 1973).
This 17D seed virus is the source of the current human
vaccine, which has proven to be stable, safe, and efficacious
when given as a single dose. However, occasional cases of
fatal hemorrhagic fever have recently been associated with
the 17D vaccine (Vasconcelos et al. 2001). Therefore, for
quality control, testing of the potential neurovirulence of
this vaccine continues in rhesus monkeys (Marchevsky et al.
2003). The 17D yellow fever vaccine strain also now pro-
vides the vector for recombinant, chimeric vaccines against
other flaviviruses, such as the Japanese encephalitis,
Chikungunya, West Nile, and dengue viruses. All of these
vaccines have relied on rhesus monkeys for proof of effi-
cacy and for neurovirulence safety testing (as discussed
below).

Dengue (Flaviviridae)

Epidemic dengue has become more common since the
1980s and is now second only to malaria as the most im-
portant mosquito-borne (Ae. aegypti) disease affecting hu-
mans. The global distribution of dengue is expanding and is
now comparable to that of malaria. Each year 50 to 100
million cases of dengue fever occur and about 500,000 of
them exhibit severe dengue hemorrhagic fever, which has a
case fatality rate of about 5%.

The dengue agent belongs to one of four virus serotypes
of the genus Flavivirus. There is no cross protection be-
tween serotypes and epidemics can be caused by multiple
serotypes. Hemorrhagic fever is associated with superinfec-
tion with a dengue virus serotype distinct from the serotype
of primary infection, possibly via the mechanism of anti-
body-dependent enhancement of virus uptake and replica-
tion. Investigators have documented natural asymptomatic
infections of macaques in Southeast Asia with dengue and
other flaviviruses (e.g., Japanese encephalitis, Chikungu-
nya, and Sindbis viruses), suggesting possible sylvatic
transmission cycles (Inoue et al. 2003; Peiris et al. 1993).
No licensed vaccine for dengue is available but there has
recently been progress with several recombinant live attenu-
ated dengue virus vaccines in macaques.

Rhesus monkeys are quite susceptible to experimental
infection with dengue virus and have provided an important
animal model for pathogenesis, treatment, and vaccine de-
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velopment. Using DNA microarrays, PCR, and multiplex
cytokine detection, researchers have shown transcriptional
activation of innate antiviral immune responses (but no up-
regulation of certain cytokine genes) 5 days after infection
with dengue virus type 1 (Sariol et al. 2007). Attempts to
suppress dengue virus type 2 early viremia in rhesus mon-
keys with recombinant human alpha interferon showed a
temporary suppression of viremia but no effect on total viral
burden (Ajariyakhajorn et al. 2005). A recombinant modi-
fied vaccinia virus expressing the envelope glycoprotein of
dengue type 2 virus protected rhesus monkeys against ho-
mologous viral challenge (Men et al. 2000). A recombinant,
modified live chimeric yellow fever/dengue type 2 virus
vaccine (ChimeriVax) protected rhesus monkeys against
challenge with wild-type dengue type 2 virus (Guirakhoo et
al. 2004); protection correlated with the production of neu-
tralizing antibody. This vaccine is now in phase 1 clinical
trials. Most recently, tetravalent live attenuated dengue vi-
rus vaccines given to rhesus macaques provided complete
protection against viremia from dengue type 2 challenge but
only partial protection against the other three serotypes
(Blaney et al. 2005; Sun et al. 2006). Interference among the
four vaccine viruses will require further dose adjustments to
identify an optimal formulation for humans.

The availability of infectious cDNA clones of several
flaviviruses has made possible the construction of other new
live chimeric flavivirus vaccines bearing attenuating muta-
tions in which the protective antigens of various highly
virulent as well as attenuated flaviviruses may prove useful
in immunizing against diverse flaviviruses of public health
significance. For example, a yellow fever virus chimera
expressing the envelope genes of Japanese encephalitis vi-
rus (another flavivirus) protected macaques against homolo-
gous virus challenge (see below); and a live dengue virus
chimera bearing the envelope glycoprotein gene of an aviru-
lent tick-borne flavivirus (Langat virus) protected rhesus
monkeys against infection with highly virulent, closely re-
lated tick-borne flaviviruses (Pletnev et al. 2001).

Chikungunya Virus (Togaviridae)

Spread by mosquitoes (A. aegypti, A. albopictus), chikun-
gunya virus has caused significant outbreaks of disease,
with similarities to dengue, in Tanganyika, northern India,
Malaysia, and recently in Italy (Pialoux et al. 2007). The
name is derived from the Makonde (Tanganyika) word
meaning “that which bends up” in reference to the stooped
posture that develops as a result of the disease’s arthritic
symptoms. Macaques are susceptible to experimental infec-
tion and have therefore been used to study mosquito trans-
mission of the virus (Paul and Singh 1968) and the
feasibility of developing inactivated (Nakao and Hotta
1973) or attenuated (Turell and Malinoski 1992) viral vac-
cines. Because of the rapid reemergence of chikungunya
virus, the relative lack of knowledge of mechanisms of patho-
genesis, and lack of effective vaccines and therapies, ma-
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caques will be very valuable for addressing critical issues in
the virus-host relationship and for developing interventions.

Japanese Encephalitis (Flaviviridae)

Japanese encephalitis virus (JEV) is one of the most impor-
tant causes of viral encephalitis worldwide and is spreading
throughout most of China, Southeast Asia, and the Indian
subcontinent. That a filterable agent was responsible for
fatal encephalitis was first shown in 1933 by experimental
transmission of JEV to macaques (Karlen 1995). This virus
was later shown to be transmitted between wild and domes-
tic birds and pigs by Culex mosquitoes. Formalin-killed and
attenuated live vaccines have been in use for many years,
and the killed vaccine was given during the Second World
War to protect American troops in Asia. Rhesus macaques
are highly susceptible to a lethal infection that resembles
fatal human disease by intranasal inoculation with JEV
(Myint et al. 1999). In recent years, macaques have been
used to test several recombinant flavivirus vaccines, includ-
ing JEV and West Nile virus (Dean et al. 2005; Monath et
al. 2000; Raengsakulrach et al. 1999). In another study in-
vestigators showed that bonnet macaques immunized with
the JEV vaccine were protected against West Nile virus,
whereas the West Nile virus immunization only reduced the
severity of JEV disease (Goverdhan et al. 1992).

Rift Valley Fever (Bunyaviridae)

This mosquito-borne tropical disease virus causes major
morbidity and mortality in livestock and humans in sub-
Saharan Africa. Rhesus macaques are quite susceptible to
experimental infection, and about 20% develop a severe
hemorrhagic disease (Peters et al. 1988). They have been
used to show the beneficial effects of antiviral drugs and
alpha interferon treatment in protection against viremia,
hemorrhage, and liver damage soon after infection (Cosgriff
et al. 1989; Morrill et al. 1989; Peters et al. 1986). Both
formalin-killed and mutagen-attenuated vaccines showed
partial protection against challenge infection and disease in
rhesus monkeys (Morrill and Peters 2003). This animal
model is also suitable for developing both new methods of
rapid diagnosis and therapies for the disseminated intravas-
cular coagulation (DIC) and hemorrhage that occur in the
severe disease.

Arenaviruses/Lassa Fever and Lymphocytic
Choriomeningitis (LCM) Virus (Arenaviridae)

Among the numerous arenaviruses, only four are known to
cause disease in humans; of these, infection with LCM virus
(LCMV) and Lassa virus has been modeled in macaques.
LCM virus, acquired from rodents, originated in the Old
World but is now worldwide in distribution. About 5% of
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common house mice (Mus musculus) carry LCMV asymp-
tomatically and pet hamsters can become infected through
contact with wild mice. Human infection may be asymp-
tomatic or result in a mild febrile illness or acute meningitis,
especially with laboratory exposure to guinea pig—passaged
LCMV. Congenital infection can cause hydrocephalus and
fetal death. Person-to-person transmission has not been re-
ported. In contrast, Lassa virus is localized to West Africa,
also acquired from rodents, and capable of causing severe,
often fatal, disease in a minority of infected humans. Lassa
fever virus can spread between humans and is manifested by
hepatitis, diffuse hemorrhages, and CNS damage.

Experimental infection of rhesus monkeys with LCM
virus, given intravenously, results in uniformly fatal hem-
orrhagic fever with encephalopathy (Walker et al. 1982),
whereas virus given intragastrically induces a spectrum of
clinical outcomes characteristic of Lassa virus infection in
humans (Lukashevich et al. 2002). Macaques infected by
the intragastric route were protected from lethal disease
when challenged later by the intravenous route; this protec-
tion correlated best with strong cell-mediated immunity
(Rodas et al. 2004). In the last 5 years research has estab-
lished the LCMV infection of macaques as a surrogate for
Lassa virus infection of humans (Djavani et al. 2007). The
transcriptome of macaques experimentally infected with
LCM virus showed a weak inflammatory response, upregu-
lation of IL-6 expression, evidence of hepatocyte prolifera-
tion, and blood changes indicative of major alterations in
eicosanoid, immune response, and hormone response path-
ways (Lukashevich et al. 2003). Research in the early 1980s
showed that rhesus monkeys were also susceptible to lethal
infection with Lassa virus and that ribavirin treatment and
immune plasma were beneficial (Jahrling et al. 1984). These
studies showed that shock in the macaque model of Lassa
fever is due to biochemical dysfunction of platelets and
endothelial cells, which leads to leakage of plasma and hem-
orrhage (Fisher-Hoch et al. 1987).

Passive antibody therapy, alone or combined with riba-
virin, was effective in cynomolgus macaques against infec-
tion with Lassa virus (Jahrling and Peters 1984). In 1989, it
was reported that rhesus monkeys were protected from fatal
Lassa fever by vaccination with a recombinant vaccinia vi-
rus containing the Lassa virus glycoprotein (Fisher-Hoch et
al. 1989). Further work with macaques has confirmed the
efficacy and safety of this vaccine and established suitabil-
ity for evaluation in humans (Fisher-Hoch et al. 2000). Re-
searchers recently reported a new and very effective vaccine
for prevention of experimental Lassa fever in macaques by
immunizing with vesicular stomatitis virus as a carrier for
the genetic material of Lassa virus (Geisbert et al. 2005).

Leprosy (Mycobacterium leprae)
Naturally occurring leprosy has been documented in chim-

panzees, sooty mangabeys, and wild-caught cynomolgus
macaques (Valverde et al. 1998). Experimental infection of
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rhesus macaques with M. leprae caused clinical leprosy in
about 50% of them (Gormus et al. 1998; Wolf et al. 1985).
Coinfection with SIV increased susceptibility with impaired
response to M. leprae antigens, probably because of a loss
of CD4" T cells. BCG vaccination protected rhesus mon-
keys from experimental leprosy (Gormus et al. 2002). Ex-
perimental attempts to transmit M. leprae from sooty
mangabeys to rhesus macaques in the early 1980s led to the
inadvertent transmission of SIV and the induction of SAIDS
(Murphey-Corb et al. 1986).

Buruli Ulcer (Mycobacterium ulcerans)

Buruli ulcer, a so-called neglected tropical disease (Hotez et
al. 2007), is caused by Mycobacterium ulcerans and
presents as disfiguring skin ulcers. Together with tubercu-
losis and leprosy, this mycobacterial disease has become a
major health problem in over 30 countries, particularly in
central Africa. M. ulcerans was first identified in the envi-
ronment in the 1990s using PCR amplification methods on
aquatic insects obtained from endemic areas of Africa.
Thus, transmission may occur by biting water bugs of the
insect order Hemiptera (Johnson et al. 2005). In southeast-
ern Australia, a recent outbreak of Buruli ulcer was prob-
ably transmitted by mosquitoes (Johnson et al. 2007). No
specific vaccine is available, but cross-protective efficacy
against M. ulcerans experimental infection has been
achieved in mice by vaccination with either BCG or plasmid
DNA encoding antigen 85 (Ag85A) of M. tuberculosis
(Tanghe et al. 2001). However, the lack of an experimental
animal model that replicates the spectrum of human disease
features, in particular the extensive ulceration, prompted a
study on the intradermal inoculation of a cynomolgus mon-
key with M. ulcerans (Walsh et al. 2007). The inoculation
sites developed ulcers within 2 to 4 weeks with the size and
rate of progression proportional to the number of organisms
delivered. The macaque may thus provide a valuable model
for further vaccine development against M. ulcerans.

Typhus (Rickettsiae)

Louse-borne rickettsiae (R. prowazekii and R. tsutsugamu-
shi, the causes of epidemic typhus and scrub typhus, respec-
tively) have affected the course of human history because of
epidemics in armies and other crowded populations with
poor hygiene. A live attenuated vaccine against R.
prowazekii has been developed, but its use in humans is
accompanied by a substantial incidence of side effects, in-
cluding a mild form of typhus. Cynomolgus macaques are
susceptible to experimental epidemic typhus infection
(Gonder et al. 1980), and have served as a model for the
development of a scrub typhus vaccine made from either the
recombinant outer membrane protein (Chattopadhyay et al.
2005) or its DNA (Ni et al. 2005). Infected macaques de-
velop an R. tsutsugamushi antigen-specific cell-mediated
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immune response (MacMillan et al. 1985). The vaccine
made from the outer membrane protein of R. tsutsugamushi
induced humoral and cellular immune responses but was not
as effective as an attenuated live vaccine in preventing in-
fection in macaques; however, this vaccine was able to re-
duce inflammation at the site of inoculation (Chattopadhyay
et al. 2005).

Malaria (Plasmodia)

Considering that the worldwide incidence of malaria is over
300 million clinical cases, with 1.3 million deaths annually,
the need for protective measures, including vaccines, re-
mains imperative. Increasing drug resistance among ma-
larial parasites adds to the difficulty of malaria control. Of
the four species of such parasites that infect humans, P.
falciparum, of avian origin, causes most deaths in Africa,
and P. vivax, of macaque origin, accounts for more than
50% of infections outside Africa and 10% of those in Africa
(Escalante et al. 1995, 2005). Macaques are susceptible to
experimental infection with the sporozoites of P. falciparum
and P. vivax as well as those of about 10 related indigenous
plasmodium species (e.g., P. cynomolgi, P. fragile, P. coat-
neyi) (Kawai et al. 2003). Both natural and experimental
infections can cause clinical malaria, and various antima-
larial drugs successfully eliminate the parasitemia (Puri and
Dutta 2005; Wengelnik et al. 2002). Experimental studies of
pathogenesis or vaccinology use P. falciparum, P. vivax, or
the indigenous macaque Plasmodium species. In 2002 re-
searchers published the complete genome sequence of
Anopheles gambiae, the primary mosquito vector of malaria
in Africa (Gardner et al. 2002).

Three general types of malarial vaccines are in research
and development: (1) those that target the circumsporozoite
(CS) protein (expressed on the extracellular sporozoite and
the intracellular hepatic stage of the parasite) to induce ster-
ile immunity; (2) those that target the blood-stage merozo-
ites to reduce disease burden; and (3) those that target
zygote development in the mosquito host to block transmis-
sion. Most vaccine research has focused on blocking the
initial infection, using irradiated Killed sporozoites, CS sur-
face proteins recombined with hepatitis B virus surface (or
core) antigen, adenovirus recombinants, or naked DNA in
various combinations and protocols (Heppner et al. 2005;
Walsh et al. 2006; Wu et al. 2006). Most experiments have
used mice or humans, but macaques have also been used for
immunogenicity, efficacy, and safety testing as well as in
vaccine tests aimed at recombinant surface proteins of the
merozoite or zygote stages (Coban et al. 2004; Dutta et al.
2005). Each of these three vaccine approaches has shown a
degree of efficacy in mice, macaques, and humans, but not
of a sufficient magnitude to support widespread clinical
application. Recently, the transcriptional profile of host
gene expression in whole white blood cells was tested in a
rhesus monkey model of human P. vivax malaria. The re-
sults indicate a downregulation of genes involved in RNA
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processing during the initial liver stage of infection and an
upregulation of defense response genes (Ylostalo et al.
2005). The macaque model may yet direct research efforts
toward better vaccines and novel targeted therapies.

Schistosomiasis (Schistosomia mansoni)

Several Schistosomia species (parasitic trematodes) infect
about 250 million people in tropical and subtropical coun-
tries. Although mortality is low, schistosomiasis can be very
debilitating in about 5% of infected individuals. Snails are
the intermediate host for cercariae, which infect mammals
by penetrating the skin and migrating hematogenously to
many organs where the worms and their eggs cause inflam-
mation. S. mansoni primarily affects the liver. Interestingly,
S. haematobium causes squamous cell carcinoma of the
bladder in Egypt.

Macaques are susceptible to experimental infection with
S. mansoni (Maddison et al. 1979; Meisenhelder and
Thompson 1963). Juvenile rhesus monkeys appear most
susceptible to infection, perhaps because of a reduced type
2 cytokine response (Fallon et al. 2003). Rhesus monkeys
have proven very useful for understanding the immunology
of schistosomiasis because they develop a solid immunity to
reinfection. Vaccination with a surface antigen gave partial
protection against challenge in cynomolgus monkeys
(Smith and Clegg 1985). In rhesus monkeys chronically
infected with SHIV clade C, coinfection with S. mansoni
reactivated viral replication and increased the expression of
Th2-associated cytokine response (Ayash-Rashkovsky et al.
2007; Chenine et al. 2005). These findings suggest that
parasite-infected humans may be more susceptible to HIV-1
infection.

Chagas Disease (Trypanosoma cruzi)

Chagas disease occurs primarily in rural areas of South
America and, interestingly, is absent in the Old World. Its
pathogenic agent is a flagellate protozoan named T. cruzi,
which is related to the agent of African sleeping sickness.
The protozoa are transmitted to humans by the bites of
triatomids (“kissing bugs™). A large natural reservoir for the
organisms includes other infected humans, domestic ani-
mals, and wild animals such as rodents and monkeys. In-
fection has been described in both free-ranging and captive
macaques (Kasa et al. 1977; Olson et al. 1986; Pung et al.
1998). Charles Darwin may have acquired this disease (i.e.,
cardiomyopathy) (Morris et al. 1990) from the bite of what
he called “a great black bug of the Pampas” (a Reduvius
vinchuca) (Darwin 1839). The acute phase exhibits a skin
nodule at the site of the bite (usually on the head) and local
lymphadenopathy. Chronic disease affects the nervous sys-
tem, digestive system, and heart, and causes about 50,000
deaths annually, mostly from heart failure due to associated
cardiomyopathy.
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Both acute and chronic Chagas disease models have
been established in rhesus (Bonecini-Almeida Mda et al.
1990; Carvalho et al. 2003). The acute phase includes par-
asitemia, circulating specific IgM and IgG antibodies, and
hematologic alterations. Chronic disease occurs 15 to 19
years after infection, with severe cardiac damage. Scientists
recently reported that SIV-induced immunosupression reac-
tivated a previously unnoticed chronic infection of Chagas
disease in a rhesus monkey (Kunz et al. 2002).

African Sleeping Sickness (Trypanosoma
brucei and T.b. rhodesiense)

African sleeping sickness is a major concern in 36 African
countries, particularly in East and central/West Africa,
where it is caused by subspecies of the protozoan Trypano-
soma brucei: T.b. gambiense and T.b. rhodesiense, respec-
tively. The disease is uniformly fatal if untreated. The
eastern version is a zoonosis, with cattle as the main reser-
voir. Humans are the major reservoir for the western ver-
sion, which is less virulent.

Rhesus macaques infected with T.b. rhodesiense devel-
oped a glomerulonephritis that was associated with activa-
tion of the alternate complement pathway (Nagle et al.
1974) and development of antibodies to nucleic acid
(Lindsley et al. 1974). Stump-tailed macaques experimen-
tally infected with T.b. rhodesiense showed neurologic
signs (Raether and Seidenath 1976). There is no vaccine,
but early treatment with a trypanocidal drug (diamidine)
was effective in eliminating parasites from the blood.

Ascariasis

Ascariasis has a global prevalence of approximately 800
million and is considered a major neglected tropical disease
(Hotez et al. 2007). Fatal Baylisascaris larva migrans ac-
quired from raccoon feces occurred spontaneously in a
colony of Japanese macaques (Sato et al. 2005). Stump-
tailed macaques experimentally infected with the nematode
Ascaris suum have served as a model for allergic bronchitis,
in particular because of the release of histamine, leuko-
trienes, and prostaglandins from bronchoalveolar mast cells
(Wells et al. 1986).

Lymphatic Filariasis

Lymphatic filariasis causes massive lymphedema or el-
ephantiasis in approximately 25 million people throughout
the tropics (Hotez et al. 2007). To investigate whether Wol-
bachia symbiotic bacteria in filarial nematodes contributed
to the disease progression, researchers established a rhesus
monkey model of filariasis and found that monkeys infected
with the filarial Brugia malayi developed antibodies spe-
cific for Wolbachia surface protein as well as antifilarial
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antibodies associated with lymphedema development (Pun-
kosdy et al. 2001). These findings suggest that Wolbachia
may be critical to the pathogenesis of elephantiasis. The
draft genome of B. malayi predicts about 11,500 proteins
whose analysis will provide insight into the molecular basis
of the mutual relationship with Wolbachia endosymbiont
(Ghedin et al. 2007). This information will serve as a basis
for rational drug design against filariasis.

Onchocerciasis

Onchocerciasis, or “river blindness,” has been a major cause
of blindness because of the associated chorioretinitis elic-
ited by the Onchocerca volvulus microfilariae. Lesions re-
sembling those of the human disease were induced by the
injection of live O. volvulus microfilariae isolated from in-
fected humans into the eyes of cynomolgus monkeys (Don-
nelly et al. 1986; Semba et al. 1991). In recent years,
however, river blindness has been nearly eliminated by
treatment with the antihelminthic drug ivermectin, thus ne-
gating the need for this animal model.

Sexually Transmitted Diseases

This section focuses on bacterial and viral diseases that are
sexually transmitted. (We discuss certain sexually transmit-
ted pathogens, such as HIV and herpes simplex virus, else-
where in this review; we refer readers to the sections on
Global Diseases and Childhood Diseases, respectively.)

Papillomavirus (Papillomaviridae)

Human papillomaviruses (HPV) are the cause of cervical
cancer in humans and therefore the basis of a recently re-
leased vaccine against cervical cancer. About 50% of rhesus
macaques from several different primate facilities are in-
fected with indigenous papillomaviruses (Ostrow et al.
1995). PCR analysis of genital samples from female cyno-
molgus and rhesus monkeys also showed that they are natu-
ral hosts of genital papillomaviruses, which are genetically
related to and have a genetic diversity similar to that of the
HPVs (Chan et al. 1997). Cervical and vaginal epithelial
neoplasms, associated with papillomavirus, were present in
5% of captive female cynomolgus macaques (Wood et al.
2004). Four viral types were associated with cervical intra-
epithelial neoplasia (CIN), which resembles human CIN.
Transfer of cervical cells positive for one of these high-risk
papillomavirus types, which are closely related to the highly
oncogenic HPV16, to uninfected monkeys resulted in new
cervical infections and the development of abnormal cytol-
ogy (Wood et al. 2007). CIN and squamous cell carcinoma
of the cervix resulted from sexual transmission of papillo-
mavirus in a rhesus monkey (Ostrow et al. 1990). The ma-
caque papillomavirus model should prove valuable for
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further research into the pathogenesis, therapy, and preven-
tion of cervical cancer.

Syphilis (Treponema pallidum)

After intrathecal inoculation with T. pallidum, rhesus ma-
caques became infected but cleared the infection from the
central nervous system (CNS), as happens in most humans
with early syphilis (Marra et al. 1998). Local production of
gamma interferon appeared to contribute to this process.
Following intradermal inoculation, infected macaques de-
veloped primary and secondary syphilitic lesions and, in the
presence of SIV coinfection, exhibited a delayed clearance
of T. pallidum from the site of infection and an impaired
humoral immune response to this agent (Marra et al. 1992).

Chlamydia (Chlamydia trachomatis)

Chlamydia is the most common sexually transmitted disease
in the United States, with almost 1 million cases reported
annually to the Centers for Disease Control and Prevention
(CDC). The causative microbe (Chlamydia trachomatis) is
a gram-negative, obligate intracellular bacterium that passes
from an infected mother to her baby in the birth canal and
causes trachoma, a disease characterized by conjunctivitis
leading to blindness in about half of the infants. Chlamydia
is called a “silent disease” because most infected women
and men have no symptoms. If untreated, infection causes
pelvic inflammatory disease, which may lead to infertility
or ectopic pregnancy. This agent also enhances the likeli-
hood of infection with HIV. Now sequenced, the genome
contains over 1 million base pairs coding for 894 open
reading frames, including numerous potential virulence-
associated proteins (Stephens et al. 1998).

Macaques have served as useful models for each aspect
of C. trachomatis infection. Intraocular inoculation pro-
duces conjunctivitis and trachoma (Taylor et al. 1981),
which are now either completely preventable with an oral
vaccine of attenuated or killed bacteria (Taylor et al. 1987)
or reduced in severity with a vaccine made from the major
outer membrane protein (Campos et al. 1995). Vaccine pro-
tection appeared to correlate with induction of a cell-
mediated immune response. Intrarectal or intratubal
inoculation of macaques causes proctitis (Quinn et al. 1986)
or salpigitis (Patton 1985), respectively, which have proven
useful for understanding pathogenesis (Van Voorhis et al.
1997) and evaluation of systemic antibiotics (e.g., azithro-
mycin) (Patton et al. 2005) and topical microbicides (Patton
et al. 2006). Researchers have found that antibodies to a
60kDa C. trachomatis heat shock protein (Peeling et al.
1999) and two proteins including the heat shock protein 60,
localized to the bacterial inclusion bodies (Bannantine and
Rockey 1999), are markers of persistent infection and a
delayed-type hypersensitivity reaction (Lichtenwalner et al.
2004).
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Newly Emergent Diseases

Certain infectious diseases of viral and bacterial etiology
have exhibited a growing prevalence and distribution in the
last 25 years for several reasons, including increased human
exposure to animals and insects through expanding trade
and travel. Growth of the human population, the AIDS pan-
demic, and the changing ecology are also significantly con-
tributing to the emergence of infectious pathogens.

West Nile Virus (WNV) (Flaviviridae)

West Nile virus (WNV), spread by mosquitoes, first ap-
peared in the northeastern United States in 1998 and has
gradually spread across the North American continent,
causing approximately 20,000 reported human cases. The
virus also infects birds and horses, often lethally, as well as
macaques (Cohen et al. 2007; Ratterree et al. 2003), which
have milder symptoms. A live attenuated recombinant vac-
cine has been constructed from an infectious clone of yel-
low fever virus (17D), in which the envelope genes of WNV
replace those of 17D (Arroyo et al. 2004). Preclinical im-
munogenicity and efficacy tests in macaques showed that
this vaccine induced strong WNV-specific neutralizing an-
tibodies, T cell responses, and was efficacious and safe
(Monath et al. 2006). The vaccine (ChimeriVax-WNO02) is
licensed for use in horses but not yet in humans.

Hantaviruses (Bunyaviridae)

Hantaviruses, maintained in rodent reservoirs, cause two
severe human diseases: hemorrhagic fever with renal syn-
drome (HFRS) and hantavirus pulmonary syndrome (HPS).
Both diseases feature a vascular-leak syndrome with hem-
orrhagic manifestation and are often fatal. Approximately
20,000 cases are reported annually. Experimental hantavirus
infection (Puumala, Andes, and Prospect Hill strains) of
cynomolgus macaques results in a relatively mild form of
HFRS (Groen et al. 1995; McElroy et al. 2002). Cytokine
induction and viral RNA were monitored in the blood of
these animals (Klingstrom et al. 2002). Passive transfer of
neutralizing antibodies from rhesus macaques immunized
with the HPS (Andes virus) DNA vaccine strongly pro-
tected highly susceptible hamsters against experimental in-
fection with the Andes virus (Hooper et al. 2006). The DNA
vaccine—induced antibodies also neutralized viruses that
cause both HFRS and HPS (Custer et al. 2003).

Severe Acute Respiratory Syndrome/SARS
Coronavirus (Coronaviridae)

The emergence of SARS in 2002-2003 affected global

health and caused major economic disruption. Macaques
have been injected by various routes with the causative
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coronavirus (SARS-CoV), including an infectious molecu-
lar clone. Initial transmission of SARS-CoV to cynomolgus
macaques helped to prove that this virus is the primary
cause of SARS (Kuiken et al. 2003). A mild form of this
disease was induced with minimal clinical symptoms, rapid
clearance of virus, and resolution of the pneumonia. How-
ever, parameters of infection were sufficiently apparent that
it was possible to show some benefit from therapy with
SiRNA, given either prophylactically or therapeutically (Li
et al. 2005a). Pegylated alpha interferon also had a benefi-
cial effect against SARS-CoV infection in macaques (Haag-
mans et al. 2004). An inactivated SARS-CoV vaccine (Zhou
et al. 2005) and adenoviral (Gao et al. 2003) or vaccinia
Ankara virus recombinant SARS-CoV (Chen et al. 2005)
vaccines showed promising results against the homologous
coronaviruses in macaques.

Ehrlichiosis

Ehrlichiae, rickettsial agents classified in the family Ehrli-
chiacae, are obligate intracellular bacteria that share the tick
vectors of other infectious pathogens such as Borrelia burg-
dorferi, the agent of Lyme disease. Rodents, particularly
white-footed mice, and white-tailed deer are implicated as
natural reservoirs for granulocytic ehrlichia. Human granu-
locytic ehrlichiosis was first described in 1994 and is now
considered an emerging human infectious disease. Investi-
gators have described a simian model in which rhesus ma-
caques developed classical granulocytic ehrlichiosis after
intravenous inoculation with horse blood infected with
Ehrlichia from a human fatality (Foley et al. 1999). This
animal model may be important for further study of the
diagnosis, management and intervention, and pathogenesis
of human granulocytic ehrlichiosis.

Lyme Disease (Borrelia burgdorferi)

Lyme disease (Borreliosis) is a spirochete infection (B.
burgdorferi) transmitted by the bite of a deer tick. An initial
flu-like syndrome with rash and arthritis usually responds to
treatment with antibiotics, especially if given early in the
course of the illness. However, some patients that receive
antibiotics develop a poorly understood chronic syndrome
that features musculoskeletal, neurologic, psychiatric, and
cardiac manifestations. A multiantigenic vaccine (Pachner
et al. 1999) and an outer surface protein vaccine (Philipp et
al. 1997) protected macaques from Lyme neuroborreliosis.
A vaccine (Lymerix) against B. burgdorferi became avail-
able for humans in 1988 but was taken off the market in
1992 because of safety concerns (fear that it might be trig-
gering an autoimmune reaction) and poor sales.

To better understand the pathogenesis of the chronic
Lyme borreliosis syndrome, investigators have inoculated
normal and immunosuppressed rhesus macaques with the
causative spirochete and observed the animals for several
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years. Different species of B. burgdorferi induced different
patterns of infection, immunity, and inflammation (Pachner
et al. 2004). The transcriptome of the spirochete in the cen-
tral nervous system of macaques showed contrasting pro-
files depending on steroid treatment (Narasimhan et al.
2003). Researchers detected the spirochete, along with ac-
companying inflammation, months to years after inocula-
tion, in the meninges, heart, and connective tissue elsewhere
in the body, particularly in immunosuppressed monkeys
(Bai et al. 2004; Cadavid et al. 2004, 2003; Philipp et al.
1993; Roberts et al. 1998). Increased expression of B lym-
phocyte (but not proinflammatory) cytokines was detected
in the muscle tissue of chronically infected rhesus monkeys
(Pachner et al. 2002).

Bartonellosis

Bartonella species are arthropod vector-transmitted, blood-
borne, intracellular bacteria that induce prolonged infection
in the host. Several cell types, in particular erythrocytes, can
harbor Bartonella. These agents are ubiquitous in nature
with a substantial reservoir of persistent infection in domes-
tic and wild animals, which can serve as a source of inad-
vertent human infection (Breitschwerdt and Kordick 2000).
Infections in animals and humans may be asymptomatic or
associated with chronic inflammatory diseases. Bacteremia
with this agent is widespread in domestic and feral cats
(Chomel et al. 1996), and zoonotic spread of B. henselae
causes cat scratch disease. Other human diseases caused by
Bartonella species are trench fever (B. quintana), Oroya
fever (B. bacilliformis), bacillary angiomatosis (B. quin-
tana), and bacterial endocarditis (B. henselae, B. quintana).

These species appear to be reemerging, often with few
symptoms, as a persistent bacteremia in immunosuppressed
and homeless individuals, particularly those infected with
HIV-1 (Foucault et al. 2006; Koehler et al. 2003). There are
reports of natural infection with B. quintana in captive-bred
cynomolgus macaques (O’Rourke et al. 2005) and of its
transmission to rhesus macaques (Mooser and Weyer 1953).
In a 1926 study, B. bacilliformis, the agent of Oroya fever,
was experimentally inoculated into young rhesus macaques
in which it induced the same symptoms as observed in
human cases of Oroya fever (Noguchi and Battistini 1926).
A recently developed macaque model for B. quintana in-
fection has revealed a relationship between changes in the
outer membrane protein and different virulence properties
during bloodstream infection (Zhang et al. 2004).

Melioidosis (Burkholderia pseudomallei)

Melioidosis, a chronic infectious disease caused by the bac-
terium Burkholderia pseudomallei, is an emerging disease
with a serious impact on animals and humans. In the past
century, this agent has spread from East Asia to many pre-
viously unaffected parts of the world. Infection in humans
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and animals occurs by inoculation, ingestion, or inhalation
of the organism, which is ubiquitous in the environment,
particularly in soil. Many species of domestic farm and wild
animals as well as nonhuman primates are commonly in-
fected (in horses the disease is called glanders). A recent
review summarizes the current studies of melioidosis out-
breaks in animals, including nonhuman primates (Sprague
and Neubauer 2004). In macaques, disease may include se-
vere bronchopneumonia, multiple abscesses, and osteomy-
elitis. Detection of B. pseudomallei infection is a major
challenge because of poor induction of antibodies. Accord-
ing to one reference (Hubbert 1969), a cynomolgus ma-
caque was experimentally infected, but there has been no
further research to develop the macaque model of this
emerging pathogen.

Potential Bioterrorism Agents

Several diseases with high morbidity and mortality, of viral
or bacterial origin, pose a theoretical or real risk of expo-
sure to large populations from inhalation or contaminated
foodstuffs.

Smallpox/Variola Virus (Poxviridae)

Although eradicated from the world in 1980 by vaccinia
virus vaccination, smallpox virus retrieved from frozen
stocks poses a significant threat as an agent of bioterrorism.
Therefore, improved drugs and perhaps vaccines are ur-
gently needed. With this purpose in mind, investigators re-
cently exposed cynomolgus macaques to several strains of
variola virus through aerosol and intravenous routes (Jahr-
ling et al. 2004). Depending on the dose, the viruses induced
either uniformly fatal disease resembling human smallpox
or less severe systemic disease with lower mortality. High
virus levels led to multisystem failure, depletion of T cells,
and disseminated intravascular coagulation. cDNA micro-
arrays of host gene expression in circulating white blood
cells during infection showed upregulation of cytokines,
including IL-6 and alpha interferon, which contributed to a
cytokine storm (previously called toxemia) (Rubins et al.
2004).

Monkeypox (Poxviridae)

Monkeypox virus (MPXV) causes a natural and experimen-
tal disease in cynomolgus macaques similar to human
smallpox (Zaucha et al. 2001), and so this animal model can
help to increase the effectiveness of antiviral drugs and
candidate novel smallpox vaccines. Sporadic outbreaks of
monkeypox also occur in humans in Africa and in the
United States and thus are a public health concern. The
reservoir is squirrels and other small mammals, and mon-
keys and humans are accidental hosts (Hutin et al. 2001;
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Sale et al. 2006). In 2003, an outbreak of monkeypox in
humans in the central United States was caused by contact
with pet prairie dogs and other mammals that had been
shipped from Gabon to Texas and then transported to pet
distributors in the Chicago area (Di Giulio and Eckburg
2004). Vaccinia virus immunization (smallpox vaccine and
modified vaccinia virus Ankara) affords long-lasting pro-
tection of macaques against monkeypox virus challenge
(Earl et al. 2004; Heraud et al. 2006; Stittelaar et al. 2005).
Vaccine protection is correlated with the induction of neu-
tralizing antibody against monkeypox virus (Edghill-Smith
et al. 2005b), but the smallpox vaccine does not protect
macaques with SAIDS against a lethal monkeypox chal-
lenge (Edghill-Smith et al. 2005a). A smallpox DNA vac-
cine, consisting of four vaccinia virus genes, and a modified
vaccinia Ankara DNA vaccine also protected macaques
against otherwise lethal challenge with monkeypox virus
(Hooper et al. 2004; Nigam et al. 2007). Treatment of ma-
caques with antiviral compounds such as cidofovir, 24
hours after lethal intratracheal MPXV infection, was more
effective at reducing mortality than vaccinia virus vaccina-
tion (Stittelaar et al. 2006).

Rabies (Rhabdoviridae)

More than 40,000 people worldwide, mostly in developing
countries, die annually from rabies. Because of the expense
of the current vaccines derived from cell cultures and prob-
lems with stability, efforts are under way to develop a sub-
unit or DNA vaccine. Macaques immunized with the rabies
ribonucleoprotein were protected against challenge infec-
tion from a lethal dose of rabies virus (Tollis et al. 1991).
Cynomolgus macaques immunized with DNA encoding the
viral glycoprotein survived virus challenge, whereas non-
vaccinated controls developed fatal rabies (Lodmell et al.
1998). Protection with both vaccines correlated with the
induction of neutralizing antibodies. Very early (<6 hrs)
postexposure treatment with interferon or a potent inter-
feron inducer also significantly reduced mortality (Baer et
al. 1977; Weinmann et al. 1979). Early (<6 days) postex-
posure DNA vaccination, given together with human rabies
immunoglobulin, also reduced mortality.

Marburg and Ebola Viruses (Filoviridae)

Marburg and Ebola viruses cause epidemics of hemorrhagic
fever and are among the most virulent viruses that infect
humans. The reservoir hosts in Africa are not known, al-
though small mammals (possibly rodents or bats) are sus-
pected. Wild nonhuman primates, including macaques, are,
like humans, accidental hosts. These viruses are usually
transmitted to humans through contact with an infected ani-
mal. A summary of Marburg and Ebola virus infections in
laboratory NHPs is available (Schou and Hansen 2000). A
total of 23 Marburg and Ebola virus outbreaks have been
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reported among humans and monkeys since the first docu-
mented outbreak in Marburg, Germany, in 1967. Most of
the 1,100 human cases, with 800 deaths, occurred in Africa
after contact with infected patients. In 1989, Ebola virus and
simian hemorrhagic fever virus were isolated from a cyno-
molgus macaque imported to the United States from the
Philippines. Human animal handlers became infected but
did not get sick (Dalgard et al. 1992). In recent years, there
have been several outbreaks of human and animal Ebola in
Gabon and Republic of Congo. The epidemics were asso-
ciated with different viral strains and high mortality of go-
rillas, chimpanzees, and duikers, and resulted from the
handling of infected animal carcasses (Leroy et al. 2004).

Rhesus and cynomolgus macaques are highly suscep-
tible to lethal infection with either Marburg or Ebola virus
(Geisbert et al. 2003b). Ebola virus—infected monkeys have
been studied to gain insight into the pathogenic mechanisms
that lead to the profound lymphopenia, disseminated intra-
vascular coagulation, and hemorrhagic and septic shock that
are characteristic of filovirus infection of humans. The co-
agulation abnormalities are most likely triggered by im-
mune-mediated mechanisms rather than by direct damage to
endothelial cells. Lymphopenia is attributed to infection of
dendritic cells, blocking their maturation and thus inhibiting
activation of lymphocytes and triggering bystander apopto-
sis (Reed et al. 2004).

Release of tissue factor from monocyte/macrophages is
a key event in triggering disseminated intravascular coagu-
lation (DIC) in Ebola virus—infected macaques, and treat-
ment with recombinant inhibitor of tissue factor helps to
prevent DIC and prolong survival (Geisbert et al. 2003a).
By contrast, treatment with recombinant alpha interferon or
immunoglobulin has little benefit; neutralizing antibodies
fail to protect or alter the course of Ebola virus infection in
the monkeys (Oswald et al. 2007). Live attenuated recom-
binant vaccines protected macaques almost 100% against
the Ebola and Marburg viruses. One of the vaccines was
based on replication-competent vesicular stomatitis virus
(VSV) expressing the envelope glycoprotein of the Marburg
virus (Hevey et al. 1998). The vaccine induced cross pro-
tection against two heterologous strains of Marburg virus
(Daddario-DiCaprio et al. 2006a) and also gave strong pro-
tection against lethal Marburg virus challenge if given
within 30 minutes after virus inoculation (Daddario-
DiCaprio et al. 2006b). Similar protection against both
Ebola and Marburg virus was achieved using Venezuelan
equine encephalitis (VEE) virus as a vector to express the
glycoprotein and nucleoprotein of Ebola virus (Geisbert et
al. 2002). A recombinant adenovirus carrying the Ebola
virus glycoprotein was also protective. Most remarkably,
macaques that received a combination DNA vaccine for
Marburg virus, Ebola virus, VEE virus, and B. anthracis
developed protective immunity against each agent (Riemen-
schneider et al. 2003). A recent report describes the protec-
tion of macaques against Ebola virus by topical
immunization through the respiratory tract with a human
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parainfluenza virus type 3 vaccine vector used to express
the Ebola virus surface glycoprotein (Bukreyev et al. 2007).

Anthrax (Bacillus anthracis)

Aerosolized Bacillus anthracis spores are considered the
foremost infectious biological threat in the United States. It
is therefore important to prepare and stockpile an anthrax
vaccine. Because macaques are quite susceptible to experi-
mental B. anthracis inhalation-induced disease, they repre-
sent an excellent model for testing vaccines and drugs (Fritz
et al. 1995; Vasconcelos et al. 2003).

Studies 50 years ago showed that it was possible to
protect rhesus macaques against inhalation challenge with
B. anthracis spores by a cell-free vaccine containing alum-
precipitated B. anthracis toxin-derived protective antigen
(PA) (Wright et al. 1954). This vaccine (AVA) was used to
immunize individuals at high risk of occupational exposure.
More recently, investigators have evaluated vaccines com-
posed of a recombinant form of the PA in rhesus macaques
(Hepler et al. 2006; Phipps et al. 2004; Williamson et al.
2005); they found that the animals were fully protected
against a lethal dose of aerosolized bacteria and that pro-
tection correlated significantly with neutralizing antibodies,
which also conferred passive immunity to B. anthracis chal-
lenge of naive macaques. A DNA vaccine for anthrax is also
efficacious in macaques (Riemenschneider et al. 2003).
Transcriptional profiles of about 200 genes in PA-
stimulated peripheral blood mononuclear cells (PBMC) af-
ter anthrax vaccine gave a response representative of innate
and adaptive immunity (Rogers et al. 2006). These studies
predict that the PA-based vaccines should be efficacious in
humans. This animal model has also been used for testing
antibodies against inhalation anthrax given either alone or
together with the vaccine (Kao et al. 2006; Kelly et al.
1992).

Tularemia (Francisella tularensis)

Francisella tularensis is a zoonotic bacterium widespread in
North America as well as parts of Europe and Asia. Squir-
rels and rabbits are the main reservoir and transmission to
humans occurs by deerflies, mosquitoes, and ticks, or from
the bite of an infected vertebrate. Tularemia is serious and
often fatal. Outbreaks of naturally acquired tularemia have
also been described in nonhuman primates, including ma-
caques (Matz-Rensing et al. 2007). Rhesus macaques ex-
posed to aerosol particles of F. tularensis develop the full-
blown pneumonic form of tularemia, which is often fatal
(Schricker et al. 1972). This macaque model was used 40
years ago to develop an efficacious live attenuated tularemia
vaccine (Tulis et al. 1970). Long-lasting vaccine protection
correlated with the presence of strong cell-mediated immu-
nity against F. tularensis.
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Plague (Yersinia pestis)

Spread by rat fleas, this macrophage-tropic coccobacillus
has been one of the great epidemic scourges of humanity,
but the disease has largely disappeared in modern times due
mostly to improved rodent control. However, direct human-
to-human aerosol spread of Yersinia pestis presents a cur-
rent bioterrorism threat and has prompted efforts to develop
a plague vaccine. A case of chronic pneumonic plague in a
rhesus monkey has been reported (Ransom and Krueger
1954). A live attenuated Y. pestis vaccine proved to be
effective in macaques (Meyer et al. 1974). Recently, vacci-
nation of cynomolgus macaques with flagellin, a toll-like
receptor agonist and a fusion of the F1 and V antigens of Y.
pestis, induced a strong antigen-specific 1gG antibody re-
sponse and was protective against lethal respiratory chal-
lenge with Y. pestis (Honko et al. 2006; Williamson et al.
2007). Immunization of cynomolgus macaques with recom-
binant Y. pestis F1 and V antigens made in plant vector
systems provided complete protection against lethal chal-
lenge with Y. pestis (Mett et al. 2007).

Brucellosis (Brucella)

Brucella, a small, non-spore-forming gram-negative cocco-
bacillus, is a highly infectious biological warfare threat
agent that causes severe human illness. This bacterium is a
facultative intracellular parasite of macrophages. After
aerosol exposure, rhesus macaques develop a disease simi-
lar to that of humans (Mense et al. 2004; Percy et al. 1972).
Macaques immunized with a live attenuated strain of B.
melitensis, after priming with purified antigen, were solidly
protected from aerosol challenge with virulent Brucella
(Chen and Elberg 1976). Protection correlated with induc-
tion of antibody to the bacterial outer membrane lipopoly-
saccharide and of a Thl cytokine response.

Transmissible Spongiform
Encephalopathies

Transmissible spongiform encephalopathies are infectious
prion diseases that affect the central nervous system and
cause dementia. In the search for occult viruses, researchers
in the 1960s and 1970s inoculated many nonhuman pri-
mates with CNS tissue preparations from humans that had
unexplained neurodegenerative diseases. These experiments
involved many macaques and sooty mangabeys housed at
the California National Primate Research Center.? Blind

2 Researchers subsequently realized that an unforeseen complication of the
early experiments was the probable inadvertent transmission of SIV from
healthy African-origin sooty mangabey carriers to Asian-origin macaques,
a development that led to the discovery of simian AIDS 15 years later
(Apetrei et al. 2005; Gardner 1996) (see the section on AIDS).
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passages were carried out in an effort to amplify a putative
human virus. Surprisingly, several of the human diseases—
for example, kuru, restricted to New Guinea, and
Creutzfeldt-Jakob disease (CJD), of worldwide distribu-
tion—were transmissible to chimpanzees, gibbon apes, and
several species of New World monkeys and macaques (Es-
pana et al. 1975; Gajdusek and Gibbs 1971; Gibbs and
Gajdusek 1973; Masters et al. 1976). Each disease featured
spongiform noninflammatory pathology in the brain and
was similar in this respect to other transmissible spongiform
encephalopathies that occur in sheep (scrapie), mink, deer,
elk (chronic wasting disease, CWD), and cattle (bovine
spongiform encephalopathy, BSE). Spontaneous spongi-
form encephalopathy has also been observed in a young
adult rhesus monkey (Bons et al. 1996). These diseases are
caused by abnormally folded protein aggregates, called pri-
ons. Other prion-associated spongiform encephalopathies
that commonly occur in older humans, such as Alzheimer’s
disease, are not infectious.

In recent years, cynomolgus macaques have been inocu-
lated with or fed brain homogenates from people with vari-
ant CJD or from cattle with BSE, as investigators analyzed
the involvement of peripheral organs with the prion proteins
(Herzog et al. 2005). The BSE agent readily adapted to
macaques and exhibited the same molecular characteristics
as the variant CJD agent (Lasmezas et al. 2001). Large
amounts of the prion protein were present in lymphoid or-
gans and smaller amounts in the nervous system. Lymphoid
organs and blood thus represent a high risk for iatrogenic
transmission of the infectious prions. One macaque devel-
oped variant CJD-like neurological disease 5 years after oral
exposure to the BSE agent (Lasmezas et al. 2005). Prion
disease research owes much of its progress to macaques
used in the search for unconventional viruses.

Oncogenic Viruses

Certain herpesviruses and retroviruses establish chronic in-
fection, generally characterized by a latent state in the host.
Several of these agents need a cofactor such as immuno-
suppression in the infected individual to cause cancer. This
section includes several simian viruses that are indigenous
to macaques and not infectious for humans but that are
important models for closely related human diseases.

Simian T Lymphotropic Virus
(STLV) (Retroviridae)

Naturally occurring infection with several strains of STLV
is highly prevalent in asymptomatic African and Asian non-
human primates, including both wild macaques and those in
primate centers and zoos (Hunsmann et al. 1983; Lowen-
stine et al. 1986; Miyoshi et al. 1983). The natural history
and biology of STLV are very similar to those of human
TLV (Watanabe et al. 1985). Both STLV and HTLV are
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ancient viruses, and HTLV apparently arose from contact
with STLV-infected nonhuman primates in the distant past.
Recent studies have documented human infection with mul-
tiple STLV-1-like viruses among central Africans exposed
to monkeys either as house pets or through the bush meat
trade (Wolfe et al. 2005); nearly 90% of bush meat was
found infected with STLV (Courgnaud et al. 2004). No
evidence has been found for the cross-species spread of
STLV to primate handlers in the United States.

STLV-infected macaques do not serve as a practical
model for HTLV infection because the latent period is long
(4 to 5 decades) and the tumor incidence is low (<1%).
Unlike HTLV, STLV has not been linked to lymphomas,
immunosuppresion, or neurological diseases in macaques.
Experimental coinfection of cynomolgus macaques with
STLV and SIV showed no influence of STLV on the de-
velopment of SAIDS (Fultz et al. 1999). Studies using cy-
nomolgus macaques 20 years ago showed that protection
against HTLV challenge infection was possible through im-
munization with recombinant HTLV-1 envelope protein
(Nakamura et al. 1987). Cynomolgus macaques were also
protected against STLV challenge by vaccination with
HTLV gag and envelope subunits (Dezzutti et al. 1990).
Vaccine protection correlated with the induction of antibod-
ies to the envelope glycoprotein.

Interestingly, STLV infection of captive baboons at two
primate facilities, the Sukhumi Primate Center in the Re-
public of Abkhazia and the Southwest Regional Primate
Research Center in San Antonio, Texas, has been linked to
a relatively high incidence of lymphoma (Mone et al. 1992;
Voevodin et al. 1996). The Sukhumi outbreak of lympho-
mas has affected more than 300 baboons since 1967, and
molecular studies indicate that the causative STLV strain
was introduced into the baboons by cross-species transmis-
sion from rhesus macaques. Coinfection of these baboons
with an EBV-related herpesvirus may be a cofactor in
the pathogenesis of lymphoma (Schatzl et al. 1993).
This could be a suitable animal model for HTLV-associated
lymphomagenesis.

Simian Type D Retrovirus (SRV) (Retroviridae)

Simian type D retrovirus is an indigenous retrovirus of ma-
caques that can cause outbreaks of an immunosuppressive
and fatal wasting disease in cohoused animals (Gardner et
al. 2004). The prototype virus, Mason-Pfizer monkey virus
(MPMV), was discovered in 1970 (Chopra and Mason
1970), but it wasn’t until the early 1980s that the virus
“reemerged” in macaques at several primate centers (Gard-
ner et al. 1988; Letvin and King 1984). The associated
disease was at first called simian AIDS (SAIDS), but this
term is now confined to the SIV-induced disease in ma-
caques and an occasional African NHP species (e.g., Afri-
can green and sooty mangabey monkeys).

SRV differs from SIV both in its pathogenesis and in
being more distantly related to HIV (SRV is not a lentivi-
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rus). Unlike SIV and HIV, SRV causes a generalized infec-
tion of both T and B cells (Maul et al. 1988), is genetically
stable, and can be controlled by neutralizing antibodies,
whether induced naturally or by vaccines (Kwang et al.
1987; Marx et al. 1986). Many of the same opportunistic
pathogens associated with SIV and HIV infection also exist
in macaques with SIV infection. Interestingly, SRV-
infected macaques are the major source of a Kaposi’s sar-
coma (KS)-like lesion called retroperitoneal fibromatosis
(RF) (see the section on Kaposi’s sarcoma). In contrast to
SIV, SRV infection is not associated with B cell lymphomas
or activation of latent EBV-like virus. Although humans do
not harbor a type D retrovirus and are not susceptible to
productive infection with SRV, we include it because itis an
important model for retrovirus-induced immunosuppression
and RF. Additionally, SRV must be eliminated in NHPs
used for research, particularly in studies of SIV-induced
SAIDS.

Simian Foamy Viruses (SFV) (Retroviridae)

SFVs, members of the spumavirus group, are ubiquitous in
macaques and other nonhuman primates in which they
cause a persistent latent infection in the absence of any
disease (Linial 1999; Weiss 1988). Humans do not harbor
any spumaviruses, but they can become infected by contact
with SFV carrier monkeys (a putative human foamy virus
isolate was probably of chimpanzee origin; Herchenroder et
al. 1994). Humans (e.g., animal health workers or African
hunters) accidentally infected with SFV remain asymptom-
atic (Brooks et al. 2002; Engel et al. 2006; Jones-Engel et al.
2005).

Epstein-Barr Virus (EBV)/
Lymphocryptovirus (Herpesviridae)

Macaques harbor a homologue of human EBV whose biol-
ogy in macaques appears identical to that of EBV in humans
(Moghaddam et al. 1997). The complete sequencing of both
human EBV and the macaque EBV-related virus shows
strong similarities (Rivailler et al. 2002). Like human EBV,
the macaque virus generally causes a lifelong, asymptom-
atic, latent infection. Key aspects of human acute EBV in-
fection are reproducible in the macaque model, including
oral transmission, atypical lymphocytosis and lymphade-
nopathy, and activation of B cells, all features of infectious
mononucleosis. Cytotoxic T cell responses are mostly re-
sponsible for containing virus replication (Fogg et al. 2006).
As seen in humans with AIDS, the macaque EBV-like virus
is activated in association with opportunistic B cell lympho-
mas that occur in the course of SIV-induced simian AIDS or
with post-transplant immunosuppression (Habis et al. 2000;
Schmidtko et al. 2002). Activated EBV in macaques also
causes oral lesions (called hairy cell leukoplakia) that mani-
fest in human AIDS (Kutok et al. 2004). Naive macaques—
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whether immunocompetent or immunosuppressed,
inoculated with human EBV (Levine et al. 1980) or the
rhesus counterpart (Feichtinger et al. 1992; Moghaddam et
al. 1997; Rivailler et al. 2004)—do not develop lymphomas
in the relatively short observation period of 3 years or less.

Kaposi's Sarcoma-Associated
Herpesvirus (Herpesviridae)

Two distinct lineages of rhadinovirus—RV-1, or retroperi-
toneal fibrosis (RF)-associated herpesvirus (RFHV), and
RV-2, or rhesus rhadinovirus (RRV), a more distantly re-
lated virus—are related to Kaposi’s sarcoma (KS)-
associated herpesvirus (KSHV, human herpesvirus 8), the
causative virus of KS in humans (Schultz et al. 2000).
RFHV, yet to be isolated and fully characterized as a rep-
lication-competent virus in vitro, is associated with a spon-
taneous disease in macaques called retroperitoneal
fibromatosis (RF). Described in the 1980s in pigtail ma-
caques (M. nemestrina) (Giddens et al. 1985), RF closely
resembles human KS in its histopathology, except for the
lack of skin manifestations. RF tumor cells contain multiple
RV-1 genome copies, and the pattern of infectivity and
latent antigen expression is similar to that of human KS
(Bruce et al. 2006). Genomewide transcription patterns for
RRV closely resemble the transcription profile for KSHV in
infected fibroblasts (Dittmer et al. 2005). RRV is only in-
frequently detected by real-time PCR at low levels in pe-
ripheral blood of healthy macaques and more frequently in
SIV-infected animals. However, RRV is not detected in
SAIDS-associated lymphomas or lymphoid hyperplasia
(Ruff et al. 2003). Experimental infection of macaques with
RRV alone or together with SIV has induced generalized
lymphadenopathy in a few animals, but as yet no RF lesions
or lymphomas (Estep et al. 2007; Mansfield et al. 1999;
Wong et al. 1999). If an infectious isolate or molecular
clone of RFHV can eventually be derived, it will be inter-
esting to determine whether this agent can induce RF in
macaques. Because RRV replicates at very low levels and
induces no specific pathology, it is unlikely to provide a
useful animal model for disease (Renne et al. 2004).

Other Infectious Diseases

A significant number of human diseases are caused by a
diverse array of viral, bacterial, and parasitic pathogens.

Rotaviruses (Reoviridae)

Group A rotaviruses are ubiquitous and infect most humans
by the 3" year of life. These viruses are the single most
important cause of severe diarrhea in infants and young
children worldwide. Nonhuman primates, including ma-
caques, are naturally infected with simian rotavirus strains,
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several of which (e.g., SA11, YK1) have been used for
experimental infection of macaques (Soike et al. 1980; Wes-
terman et al. 2005). In the natural simian host, diarrhea is
usually not manifest and neonatal serum antibody of mater-
nal origin is not associated with resistance to rotavirus in-
fection or disease. However, intragastric challenge of
newborn and infant cynomolgus macaques with the simian
rotavirus strain SA11 does induce diarrhea (Petschow et al.
1992). Newborn macaques also are susceptible to experi-
mental infection and diarrheal disease from human rotavirus
isolates (Leong and Awang 1990; Majer et al. 1978; Wyatt
et al. 1976). Baboons and vervet monkeys are similarly
susceptible to experimental infection with human rotavirus
but do not develop diarrhea (Chege et al. 2005). In 1998 a
tetravalent rhesus-human reassortant rotavirus vaccine was
licensed by the FDA as a live attenuated human vaccine;
however, it was withdrawn when the incidence of intussus-
ception in vaccinated infants increased above control (Mur-
phy et al. 2001). Several human rotavirus vaccines are
currently undergoing human trials.

Norwalk Virus (Noroviridae)

About half of the US outbreaks of acute infectious nonbac-
terial gastroenteritis are due to Norwalk virus. Outbreaks
occur in camps, schools, nursing homes, and on cruise ships
and are associated with contaminated water and uncooked
food. Antibodies against the virus are not protective. The
human virus has not been cultured in vitro, but a murine
norovirus isolate replicates in cell culture and has been use-
ful for studies of pathogenesis in mice (Mumphrey et al.
2007; Wobus et al. 2006). Although neonatal pigtail ma-
caques (M. nemestrina) and adult rhesus macaques are both
susceptible to experimental infection with Norwalk virus
(Rockx et al. 2005; Subekti et al. 2002), clinical gastroen-
teritis was not exhibited.

Tick-Borne Encephalitis (TBE) (Flaviviridae)

Tick-borne encephalitis is a nontropical zoonotic disease of
increasing incidence in Asia and Europe, especially Ger-
many and Austria, where mass vaccination campaigns have
been organized. This virus causes more than 10,000 cases of
encephalitis annually. Rodents are the maintenance host,
and TBE has been transmitted to dogs and horses as well as
humans. TBE virus has been isolated from over 20 species
of ticks, but the main vectors are Ixodes persulcatus and |I.
ricinus. Experimental infection of macaques results in viral
persistence and encephalitis (Frolova et al. 1985; Kenyon et
al. 1992; Pogodina et al. 1981). A naturally occurring case
of TBE was reported in a macaque at a German monkey
park (Suss et al. 2007). Using the rhesus monkey model of
intranasal infection a commercial vaccine protected against
a wild-type virus isolate and elicited an effective immune
reaction without any evidence of immune enhancement
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(Hambleton et al. 1983). This effective vaccine is now
available for individuals at risk (Suss 2003).

Simian Hemorrhagic Fever
Virus (Arteriviridae)

Simian hemorrhagic fever virus, first isolated in 1964
(Palmer et al. 1968) and now classified in the Arteriviridae
family (Smith et al. 1997), can cause an acute severe disease
with high mortality in macaques (Allen et al. 1968). Al-
though not infectious for humans the macaque disease could
be a model for studying the pathogenesis of viral hemor-
rhagic fevers in humans.

Simian Parvovirus/Erythrovirus (Parvoviridae)

Human B-19 parvovirus is associated with several distinct
clinical syndromes, including severe anemia, spontaneous
abortion, and arthritis. Macaques are commonly infected,
either naturally or experimentally, with simian parvovirus
(SPV), which is closely related to human parvovirus B-19
(Brown and Young 1997; Brown et al. 2004; O’Sullivan et
al. 1994). Experimental inoculation of SPV in naive ma-
caques induces temporary arrest of erythroid cell produc-
tion, analogous to that observed in B-19 infection of humans
(O’Sullivan et al. 1997). Similarly, mid-term SPV inocula-
tion in macaque fetuses leads to fetal hydrops. PCR detec-
tion of parvovirus infection in monkeys has proven to be
more sensitive and specific than serology (Gallinella et al.
2003). Although there is no proven human infection with
SPV, it must be considered a potential zoonosis, especially
given the ability of the virus to replicate in human bone
marrow cells in vitro and the high level of viremia that
develops in infected macaques.

Polyomavirus (PV) (Polyomaviridae)

SV40, the prototype polyomavirus (PV) indigenous in ma-
caques, is analogous to the BK and JC PVs in humans. In
humans with AIDS and macaques with SAIDS, activation
of JC or SV40 virus, respectively, causes demyelinating
CNS disease, called progressive multifocal leukoencepha-
lopathy. Genetic analysis of natural SV40 isolates from the
brains and kidneys of several macaques revealed that the
enhancer sequence organization is different from that of the
laboratory strain of SV40 (llyinskii et al. 1992). Further-
more, another PV related to but distinct from SV40 was
recently recovered from a number of cynomolgus macaques
that were immunosuppressed to promote acceptance of re-
nal allografts or xenografts (van Gorder et al. 1999). This
virus, called CPV, caused interstitial nephritis in many of
the grafted and native kidneys, as well as a late-onset ure-
teritis with stenosis in the graft recipients. CPV represents
an excellent model for the BK polyomavirus-induced inter-
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stitial nephritis and ureteral stenosis that occur in human
renal transplant recipients. Researchers have recently dis-
covered novel PVs in some human patients with acute re-
spiratory tract infection (Gaynor et al. 2007).

Q Fever (Coxiella burnetii)

A cynomolgus macaque model has been developed for
study of this human disease (Gonder et al. 1979). Macaques
were susceptible to experimental aerosol infection with
Coxiella burnetii and developed the clinical signs and pul-
monary pathology characteristic of Q fever infection in hu-
mans (Waag et al. 1999). A killed C. burnetii vaccine
provided only partial protection against infection and dis-
ease (Kishimoto et al. 1981). More recently, the compara-
tive efficacy of chloroform-methanol residue and cellular C.
burnetii vaccines has been evaluated in this macaque model
of Q fever (Waag et al. 2002).

Escherichia coli

Toxigenic strains of E. coli (e.g., O157:H7) are important
causes of human morbidity and mortality. For over 30 years,
macaques have served as models to investigate the patho-
genesis and treatment of experimental E. coli infection, in-
cluding pyelonephritis (Roberts 1975), prostatitis (Neal et
al. 1990), bloody diarrhea (Kang et al. 2001), and septic
shock (Coalson et al. 1979). Immunization with Shiga toxin
liposome conjugates protected macaques against lethal
doses of E. coli Shiga toxin (Suzaki et al. 2002). Several
recent macaque models of experimental, endotoxic shock
and disseminated intravascular coagulation have monitored
inflammatory cytokines and the effect of glucocorticoid
treatment (Ji et al. 2004). Natural toxigenic E. coli infection
has been described in SIV-infected infant and adult rhesus
macaques with diarrhea (Mansfield et al. 2001). The rhesus
E. coli isolate was genetically very similar to human isolates
of the epsilon intimin subtype.

Campylobacteriosis (Campylobacter jejuni)

This enteric bacterium is a close relative of the cholera
bacillus (Vibrio cholera) and a common agent of infectious
diarrhea. Asymptomatic infection is common in humans
and captive macaques; diseased individuals may exhibit
bloody diarrhea (Morton et al. 1983; Tribe and Fleming
1983). Campylobacter has also induced fetal death in a
rhesus monkey (Baze and Bernacky 2002). Animals and
contaminated food are sources of the bacteria. Rhesus and
pigtail macaques are susceptible to experimental infection
and colitis from a human strain of Campylobacter (Fitz-
george et al. 1981; Russell et al. 1989). Interestingly, early
efforts to infect rhesus monkeys with the related V. cholera
were unsuccessful (Ivanoff et al. 1978).
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Listeriosis (Listeria monocytogenes)

Listeriosis, caused by the bacterium Listeria monocyto-
genes, is an important pathogen for humans and animals and
can cause natural outbreaks in nonhuman primates. Hy-
gienic food processing and storage remain the best preven-
tive measures for both humans and nonhuman primates.
Most human cases occur in immunocompromised individu-
als or as congenital infection, often leading to stillbirths.
Various foodstuffs of vegetable or animal origin are the
sources of infection. Cynomolgus macaques were used as a
model for infection with L. monocytogenes, isolated from
either humans or NHPs and administered orally (Farber et
al. 1991). Systemic infection was documented with the
shedding of this bacterium in the feces for several weeks.
Animals that received 10° bacteria suspended in sterile
whole milk became ill with symptoms of septicemia, an-
orexia, and diarrhea. Given to pregnant macaques, the or-
ganism infected the fetus and caused stillbirths (Smith et al.
2003).

Legionnaires Disease
(Legionella pneumophilia)

A rhesus macaque model of aerosol infection with the Le-
gionella pneumophilia was established in 1983 (Baskerville
et al. 1983). Lung pathology similar to that seen in L. pneu-
mophilia—infected humans was documented by light and
electron microscopy. Guinea pigs and marmosets are
equally susceptible to infection and pneumonia, so the ma-
caque model has not been further developed.

Bacillary Dysentery (Shigellosis)
(Shigella flexneri)

Severe acute Shigella dysentery is among the most miser-
able of human diseases. There is no animal reservoir but
epidemics occur in locales that lack effective sanitation.
Shigella outbreaks also occur in captive macaque colonies
where special eradication programs may be necessary for
control (Banish et al. 1993; Line et al. 1992; Mulder 1971).
This agent is an important occupational zoonosis (Kennedy
et al. 1993). Researchers in the 1970s experimentally in-
fected rhesus macaques with S. flexneri to investigate patho-
genesis (Kinsey et al. 1976; Rout et al. 1975). Mucosal
invasion of the colon was essential to the development of
the fluid and electrolyte transport defect that led to the dys-
entery. In addition, jejunal transport abnormalities contrib-
uted to the diarrhea. Arthritis and amyloidosis in SIV-
infected rhesus macaques have been associated with S.
flexneri breakdown products in the intestine (Blanchard et
al. 1986; Chapman and Crowell 1977; Urvater et al. 2000).
This development may be analogous to the arthritis increas-
ingly seen in HIV patients who are free of other risk factors
for arthritis.
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Streptococcal Pneumonia
(Streptococcus pneumoniae)

Streptococcus pneumoniae (also known as pneumococcus,
diplococcus) has long been responsible for high rates of
pneumonia, meningitis, and otitis media worldwide, par-
ticularly in young children and older adults. Over 30 years
ago rhesus macaques were exposed to aerosols of influenza
virus and S. pneumonia: the bacteria were cleared from the
lower respiratory tissues but persisted in the upper respira-
tory tract (Berendt et al. 1974). Rhesus monkeys also served
as a model for disseminated intravascular coagulation after
experimental bloodstream infection (Hawley et al. 1977). In
1995 a fatal case of S. pneumonia meningitis was reported
in a 3-month-old lion-tailed macaque (M. silenes) at the
Baltimore Zoo (Graczyk et al. 1995). Since the early 1990s
several pneumococcal polysaccharide vaccines have dem-
onstrated effectiveness against infection in older children
and adults, and subsequent immunogenicity studies in rhe-
sus macaques led to the development of newer polysaccha-
ride vaccines now available for children from 2 to 15
months of age (McNeely et al. 1998). However, adaptation
of the adult vaccine is necessary to provide stronger and
longer-lasting protection and higher efficacy in immuno-
compromised populations. To help answer this need, at-
tempts are under way to develop a rhesus macaque model
for pneumococcal vaccine assessment (Philipp et al. 2006).

Streptococcal Pharyngitis
(Streptococcus pyogenes)

Group A streptococcal pharyngitis and resultant rheumatic
heart disease are still highly prevalent in developing coun-
tries. To better understand the pathogenesis of the acute
pharyngitis and aid in the development of an effective strep-
tococcal vaccine, cynomolgus macaques were experimen-
tally infected with group A streptococcus (Virtaneva et al.
2005). Acute and asymptomatic phases of disease were
identified and bacterial colonization and severe throat in-
flammation correlated with superantigens and prophage
virulence gene expression. Temporal changes in the tran-
scriptomes were linked to the phase of clinical disease and
host defense response.

Chronic Enterocolitis

Chronic enterocolitis is a leading cause of morbidity in cap-
tive macaques. A recent survey of fecal specimens from 100
immunocompetent rhesus macaques, with or without
chronic diarrhea, revealed a multitude of potential enteric
bacterial, protozoan, and parasitic pathogens (Sestak et al.
2003). Organisms associated with chronic diarrhea included
Campylobacter, Shigella, Yersinia, adenovirus, and Stron-
gyloides; other enteric pathogens, whether or not diarrhea
was present, included E. coli carrying the Shiga toxin viru-
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lence gene, Balantidium coli, Giardia lamblia, Enterocyto-
zoon (microsporidia), and Trichuris trichiura (whipworm).
Microsporidia could be experimentally transmitted to SIV-
infected rhesus monkeys (Green et al. 2004). Chronic diar-
rhea was associated with upregulation of certain cytokines
(e.g., IL-1, IL-3, TNF [tumor necrosis factor]-alpha) and T
lymphocytes (CD4*, CD69*) in the gut-associated lym-
phoid tissue.

Trichinosis (Trichinoma spiralis)

This roundworm causes trichinosis, a common disease
throughout the world that results from eating improperly
cooked pork containing viable cysts of T. spiralis. In hu-
mans, the parasite larvae localize principally in skeletal
muscles and evoke generalized myalgia. Rhesus monkeys
experimentally infected 30 years ago with T. spiralis larvae
developed trichinosis that showed clinical, pathological, and
morphological similarities to the human disease (Cypess et
al. 1977).

Toxoplasmosis (Toxoplasma gondiii)

Natural infection with Toxoplasma gondii has been noted in
several species of Asian macaques, most recently in Toque
macaques (M. sinica) from Sri Lanka (Ekanayake et al.
2004). Infection is closely linked to human environments
where domestic cats are common. In a study of congenital
T. gondii infection, researchers infected pregnant rhesus and
stump-tailed macaques (M. arctoides) with these protozoa
(Wong et al. 1979); no significant neonatal disease occurred
despite CNS infection. Antiviral treatment with a combina-
tion of pyrimethamine and sulfadiazine was effective in
eliminating the parasite in both the amniotic fluid and the
neonate, whereas the parasite was detected in most of the
untreated fetuses.

Periodontal Disease

Various degrees of periodontal disease, from mild gingivitis
to necrotizing ulcerative gingivitis (homa), associated with
dental calculi, are present in macaques and other NHPs
(Adams and Bishop 1980; Cohen and Goldman 1960;
Schiodt et al. 1988). Noma is particularly associated with
SRV (type D retrovirus)—induced immunosuppression. Ex-
perimental periodontitis can be induced in macaques by
placement of periodontal silk ligatures or orthodontic elastic
as well as by surgical removal of alveolar bone (Schou et al.
1993). The clinical, pathological, microbiological, and im-
munological characteristics of spontaneous and experimen-
tal periodontitis in macaques are similar to those of humans.
Macaques manifest a subgingival flora resembling that
found in humans, including members of Actinobacillus,
Porphyromonas, Bacteroides, Campylobacter, and Fuso-
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bacterium. In cynomolgus macaques, antibody titers and
relative levels of P. gingivalis were inversely correlated,
suggesting that a humoral immune response may be effica-
cious in reducing overgrowth with this bacterium (Persson
et al. 1994). Thus the macaque model is highly suitable for
developing vaccines against periodontitis.

Summary

This survey illustrates the versatility of the macaque as an
animal model for translational human infectious disease re-
search. Additionally, natural infections of macaques with
agents related to human pathogens extend the value of these
animals. A further major benefit of this research is the al-
leviation of infectious disease for macaques as well as other
primate species. Comparative studies in both human and
macaque hosts are needed to address continuing problems
caused by many infectious diseases that remain intractable.
Factors such as increased travel, population growth, and
changing ecology are giving rise to new and emerging in-
fectious diseases. Recent advances in genomic, proteomic,
metabolomic, and related technologies make macaque mod-
els all the more timely for studies aimed at improving the
treatment and control of infectious diseases in humans and
macaques alike—"“one medicine” in action!

Acknowledgments

We acknowledge Anita Moore, Angela Hatch, and Alex
Borowsky for help in preparation of the typescript, and
Steve Barthold for inspirational guidance. The following
NIH grants support P.A.L. for research on infectious dis-
eases in macaques: RR00169, RR022907, and U54-
Al065359.

References

Abe K, Kurata T, Teramoto Y, Shiga J, Shikata T. 1993. Lack of suscep-
tibility of various primates and woodchucks to hepatitis C virus. J Med
Primatol 22:433-434.

Abe S, Ota Y, Koike S, Kurata T, Horie H, Nomura T, Hashizume S,
Nomoto A. 1995. Neurovirulence test for oral live poliovaccines using
poliovirus-sensitive transgenic mice. Virology 206:1075-1083.

Adams RJ, Bishop JL. 1980. An oral disease resembling noma in six rhesus
monkeys (Macaca mulatta). Lab Anim Sci 30:85-91.

Aggarwal R, Kamili S, Spelbring J, Krawczynski K. 2001. Experimental
studies on subclinical hepatitis E virus infection in cynomolgus ma-
caques. J Infect Dis 184:1380-1385.

Agy MB, Schmidt A, Florey MJ, Kennedy BJ, Schaefer G, Katze MG,
Corey L, Morton WR, Bosch ML. 1997. Serial in vivo passage of
HIV-1 infection in Macaca nemestrina. Virology 238:336-343.

Ahmed RK, Biberfeld G, Thorstensson R. 2005. Innate immunity in ex-
perimental SIV infection and vaccination. Mol Immunol 42:251-258.

Ajariyakhajorn C, Mammen MP Jr, Endy TP, Gettayacamin M, Nisalak A,
Nimmannitya S, Libraty DH. 2005. Randomized, placebo-controlled
trial of nonpegylated and pegylated forms of recombinant human alpha

242

interferon 2a for suppression of dengue virus viremia in rhesus mon-
keys. Antimicrob Agents Ch 49:4508-4514.

Albrecht P, Burnstein T, Klutch MJ, Hicks HT, Ennis FA. 1977. Subacute
sclerosing panencephalitis: Experimental infection in primates. Science
195:64-66.

Allen AM, Palmer AE, Tauraso NM, Shelokov A. 1968. Simian hemor-
rhagic fever. Il. Studies in pathology. Am J Trop Med Hyg 17:413-421.

Allen TM, O’Connor DH, Jing P, Dzuris JL, Mothe BR, Vogel TU, Dun-
phy E, Liebl ME, Emerson C, Wilson N, Kunstman KJ, Wang X,
Allison DB, Hughes AL, Desrosiers RC, Altman JD, Wolinsky SM,
Sette A, Watkins DI. 2000. Tat-specific cytotoxic T lymphocytes select
for SIV escape variants during resolution of primary viraemia. Nature
407:386-390.

Apetrei C, Robertson DL, Marx PA. 2004. The history of SIV and AIDS:
Epidemiology, phylogeny and biology of isolates from naturally SIV
infected nonhuman primates (NHP) in Africa. Front Biosci 9:225-254.

Apetrei C, Kaur A, Lerche NW, Metzger M, Pandrea |, Hardcastle J,
Falkenstein S, Bohm R, Koehler J, Traina-Dorge V, Williams T,
Staprans S, Plauche G, Veazey RS, McClure H, Lackner AA, Gormus
B, Robertson DL, Marx PA. 2005. Molecular epidemiology of simian
immunodeficiency virus SIVsm in US primate centers unravels the
origin of SIVmac and SIVstm. J Virol 79:8991-9005.

Arroyo J, Miller C, Catalan J, Myers GA, Ratterree MS, Trent DW, Mon-
ath TP. 2004. ChimeriVax-West Nile virus live-attenuated vaccine:
Preclinical evaluation of safety, immunogenicity, and efficacy. J Virol
78:12497-12507.

Ayash-Rashkovsky M, Chenine AL, Steele LN, Lee SJ, Song R, Ong H,
Rasmussen RA, Hofmann-Lehmann R, Else JG, Augostini P, McClure
HM, Secor WE, Ruprecht RM. 2007. Coinfection with Schistosoma
mansoni reactivates viremia in rhesus macaques with chronic simian-
human immunodeficiency virus clade C infection. Infect Immun 75:
1751-1756.

Baas T, Baskin CR, Diamond DL, Garcia-Sastre A, Bielefeldt-Ohmann H,
Tumpey TM, Thomas MJ, Carter VS, Teal TH, Van Hoeven N, Proll
S, Jacobs JM, Caldwell ZR, Gritsenko MA, Hukkanen RR, Camp DG
2nd, Smith RD, Katze MG. 2006. Integrated molecular signature of
disease: Analysis of influenza virus-infected macaques through func-
tional genomics and proteomics. J Virol 80:10813-10828.

Baer GM, Shaddock JH, Moore SA, Yager PA, Baron SS, Levy HB. 1977.
Successful prophylaxis against rabies in mice and Rhesus monkeys:
The interferon system and vaccine. J Infect Dis 136:286-291.

Bai Y, Narayan K, Dail D, Sondey M, Hodzic E, Barthold SW, Pachner
AR, Cadavid D. 2004. Spinal cord involvement in the nonhuman pri-
mate model of Lyme disease. Lab Invest 84:160-172.

Banish LD, Sims R, Sack D, Montali RJ, Phillips L Jr, Bush M. 1993.
Prevalence of shigellosis and other enteric pathogens in a zoologic
collection of primates. JAVMA 203:126-132.

Bannantine JP, Rockey DD. 1999. Use of primate model system to identify
Chlamydia trachomatis protein antigens recognized uniquely in the
context of infection. Microbiology 145 (Pt 8):2077-2085.

Barker LF, Maynard JE, Purcell RH, Hoofnagle JH, Berquist KR, London
WT. 1975. Viral hepatitis, type B, in experimental animals. Am J Med
Sci 270:189-195.

Barnett SW, Murthy KK, Herndier BG, Levy JA. 1994. An AIDS-like
condition induced in baboons by HIV-2. Science 266:642-646.

Barouch DH, Kunstman J, Kuroda MJ, Schmitz JE, Santra S, Peyerl FW,
Krivulka GR, Beaudry K, Lifton MA, Gorgone DA, Montefiori DC,
Lewis MG, Wolinsky SM, Letvin NL. 2002. Eventual AIDS vaccine
failure in a rhesus monkey by viral escape from cytotoxic T lympho-
cytes. Nature 415:335-339.

Barry PA, Lockridge KM, Salamat S, Tinling SP, Yue Y, Zhou SS, Gospe
SM Jr, Britt WJ, Tarantal AF. 2006. Nonhuman primate models of
intrauterine cytomegalovirus infection. ILAR J 47:49-64.

Baskerville A, Fitzgeorge RB, Broster M, Hambleton P. 1983. Histopa-
thology of experimental Legionnaires’ disease in guinea pigs, rhesus
monkeys and marmosets. J Pathol 139:349-362.

Baskin CR, Garcia-Sastre A, Tumpey TM, Bielefeldt-Ohmann H, Carter
VS, Nistal-Villan E, Katze MG. 2004. Integration of clinical data,

ILAR Journal



pathology, and cDNA microarrays in influenza virus-infected pigtail
macaques (Macaca nemestrina). J Virol 78:10420-10432.

Baze WB, Bernacky BJ. 2002. Campylobacter-induced fetal death in a
rhesus monkey. Vet Pathol 39:605-607.

Bennett AM, Slomka MJ, Brown DW, Lloyd G, Mackett M. 1999. Pro-
tection against herpes B virus infection in rabbits with a recombinant
vaccinia virus expressing glycoprotein D. J Med Virol 57:47-56.

Berendt RF, McDonough WE, Walker JS. 1974. Persistence of Diplococ-
cus pneumoniae after influenza virus infection in Macaca mulatta.
Infect Immun 10:369-374.

Blanchard JL, Baskin GB, Watson EA. 1986. Generalized amyloidosis in
rhesus monkeys. Vet Pathol 23:425-430.

Blaney JE Jr, Matro JM, Murphy BR, Whitehead SS. 2005. Recombinant,
live-attenuated tetravalent dengue virus vaccine formulations induce a
balanced, broad, and protective neutralizing antibody response against
each of the four serotypes in rhesus monkeys. J Virol 79:5516-5528.

Bonecini-Almeida Mda G, Galvao-Castro B, Pessoa MH, Pirmez C,
Laranja F. 1990. Experimental Chagas’ disease in rhesus monkeys. I.
Clinical, parasitological, hematological and anatomo-pathological stud-
ies in the acute and indeterminate phase of the disease. Mem Inst
Oswaldo Cruz 85:163-171.

Bons N, Mestre-Frances N, Charnay Y, Salmona M, Tagliavini F. 1996.
Spontaneous spongiform encephalopathy in a young adult rhesus mon-
key. C R Acad Sci Il 319:733-736.

Boonjakuakul JK, Canfield DR, Solnick JV. 2005. Comparison of Helico-
bacter pylori virulence gene expression in vitro and in the Rhesus
macaque. Infect Immun 73:4895-4904.

Breitschwerdt EB, Kordick DL. 2000. Bartonella infection in animals:
Carriership, reservoir potential, pathogenicity, and zoonotic potential
for human infection. Clin Microbiol Rev 13:428-438.

Brooks JI, Rud EW, Pilon RG, Smith JM, Switzer WM, Sandstrom PA.
2002. Cross-species retroviral transmission from macaques to human
beings. Lancet 360:387-388.

Brown KE, Young NS. 1997. The simian parvoviruses. Rev Med Virol
7:211-218.

Brown KE, Liu Z, Gallinella G, Wong S, Mills IP, O’Sullivan MG. 2004.
Simian parvovirus infection: A potential zoonosis. J Infect Dis 190:
1900-1907.

Bruce AG, Bakke AM, Bielefeldt-Ohmann H, Ryan JT, Thouless ME, Tsai
CC, Rose TM. 2006. High levels of retroperitoneal fibromatosis (RF)-
associated herpesvirus in RF lesions in macaques are associated with
ORF73 LANA expression in spindleoid tumour cells. J Gen Virol 87(Pt
12):3529-3538.

Brusasca PN, Peters RL, Motzel SL, Klein HJ, Gennaro ML. 2003. Anti-
gen recognition by serum antibodies in nonhuman primates experimen-
tally infected with Mycobacterium tuberculosis. Comp Med 53:165-
172.

Bukreyev A, Rollin PE, Tate MK, Yang L, Zaki SR, Shieh WJ, Murphy
BR, Collins PL, Sanchez A. 2007. Successful topical respiratory tract
immunization of primates against Ebola virus. J Virol 81:6379-6388.

Cadavid D, Bai Y, Dail D, Hurd M, Narayan K, Hodzic E, Barthold SW,
Pachner AR. 2003. Infection and inflammation in skeletal muscle from
nonhuman primates infected with different genospecies of the Lyme
disease spirochete Borrelia burgdorferi. Infect Immun 71:7087-7098.

Cadavid D, Bai Y, Hodzic E, Narayan K, Barthold SW, Pachner AR. 2004.
Cardiac involvement in nonhuman primates infected with the Lyme
disease spirochete Borrelia burgdorferi. Lab Invest 84:1439-1450.

Campos M, Pal S, O’Brien TP, Taylor HR, Prendergast RA, Whittum-
Hudson JA. 1995. A chlamydial major outer membrane protein extract
as a trachoma vaccine candidate. Invest Ophthalmol Vis Sci 36:1477-
1491.

Capone S, Meola A, Ercole BB, Vitelli A, Pezzanera M, Ruggeri L, Davies
ME, Tafi R, Santini C, Luzzago A, Fu TM, Bett A, Colloca S, Cortese
R, Nicosia A, Folgori A. 2006a. A novel adenovirus type 6 (Ad6)-
based hepatitis C virus vector that overcomes preexisting anti-ad5 im-
munity and induces potent and broad cellular immune responses in
rhesus macaques. J Virol 80:1688-1699.

Capone S, Zampaglione 1, Vitelli A, Pezzanera M, Kierstead L, Burns J,

Volume 49, Number 2 2008

Ruggeri L, Arcuri M, Cappelletti M, Meola A, Ercole BB, Tafi R,
Santini C, Luzzago A, Fu TM, Colloca S, Ciliberto G, Cortese R,
Nicosia A, Fattori E, Folgori A. 2006b. Modulation of the immune
response induced by gene electrotransfer of a hepatitis C virus DNA
vaccine in nonhuman primates. J Immunol 177:7462-7471.

Capuano SV 3rd, Croix DA, Pawar S, Zinovik A, Myers A, Lin PL, Bissel
S, Fuhrman C, Klein E, Flynn JL. 2003. Experimental Mycobacterium
tuberculosis infection of cynomolgus macaques closely resembles the
various manifestations of human M. tuberculosis infection. Infect Im-
mun 71:5831-5844.

Carbone M, Pass HI. 2006. Evolving aspects of mesothelioma carcinogen-
esis: SV40 and genetic predisposition. J Thorac Oncol 1:169-171.
Carlson CS, O’Sullivan MG, Jayo MJ, Anderson DK, Harber ES, Jerome
WG, Bullock BC, Heberling RL. 1997. Fatal disseminated cercopithe-
cine herpesvirus 1 (herpes B infection in cynomolgus monkeys (Ma-

caca fascicularis). Vet Pathol 34:405-414.

Carlson JR, Chang WL, Zhou SS, Tarantal AF, Barry PA. 2005. Rhesus
brain microvascular endothelial cells are permissive for rhesus cyto-
megalovirus infection. J Gen Virol 86(Pt 3):545-549.

Carvalho CM, Andrade MC, Xavier SS, Mangia RH, Britto CC, Jansen
AM, Fernandes O, Lannes-Vieira J, Bonecini-Almeida MG. 2003.
Chronic Chagas’ disease in rhesus monkeys (Macaca mulatta): Evalu-
ation of parasitemia, serology, electrocardiography, echocardiography,
and radiology. Am J Trop Med Hyg 68:683-691.

Caulfield MJ, Smith JG, Wang S, Capen RC, Blondeau C, Lentsch S,
Arminjon F, Sabouraud A. 2000. Immunogenicity of a hexavalent com-
bination vaccine in rhesus monkeys. Vaccine 19:902-907.

Chan SY, Bernard HU, Ratterree M, Birkebak TA, Faras AJ, Ostrow RS.
1997. Genomic diversity and evolution of papillomaviruses in rhesus
monkeys. J Virol 71:4938-4943.

Chapman WL Jr, Crowell WA. 1977. Amyloidosis in rhesus monkeys with
rheumatoid arthritis and enterocolitis. JAVMA 171:855-858.

Chattopadhyay S, Jiang J, Chan TC, Manetz TS, Chao CC, Ching WM,
Richards AL. 2005. Scrub typhus vaccine candidate Kp r56 induces
humoral and cellular immune responses in cynomolgus monkeys. In-
fect Immun 73:5039-5047.

Chege GK, Steele AD, Hart CA, Snodgrass DR, Omolo EO, Mwenda JM.
2005. Experimental infection of nonhuman primates with a human
rotavirus isolate. Vaccine 23:1522-1528.

Chen TH, Elberg SS. 1976. Priming of Macaca cynomolgus philippinensis
with purified antigen of Brucella melitensis before injection of Rev. |
vaccine. J Infect Dis 134:294-296.

Chen Z, Zhang L, Qin C, Ba L, Yi CE, Zhang F, Wei Q, He T, Yu W, Yu
J, Gao H, Tu X, Gettie A, Farzan M, Yuen KY, Ho DD. 2005. Re-
combinant modified vaccinia virus Ankara expressing the spike glyco-
protein of severe acute respiratory syndrome coronavirus induces
protective neutralizing antibodies primarily targeting the receptor bind-
ing region. J Virol 79:2678-2688.

Chen ZW. 2004. Immunology of AIDS virus and mycobacterial co-
infection. Curr HIV Res 2:351-355.

Chenine AL, Buckley KA, Li PL, Rasmussen RA, Ong H, Jiang S, Wang
T, Augostini P, Secor WE, Ruprecht RM. 2005. Schistosoma mansoni
infection promotes SHIV clade C replication in rhesus macaques. AIDS
19:1793-1797.

Choi YK, Simon MA, Kim DY, Yoon BIl, Kwon SW, Lee KW, Seo IB,
Kim DY. 1999. Fatal measles virus infection in Japanese macaques
(Macaca fuscata). Vet Pathol 36:594-600.

Chomel BB, Kasten RW, Floyd-Hawkins K, Chi B, Yamamoto K, Roberts-
Wilson J, Gurfield AN, Abbott RC, Pedersen NC, Koehler JE. 1996.
Experimental transmission of Bartonella henselae by the cat flea. J Clin
Microbiol 34:1952-1956.

Choo QL, Kuo G, Weiner AJ, Overby LR, Bradley DW, Houghton M.
1989. Isolation of a cDNA clone derived from a blood-borne non-A,
non-B viral hepatitis genome. Science 244:359-362.

Chopra HC, Mason MM. 1970. A new virus in a spontaneous mammary
tumor of a rhesus monkey. Cancer Res 30:2081-2086.

Christe KL, McChesney MB, Spinner A, Rosenthal AN, Allen PC, Val-
verde CR, Roberts JA, Lerche NW. 2002. Comparative efficacy of a

243



canine distemper-measles and a standard measles vaccine for immuni-
zation of rhesus macaques (Macaca mulatta). Comp Med 52:467-472.

Coalson JJ, Archer LT, Hall NK, Kern JD, Benjamin BA, Beller-Todd B,
Hinshaw LB. 1979. Prolonged shock in the monkey following live E
coli organism infusion. Circ Shock 6:343-355.

Coban C, Philipp MT, Purcell JE, Keister DB, Okulate M, Martin DS,
Kumar N. 2004. Induction of Plasmodium falciparum transmission-
blocking antibodies in nonhuman primates by a combination of DNA
and protein immunizations. Infect Immun 72:253-259.

Cohen DW, Goldman HM. 1960. Oral disease in primates. Ann N Y Acad
Sci 85:889-909.

Cohen JK, Kilpatrick AM, Stroud FC, Paul K, Wolf F, Else JG. 2007.
Seroprevalence of West Nile virus in nonhuman primates as related to
mosquito abundance at two national primate research centers. Comp
Med 57:115-119.

Contreras G, Furesz J. 1992. Possible influence of measles virus infection
of cynomolgus monkeys on the outcome of the neurovirulence test for
oral poliovirus vaccine. Biologicals 20:27-33.

Cosgriff TM, Morrill JC, Jennings GB, Hodgson LA, Slayter MV, Gibbs
PH, Peters CJ. 1989. Hemostatic derangement produced by Rift Valley
fever virus in rhesus monkeys. Rev Infect Dis 11 (Suppl 4):S807-S814.

Courgnaud V, Van Dooren S, Liegeois F, Pourrut X, Abela B, Loul S,
Mpoudi-Ngole E, Vandamme A, Delaporte E, Peeters M. 2004. Simian
T cell leukemia virus (STLV) infection in wild primate populations in
Cameroon: Evidence for dual STLV type 1 and type 3 infection in agile
mangabeys (Cercocebus agilis). J Virol 78:4700-4709.

Custer DM, Thompson E, Schmaljohn CS, Ksiazek TG, Hooper JW. 2003.
Active and passive vaccination against hantavirus pulmonary syndrome
with Andes virus M genome segment-based DNA vaccine. J Virol
77:9894-9905.

Cypess RH, Lubiniecki A, DeSeau V, Siebert JR. 1977. Observations on
trichinosis in the rhesus monkey. J Med Primatol 6:23-32.

Daddario-DiCaprio KM, Geisbert TW, Geisbert JB, Stroher U, Hensley
LE, Grolla A, Fritz EA, Feldmann F, Feldmann H, Jones SM. 2006a.
Cross-protection against Marburg virus strains by using a live, attenu-
ated recombinant vaccine. J Virol 80:9659-9666.

Daddario-DiCaprio KM, Geisbert TW, Stroher U, Geisbert JB, Grolla A,
Fritz EA, Fernando L, Kagan E, Jahrling PB, Hensley LE, Jones SM,
Feldmann H. 2006b. Postexposure protection against Marburg haem-
orrhagic fever with recombinant vesicular stomatitis virus vectors in
nonhuman primates: An efficacy assessment. Lancet 367:1399-1404.

Dalgard DW, Hardy RJ, Pearson SL, Pucak GJ, Quander RV, Zack PM,
Peters CJ, Jahrling PB. 1992. Combined simian hemorrhagic fever and
Ebola virus infection in cynomolgus monkeys. Lab Anim Sci 42:152-
157.

Daniel MD, Kirchhoff F, Czajak SC, Sehgal PK, Desrosiers RC. 1992.
Protective effects of a live attenuated SIV vaccine with a deletion in the
nef gene. Science 258:1938-1941.

Darwin C. 1839. Narrative of the Surveying Voyages of His Majesty’s
Ships Adventure and Beagle between the Years 1826 and 1836. Lon-
don: H. Colburn.

De Swart RL, Kuiken T, Timmerman HH, van Amerongen G, Van Den
Hoogen BG, Vos HW, Neijens HJ, Andeweg AC, Osterhaus AD. 2002.
Immunization of macaques with formalin-inactivated respiratory syn-
cytial virus (RSV) induces interleukin-13-associated hypersensitivity to
subsequent RSV infection. J Virol 76:11561-11569.

De Swart RL, Kuiken T, Fernandez-de Castro J, Papania MJ, Bennett JV,
Valdespino JL, Minor P, Witham CL, Yuksel S, Vos H, van Ameron-
gen G, Osterhaus AD. 2006. Aerosol measles vaccination in macaques:
Preclinical studies of immune responses and safety. Vaccine 24:6424-
6436.

De Waal L, Wyatt LS, Yuksel S, van Amerongen G, Moss B, Niesters HG,
Osterhaus AD, de Swart RL. 2004. Vaccination of infant macaques
with a recombinant modified vaccinia virus Ankara expressing the
respiratory syncytial virus F and G genes does not predispose for im-
munopathology. Vaccine 22:923-926.

Dean CH, Alarcon JB, Waterston AM, Draper K, Early R, Guirakhoo F,
Monath TP, Mikszta JA. 2005. Cutaneous delivery of a live, attenuated

244

chimeric flavivirus vaccine against Japanese encephalitis (Chimeri-
Vax)-JE) in nonhuman primates. Hum Vaccin 1:106-111.

Dezzutti CS, Frazier DE, Olsen RG. 1990. Efficacy of an HTLV-1 subunit
vaccine in prevention of a STLV-1 infection in pigtail macaques. Dev
Biol Stand 72:287-96.

Di Giulio DB, Eckburg PB. 2004. Human monkeypox: An emerging zoo-
nosis. Lancet Infect Dis 4:15-25.

DiNapoli JM, Yang L, Suguitan A Jr, Elankumaran S, Dorward DW,
Murphy BR, Samal SK, Collins PL, Bukreyev A. 2007. Immunization
of primates with a Newcastle disease virus-vectored vaccine via the
respiratory tract induces a high titer of serum neutralizing antibodies
against highly pathogenic avian influenza virus. J Virol 81:11560-
11568.

Dittmer DP, Gonzalez CM, Vahrson W, DeWire SM, Hines-Boykin R,
Damania B. 2005. Whole-genome transcription profiling of rhesus
monkey rhadinovirus. J Virol 79:8637-8650.

Djavani MM, Crasta OR, Zapata JC, Fei Z, Folkerts O, Sobral B, Swindells
M, Bryant J, Davis H, Pauza CD, Lukashevich IS, Hammamieh R, Jett
M, Salvato MS. 2007. Early blood profiles of virus infection in a
monkey model for lassa fever. J Virol 81:7960-7973.

Doi SQ, Kimbason T, Reindel J, Dubois A. 2005. Molecular characteriza-
tion of Helicobacter pylori strains isolated from cynomolgus monkeys
(M. fascicularis). Vet Microbiol 108:133-139.

Donnelly JJ, Taylor HR, Young E, Khatami M, Lok JB, Rockey JH. 1986.
Experimental ocular onchocerciasis in cynomolgus monkeys. Invest
Ophthalmol Vis Sci 27:492-499.

Dubois A, Fiala N, Heman-Ackah LM, Drazek ES, Tarnawski A, Fishbein
WN, Perez-Perez GI, Blaser MJ. 1994. Natural gastric infection with
Helicobacter pylori in monkeys: A model for spiral bacteria infection
in humans. Gastroenterology 106:1405-1417.

Dubois A, Fiala N, Weichbrod RH, Ward GS, Nix M, Mehlman PT, Taub
DM, Perez-Perez Gl, Blaser MJ. 1995. Seroepizootiology of Helico-
bacter pylori gastric infection in nonhuman primates housed in social
environments. J Clin Microbiol 33:1492-1495.

Dubois A, Lee CK, Fiala N, Kleanthous H, Mehlman PT, Monath T. 1998.
Immunization against natural Helicobacter pylori infection in nonhu-
man primates. Infect Immun 66:4340-4346.

Dutta S, Kaushal DC, Ware LA, Puri SK, Kaushal NA, Narula A, Up-
adhyaya DS, Lanar DE. 2005. Merozoite surface protein 1 of Plasmo-
dium vivax induces a protective response against Plasmodium
cynomolgi challenge in rhesus monkeys. Infect Immun 73:5936-5944.

Earl PL, Americo JL, Wyatt LS, Eller LA, Whitbeck JC, Cohen GH,
Eisenberg RJ, Hartmann CJ, Jackson DL, Kulesh DA, Martinez MJ,
Miller DM, Mucker EM, Shamblin JD, Zwiers SH, Huggins JW, Jahr-
ling PB, Moss B. 2004. Immunogenicity of a highly attenuated MVA
smallpox vaccine and protection against monkeypox. Nature 428:182-
185.

Edghill-Smith Y, Bray M, Whitehouse CA, Miller D, Mucker E, Manisch-
ewitz J, King LR, Robert-Guroff M, Hryniewicz A, Venzon D, Meseda
C, Weir J, Nalca A, Livingston V, Wells J, Lewis MG, Huggins J,
Zwiers SH, Golding H, Franchini G. 2005a. Smallpox vaccine does not
protect macaques with AIDS from a lethal monkeypox virus challenge.
J Infect Dis 191:372-381.

Edghill-Smith Y, Golding H, Manischewitz J, King LR, Scott D, Bray M,
Nalca A, Hooper JW, Whitehouse CA, Schmitz JE, Reimann KA,
Franchini G. 2005b. Smallpox vaccine-induced antibodies are neces-
sary and sufficient for protection against monkeypox virus. Nat Med
11:740-747.

Ekanayake DK, Rajapakse RP, Dubey JP, Dittus WP. 2004. Seropreva-
lence of Toxoplasma gondii in wild toque macaques (Macaca sinica) at
Polonnaruwa, Sri Lanka. J Parasitol 90:870-871.

Engel G, Hungerford LL, Jones-Engel L, Travis D, Eberle R, Fuentes A,
Grant R, Kyes R, Schillaci M. 2006. Risk assessment: A model for
predicting cross-species transmission of simian foamy virus from ma-
caques (M. fascicularis) to humans at a monkey temple in Bali, Indo-
nesia. Am J Primatol 68:934-948.

Escalante AA, Barrio E, Ayala FJ. 1995. Evolutionary origin of human and

ILAR Journal



primate malarias: Evidence from the circumsporozoite protein gene.
Mol Biol Evol 12:616-626.

Escalante AA, Cornejo OE, Freeland DE, Poe AC, Durrego E, Collins WE,
Lal AA. 2005. A monkey’s tale: The origin of Plasmodium vivax as a
human malaria parasite. Proc Natl Acad Sci U S A 102:1980-1985.

Espana C, Gajdusek DC, Gibbs CJ Jr, Osburn BI, Gribble DH, Cardinet
GH, Chanock RM. 1975. Transmission of Creutzfeldt-Jakob disease to
the stumptail macaque (Macaca arctoides). Proc Soc Exp Biol Med
149:723-724.

Estep RD, Powers MF, Yen BK, Li H, Wong SW. 2007. Construction of
an infectious rhesus rhadinovirus bacterial artificial chromosome for
the analysis of Kaposi’s sarcoma-associated herpesvirus-related disease
development. J Virol 81:2957-2969.

Fallon PG, Gibbons J, Vervenne RA, Richardson EJ, Fulford AJ, Kiarie S,
Sturrock RF, Coulson PS, Deelder AM, Langermans JA, Thomas AW,
Dunne DW. 2003. Juvenile rhesus monkeys have lower type 2 cytokine
responses than adults after primary infection with Schistosoma man-
soni. J Infect Dis 187:939-945.

Farber JM, Daley E, Coates F, Beausoleil N, Fournier J. 1991. Feeding
trials of Listeria monocytogenes with a nonhuman primate model. J
Clin Microbiol 29:2606-2608.

Feichtinger H, Li SL, Kaaya E, Putkonen P, Grunewald K, Weyrer K,
Bottiger D, Ernberg I, Linde A, Biberfeld G. 1992. A monkey model
for Epstein Barr virus-associated lymphomagenesis in human acquired
immunodeficiency syndrome. J Exp Med 176:281-286.

Fernandez KR, Hansen LM, Vandamme P, Beaman BL, Solnick JV. 2002.
Captive rhesus monkeys (Macaca mulatta) are commonly infected with
Helicobacter cinaedi. J Clin Microbiol 40:1908-1912.

Fisher-Hoch SP, McCormick JB, Auperin D, Brown BG, Castor M, Perez
G, Ruo S, Conaty A, Brammer L, Bauer S. 1989. Protection of rhesus
monkeys from fatal Lassa fever by vaccination with a recombinant
vaccinia virus containing the Lassa virus glycoprotein gene. Proc Natl
Acad Sci U S A 86:317-321.

Fisher-Hoch SP, Mitchell SW, Sasso DR, Lange JV, Ramsey R, McCor-
mick JB. 1987. Physiological and immunologic disturbances associated
with shock in a primate model of Lassa fever. J Infect Dis 155:465-474.

Fisher-Hoch SP, Hutwagner L, Brown B, McCormick JB. 2000. Effective
vaccine for lassa fever. J Virol 74:6777-6783.

Fitzgeorge RB, Baskerville A, Lander KP. 1981. Experimental infection of
Rhesus monkeys with a human strain of Campylobacter jejuni. J Hyg
(Lond) 86:343-351.

Focher F, Lossani A, Verri A, Spadari S, Maioli A, Gambino JJ, Wright
GE, Eberle R, Black DH, Medveczky P, Medveczky M, Shugar D.
2007. Sensitivity of monkey B virus (Cercopithecine herpesvirus 1) to
antiviral drugs: Role of thymidine kinase in antiviral activities of sub-
strate analogs and acyclonucleosides. Antimicrob Agents Ch 51:2028-
2034.

Fogg MH, Garry D, Awad A, Wang F, Kaur A. 2006. The BZLF1 homolog
of an Epstein-Barr-related gamma-herpesvirus is a frequent target of
the CTL response in persistently infected rhesus macaques. J Immunol
176:3391-3401.

Foley JE, Lerche NW, Dumler JS, Madigan JE. 1999. A simian model of
human granulocytic ehrlichiosis. Am J Trop Med Hyg 60:987-993.
Foucault C, Brouqui P, Raoult D. 2006. Bartonella quintana characteristics

and clinical management. Emerg Infect Dis 12:217-223.

Fritz DL, Jaax NK, Lawrence WB, Davis KJ, Pitt ML, Ezzell JW, Fried-
lander AM. 1995. Pathology of experimental inhalation anthrax in the
rhesus monkey. Lab Invest 73:691-702.

Frolova MP, Isachkova LM, Shestopalova NM, Pogodina VV. 1985. Ex-
perimental encephalitis in monkeys caused by the Powassan virus.
Neurosci Behav Physiol 15:62-69.

Fultz PN, McGinn T, Davis IC, Romano JW, Li Y. 1999. Coinfection of
macaques with simian immunodeficiency virus and simian T cell leu-
kemia virus type |: Effects on virus burdens and disease progression. J
Infect Dis 179:600-611.

Gajdusek DC, Gibbs CJ Jr. 1971. Transmission of two subacute spongi-
form encephalopathies of man (Kuru and Creutzfeldt-Jakob disease) to
new world monkeys. Nature 230:588-591.

Volume 49, Number 2 2008

Gallinella G, Zuffi E, Gentilomi G, Manaresi E, Venturoli S, Bonvicini F,
Cricca M, Zerbini M, Musiani M. 2003. Relevance of B19 markers in
serum samples for a diagnosis of parvovirus B19-correlated diseases. J
Med Virol 71:135-139.

Gao W, Tamin A, Soloff A, D’Aiuto L, Nwanegbo E, Robbins PD, Bellini
WJ, Barratt-Boyes S, Gambotto A. 2003. Effects of a SARS-associated
coronavirus vaccine in monkeys. Lancet 362:1895-1896.

Gardner MB. 1996. The history of simian AIDS. J Med Primatol 25:148-
157.

Gardner MB, Luciw P, Lerche N, Marx P. 1988. Nonhuman primate ret-
rovirus isolates and AIDS. Adv Vet Sci Comp Med 32:171-226.
Gardner MB, Jennings M, Carlson JR, Lerche N, McGraw T, Luciw P,
Marx P, Pedersen N. 1989. Postexposure immunotherapy of simian
immunodeficiency virus (SIV) infected rhesus with an SIV immuno-

gen. J Med Primatol 18:321-328.

Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, Carlton
JM, Pain A, Nelson KE, Bowman S, Paulsen IT, James K, Eisen JA,
Rutherford K, Salzberg SL, Craig A, Kyes S, Chan MS, Nene V,
Shallom SJ, Suh B, Peterson J, Angiuoli S, Pertea M, Allen J, Selengut
J, Haft D, Mather MW, Vaidya AB, Martin DM, Fairlamb AH, Fraun-
holz MJ, Roos DS, Ralph SA, McFadden GI, Cummings LM, Subra-
manian GM, Mungall C, Venter JC, Carucci DJ, Hoffman SL, Newbold
C, Davis RW, Fraser CM, Barrell B. 2002. Genome sequence of the
human malaria parasite Plasmodium falciparum. Nature 419:498-511.

Gardner MB, Carlos MP, Luciw PA. 2004. Simian retroviruses. In: Worm-
ser GP, ed. AIDS and Other Manifestations of HIV Infection, 4™ ed.
Amsterdam: Elsevier Academic Press.

Gaynor AM, Nissen MD, Whiley DM, Mackay IM, Lambert SB, Wu G,
Brennan DC, Storch GA, Sloots TP, Wang D. 2007. Identification of a
novel polyomavirus from patients with acute respiratory tract infec-
tions. PLoS Pathog 3:e64.

Geisbert TW, Pushko P, Anderson K, Smith J, Davis KJ, Jahrling PB.
2002. Evaluation in nonhuman primates of vaccines against Ebola vi-
rus. Emerg Infect Dis 8:503-507.

Geisbert TW, Hensley LE, Jahrling PB, Larsen T, Geisbert JB, Paragas J,
Young HA, Fredeking TM, Rote WE, Vlasuk GP. 2003a. Treatment of
Ebola virus infection with a recombinant inhibitor of factor Vlla/tissue
factor: A study in rhesus monkeys. Lancet 362:1953-1958.

Geisbert TW, Young HA, Jahrling PB, Davis KJ, Larsen T, Kagan E,
Hensley LE. 2003b. Pathogenesis of Ebola hemorrhagic fever in pri-
mate models: Evidence that hemorrhage is not a direct effect of virus-
induced cytolysis of endothelial cells. Am J Pathol 163:2371-2382.

Geisbert TW, Jones S, Fritz EA, Shurtleff AC, Geisbert JB, Liebscher R,
Grolla A, Stroher U, Fernando L, Daddario KM, Guttieri MC, Mothe
BR, Larsen T, Hensley LE, Jahrling PB, Feldmann H. 2005. Develop-
ment of a new vaccine for the prevention of Lassa fever. PLoS Med
2:¢183.

Ghedin E, Wang S, Spiro D, Caler E, Zhao Q, Crabtree J, Allen JE, Delcher
AL, Guiliano DB, Miranda-Saavedra D, Angiuoli SV, Creasy T,
Amedeo P, Haas B, El-Sayed NM, Wortman JR, Feldblyum T, Tallon
L, Schatz M, Shumway M, Koo H, Salzberg SL, Schobel S, Pertea M,
Pop M, White O, Barton GJ, Carlow CK, Crawford MJ, Daub J, Dim-
mic MW, Estes CF, Foster JM, Ganatra M, Gregory WF, Johnson NM,
Jin J, Komuniecki R, Korf I, Kumar S, Laney S, Li BW, Li W, Lind-
blom TH, Lustigman S, Ma D, Maina CV, Martin DM, McCarter JP,
McReynolds L, Mitreva M, Nutman TB, Parkinson J, Peregrin-Alvarez
JM, Poole C, Ren Q, Saunders L, Sluder AE, Smith K, Stanke M,
Unnasch TR, Ware J, Wei AD, Weil G, Williams DJ, Zhang Y, Wil-
liams SA, Fraser-Liggett C, Slatko B, Blaxter ML, Scott AL. 2007.
Draft genome of the filarial nematode parasite Brugia malayi. Science
317:1756-1760.

Gheit T, Sekkat S, Cova L, Chevallier M, Petit MA, Hantz O, Lesenechal
M, Benslimane A, Trepo C, Chemin I. 2002. Experimental transfection
of Macaca sylvanus with cloned human hepatitis B virus. J Gen Virol
83(Pt 7):1645-1649.

Gibbs CJ Jr, Gajdusek DC. 1973. Experimental subacute spongiform virus
encephalopathies in primates and other laboratory animals. Science
182:67-68.

245



Giddens WE Jr, Tsai CC, Morton WR, Ochs HD, Knitter GH, Blakley GA.
1985. Retroperitoneal fibromatosis and acquired immunodeficiency
syndrome in macaques: Pathologic observations and transmission stud-
ies. Am J Pathol 119:253-263.

Goldstein S, Ourmanov I, Brown CR, Plishka R, Buckler-White A, Byrum
R, Hirsch VM. 2005. Plateau levels of viremia correlate with the degree
of CD4+-T-cell loss in simian immunodeficiency virus SIVagm-
infected pigtail macaques: Variable pathogenicity of natural SIVagm
isolates. J Virol 79:5153-5162.

Gonder JC, Kishimoto RA, Kastello MD, Pedersen CE Jr, Larson EW.
1979. Cynomolgus monkey model for experimental Q fever infection.
J Infect Dis 139:191-196.

Gonder JC, Kenyon RH, Pedersen CE Jr. 1980. Epidemic typhus infection
in cynomolgus monkeys (Macaca fascicularis). Infect Immun 30:219-
223.

Good RC. 1968. Biology of the mycobacterioses: Simian tuberculosis:
Immunologic aspects. Ann N 'Y Acad Sci 154:200-213.

Gormus BJ, Xu K, Baskin GB, Martin LN, Bohm RP Jr, Blanchard JL,
Mack PA, Ratterree MS, Meyers WM, Walsh GP. 1998. Experimental
leprosy in rhesus monkeys: Transmission, susceptibility, clinical and
immunological findings. Lepr Rev 69:235-245.

Gormus BJ, Baskin GB, Xu K, Ratterree MS, Mack PA, Bohm RP Jr,
Meyers WM, Walsh GP. 2002. Anti-leprosy protective vaccination of
rhesus monkeys with BCG or BCG plus heat-killed Mycobacterium
leprae: Lepromin skin test results. Lepr Rev 73:254-261.

Goverdhan MK, Kulkarni AB, Gupta AK, Tupe CD, Rodrigues JJ. 1992.
Two-way cross-protection between West Nile and Japanese encepha-
litis viruses in bonnet macaques. Acta Virol 36:277-283.

Graczyk TK, Cranfield MR, Kempske SE, Eckhaus MA. 1995. Fulminant
Streptococcus pneumoniae meningitis in a lion-tailed macaque (Ma-
caca silenus) without detected signs. J Wildl Dis 31:75-78.

Graff J, Nguyen H, Yu C, Elkins WR, St Claire M, Purcell RH, Emerson
SU. 2005. The open reading frame 3 gene of hepatitis E virus contains
a cis-reactive element and encodes a protein required for infection of
macaques. J Virol 79:6680-6689.

Graffe A. 1991. A History of Experimental Virology. Berlin: Springer-
Verlag.

Graham BS, Mascola JR. 2005. Lessons from failure: Preparing for future
HIV-1 vaccine efficacy trials. J Infect Dis 191:647-649.

Gray WL. 2004. Simian varicella: A model for human varicella-zoster
virus infections. Rev Med Virol 14:363-381.

Gray WL, Oakes JE. 1984. Simian varicella virus DNA shares homology
with human varicella-zoster virus DNA. Virology 136:241-246.

Gray WL, Starnes B, White MW, Mahalingham R. 2001. The DNA se-
quence of the simian varicella virus genome. Virology 284:124-130.

Green LC, Didier PJ, Bowers LC, Didier ES. 2004. Natural and experi-
mental infection of immunocompromised rhesus macaques (Macaca
mulatta) with the microsporidian Enterocytozoon bieneusi genotype D.
Microbes Infect 6:996-1002.

Groen J, Gerding M, Koeman JP, Roholl PJ, van Amerongen G, Jordans
HG, Niesters HG, Osterhaus AD. 1995. A macaque model for hanta-
virus infection. J Infect Dis 172:38-44.

Guirakhoo F, Pugachev K, Zhang Z, Myers G, Levenbook |, Draper K,
Lang J, Ocran S, Mitchell F, Parsons M, Brown N, Brandler S, Fournier
C, Barrere B, Rizvi F, Travassos A, Nichols R, Trent D, Monath T.
2004. Safety and efficacy of chimeric yellow fever-dengue virus tet-
ravalent vaccine formulations in nonhuman primates. J Virol 78:4761-
4TT75.

Haagmans BL, Kuiken T, Martina BE, Fouchier RA, Rimmelzwaan GF,
van Amerongen G, van Riel D, de Jong T, Itamura S, Chan KH,
Tashiro M, Osterhaus AD. 2004. Pegylated interferon-alpha protects
type 1 pneumocytes against SARS coronavirus infection in macaques.
Nat Med 10:290-293.

Haase AT. 2005. Perils at mucosal front lines for HIV and SIV and their
hosts. Nat Rev Immunol 5:783-792.

Habis A, Baskin G, Simpson L, Fortgang |, Murphey-Corb M, Levy LS.
2000. Rhesus lymphocryptovirus infection during the progression of

246

SAIDS and SAIDS-associated lymphoma in the rhesus macaque. AIDS
Res Hum Retrov 16:163-171.

Hambleton P, Stephenson JR, Baskerville A, Wiblin CN. 1983. Pathogen-
esis and immune response of vaccinated and unvaccinated rhesus mon-
keys to tick-borne encephalitis virus. Infect Immun 40:995-1003.

Hansen SG, Strelow LI, Franchi DC, Anders DG, Wong SW. 2003. Com-
plete sequence and genomic analysis of rhesus cytomegalovirus. J Virol
77:6620-6636.

Hawley HB, Yamada T, Mosher DF, Fine DP, Berendt RF. 1977. Dis-
seminated intravascular coagulopathy during experimental pneumococ-
cal sepsis: Studies in normal and asplenic rhesus monkeys. J Med
Primatol 6:203-218.

Heise C, Vogel P, Miller CJ, Halsted CH, Dandekar S. 1993. Simian
immunodeficiency virus infection of the gastrointestinal tract of rhesus
macaques: Functional, pathological, and morphological changes. Am J
Pathol 142:1759-1771.

Hepler RW, Kelly R, McNeely TB, Fan H, Losada MC, George HA,
Woods A, Cope LD, Bansal A, Cook JC, Zang G, Cohen SL, Wei X,
Keller PM, Leffel E, Joyce JG, Pitt L, Schultz LD, Jansen KU, Kurtz
M. 2006. A recombinant 63-kDa form of Bacillus anthracis protective
antigen produced in the yeast Saccharomyces cerevisiae provides pro-
tection in rabbit and primate inhalational challenge models of anthrax
infection. Vaccine 24:1501-1514.

Heppner DG Jr, Kester KE, Ockenhouse CF, Tornieporth N, Ofori O, Lyon
JA, Stewart VA, Dubois P, Lanar DE, Krzych U, Moris P, Angov E,
Cummings JF, Leach A, Hall BT, Dutta S, Schwenk R, Hillier C,
Barbosa A, Ware LA, Nair L, Darko CA, Withers MR, Ogutu B,
Polhemus ME, Fukuda M, Pichyangkul S, Gettyacamin M, Diggs C,
Soisson L, Milman J, Dubois MC, Garcon N, Tucker K, Wittes J,
Plowe CV, Thera MA, Duombo OK, Pau MG, Goudsmit J, Ballou WR,
Cohen J. 2005. Towards an RTS,S-based, multi-stage, multi-antigen
vaccine against falciparum malaria: Progress at the Walter Reed Army
Institute of Research. Vaccine 23:2243-2250.

Heraud JM, Edghill-Smith Y, Ayala V, Kalisz I, Parrino J, Kalyanaraman
VS, Manischewitz J, King LR, Hryniewicz A, Trindade CJ, Hassett M,
Tsai WP, Venzon D, Nalca A, Vaccari M, Silvera P, Bray M, Graham
BS, Golding H, Hooper JW, Franchini G. 2006. Subunit recombinant
vaccine protects against monkeypox. J Immunol 177:2552-2564.

Herchenroder O, Renne R, Loncar D, Cobb EK, Murthy KK, Schneider J,
Mergia A, Luciw PA. 1994, Isolation, cloning, and sequencing of sim-
ian foamy viruses from chimpanzees (SFVcpz): High homology to
human foamy virus (HFV). Virology 201:187-199.

Herzog C, Riviere J, Lescoutra-Etchegaray N, Charbonnier A, Leblanc V,
Sales N, Deslys JP, Lasmezas Cl. 2005. PrPTSE distribution in a pri-
mate model of variant, sporadic, and iatrogenic Creutzfeldt-Jakob dis-
ease. J Virol 79:14339-14345.

Hessell AJ, Hangartner L, Hunter M, Havenith CE, Beurskens FJ, Bakker
JM, Lanigan CM, Landucci G, Forthal DN, Parren PW, Marx PA,
Burton DR. 2007. Fc receptor but not complement binding is important
in antibody protection against HIV. Nature 449:101-104.

Hevey M, Negley D, Pushko P, Smith J, Schmaljohn A. 1998. Marburg
virus vaccines based upon alphavirus replicons protect guinea pigs and
nonhuman primates. Virology 251:28-37.

Hicks JT, Sullivan JL, Albrecht P. 1977. Immune responses during measles
infection in immunosuppressed Rhesus monkeys. J Immunol 119:
1452-1456.

Higashi K, Asada H, Kurata T, Ishikawa K, Hayami M, Spriatna Y, Su-
tarman Y, Yamanishi K. 1989. Presence of antibody to human herpes-
virus 6 in monkeys. J Gen Virol 70 (Pt 12):3171-3176.

Hirano M, Ding X, Tran HT, Li TC, Takeda N, Sata T, Nakamura S, Abe
K. 2003. Prevalence of antibody against hepatitis E virus in various
species of nonhuman primates: Evidence of widespread infection in
Japanese monkeys (Macaca fuscata). Jpn J Infect Dis 56:8-11.

Hirsch VM, Olmsted RA, Murphey-Corb M, Purcell RH, Johnson PR.
1989. An African primate lentivirus (SIVsm) closely related to HIV-2.
Nature 339:389-392.

Hoffman SJ, Polack FP, Hauer DA, Singh M, Billeter MA, Adams RJ,
Griffin DE. 2003. Vaccination of rhesus macaques with a recombinant

ILAR Journal



measles virus expressing interleukin-12 alters humoral and cellular
immune responses. J Infect Dis 188:1553-1561.

Honko AN, Sriranganathan N, Lees CJ, Mizel SB. 2006. Flagellin is an
effective adjuvant for immunization against lethal respiratory challenge
with Yersinia pestis. Infect Immun 74:1113-1120.

Hooper JW, Thompson E, Wilhelmsen C, Zimmerman M, Ichou MA,
Steffen SE, Schmaljohn CS, Schmaljohn AL, Jahrling PB. 2004. Small-
pox DNA vaccine protects nonhuman primates against lethal monkey-
pox. J Virol 78:4433-4443.

Hooper JW, Custer DM, Smith J, Wahl-Jensen V. 2006. Hantaan/Andes
virus DNA vaccine elicits a broadly cross-reactive neutralizing anti-
body response in nonhuman primates. Virology 347:208-216.

Hotez PJ, Molyneux DH, Fenwick A, Kumaresan J, Sachs SE, Sachs JD,
Savioli L. 2007. Control of neglected tropical diseases. N Engl J Med
357:1018-1027.

Hubbert WT. 1969. Melioidosis: Sources and potential. Wildl Dis 5:208-
212.

Huff JL, Hansen LM, Solnick JV. 2004. Gastric transcription profile of
Helicobacter pylori infection in the rhesus macaque. Infect Immun
72:216-226.

Hull RN. 1971. B virus vaccine. Lab Anim Sci 21:1068-1071.

Hunsmann G, Schneider J, Schmitt J, Yamamoto N. 1983. Detection of
serum antibodies to adult T cell leukemia virus in nonhuman primates
and in people from Africa. Int J Cancer 32:329-332.

Hutin YJ, Williams RJ, Malfait P, Pebody R, Loparev VN, Ropp SL,
Rodriguez M, Knight JC, Tshioko FK, Khan AS, Szczeniowski MV,
Esposito JJ. 2001. Outbreak of human monkeypox, Democratic Re-
public of Congo, 1996 to 1997. Emerg Infect Dis 7:434-438.

lgarashi T, lyengar R, Byrum RA, Buckler-White A, Dewar RL, Buckler
CE, Lane HC, Kamada K, Adachi A, Martin MA. 2007. Human im-
munodeficiency virus type 1 derivative with 7% simian immunodefi-
ciency virus genetic content is able to establish infections in pig-tailed
macaques. J Virol 81:11549-11552.

llyinskii PO, Daniel MD, Horvath CJ, Desrosiers RC. 1992. Genetic analy-
sis of simian virus 40 from brains and kidneys of macaque monkeys. J
Virol 66:6353-6360.

Inoue S, Morita K, Matias RR, Tuplano JV, Resuello RR, Candelario JR,
Cruz DJ, Mapua CA, Hasebe F, lgarashi A, Natividad FF. 2003. Dis-
tribution of three arbovirus antibodies among monkeys (Macaca fas-
cicularis) in the Philippines. J Med Primatol 32:89-94.

Ivanoff B, Tayot JL, Creach O, Fontanges R. 1978. Experimental cholera
in monkeys. Bull Soc Pathol Exot Filiales 71:240-248.

Jahrling PB, Peters CJ. 1984. Passive antibody therapy of Lassa fever in
cynomolgus monkeys: Importance of neutralizing antibody and Lassa
virus strain. Infect Immun 44:528-533.

Jahrling PB, Peters CJ, Stephen EL. 1984. Enhanced treatment of Lassa
fever by immune plasma combined with ribavirin in cynomolgus mon-
keys. J Infect Dis 149:420-427.

Jahrling PB, Hensley LE, Martinez MJ, Leduc JW, Rubins KH, Relman
DA, Huggins JW. 2004. Exploring the potential of variola virus infec-
tion of cynomolgus macaques as a model for human smallpox. Proc
Natl Acad Sci U S A 101:15196-15200.

Jainkittivong A, Langlais RP. 1998. Herpes B virus infection. Oral Surg
Oral Med O 85:399-403.

Ji XH, Sun KY, Feng YH, Yin GQ. 2004. Changes of inflammation-
associated cytokine expressions during early phase of experimental
endotoxic shock in macaques. World J Gastroenterol 10:3026-3033.

Johnson DR, Azuolas J, Lavender CJ, Wishart E, Stinear TP, Hayman JA,
Brown L, Jenkin GA, Fyfe JAM. 2007. Mycobacterium ulcernas in
mosquitos captured during outbreak of Buruli ulcer, Southeastern Aus-
tralia. Emerg Inf Dis 13:1653-1660.

Johnson PD, Stinear T, Small PL, Pluschke G, Merritt RW, Portaels F,
Huygen K, Hayman JA, Asiedu K. 2005. Buruli ulcer (M. ulcerans
infection): New insights, new hope for disease control. PLoS Med
2:¢108.

Jones-Engel L, Engel GA, Schillaci MA, Rompis A, Putra A, Suaryana
KG, Fuentes A, Beer B, Hicks S, White R, Wilson B, Allan JS. 2005.

Volume 49, Number 2 2008

Primate-to-human retroviral transmission in Asia. Emerg Infect Dis
11:1028-1035.

Jones-Engel L, Engel GA, Schillaci MA, Lee B, Heidrich J, Chalise M,
Kyes RC. 2006. Considering human-primate transmission of measles
virus through the prism of risk analysis. Am J Primatol 68:868-879.

Kamili S, Spelbring J, Carson D, Krawczynski K. 2004. Protective efficacy
of hepatitis E virus DNA vaccine administered by gene gun in the
cynomolgus macaque model of infection. J Infect Dis 189:258-264.

Kang G, Pulimood AB, Koshi R, Hull A, Acheson D, Rajan P, Keusch GT,
Mathan VI, Mathan MM. 2001. A monkey model for enterohemor-
rhagic Escherichia coli infection. J Infect Dis 184:206-210.

Kao LM, Bush K, Barnewall R, Estep J, Thalacker FW, Olson PH, Dru-
sano GL, Minton N, Chien S, Hemeryck A, Kelley MF. 2006. Phar-
macokinetic considerations and efficacy of levofloxacin in an
inhalational anthrax (postexposure) rhesus monkey model. Antimicrob
Agents Ch 50:3535-3552.

Karlen A. 1995. Man and Microbes. New York: Touchstone.

Kasa TJ, Lathrop GD, Dupuy HJ, Bonney CH, Toft JD. 1977. An endemic
focus of Trypanosoma cruzi infection in a subhuman primate research
colony. JAVMA 171:850-854.

Kawai HF, Koji T, lida F, Kaneko S, Kobayashi K, Nakane PK. 1999. Shift
of hepatitis E virus RNA from hepatocytes to biliary epithelial cells
during acute infection of rhesus monkey. J Viral Hepat 6:287-297.

Kawai S, Matsumoto J, Aikawa M, Matsuda H. 2003. Increased plasma
levels of soluble intercellular adhesion molecule-1 (SICAM-1) and
soluble vascular cell molecule-1 (SVCAM-1) associated with disease
severity in a primate model for severe human malaria: Plasmodium
coatneyi-infected Japanese macaques (Macaca fuscata). J Vet Med Sci
65:629-631.

Keele BF, Van Heuverswyn F, Li Y, Bailes E, Takehisa J, Santiago ML,
Bibollet-Ruche F, Chen Y, Wain LV, Liegeois F, Loul S, Ngole EM,
Bienvenue Y, Delaporte E, Brookfield JF, Sharp PM, Shaw GM,
Peeters M, Hahn BH. 2006. Chimpanzee reservoirs of pandemic and
nonpandemic HIV-1. Science 313:523-526.

Kelly DJ, Chulay JD, Mikesell P, Friedlander AM. 1992. Serum concen-
trations of penicillin, doxycycline, and ciprofloxacin during prolonged
therapy in rhesus monkeys. J Infect Dis 166:1184-1187.

Kennedy FM, Astbury J, Needham JR, Cheasty T. 1993. Shigellosis due to
occupational contact with nonhuman primates. Epidemiol Infect 110:
247-251.

Kenyon RH, Rippy MK, McKee KT Jr, Zack PM, Peters CJ. 1992. Infec-
tion of Macaca radiata with viruses of the tick-borne encephalitis
group. Microb Pathog 13:399-409.

Kestler HW 3rd, Ringler DJ, Mori K, Panicali DL, Sehgal PK, Daniel MD,
Desrosiers RC. 1991. Importance of the nef gene for maintenance of
high virus loads and for development of AIDS. Cell 65:651-662.

Kinsey MD, Formal SB, Dammin GJ, Giannella RA. 1976. Fluid and
electrolyte transport in rhesus monkeys challenged intracecally with
Shigella flexneri 2a. Infect Immun 14:368-371.

Kishimoto RA, Gonder JC, Johnson JW, Reynolds JA, Larson EW. 1981.
Evaluation of a killed phase | Coxiella burnetii vaccine in cynomolgus
monkeys (Macaca fascicularis). Lab Anim Sci 31:48-51.

Klingstrom J, Plyusnin A, Vaheri A, Lundkvist A. 2002. Wild-type Pu-
umala hantavirus infection induces cytokines, C-reactive protein, cre-
atinine, and nitric oxide in cynomolgus macaques. J Virol 76:444-449.

Klumpp SA, Novembre FJ, Anderson DC, Simon MA, Ringler DJ, Mc-
Clure HM. 1993. Clinical and pathologic findings in infant rhesus
macaques infected with SIVsmm by maternal transmission. J Med
Primatol 22:169-176.

Knipe DM, Howley PM, Griffin DE, Lamb RA. 2006. Fields Virology, 5™
ed. Philadelphia: Lippincott Williams & Wilkins.

Kobasa D, Jones SM, Shinya K, Kash JC, Copps J, Ebihara H, Hatta Y,
Kim JH, Halfmann P, Hatta M, Feldmann F, Alimonti JB, Fernando L,
Li Y, Katze MG, Feldmann H, Kawaoka Y. 2007. Aberrant innate
immune response in lethal infection of macaques with the 1918 influ-
enza virus. Nature 445:319-323.

Kobune F, Takahashi H, Terao K, Ohkawa T, Ami Y, Suzaki Y, Nagata N,

247



Sakata H, Yamanouchi K, Kai C. 1996. Nonhuman primate models of
measles. Lab Anim Sci 46:315-320.

Kodama M, Murakami K, Sato R, Okimoto T, Nishizono A, Fujioka T.
2005. Helicobacter pylori-infected animal models are extremely suit-
able for the investigation of gastric carcinogenesis. World J Gastroen-
terol 11:7063-7071.

Koehler JE, Sanchez MA, Tye S, Garrido-Rowland CS, Chen FM, Maurer
T, Cooper JL, Olson JG, Reingold AL, Hadley WK, Regnery RR,
Tappero JW. 2003. Prevalence of Bartonella infection among human
immunodeficiency virus-infected patients with fever. Clin Infect Dis
37:559-566.

Kornegay RW, Giddens WE Jr, Van Hoosier GL Jr, Morton WR. 1985.
Subacute nonsuppurative hepatitis associated with hepatitis B virus
infection in two cynomolgus monkeys. Lab Anim Sci 35:400-404.

Kuiken T, Fouchier RA, Schutten M, Rimmelzwaan GF, van Amerongen
G, van Riel D, Laman JD, de Jong T, van Doornum G, Lim W, Ling
AE, Chan PK, Tam JS, Zambon MC, Gopal R, Drosten C, van der Werf
S, Escriou N, Manuguerra JC, Stohr K, Peiris JS, Osterhaus AD. 2003.
Newly discovered coronavirus as the primary cause of severe acute
respiratory syndrome. Lancet 362:263-270.

Kuiken T, van den Hoogen BG, van Riel DA, Laman JD, van Amerongen
G, Sprong L, Fouchier RA, Osterhaus AD. 2004. Experimental human
metapneumovirus infection of cynomolgus macaques (Macaca fascicu-
laris) results in virus replication in ciliated epithelial cells and pneu-
mocytes with associated lesions throughout the respiratory tract. Am J
Pathol 164:1893-1900.

Kunz E, Matz-Rensing K, Stolte N, Hamilton PB, Kaup FJ. 2002. Reac-
tivation of a Trypanosoma cruzi infection in a rhesus monkey (Macaca
mulatta) experimentally infected with SIV. Vet Pathol 39:721-725.

Kutok JL, Klumpp S, Simon M, MacKey JJ, Nguyen V, Middeldorp JM,
Aster JC, Wang F. 2004. Molecular evidence for rhesus lymphocryp-
tovirus infection of epithelial cells in immunosuppressed rhesus ma-
caques. J Virol 78:3455-3461.

Kwang HS, Pedersen NC, Lerche NW, Osborn KG, Marx PA, Gardner
MB. 1987. Viremia, antigenemia, and serum antibodies in rhesus ma-
caques infected with simian retrovirus type 1 and their relationship to
disease course. Lab Invest 56:591-597.

Lackner AA, Veazey RS. 2007. Current concepts in AIDS pathogenesis:
Insights from the SIV/macaque model. Ann Rev Med 58:461-476.
Lake-Bakaar DM, Abele G, Lindborg B, Soike KF, Datema R. 1988.
Pharmacokinetics and antiviral activity in simian varicella virus-
infected monkeys of (R,S)-9-[4-hydroxy-2-(hydroxymethyl) butyl]gua-
nine, an anti-varicella-zoster virus drug. Antimicrob Agents Ch 32:

1807-1812.

Langermans JA, Andersen P, van Soolingen D, Vervenne RA, Frost PA,
van der Laan T, van Pinxteren LA, van den Hombergh J, Kroon S,
Peekel I, Florquin S, Thomas AW. 2001. Divergent effect of bacillus
Calmette-Guerin (BCG) vaccination on Mycobacterium tuberculosis
infection in highly related macaque species: Implications for primate
models in tuberculosis vaccine research. Proc Natl Acad Sci U S A
98:11497-11502.

Lapin B, Andreevna L. 1963. Comparative Pathology in Monkeys. Spring-
field IL: Thomas.

Lasmezas Cl, Fournier JG, Nouvel V, Boe H, Marce D, Lamoury F, Kopp
N, Hauw JJ, lronside J, Bruce M, Dormont D, Deslys JP. 2001. Ad-
aptation of the bovine spongiform encephalopathy agent to primates
and comparison with Creutzfeldt-Jakob disease: Implications for hu-
man health. Proc Natl Acad Sci U S A 98:4142-4147.

Lasmezas ClI, Comoy E, Hawkins S, Herzog C, Mouthon F, Konold T,
Auvre F, Correia E, Lescoutra-Etchegaray N, Sales N, Wells G, Brown
P, Deslys JP. 2005. Risk of oral infection with bovine spongiform
encephalopathy agent in primates. Lancet 365:781-783.

Le Bras J, Larouze B, Geniteau M, Andrieu B, Dazza MC, Rodhain F.
1984. Malaria, arbovirus and hepatitis infections in Macaca fascicu-
laris from Malaysia. Lab Anim 18:61-64.

Leong YK, Awang A. 1990. Experimental group A rotaviral infection in
cynomolgus monkeys raised on formula diet. Microbiol Immunol 34:
153-162.

248

Leroy EM, Rouquet P, Formenty P, Souquiere S, Kilbourne A, Froment
JM, Bermejo M, Smit S, Karesh W, Swanepoel R, Zaki SR, Rollin PE.
2004. Multiple Ebola virus transmission events and rapid decline of
central African wildlife. Science 303:387-390.

Letvin NL. 2006. Progress and obstacles in the development of an AIDS
vaccine. Nat Rev Immunol 6:930-939.

Letvin NL, King NW. 1984. Clinical and pathologic features of an acquired
immune deficiency syndrome (AIDS) in macaque monkeys. Adv Vet
Sci Comp Med 28:237-265.

Letvin NL, Daniel MD, Sehgal PK, Desrosiers RC, Hunt RD, Waldron
LM, MacKey JJ, Schmidt DK, Chalifoux LV, King NW. 1985. Induc-
tion of AIDS-like disease in macaque monkeys with T cell tropic
retrovirus STLV-11I. Science 230:71-73.

Levine PH, Leiseca SA, Hewetson JF, Traul KA, Andrese AP, Granlund
DJ, Fabrizio P, Stevens DA. 1980. Infection of rhesus monkeys and
chimpanzees with Epstein-Barr virus. Arch Virol 66:341-351.

Levy JA. 2007. HIV and the Pathogenesis of AIDS, 3" ed. Washington:
ASM Press.

Li Q, Dong C, Wang J, Che Y, Jiang L, Wang J, Sun M, Wang L, Huang
J, Ren D. 2003. Induction of hepatitis C virus-specific humoral and
cellular immune responses in mice and rhesus by artificial multiple
epitopes sequence. Viral Immunol 16:321-333.

Li BJ, Tang Q, Cheng D, Qin C, Xie FY, Wei Q, Xu J, Liu Y, Zheng BJ,
Woodle MC, Zhong N, Lu PY. 2005a. Using siRNA in prophylactic
and therapeutic regimens against SARS coronavirus in Rhesus ma-
caque. Nat Med 11:944-951.

Li SW, Zhang J, Li YM, Ou SH, Huang GY, He ZQ, Ge SX, Xian YL,
Pang SQ, Ng MH, Xia NS. 2005b. A bacterially expressed particulate
hepatitis E vaccine: Antigenicity, immunogenicity and protectivity on
primates. Vaccine 23:2893-2901.

Lichtenwalner AB, Patton DL, Van Voorhis WC, Sweeney YT, Kuo CC.
2004. Heat shock protein 60 is the major antigen which stimulates
delayed-type hypersensitivity reaction in the macaque model of Chla-
mydia trachomatis salpingitis. Infect Immun 72:1159-1161.

Lindsley HB, Kysela S, Steinberg AD. 1974. Nucleic acid antibodies in
African trypanosomiasis: Studies in Rhesus monkeys and man. J Im-
munol 113:1921-1927.

Line AS, Paul-Murphy J, Aucoin DP, Hirsh DC. 1992. Enrofloxacin treat-
ment of long-tailed macaques with acute bacillary dysentery due to
multiresistant Shigella flexneri V. Lab Anim Sci 42:240-244.

Ling B, Apetrei C, Pandrea I, Veazey RS, Lackner AA, Gormus B, Marx
PA. 2004. Classic AIDS in a sooty mangabey after an 18-year natural
infection. J Virol 78:8902-8908.

Linial ML. 1999. Foamy viruses are unconventional retroviruses. J Virol
73:1747-1755.

Lockridge KM, Sequar G, Zhou SS, Yue Y, Mandell CP, Barry PA. 1999.
Pathogenesis of experimental rhesus cytomegalovirus infection. J Virol
73:9576-9583.

Lockridge KM, Zhou SS, Kravitz RH, Johnson JL, Sawai ET, Blewett EL,
Barry PA. 2000. Primate cytomegaloviruses encode and express an
IL-10-like protein. Virology 268:272-280.

Lodmell DL, Ray NB, Parnell MJ, Ewalt LC, Hanlon CA, Shaddock JH,
Sanderlin DS, Rupprecht CE. 1998. DNA immunization protects non-
human primates against rabies virus. Nat Med 4:949-952.

Lodmell DL, Parnell MJ, Bailey JR, Ewalt LC, Hanlon CA. 2002. Rabies
DNA vaccination of nonhuman primates: Post-exposure studies using
gene gun methodology that accelerates induction of neutralizing anti-
body and enhances neutralizing antibody titers. Vaccine 20:2221-2228.

Loomis-Huff JE, Eberle R, Lockridge KM, Rhodes G, Barry PA. 2001.
Immunogenicity of a DNA vaccine against herpes B virus in mice and
rhesus macaques. Vaccine 19:4865-4873.

Lowenstine LJ, Pedersen NC, Higgins J, Pallis KC, Uyeda A, Marx P,
Lerche NW, Munn RJ, Gardner MB. 1986. Seroepidemiologic survey
of captive Old-World primates for antibodies to human and simian
retroviruses, and isolation of a lentivirus from sooty mangabeys (Cer-
cocebus atys). Int J Cancer 38:563-574.

Lukashevich IS, Djavani M, Rodas JD, Zapata JC, Ushorne A, Emerson C,
Mitchen J, Jahrling PB, Salvato MS. 2002. Hemorrhagic fever occurs

ILAR Journal



after intravenous, but not after intragastric, inoculation of rhesus ma-
caques with lymphocytic choriomeningitis virus. J Med Virol 67:171-
186.

Lukashevich 1S, Tikhonov I, Rodas JD, Zapata JC, Yang Y, Djavani M,
Salvato MS. 2003. Arenavirus-mediated liver pathology: Acute lym-
phocytic choriomeningitis virus infection of rhesus macaques is char-
acterized by high-level interleukin-6 expression and hepatocyte
proliferation. J Virol 77:1727-1737.

Lusso P, Secchiero P, Crowley RW. 1994. In vitro susceptibility of Ma-
caca nemestrina to human herpesvirus 6: A potential animal model of
coinfection with primate immunodeficiency viruses. AIDS Res Hum
Retrov 10:181-187.

Lusso P, Crowley RW, Malnati MS, Di Serio C, Ponzoni M, Biancotto A,
Markham PD, Gallo RC. 2007. Human herpesvirus 6A accelerates
AIDS progression in macaques. Proc Natl Acad Sci U S A 104:5067-
5072.

MacMillan JG, Rice RM, Jerrells TR. 1985. Development of antigen-
specific cell-mediated immune responses after infection of cynomolgus
monkeys (Macaca fascicularis) with Rickettsia tsutsugamushi. J Infect
Dis 152:739-749.

Maddison SE, Slemenda SB, Hillyer GV, Chandler FW, Kagan IG. 1979.
Immune responses to Schistosoma mansoni in rhesus monkeys with
multiple chronic and early primary infections. Infect Immun 25:249-
254.

Majer M, Behrens F, Weinmann E, Mauler R, Maass G, Baumeister HG,
Luthardt T. 1978. Diarrhea in newborn cynomologus monkeys infected
with human rotavirus. Infection 6:71-72.

Mandell GL, Bennett JE, Dolin R. 2005. Principles and Practice of Infec-
tious Diseases, 6™ ed. Philadelphia: Elsevier.

Mankowski JL, Flaherty MT, Spelman JP, Hauer DA, Didier PJ, Amedee
AM, Murphey-Corb M, Kirstein LM, Munoz A, Clements JE, Zink
MC. 1997. Pathogenesis of simian immunodeficiency virus encephali-
tis: Viral determinants of neurovirulence. J Virol 71:6055-6060.

Mansfield KG, Westmoreland SV, DeBakker CD, Czajak S, Lackner AA,
Desrosiers RC. 1999. Experimental infection of rhesus and pigtail ma-
caques with macaque rhadinoviruses. J Virol 73:10320-10328.

Mansfield KG, Lin KC, Newman J, Schauer D, MacKey J, Lackner AA,
Carville A. 2001. Identification of enteropathogenic Escherichia coli in
simian immunodeficiency virus-infected infant and adult rhesus ma-
caques. J Clin Microbiol 39:971-976.

Mao JS, Go YY, Huang HY, Yu PH, Huang BZ, Ding ZS, Chen NL, Yu
JH, Xie RY. 1981. Susceptibility of monkeys to human hepatitis A
virus. J Infect Dis 144:55-60.

Marchevsky RS, Freire MS, Coutinho ES, Galler R. 2003. Neurovirulence
of yellow fever 17DD vaccine virus to rhesus monkeys. Virology 316:
55-63.

Marquardt WH, Demaree RS, Grieve RB. 2000. Parasitology and Vector
Biology. San Diego: Harcourt/Academic.

Marra CM, Handsfield HH, Kuller L, Morton WR, Lukehart SA. 1992.
Alterations in the course of experimental syphilis associated with con-
current simian immunodeficiency virus infection. J Infect Dis 165:
1020-1025.

Marra CM, Castro CD, Kuller L, Dukes AC, Centurion-Lara A, Morton
WR, Lukehart SA. 1998. Mechanisms of clearance of Treponema pal-
lidum from the CSF in a nonhuman primate model. Neurology 51:957-
961.

Marthas ML, Ramos RA, Lohman BL, Van Rompay KK, Unger RE, Miller
CJ, Banapour B, Pedersen NC, Luciw PA. 1993. Viral determinants of
simian immunodeficiency virus (SIV) virulence in rhesus macaques
assessed by using attenuated and pathogenic molecular clones of SIV-
mac. J Virol 67:6047-6055.

Marthas ML, van Rompay KK, Otsyula M, Miller CJ, Canfield DR, Ped-
ersen NC, McChesney MB. 1995. Viral factors determine progression
to AIDS in simian immunodeficiency virus-infected newborn rhesus
macaques. J Virol 69:4198-4205.

Marx PA, Pedersen NC, Lerche NW, Osborn KG, Lowenstine LJ, Lackner
AA, Maul DH, Kwang HS, Kluge JD, Zaiss CP, Sharpe V, Spinner AP,
Allison AC, Gardner MB. 1986. Prevention of simian acquired immune

Volume 49, Number 2 2008

deficiency syndrome with a formalin-inactivated type D retrovirus vac-
cine. J Virol 60:431-435.

Mason RA, Tauraso NM, Spertzel RO, Ginn RK. 1973. Yellow fever
vaccine: Direct challenge of monkeys given graded doses of 17D vac-
cine. Appl Microbiol 25:539-544.

Masters CL, Alpers MP, Gajdusek DC, Gibbs CJ Jr, Kakulas BA. 1976.
Experimental kuru in the gibbon and sooty mangabey and Creutzfeldt-
Jakob disease in the pigtail macaque, with a summary of the host range
of the subacute spongiform virus encephalopathies. J Med Primatol
5:205-209.

Mattapallil JJ, Dandekar S, Canfield DR, Solnick JV. 2000. A predominant
Th1 type of immune response is induced early during acute Helicobacter
pylori infection in rhesus macaques. Gastroenterology 118:307-315.

Matz-Rensing K, Floto A, Schrod A, Becker T, Finke EJ, Seibold E,
Splettstoesser WD, Kaup FJ. 2007. Epizootic of tularemia in an outdoor
housed group of cynomolgus monkeys (Macaca fascicularis). Vet
Pathol 44:327-334.

Maul DH, Zaiss CP, MacKenzie MR, Shiigi SM, Marx PA, Gardner MB.
1988. Simian retrovirus D serogroup 1 has a broad cellular tropism for
lymphoid and nonlymphoid cells. J Virol 62:1768-1773.

McArthur-Vaughan K, Gershwin LJ. 2002. A rhesus monkey model of
respiratory syncytial virus infection. J Med Primatol 31:61-73.

McClure J, Schmidt JM, Ray-Cuille MA, Bannick J, Misher L, Tsai C-C,
Anderson DM, Morton WR, Hu SL. 2000. Derivation and character-
ization of a highly pathogenic isolate of human immunodeficient virus
type 2 that causes rapid CD4+ cell depletion in Macaca nemestrina. J
Med Primatol 29:114-126.

McElroy AK, Bray M, Reed DS, Schmaljohn CS. 2002. Andes virus in-
fection of cynomolgus macaques. J Infect Dis 186:1706-1712.

McMichael AJ. 2006. HIV vaccines. Ann Rev Immunol 24:227-255.

McNeely TB, Staub JM, Rusk CM, Blum MJ, Donnelly JJ. 1998. Antibody
responses to capsular polysaccharide backbone and O-acetate side
groups of Streptococcus pneumoniae type 9V in humans and rhesus
macaques. Infect Immun 66:3705-3710.

McShane H, Pathan AA, Sander CR, Keating SM, Gilbert SC, Huygen K,
Fletcher HA, Hill AV. 2004. Recombinant modified vaccinia virus
Ankara expressing antigen 85A boosts BCG-primed and naturally ac-
quired antimycobacterial immunity in humans. Nat Med 10:1240-1244.

Meisenhelder JE, Thompson PE. 1963. Comparative observations on ex-
perimental Schistosoma Mansoni infections in African green and rhe-
sus monkeys. J Parasitol 49:568-570.

Men R, Wyatt L, Tokimatsu I, Arakaki S, Shameem G, Elkins R, Chanock
R, Moss B, Lai CJ. 2000. Immunization of rhesus monkeys with a
recombinant of modified vaccinia virus Ankara expressing a truncated
envelope glycoprotein of dengue type 2 virus induced resistance to
dengue type 2 virus challenge. Vaccine 18:3113-3122.

Mense MG, Borschel RH, Wilhelmsen CL, Pitt ML, Hoover DL. 2004.
Pathologic changes associated with brucellosis experimentally induced
by aerosol exposure in rhesus macaques (Macaca mulatta). Am J Vet
Res 65:644-652.

Mett V, Lyons J, Musiychuk K, Chichester JA, Brasil T, Couch R, Sher-
wood R, Palmer GA, Streatfield SJ, Yusibov V. 2007. A plant-
produced plague vaccine candidate confers protection to monkeys.
Vaccine 25:3014-3017.

Meyer KF, Smith G, Foster L, Brookman M, Sung M. 1974. Live, attenu-
ated Yersinia pestis vaccine: Virulent in nonhuman primates, harmless
to guinea pigs. J Infect Dis 129 Suppl:S85-S12.

Miller CJ, Alexander NJ, Sutjipto S, Lackner AA, Gettie A, Hendrickx
AG, Lowenstine LJ, Jennings M, Marx PA. 1989. Genital mucosal
transmission of simian immunodeficiency virus: Animal model for het-
erosexual transmission of human immunodeficiency virus. J Virol 63:
4277-4284

Miyoshi |, Fujishita M, Taguchi H, Matsubayashi K, Miwa N, Tanioka Y.
1983. Natural infection in nonhuman primates with adult T cell leuke-
mia virus or a closely related agent. Int J Cancer 32:333-336.

Moghaddam A, Rosenzweig M, Lee-Parritz D, Annis B, Johnson RP,
Wang F. 1997. An animal model for acute and persistent Epstein-Barr
virus infection. Science 276:2030-2033.

249



Monath TP, Levenbook I, Soike K, Zhang ZX, Ratterree M, Draper K,
Barrett AD, Nichols R, Weltzin R, Arroyo J, Guirakhoo F. 2000. Chi-
meric yellow fever virus 17D-Japanese encephalitis virus vaccine:
Dose-response effectiveness and extended safety testing in rhesus mon-
keys. J Virol 74:1742-1751.

Monath TP, Liu J, Kanesa-Thasan N, Myers GA, Nichols R, Deary A,
McCarthy K, Johnson C, Ermak T, Shin S, Arroyo J, Guirakhoo F,
Kennedy JS, Ennis FA, Green S, Bedford P. 2006. A live, attenuated
recombinant West Nile virus vaccine. Proc Natl Acad Sci U S A
103:6694-6699.

Mone J, Whitehead E, Leland M, Hubbard G, Allan JS. 1992. Simian
T-cell leukemia virus type | infection in captive baboons. AIDS Res
Hum Retrov 8:1653-1661.

Mooser H, Weyer F. 1953. Experimental infection of Macacus rhesus with
Rickettsia quintana (trench fever). Proc Soc Exp Biol Med 83:699-701.

Morrill JC, Peters CJ. 2003. Pathogenicity and neurovirulence of a muta-
gen-attenuated Rift Valley fever vaccine in rhesus monkeys. Vaccine
21:2994-3002.

Morrill JC, Jennings GB, Cosgriff TM, Gibbs PH, Peters CJ. 1989. Pre-
vention of Rift Valley fever in rhesus monkeys with interferon-alpha.
Rev Infect Dis 11 Suppl 4:5S815-S825.

Morris SA, Tanowitz HB, Wittner M, Bilezikian JP. 1990. Pathophysi-
ological insights into the cardiomyopathy of Chagas’ disease. Circula-
tion 82:1900-1909.

Morton WR, Bronsdon M, Mickelsen G, Knitter G, Rosenkranz S, Kuller
L, Sajuthi D. 1983. Identification of Campylobacter jejuni in Macaca
fascicularis imported from Indonesia. Lab Anim Sci 33:187-188.

Mulder JB. 1971. Shigellosis in nonhuman primates: A review. Lab Anim
Sci 21:734-738.

Mumphrey SM, Changotra H, Moore TN, Heimann-Nichols ER, Wobus
CE, Reilly MJ, Moghadamfalahi M, Shukla D, Karst SM. 2007. Murine
norovirus 1 infection is associated with histopathological changes in
immunocompetent hosts, but clinical disease is prevented by STAT1-
dependent interferon responses. J Virol 81:3251-3263.

Murphey-Corb M, Martin LN, Rangan SR, Baskin GB, Gormus BJ, Wolf
RH, Andes WA, West M, Montelaro RC. 1986. Isolation of an HTL V-
I11-related retrovirus from macaques with simian AIDS and its possible
origin in asymptomatic mangabeys. Nature 321:435-437.

Murphy FA. 1998. Emerging zoonoses. Emerg Infect Dis 4:429-435.

Murphy TV, Gargiullo PM, Massoudi MS, Nelson DB, Jumaan AO, Okoro
CA, Zanardi LR, Setia S, Fair E, LeBaron CW, Wharton M, Livengood
JR. 2001. Intussusception among infants given an oral rotavirus vac-
cine. N Engl J Med 344:564-572.

Myint KS, Raengsakulrach B, Young GD, Gettayacamin M, Ferguson LM,
Innis BL, Hoke CH Jr, Vaughn DW. 1999. Production of lethal infec-
tion that resembles fatal human disease by intranasal inoculation of
macaques with Japanese encephalitis virus. Am J Trop Med Hyg 60:
338-342.

Nagata N, Iwasaki T, Ami Y, Harashima A, Hatano I, Suzaki Y, Yoshii K,
Yoshii T, Nomoto A, Kurata T. 2001. Comparison of neuropatho-
genicity of poliovirus type 3 in transgenic mice bearing the poliovirus
receptor gene and cynomolgus monkeys. Vaccine 19:3201-3208.

Nagle RB, Ward PA, Lindsley HB, Sadun EH, Johnson AJ, Berkaw RE,
Hildebrandt PK. 1974. Experimental infections with African Trypano-
somes. VI. Glomerulonephritis involving the alternate pathway of
complement activation. Am J Trop Med Hyg 23:15-26.

Nakamura H, Hayami M, Ohta Y, Ishikawa K, Tsujimoto H, Kiyokawa T,
Yoshida M, Sasagawa A, Honjo S. 1987. Protection of cynomolgus
monkeys against infection by human T cell leukemia virus type-1 by
immunization with viral env gene products produced in Escherichia
coli. Int J Cancer 40:403-407.

Nakao E, Hotta S. 1973. Immunogenicity of purified, inactivated chikun-
gunya virus in monkeys. B World Health Organ 48:559-562.

Napier JR, Napier PH. 1985. The Natural History of the Primates. Cam-
bridge MA: MIT Press.

Narasimhan S, Caimano MJ, Liang FT, Santiago F, Laskowski M, Philipp
MT, Pachner AR, Radolf JD, Fikrig E. 2003. Borrelia burgdorferi

250

transcriptome in the central nervous system of nonhuman primates.
Proc Natl Acad Sci U S A 100:15953-15958.

Nathanson N, Mathieson BJ. 2000. Biological considerations in the devel-
opment of a human immunodeficiency virus vaccine. J Infect Dis 182:
579-589.

NCRR [National Center for Research Resources]. 2004-2008. Strategic
Plan: Challenges and Critical Choices. Bethesda: National Institutes of
Health.

Neal DE Jr, Dilworth JP, Kaack MB, Didier P, Roberts JA. 1990. Experi-
mental prostatitis in nonhuman primates: Il. Ascending acute prostati-
tis. Prostate 17:233-239.

Nene V, Wortman JR, Lawson D, Haas B, Kodira C, Tu ZJ, Loftus B, Xi

Z, Megy K, Grabherr M, Ren Q, Zdobnov EM, Lobo NF, Campbell

KS, Brown SE, Bonaldo MF, Zhu J, Sinkins SP, Hogenkamp DG,

Amedeo P, Arensburger P, Atkinson PW, Bidwell S, Biedler J, Birney

E, Bruggner RV, Costas J, Coy MR, Crabtree J, Crawford M, Debruyn

B, Decaprio D, Eiglmeier K, Eisenstadt E, El-Dorry H, Gelbart WM,

Gomes SL, Hammond M, Hannick LI, Hogan JR, Holmes MH, Jaffe D,

Johnston JS, Kennedy RC, Koo H, Kravitz S, Kriventseva EV, Kulp D,

Labutti K, Lee E, Li S, Lovin DD, Mao C, Mauceli E, Menck CF,

Miller JR, Montgomery P, Mori A, Nascimento AL, Naveira HF, Nus-

baum C, O’Leary S, Orvis J, Pertea M, Quesneville H, Reidenbach KR,

Rogers YH, Roth CW, Schneider JR, Schatz M, Shumway M, Stanke

M, Stinson EO, Tubio JM, Vanzee JP, Verjovski-Almeida S, Werner

D, White O, Wyder S, Zeng Q, Zhao Q, Zhao Y, Hill CA, Raikhel AS,

Soares MB, Knudson DL, Lee NH, Galagan J, Salzberg SL, Paulsen IT,

Dimopoulos G, Collins FH, Birren B, Fraser-Liggett CM, Severson

DW. 2007. Genome sequence of Aedes aegypti, a major arbovirus

vector. Science 316:1718-1723.

YS, Chan TC, Chao CC, Richards AL, Dasch GA, Ching WM. 2005.

Protection against scrub typhus by a plasmid vaccine encoding the

56-KD outer membrane protein antigen gene. Am J Trop Med Hyg

73:936-941.

Nigam P, Earl PL, Americo JL, Sharma S, Wyatt LS, Edghill-Spano Y,
Chennareddi LS, Silvera P, Moss B, Robinson HL, Amara RR. 2007.
DNA/MVA HIV-1/AIDS vaccine elicits long-lived vaccinia virus-
specific immunity and confers protection against a lethal monkeypox
challenge. Virology 366:73-83.

Noguchi H, Battistini TS. 1926. Etiology of Oroya fever: I. Cultivation of
Bartonella bacilliformis. J Ex Med 43:841-864.

North TW, Van Rompay KK, Higgins J, Matthews TB, Wadford DA,
Pedersen NC, Schinazi RF. 2005. Suppression of virus load by highly
active antiretroviral therapy in rhesus macaques infected with a recom-
binant simian immunodeficiency virus containing reverse transcriptase
from human immunodeficiency virus type 1. J Virol 79:7349-7354.

Novembre FJ, Saucier M, Anderson DC, Klumpp SA, O’Neil SP, Brown
CR 2nd, Hart CE, Guenthner PC, Swenson RB, McClure HM. 1997.
Development of AIDS in a chimpanzee infected with human immuno-
deficiency virus type 1. J Virol 71:4086-4091.

O’Rourke LG, Pitulle C, Hegarty BC, Kraycirik S, Killary KA, Grosenstein P,
Brown JW, Breitschwerdt EB. 2005. Bartonella quintana in cynomolgus
monkey (Macaca fascicularis). Emerg Infect Dis 11:1931-1934.

O’Sullivan MG, Anderson DC, Fikes JD, Bain FT, Carlson CS, Green SW,
Young NS, Brown KE. 1994. Identification of a novel simian parvo-
virus in cynomolgus monkeys with severe anemia: A paradigm of
human B19 parvovirus infection. J Clin Invest 93:1571-1576.

O’Sullivan MG, Anderson DK, Goodrich JA, Tulli H, Green SW, Young
NS, Brown KE. 1997. Experimental infection of cynomolgus monkeys
with simian parvovirus. J Virol 71:4517-4521.

Oldstone MBA. 1998. Viruses, Plagues, and History. Oxford UK: Oxford
University.

Olson LC, Skinner SF, Palotay JL, McGhee GE. 1986. Encephalitis asso-
ciated with Trypanosoma cruzi in a Celebes black macaque. Lab Anim
Sci 36:667-670.

Ostrow RS, McGlennen RC, Shaver MK, Kloster BE, Houser D, Faras AJ.
1990. A rhesus monkey model for sexual transmission of a papilloma-
virus isolated from a squamous cell carcinoma. Proc Natl Acad Sci U
S A 87:8170-8174.

N

ILAR Journal



Ostrow RS, Coughlin SM, McGlennen RC, Johnson AN, Ratterree MS,
Scheffler J, Yaegashi N, Galloway DA, Faras AJ. 1995. Serological
and molecular evidence of rhesus papillomavirus type 1 infections in
tissues from geographically distinct institutions. J Gen Virol 76 (Pt
2):293-299.

Ostrowski SR, Leslie MJ, Parrott T, Abelt S, Piercy PE. 1998. B virus from
pet macaque monkeys: An emerging threat in the United States? Emerg
Infect Dis 4:117-121.

Oswald WB, Geisbert TW, Davis KJ, Geisbert JB, Sullivan NJ, Jahrling
PB, Parren PW, Burton DR. 2007. Neutralizing antibody fails to impact
the course of Ebola virus infection in monkeys. PLoS Pathog 3:e9.

Pachner AR, Delaney E, Zhang WF, O’Neill T, Major E, Frey AB, Dav-
idson E. 1999. Protection from Lyme neuroborreliosis in nonhuman
primates with a multiantigenic vaccine. Clin Immunol 91:310-313.

Pachner AR, Dail D, Narayan K, Dutta K, Cadavid D. 2002. Increased
expression of B-lymphocyte chemoattractant, but not pro-inflammatory
cytokines, in muscle tissue in rhesus chronic Lyme borreliosis. Cyto-
kine 19:297-307.

Pachner AR, Dail D, Bai Y, Sondey M, Pak L, Narayan K, Cadavid D.
2004. Genotype determines phenotype in experimental Lyme borrelio-
sis. Ann Neurol 56:361-370.

Pahar B, Li J, McChesney MB. 2005. Detection of T cell memory to
measles virus in experimentally infected rhesus macaques by cytokine
flow cytometry. J Immunol Methods 304:174-183.

Palmer AE, Allen AM, Tauraso NM, Shelokov A. 1968. Simian hemor-
rhagic fever. I. Clinical and epizootiologic aspects of an outbreak
among quarantined monkeys. Am J Trop Med Hyg 17:404-412.

Palmer S, Brown D, Morgan D. 2005. Early qualitative risk assessment of
the emerging zoonotic potential of animal diseases. BMJ 331:1256-
1260.

Patton DL. 1985. Immunopathology and histopathology of experimental
chlamydial salpingitis. Rev Infect Dis 7:746-753.

Patton DL, Sweeney YT, Balkus JE, Hillier SL. 2006. Vaginal and rectal
topical microbicide development: Safety and efficacy of 1.0% Savvy
(C31G) in the pigtail macaque. Sex Transm Dis 33:691-695.

Patton DL, Sweeney YT, Stamm WE. 2005. Significant reduction in in-
flammatory response in the macaque model of chlamydial pelvic in-
flammatory disease with azithromycin treatment. J Infect Dis 192:129-
135.

Paul SD, Singh KR. 1968. Experimental infection of Macaca radiata with
Chikungunya virus and transmission of virus by mosquitoes. Indian J
Med Res 56:802-811.

Peeling RW, Patton DL, Cosgrove Sweeney YT, Cheang MS, Lichtenwal-
ner AB, Brunham RC, Stamm WE. 1999. Antibody response to the
chlamydial heat-shock protein 60 in an experimental model of chronic
pelvic inflammatory disease in monkeys (Macaca nemestrina). J Infect
Dis 180:774-779.

Peiris JS, Dittus WP, Ratnayake CB. 1993. Seroepidemiology of dengue
and other arboviruses in a natural population of toque macaques (Ma-
caca sinica) at Polonnaruwa, Sri Lanka. J Med Primatol 22:240-245.

Percy DH, Egwu IN, Jonas AM. 1972. Experimental Brucella canis infec-
tion in the monkey (Macaca arctoides). Can J Comp Med 36:221-225.

Perelygina L, Zhu L, Zurkuhlen H, Mills R, Borodovsky M, Hilliard JK.
2003. Complete sequence and comparative analysis of the genome of
herpes B virus (Cercopithecine herpesvirus 1) from a rhesus monkey.
J Virol 77:6167-6177.

Permar SR, Klumpp SA, Mansfield KG, Kim WK, Gorgone DA, Lifton
MA, Williams KC, Schmitz JE, Reimann KA, Axthelm MK, Polack
FP, Griffin DE, Letvin NL. 2003. Role of CD8(+) lymphocytes in
control and clearance of measles virus infection of rhesus monkeys. J
Virol 77:4396-4400.

Persson GR, Engel LD, Whitney CW, Weinberg A, Moncla BJ, Darveau
RP, Houston L, Braham P, Page RC. 1994. Macaca fascicularis as a
model in which to assess the safety and efficacy of a vaccine for
periodontitis. Oral Microbiol Immun 9:104-111.

Peters CJ, Reynolds JA, Slone TW, Jones DE, Stephen EL. 1986. Prophy-
laxis of Rift Valley fever with antiviral drugs, immune serum, an in-
terferon inducer, and a macrophage activator. Antiviral Res 6:285-297.

Volume 49, Number 2 2008

Peters CJ, Jones D, Trotter R, Donaldson J, White J, Stephen E, Slone TW
Jr. 1988. Experimental Rift Valley fever in rhesus macaques. Arch
Virol 99:31-44.

Petschow BW, Litov RE, Young LJ, McGraw TP. 1992. Response of
colostrum-deprived cynomolgus monkeys to intragastric challenge ex-
posure with simian rotavirus strain SA11. Am J Vet Res 53:674-678.

Philipp MT, Aydintug MK, Bohm RP Jr, Cogswell FB, Dennis VA, Lan-
ners HN, Lowrie RC Jr, Roberts ED, Conway MD, Karacorlu M,
Peyman GA, Gubler DJ, Johnson BJ, Piesman J, Gu Y. 1993. Early and
early disseminated phases of Lyme disease in the rhesus monkey: A
model for infection in humans. Infect Immun 61:3047-3059.

Philipp MT, Lobet Y, Bohm RP Jr, Roberts ED, Dennis VA, Gu Y, Lowrie
RC Jr, Desmons P, Duray PH, England JD, Hauser P, Piesman J, Xu K.
1997. The outer surface protein A (OspA) vaccine against Lyme dis-
ease: Efficacy in the rhesus monkey. Vaccine 15:1872-1887.

Philipp MT, Purcell JE, Martin DS, Buck WR, Plauche GB, Ribka EP,
DeNoel P, Hermand P, Leiva LE, Bagby GJ, Nelson S. 2006. Experi-
mental infection of rhesus macaques with Streptococcus pneumoniae:
A possible model for vaccine assessment. J Med Primatol 35:113-122.

Phipps AJ, Premanandan C, Barnewall RE, Lairmore MD. 2004. Rabbit
and nonhuman primate models of toxin-targeting human anthrax vac-
cines. Microbiol Mol Biol Rev 68:617-629.

Pialoux G, Gauzere BA, Jaureguiberry S, Strobel M. 2007. Chikungunya,
an epidemic arbovirosis. Lancet Infect Dis 7:319-327.

Pletnev AG, Bray M, Hanley KA, Speicher J, Elkins R. 2001. Tick-borne
Langat/mosquito-borne dengue flavivirus chimera, a candidate live at-
tenuated vaccine for protection against disease caused by members of
the tick-borne encephalitis virus complex: Evaluation in rhesus mon-
keys and in mosquitoes. J Virol 75:8259-8267.

Pogodina VV, Levina LS, Fokina Gl, Koreshkova GV, Malenko GV,
Bochkova NG, Rzhakhova OE. 1981. Persistence of tick-borne en-
cephalitis virus in monkeys. Ill. Phenotypes of the persisting virus.
Acta Virol 25:352-360.

Polack FP, Auwaerter PG, Lee SH, Nousari HC, Valsamakis A, Leiferman
KM, Diwan A, Adams RJ, Griffin DE. 1999. Production of atypical
measles in rhesus macaques: Evidence for disease mediated by immune
complex formation and eosinophils in the presence of fusion-inhibiting
antibody. Nat Med 5:629-634.

Ponnuraj EM, Springer J, Hayward AR, Wilson H, Simoes EA. 2003.
Antibody-dependent enhancement, a possible mechanism in aug-
mented pulmonary disease of respiratory syncytial virus in the Bonnet
monkey model. J Infect Dis 187:1257-1263.

Premenko-Lanier M, Rota PA, Rhodes GH, Bellini WJ, McChesney MB.
2004. Protection against challenge with measles virus (MV) in infant
macaques by an MV DNA vaccine administered in the presence of
neutralizing antibody. J Infect Dis 189:2064-2071.

Pung OJ, Spratt J, Clark CG, Norton TM, Carter J. 1998. Trypanosoma
cruzi infection of free-ranging lion-tailed macaques (Macaca silenus)
and ring-tailed lemurs (Lemur catta) on St. Catherine’s Island, Georgia,
USA. J Zoo Wildl Med 29:25-30.

Punkosdy GA, Dennis VA, Lasater BL, Tzertzinis G, Foster JM, Lammie
PJ. 2001. Detection of serum IgG antibodies specific for Wolbachia
surface protein in rhesus monkeys infected with Brugia malayi. J Infect
Dis 184:385-389.

Purcell RH, Nguyen H, Shapiro M, Engle RE, Govindarajan S, Black-
welder WC, Wong DC, Prieels JP, Emerson SU. 2003. Pre-clinical
immunogenicity and efficacy trial of a recombinant hepatitis E vaccine.
Vaccine 21:2607-2615.

Puri SK, Dutta GP. 2005. Plasmodium cynomolgi: Gametocytocidal activ-
ity of the anti-malarial compound CDRI 80/53 (elubaquine) in rhesus
monkeys. Exp Parasitol 111:8-13.

Quinn TC, Taylor HR, Schachter J. 1986. Experimental proctitis due to
rectal infection with Chlamydia trachomatis in nonhuman primates. J
Infect Dis 154:833-841.

Raengsakulrach B, Nisalak A, Gettayacamin M, Thirawuth V, Young GD,
Myint KS, Ferguson LM, Hoke CH Jr, Innis BL, Vaughn DW. 1999.
Safety, immunogenicity, and protective efficacy of NYVAC-JEV and

251



ALVAC-JEV recombinant Japanese encephalitis vaccines in rhesus
monkeys. Am J Trop Med Hyg 60:343-349.

Raether W, Seidenath H. 1976. Trypanocidal effect of diamidine 98/202 in
experimental Trypanosoma rhodesiense infection of the stumptailed
macaque (Macaca arctoides). Tropenmed Parasitol 27:238-244.

Ransom JP, Krueger AP. 1954. Chronic pneumonic plague in Macaca
mulatta. Am J Trop Med Hyg 3:1040-1054.

Ratterree MS, da Rosa AP, Bohm RP Jr, Cogswell FB, Phillippi KM,
Caillouet K, Schwanberger S, Shope RE, Tesh RB. 2003. West Nile
virus infection in nonhuman primate breeding colony, concurrent with
human epidemic, southern Louisiana. Emerg Infect Dis 9:1388-1394.

Reed DS, Hensley LE, Geisbert JB, Jahrling PB, Geisbert TW. 2004.
Depletion of peripheral blood T lymphocytes and NK cells during the
course of ebola hemorrhagic fever in cynomolgus macaques. Viral
Immunol 17:390-400.

Reimann KA, Li JT, Veazey R, Halloran M, Park IW, Karlsson GB,
Sodroski J, Letvin NL. 1996. A chimeric simian/human immunodefi-
ciency virus expressing a primary patient human immunodeficiency
virus type 1 isolate env causes an AIDS-like disease after in vivo
passage in rhesus monkeys. J Virol 70:6922-6928.

Reindel JF, Fitzgerald AL, Breider MA, Gough AW, Yan C, Mysore JV,
Dubois A. 1999. An epizootic of lymphoplasmacytic gastritis attributed
to Helicobacter pylori infection in cynomolgus monkeys (Macaca fas-
cicularis). Vet Pathol 36:1-13.

Ren H, Zhu FL, Cao MM, Wen XY, Zhao P, Qi ZT. 2005. Hepatitis G
virus genomic RNA is pathogenic to Macaca mulatta. World J Gas-
troenterol 11:970-975.

Renne R, Dittmer D, Kedes D, Schmidt K, Desrosiers RC, Luciw PA,
Ganem D. 2004. Experimental transmission of Kaposi’s sarcoma-
associated herpesvirus (KSHV/HHV-8) to SIV-positive and SIV-
negative rhesus macaques. J Med Primatol 33:1-9.

Rezapkin GV, Fan L, Asher DM, Fibi MR, Dragunsky EM, Chumakov
KM. 1999. Mutations in Sabin 2 strain of poliovirus and stability of
attenuation phenotype. Virology 258:152-160.

Rhesus Macaque Genome Sequencing and Analysis Consortium. 2007.
Evolutionary and biomedical insights from the rhesus macaque ge-
nome. Science 316:222-234.

Riemenschneider J, Garrison A, Geisbert J, Jahrling P, Hevey M, Negley
D, Schmaljohn A, Lee J, Hart MK, Vanderzanden L, Custer D, Bray M,
Ruff A, Ivins B, Bassett A, Rossi C, Schmaljohn C. 2003. Comparison
of individual and combination DNA vaccines for B anthracis, Ebola
virus, Marburg virus and Venezuelan equine encephalitis virus. Vac-
cine 21:4071-4080.

Rimmelzwaan GF, Kuiken T, van Amerongen G, Bestebroer TM, Fouchier
RA, Osterhaus AD. 2001. Pathogenesis of influenza A (H5N1) virus
infection in a primate model. J Virol 75:6687-6691.

Rimmelzwaan GF, Kuiken T, van Amerongen G, Bestebroer TM, Fouchier
RA, Osterhaus AD. 2003. A primate model to study the pathogenesis
of influenza A (H5N1) virus infection. Avian Dis 47(3 Suppl):931-933.

Rivailler P, Jiang H, Cho YG, Quink C, Wang F. 2002. Complete nucleo-
tide sequence of the rhesus lymphocryptovirus: Genetic validation for
an Epstein-Barr virus animal model. J Virol 76:421-426.

Rivailler P, Carville A, Kaur A, Rao P, Quink C, Kutok JL, Westmoreland
S, Klumpp S, Simon M, Aster JC, Wang F. 2004. Experimental rhesus
lymphocryptovirus infection in immunosuppressed macaques: An ani-
mal model for Epstein-Barr virus pathogenesis in the immunosup-
pressed host. Blood 104:1482-1489.

Rizzo P, Matker C, Powers A, Setlak P, Heeney JL, Carbone M. 2001. No
evidence of HIV and SIV sequences in two separate lots of polio
vaccines used in the first US polio vaccine campaign. Virology 287:
13-17.

Roberts ED, Bohm RP Jr, Lowrie RC Jr, Habicht G, Katona L, Piesman J,
Philipp MT. 1998. Pathogenesis of Lyme neuroborreliosis in the rhesus
monkey: The early disseminated and chronic phases of disease in the
peripheral nervous system. J Infect Dis 178:722-732.

Roberts JA. 1975. Experimental pyelonephritis in the monkey. Il1. Patho-
physiology of ureteral malfunction induced by bacteria. Invest Urol
13:117-120.

252

Rockx BH, Bogers WM, Heeney JL, van Amerongen G, Koopmans MP.
2005. Experimental norovirus infections in nonhuman primates. J Med
Virol 75:313-320.

Rodas JD, Lukashevich IS, Zapata JC, Cairo C, Tikhonov |, Djavani M,
Pauza CD, Salvato MS. 2004. Mucosal arenavirus infection of primates
can protect them from lethal hemorrhagic fever. J Med Virol 72:424-
435,

Rogers JV, Cashohm SL, Giannunzio LF, Sinnott LT, Rust SW, Brys AM,
Durnford JM, Quinn CP, Robinson DM, Hunt RE, Estep JE, Sabourin
CL. 2006. Transcriptional analysis of protective antigen-stimulated
PBMC from nonhuman primates vaccinated with the anthrax vaccine
absorbed. Vaccine 24:3609-3617.

Rollier C, Verschoor EJ, Paranhos-Baccala G, Drexhage JA, Verstrepen
BE, Berland JL, Himoudi N, Barnfield C, Liljestrom P, Lasarte JJ, Ruiz
J, Inchauspe G, Heeney JL. 2005. Modulation of vaccine-induced im-
mune responses to hepatitis C virus in rhesus macaques by altering
priming before adenovirus boosting. J Infect Dis 192:920-929.

Rout WR, Formal SB, Giannella RA, Dammin GJ. 1975. Pathophysiology
of Shigella diarrhea in the rhesus monkey: Intestinal transport, mor-
phological, and bacteriological studies. Gastroenterology 68:270-278.

Rubins KH, Hensley LE, Jahrling PB, Whitney AR, Geisbert TW, Huggins
JW, Owen A, Leduc JW, Brown PO, Relman DA. 2004. The host
response to smallpox: Analysis of the gene expression program in
peripheral blood cells in a nonhuman primate model. Proc Natl Acad
Sci U S A 101:15190-15195.

Rue CA, Jarvis MA, Knoche AJ, Meyers HL, DeFilippis VR, Hansen SG,
Wagner M, Fruh K, Anders DG, Wong SW, Barry PA, Nelson JA.
2004. A cyclooxygenase-2 homologue encoded by rhesus cytomega-
lovirus is a determinant for endothelial cell tropism. J Virol 78:12529-
12556.

Ruff K, Baskin GB, Simpson L, Murphey-Corb M, Levy LS. 2003. Rhesus
rhadinovirus infection in healthy and SIV-infected macaques at Tulane
National Primate Research Center. J Med Primatol 32:1-6.

Russell RG, Blaser MJ, Sarmiento JI, Fox J. 1989. Experimental Campy-
lobacter jejuni infection in Macaca nemestrina. Infect Immun 57:1438-
1444,

Saadat |, Higashi H, Obuse C, Umeda M, Murata-Kamiya N, Saito Y, Lu
H, Ohnishi N, Azuma T, Suzuki A, Ohno S, Hatakeyama M. 2007.
Helicobacter pylori CagA targets PAR1/MARK kinase to disrupt ep-
ithelial cell polarity. Nature 447:330-333.

Sale TA, Melski JW, Stratman EJ. 2006. Monkeypox: An epidemiologic
and clinical comparison of African and US disease. J Am Acad Der-
matol 55:478-481.

Samuel BU, Ponnuraj E, Rajasingh J, John TJ. 1993. Experimental polio-
myelitis in bonnet monkey: Clinical features, virology and pathology.
Dev Biol Stand 78:71-78.

Sariol CA, Munoz-Jordan JL, Abel K, Rosado LC, Pantoja P, Giavedoni L,
Rodriguez 1V, White LJ, Martinez M, Arana T, Kraiselburd EN. 2007.
Transcriptional activation of interferon-stimulated genes but not of cy-
tokine genes after primary infection of rhesus macaques with dengue
virus type 1. Clin Vaccine Immunol 14:756-766.

Sato H, Une Y, Kawakami S, Saito E, Kamiya H, Akao N, Furuoka H.
2005. Fatal Baylisascaris larva migrans in a colony of Japanese ma-
caques kept by a safari-style zoo in Japan. J Parasitol 91:716-719.

Schatzl H, Tschikobava M, Rose D, Voevodin A, Nitschko H, Sieger E,
Busch U, von der Helm K, Lapin B. 1993. The Sukhumi primate
monkey model for viral lymphomogenesis: High incidence of lympho-
mas with presence of STLV-I and EBV-like virus. Leukemia 7 Suppl
2:586-592.

Schiodt M, Lackner A, Armitage G, Lerche N, Greenspan JS, Lowenstine
L. 1988. Oral lesions in rhesus monkeys associated with infection by
simian AIDS retrovirus, serotype-I (SRV-1). Oral Surg Oral Med O
65:50-55.

Schmidt LH. 1956. Some observations on the utility of simian pulmonary
tuberculosis in defining the therapeutic potentialities of isoniazid. Am
Rev Tuberc 74(2 Part 2):138-153; discussion, 153-159.

Schmidtko J, Wang R, Wu CL, Mauiyyedi S, Harris NL, Della Pelle P,
Brousaides N, Zagachin L, Ferry JA, Wang F, Kawai T, Sachs DH,

ILAR Journal



Cosimi BA, Colvin RB. 2002. Posttransplant lymphoproliferative dis-
order associated with an Epstein-Barr-related virus in cynomolgus
monkeys. Transplantation 73:1431-1439.

Schou S, Hansen AK. 2000. Marburg and Ebola virus infections in labo-
ratory nonhuman primates: A literature review. Comp Med 50:108-123.

Schou S, Holmstrup P, Kornman KS. 1993. Non-human primates used in
studies of periodontal disease pathogenesis: A review of the literature.
J Periodontol 64:497-508.

Schricker RL, Eigelsbach HT, Mitten JQ, Hall WC. 1972. Pathogenesis of
tularemia in monkeys aerogenically exposed to Francisella tularensis
425, Infect Immun 5:734-744.

Schultz ER, Rankin GW Jr, Blanc MP, Raden BW, Tsai CC, Rose TM.
2000. Characterization of two divergent lineages of macaque rhadino-
viruses related to Kaposi’s sarcoma-associated herpesvirus. J Virol
74:4919-4928.

Semba RD, Donnelly JJ, Young E, Green WR, Scott AL, Taylor HR. 1991.
Experimental ocular onchocerciasis in cynomolgus monkeys. IV. Cho-
rioretinitis elicited by Onchocerca volvulus microfilariae. Invest Oph-
thalmol Vis Sci 32:1499-1507.

Sequar G, Britt WJ, Lakeman FD, Lockridge KM, Tarara RP, Canfield DR,
Zhou SS, Gardner MB, Barry PA. 2002. Experimental coinfection of
rhesus macaques with rhesus cytomegalovirus and simian immunode-
ficiency virus: Pathogenesis. J Virol 76:7661-7671.

Sestak K, Merritt CK, Borda J, Saylor E, Schwamberger SR, Cogswell F,
Didier ES, Didier PJ, Plauche G, Bohm RP, Aye PP, Alexa P, Ward
RL, Lackner AA. 2003. Infectious agent and immune response char-
acteristics of chronic enterocolitis in captive rhesus macaques. Infect
Immun 71:4079-4086.

Shah KV. 2007. SV40 and human cancer: A review of recent data. Int J
Cancer 120:215-223.

Shen Y, Zhou D, Chalifoux L, Shen L, Simon M, Zeng X, Lai X, Li Y,
Sehgal P, Letvin NL, Chen ZW. 2002. Induction of an AIDS virus-
related tuberculosis-like disease in macaques: A model of simian im-
munodeficiency virus-mycobacterium coinfection. Infect Immun 70:
869-877.

Shevtsova ZV, Lapin BA, Doroshenko NV, Krilova RI, Korzaja LI, Lo-
movskaya IB, Dzhelieva ZN, Zairov GK, Stakhanova VM, Belova EG.
1988. Spontaneous and experimental hepatitis A in Old World mon-
keys. J Med Primatol 17:177-194.

Shuto R, Fujioka T, Kubota T, Nasu M. 1993. Experimental gastritis in-
duced by Helicobacter pylori in Japanese monkeys. Infect Immun 61:
933-939.

Simoes EA, Hayward AR, Ponnuraj EM, Straumanis JP, Stenmark KR,
Wilson HL, Babu PG. 1999. Respiratory syncytial virus infects the
Bonnet monkey, Macaca radiata. Pediatr Dev Pathol 2:316-326.

Smit-McBride Z, Mattapallil JJ, McChesney M, Ferrick D, Dandekar S.
1998. Gastrointestinal T lymphocytes retain high potential for cytokine
responses but have severe CD4(+) T cell depletion at all stages of
simian immunodeficiency virus infection compared to peripheral lym-
phocytes. J Virol 72:6646-6656.

Smith MA, Clegg JA. 1985. Vaccination against Schistosoma mansoni
with purified surface antigens. Science 227:535-538.

Smith MA, Takeuchi K, Brackett RE, McClure HM, Raybourne RB, Wil-
liams KM, Babu US, Ware GO, Broderson JR, Doyle MP. 2003. Non-
human primate model for Listeria monocytogenes-induced stillbirths.
Infect Immun 71:1574-1579.

Smith SL, Wang X, Godeny EK. 1997. Sequence of the 3’ end of the
simian hemorrhagic fever virus genome. Gene 191:205-210.

Soike KF, Gary GW, Gibson S. 1980. Susceptibility of nonhuman primate
species to infection by simian rotavirus SA-11. Am J Vet Res 41:1098-
1103.

Solnick JV, Canfield DR, Yang S, Parsonnet J. 1999. Rhesus monkey (Ma-
caca mulatta) model of Helicobacter pylori: Noninvasive detection and
derivation of specific-pathogen-free monkeys. Lab Anim Sci 49:197-201.

Solnick JV, Chang K, Canfield DR, Parsonnet J. 2003. Natural acquisition
of Helicobacter pylori infection in newborn rhesus macaques. J Clin
Microbiol 41:5511-5516.

Solnick JV, Hansen LM, Salama NR, Boonjakuakul JK, Syvanen M. 2004.

Volume 49, Number 2 2008

Modification of Helicobacter pylori outer membrane protein expres-
sion during experimental infection of rhesus macaques. Proc Natl Acad
Sci U S A 101:2106-2111.

Spencer JV, Lockridge KM, Barry PA, Lin G, Tsang M, Penfold ME,
Schall TJ. 2002. Potent immunosuppressive activities of cytomegalo-
virus-encoded interleukin-10. J Virol 76:1285-1292.

Sprague LD, Neubauer H. 2004. Melioidosis in animals: A review on
epizootiology, diagnosis and clinical presentation. J Vet Med B 51:
305-320.

Stephens RS, Kalman S, Lammel C, Fan J, Marathe R, Aravind L, Mitchell
W, Olinger L, Tatusov RL, Zhao Q, Koonin EV, Davis RW. 1998.
Genome sequence of an obligate intracellular pathogen of humans:
Chlamydia trachomatis. Science 282:754-759.

Stittelaar KJ, Wyatt LS, de Swart RL, Vos HW, Groen J, van Amerongen
G, van Binnendijk RS, Rozenblatt S, Moss B, Osterhaus AD. 2000.
Protective immunity in macaques vaccinated with a modified vaccinia
virus Ankara-based measles virus vaccine in the presence of passively
acquired antibodies. J Virol 74:4236-4243.

Stittelaar KJ, van Amerongen G, Kondova I, Kuiken T, van Lavieren RF,
Pistoor FH, Niesters HG, van Doornum G, van der Zeijst BA, Mateo L,
Chaplin PJ, Osterhaus AD. 2005. Modified vaccinia virus Ankara pro-
tects macaques against respiratory challenge with monkeypox virus. J
Virol 79:7845-7851.

Stittelaar KJ, Neyts J, Naesens L, van Amerongen G, van Lavieren RF,
Holy A, De Clercq E, Niesters HG, Fries E, Maas C, Mulder PG, van
der Zeijst BA, Osterhaus AD. 2006. Antiviral treatment is more effec-
tive than smallpox vaccination upon lethal monkeypox virus infection.
Nature 439:745-748.

Stokes A, Bauer JH, Hudson NP. 1928. Transmission of yellow fever to
Macacus rhesus: Preliminary note. J Am Assoc 90:253-254.

Stokes A, Bauer JH, Hudson NP. 2001. The transmission of yellow fever
to Macacus rhesus (1928). Rev Med Virol 11:141-148.

Subekti DS, Tjaniadi P, Lesmana M, McArdle J, Iskandriati D, Budiarsa
IN, Walujo P Suparto IH, Winoto I, Campbell JR, Porter KR, Sajuthi
D, Ansari AA, Oyofo BA. 2002. Experimental infection of Macaca
nemestrina with a Toronto Norwalk-like virus of epidemic viral gas-
troenteritis. J Med Virol 66:400-406.

Sun W, Nisalak A, Gettayacamin M, Eckels KH, Putnak JR, Vaughn DW,
Innis BL, Thomas SJ, Endy TP. 2006. Protection of Rhesus monkeys
against dengue virus challenge after tetravalent live attenuated dengue
virus vaccination. J Infect Dis 193:1658-1665.

Suss J. 2003. Epidemiology and ecology of TBE relevant to the production
of effective vaccines. Vaccine 21 Suppl 1:519-S35.

Suss J, Gelpi E, Klaus C, Bagon A, Liebler-Tenorio EM, Budka H, Stark
B, Muller W, Hotzel H. 2007. Tickborne encephalitis in naturally ex-
posed monkey (Macaca sylvanus). Emerg Infect Dis 13:905-907.

Suzaki Y, Ami Y, Nagata N, Naito S, Kato H, Taneichi M, Takahashi M,
Komiya T, Satoh S, Gondaira F, Sugiyama J, Nakano Y, Mori M,
Komuro K, Uchida T. 2002. Protection of monkeys against Shiga toxin
induced by Shiga toxin-liposome conjugates. Int Arch Allergy Imm
127:294-298.

Tanaka J, Fukuda Y, Shintani S, Hori K, Tomita T, Ohkusa T, Matsumoto
T, Miwa H. 2005. Influence of antimicrobial treatment for Helicobacter
pylori infection on the intestinal microflora in Japanese macaques. J
Med Microbiol 54(Pt 3):309-314.

Tanghe A, Content J, Van Vooren JP, Portaels F, Huygen K. 2001. Pro-
tective efficacy of a DNA vaccine encoding antigen 85A from Myco-
bacterium bovis BCG against Buruli ulcer. Infect Immun 69:5403-
5411.

Tarantal AF, Salamat MS, Britt WJ, Luciw PA, Hendrickx AG, Barry PA.
1998. Neuropathogenesis induced by rhesus cytomegalovirus in fetal
rhesus monkeys (Macaca mulatta). J Infect Dis 177:446-450.

Taylor HR, Prendergast RA, Dawson CR, Schachter J, Silverstein AM.
1981. An animal model for cicatrizing trachoma. Invest Ophth Vis Sci
21:422-433.

Taylor HR, Young E, MacDonald AB, Schachter J, Prendergast RA. 1987.
Oral immunization against chlamydial eye infection. Invest Ophth Vis
Sci 28:249-258.

253



Tollis M, Dietzschold B, Volia CB, Koprowski H. 1991. Immunization of
monkeys with rabies ribonucleoprotein (RNP) confers protective im-
munity against rabies. Vaccine 9:134-136.

Tribe GW, Fleming MP. 1983. Biphasic enteritis in imported cynomolgus
(Macaca fascicularis) monkeys infected with Shigella, Salmonella and
Campylobacter species. Lab Anim 17:65-69.

Tulis JJ, Eigelsbach HT, Kerpsack RW. 1970. Host-parasite relationship in
monkeys administered live tularemia vaccine. Am J Pathol 58:329-336.

Turell MJ, Malinoski FJ. 1992. Limited potential for mosquito transmis-
sion of a live, attenuated chikungunya virus vaccine. Am J Trop Med
Hyg 47:98-103.

Uberla K, Stahl-Hennig C, Bottiger D, Matz-Rensing K, Kaup FJ, Li J,
Haseltine WA, Fleckenstein B, Hunsmann G, Oberg B, Sodroski J.
1995. Animal model for the therapy of acquired immunodeficiency
syndrome with reverse transcriptase inhibitors. Proc Natl Acad Sci U S
A 92:8210-8214.

Urvater JA, McAdam SN, Loehrke JH, Allen TM, Moran JL, Rowell TJ,
Rojo S, Lopez de Castro JA, Taurog JD, Watkins DI. 2000. A high
incidence of Shigella-induced arthritis in a primate species: Major his-
tocompatibility complex class | molecules associated with resistance
and susceptibility, and their relationship to HLA-B27. Immunogenetics
51:314-325.

Valverde CR, Canfield D, Tarara R, Esteves MI, Gormus BJ. 1998. Spon-
taneous leprosy in a wild-caught cynomolgus macaque. Int J Leprosy
66:140-148.

van den Hoogen BG, Herfst S, de Graaf M, Sprong L, van Lavieren R, van
Amerongen G, Yuksel S, Fouchier RA, Osterhaus AD, de Swart RL.
2007. Experimental infection of macaques with human metapneumovirus
induces transient protective immunity. J Gen Virol 88(Pt 4):1251-1259.

van Gorder MA, Della Pelle P, Henson JW, Sachs DH, Cosimi AB, Colvin
RB. 1999. Cynomolgus polyoma virus infection: A new member of the
polyoma virus family causes interstitial nephritis, ureteritis, and enteri-
tis in immunosuppressed cynomolgus monkeys. Am J Pathol 154:
1273-1284.

Van Heuverswyn F, Peeters M. 2007. The origins of HIV and implications
for the global epidemic. Curr Infect Dis Rep 9:338-346.

Van Rompay KK. 2005. Antiretroviral drug studies in nonhuman primates:
A valid animal model for innovative drug efficacy and pathogenesis
experiments. AIDS Rev 7:67-83.

Van Voorhis WC, Barrett LK, Sweeney YT, Kuo CC, Patton DL. 1997.
Repeated Chlamydia trachomatis infection of Macaca nemestrina fal-
lopian tubes produces a Thl-like cytokine response associated with
fibrosis and scarring. Infect Immun 65:2175-2182.

Vasconcelos D, Barnewall R, Babin M, Hunt R, Estep J, Nielsen C, Carnes
R, Carney J. 2003. Pathology of inhalation anthrax in cynomolgus
monkeys (Macaca fascicularis). Lab Invest 83:1201-1209.

Vasconcelos PF, Luna EJ, Galler R, Silva LJ, Coimbra TL, Barros VL,
Monath TP, Rodrigues SG, Laval C, Costa ZG, Vilela MF, Santos CL,
Papaiordanou PM, Alves VA, Andrade LD, Sato HK, Rosa ES,
Froguas GB, Lacava E, Almeida LM, Cruz AC, Rocco IM, Santos RT,
Oliva OF. 2001. Serious adverse events associated with yellow fever
17DD vaccine in Brazil: A report of two cases. Lancet 358:91-97.

Veazey RS, DeMaria M, Chalifoux LV, Shvetz DE, Pauley DR, Knight
HL, Rosenzweig M, Johnson RP, Desrosiers RC, Lackner AA. 1998.
Gastrointestinal tract as a major site of CD4+ T cell depletion and viral
replication in SIV infection. Science 280:427-431.

Virtaneva K, Porcella SF, Graham MR, Ireland RM, Johnson CA, Ricklefs
SM, Babar I, Parkins LD, Romero RA, Corn GJ, Gardner DJ, Bailey
JR, Parnell MJ, Musser JM. 2005. Longitudinal analysis of the group A
Streptococcus transcriptome in experimental pharyngitis in cynomol-
gus macaques. Proc Natl Acad Sci U S A 102:9014-9019.

Voevodin A, Samilchuk E, Schatzl H, Boeri E, Franchini G. 1996. Inter-
species transmission of macaque simian T-cell leukemia/lymphoma
virus type 1 in baboons resulted in an outbreak of malignant lymphoma.
J Virol 70:1633-1639.

Vogel P, Weigler BJ, Kerr H, Hendrickx AG, Barry PA. 1994. Seroepi-
demiologic studies of cytomegalovirus infection in a breeding popula-
tion of rhesus macaques. Lab Anim Sci 44:25-30.

254

von Reyn CF. 2006. Routine childhood bacille Calmette Guerin immuni-
zation and HIV infection. Clin Infect Dis 42:559-561.

Waag DM, Byrne WR, Estep J, Gibbs P, Pitt ML, Banfield CM. 1999.
Evaluation of cynomolgus (Macaca fascicularis) and rhesus (Macaca
mulatta) monkeys as experimental models of acute Q fever after aero-
sol exposure to phase-1 Coxiella burnetii. Lab Anim Sci 49:634-638.

Waag DM, England MJ, Tammariello RF, Byrne WR, Gibbs P, Banfield
CM, Pitt ML. 2002. Comparative efficacy and immunogenicity of Q
fever chloroform: Methanol residue (CMR) and phase | cellular (Q-
Vax) vaccines in cynomolgus monkeys challenged by aerosol. Vaccine
20:2623-2634.

Walker DH, Johnson KM, Lange JV, Gardner JJ, Kiley MP, McCormick
JB. 1982. Experimental infection of rhesus monkeys with Lassa virus
and a closely related arenavirus, Mozambique virus. J Infect Dis 146:
360-368.

Walsh GP, Tan EV, Dela Cruz EC, Abalos RM, Villahermosa LG, Young
LJ, Cellona RV, Nazareno JB, Horwitz MA. 1996. The Philippine
cynomolgus monkey (Macaca fasicularis) provides a new nonhuman
primate model of tuberculosis that resembles human disease. Nat Med
2:430-436.

Walsh DS, Gettayacamin M, Leitner WW, Lyon JA, Stewart VA, Marit G,
Pichyangkul S, Gosi P, Tongtawe P, Kester KE, Holland CA, Kolodny
N, Cohen J, Voss G, Ballou WR, Heppner DG Jr. 2006. Heterologous
prime-boost immunization in rhesus macaques by two, optimally
spaced particle-mediated epidermal deliveries of Plasmodium falcipa-
rum circumsporozoite protein-encoding DNA, followed by intramus-
cular RTS,S/AS02A. Vaccine 24:4167-4178.

Walsh DS, Dela Cruz EC, Abalos RM, Tan EV, Walsh GP, Portaels F,
Meyers WM. 2007. Clinical and histologic features of skin lesions in a
cynomolgus monkey experimentally infected with Mycobacterium ul-
cerans (Buruli ulcer) by intradermal inoculation. Am J Trop Med Hyg
76:132-134.

Watanabe T, Seiki M, Tsujimoto H, Miyoshi I, Hayami M, Yoshida M.
1985. Sequence homology of the simian retrovirus genome with human
T cell leukemia virus type I. Virology 144:59-65.

Weinmann E, Majer M, Hilfenhaus J. 1979. Intramuscular and/or intra-
lumbar postexposure treatment of rabies virus-infected cynomolgus
monkeys with human interferon. Infect Immun 24:24-31.

Weiss RA. 1988. Foamy retroviruses: A virus in search of a disease. Nature
333:497-498.

Wells E, Harper ST, Jackson CG, Mann J, Eady RP. 1986. Characterization
of primate bronchoalveolar mast cells. I. IgE-dependent release of his-
tamine, leukotrienes, and prostaglandins. J Immunol 137:3933-3940.

Wengelnik K, Vidal V, Ancelin ML, Cathiard AM, Morgat JL, Kocken
CH, Calas M, Herrera S, Thomas AW, Vial HJ. 2002. A class of potent
antimalarials and their specific accumulation in infected erythrocytes.
Science 295:1311-1314.

Wenner HA, Barrick S, Abel D, Seshumurty P. 1975. The pathogenesis of
simian varicella virus in cynomolgus monkeys. P Soc Exp Biol Med
150:318-323.

Westerman LE, Xu J, Jiang B, McClure HM, Glass RI. 2005. Experimental
infection of pigtail macaques with a simian rotavirus, YK-1. J Med
Virol 75:616-625.

White MK, Gordon J, Reiss K, Del Valle L, Croul S, Giordano A, Dar
binyan A, Khalili K. 2005. Human polyomaviruses and brain tumors.
Brain Res Brain Res Rev 50:69-85.

Whitney JB, Ruprecht RM. 2004. Live attenuated HIV vaccines: Pitfalls
and prospects. Curr Opin Infect Dis 17:17-26.

WHO [World Health Organization]. 2007. Global Advisory Committee on
Vaccine Safety, 12-13 June 2007. Wkly Epidemiol Rec 82:252-259.

Williamson ED, Hodgson I, Walker NJ, Topping AW, Duchars MG, Mott
JM, Estep J, Lebutt C, Flick-Smith HC, Jones HE, Li H, Quinn CP.
2005. Immunogenicity of recombinant protective antigen and efficacy
against aerosol challenge with anthrax. Infect Immun 73:5978-5987.

Williamson ED, Flick-Smith HC, Waters E, Miller J, Hodgson I, Le Butt
CS, Hill J. 2007. Immunogenicity of the rF1+rV vaccine for plague
with identification of potential immune correlates. Microb Pathog 42:
11-21.

ILAR Journal



Willy ME, Woodward RA, Thornton VB, Wolff AV, Flynn BM, Heath JL,
Villamarzo YS, Smith S, Bellini WJ, Rota PA. 1999. Management of
a measles outbreak among Old World nonhuman primates. Lab Anim
Sci 49:42-48.

Wobus CE, Thackray LB, Virgin HW 4th. 2006. Murine norovirus: A
model system to study norovirus biology and pathogenesis. J Virol
80:5104-5112.

Wolf RH, Gormus BJ, Martin LN, Baskin GB, Walsh GP, Meyers WM,
Binford CH. 1985. Experimental leprosy in three species of monkeys.
Science 227:529-531.

Wolfe ND, Heneine W, Carr JK, Garcia AD, Shanmugam V, Tamoufe U,
Torimiro JN, Prosser AT, Lebreton M, Mpoudi-Ngole E, McCutchan
FE, Birx DL, Folks TM, Burke DS, Switzer WM. 2005. Emergence of
unique primate T-lymphotropic viruses among central African bush-
meat hunters. Proc Natl Acad Sci U S A 102:7994-7999.

Wolfe ND, Dunavan CP, Diamond J. 2007. Origins of major human in-
fectious diseases. Nature 447:279-283.

Wong MM, Kozek WJ, Karr SL Jr, Brayton MA, Theis JH, Hendrickx AG.
1979. Experimental congenital infection of Toxoplasma gondii in Ma-
caca arctoides. Asian J Infect Dis 3:61-67.

Wong SW, Bergguam EP, Swanson RM, Lee FW, Shiigi SM, Avery NA,
Fanton JW, Axthelm MK. 1999. Induction of B cell hyperplasia in
simian immunodeficiency virus-infected rhesus macaques with the
simian homologue of Kaposi’s sarcoma-associated herpesvirus. J Exp
Med 190:827-840.

Wood CE, Borgerink H, Register TC, Scott L, Cline JM. 2004. Cervical
and vaginal epithelial neoplasms in cynomolgus monkeys. Vet Pathol
41:108-115.

Wood CE, Chen Z, Cline JM, Miller BE, Burk RD. 2007. Characterization
and experimental transmission of an oncogenic papillomavirus in fe-
male macaques. J Virol 81:6339-6345.

Wright GG, Hedberg MA, Slein JB. 1954. Studies on immunity in anthrax.
I11. Elaboration of protective antigen in a chemically defined, non-
protein medium. J Immunol 72:263-269.

Wu Y, Przysiecki C, Flanagan E, Bello-Irizarry SN, lonescu R, Muratova
O, Dobrescu G, Lambert L, Keister D, Rippeon Y, Long CA, Shi L,
Caulfield M, Shaw A, Saul A, Shiver J, Miller LH. 2006. Sustained
high-titer antibody responses induced by conjugating a malarial vac-
cine candidate to outer-membrane protein complex. Proc Natl Acad Sci
U S A 103:18243-18248.

Wyatt RG, Sly DL, London WT, Palmer AE, Kalica AR, Van Kirk DH,
Chanock RM, Kapikian AZ. 1976. Induction of diarrhea in colostrum-
deprived newborn rhesus monkeys with the human reovirus-like agent
of infantile gastroenteritis. Arch Virol 50:17-27.

Xu JZ, Yang ZG, Le MZ, Wang MR, He CL, Sui YH. 2001. A study on
pathogenicity of hepatitis G virus. World J Gastroenterol 7:547-550.

Yalcin S, Mukai T, Kondo K, Ami Y, Okawa T, Kojima A, Kurata T,
Yamanishi K. 1992. Experimental infection of cynomolgus and African

Volume 49, Number 2 2008

green monkeys with human herpesvirus 6. J Gen Virol 73 (Pt 7):1673-
1677.

Ylostalo J, Randall AC, Myers TA, Metzger M, Krogstad DJ, Cogswell
FB. 2005. Transcriptome profiles of host gene expression in a monkey
model of human malaria. J Infect Dis 191:400-409.

Yue Y, Kaur A, Eberhardt MK, Kassis N, Zhou SS, Tarantal AF, Barry PA.
2007. Immunogenicity and protective efficacy of DNA vaccines ex-
pressing rhesus cytomegalovirus glycoprotein B, phosphoprotein 65-2,
and viral interleukin-10 in rhesus macaques. J Virol 81:1095-11009.

Zaucha GM, Jahrling PB, Geisbert TW, Swearengen JR, Hensley L. 2001.
The pathology of experimental aerosolized monkeypox virus infection
in cynomolgus monkeys (Macaca fascicularis). Lab Invest 81:1581-
1600.

Zhang M, Emerson SU, Nguyen H, Engle R, Govindarajan S, Blackwelder
WC, Gerin J, Purcell RH. 2002. Recombinant vaccine against hepatitis
E: Duration of protective immunity in rhesus macaques. Vaccine 20:
3285-3291.

Zhang P, Chomel BB, Schau MK, Goo JS, Droz S, Kelminson KL, George
SS, Lerche NW, Koehler JE. 2004. A family of variably expressed
outer-membrane proteins (Vomp) mediates adhesion and autoaggrega-
tion in Bartonella quintana. Proc Natl Acad Sci U S A 101:13630-
13635.

Zhou D, Lai X, Shen Y, Sehgal P, Shen L, Simon M, Qiu L, Huang D, Du
GZ, Wang Q, Letvin NL, Chen ZW. 2003. Inhibition of adaptive
Vgamma2Vdelta2+ T cell responses during active mycobacterial coin-
fection of simian immunodeficiency virus SIVmac-infected monkeys. J
Virol 77:2998-3006.

Zhou J, Wang W, Zhong Q, Hou W, Yang Z, Xiao SY, Zhu R, Tang Z,
Wang Y, Xian Q, Tang H, Wen L. 2005. Immunogenicity, safety, and
protective efficacy of an inactivated SARS-associated coronavirus vac-
cine in rhesus monkeys. Vaccine 23:3202-3209.

Zhu YD, Fennelly G, Miller C, Tarara R, Saxe |, Bloom B, McChesney M.
1997a. Recombinant bacille Calmette-Guerin expressing the measles
virus nucleoprotein protects infant rhesus macaques from measles virus
pneumonia. J Infect Dis 176:1445-1453.

Zhu YD, Heath J, Collins J, Greene T, Antipa L, Rota P, Bellini W,
McChesney M. 1997h. Experimental measles. II. Infection and immu-
nity in the rhesus macaque. Virology 233:85-92.

Zhu Y, Rota P, Wyatt L, Tamin A, Rozenblatt S, Lerche N, Moss B, Bellini
W, McChesney M. 2000. Evaluation of recombinant vaccinia virus:
Measles vaccines in infant rhesus macaques with preexisting measles
antibody. Virology 276:202-213.

Zuckerman AJ, Scalise G, Mazaheri MR, Kremastinou J, Howard CR,
Sorensen K. 1975. Transmission of hepatitis B to the rhesus monkey.
Dev Biol Stand 30:236-239.

Zumpe D, Silberman MS, Michael RP. 1980. Unusual outbreak of tuber-
culosis due to Mycobacterium bovis in a closed colony of rhesus mon-
keys (Macaca mulatta). Lab Anim Sci 30(2 Pt 1):237-240.

255





