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Sciences, Sanford Burnham Prebys Medical Discovery Institute, San Diego, United
States; 7Ludwig Institute for Cancer Research, San Diego, United States

Abstract Genetic variants associated with type 2 diabetes (T2D) risk affect gene regulation in

metabolically relevant tissues, such as pancreatic islets. Here, we investigated contributions of

regulatory programs active during pancreatic development to T2D risk. Generation of chromatin

maps from developmental precursors throughout pancreatic differentiation of human embryonic

stem cells (hESCs) identifies enrichment of T2D variants in pancreatic progenitor-specific stretch

enhancers that are not active in islets. Genes associated with progenitor-specific stretch enhancers

are predicted to regulate developmental processes, most notably tissue morphogenesis. Through

gene editing in hESCs, we demonstrate that progenitor-specific enhancers harboring T2D-

associated variants regulate cell polarity genes LAMA1 and CRB2. Knockdown of lama1 or crb2 in

zebrafish embryos causes a defect in pancreas morphogenesis and impairs islet cell development.

Together, our findings reveal that a subset of T2D risk variants specifically affects pancreatic

developmental programs, suggesting that dysregulation of developmental processes can

predispose to T2D.

Introduction
Type 2 diabetes (T2D) is a multifactorial metabolic disorder characterized by insulin insensitivity and

insufficient insulin secretion by pancreatic beta cells (Halban et al., 2014). Genetic association stud-

ies have identified hundreds of loci influencing risk of T2D (Mahajan et al., 2018). However, disease-

relevant target genes of T2D risk variants, the mechanisms by which these genes cause disease, and

the tissues in which the genes mediate their effects remain poorly understood.

The majority of T2D risk variants map to non-coding sequence, suggesting that genetic risk of

T2D is largely mediated through variants affecting transcriptional regulatory activity. Intersection of

T2D risk variants with epigenomic data has uncovered enrichment of T2D risk variants in regulatory

sites active in specific cell types, predominantly in pancreatic beta cells, including risk variants that

affect regulatory activity directly (Chiou et al., 2019; Fuchsberger et al., 2016; Gaulton et al.,
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2015; Gaulton et al., 2010; Greenwald et al., 2019; Mahajan et al., 2018; Parker et al., 2013;

Pasquali et al., 2014; Thurner et al., 2018; Varshney et al., 2017). T2D risk-associated variants are

further enriched within large, contiguous regions of islet active chromatin, referred to as stretch or

super-enhancers (Parker et al., 2013). These regions of active chromatin preferentially bind islet-

cell-restricted transcription factors and drive islet-specific gene expression (Parker et al., 2013;

Pasquali et al., 2014).

Many genes associated with T2D risk in islets are not uniquely expressed in differentiated islet

endocrine cells, but also in pancreatic progenitor cells during embryonic development. For example,

T2D risk variants map to HNF1A, HNF1B, HNF4A, MNX1, NEUROG3, PAX4, and PDX1

(Flannick et al., 2019; Mahajan et al., 2018; Steinthorsdottir et al., 2014), which are all transcrip-

tion factors also expressed in pancreatic developmental precursors. Studies in model organisms and

hESC-based models of pancreatic endocrine cell differentiation have shown that inactivation of these

transcription factors causes defects in endocrine cell development, resulting in reduced beta cell

numbers (Gaertner et al., 2019). Furthermore, heterozygous mutations for HNF1A, HNF1B,

HNF4A, PAX4, and PDX1 are associated with maturity onset diabetes of the young (MODY), which is

an autosomal dominant form of diabetes with features similar to T2D (Urakami, 2019). Thus, there is

evidence that reduced activity of developmentally expressed transcription factors can cause diabetes

later in life.

The role of these transcription factors in T2D and MODY could be explained by their functions in

regulating gene expression in mature islet cells. However, it is also possible that their function during

endocrine cell development could predispose to diabetes instead of, or in addition to, endocrine

cell gene regulation. One conceivable mechanism is that individuals with reduced activity of these

transcription factors are born with either fewer beta cells or beta cells more prone to fail under con-

ditions of increased insulin demand. Observations showing that disturbed intrauterine metabolic

conditions, such as maternal malnutrition, can lead to reduced beta cell mass and T2D predisposition

in the offspring (Lumey et al., 2015; Nielsen et al., 2014; Portha et al., 2011) support the concept

that compromised beta cell development could predispose to T2D. However, whether there is T2D

genetic risk relevant to the regulation of endocrine cell development independent of gene regula-

tion in mature islet cells has not been explored.

In this study, we investigated the contribution of gene regulatory programs specifically active dur-

ing pancreatic development to T2D risk. First, we employed a hESC-based differentiation system to

generate chromatin maps of hESCs during their stepwise differentiation into pancreatic progenitor

cells. We then identified T2D-associated variants localized in active enhancers in developmental pre-

cursors but not in mature islets, used genome editing in hESCs to define target genes of pancreatic

progenitor-specific enhancers harboring T2D variants, and employed zebrafish genetic models to

study the role of two target genes in pancreatic and endocrine cell development.

Results

Pancreatic progenitor stretch enhancers are enriched for T2D risk
variants
To determine whether there is a development-specific genetic contribution to T2D risk, we gener-

ated genome-wide chromatin maps of hESCs during their stepwise differentiation into pancreatic

progenitors through four distinct developmental stages: definitive endoderm (DE), gut tube (GT),

early pancreatic progenitors (PP1), and late pancreatic progenitors (PP2) (Figure 1A). We then used

ChromHMM (Ernst and Kellis, 2012) to annotate chromatin states, such as active promoters and

enhancers, at all stages of hESC differentiation as well as in primary islets (Figure 1—figure supple-

ment 1A,B).

Large and contiguous regions of active enhancer chromatin, which have been termed stretch- or

super-enhancers (Parker et al., 2013; Whyte et al., 2013), are highly enriched for T2D risk variants

in islets (Parker et al., 2013; Pasquali et al., 2014). We therefore partitioned active enhancers from

each hESC developmental stage and islets into stretch enhancers (SE) and traditional (non-stretch)

enhancers (TE) (Figure 1B). Consistent with prior observations of SE features (Parker et al., 2013;

Whyte et al., 2013), SE comprised a small subset of all active enhancers (7.7%, 7.8%, 8.8%, 8.1%,

8.1%, and 10.4% of active enhancers in ES, DE, GT, PP1, PP2, and islets, respectively; Figure 1B and
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Figure 1. T2D-associated risk variants are enriched in stretch enhancers of pancreatic progenitors independent of islet stretch enhancers. (A) Schematic

illustrating the stepwise differentiation of human embryonic stem cells (hES) into pancreatic progenitors (solid arrows) and lineage relationship to islets

Figure 1 continued on next page
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Figure 1—figure supplement 1C) and genes proximal to SE were more highly expressed than

genes proximal to TE (p=4.68 � 10�7, 4.64 � 10�11, 1.31 � 10�5, 8.85 � 10�9, 5.34 � 10�6,

and <2.2 � 10�16 for expression of genes near TE vs SE in ES, DE, GT, PP1, PP2, and islets, respec-

tively; Figure 1—figure supplement 1D). Genes near SE in pancreatic progenitors included tran-

scription factors involved in the regulation of pancreatic cell identity, such as NKX6.1 and PDX1

(Figure 1C). Since disease-associated variants are preferentially enriched in narrow peaks of accessi-

ble chromatin within broader regions of active chromatin (Greenwald et al., 2019; Thurner et al.,

2018; Varshney et al., 2017), we next used ATAC-seq to generate genome-wide maps of chromatin

accessibility across all time points of differentiation. Nearly all identified SE contained at least one

ATAC-seq peak (Figure 1D and Figure 1—figure supplement 1E,F). At the PP2 stage, 62.3% of SE

harbored one, 32.2% two or three, and 0.7% four or more ATAC-seq peaks (Figure 1—figure sup-

plement 1F). Similar percentages were observed in earlier developmental precursors and islets.

Having annotated accessible chromatin sites within SE, we next tested for enrichment of T2D-

associated variants in SE active in mature islets and in pancreatic developmental stages. We

observed strongest enrichment of T2D-associated variants in islet SE (log enrichment = 2.18, 95%

CI = 1.80, 2.54) and late pancreatic progenitor SE (log enrichment = 2.17, 95% CI = 1.40, 2.74),

which was more pronounced when only considering variants in accessible chromatin sites within

these elements (islet log enrichment = 3.20, 95% CI = 2.74, 3.60; PP2 log enrichment = 3.18, 95%

CI = 2.35, 3.79; Figure 1E). Given that a subset of pancreatic progenitor SE is also active in islets,

we next determined whether pancreatic progenitor SE contribute to T2D risk independently of islet

SE. Variants in accessible chromatin sites of late pancreatic progenitor SE were enriched for T2D

association in a joint model including islet SE (islet log enrichment = 2.94, 95% CI = 2.47, 3.35; PP2

log enrichment = 1.27, 95% CI = 0.24, 2.00; Figure 1F). We also observed enrichment of variants in

accessible chromatin sites of pancreatic progenitor SE after conditioning on islet SE (log enrich-

ment = 0.60, 95% CI = �0.87, 1.48), as well as when excluding pancreatic progenitor SE active in

islets (log enrichment = 1.62, 95% CI = <-20, 3.14). Examples of known T2D loci with T2D-associated

variants in SE active in pancreatic progenitors but not in islets included LAMA1 and PROX1. These

results suggest that a subset of T2D variants may affect disease risk by altering regulatory programs

specifically active in pancreatic progenitors.

Pancreatic progenitor-specific stretch enhancers are near genes that
regulate tissue morphogenesis
Having observed enrichment of T2D risk variants in pancreatic progenitor SE independent of islet

SE, we next sought to further characterize the regulatory programs of SE with specific function in

Figure 1 continued

(dotted arrow). Developmental intermediates include definitive endoderm (DE), gut tube (GT), early pancreatic progenitor (PP1), and late pancreatic

progenitor (PP2) cells. (B) Box plots depicting length of typical enhancers (TE) and stretch enhancers (SE) at each developmental stage and in primary

human islets. Plots are centered on median, with box encompassing 25–75th percentile and whiskers extending up to 1.5 interquartile range. Total

numbers of enhancers are shown above each box plot. (C) Examples of stretch enhancers (denoted with red boxes) near the genes encoding the

pancreatic lineage-determining transcription factors NKX6.1 and PDX1, respectively. Chromatin states are based on ChromHMM classifications: TssA,

active promoter; TssFlnk, flanking transcription start site; TssBiv, bivalent promoter; Repr, repressed; EnhA, active enhancer; EnhP, poised enhancer. (D)

Percentage of TE and SE overlapping with at least one ATAC-seq peak at PP2 or in islets. Enrichment analysis comparing observed and expected

overlap based on random genomic regions of the same size and located on the same chromosome averaged over 10,000 iterations (***p<1 � 10�4;

permutation test). ATAC-seq peaks were merged from two independent differentiations for PP2 stage cells and four donors for primary islets. (E)

Genome-wide enrichment of T2D-associated variants (minor allele frequency >0.0025) in stretch enhancers, ATAC-seq peaks, and ATAC-seq peaks

within stretch enhancers for all developmental stages when modeling each annotation separately. Points and lines represent log-scaled enrichment

estimates and 95% confidence intervals from functional genome wide association analysis (fgwas), respectively. ATAC-seq peaks were merged from two

independent differentiations for ES, DE, GT, PP1, and PP2 stage cells and from four donors for primary islets. (F) Genome-wide enrichment of T2D-

associated variants (minor allele frequency >0.0025) in ATAC-seq peaks within stretch enhancers for all developmental stages and coding exons when

considering all annotations in a joint model. Points and lines represent log-scaled enrichment estimates and 95% confidence intervals from fgwas,

respectively. ATAC-seq peaks were merged from two independent differentiations for ES, DE, GT, PP1, and PP2 stage cells and from four donors for

primary islets. See also Figure 1—figure supplement 1.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Characterization of typical and stretch enhancers in pancreatic developmental intermediates and islets.
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pancreatic progenitors. We therefore defined a set of pancreatic progenitor-specific stretch

enhancers (PSSE) based on the following criteria: (i) annotation as a SE at the PP2 stage, (ii) no classi-

fication as a SE at the ES, DE, and GT stages, and (iii) no classification as a TE or SE in islets. Apply-

ing these criteria, we identified a total of 492 PSSE genome-wide (Figure 2A and Figure 2—source

data 1).

As expected based on their chromatin state classification, PSSE acquired broad deposition of the

active enhancer mark H3K27ac at the PP1 and PP2 stages (Figure 2B,C). Coincident with an increase

in H3K27ac signal, chromatin accessibility at PSSE also increased (Figure 2B), and 93.5% of PSSE

contained at least one accessible chromatin site at the PP2 stage (Figure 2—figure supplement 1A,

B). Further investigation of PSSE chromatin state dynamics at earlier stages of pancreatic differentia-

tion revealed that PSSE were often poised (defined by H3K4me1 in the absence of H3K27ac) prior

to activation (42%, 48%, 63%, and 17% of PSSE in ES, DE, GT, and PP1, respectively; Figure 2C),

consistent with earlier observations that a poised enhancer state frequently precedes enhancer acti-

vation during development (Rada-Iglesias et al., 2011; Wang et al., 2015). Intriguingly, a subset of

PSSE was classified as TE earlier in development (13%, 23%, 29%, and 46% of PSSE in ES, DE, GT,

and PP1, respectively; Figure 2C), suggesting that SE emerge from smaller regions of active chroma-

tin seeded at prior stages of development. During differentiation into mature islet cells, PSSE lost

H3K27ac but largely retained H3K4me1 signal (62% of PSSE) (Figure 2C), persisting in a poised state

in terminally differentiated islet cells.

To gain insight into the transcription factors that regulate PSSE, we conducted motif enrichment

analysis of accessible chromatin sites within PSSE (Figure 2—figure supplement 1C). Consistent

with the activation of PSSE upon pancreas induction, motifs associated with transcription factors

known to regulate pancreatic development (Conrad et al., 2014; Masui et al., 2007) were enriched,

including FOXA (p=1 � 10�34), PDX1 (p=1 � 10�30), GATA (p=1 � 10�25), ONECUT (p=1 � 10�17),

and RBPJ (p=1 � 10�14), suggesting that pancreatic lineage-determining transcription factors acti-

vate PSSE. Analysis of the extent of PSSE overlap with ChIP-seq binding sites for FOXA1, FOXA2,

GATA4, GATA6, PDX1, HNF6, and SOX9 at the PP2 stage substantiated this prediction (p<1 � 10�4

for all transcription factors; permutation test; Figure 2D).

Annotation of biological functions of predicted target genes for PSSE (nearest gene with

FPKM �1 at PP2 stage) revealed gene ontology terms related to developmental processes, such as

tissue morphogenesis (p=1 � 10�7) and vascular development (p=1 � 10�8), as well as developmen-

tal signaling pathways, including BMP (p=1 � 10�5), NOTCH (p=1 � 10�4), and canonical Wnt sig-

naling (p=1 � 10�4; Figure 2E and Figure 2—source data 2), which have demonstrated roles in

pancreas morphogenesis and cell lineage allocation (Ahnfelt-Rønne et al., 2010; Li et al., 2015;

Murtaugh, 2008; Sharon et al., 2019; Sui et al., 2013). Consistent with the temporal pattern of

H3K27ac deposition at PSSE, transcript levels of PSSE-associated genes increased upon pancreatic

lineage induction and peaked at the PP2 stage (p=1.8 � 10�8; Figure 2—figure supplement 1D).

Notably, expression of these genes sharply decreased in islets (p<2.2 � 10�16), underscoring the

likely role of these genes in regulating pancreatic development but not mature islet function.

Pancreatic progenitor-specific stretch enhancers are highly specific
across T2D-relevant tissues and cell types
We next sought to understand the phenotypic consequences of PSSE activity in the context of T2D

pathophysiology. Variants in accessible chromatin sites of PSSE genome-wide were enriched for T2D

association (log enrichment = 2.85, 95% CI = <-20, 4.09). We determined enrichment of genetic var-

iants for T2D-related quantitative endophenotypes within accessible chromatin sites of PSSE, as well

as all pancreatic progenitor SE (not just progenitor-specific) and islet SE, using LD score regression

(Bulik-Sullivan et al., 2015; Finucane et al., 2015). As expected based on prior observations

(Parker et al., 2013; Pasquali et al., 2014), we observed enrichment (Z > 1.96) of variants associ-

ated with quantitative traits related to insulin secretion and beta cell function within islet SE, exem-

plified by fasting proinsulin levels, HOMA-B, and acute insulin response (Z = 2.8, Z = 2.6, and

Z = 2.2, respectively; Figure 2F). Conversely, PSSE showed a trend toward depletion for these traits,

although the estimates were not significant. We further tested for enrichment in the proportion of

variants in PSSE and islet SE nominally associated (p<0.05) with beta cell function traits compared to

background variants. There was significant enrichment of beta cell trait association among islet SE
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Figure 2. Candidate target genes of pancreatic progenitor-specific stretch enhancers regulate developmental processes. (A) Schematic illustrating

identification of pancreatic progenitor-specific stretch enhancers (PSSE). (B) Heatmap showing density of H3K27ac ChIP-seq and ATAC-seq reads at

PSSE, centered on overlapping H3K27ac and ATAC-seq peaks, respectively, and spanning 5 kb in ES, DE, GT, PP1, PP2, and islets. PSSE coordinates in

Figure 2—source data 1. (C) Percentage of PSSE exhibiting indicated chromatin states at defined developmental stages and in islets. (D) Percentage

Figure 2 continued on next page
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variants (c2 test; p<0.05 for all beta cell functional traits except for insulin secretion rate), but no cor-

responding enrichment for PSSE (Figure 2—source data 3).

A prior study found that variants at the LAMA1 locus had stronger effects on T2D risk among

lean relative to obese cases (Perry et al., 2012). Since we identified a PSSE at the LAMA1 locus, we

postulated that variants in PSSE collectively might have differing impact on T2D risk in cases segre-

gated by BMI. We therefore tested PSSE, as well as pancreatic progenitor SE and islet SE, for enrich-

ment of T2D association using GWAS of lean and obese T2D (Perry et al., 2012), using LD score

regression (Bulik-Sullivan et al., 2015; Finucane et al., 2015). We observed nominally significant

enrichment of variants in pancreatic progenitor SE for T2D among lean cases (Z = 2.1). Variants in

PSSE were mildly enriched for T2D among lean (Z = 1.1) and depleted among obese (Z = �0.70)

cases, although neither estimate was significant. By comparison, islet SE showed positive enrichment

for T2D among both lean (Z = 1.9) and obese cases (Z = 1.3; Figure 2F). Together, these results sug-

gest that PSSE may affect T2D risk in a manner distinct from islet SE function.

Having observed little evidence for enrichment of PSSE variants for traits related to beta cell func-

tion, we asked whether the enrichment of PSSE for T2D-associated variants could be explained by

PSSE activity in T2D-relevant tissues and cell types outside the pancreas. We assessed PSSE activity

by measuring H3K27ac signal in 95 representative tissues and cell lines from the ENCODE and Epi-

genome Roadmap projects (Kundaje et al., 2015). Interestingly, there was group-wide specificity of

PSSE to pancreatic progenitors relative to other cells and tissues including those relevant to T2D,

such as adipose tissue, skeletal muscle, and liver (Figure 2—figure supplement 1E and Figure 2—

source data 4). Since gene regulation in adipocyte precursors also contributes to T2D risk

(Claussnitzer et al., 2014), we further examined PSSE specificity with respect to chromatin states

during adipogenesis, using data from human adipose stromal cell differentiation stages (hASC1-4)

(Mikkelsen et al., 2010; Varshney et al., 2017). PSSE exhibited virtually no active chromatin during

adipogenesis (9, 8, 6, and 8 out of the 492 PSSE were active enhancers in hACS-1, hASC-2, hASC-3,

and hASC-4, respectively; Figure 2—figure supplement 1F). These findings identify PSSE as highly

pancreatic progenitor-specific across T2D-relevant tissues and cell types.

Identification of pancreatic progenitor-specific stretch enhancers
harboring T2D-associated variants
Given the relative specificity of PSSE to pancreatic progenitors, we next sought to identify T2D-asso-

ciated variants in PSSE at specific loci which may affect pancreatic development. We therefore iden-

tified variants in PSSE with evidence of T2D association (at p=4.7 � 10�6) after correcting for the

total number of variants in PSSE genome-wide (n = 10,738). In total there were 49 variants in PSSE

with T2D association exceeding this threshold mapping to 11 loci (Figure 3A). This included variants

at nine loci with known genome-wide significant T2D association (PROX1, ST6GAL1, SMARCAD1,

Figure 2 continued

of PSSE overlapping with at least one ChIP-seq peak at PP2 for the indicated transcription factors. Enrichment analysis comparing observed and

expected overlap based on random genomic regions of the same size and located on the same chromosome averaged over 10,000 iterations

(***p<1�10�4; permutation test). (E) Gene ontology analysis for nearest expressed genes (fragments per kilobase per million fragments mapped

(FPKM) �1 at PP2) to the 492 PSSE. See also Figure 2—source data 2. (F) Enrichment (LD score regression coefficient z-scores) of T2D, developmental,

and metabolic GWAS trait-associated variants at accessible chromatin sites in PSSE as compared with PP2 and islet stretch enhancers. Significant

enrichment was identified within accessible chromatin at PP2 stretch enhancers for lean type 2 diabetes (Z = 2.06, *p=3.94 � 10�2), at PP2 stretch

enhancers for type 2 diabetes (Z = 3.57, ***p=3.52 � 10�4), at islet stretch enhancers for type 2 diabetes (Z = 2.78, **p=5.46 � 10�3), at islet stretch

enhancers for fasting proinsulin levels (Z = 2.83, **p=4.61 � 10�3), at islet stretch enhancers for HOMA-B (Z = 2.58, **p=9.85 � 10�3), at PP2 stretch

enhancers for disposition index (Z = 2.18, *p=2.94 � 10�2), at islet stretch enhancers for acute insulin response (Z = 2.24, *p=2.51 � 10�2), at islet

stretch enhancers for HbA1c (Z = 1.98, *p=4.72 � 10�2), and at islet stretch enhancers for fasting glucose levels (Z = 2.64, **p=8.31 � 10�3). See also

Figure 2—source data 3 and Figure 2—figure supplement 1.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Chromosomal coordinates of pancreatic progenitor-specific stretch enhancers (PSSE).

Source data 2. Enriched gene ontology terms for PSSE-associated genes.

Source data 3. Proportion of variants nominally associated with beta cell functional traits.

Source data 4. Tissue identity of downloaded data from ROADMAP consortium.

Figure supplement 1. Characterization of pancreatic progenitor-specific stretch enhancers.
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Figure 3. Identification of T2D risk variants associated with pancreatic progenitor-specific stretch enhancers. (A) Manhattan plot showing T2D

association p-values (from Mahajan et al., 2018) for 10,738 variants mapping within PSSE. The dotted line shows the threshold for Bonferroni

correction (p=4.66 � 10�6). Novel loci identified with this threshold and mapping at least 500 kb away from a known locus are highlighted in blue.

Chromosomal coordinates of T2D-associated PSSE are indicated. (B) mRNA levels (measured in fragments per kilobase per million fragments mapped

Figure 3 continued on next page
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XKR6, INS-IGF2, HMGA2, SMEK1, HMG20A, and LAMA1), as well as at two previously unreported

loci with sub-genome-wide significant association, CRB2 and PGM1. To identify candidate target

genes of the T2D-associated PSSE in pancreatic progenitors, we analyzed the expression of all genes

within the same topologically associated domain (TAD) as the PSSE in PP2 cells and in primary

human embryonic pancreas tissue (Figure 3B and Figure 3—figure supplement 1A). These

expressed genes are candidate effector transcripts of T2D-associated variants in pancreatic

progenitors.

As many pancreatic progenitor SE remain poised in mature islets (Figure 2C), we considered

whether T2D-associated variants in PSSE could have gene regulatory function in islets that is re-acti-

vated in the disease state. We therefore assessed overlap of PSSE variants with accessible chromatin

of islets from T2D donors (Khetan et al., 2018). None of the strongly T2D-associated variants in

PSSE (p=4.7 � 10�6) overlapped an islet accessible chromatin site in T2D islets, arguing against the

relevance of PSSE in broadly regulating islet gene activity during T2D.

A pancreatic progenitor-specific stretch enhancer at LAMA1 harbors
T2D risk variants and regulates LAMA1 expression selectively in
pancreatic progenitors
Variants in a PSSE at the LAMA1 locus were associated with T2D at genome-wide significance

(Figure 3A), and LAMA1 was highly expressed in the human embryonic pancreas (Figure 3B). Fur-

thermore, the activity of the PSSE at the LAMA1 locus was almost exclusively restricted to pancreatic

progenitors (Figure 3—figure supplement 1B,C), and was further among the most progenitor-spe-

cific across all PSSE harboring T2D risk variants (Figure 3C). In addition, reporter gene assays in

zebrafish embryos have shown that this enhancer drives gene expression specific to pancreatic pro-

genitors in vivo (Cebola et al., 2015). We therefore postulated that the activity of T2D-associated

variants within the LAMA1 PSSE is relevant for gene regulation in pancreatic progenitors, and we

sought to characterize the LAMA1 PSSE in greater depth.

Multiple T2D-associated variants mapped within the LAMA1 PSSE, and these variants were fur-

ther in the 99% credible set in fine-mapping data from the DIAMANTE consortium (Mahajan et al.,

2018; Figure 4A). No other variants in the 99% credible set mapped in an accessible chromatin site

active in islets from either non-diabetic or T2D samples. The PSSE is intronic to the LAMA1 gene

and contains regions of poised chromatin and TE at prior developmental stages (Figure 4A). Consis-

tent with its stepwise genesis as a SE throughout development, regions of open chromatin within

the LAMA1 PSSE were already present at the DE and GT stages. Furthermore, pancreatic lineage-

determining transcription factors, such as FOXA1, FOXA2, GATA4, GATA6, HNF6, SOX9, and

PDX1, were all bound to the PSSE at the PP2 stage (Figure 4B). Among credible set variants in the

LAMA1 PSSE, rs10502347 overlapped an ATAC-seq peak as well as ChIP-seq sites for multiple pan-

creatic lineage-determining transcription factors. Additionally, rs10502347 directly coincided with a

SOX9 footprint identified in ATAC-seq data from PP2 cells, and the T2D risk allele C is predicted to

disrupt SOX9 binding (Figure 4B). Consistent with the collective endophenotype association pat-

terns of PSSE (Figure 2F), rs10502347 showed no association with beta cell function (p=0.81, 0.23,

0.46 for fasting proinsulin levels, HOMA-B, and acute insulin response, respectively; Figure 4—fig-

ure supplement 1A). Thus, T2D variant rs10502347 is predicted to affect the binding of pancreatic

transcription factors and does not appear to affect beta cell function.

Enhancers can control gene expression over large genomic distances, and therefore their target

genes cannot be predicted based on proximity alone. To directly assess the function of the LAMA1

PSSE in regulating gene activity, we utilized CRIPSR-Cas9-mediated genome editing to generate

Figure 3 continued

[FPKM]) at PP2 (blue) and in human embryonic pancreas (54 and 58 days gestation, gold) of nearest expressed (FPMK �1) gene at PP2 for PSSE

harboring T2D variants identified in A. (C) PP2 specificity of H3K27ac signal at PSSE harboring T2D variants identified in A. Z-score comparing H3K27ac

signal at PP2 to H3K27ac signal in tissues and cell lines from the ENCODE and Epigenome Roadmap projects. See also Figure 3—figure supplement

1.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Activity of T2D risk-associated pancreatic progenitor-specific stretch enhancers across human tissues.
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Figure 4. A T2D risk-associated LAMA1 pancreatic progenitor-specific stretch enhancer regulates LAMA1 expression specifically in pancreatic

progenitors. (A) (Top) Locus plots showing T2D association p-values for variants in a 35 kb window (hg19 chr18:7,050,000–7,085,000) at the LAMA1 locus

and LAMA1 PSSE (red box). Fine mapped variants within the 99% credible set for the LAMA1 locus are colored black. All other variants are colored

light gray. (Bottom) Chromatin states and ATAC-seq signal in ES, DE, GT, PP1, and PP2. TssA, active promoter; TssFlnk, flanking transcription start site;

Figure 4 continued on next page
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two independent clonal human hESC lines harboring homozygous deletions of the LAMA1 PSSE

(hereafter referred to as DLAMA1Enh; Figure 4—figure supplement 1B). We examined LAMA1

expression in DLAMA1Enh compared to control cells throughout stages of pancreatic differentiation.

Consistent with the broad expression of LAMA1 across developmental and mature tissues, control

cells expressed LAMA1 at all stages (Figure 4C). LAMA1 was expressed at similar levels in

DLAMA1Enh and control cells at early developmental stages, but was significantly reduced in PP2

cells derived from DLAMA1Enh clones (p=0.319, 0.594, 0.945, 0.290, and <1 � 10�6 for comparisons

in ES, DE, GT, PP1, and PP2, respectively; Figure 4D). To next investigate whether the LAMA1 PSSE

regulates other genes at this locus, we utilized Hi-C datasets from PP2 cells to identify topologically

associated domains (TADs). We then examined expression of genes mapping in the same TAD as

the LAMA1 PSSE. ARHGAP28 was the only other expressed gene within the TAD, and albeit not sig-

nificantly different from controls (p.adj >0.05), showed a trend toward lower expression in

DLAMA1Enh PP2 cells (Figure 4E), raising the possibility that ARHGAP28 is an additional target

gene of the LAMA1 PSSE. Together, these results demonstrate that while LAMA1 itself is broadly

expressed across developmental stages, the T2D-associated PSSE regulates LAMA1 expression spe-

cifically in pancreatic progenitors.

To determine whether deletion of the LAMA1 PSSE affects pancreatic development, we gener-

ated PP2 stage cells from DLAMA1Enh and control hESC lines and analyzed pancreatic cell fate com-

mitment by flow cytometry and immunofluorescence staining for PDX1 and NKX6.1 (Figure 4—

figure supplement 1C,D). At the PP2 stage, DLAMA1Enh and control cultures contained similar per-

centages of PDX1- and NKX6.1-positive cells. Furthermore, mRNA expression of PDX1, NKX6.1,

PROX1, PTF1A, and SOX9 was either unaffected or only minimally reduced (p adj. = 3.56 � 10�2,

0.224, 0.829, 8.14 � 10�2, and 0.142, for comparisons of PDX1, NKX6.1, PROX1, PTF1A, and SOX9

expression, respectively; Figure 4—figure supplement 1E), and the overall gene expression profiles

as determined by RNA-seq were similar in DLAMA1Enh and control PP2 cells (Figure 4—figure sup-

plement 1F and Figure 4—source datas 1 and 2). To examine effects of complete LAMA1 loss-of-

function, we additionally generated a hESC line harboring a deletion of the LAMA1 coding sequen-

ces (hereafter referred to as DLAMA1; Figure 4—figure supplement 2A,B), and produced PP2

stage cells. Similar to DLAMA1Enh cultures, DLAMA1 and control PP2 stage cultures contained simi-

lar numbers of PDX1- and NKX6.1-positive cells (Figure 4—figure supplement 2C,D). Likewise,

mRNA expression of PDX1, NKX6.1, PROX1, PTF1A, and SOX9 was similar in DLAMA1 and control

PP2 cells (p=4.3 � 10�2, 0.19, 0.16, 0.17, and 8.7 � 10�2, respectively; Figure 4—figure supple-

ment 2E). These findings indicate that in vitro pancreatic lineage induction is unperturbed in both

Figure 4 continued

TssBiv, bivalent promoter; Repr, repressed; EnhA, active enhancer; EnhP, poised enhancer. (B) FOXA1, FOXA2, GATA4, GATA6, HNF6, SOX9, and

PDX1 ChIP-seq profiles at the LAMA1 PSSE in PP2. The variant rs10502347 (red) overlaps transcription factor binding sites and a predicted ATAC-seq

footprint for the SOX9 sequence motif. Purple dotted lines indicate the core binding profile of the average SOX9 footprint genome-wide and the blue

dotted line indicates the position of rs10502347 within the SOX9 motif. (C) LAMA1 mRNA expression at each developmental stage determined by RNA-

seq, measured in fragments per kilobase per million fragments mapped (FPKM). Data shown as mean ± S.E.M. (n = 3 replicates from independent

differentiations). Light blue and purple indicate classification of the LAMA1 PSSE as typical enhancer (TE) and stretch enhancer (SE), respectively. (D)

LAMA1 mRNA expression at each developmental stage determined by qPCR in control and DLAMA1Enh cells. Data are shown as mean ± S.E.M. (n = 3

replicates from independent differentiations for control cells. DLAMA1Enh cells represent combined data from two clonal lines with three replicates for

each line from independent differentiations. n = 3 technical replicates for each sample; p=0.319, 0.594, 0.945, 0.290, and <1 � 10�6 for comparisons in

ES, DE, GT, PP1, and PP2, respectively; student’s t-test, two sided; ***p<0.001, n.s., not significant). Light blue and purple indicate classification of the

LAMA1 PSSE as TE and SE, respectively. Each plotted point represents the average of technical replicates for each differentiation. (E) mRNA expression

determined by RNA-seq at PP2 of genes expressed in either control or DLAMA1Enh cells (FPKM � 1 at PP2) and located within the same topologically

associated domain as LAMA1. Data are shown as mean FPKM ± S.E.M. (n = 2 replicates from independent differentiations for control cells. DLAMA1Enh

cells represent combined data from two clonal lines with two replicates for each line from independent differentiations. p adj. = 0.389 and 8.11 � 10�3

for ARHGAP28 and LAMA1, respectively; DESeq2). See also Figure 4—figure supplements 1 and 2.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Genes downregulated in DLAMA1Enh PP2 stage cells compared to control cells (p adj. <0.05).

Source data 2. Genes upregulated in DLAMA1Enh PP2 stage cells compared to control cells (p adj. <0.05).

Figure supplement 1. Deletion of the LAMA1-associated pancreatic progenitor-specific enhancer does not affect pancreatic lineage specification.

Figure supplement 2. Deletion of LAMA1 does not affect pancreatic lineage specification.
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DLAMA1Enh cells exhibiting reduced LAMA1 expression, as well as DLAMA1 cells where LAMA1

coding sequences are disrupted.

Pancreatic progenitor-specific stretch enhancers at the CRB2 and PGM1
loci harbor T2D-associated variants
Multiple variants with evidence for T2D association in PSSE mapped outside of known risk loci, such

as those mapping to CRB2 and PGM1 (Figure 3A). As with the LAMA1 PSSE, PSSE harboring var-

iants at CRB2 and PGM1 were intronic to their respective genes, contained ATAC-seq peaks, and

bound pancreatic lineage-determining transcription factors FOXA1, FOXA2, GATA4, GATA6, HNF6,

SOX9, and PDX1 (Figure 5A,B and Figure 5—figure supplement 1A,B). Compared to the LAMA1

PSSE, CRB2 and PGM1 PSSE were less specific to pancreatic progenitors and exhibited significant

H3K27ac signal in several other tissues and cell types, most notably brain, liver, and the digestive

tract (Figure 5—figure supplement 1C,D).

CRB2 is a component of the Crumbs protein complex involved in the regulation of cell polarity

and neuronal, heart, retinal, and kidney development (Alves et al., 2013; Bulgakova and Knust,

2009; Dudok et al., 2016; Jiménez-Amilburu and Stainier, 2019; Slavotinek et al., 2015). How-

ever, its role in pancreatic development is unknown. To determine whether the CRB2 PSSE regulates

CRB2 expression in pancreatic progenitors, we generated two independent hESC clones with homo-

zygous deletions of the CRB2 PSSE (hereafter referred to as DCRB2Enh; Figure 5—figure supple-

ment 2A) and performed pancreatic differentiation of DCRB2Enh and control hESC lines. In control

cells, CRB2 was first expressed at the GT stage and increased markedly at the PP1 stage

(Figure 5C). This pattern of CRB2 expression is consistent with H3K27ac deposition at the CRB2

PSSE in GT stage cells and classification as a SE at the PP1 and PP2 stages (Figure 5A and Fig-

ure 5—figure supplement 1C). In DCRB2Enh cells, we observed upregulation of CRB2 expression at

earlier developmental stages, in particular at the DE and GT stages (p<1 � 10�6 at both stages;

Figure 5D), suggesting that the CRB2 PSSE may be associated with repressive transcriptional com-

plexes prior to pancreas induction. At the PP2 stage, CRB2 expression was significantly reduced in

DCRB2Enh cells (p adj. = 3.51 � 10�3; Figure 5D), whereas the expression of other genes in the

same TAD was not affected (p adj. �0.05; Figure 5E). Thus, the CRB2 PSSE specifically regulates

CRB2 and is required for CRB2 expression in pancreatic progenitors.

Phenotypic characterization of PP2 stage DCRB2Enh cultures revealed similar percentages of

PDX1- and NKX6.1-positive cells as in control cultures (Figure 5—figure supplement 2B,C). The

expression of pancreatic transcription factors and global gene expression profiles were also similar

in DCRB2Enh and control PP2 cells (Figure 5—figure supplement 2D,E and Figure 5—source data

1). Likewise, CRB2 deletion hESCs (DCRB2) differentiated to the PP2 stage (Figure 5—figure sup-

plement 3A,B) produced similar numbers of PDX1- and NKX6.1-positive cells and expressed pancre-

atic transcription factors at levels similar to control cells (Figure 5—figure supplement 3C–E). Thus,

neither deletion of the CRB2 PSSE nor the CRB2 gene overtly impairs pancreatic lineage induction in

the in vitro hESC differentiation system.

lama1 and crb2 zebrafish morphants display annular pancreas and
decreased beta cell mass
Based on their classification as extracellular matrix and cell polarity proteins, respectively, Laminin

(encoded by LAMA1) and CRB2 are predicted to regulate processes related to tissue morphogene-

sis, such as cell migration, tissue growth, and cell allocation within the developing organ. Further-

more, PSSE in general were enriched for proximity to genes involved in tissue morphogenesis

(Figure 2E), suggesting that T2D risk variants acting within PSSE could have roles in pancreas mor-

phogenesis. Since cell migratory processes and niche-specific signaling events are not fully modeled

during hESC differentiation, we reasoned that the in vitro pancreatic differentiation system might

not be suitable for studying Laminin and CRB2 function in pancreatic development.

To circumvent these limitations, we employed zebrafish as an in vivo vertebrate model to study

the effects of reduced lama1 and crb2 levels on pancreatic development. The basic organization and

cell types in the pancreas as well as the genes regulating endocrine and exocrine pancreas develop-

ment are highly conserved between zebrafish and mammals (Dong et al., 2008; Field et al., 2003;

Kimmel et al., 2015). To analyze pancreatic expression of Laminin and Crb proteins, we used Tg
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Figure 5. A T2D risk-associated CRB2 pancreatic progenitor-specific stretch enhancer regulates CRB2 expression specifically in pancreatic progenitors.

(A) (Top) Locus plots showing T2D association p-values for variants in a 35 kb window (hg19 chr9:126,112,000–126,147,000) at the CRB2 locus and CRB2

PSSE (red box). Fine mapped variants within the 99% credible set for the novel CRB2 locus are colored black. All other variants are colored light gray.

(Bottom) Chromatin states and ATAC-seq signal in ES, DE, GT, PP1, and PP2. TssA, active promoter; TssFlnk, flanking transcription start site; TssBiv,

bivalent promoter; Repr, repressed; EnhA, active enhancer; EnhP, poised enhancer. (B) FOXA1, FOXA2, GATA4, GATA6, HNF6, SOX9, and PDX1 ChIP-

seq profiles at the CRB2 PSSE in PP2. The variant rs2491353 (black) overlaps with transcription factor binding sites. (C) CRB2 mRNA expression at each

developmental stage determined by RNA-seq, measured in fragments per kilobase per million fragments mapped (FPKM). Data shown as mean ± S.E.

M. (n = 3 replicates from independent differentiations). Light blue and purple indicate classification of the CRB2 PSSE as typical enhancer (TE) and

stretch enhancer (SE), respectively. Plotted points represent average of technical replicates for each differentiation. (D) CRB2 mRNA expression at each

developmental stage determined by qPCR in control and DCRB2Enh cells. Data are shown as mean ± S.E.M. (n = 3 replicates from independent

differentiations for control cells. DCRB2Enh cells represent combined data from two clonal lines with three replicates for each line from independent

differentiations. n = 3 technical replicates for each sample; p=7.03 � 10�4,<1 � 10�6,<1 � 10�6, 1.46 � 10�2, and <1 � 10�6 for comparisons in ES, DE,

GT, PP1, and PP2, respectively; student’s t-test, two sided; ***p<0.001 **p<0.01). Light blue and purple indicate classification of the CRB2 PSSE as TE

Figure 5 continued on next page
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(ptf1a:eGFP)jh1 embryos to visualize pancreatic progenitor cells and the acinar pancreas by eGFP

expression. At 48 hr post-fertilization (hpf), both Laminin and Crb proteins were detected in the

eGFP and Nkx6.1 co-positive pancreatic progenitor cell domain (Figure 6—figure supplement 1A,

B).

To determine the respective functions of lama1 and crb2 in pancreatic development, we per-

formed knockdown experiments using anti-sense morpholinos directed against lama1 and the two

zebrafish crb2 genes, crb2a and crb2b (Omori and Malicki, 2006; Pollard et al., 2006). Knockdown

efficiency of each morpholino was validated using whole-mount immunohistochemistry. We

observed significant reduction of Laminin staining throughout the pancreatic progenitor cell domain

in embryos treated with morpholinos targeting lama1 (Figure 6—figure supplement 2A–D). In

embryos treated with morpholinos targeting crb2a or crb2a and crb2b, we observed loss of staining

in the pancreatic progenitor cell domain using antibodies specific to Crb2a or antibodies detecting

all Crb proteins, respectively (Figure 6—figure supplement 3A–H) Residual panCrb protein signal

was observed in the dorsal pancreas, which may be the result of expression of Crb proteins other

than Crb2a and Crb2b in this region.

Consistent with prior studies (Pollard et al., 2006), lama1 morphants exhibited reduced body

size and other gross anatomical defects at 78 hpf, whereas crb2a/b morphants appeared grossly

normal. Both lama1 and crb2a/b morphants displayed an annular pancreas (15 out of 34 lama1 and

27 out of 69 crb2a/b morphants) characterized by pancreatic tissue partially or completely encircling

the duodenum (Figure 6A–D), a phenotype indicative of impaired migration of pancreatic progeni-

tors during pancreas formation. These findings suggest that both lama1 and crb2a/b control cell

migratory processes during early pancreatic development and that reduced levels of lama1 or

crb2a/b impair pancreas morphogenesis.

To gain insight into the effects of lama1 and crb2a/b knockdown on pancreatic endocrine cell

development, we examined beta cell numbers (insulin+ cells) at 78 hpf. We also evaluated potential

synergistic effects of combined lama1 and crb2a/b knockdown. To account for the reduction in body

and pancreas size in lama1 morphants, we compared cell numbers in 78 hpf lama1 morphants with

50 hpf control embryos, which have a similarly sized acinar compartment as 78 hpf lama1 morphants.

Beta cell numbers were significantly reduced in both lama1 and crb2a/b morphants (p=8.0 � 10�3

and 4.0 � 10�3 for comparisons of lama1 and crb2a/b morphants, respectively; Figure 6E,F), as well

as in morphants with a combined knockdown of lama1 and crb2a/b (p=2.0 � 10�4; Figure 6F),

showing that reduced lama1 and crb2a/b levels, both individually and in combination, impair beta

cell development. Furthermore, we found that nearly all lama1, crb2a/b, and combined lama1 and

crb2a/b morphants without an annular pancreas had reduced beta cell numbers, indicating indepen-

dent roles of lama1 and crb2 in pancreas morphogenesis and beta cell differentiation. Finally, to

investigate the contributions of individual crb2 genes to the observed phenotype, we performed

knockdown experiments using morpholinos against crb2a and crb2b alone. Only crb2b morphants

showed a significant reduction in beta cell numbers (p=4.4 � 10�2; Figure 6—figure supplement

4), suggesting that crb2b is the predominant crb2 gene required for beta cell development. Com-

bined, these findings demonstrate that lama1 and crb2 are regulators of pancreas morphogenesis

and beta cell development in vivo.

Figure 5 continued

and SE, respectively. Each plotted point represents the average of technical replicates for each differentiation. (E) mRNA expression determined by

RNA-seq at PP2 of genes expressed in either control or DCRB2Enh cells (FPKM � 1 at PP2) and located within the same topologically associated

domain as CRB2. Data are shown as mean FPKM ± S.E.M. (n = 2 replicates from independent differentiations for control cells. DCRB2Enh cells

represent combined data from two clonal lines with two replicates for each line from independent differentiations. p adj. = 0.158, 1.00, and 3.51 � 10�3,

for MIR600HG, STRBP, and CRB2, respectively; DESeq2; **p<0.01, n.s., not significant). See also Figure 5—figure supplements 1–3.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Genes downregulated in DCRB2Enh PP2 stage cells compared to control cells (p adj. <0.05).

Figure supplement 1. Activity of CRB2- and PGM1-associated pancreatic progenitor-specific stretch enhancers across human tissues.

Figure supplement 2. Deletion of the CRB2-associated pancreatic progenitor-specific enhancer does not affect pancreatic lineage specification.

Figure supplement 3. Deletion of CRB2 does not affect pancreatic lineage specification.
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Figure 6. lama1 and crb2 regulate pancreas morphogenesis and beta cell differentiation. (A,B) Representative 3D renderings of Tg(ptf1a:

eGFP)jh1 control zebrafish embryos (A,A’) and lama1 morphants (B,B’) stained with DAPI (nuclei, blue) and antibody against insulin (red); n � 15

embryos per condition. To account for reduced acinar pancreas size in lama1 morphants, control embryos were imaged at 50 hr post fertilization (hpf)

and lama1 morphants at 78 hpf. 15 out of 34 lama1 morphants displayed an annular pancreas with two acinar pancreas domains (green) connected

Figure 6 continued on next page
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Discussion
In this study, we identify T2D-associated variants localized within chromatin active in pancreatic pro-

genitors but not islets or other T2D-relevant tissues, suggesting a novel mechanism whereby a sub-

set of T2D risk variants specifically alters pancreatic developmental processes. We link T2D-

associated enhancers active in pancreatic progenitors to the regulation of LAMA1 and CRB2 and

demonstrate a functional requirement in zebrafish for lama1 and crb2 in pancreas morphogenesis

and endocrine cell formation. Furthermore, we provide a curated list of T2D risk-associated

enhancers and candidate effector genes for further exploration of how the regulation of develop-

mental processes in the pancreas can predispose to T2D.

Our analysis identified 11 loci where T2D-associated variants mapped in SE specifically active in

pancreatic progenitors. Among these loci was LAMA1, which has stronger effects on T2D risk in lean

compared to obese individuals (Perry et al., 2012). We also found evidence that variants in PSSE

collectively have stronger enrichment for T2D in lean individuals, although the small number of PSSE

and limited sample size of the BMI-stratified T2D genetic data prohibits a more robust comparison.

There was also a notable lack of enrichment among PSSE variants for association with traits related

to insulin secretion and beta cell function. If T2D-associated variants in PSSE indeed confer diabetes

susceptibility by affecting beta cell development, the question arises as to why variants associated

with traits related to beta cell function are not enriched within PSSE. As genetic association studies

of endophenotypes are based on data from non-diabetic subjects, a possible explanation is that var-

iants affecting beta cell developmental processes have no overt phenotypic effect under physiologi-

cal conditions and contribute to T2D pathogenesis only during the disease process.

Since the genomic position of enhancers and transcription factor binding sites is not well con-

served between species (Villar et al., 2015), a human cell model is necessary to identify target

genes of enhancers associated with disease risk. By employing enhancer deletion in hESCs, we dem-

onstrate that T2D-associated PSSE at the LAMA1 and CRB2 loci regulate LAMA1 and CRB2, respec-

tively, and establish LAMA1 and CRB2 as the predominant target gene of their corresponding PSSE

within TAD boundaries. By analyzing LAMA1 and CRB2 expression throughout the pancreatic differ-

entiation time course, we show that the identified PSSE control LAMA1 and CRB2 expression in a

temporal manner consistent with the activation pattern of their associated PSSE. While the specific

T2D-relevant target genes of the majority of T2D-associated PSSE remain to be identified, it is nota-

ble that several are localized within TADs containing genes encoding transcriptional regulators.

These include PROX1 and GATA4, which are known to regulate pancreatic development (Shi et al.,

2017; Tiyaboonchai et al., 2017; Westmoreland et al., 2012), as well as HMGA2 and BCL6 with

unknown functions in the pancreas. Our catalogue of T2D-associated PSSE provides a resource to

fully characterize the gene regulatory program associated with developmentally mediated T2D risk

in the pancreas. Our finding that predicted target genes of PSSE are similarly expressed in hESC-

derived pancreatic progenitors and primary human embryonic pancreas (Figure 3B and Figure 3—

figure supplement 1A) further underscores the utility of the hESC-based system for these studies.

Figure 6 continued

behind the presumptive intestine (B’, white arrow). Scale bar, 40 mM. (C,D) Representative 3D renderings of 78 hpf Tg(ptf1a:eGFP)jh1 control zebrafish

embryos (C,C’) and crb2a/b morphants (D,D’) stained with DAPI (nuclei, blue) and antibodies against insulin (red); n � 15 embryos per condition.

Twenty-seven out of 69 crb2a/b morphants displayed an annular pancreas with the acinar pancreas (green) completely surrounding the presumptive

intestine. Scale bar, 40 mM. (E) Representative 3D renderings of Tg(ptf1a:eGFP)jh1 control zebrafish embryos and crb2a/b, lama1, or crb2a/b + lama1

morphants stained with DAPI (nuclei, blue) and antibody against insulin (red). All embryos were imaged at 78 hpf except for controls to lama1 and

crb2a/b + lama1 morphants, which were imaged at 50 hpf to account for reduced acinar pancreas size of lama1 morphants. Scale bar, 20 mM. (F)

Quantification of beta (insulin+) cell nuclei per embryo from experiment in (E). p adj. = 4.0 � 10�3, 8.0 � 10�3, and 2.0 � 10�4 for comparison of hfp 78

control (n = 7 embryos) to hfp 78 crb2a/b (n = 8), hpf 50 control (n = 12) to hpf 78 lama1 (n = 10), or crb2a/b + lama1 (n = 12) morphants, respectively;

ANOVA-Dunnett’s multiple comparison test; ***p<0.001 **p<0.01. 5 out of 8 crb2a/b, 3 out of 10 lama1, and 9 out of 12 crb2a/b + lama1 morphants

displayed an annular pancreas. MO, morpholino; Control, standard control morpholino. See also Figure 6—figure supplements 1–4.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Laminin and Crb are expressed in zebrafish pancreas progenitors.

Figure supplement 2. Validation of morpholinos targeting lama1.

Figure supplement 3. Validation of morpholinos targeting crb2a and crb2b.

Figure supplement 4. crb2b but not crb2a regulates pancreatic beta cell differentiation.
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In the embryo, endocrine cells differentiate by delaminating from a polarized epithelium of pro-

genitors governed by local cell-cell and cell-matrix signaling events (Mamidi et al., 2018). These

processes are not well-recapitulated in the hESC-based pancreatic differentiation system, highlight-

ing a limitation of this system for studying the function of Laminin and CRB2, which are mediators of

mechanical signals within an epithelium. Therefore, we analyzed their function in zebrafish as an in

vivo model. We show that lama1 or crb2 knockdown leads to an annular pancreas and reduced beta

cell numbers. The beta cell differentiation defect was also evident in embryos not displaying an

annular pancreas, suggesting independent mechanisms.

Consistent with our findings in lama1 morphants, culture of pancreatic progenitors on Laminin-

based substrates promotes endocrine cell differentiation (Mamidi et al., 2018). During in vivo pan-

creatic development, endothelial cells are an important albeit not the only source of Laminin in the

pancreas (Heymans et al., 2019; Mamidi et al., 2018; Nikolova et al., 2006). While we do not

know the respective contributions of endothelial cell- and pancreatic progenitor cell-derived Laminin

to the phenotype of lama1 morphants, the T2D-associated LAMA1 PSSE is not active in endothelial

cells (Figure 3—figure supplement 1C). Furthermore, we found no other T2D-associated variants at

the LAMA1 locus mapping in endothelial cell enhancers or accessible chromatin sites in islets, sug-

gesting that T2D risk is linked to LAMA1 regulation in pancreatic progenitors.

Similar to Laminin, CRB2 has been shown to regulate mechanosignaling (Varelas et al., 2010).

Our observation that pancreatic progenitor cells express Crb proteins is consistent with the pheno-

type of crb2 morphants reflecting a progenitor-autonomous role of Crb2. Furthermore, the similarity

in pancreatic phenotype between lama1 or crb2 morphants raises the possibility that signals from

Laminin and Crb2 could converge on the same intracellular pathways in pancreatic progenitors.

Our findings suggest that variation in gene regulation during pancreatic development can predis-

pose to T2D later in life. Several lines of evidence support the concept of a developmental impact

on T2D risk. First, human genetic studies have shown a strong correlation between birth weight and

adult cardiometabolic traits and disease (Horikoshi et al., 2016). Second, epidemiological studies

provide evidence that offspring of mothers who were pregnant during a famine have a higher preva-

lence of T2D (Lumey et al., 2015). This phenomenon has been experimentally reproduced in

rodents, where maternal malnutrition has been shown to cause reduced beta cell mass at birth and

to render beta cells more prone to failure under stress (Nielsen et al., 2014). Together, our results

provide a strong rationale for further exploration of how genetic variants affecting developmental

gene regulation in the pancreas contribute to T2D risk.

Materials and methods

Key resources table

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Antibody APC Mouse monoclonal
IgG1, k Isotype Control

BD Pharmingen Cat# 555751,
RRID:AB_398613

Flow cytometry (1:100)

Antibody Chicken polyclonal
anti-GFP

Aves Labs Cat# GFP-1020,
RRID:AB_10000240

Immunohistochemistry
(1:200)

Antibody Cy3-conjugated
donkey polyclonal
anti-mouse

Jackson
ImmunoResearch
Labs

Cat# 715-165-150,
RRID:AB_2340813

Immunofluorescence
(1:1000)

Antibody DyLight 488-
conjugated
donkey polyconal
anti-goat

Jackson
ImmunoResearch
Labs

Cat# 705-545-003,
RRID:AB_2340428

Immunofluorescence
(1:500)

Antibody Goat polyclonal
anti-CTCF

Santa Cruz
Biotechnology

Cat# SC-15914X,
RRID:AB_2086899

ChIP-seq (4 ug)

Antibody Goat polyclonal
anti-FOXA1

Abcam Cat# ab5089,
RRID:AB_304744

ChIP-seq (4 ug)

Antibody Goat polyclonal
anti-FOXA2

Santa Cruz
Biotechnology

Cat# sc-6554,
RRID:AB_2262810

ChIP-seq (4 ug)

Continued on next page
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Continued

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Antibody Goat polyclonal
anti-GATA4

Santa Cruz
Biotechnology

Cat# sc-1237,
RRID:AB_2108747

ChIP-seq (4 ug)

Antibody Goat polyclonal
anti-PDX1

Abcam Cat# ab47383,
RRID:AB_2162359

Immunofluorescence
(1:500)

Antibody Guinea pig polyclonal
anti-Insulin

Biomeda Cat# v2024 Immunohistochemistry
(1:200)

Antibody Mouse monoclonal
anti-Crb2a

ZIRC Cat# Zs-4 Immunohistochemistry
(1:100)

Antibody Mouse polyclonal
anti-GATA6

Santa Cruz
Biotechnology

Cat# sc-9055,
RRID:AB_2108768

ChIP-seq (4 ug)

Antibody Mouse monoclonal
anti-NKX6.1

Developmental
Studies
Hybridoma Bank

Cat# F64A6B4,
RRID:AB_532380

Immunofluorescence
(1:300)

Antibody Mouse monoclonal
anti-NKX6.1-Alexa
Fluor 647

BD Biosciences Cat# 563338,
RRID:AB_2738144

Flow cytometry (1:5)

Antibody Mouse monoclonal
anti-NKX6.1

Developmental
Studies
Hybridoma Bank

Cat# F55A10,
RRID:AB_532378

Immunohistochemistry
(1:10)

Antibody Mouse monoclonal
anti-PDX1-PE

BD Biosciences Cat# 562161,
RRID:AB_10893589

Flow cytometry (1:10)

Antibody PE Mouse monoclonal
IgG1, k Isotype Control

BD Pharmingen Cat# 555749,
RRID:AB_396091

Flow cytometry (1:100)

Antibody Rabbit polyclonal
anti-CRB2

Sigma Cat # SAB1301340 Immunofluorescence
(1:500)

Antibody Rabbit polyclonal
anti-H3K27ac

Active Motif Cat# 39133,
RRID:AB_2561016

ChIP-seq (4 ug)

Antibody Rabbit polyclonal
anti-H3K4me1

Abcam Cat# ab8895,
RRID:AB_306847

ChIP-seq (4 ug)

Antibody Rabbit polyclonal
anti-HNF6

Santa Cruz
Biotechnology

Cat# sc-13050,
RRID:AB_2251852

ChIP-seq (4 ug)

Antibody Rabbit polyclonal
anti-laminin

Sigma Cat# L9393,
RRID:AB_477163

Immunohistochemistry
(1:100)
Immunofluorescence
(1:30)

Antibody Rabbit monoclonal
anti-panCrb

Jensen Laboratory,
University of
Massachusetts,
Amherst

N/A Immunohistochemistry
(1:100)

Antibody Rabbit polyclonal
anti-PDX1

Beta Cell Biology
Consortium

AB1068 ChIP-seq (4 ug)

Antibody Rabbit polyclonal
anti-SOX9

Chemicon Cat# 5535,
RRID:AB_2239761

ChIP-seq (4 ug)

Cell line
(Homo-sapiens)

CyT49 ViaCyte, Inc NIHhESC-10–0041,
RRID:CVCL_B850

Male

Cell line
(Homo-sapiens)

H1 WiCell Research
Institute

NIHhESC-10–0043,
RRID:CVCL_9771

Male

Chemical
compound, drug

2-Mercaptoethanol Thermo Fisher
Scientific

Cat# 21985023

Chemical
compound, drug

Accutase Thermo Fisher
Scientific

Cat# 00-4555-56

Chemical
compound, drug

B-27 supplement Thermo Fisher
Scientific

Cat# 17504044

Continued on next page
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Continued

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Chemical
compound, drug

Bovine Albumin
Fraction V

Life Technologies Cat# 15260037

Chemical
compound, drug

D-(+)-Glucose
Solution, 45%

Sigma-Aldrich Cat# G8769

Chemical
compound, drug

DAPI Invitrogen Cat# D1306 Immunohistochemistry
(1:200)

Chemical
compound, drug

DMEM High Glucose VWR Cat# 16750–082

Chemical
compound, drug

DMEM/F12 [-] L-
glutamine

VWR Cat# 15–090-CV

Chemical
compound, drug

DMEM/F12 with
L-Glutamine, HEPES

Corning Cat# 45000–350

Chemical
compound, drug

DMF EMD Millipore Cat# DX1730

Chemical
compound, drug

DPBS Thermo Fisher
Scientific

Cat# 21–031-CV

Chemical
compound, drug

DTT Sigma Cat# D9779

Chemical
compound, drug

Fetal Bovine Serum Thermo Fisher
Scientific

Cat# MT35011CV

Chemical
compound, drug

Glutamax Thermo Fisher
Scientific

Cat# 35050–079

Chemical
compound, drug

GlutaMAX Thermo Fisher
Scientific

Cat# 35050061

Chemical
compound, drug

Hoechst 33342 Thermo Fisher
Scientific

Cat# H3570

Chemical
compound, drug

HyClone Dulbecco’s
Modified Eagles Medium

Thermo Fisher
Scientific

Cat# SH30081.FS

Chemical
compound, drug

IGEPAL-CA630 Sigma Cat# I8896

Chemical
compound, drug

Illumina tagmentation
enzyme

Illumina Cat# FC-121–1030

Chemical
compound, drug

Insulin-Transferrin
-Selenium (ITS)

Thermo Fisher
Scientific

Cat# 41400045

Chemical
compound, drug

Insulin-Transferrin-
Selenium-
Ethanolamine (ITS-X)

Thermo Fisher
Scientific

Cat# 51500–056

Chemical
compound, drug

KAAD-Cyclopamine Toronto Research
Chemicals

Cat# K171000

Chemical
compound, drug

K-acetate Sigma Cat# P5708

Chemical
compound, drug

KnockOut SR
XenoFree

Thermo Fisher
Scientific

Cat# A1099202

Chemical
compound, drug

LDN-193189 Stemgent Cat# 04–0074

Chemical
compound, drug

Matrigel Corning Cat# 356231

Chemical
compound, drug

MCDB 131 Thermo Fisher
Scientific

Cat# 10372–019

Chemical
compound, drug

Mg-acetate Sigma Cat# M2545

Chemical
compound, drug

mTeSR1 Complete
Kit - GMP

STEMCELL
Technologies

Cat# 85850

Continued on next page
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Continued

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Chemical
compound, drug

NEBNext High-
Fidelity
2X PCR Master Mix

NEB Cat# M0541

Chemical
compound, drug

Non-Essential
Amino Acids

Thermo Fisher
Scientific

Cat# 11140050

Chemical
compound, drug

O.C.T. Compound Sakura Finetek USA Cat# 25608–930

Chemical
compound, drug

Penicillin-Streptomycin Thermo Fisher
Scientific

Cat# 15140122

Chemical
compound, drug

Polyethylenimine (PEI) Polysciences Cat# 23966–1

Chemical
compound, drug

Protease inhibitor Roche Cat# 05056489001

Chemical
compound, drug

Retinoic acid Sigma-Aldrich Cat# R2625

Chemical
compound, drug

RNA ScreenTape
Sample Buffer

Agilent Technologies Cat# 5067–5577

Chemical
compound, drug

ROCK Inhibitor
Y-27632

STEMCELL
Technologies

Cat# 72305

Chemical
compound, drug

RPMI 1640
[-] L-glutamine

VWR Cat# 15–040-CV

Chemical
compound, drug

SANT-1 Sigma-Aldrich Cat# S4572

Chemical
compound, drug

Sodium Bicarbonate Sigma-Aldrich Cat# NC0564699

Chemical
compound, drug

Tamoxifen Sigma Cat# T5648

Chemical
compound, drug

TGF-b RI Kinase
Inhibitor IV

Calbiochem Cat# 616454

Chemical
compound, drug

TPB Calbiochem Cat# 565740

Chemical
compound, drug

Tranylcypromine Cayman Chemical Cat# 10010494

Chemical
compound, drug

Tris-acetate Thermo Fisher
Scientific

Cat# BP-152

Chemical
compound, drug

TTNPB Enzo Life Sciences Cat# BML-GR105

Chemical
compound, drug

Vectashield Antifade
Mounting Medium

Vector Laboratories Cat# H-1000

Chemical
compound, drug

XtremeGene 9 Roche Cat# 6365787001

Commercial
assay

High Sensitivity
D1000 ScreenTape

Agilent Technologies Cat# 5067–5584

Commercial
assay, kit

RNA ScreenTape Agilent Technologies Cat# 5067–5576

Commercial
assay, kit

RNA Screen
Tape Ladder

Agilent Technologies Cat# 5067–5578

Commercial
assay, kit

BD Cytofix/
Cytoperm
Plus Fixation/
Permeabilization
Solution Kit

BD Biosciences Cat# 554715

Commercial
assay, kit

ChIP-IT High
Sensitivity Kit

Active Motif Cat# 53040

Continued on next page
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Continued

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Commercial
assay, kit

iQ SYBR
Green Supermix

Bio-Rad Cat# 1708884

Commercial
assay, kit

iScript cDNA
Synthesis Kit

Bio-Rad Cat# 1708891

Commercial
assay, kit

KAPA Library
Preparation
Kit (Illumina)

Kapa Biosystems Cat# KK8234

Commercial
assay, kit

KAPA Stranded
mRNA-Seq Kits

Kapa Biosystems Cat# KK8401

Commercial
assay, kit

MinElute PCR
purification kit

QIAGEN Cat# 28004

Commercial
assay, kit

Qubit ssDNA assay kit Thermo Fisher
Scientific

Cat# Q10212

Commercial
assay, kit

RNeasy Micro Kit QIAGEN Cat# 74004

Genetic reagent
(D. rerio)

Tg(ptf1a:eGFP)jh1 PMID:16258076 N/A

Other SPRIselect bead Beckman Coulter Cat# B23317

Recombinant
protein

Activin A R and D Systems Cat# 338-AC/CF

Recombinant
protein

Human AB Serum Valley Biomedical Cat# HP1022

Recombinant
protein

Recombinant EGF R and D Systems Cat# 236-EG

Recombinant
protein

Recombinant
Heregulinb�1

Peprotech Cat# 100–03

Recombinant
protein

Recombinant
KGF/FGF7

R and D Systems Cat# 251 KG

Recombinant
protein

Recombinant
Mouse Wnt3A

R and D Systems Cat# 1324-WN/CF

Recombinant
protein

Recombinant
Noggin

R and D Systems Cat# 3344 NG

Sequence-
based reagent

Px333 Plasmid http://www.addgene
.org/64073/

RRID:Addgene_64073

Sequence-
based reagent

LAMA1 Forward This paper qPCR primers GTG ATG GCA ACA GCG CAA A

Sequence-
based reagent

LAMA1 Reverse This paper qPCR primers GAC CCA GTG ATA TTC TCT CCC A

Sequence-
based reagent

CRB2 Forward This paper qPCR primers ACC ACT GTG CTT GTC CTG AG

Sequence-
based reagent

CRB2 Reverse This paper qPCR primers TCC AGG GTC GCT AGA TGG AG

Sequence-
based reagent

TBP Forward This paper qPCR primers TGT GCA CAG GAG CCA AGA GT

Sequence-
based reagent

TBP Reverse This paper qPCR primers ATT TTC TTG CTG CCA GTC TGG

Sequence-
based reagent

LAMA1Enh
Upstream Guide

This paper CRISPR sgRNA GTC AAA TTG CTA TAA CAC GG

Sequence-
based reagent

LAMA1Enh
Downstream Guide

This paper CRISPR sgRNA CCA CTT TAA GTA TCT CAG CA

Sequence-
based reagent

CRB2Enh
Upstream Guide

This paper CRISPR sgRNA ATA CAA AGC ACG TGA GA

Continued on next page
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Continued

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Sequence-
based reagent

CRB2Enh
Downstream Guide

This paper CRISPR sgRNA GAA TGC GGA TGA CGC CTG AG

Sequence-
based reagent

lama1-ATG PMID:16321372 Morpholino TCA TCC TCA TCT CCA
TCA TCG CTC A
Obtained from GeneTools, LLC

Sequence-
based reagent

crb2a-SP PMID:16713951 Morpholino ACG TTG CCA GTA CCT
GTG TAT CCT G
Obtained from GeneTools, LLC

Sequence-
based reagent

crb2b-SP PMID:16713951 Morpholino TAA AGA TGT CCT ACC
CAG CTT GAA C
Obtained from GeneTools, LLC

Sequence-
based reagent

standard control MO N/A Morpholino CCT CTT ACC TCA GTT
ACA ATT TAT A
Obtained from GeneTools, LLC

Software, algorithm Adobe Illustrator v 5.1 http://www.adobe.com/products
/illustrator.html

RRID:SCR_014198

Software, algorithm Adobe Photoshop v 5.1 http://www.adobe.com/products/
photoshop.html

RRID:SCR_014199

Software, algorithm BEDtools v 2.26.0 https://github.com/arq5x/bedtools2 RRID:SCR_006646

Software, algorithm Bioconductor https://www.bioconductor.org/ RRID: SCR_006442

Software, algorithm Burrows-Wheeler
Aligner v 0.7.13

http://bio-bwa.sourceforge.net/ RRID:SCR_010910

Software, algorithm CENTIPEDE v 1.2 http://centipede.uchicago.edu/ N/A

Software, algorithm Cufflinks v 2.2.1 http://cole-trapnell-
lab.github.io/cufflinks/

RRID:SCR_014597

Software, algorithm deepTools2 v 3.1.3 https://deeptools.readthedocs
.io/en/develop/
content/installation.html

N/A

Software, algorithm DESeq2 v 3.10 https://bioconductor.org/
packages/release/
bioc/html/DESeq2.html

RRID:SCR_015687

Software, algorithm FlowJo v10 software https://www.flowjo.com/
solutions/flowjo

RRID: SCR_008520

Software, algorithm GraphPad Prism v 8.1.2 https://www.graphpad.com/
scientific-software/prism/

RRID: SCR_002798

Software, algorithm HOMER v 4.10.4 http://homer.ucsd.edu/homer/ RRID: SCR_010881

Software, algorithm Juicebox Tools v 1.4 https://github.com/
aidenlab/Juicebox/
wiki/Juicebox-Assembly-Tools

N/A

Software, algorithm MACS2 v 2.1.4 http://liulab.dfci.harvard.edu/MACS/ RRID:SCR_013291

Software, algorithm MEME suite v 5.1.1 http://meme-suite.org/ RRID:SCR_001783

Software, algorithm Metascape http://metscape.ncibi.org RRID:SCR_014687

Software, algorithm Picard Tools v 1.131 http://broadinstitute.github.io/picard/ RRID:SCR_006525

Software, algorithm R Project for
Statistical
Computing v 3.6.1

http://www.r-project.org/ RRID:SCR_001905

Software, algorithm SAMtools v 1.5 http://samtools.sourceforge.net RRID:SCR_002105

Software, algorithm STAR v 2.4 https://github.com/alexdobin/STAR N/A

Software, algorithm UCSC Genome Browser http://genome.ucsc.edu/ RRID:SCR_005780

Software, algorithm vcf2diploid v 0.2.6a https://github.com/abyzovlab/
vcf2diploid

N/A

Software, algorithm ZEISS ZEN Digital
Imaging for
Light Microscopy

http://www.zeiss.com/microscopy/
en_us/products/microscope-
software/zen.html#introduction

RRID:SCR_013672
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Maintenance and differentiation of CyT49 hESCs
Genomic and gene expression analyses (ChIP-seq, ATAC-seq, RNA-seq) for generation of chromatin

maps and target gene identification were performed in CyT49 hESCs (male). Propagation of CyT49

hESCs was carried out by passing cells every 3 to 4 days using Accutase (eBioscience) for enzymatic

cell dissociation, and with 10% (v/v) human AB serum (Valley Biomedical) included in the hESC media

the day of passage. hESCs were seeded into tissue culture flasks at a density of 50,000 cells/cm2.

hESC research was approved by the University of California, San Diego, Institutional Review Board

and Embryonic Stem Cell Research oversight committee.

Pancreatic differentiation was performed as previously described (Schulz et al., 2012;

Wang et al., 2015; Xie et al., 2013). Briefly, a suspension-based culture format was used to differ-

entiate cells in aggregate form. Undifferentiated aggregates of hESCs were formed by re-suspend-

ing dissociated cells in hESC maintenance medium at a concentration of 1 � 106 cells/mL and

plating 5.5 mL per well of the cell suspension in 6-well ultra-low attachment plates (Costar). The cells

were cultured overnight on an orbital rotator (Innova2000, New Brunswick Scientific) at 95 rpm. After

24 hr the undifferentiated aggregates were washed once with RPMI medium and supplied with 5.5

mL of day 0 differentiation medium. Thereafter, cells were supplied with the fresh medium for the

appropriate day of differentiation (see below). Cells were continually rotated at 95 rpm, or 105 rpm

on days 4 through 8, and no media change was performed on day 10. Both RPMI (Mediatech) and

DMEM High Glucose (HyClone) medium were supplemented with 1X GlutaMAX and 1% penicillin/

streptomycin. Human activin A, mouse Wnt3a, human KGF, human noggin, and human EGF were

purchased from R and D systems. Other added components included FBS (HyClone), B-27 supple-

ment (Life Technologies), Insulin-Transferrin-Selenium (ITS; Life Technologies), TGFb R1 kinase inhibi-

tor IV (EMD Bioscience), KAAD-Cyclopamine (KC; Toronto Research Chemicals), and the retinoic

receptor agonist TTNPB (RA; Sigma Aldrich). Day-specific differentiation media formulations were as

follows:

Days 0 and 1: RPMI + 0.2% (v/v) FBS, 100 ng/mL Activin, 50 ng/mL mouse Wnt3a, 1:5000 ITS.
Days 1 and 2: RPMI + 0.2% (v/v) FBS, 100 ng/mL Activin, 1:5000 ITS
Days 2 and 3: RPMI + 0.2% (v/v) FBS, 2.5 mM TGFb R1 kinase inhibitor IV, 25 ng/mL KGF,
1:1000 ITS
Days 3–5: RPMI + 0.2% (v/v) FBS, 25 ng/mL KGF, 1:1000 ITS
Days 5–8: DMEM + 0.5X B-27 Supplement, 3 nM TTNPB, 0.25 mM KAAD-Cyclopamine, 50
ng/mL Noggin
Days 8–10: DMEM/B-27, 50 ng/mL KGF, 50 ng/mL EGF

Cells at D0 correspond to the embryonic stem cell (ES) stage, cells at D2 correspond to the defin-

itive endoderm (DE) stage, cells at D5 correspond to the gut tube (GT) stage, cells at D7 correspond

to the early pancreatic progenitor (PP1) stage, and cells at D10 correspond to the late pancreatic

progenitor (PP2) stage.

Maintenance and differentiation of H1 hESCs
DLAMA1Enh and DCRB2Enh clonal lines were derived by targeting H1 hESCs (male). Cells were

maintained and differentiated as described with some modifications (Jin et al., 2019; Rezania et al.,

2014). In brief, hESCs were cultured in mTeSR1 media (Stem Cell Technologies) and propagated by

passaging cells every 3–4 days using Accutase (eBioscience) for enzymatic cell dissociation. hESC

research was approved by the University of California, San Diego, Institutional Review Board and

Embryonic Stem Cell Research Oversight Committee.

For differentiation, cells were dissociated using Accutase for 10 min, then reaggregated by plat-

ing the cells at a concentration of ~5.5 e6 cells/well in a low attachment six-well plate on an orbital

shaker (100 rpm) in a 37˚C incubator. The following day, undifferentiated cells were washed in base

media (see below) and then differentiated using a multi-step protocol with stage-specific media and

daily media changes.

All stage-specific base media were comprised of MCDB 131 medium (Thermo Fisher Scientific)

supplemented with NaHCO3, GlutaMAX, D-Glucose, and BSA using the following concentrations:
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Stage 1/2 medium: MCDB 131 medium, 1.5 g/L NaHCO3, 1X GlutaMAX, 10 mM D-Glucose,
0.5% BSA
Stage 3/4 medium: MCDB 131 medium, 2.5 g/L NaHCO3, 1X GlutaMAX, 10 mM D-glucose,
2% BSA

Media compositions for each stage were as follows:

Stage 1 (day 0–2): base medium, 100 ng/ml Activin A, 25 ng/ml Wnt3a (day 0). Day 1–2: base
medium, 100 ng/ml Activin A
Stage 2 (day 3–5): base medium, 0.25 mM L-Ascorbic Acid (Vitamin C), 50 ng/mL FGF7
Stage 3 (day 6–7): base medium, 0.25 mM L-Ascorbic Acid, 50 ng/mL FGF7, 0.25 mM SANT-1,
1 mM Retinoic Acid, 100 nM LDN193189, 1:200 ITS-X, 200 nM TPB
Stage 4 (day 8–10): base medium, 0.25 mM L-Ascorbic Acid, 2 ng/mL FGF7, 0.25 mM SANT-1,
0.1 mM Retinoic Acid, 200 nM LDN193189, 1:200 ITS-X, 100 nM TPB

Cells at D0 correspond to the embryonic stem cell (ES) stage, cells at D3 correspond to the defin-

itive endoderm (DE) stage, cells at D6 correspond to the gut tube (GT) stage, cells at D8 correspond

to the early pancreatic progenitor (PP1) stage, and cells at D11 correspond to the late pancreatic

progenitor (PP2) stage.

Generation of DLAMA1Enh, DCRB2Enh, DLAMA1, and DCRB2 hESC
lines
To generate clonal homozygous LAMA1Enh and CRB2Enh deletion hESC lines, sgRNAs targeting

each relevant enhancer were designed and cloned into Px333-GFP, a modified version of Px333

(Addgene, #64073). To generate clonal homozygous LAMA1 and CRB2 deletion hESC lines, sgRNAs

targeting the second exon of each gene were designed and cloned into Px458 (Addgene, #48138).

Plasmids expressing the sgRNAs were transfected into H1 hESCs with XtremeGene 9 (Roche).

Twenty-four hr later, 8000 GFP+ cells were sorted into a well of six-well plate. Individual colonies

that emerged within 5–7 days after transfection were subsequently transferred manually into 48-well

plates for expansion, genomic DNA extraction, PCR genotyping, and Sanger sequencing. sgRNA oli-

gos are listed below.

LAMA1Enh Upstream Guide: GTCAAATTGCTATAACACGG
LAMA1Enh Downstream Guide: CCACTTTAAGTATCTCAGCA
CRB2Enh Upstream Guide: ATACAAAGCACGTGAGA
CRB2Enh Downstream Guide: GAATGCGGATGACGCCTGAG
LAMA1 Exon 2 Guide: ATCAGCACCAATGCCACCTG
CRB2 Exon 2 Guide: TCGATGTCCAGCTCGCAGCG

Human tissue
Human embryonic pancreas tissue was obtained from the Birth Defects Research Laboratory of the

University of Washington. Studies for use of embryonic human tissue were approved by the Institu-

tional Review Board of the University of California, San Diego. A pancreas from a 54- and 58-day

gestation embryo each were pooled for RNA-seq analysis.

Zebrafish husbandry
Adult zebrafish and embryos were cared for and maintained under standard conditions. All research

activity involving zebrafish was reviewed and approved by SBP Medical Discovery Institute Institu-

tional Animal Care and Use Committee. The following transgenic lines were used: Tg(ptf1a:eGFP)jh1

(Godinho et al., 2005).

Morpholino injections in zebrafish
The following previously validated morpholinos were injected into the yolk at the one-cell stage in a

final volume of either 0.5 or 1 nl: 0.75 ng lama1-ATG (5’- TCATCCT CATCTCCATCATCGCTCA �3’);

3 ng crb2a-SP, (5’-ACGTTGCCAGTACCTGTGTATCCTG-3’) (Omori and Malicki, 2006;

Watanabe et al., 2010); 3 ng crb2b-SP, (5’-TAAAGATGTCCTACCCAGCTTGAAC-3’) (Omori and

Malicki, 2006); 6.75 ng standard control MO (5’- CCTCTTACCTCAGTTACAATTTATA �3’). All mor-

pholinos were obtained from GeneTools, LLC.
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Chromatin immunoprecipitation sequencing (ChIP-seq)
ChIP-seq was performed using the ChIP-IT High-Sensitivity kit (Active Motif) according to the manu-

facturer’s instructions. Briefly, for each cell stage and condition analyzed, 5–10 � 106 cells were har-

vested and fixed for 15 min in an 11.1% formaldehyde solution. Cells were lysed and homogenized

using a Dounce homogenizer and the lysate was sonicated in a Bioruptor Plus (Diagenode), on high

for 3 � 5 min (30 s on, 30 s off). Between 10 and 30 mg of the resulting sheared chromatin was used

for each immunoprecipitation. Equal quantities of sheared chromatin from each sample were used

for immunoprecipitations carried out at the same time. A total of 4 mg of antibody were used for

each ChIP-seq assay. Chromatin was incubated with primary antibodies overnight at 4˚C on a rotator

followed by incubation with Protein G agarose beads for 3 hr at 4˚C on a rotator. Antibodies used

were rabbit anti-H3K27ac (Active Motif 39133), rabbit anti-H3K4me1 (Abcam ab8895), rabbit anti-

H3K4me3 (Millipore 04–745), rabbit anti-H3K27me3 (Millipore 07–499), goat anti-CTCF (Santa Cruz

Biotechnology SC-15914X), goat anti-GATA4 (Santa Cruz SC-1237), rabbit anti-GATA6 (Santa Cruz

SC-9055), goat anti-FOXA1 (Abcam Ab5089), goat-anti-FOXA2 (Santa Cruz SC-6554), rabbit anti-

PDX1 (BCBC AB1068), rabbit anti-HNF6 (Santa Cruz SC-13050), and rabbit anti-SOX9 (Chemicon

AB5535). Reversal of crosslinks and DNA purification were performed according to the ChIP-IT High-

Sensitivity instructions, with the modification of incubation at 65˚C for 2–3 hr, rather than at 80˚C for

2 hr. Sequencing libraries were constructed using KAPA DNA Library Preparation Kits for Illumina

(Kapa Biosystems) and library sequencing was performed on either a HiSeq 4000 System (Illumina)

or NovaSeq 6000 System (Illumina) with single-end reads of either 50 or 75 base pairs (bp). Sequenc-

ing was performed by the Institute for Genomic Medicine (IGM) core research facility at the Univer-

sity of California at San Diego (UCSD). Two replicates from independent hESC differentiations were

generated for each ChIP-seq experiment.

ChIP-seq data analysis
ChIP-seq reads were mapped to the human genome consensus build (hg19/GRCh37) and visualized

using the UCSC Genome Browser (Kent et al., 2002). Burrows-Wheeler Aligner (BWA) (Li and Dur-

bin, 2009) version 0.7.13 was used to map data to the genome. Unmapped and low-quality (q < 15)

reads were discarded. SAMtools (Li et al., 2009) was used to remove duplicate sequences and

HOMER (Heinz et al., 2010) was used to call peaks using default parameters and to generate tag

density plots. Stage- and condition-matched input DNA controls were used as background when

calling peaks. The BEDtools suite of programs (Quinlan and Hall, 2010) was used to perform geno-

mic algebra operations. For all ChIP-seq experiments, replicates from two independent hESC differ-

entiations were generated. Tag directories were created for each replicate using HOMER.

Directories from each replicate were then combined, and peaks were called from the combined rep-

licates. For histone modifications and CTCF peaks, pearson correlations between each pair of repli-

cates were calculated over the called peaks using the command multiBamSummary from the

deepTools2 package (Ramı́rez et al., 2016). For pancreatic lineage-determining transcription factors

(GATA4, GATA6, FOXA1, FOXA2, HNF6, PDX1, SOX9), correlations were calculated for peaks over-

lapping PSSE. Calculated Pearson correlations are as follow:

H3K4me1 H3K27ac CTCF H3K4me3 H3K27me3

ES 0.90 0.91 0.87 0.81 1.00

DE 0.97 0.84 0.86 0.99 0.99

GT 0.97 0.87 0.89 0.97 0.99

PP1 0.97 0.85 0.89 0.96 0.99

PP2 0.98 0.87 0.87 0.97 1.00

GATA4 GATA6 FOXA1 FOXA2 HNF6 PDX1 SOX9

PP2 0.86 0.82 0.87 0.80 0.95 0.64 0.86
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RNA isolation and sequencing (RNA-seq) and qRT-PCR
RNA was isolated from cell samples using the RNeasy Micro Kit (Qiagen) according to the manufac-

turer instructions. For each cell stage and condition analyzed between 0.1 and 1 � 106 cells were

collected for RNA extraction. For qRT-PCR, cDNA synthesis was first performed using the iScript

cDNA Synthesis Kit (Bio-Rad) and 500 ng of isolated RNA per reaction. qRT-PCR reactions were per-

formed in triplicate with 10 ng of template cDNA per reaction using a CFX96 Real-Time PCR Detec-

tion System and the iQ SYBR Green Supermix (Bio-Rad). PCR of the TATA binding protein (TBP)

coding sequence was used as an internal control and relative expression was quantified via double

delta CT analysis. For RNA-seq, stranded, single-end sequencing libraries were constructed from iso-

lated RNA using the TruSeq Stranded mRNA Library Prep Kit (Illumina) and library sequencing was

performed on either a HiSeq 4000 System (Illumina) or NovaSeq 6000 System (Illumina) with single-

end reads of either 50 or 75 base pairs (bp). Sequencing was performed by the Institute for Genomic

Medicine (IGM) core research facility at the University of California at San Diego. A complete list of

RT-qPCR primer sequences can be found below.

LAMA1 forward GTG ATG GCA ACA GCG CAA A

LAMA1 reverse GAC CCA GTG ATA TTC TCT CCC A

CRB2 forward ACC ACT GTG CTT GTC CTG AG

CRB2 reverse TCC AGG GTC GCT AGA TGG AG

PDX1 forward AAG TCT ACC AAA GCT CAC GCG

PDX1 reverse GTA GGC GCC GCC TGC

NKX6.1 forward CTG GCC TGT ACC CCT CAT CA

NKX6.1 reverse CTT CCC GTC TTT GTC CAA CA

PROX1 forward AAC ATG CAC TAC AAT AAA GCA AAT GAC

PROX1 reverse CAG GAA TCT CTC TGG AAC CTC AAA

PTF1A forward GAA GGT CAT CAT CTG CCA TC

PTF1A reverse GGC CAT AAT CAG GGT CGC T

SOX9 forward AGT ACC CGC ACT TGC ACA AC

SOX9 reverse ACT TGT AAT CCG GGT GGT CCT T

TBP forward TGT GCA CAG GAG CCA AGA GT

TBP reverse ATT TTC TTG CTG CCA GTC TGG

RNA-seq data analysis
Reads were mapped to the human genome consensus build (hg19/GRCh37) using the Spliced Tran-

scripts Alignment to a Reference (STAR) aligner v2.4 (Dobin et al., 2013). Normalized gene expres-

sion (fragments per kilobase per million mapped reads; FPKM) for each sequence file was

determined using Cufflinks v2.2.1 (Trapnell et al., 2010) with the parameters: –library-type fr-

firststrand –max-bundle-frags 10000000. For all RNA-Seq experiments, replicates from two inde-

pendent hESC differentiations were generated. Pearson correlations between bam files correspond-

ing to each pair of replicates were calculated, and are as follow:

DLAMA1Enh clone 1 PP2 1.00

DLAMA1Enh clone 2 PP2 0.99

DCRB2Enh clone 1 PP2 0.98

DCRB2Enh clone 2 PP2 0.90

DLAMA1Enh control PP2 0.92

DCRB2Enh control PP2 0.99
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Assay for transposase accessible chromatin sequencing (ATAC-seq)
ATAC-seq (Buenrostro et al., 2013) was performed on approximately 50,000 nuclei. The samples

were permeabilized in cold permeabilization buffer 0.2% IGEPAL-CA630 (I8896, Sigma), 1 mM DTT

(D9779, Sigma), Protease inhibitor (05056489001, Roche), 5% BSA (A7906, Sigma) in PBS (10010–23,

Thermo Fisher Scientific) for 10 min on the rotator in the cold room and centrifuged for 5 min at 500

� g at 4˚C. The pellet was resuspended in cold tagmentation buffer (33 mM Tris-acetate (pH = 7.8)

(BP-152, Thermo Fisher Scientific), 66 mM K-acetate (P5708, Sigma), 11 mM Mg-acetate (M2545,

Sigma), 16% DMF (DX1730, EMD Millipore) in Molecular biology water (46000 CM, Corning)) and

incubated with tagmentation enzyme (FC-121–1030; Illumina) at 37˚C for 30 min with shaking at 500

rpm. The tagmented DNA was purified using MinElute PCR purification kit (28004, QIAGEN). Librar-

ies were amplified using NEBNext High-Fidelity 2X PCR Master Mix (M0541, NEB) with primer exten-

sion at 72˚C for 5 min, denaturation at 98˚C for 30 s, followed by 8 cycles of denaturation at 98˚C for

10 s, annealing at 63˚C for 30 s and extension at 72˚C for 60 s. After the purification of amplified

libraries using MinElute PCR purification kit (28004, QIAGEN), double size selection was performed

using SPRIselect bead (B23317, Beckman Coulter) with 0.55X beads and 1.5X to sample volume.

Finally, libraries were sequenced on HiSeq4000 (Paired-end 50 cycles, Illumina).

ATAC-seq data analysis
ATAC-seq reads were mapped to the human genome (hg19/GRCh37) using Burrows-Wheeler

Aligner (BWA) version 0.7.13 (Li and Durbin, 2009), and visualized using the UCSC Genome Browser

(Kent et al., 2002). SAMtools (Li et al., 2009) was used to remove unmapped, low-quality (q < 15),

and duplicate reads. MACS2 (Zhang et al., 2008) was used to call peaks, with parameters ‘shift set

to 100 bps, smoothing window of 200 bps’ and with ‘nolambda’ and ‘nomodel’ flags on. MACS2

was also used to call ATAC-Seq summits, using the same parameters combined with the ‘call-sum-

mits’ flag.

For all ATAC-Seq experiments, replicates from two independent hESC differentiations were gen-

erated. Bam files for each pair of replicates were merged for downstream analysis using SAMtools,

and Pearson correlations between bam files for each individual replicate were calculated over a set

of peaks called from the merged bam file. Correlations were performed using the command multi-

BamSummary from the deepTools2 package (Ramı́rez et al., 2016) with the ‘—removeOutliers’ flag

and are as follow:

ES 0.95

DE 0.83

GT 1.00

PP1 1.00

PP2 1.00

For downstream analysis, ATAC-seq peaks were merged from two independent differentiations

for ES, DE, GT, PP1, and PP2 stage cells and from four donors for primary islets. Primary islet ATAC-

seq data was obtained from previously published datasets (Greenwald et al., 2019).

Hi-C data analysis
Hi-C data were processed as previously described with some modifications (Dixon et al., 2015).

Read pairs were aligned to the hg19 reference genome separately using BWA-MEM with default

parameters (Li and Durbin, 2009). Specifically, chimeric reads were processed to keep only the 5’

position and reads with low mapping quality (<10) were filtered out. Read pairs were then paired

using custom scripts. Picard tools were then used to remove PCR duplicates. Bam files with align-

ments were further processed into text format as required by Juicebox tools (Durand et al., 2016).

Juicebox tools were then applied to generate hic files containing normalized contact matrices. All

downstream analysis was based on 10 Kb resolution KR normalized matrices.

Chromatin loops were identified by comparing each pixel with its local background, as described

previously (Rao et al., 2014) with some modifications. Specifically, only the donut region around the

pixel was compared to model the expected count. Briefly, the KR-normalized contact matrices at 10
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Kb resolution were used as input for loop calling. For each pixel, distance-corrected contact frequen-

cies were calculated for each surrounding bin and the average of all surrounding bins. The expected

counts were then transformed to raw counts by multiplying the counts with the raw-to-KR normaliza-

tion factor. The probability of observing raw expected counts was calculated using Poisson distribu-

tion. All pixels with p-value<0.01 and distance less than 10 Kb were selected as candidate pixels.

Candidate pixels were then filtered to remove pixels without any neighboring candidate pixels since

they were likely false positives. Finally, pixels within 20 Kb of each other were collapsed and only the

most significant pixel was selected. The collapsed pixels with p-value<1e-5 were used as the final list

of chromatin loops.

A full set of scripts used for processing Hi-C data (Qui, 2021) is available at https://github.com/

MSanderlab/Pancreatic-progenitor-epigenome-maps-prioritize-type-2-diabetes-risk-genes-with-

roles-in-development/tree/master (copy archived at swh:1:rev:

ba79c687523c2696ea0ef30d8476e28a0d860f18).

Definition of chromatin states
We collected or generated H3K4me1, H3K27ac, H3K4me1, H3K4me3, H3K27me3, and CTCF ChIP-

seq data at each developmental stage and in mature islets. Data corresponding to mature islets was

downloaded from previously published studies (Bhandare et al., 2010; Parker et al., 2013;

Pasquali et al., 2014). Sequence reads were mapped to the human genome hg19 using bwa (ver-

sion 0.7.12) (Li and Durbin, 2009), and low quality and duplicate reads were filtered using samtools

(version 1.3) (Li et al., 2009). Using these reads, we then called chromatin states jointly across all

data using chromHMM (version 1.12) (Ernst and Kellis, 2012) and used a 10-state model and 200

bp bin size, as models with larger state numbers did not empirically resolve any additional informa-

tive states. We then assigned state names based on patterns defined by the NIH Epigenome Road-

map (Kundaje et al., 2015), which included active promoter/TssA (high H3K4me3, high H3K27ac),

flanking TSS/TssFlnk1 (high H3K4me3), flanking TSS/TssFlnk 2 (high H3K4me3, high H3K27ac, high

H3K4me1), bivalent Tss/TssBiv (high H3K27me3, high H3K4me3), poised enhancer/EnhP (high

H3K4me1), insulator/CTCF (high CTCF), active enhancer/EnhA (high H3K27ac, high H3K4me1),

repressor (high H3K27me3), and two quiescent (low signal for all assays) states. The state map with

assigned names is shown in Figure 1—figure supplement 1A.

We next defined stretch enhancer elements at each developmental stage and in mature islets.

For each active enhancer (EnhA) element, we determined the number of consecutive 200 bp bins

covered by the enhancer. We then modeled the resulting bin counts for enhancers in each cell type

using a Poisson distribution. Enhancers with a p-value less than. 001 were labeled as stretch

enhancers and otherwise labeled as traditional enhancers.

Permutation-based significance
A random sampling approach (10,000 iterations) was used to obtain null distributions for enrichment

analyses, in order to obtain p-values. Null distributions for enrichments were obtained by randomly

shuffling enhancer regions using BEDTools (Quinlan and Hall, 2010) and overlapping with ATAC-

seq peaks. p-values<0.05 were considered significant.

Assignment of enhancer target genes
Transcriptomes were filtered for genes expressed (FPKM �1) at each relevant stage, and BEDTools

(Quinlan and Hall, 2010) was used to assign each enhancer to the nearest annotated TSS.

Gene ontology
All gene ontology analyses were performed using Metascape (Zhou et al., 2019) with default

parameters.

Motif enrichment analysis
The findMotifsGenome.pl. command in HOMER (Heinz et al., 2010) was used to identify enriched

transcription factor binding motifs. de novo motifs were assigned to transcription factors based on

suggestions generated by HOMER.
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T2D-relevant trait enrichment analysis
GWAS summary statistics for T2D (Mahajan et al., 2018; Perry et al., 2012), metabolic traits

(HOMA-B, HOMA-IR [Dupuis et al., 2010], fasting glucose, fasting insulin [Manning et al., 2012],

fasting proinsulin [Strawbridge et al., 2011], 2 hr glucose adjusted for BMI [Saxena et al., 2010],

HbA1c, insulin secretion rate, disposition index, acute insulin response, peak insulin response

[Wood et al., 2017]), and developmental traits (head circumference [Taal et al., 2012], birth length

[van der Valk et al., 2015], birth weight [Horikoshi et al., 2016]) conducted with individuals of Euro-

pean ancestry were obtained from various sources including the MAGIC consortium, EGG consor-

tium, and authors of the studies. Custom LD score annotation files were created for PSSE, PP2

stretch enhancers, and islet stretch enhancers using LD score regression version 1.0.1 (Bulik-

Sullivan et al., 2015). Enrichments for GWAS trait-associated variants within PSSE, PP2 stretch

enhancers, and islet stretch enhancers were estimated with stratified LD score regression

(Finucane et al., 2015). We next determined enrichment in the proportion of variants in accessible

chromatin sites within islet SE and PSSE with nominal association to beta cell-related glycemic traits.

For each trait, we calculated a 2 � 2 table of variants mapping in and outside of islet SE or PSSE and

with or without nominal association and then determined significance using a chi-square test.

Adipocyte differentiation analysis
Chromatin states for human adipose stromal cell (hASC) differentiation stages (1-4) were obtained

from a published study (Varshney et al., 2017). PSSE were intersected with hASC chromatin states

using BEDTools intersect (version 2.26.0) (Quinlan and Hall, 2010) with default parameters.

Identification of T2D risk loci intersecting PSSE
T2D GWAS summary statistics were obtained from the DIAMANTE consortium (Mahajan et al.,

2018). Intersection of variants and PSSE was performed using BEDTools intersect (version 2.26.0)

(Quinlan and Hall, 2010) with default parameters. The adjusted significance threshold was set at

p<4.66 � 10�6 (Bonferroni correction for 10,738 variants mapping in PSSE). Putative novel loci were

defined as those with (1) at least one variant in a PSSE reaching the adjusted significance threshold

and (2) mapping at least 500 kb away from a known T2D locus.

ATAC-seq footprinting analysis
ATAC-seq footprinting was performed as previously described (Aylward et al., 2018). In brief, dip-

loid genomes for CyT49 were created using vcf2diploid (version 0.2.6a) (Rozowsky et al., 2011) and

genotypes called from whole genome sequencing and scanned for a compiled database of TF

sequence motifs from JASPAR (Mathelier et al., 2016) and ENCODE (ENCODE Project Consor-

tium, 2012) with FIMO (version 4.12.0) (Grant et al., 2011) using default parameters for p-value

threshold and a 40.9% GC content based on the hg19 human reference genome. Footprints within

ATAC-seq peaks were discovered with CENTIPEDE (version 1.2) (Pique-Regi et al., 2011) using cut-

site matrices containing Tn5 integration counts within a ± 100 bp window around each motif occur-

rence. Footprints were defined as those with a posterior probability �0.99.

Generation of similarity matrices for total transcriptomes
For each replicate, FPKM values corresponding to total transcriptome were filtered for genes

expressed (FPKM �1) in �1 replicate. For expressed genes, log(FPKM+1) values were used to calcu-

late Pearson correlations.

Immunofluorescence analysis
Cell aggregates derived from hESCs were allowed to settle in microcentrifuge tubes and washed

twice with PBS before fixation with 4% paraformaldehyde (PFA) for 30 min at room temperature.

Fixed samples were washed twice with PBS and incubated overnight at 4˚C in 30% (w/v) sucrose in

PBS. Samples were then loaded into disposable embedding molds (VWR), covered in Tissue-Tek O.

C.T. Sakura Finetek compound (VWR) and flash frozen on dry ice to prepare frozen blocks. The

blocks were sectioned at 10 mm and sections were placed on Superfrost Plus (Thermo Fisher) micro-

scope slides and washed with PBS for 10 min. Slide-mounted cell sections were permeabilized and

blocked with blocking buffer, consisting of 0.15% (v/v) Triton X-100 (Sigma) and 1% (v/v) normal
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donkey serum (Jackson Immuno Research Laboratories) in PBS, for 1 hr at room temperature. Slides

were then incubated overnight at 4˚C with primary antibody solutions. The following day slides were

washed five times with PBS and incubated for 1 hr at room temperature with secondary antibody

solutions. Cells were washed five times with PBS before coverslips were applied.

All antibodies were diluted in blocking buffer at the ratios indicated below. Primary antibodies

used were goat anti-PDX1 (1:500 dilution, Abcam ab47383), mouse anti-NKX6.1 (1:300 dilution,

Developmental Studies Hybridoma Bank F64A6B4), rabbit anti-Laminin (1:30, Sigma L-9393), and

rabbit anti-CRB2 (1:500, Sigma SAB1301340). Secondary antibodies against goat and mouse were

Alexa488- and Cy3-conjugated donkey antibodies, respectively (Jackson Immuno Research Labora-

tories 705-545-003 and 715-165-150, respectively), and were used at dilutions of 1:500 (anti-goat

Alexa488) or 1:1000 (anti-mouse Cy3). Cell nuclei were stained with Hoechst 33342 (1:3000, Invitro-

gen). Representative images were obtained with a Zeiss Axio-Observer-Z1 microscope equipped

with a Zeiss ApoTome and AxioCam digital camera. Figures were prepared in Adobe Creative Suite

5.

Flow cytometry analysis
Cell aggregates derived from hESCs were allowed to settle in microcentrifuge tubes and washed

with PBS. Cell aggregates were incubated with Accutase at room temperature until a single-cell sus-

pension was obtained. Cells were washed with 1 mL ice-cold flow buffer comprised of 0.2% BSA in

PBS and centrifuged at 200 g for 5 min. BD Cytofix/Cytoperm Plus Fixation/Permeabilization Solu-

tion Kit was used to fix and stain cells for flow cytometry according to the manufacturer’s instruc-

tions. Briefly, cell pellets were re-suspended in ice-cold BD Fixation/Permeabilization solution (300

mL per microcentrifuge tube). Cells were incubated for 20 min at 4˚C. Cells were washed twice with 1

mL ice-cold 1 � BD Perm/Wash Buffer and centrifuged at 10˚C and 200 � g for 5 min. Cells were re-

suspended in 50 mL ice-cold 1 � BD Perm/Wash Buffer containing diluted antibodies, for each stain-

ing performed. Cells were incubated at 4˚C in the dark for 1–3 hr. Cells were washed with 1.25 mL

ice-cold 1X BD Wash Buffer and centrifuged at 200 � g for 5 min. Cell pellets were re-suspended in

300 mL ice-cold flow buffer and analyzed in a FACSCanto II (BD Biosciences). Antibodies used were

PE-conjugated anti-PDX1 (1:10 dilution, BD Biosciences); and AlexaFluor 647-conjugated anti-

NKX6.1 (1:5 dilution, BD Biosciences). Data were processed using FlowJo software v10.

Whole mount immunohistochemistry
Zebrafish larvae were fixed and stained according to published protocols (Lancman et al., 2013)

using the following antibodies: chicken anti-GFP (1:200; Aves Labs; GFP-1020), guinea pig anti-insu-

lin (1:200; Biomeda; v2024), mouse anti-Crb2a (1:100; ZIRC; zs-4), rabbit anti-panCrb (1:100; pro-

vided by Dr. Abbie M. Jensen at University of Massachusetts, Amherst; Hsu and Jensen, 2010),

rabbit anti-Laminin (1:100; Sigma;L9393), mouse anti-Nkx6.1 (1:10; DSHB; F55A10), and DAPI

(1:200; 500 mg/ml, Invitrogen; D1306).

Imaging and quantification of beta cell numbers in zebrafish
To quantify beta cell numbers, 50 and 78 hpf zebrafish larvae were stained for confocal imaging

using DAPI and guinea pig anti-insulin antibody (1:200; Biomeda; v2024). Whole mount fluorescent

confocal Z-stacks (0.9 mm steps) images were collected for the entire islet with optical slices captured

at a focal depth of 1.8 mm. Samples were imaged using a Zeiss 710 confocal microscope running

Zen 2010 (Black) software. Final images were generated using Adobe Photoshop CS6 and/or

ImageJ64 (vs.1.48b).

Data sources
The following datasets used in this study were downloaded from the GEO and ArrayExpress

repositories:

RNA-seq: Pancreatic differentiation of CyT49 hESC line (E-MTAB-1086); primary islet data

(GSE115327).

ChIP-seq: H3K27ac data in primary islets (E-MTAB-1919 and GSE51311); H3K27ac data in pancre-

atic differentiation of CyT49 hESC line (GSE54471); H3K4me1 data in pancreatic differentiation of

CyT49 hESC line (GSE54471); H3K4me1 data in primary islets (E-MTAB-1919 and E-MTAB 189);
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H3K27me3 and H3K4me3 in pancreatic differentiation of CyT49 hESC line (E-MTAB-1086); H3K4me3

and H3K27me3 in primary islets (E-MTAB-189); CTCF in primary islets (E-MTAB-1919); PDX1 in

CyT49 PP2 (GSE54471); samples from ROADMAP consortium: http://ncbi.nlm.nih.gov/geo/road-

map/epigenomics.

ATAC-seq: primary islet data (PRJN527099); CyT49 PP2 (GSE115327).

Hi-C datasets were generated in collaboration with the Ren laboratory at University of California,

San Diego as a component of the 4D Nucleome Project (Dekker et al., 2017) under accession num-

ber 4DNES0LVRKBM.

Quantification and statistical analyses
Statistical analyses were performed using GraphPad Prism (v8.1.2), and R (v3.6.1). Statistical parame-

ters, such as the value of n, mean, standard deviation (SD), standard error of the mean (SEM), signifi-

cance level (*p<0.05, **p<0.01, and ***p<0.001), and the statistical tests used, are reported in the

figures and figure legends. The ‘n’ refers to the number of independent pancreatic differentiation

experiments analyzed (biological replicates).

Statistically significant gene expression changes were determined with DESeq2 (Love et al.,

2014).
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Gómez-Marı́n C, van de Bunt
M, Ponsa-Cobas J, Castro N,
Nammo T, Cebola I, Garcı́a-
Hurtado J, Maestro MA,
Pattou F, Piemonti L, Berney
T, Gloyn AL, Ravassard P,
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