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Background of lung cancer screening 

Lung cancer is the leading cause of cancer related death 
throughout the world (1). Lung cancer is also an example 
of a disease for which a large percentage of the high-risk 
population can be easily identified via a smoking history. 
This, coupled with the high success of other screening 

programs for prostate, breast, and cervical cancers has led 
to the investigation of lung cancer screening with low-dose 
multi-detector CT. Evidences suggest that early detection 
of lung cancer allow more timely therapeutic intervention 
and thus a more favorable prognosis for the patient (2-4). 

The majority of smokers who undergo thin-section CT 
have been found to have small lung nodules, most of which 
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are smaller than 7 mm in diameter (5,6). However, nodule 
features such as shape, edge characteristics, cavitation, 
and location have not yet been found to be accurate for 
distinguishing benign from malignant nodules (7,8). 
The positive relationship of lesion size to likelihood of 
malignancy has been clearly demonstrated (9-12). In a 
meta-analysis of eight large screening trials, the prevalence 
of malignancy depended on the size of the nodules, ranging 
from 0% to 1% for nodules 5 mm or smaller, 6% to 28% for 
those between 5 and 10 mm, and 64% to 82% for nodules 
20 mm or larger (9). Even in smokers, the percentage of 
all nodules smaller than 4 mm that will eventually turn 
into lethal cancers is very low (<1%), whereas for those in 
the 8-mm range the percentage is approximately 10-20%. 
The 2005 Fleischner Society guideline stated that at least 
99% of all nodules 4 mm or smaller are benign and because 
such small opacities are common on thin-section CT scans, 
follow-up CT in every such case is not recommended; in 
selected cases with suspicious morphology or in high-risk 
subjects, a single follow-up scan in 12 months should be 
considered (13). 

When the nodule is 5-9 mm in diameter, approximately 
6% of cases showed interval nodule growth detectable on 
4-8 month follow-up scans (10). For these nodules the best 
strategy is regular follow-up. The timing of these control 
examinations varies according to the nodule size (4-6, or 
6-8 mm) and type of patients, specifically at low or high 
risk of malignancy concerned. Frequent follow-up increases 
radiation burden for the affected population (14-16). The 
radiation dosage for a chest varies between 1-10 mSv, while 
that of whole body FDG-PET/CT is 10-30 mSv. More 
details on medical X-ray radiation risk can be found at 
(http://www.xrayrisk.com/). 

Noncalcified nodules larger than 8 mm diameter can 
bear a substantial risk of malignancy (9,12,13). In the 
case of nodules larger than 8 mm, additional options such 
as contrast material-enhanced CT, positron emission 
tomography (PET), percutaneous needle biopsy, and 
thoracoscopic resection or video-assisted thoracoscopic can 
be considered (9,17). 

Current status of MR imaging for the lung 

Use of MRI in the evaluation of pulmonary nodules has 
thus far been limited. The reasons include limited spatial 
resolution, high susceptibility differences between air 
spaces and pulmonary interstitium, and the presence of 
respiratory and cardiac motion artifacts. However, in the 

recent years, the availability of high-performance gradient 
systems, in conjunction with phased-array receiver coils and 
optimized imaging sequences, has made new approaches 
possible to MR-based pulmonary imaging (Figures 1,2). 
Electrocardiogram (ECG) and respiratory triggering or 
breath-holding techniques is used to eliminate the motion 
artifacts.

Turbo spine echo sequence shows many pulmonary nodules, 
including lung cancers, pulmonary metastases, and low-grade 
malignancies such as carcinoids and lymphomas, with low- or  
intermediate-signal intensity on T1-weighted imaging 
and slightly high intensity on T2-weighted imaging (18).  
For various pulmonary metastasizing malignancies, with a 
1.5 T scanner and breath-hold 2D Half-Fourier Acquisition 
Single-Shot Turbo Spin-Echo (HASTE) sequence 
Schroeder et al. (19) reported an axial spatial resolution 
of 2.4×1.3 mm2. To compensate for the poor resolution in 
the z-axis of slice thickness of 5 mm, image sets in both 
the axial and coronal planes were collected (19). The 
sensitivity values for the HASTE MR sequence were 73% 
for lesions smaller than 3 mm, 86.3% for lesions between 
3 and 5 mm, 95.7% for lesions between 6 and 10 mm, and 
100% for lesions bigger than 10 mm. Although the spatial 
resolution of the HASTE MR sequence is lower than that 
of multi-detector CT, both imaging techniques correlated 
well regarding the determination of size, number, and 
location of the pulmonary lesions. Pulmonary arteries 
and veins are depicted as flow voids without any apparent 
signal black blood inversion sequence. This represents 
an advantage over CT, on which small pulmonary masses 
often have attenuation levels similar to those of blood 
vessels and thus are often indistinguishable from vessels 
of similar size. Recently, Koyama et al. (20) directly 
compared capabilities of pulmonary nodule detection and 
differentiation of malignant from benign nodules between 
noncontrast-enhanced multi-detector CT and MRI using a 
1.5 T system in 161 patients with 200 pulmonary nodules. 
Although the overall detection rate of thin-section multi-
detector CT was superior to that of respiratory-triggered 
short tau inversion recovery (STIR) turbo SE imaging, 
there were no significant differences in malignant nodule 
detection rate between the methods (20). In that study the 
malignant nodule detection rate including bronchioalveolar 
carcinoma had no significant difference between thin-
section multi-detector CT and noncontrast-enhanced MRI, 
but significantly more benign nodules were missed on 
noncontrast-enhanced MRI. Koyama et al. suggested that 
it would be preferable to accept a decrease in the detection 
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Figure 1 A 42-year-old male. T2 weighted HASTE MR axial (A) and coronal (B) imaging of the chest shows a nodule (arrows). It was also 
shown by CT (C, axial; D, coronal) and confirmed to be a bronchioalveolar carcinoma by surgery. HASTE, Half-Fourier Acquisition Single-
Shot Turbo Spin-Echo.

Figure 2 A 72-year-old male. (A,B) T1 & T2 weighted MR screening of the chest; no abnormality was detected in 2005; (C,D) T1 & T2 
weighted MR screening of the chest shows a nodule (arrow) in 2008. It was also shown by CT (E) and confirmed to be a bronchioalveolar 
carcinoma (stage I) by surgery. 
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rate of benign nodules without significantly missing 
malignant nodules (20). 

Studies have shown that 3-T systems afford higher lesion 
contrast, higher spatial resolution, and less image blurring 
with shorter echo trains at high acceleration factors than 
do 1.5-T systems (21). 3D or 2D gradient recalled echo 
(GRE) and T2-weighted fast spin-echo or T2-weighted 
HASTE sequences are practical for detection of pulmonary 
nodules. Puderbach et al. (22) suggested detailed standard 
protocols for lung MRI, including a transverse T1-weighted 
breath-hold 3D-GRE sequence and a breath-hold coronal 
T2-weighted HASTE sequence. It can now be assumed a 

threshold size of 3-4 mm for detection of lung nodules with 
MRI under the optimal conditions of successful breath-
holds with reliable gating or triggering. Biederer et al. (23)  
suggested that 90% of all 3-mm nodules are correctly 
diagnosed and that nodules 5 mm and larger are detected 
with 100% sensitivity (Figure 3). 

While in view of the limited spatial resolution of MR 
imaging, MRI’s differentiation on morphologic criteria is 
not likely to be better than CT, however, the analysis of 
signal properties or enhancement profiles may aid in this 
regard. For example, because MRI affords better tissue 
contrast, MRI with thin-slice collimation of a pulmonary 

Figure 3 An example demonstrates MRI for the detection of small lung nodules: (A,D) small pulmonary metastases of a malignant 
melanoma in a 62-year-old patient (5 mm slices of a standard helical CT scan); (B,E) MRI of the corresponding positions at the same time; 
(C,E) the follow-up MRI after 3 months [the contrast enhanced transverse 3D-GRE (VIBE) images; TR/TE 3.15/1.38 ms, flip angle 8°, 
FOV 350 mm × 400 mm, slice thickness 4 mm]. The clearly visible 3 mm nodule in the left lower lobe [(A) and (B); marked with an arrow 
on (A)] grew to a diameter of 5 mm within 3 months (C). Another 3 mm nodule in the lateral right middle lobe [marked with an arrow on (D)] 
is hardly visible on the corresponding MRI due to cardiac pulsation, but becomes clearer in the follow up study after growing to 4-5 mm (F) 
[Reproduced with permission from reference (23)].
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hamartoma shows the fat and calcification foci and can be 
interpreted in a manner similar to that for CT (Figure 4).  
Fat suppression techniques are also preferable when 
macroscopic fat is suspected. Chemical-shift MRI with  
in- and opposed-phase acquisition may be an important 
tool for detecting fat in pulmonary hamartomas (24). In the 
absence of markedly calcified cartilaginous tissue, myxoid 
matrices of the cartilaginous tissue produce very high signal 
intensity on T2-weighted images (25). Although MRI 
detection of pulmonary nodules is inferior to CT detection, 
MRI yields supplementary morphologic information that is 
valuable for differential diagnosis, including for sclerosing 
hemangioma, bronchial carcinoid tumor, tuberculoma, 
aspergillosis, progressive massive fibrosis (21). 

Enhancement patterns or blood supply evaluated 
with dynamic contrast-enhanced (CE) MRI is helpful 
for diagnosis of pulmonary nodules (26,27). It has been 
suggested that dynamic CE MRI is effective for assessment 
of tumor angiogenesis (27). The lack of ionizing radiation 
makes MRI a safe tool for repeated dynamic evaluations 
of tumor perfusion. Dynamic MRI with the 3D GRE 
sequence requires less than 30 second breath-holding for 
acquisition of all data (26). There are various dynamic 
MR techniques for distinguishing malignant nodules from 
benign nodules, with reported sensitivities range from  
94-100%, specificities from 70-96%, and accuracies of more 
than 94% (28-30). These specificities and accuracies for dynamic 
MRI are equal to those for FDG-PET or PET/CT (27).  
A recent meta-analysis reported that there were no 
significant differences in diagnostic performance among 

dynamic CE-CT, dynamic CE-MRI, FDG-PET and single 
photon emission tomography (SPECT) (31). 

Recently, diffusion-weighted imaging (DWI) has been 
suggested as new method for nodule detection and/or 
evaluation including subtype classification of pulmonary 
adenocarcinoma (28,29,32). Theoretically, DWI, as does the 
apparent diffusion coefficient (ADC), assesses the diffusivity 
of water molecules within tissue in terms of cellularity, 
perfusion, tissue disorganization, extracellular space, 
and other variables (28). Quantitative and/or qualitative 
sensitivities and specificities of the ADC for differentiation 
of malignant from benign SPNs were 70.0% to 88.9% for 
sensitivity and 61.1% to 97.0% for specificity (28,30,32). 
One report stated specificity of DWI (97.0%) was higher 
than that of FDG-PET/CT (79.0%) (28). 

The direct multiplanar capability of MRI is also one of 
the advantages for the detection of lymph nodes in areas that 
are suboptimally imaged in the axial plane, such as in the 
aortopulmonary window and subcarinal regions. Nowadays 
whole-body MRI has become clinically feasible with the 
installation of fast imaging and moving table equipment. 
Whole body DWI has been recommended as a promising 
new tool for whole-body MR examination of oncologic 
patients (33-39). When comparing whole-body MRI with 
FDG-PET for the M-classification capability of head and 
neck metastases, including brain metastases, the accuracy 
(80.0%) of whole-body MRI was significantly better than 
that of FDG-PET (73.3%). When this technique adapted 
for M-stage assessment including brain metastasis in  
non-small-cell lung carcinoma, diagnostic accuracy of 

Figure 4 A 40-year-old woman with pulmonary hamartoma. (A) CT image shows low-attenuation spot (arrow) within nodule, suggesting 
lipoid tissue; (B,C) axial T1-weighted (B) and T2-weighted (C) MR images show hyperintense spots (arrows) within nodule. T2-weighted 
image (C) also shows hyper-intense matrix consistent with cartilaginous tissue [Reproduced with permission from reference (21)]. 
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whole-body MRI with DW imaging (87.7%) showed no 
significant difference with that of integrated FDG-PET/CT  
(88.2%) on a per patient basis (40). Early ADC changes 
observed after the initial chemotherapy course reportedly 
correlated with the final tumor size reduction (41).

Computer assisted detection and diagnosis (CAD) 
systems are becoming increasingly important in the clinical 
setting, serving as a second reader in image interpretation, 
effectively improving the detection accuracy and consistency 
of pulmonary nodules in chest X-ray and CT (42). Awai  
et al. (43) compared the nodule detecting performance of 
five radiologists and five radiology residents in 50 chest CT 
scans. Statistically significant improvements in lung nodule 
detection were achieved for all radiologists using the CAD 
system (P<0.1), with a true positive rate of 94%. The CAD 
for MRI has not yet been developed. The development of 
CAD for MRI can be greatly assisted by the techniques 
already established for CT. 

In the meantime, it is important to note that the clinical 
importance of detecting a 3 mm nodule in a patient 
with malignant disease and the decisions for treatment 
depending on the absence of lung metastases differs from 
detecting a similar lesion in a healthy patient who takes part 
in a screening program. In a patient with known primary 
malignancy lung nodules would be deemed suspicious for 
metastases (9). MRI cannot replace CT for the diagnosis 
of pulmonary metastases (21). Although 6-mm or greater-
diameter pulmonary metastatic nodules may be readily 
identified with MRI, smaller nodules in lung (<6 mm) are 
detected with less sensitivity (34,44).

Future directions of MR technology development 
for lung cancer screening 

Current MRI techniques are capable of detecting 4 mm 
or larger nodules with reasonable spatial resolution and 
provide clinically valuable information for prognosis and 
management of possible lung cancers. Till now the imaging 
acquisition is usually performed with breath-holding and/or  
some gating methods to reduce motion artifacts caused 
by respiratory motion, heart beating and cerebrospinal 
fluid pulsation. The current imaging protocols for lung 
cancer imaging have a total acquisition time of ~20 seconds 
for a single scan. Twenty-second breath-holding is often 
challenging for patients, and long breath-holding increases 
the possibility of inducing involuntary motions during the 
imaging acquisition. It is desired to have a much faster 
imaging method to image the lung so that respiratory and 

ECG gating can be eliminated in the lung cancer imaging 
protocols. 

The use of high field MR scanner improves the 
sensitivity and provides more signals for expediting image 
acquisition. Recent advance in fast MR imaging using 
parallel imaging and compressed sensing technology 
have made a great impact in MR imaging community 
and demonstrated excellent capability in accelerating 
MR imaging acquisition (45-48). Parallel imaging can 
significantly shorten the imaging acquisition time by 
utilizing the diversity of sensitivity profile of individual coil 
elements in multi-channel radiofrequency receive coil arrays 
or transmit/receive coil arrays to reduce the number of 
phase encoding steps required in imaging procedure (49-52).  
The performance of multi-channel radiofrequency coil 
arrays is critical to parallel imaging and its imaging 
acceleration capability (53-56). Unlike parallel imaging 
techniques, recently introduced compressed sensing 
technique accelerates imaging acquisition from dramatically 
undersampled data set by exploiting the sparsity of the 
images in an appropriate transform domain (4,57-59). 
Compressed sensing technique can be implemented by 
using not only multi-channel radiofrequency coil arrays 
but also conventional non-array radiofrequency coils. 
Given large field-of-view requirement in lung imaging 
and currently radiofrequency coil array technology, it 
is technically challenging to accelerate the imaging by  
20-fold or more and make lung imaging acquisition time 
down to 5 second or less by using parallel imaging technique 
or compressed sensing technique alone. To achieve this 
goal, a technique that combines parallel imaging and 
compressed sensing with optimized imaging parameters 
and acceleration performance has to be developed. In 
addition, an advanced multi-channel (e.g., 32-channel, or 
64-channel) radiofrequency coil array for lung imaging with 
sufficient imaging coverage, MR sensitivity and parallel 
imaging performance is also needed. A major challenge in 
the design of radiofrequency coil arrays with large channel 
counts is the electromagnetic coupling among the channels 
or array elements. This most likely can be addressed by 
using recently introduced magnetic wall or induced current 
compensation or elimination (ICE) decoupling technique 
which has demonstrated a unique capability in decoupling 
densely-placed resonant elements in massive arrays (60). 
For a 32-channel or 64-channel RF coil array, it is possible 
to accelerate imaging by 5-6 folds based on parallel imaging 
technique with no noticeable image artifacts or distortion. 
On the top of this, further acceleration of 4 folds can be 
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obtained by using compressed sensing technique or its 
derivatives, given the good sparsity behavior of lung images. 
Therefore, with the combined imaging algorithm of parallel 
imaging and compressed sensing and advanced 32-channel 
or 64-channel RF hardware, overall imaging acceleration of 
20 folds or higher can then be expected. This could reduce 
the acquisition time of lung imaging protocols down to  
5 second or less, ultimately achieving free-breathing and no 
ECG gating acquisitions in lung cancer MRI screening. 

Another promising technique for imaging pulmonary 
nodules is ultrashort echo time (UTE) MR image. This 
technique uses specialized radiofrequency excitation pulses 
with center-out k-space trajectories to minimize the echo 
time (61). This ultimately allows for direct imaging of 
the lung parenchyma, which has a T2 of ~80 ms T2* of  
~0.5-3 ms due to the high susceptibility. UTE MR imaging 
is also advantageous for lung imaging because it is relatively 
robust to motion artifacts and therefore high quality clinical 
images can be acquired with free-breathing in the limited 
field-of-view setting despite the regular non-accelerated 
acquisitions (62). Recent preclinical studies have shown 
excellent results depicting lung cancer nodules in a mouse 
model even without cardiac or respiratory gating (63).

Conclusions

The current development in MR technology data are 
encouraging for considering follow-up studies of proven 
pulmonary cancer and for pulmonary screening of 
populations at risk for pulmonary cancer. Whole body MR 
screening has also become a reality. Further development 
of protocols, more clinical trials and advanced analysis tools 
will further evaluate the real significance of lung MRI. 
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