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ABSTRACT OF THE THESIS

The Relative Density

and Applications to

Bayesian Analysis

by

Haibo Fan

Master of Science in Statistics

University of California, Los Angeles, 2023

Professor Mark S. Handcock, Chair

We introduce the relative distribution as a tool in Bayesian analysis to compare the posterior

to the prior distribution. Two interpretations are given: one as a density ratio, and another

as a reparametrized likelihood. Several important properties are reviewed, as well as notes

on usage and connections to information theory and relative surprise inference. Explicit

examples and derivations for several common models are given. The relative distribution

focuses on the effect of the data and the resulting differences between the posterior and prior,

emphasizing the role of the likelihood in connecting the two.
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CHAPTER 1

Introduction

1.1 The Relative Distribution

Notationally, for this introductory section, all relevant functions of Y will have no subscript,

and all relevant functions of Y0 will have the subscript 0.

Given random variables Y (from a comparison distribution), and Y0 (from a reference

distirbution), the relative density from Y to Y0 is defined as

R = F0(Y )

We transform the comparison Y by the CDF of the reference Y0. Literally, R is the probability

that Y0 is at most Y . To help interpret this, recall that with one random variable, applying

its CDF to it would result in a standard uniform, as we map each value of the random

variable to its appropriate quantile. With the relative distribution, we map each value of

the comparison to where it would fall in the reference distribution — the values of Y are

dispersed according to which quantile they would belong to if they actually came from Y0.

We may also consider this manipulation:

P (a ≤ R ≤ b) = P (a ≤ F0(Y ) ≤ b)

= P (Q0(a) ≤ Y ≤ Q0(b))

The probability of R ∈ [a, b] is the probability that Y is between the ath and bth quantiles of

Y0. This highlights the importance of thinking in terms of Y0’s quantiles when interpreting
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R. Note that R is, at its core, a transformation of Y , the comparison distribution. Thus the

randomness in R comes from Y alone; the use of the reference Y0 is to establish quantiles.

We can find the CDF of R, which we denote with G, as

G(r) = P (R ≤ r) = P (F0(Y ) ≤ r)

= P (Y ≤ F−1
0 (r))

= F (Q0(r))

Then we can differentiate to find the PDF, which we denote as g. Recall the differentiation

rule for derivatives of inverse functions: d
dx
f−1(x) = 1/f ′(f−1(x)).

g(r) =
d

dr
G(r)

=
d

dr
F (Q0(r))

= f(Q0(r))
1

f0(Q0(r))

=
f(Q0(r))

f0(Q0(r))

Note that the support of R is (0, 1). We can interpret its PDF as a ratio of the comparison

to the reference densities, at each quantile r of the reference distribution. Generally, this

interpretation is one of the easiest to work with and visualize, and so we shall use it often.

1.1.1 Example: Comparing Two Gaussians

Suppose we have Y0 ∼ N(0, 1) and Y ∼ N(1, 4).

Looking at the graph of the densities, we can see that Y places much less mass between

-1 and 0 compared to Y0. It has more mass for values less than -2, and also values greater

than approximately 1. Thus, thinking of the relative density as a density ratio, we should

expect that it will be greater than 1 near the lower quantiles, fall down as it approaches the

median of Y0 (r = 0.5, at 0), but slowly rise after that, and become much greater than 1

near the upper quantiles.
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Figure 1.1: (Left) The density of Y (in red) and Y0 (in blue). (Right) The relative density

of Y to Y0.

1.2 The Relative Distribution in a Bayesian Context

Notationally, we denote the data as X, a realization by x, and its likelihoods, which may be

PDFs or PMFs, by p(x); the CDFs and quantile functions will be represented by F (x) and

Q(r) respectively. For parameters, we only consider those with PDFs, which we represent

with π; CDFs and quantile functions will be represented by z and K, respectively. Generally,

the prior will be denoted by θ, and the posterior by θ|x.

Using the relative distribution, one natural pair of distributions to compare is in the

Bayesian framework: the prior and posterior distributions of a (one-dimensional) parameter

θ. Set the prior as the reference distribution, and the posterior as the comparison.

Hereon, we will use R to denote a random variable following this relative distribution,

with G and g its CDF and PDF respectively. In this Bayesian case, the relative density is
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g(r|x) =
π(K(r)|x)

π(K(r))

=
p(x|K(r))π(K(r)) / p(x)

π(K(r))

=
p(x|K(r))

p(x)
∝ p(x|K(r)), 0 ≤ r ≤ 1

The relative distribution here is proportional to a reparametrization of the likelihood function

of the data model, which scales it into the range of (0, 1). We shall call this the unitized

likelihood form of the relative density, which only appears different but is equivalent to the

original form as a density ratio. Note that we generally keep our observed data x fixed, and

the actual variable is r.

By the law of total probability, the marginal data probability is p(x) =
∫∞
−∞ p(x|θ)π(θ) dθ.

Performing the change of variable θ = K(r) gives p(x) =
∫ 1

0
p(x|K(r)) dr, which we can

recognize as the normalizing constant for the unitized likelihood to become a proper density.

Since the shape of the relative distribution is essentially the likelihood, this implies that

all of the differences between the prior and posterior is based on the likelihood. When

considering the form of Bayes’ Rule and also the likelihood principle, this is fairly evident.

The relative distribution should contain as much information about these differences as the

likelihood.
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CHAPTER 2

Properties of the Relative Distribution

We will often make use of the substitution r = z(θ) =⇒ θ = K(r), with differentials

dr = π(θ) dθ and dθ = dr/π(K(r)).

2.1 Properties of the Relative Distribution Itself

Here, we discuss properties of the relative distribution in general, which do not rely on the

Bayesian context. We will consider Y as a random variable from the comparison distribution

and Y0 from the reference distribution.

2.1.1 Switching the Comparison and Reference

Typically, switching which distribution is considered the “comparison” and which the “ref-

erence” will not heavily impact analysis. Graphically, the relative density appears to have

its values inverted. Note that this is not the true multiplicative inverse, as the scale used to

compress the density into [0, 1] is based on the quantiles of which distribution we consider

the reference, thus some slight dissimilarities will arise.

Due to the nature of inverting values, one representation may be easier to visually grasp

than another when using a standard linear axis. For example, in Figure 2.1, we can see

that since the blue relative density does not approach infinity, it can be easier to see the full

picture.

Additionally, we currently require that the prior has a quantile function in order to
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compute the relative distribution (see below for more details). In the Bayesian case however,

we may sometimes have an improper prior (which does not have a quantile function) but

with a proper posterior. We may somewhat circumvent this issue by instead setting the prior

as the comparison and the posterior as the reference. If we denote this random variable as

R∗, we have

g∗(r) =
π(K(r|θ))
π(K(r|θ)|θ)

=
p(x)

p(x|K(r|θ))
∝ 1

p(x|K(r|θ))

Figure 2.1: In red, the relative density of Y ∼ N(1, 2) to Y0 ∼ N(0, 1). In blue, the relative

density of Y0 to Y . The dashed lines are the literal multiplicative inverses of the density

values. These inverses do not exactly line up with simply switching the comparison and

reference distribution, as different quantiles are used.
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2.1.2 Invariance under Monotone Transformation

The relative distribution is invariant under a monotone transformation on both variables

Y and Y0 in the sense that the shape of its density does not change. For a monotonically

increasing transformation, the relative density is the same. For a monotonically decreasing

transformation, the relative density is reflected vertically about the prior median (r = 0.5).

Let h be a monotone transformation, with Z = h(Y ) and Z0 = h(Y0) the transformed

variables. First suppose h is monotonically increasing, i.e. a ≤ b ⇐⇒ h(a) ≤ h(b) for a, b

in the domain of h. Then,

RZ = FZ0(Z)

= P (Z0 ≤ Z)

= P (h(Y0) ≤ h(Y ))

= P (Y0 ≤ Y ), by monotonicity

= FY0(Y ) = RY

We can see that the relative distribution of the transformed variables is the same as the

relative distribution of the original variables.

For h monotonically decreasing, i.e. a ≤ b ⇐⇒ h(a) ≥ h(b), we have

RZ = FZ0(Z)

= P (Z0 ≤ Z)

= P (h(Y0) ≤ h(Y ))

= P (Y0 ≥ Y ), by monotonicity

= 1− P (Y0 < Y )

= 1− F0(Y ) = 1−RY

From this, we can determine that FRZ (r) = P (1−RY ≤ r) = 1− FRY (1− r), which implies

that fRZ (r) = fRY (1 − r). Thus the relative density — which we recall can be interpreted
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as the ratio of densities between Z and Z0 — is the same as the original for RY , though

mirrored along the median (r = 0.5).

One thing to note in this algebra is that we should treat Z = g(Y ) as the source of

randomness. As we are including Z0 (essentially, Y0) only through its CDF, there is no ran-

domness that stems from it, as the CDF is deterministic. Instead, the source of randomness

is from Z (essentially, Y ), and so we cannot collapse probabilities into FZ , as that would

make Z deterministic.

2.1.3 MLE and the Relative Distribution

The mode of the relative distribution is the argmax of its density, which occurs at the

maximal value of the data likelihood, i.e. the MLE. With the density ratio view, this can be

interpreted as the specific value of the parameter whose probability increases the most due

to the data. Intuitively, it seems reasonable that the single parameter value which the data

supports the most — the MLE — is exactly the one which would have been most likely to

have generated that data.

The value of the relative density at the MLE can then help us infer how well the prior

agrees with the data. When the value is very large, then the data must have impacted the

posterior to place much more weight at the point than the prior did. On the other hand,

when the value is small, it means that the posterior doesn’t place much more weight than

the prior did — the prior already found that point fairly likely.

The impact of the prior is demonstrated in Figure 2.2. Using a typical beta-binomial

model, the relative densities of θ — the probability of success in the binomial — are plotted.

We can see that the peaks — where the MLE would be — occur at different values of r,

which are indicated by the vertical dashed lines.

Note that translating these quantiles r into actual values of θ based on the different priors

would lead to the same estimate θ̂MLE. The values of r are different as they are quantiles of
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Figure 2.2: The resulting relative densities for the single trial probability in a beta-bernoulli

model with various priors, all at the same strength of belief (α+ β = 10) but with different

means: (a) α = 2, (b) α = 4, (c) α = 6, (d) α = 8. The data was simulated and had a

sample mean of 0.7.

different priors, though they all correspond to the same actual value of θ̂MLE.

2.1.4 Asymptotic Behavior

In the regular case of asymptotics, the relative density will approach a delta function in [0, 1],

whose peak will depend on the choice of prior.

Using the interpretation of the relative density as a density ratio, consider that under

appropriate regularity conditions, the posterior distribution approaches a normal distribu-

tion, and its variance approaches 0. The vanishing variance explains the delta function, as

the posterior approaches 0 at most points, and only peaks at its mode.

We can also understand this phenomenon by thinking of the relative density as the

unitized likelihood. As the amount of data increases, the likelihood concentrates around the

9



MLE, which approaches a delta function. The location of the peak — the MLE — depends

on the specific prior used.

Figure 2.3: The relative density of a Beta(2, 2) prior to a Bernoulli rate model (with true

rate of 0.6) for various sample sizes. As the number of data points increases, the relative

density concentrates more around the true rate, indicated by the dashed black line.

2.2 Properties of the Bayesian Relative Distribution

Here we present two interesting properties of the relative distribution when applied to the

Bayesian context. We have a one-dimensional parameter θ, with a prior density of π(θ),

giving CDF z(θ) and quantile function K(r). Data is observed according to some density

p(x|θ), which we use to update our parameter and determine a posterior density π(θ|x).

2.2.1 View of the Relative Distribution as a Reparametrization

Take a reparametrization of our data model by r = z(θ). While Ωθ ⊆ R, we have Ωr ⊆ [0, 1].

10



Consider the integration of the data likelihood over the original parameter θ, that is∫∞
−∞ p(x|θ) dθ. This is generally not simplifiable. If we want to marginalize properly and

find the marginal data probability p(x), we need to weigh the likelihood by the prior π(θ).

In contrast, when we directly integrate under r, in order to produce the marginal, we do not

need to weigh the reparametrized likelihood when integrating, as p(x) =
∫ 1

0
p(x|θ = K(r)) dr.

Here, we actually implicitly weigh the likelihood by the standard uniform — a standard

uniform prior over r is the same as π(θ) over θ. We can also see this by calculating the form

of the reparametrized prior. Note that θ = K(r) =⇒ dθ = 1
π(K(r))

dr.

π(r) = π(θ)

∣∣∣∣dθdr
∣∣∣∣

= π(θ = K(r))

∣∣∣∣ 1

π(K(r))

∣∣∣∣ = 1

Now recall the unitized likelihood form of the relative density in our Bayesian case,

g(r) = p(x|θ = K(r))/p(x), which is the reparametrized data likelihood. Thus we can

interpret this alternative perspective of the relative density as the likelihood, reparametrized

such that when our prior places equal weight on each parameter value (of r), the marginal

data probabilities do not change. Note that while under the reparametrization r, though we

always have the implied uniform prior r, the original choice of prior is still important, as

that is what controls the reparametrization itself, by the transformation r = z(θ).

The existence of the transformation r = z(θ) is crucial. Additionally, we have restricted

ourselves here to the case where z is bijective, and so K is a proper inverse. The form of our

likelihood under r, which involves K, suggests that the existence of K is necessary. We would

find that we cannot directly apply these calculations to cases in which the transformation

and its inverse do not exist; for example, to improper priors. Indeed, an earlier indication

that such priors would be difficult to analyze using the relative density is that we require

the marginal probability p(x) as the normalization term for the unitized likelihood, which

cannot be found when using improper priors.

Using this alternate perpsective, we can reduce our relative distribution analyses into the
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case of just a standard uniform prior. If we reparametrize our entire model from θ to r,

then proceed with the analysis using a uniform prior on r, the resulting relative distribution

would be the same had we continued using the original parametrization of θ

2.2.1.1 Coercion of the Relative Density’s Shape

The unitized likelihood form g(r|x) ∝ p(x|θ = K(r)) suggests that we can manipulate the

“shape” of the transformed data likelihood — that is, of the relative distribution — by

carefully choosing the function K. Phrased more explicitly, for a nonnegative function t(r),

r ∈ [0, 1], where
∫ 1

0
t(r) dr = 1, we may be able to find a function K (a prior) such that

t(r) = p(x|θ = K(r))/p(x). Whatever “shape” t, we seek K so that the relative density

looks like t.

Let us rewrite the unitized likelihood so that is more explicitly made a function of r,

using p(x|θ = K(r)) = L(θ = K(r)). One immediate option presents itself if we assume

L has a right inverse, which we denote L−1R . This one-sided inverse function satisfies

L(L−1R(r)) = r. Now we simply let K(r) = L−1R(t(r)), so that L(K(r)) = t(r).

Thus it seems may produce a fairly wide range of relative (as the relative density has a

normalization constraint) ratios of the posterior to the prior in this fashion. Note that we

are not actually affecting the amount of information in the data; instead, we are changing

the relative impact the data has on the prior, by changing the prior itself. Of course, this

further emphasizes the importance of choosing an appropriate prior.

As an example, consider n data points distributed as N(θ, σ2), where θ is the unknown

mean and σ2 is the known variance. Then we can write the data likelihood as

p(x|θ) =
n∏
i=1

1√
2πσ2

exp

(
−(xi − θ)2

2σ2

)

=
exp

(
−x2−x̄2

2σ2/n

)
(2πσ2)n/2

exp

(
−(θ − x̄)2

2σ2/n

)
= L(θ|x)

12



See Appendix A.1.1 for a derivation. Denote C = exp
(
−x2−x̄2

2σ2/n

)
/(2πσ2)n/2. We may choose

L−1R(r) =
√
−2σ2

n
log(r/C) + x̄, and so K(r) = L−1R(t(r)) =

√
−2σ2

n
log(t(r)/C) + x̄. Note

that we are constrained by t(r)/C ≤ 1, which may not always be possible.

In this specific case, we may be able to fix this constraint by adjusting the constant

C. Suppose t(r) has a finite maximum and call it A. Construct a “pseudo” right inverse,

L−1R(r) =
√
−2σ2

n
log(r/A)+ x̄. Then L(L−1R(t(r))) = C

A
t(r). The resulting relative density,

which must be a proper density, must then have normalizing constant 1/p(x) = A
C

, as we

have assumed t(r) has unit area. An example is given in Figure 2.4.

Figure 2.4: The data was simulated with X ∼ N(1.5, 4), with n = 10. (a) The likelihood

function of the data, given as a function of θ. Note that this is not a proper density. (b) The

desired functional form, t(r) = 2 − 2r, also the resulting relative density. (c) The coercive

quantile function, K(r) = L−1R(t(r)). (d) The density of the coercive quantile function.

While this could fix our specific case, in general we may not be able to find a workaround.

There are a few considerations when using this method. As seen above, we must find a right
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inverse, which can be difficult, for example if we explicitly need all normalizing constants.

Sometimes there are constraints on the domain, which limit the possibilities of t(r), though

as demonstrated this could be overcome to some extent. We also need to know the data

already, as we require knowledge of L(θ|x), which would not be possible if we were properly

choosing a prior. Finally, we have to ensure that the resulting K(r) is a valid quantile

function, of which the strictest requirement is that it be monotonically increasing. These

factors indicate that not just any arbitrary shape of the relative density is possible, though

a wide variety of them are.

2.2.1.2 Connection to Jeffreys Priors

In mentioning reparametrization and priors, it is natural to be reminded of Jeffreys priors,

which are typically formulated as “non-informative” priors that are invariant to reparametriza-

tion. Jeffreys priors, however, arise from a fundamentally different question than that of the

relative distribution, which is of prior selection.

Jeffreys sought a method of choosing an “objective” prior. By his reasoning, such a

method should lead to the same prior, regardless of the initial parametrization. Given the

likelihood, using the method to find a prior and then reparametrizing it should lead to the

same prior as if the likelihood was first reparametrized, and then the method was used to

find a prior.

In using the relative distribution, we have not made any suggestions as to which prior

to use or how to select one. Instead, we assume we have some prior to work with, and then

use the relative distribution to analyze how that prior compares to the resulting posterior.

Jeffreys priors are a result of seeking “objective” priors, while the unitized likelihood form of

the relative distribution is just another way to view an already selected prior. Jeffreys priors

are invariant — in the sense described above — to any reparametrization, while the relative

distribution involves a very specific reparametrization based on the quantile function of the

chosen prior.
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2.2.2 Relation to Other Comparative Measures

We momentarily return to the general, not necessarily Bayesian case. The (differential)

entropy of the relative distribution is

H(R) = −
∫ 1

0

g(r) log g(r) dr

= −
∫ 1

0

g(r) log
g(r)

1
dr

This can be interpreted as the negative of the KL divergence of the relative distribution to

the uniform distribution. The Kullback-Leibler divergence (KL divergence) of a distribution

P to another distribution Q is defined as

DKL(P ||Q) =

∫ ∞
−∞

p(x) log
p(x)

q(x)
dx

Bringing the Bayesian context back, the relative distribution provides a different viewpoint

of information-theoretic Bayesian statistics. Instead of focusing on the prior and posterior,

it emphasizes the likelihood as the agent which connects the two. Supposing our relative

distribution compares the posterior to the prior, let’s perform the substitution θ = K(r).

The entropy is

H(R) = −
∫ 1

0

g(r) log g(r) dr =

∫ 1

0

π(K(r)|x)

π(K(r))
log

π(K(r)|x)

π(K(r))
dr

= −
∫

ΩΘ

π(θ|x)

π(θ)
log

π(θ|x)

π(θ)
π(θ) dθ

= −
∫

ΩΘ

π(θ|x) log
π(θ|x)

π(θ)
dθ

= −DKL(π(θ|x)||π(θ))

And we see that this is equal to the negative of the KL-divergence between the posterior

and the prior. As the KL divergence is invariant under reparametrization, this result agrees

with our view of the relative density as a reparametrization from posterior versus prior to

relative density versus standard uniform
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Now consider the mutual information between X and θ (data and prior), denoted I(X; θ).

This can be interpreted as the amount of “information” — in an entropic sense — present

in both X and θ; that is, how much information entropy can be learned from one of them

by observing the other.

I(X; θ) =

∫ ∫
p(x, θ) log

p(x, θ)

p(x)π(θ)
dθdx

=

∫ ∫
p(x)π(θ|x) log

π(θ|x)p(x)

p(x)π(θ)
dθdx

=

∫
p(x)

∫
π(θ|x) log

π(θ|x)

π(θ)
dθdx

=

∫
p(x)DKL(π(θ|x)||π(θ))dx

= EX [DKL(π(θ|X)||π(θ))]

If we take X as fixed data x, then the expectation reduces to just DKL(π(θ|x)||π(θ)), the

same quantity as above. Thus the “distance” between the posterior and the prior can also

be seen as the amount of “information” that observing X will tell us about the prior.

This quantity is central to the idea of reference priors, as outlined in [BBS09]; see also

[Ber79b], [Ber79a], and [BBM88] for more on reference priors. Essentially, a reference prior

should maximize this mutual information, which would mean maximizing the KL-divergence

between the prior and posterior. That is, the reference prior is the prior which results in

the posterior being most “different” from it. As the posterior consists of the prior and

the likelihood, maximizing this difference between the prior and posterior means letting the

likelihood — the data — have the greatest impact on the final posterior probabilities.

The relative distribution gives us another view of this. Instead of maximizing the KL-

divergence between the posterior and the prior, we could imagine instead minimizing the

entropy of the relative distribution. The entropy should decrease as the relative entropy

becomes more and more sharply spiked, which in the limiting case suggests a delta function.

While this may appear as an attractive alternative to finding reference priors, there are

some considerations to keep in mind. The first is that the mutual information should be
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taken as an expectation over the marginal distribution of data p(x), and not simply with

assuming the data is constant. The relative density depends on the specific posterior, and

will thus depend on the data as well. We would need to expand the definition of the relative

distribution to allow for using the expected value of random data points. We could do so

directly by substituting the KL-divergence with the entropy of the relative distribution in

the formula for mutual information, giving I(X; θ) = EX [H(R)]. Note that unlike before,

H(R) is a random quantity depending on the data X, which we no longer assume is a fixed

realization x.

Another consideration is that the reference prior is found in the limit of infinite informa-

tion, n → ∞. This may be infeasible to compute directly, considering the relative density

tends to approach a delta function under appropriate regularity conditions. We may have

to borrow a similar idea from Bernardo’s original approach to finding reference priors, by

instead computing a prior based on a finite sample size k in the relative density, then taking

the limiting form of that prior.
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CHAPTER 3

Closed Forms

3.1 Closed Forms of the Relative Distribution

The relative distribution can be regarded as a function of the prior θ and the data X (giving

the likelihood), which together automatically determine the posterior. We assume the data

is a collection of n i.i.d. realizations, x = (x1, . . . , xn).

3.1.1 Jeffreys Priors

In many common cases, Jeffreys priors are improper, and thus cannot be analyzed with our

current relative distribution methods.

A simple proper Jeffreys prior can be found for a binomial data model. Suppose X ∼

Bin(m, θ); then the Jeffreys prior is a Beta(1
2
, 1

2
) distribution — the arcsine distribution —

with quantile function K(r) = sin2
(
π
2
r
)
.

This prior is conjugate for our data, leading to posterior Beta(1
2

+nx̄, 1
2

+nm−nx̄). The

relative distribution can be calculated as

g(θ = K(r)) =
π(θ|x)

π(θ)

=
πΓ(1 + nm)

Γ(1
2

+ nx̄)Γ(1
2

+ nm− nx̄)

(
sin2

(π
2
r
))nx̄ (

1− sin2
(π

2
r
))nm−nx̄

See Appendix A.2.1 for a derivation. Below in Figure 3.1, an example of what the rela-

tive density looks like in this case is shown. In Figure 3.2, the effect of increasing n is

demonstrated.
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Figure 3.1: In blue, the Jeffreys prior. In red, the posterior. The data was generated with a

“true” success rate of 0.8. The relative density is shown on the right, in purple.

3.1.2 With Exponential Families

In the case where data comes from a one-parameter exponential family, i.e.

p(x|θ) =
n∏
i=1

h(x) exp (η(θ) · T (xi)− A(θ))

= h(x)n exp

(
η(θ) ·

n∑
i=1

T (xi)− nA(θ)

)
the general conjugate prior distribution for θ as described in [DY79], with hyperparameters

(n0, x0), is given by

π(θ) = hp(n0, x0) exp (n0x0η(θ)− n0A(θ))

The posterior distribution has hyperparameters
(
n0 + n,

n0x0+
∑n
i=1 T (xi)

n0+n

)
.

The relative density, based on the unitized likelihood, is

g(θ = K(r)) ∝ exp

(
η(θ) ·

n∑
i=1

T (xi)− nA(θ)

)
To find a general closed form of this, we must have a closed form for K(r), the quantile

function of the prior. As this does not have a general form, we would not be able to
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Figure 3.2: The effect of sample sizes on the relative density with a binomial model and

Jeffreys prior.

easily find a general closed form. As explained in the previous chapter, the prior’s quantile

function is critical to the existence of the relative distribution. Below, we instead consider

some specific cases where we do have a closed form of K(r).

3.1.3 With a Uniform Prior

Suppose θ ∼ Unif(a, b). Then K(r) = a + (b− a)r. Recall that the relative density has the

property g(r) ∝ p(x|K(r)). By Bayes’ Theorem, since the prior is uniform, the posterior will

also be proportional to just the likelihood; that is, the likelihood completely determines the

shape of the posterior. Our entire belief of the posterior parameters arises from the data.
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Consider Gaussian data with an unknown mean and known variance, X ∼ N(θ, σ2).

g(r) ∝ p(x|θ = K(r))

∝ exp

(
−(r − (x̄− a)/(b− a))2

2σ2/(n(b− a)2)

)
See Appendix A.2.2.1 for a derivation. This has the form of a Gaussian. Note however

that r is constrained to lie in [0, 1]. Therefore this is actually a truncated Gaussian, R ∼

N
(
x̄−a
b−a ,

σ2

n(b−a)2

)
with support only in [0, 1].

As an aside, consider the case of θ ∼ Unif(−c, c), where c > 0. As we take the limit

c → ∞, we approach a flat improper prior on the real line. From this, we can see that

in the distribution of R, the variance approaches 0 while the mean gets relatively closer to

the midpoint of 0. Thus the resulting relative density becomes a delta function centered at

r = 0.5. However, we do not actually obtain any more information from the data, despite the

extremely narrow relative density; it’s just that as the prior allows more and more possible

parameter values, what data we do have will suggest a relatively tighter posterior.

A table of several others potential data models is given below in Table 3.1. The exact

normalizing constants are omitted for brevity; see the appendix for details.

Data Distribution Relative Density Kernel Derivation

Bin(m, θ) rnx̄(1− r)1+n(m−x̄) A.2.2.2

Po(θ) (a+ (b− a)r)nx̄e−nθ A.2.2.3

NegBin (m, θ) rnm(1− r)nx̄ A.2.2.4

Table 3.1: The kernel of the relative density with a uniform prior, under different data

models. See the appendix for full normalizing constants and derivation.

3.1.3.1 With a Standard Uniform Prior

Recall that we can interpret the relative density as a reparametrization of the data likelihood,

from θ ∈ R to r ∈ [0, 1]. In doing so, applying a standard uniform prior to r gives the same
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Figure 3.3: The resulting relative density as the uniform prior’s support is expanded. A

“true” mean value of 4 was used to generate the data, which is why the graphs lean toward

upper quantiles; a negative mean would cause the graphs to lean toward lower quantiles.

With any mean value, the densities approach the delta function at r = 0.5.

marginal data probabilities as with the original prior on θ. Therefore, the case of a standard

uniform prior on r is of particular interest.

Of course, this case is also the simplest, as the relative density is directly proportional to

the data likelihood itself and also the posterior density, with the data marginal probability

as the proportionality constant.

3.1.4 With an Exponential Prior

If θ ∼ Exp(β), then we have z(θ) = 1− e−βθ and K(r) = − 1
β

log(1− r). We can use this as

a Gamma conjugate prior (θ ∼ Gamma(1, β)).
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Using data model X ∼ Poisson(θ), the relative density has the form

g(r) ∝ p(x|K(r))

=
n∏
i=1

(K(r))xi

xi!
e−K(r)

∝
(
− 1

β
log(1− r)

)nx̄
e
n
β

log(1−r)

= (− log(1− r))nx̄ (1− r)
n
β

We can explicitly calculate the constant term using the original definition as well, giving

g(r) =

(
1 + n

β

)1+nx̄

Γ(1 + nx̄)
(− log(1− r))nx̄ (1− r)

n
β

As a side note, if we perform the change of variables R = z(S), we would find that the

new variable S has the same distribution as the posterior θ|x, confirming the transformation

R = z(θ|x). See Appendix A.2.3.2 for details.

The resulting relative density with other potential data models is given below in Table 3.2.

Data Distribution X Relative Density Kernel Derivation

N(µ, 1/θ2) (− log(1− r))n/2 (1− r)
n
2β
S2

A.2.3.3

Pareto(k, θ) (− log(1− r))n (1− r)(
∑n
i=1 log

xi
k )/β A.2.3.4

Gamma(m, θ) (− log(1− r))nm (1− r)nx̄/β A.2.3.5

Table 3.2: The kernel of the relative density with an exponential prior, under different data

models. See the appendix for full normalizing constants and derivation.
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CHAPTER 4

Practical Applications of the Relative Distribution

We should note that it is difficult to draw conclusions about only the posterior distribution

when using the relative distribution. It compares the posterior to the prior while implicitly

using the prior’s quantile scales, and so there is difficulty in completely disentangling the

two distributions from each other.

4.1 Examples of Elementary Interpretation

Here we use the relative distribution on a simple example given in [GCS20]. We take a look at

an early study of placenta previa births in Germany, of which 437 were female and 544 were

male. We are interested in the proportion of female births, which we model as a binomial

distribution, and whether it is less than 0.485. The conjugate prior beta distribution is used.

The relative densities for four different priors are shown in Figure 4.1. As the strength

of belief of the prior increases, the relative density becomes less peaked, indicating that the

data had a smaller impact on our beliefs in the parameter’s distribution. Additionally, the

relative density places more mass near 0, indicating that the data favors parameter values

in the lower quantiles of the prior.

It appears that the relative densities lean towards the posterior intervals, suggesting that

the data has more influence on the posterior than the prior does. We can also see that

these intervals are either just outside or right on the cusp of the prior median (r = 0.5): the

posteriors place most of their mass away from the prior medians. Such posteriors suggest
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Figure 4.1: The relative density, in purple, of a Beta(2, 2) prior to a Bernoulli rate model

for priors at varying strengths of belief but with the same mean 0.485: (a) α + β = 5, (b)

α+β = 20, (c) α+β = 80, (d) α+β = 360. The prior is plotted in red, vertically stretched

to fit in the same window as the relative density. The shaded region represents a 95% central

posterior interval, and the dashed line represents the posterior median, both scaled based on

the prior’s quantiles to match the relative density’s scale.

that the data does support the claim that the true rate is less than 0.485.

Let’s zoom in on case (d), which has a strong prior belief on the true rate being near

0.485. The posterior central interval is [0.4298245, 0.480]. This, as noted before, does not

contain 0.485. Compare this to a central 95% interval for the relative distribution itself,

which is [0.018, 0.472], which translates to [0.430, 0.483]. This is slightly different to the

central posterior interval. There is a very slightly shift in the left endpoint which is not

reflected in three decimal places; this leads to a more noticeable shift in the right endpoint

because there is less mass at the right endpoint.
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The interpretation of this interval as an interval for the posterior, as described in Section

1.1, is still valid. The reason this is different from the central posterior interval is simply

because it is a central interval based on the relative distribution, not on the posterior. We

note that the posterior interval is based on entirely on the posterior distribution, and thus its

quantiles; while the relative distribution is based on the quantiles of the prior distribution.

4.2 Connection to Relative Surprise Inference

We make a quick connection to the relative belief ratio, a theory of Bayesian inference which

has been developed over several papers by Evans:

RBθ(θ|x) =
π(θ|x)

π(θ)

This has a very similar form to the relative density, with some differences. The value RBθ

is calculated for a single value θ, i.e. at one possible parameter value, while the relative

distribution gives a comparison of the entire posterior to the entire prior at corresponding

quantiles (of the prior). While the use of the reparametrization θ = K(r) gives the relative

distribution the interesting property of being a proper probability distribution, it may be

more cumbersome and unnecessary to always work in the quantiles of the prior. On the

other hand, RBθ is a simple ratio,

As the relative belief ratio is invariant to reparametrizations, the relative density can be

used in the same ways to make inferences. Perhaps one of the most immediate applications

is as an alternative to Bayes Factors. As noted in [Eva16], if we consider a Bayes Factor

distinguishing only in favor an event A and its complement AC , then

BF (A|x) =
RB(A|x)

RB(AC |x)

Apart from having additional attractive properties, the RB cannot be expressed in terms of

the BF alone, and so seems to be a more fundamental measure than the BF is. See also

[Eva97] and [AAE23] for further discussion on the uses of the RB as a tool of inference.
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4.3 Comparing Predictive Distributions

While the natural pair of distributions to compare is the posterior to the prior of the param-

eter itself, we may also consider comparing the posterior predictive to the prior predictive

distribution of a new data point. Generally, the predictive distributions cannot be found

explicitly.

Let us suppose we have data from an exponential family, and also a conjugate prior from

the exponential family. This means

π(θ;n0, x0) = hp(n0, x0) exp (n0x0η(θ)− n0A(θ))

p(x) = h(x)n exp

(
η(θ) ·

n∑
i=1

T (xi)− nA(θ)

)
and the posterior has parameters (n1, x1) with n1 = n0+n and x1 = (n0x0 +

∑n
i=1 T (xi)) / (n0 + n).

The prior predictive distribution, essentially the marginal data distribution of one sample,

can be found as

p(x̃) =

∫
Ωθ

p(x̃|θ)p(θ) dθ

=

∫
Ωθ

h(x̃) exp (η(θ) · T (x̃)− A(θ))hp(n0, x0) exp (n0x0η(θ)− n0A(θ)) dθ

= h(x̃)hp(n0, x0)

∫
Ωθ

exp (η(θ) · T (x̃) + n0x0η(θ)− A(θ)− n0A(θ)) dθ

We can recognize the integrand as the kernel from the same exponential family as the prior,

with parameters (n0x0 + 1, (n0x0 + T (x̃)) / (n0 + 1)), so we can replace the integral with its

normalizing constant.

= h(x̃)
hp(n0, x0)

hp

(
n0x0 + 1, n0x0+T (x̃)

n0+1

)
Similar calculations for the posterior predictive distribution gives

p(x̃|x) = h(x̃)
hp(n1, x1)

hp

(
n1x1 + 1, n1x1+T (x̃)

n1+1

)
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Then, we take their ratio, but now substitute x̃ = Q̃(r), the prior predictive (marginal data)

quantile function.

g(r̃) =
p(x̃|x)

p(x̃)

=
hp(n1, x1)hp

(
n0x0 + 1, n0x0+T (Q̃(r))

n0+1

)
hp(n0, x0)hp

(
n1x1 + 1, n1x1+T (Q̃(r))

n1+1

)
Once again, without further information of hp or Q̃, this is not simplifiable.

As an example, let us consider the normal-normal location model. Suppose the data is

X ∼ N(θ, σ2), and the prior is θ ∼ N(µ0, τ
2
0 ). The prior predictive is known to be distributed

as X̃ ∼ N(µ0, τ
2
0 + σ2). The posterior distribution is θ|x ∼ N(µ1, τ

2
1 ), where

µ1 =

1
τ2
0
µ0 + n

σ2 x̄

1
τ2
0

+ n
σ2

,
1

τ 2
1

=
1

τ 2
0

+
n

σ2

Thus the posterior predictive distribution is X̃|x ∼ (µ1, τ
2
0 + σ2/n).

An example is given in Figure 4.2. The most striking feature is that the predictive

relative density seems less skewed than the parameter relative density, as well as having

slightly greater variance. This can be explaind by the fact that predicting a single new data

point will be less precise than making inferences about parameters. In predicting the new

data point, we not only have the variance from our uncertainty in what the true mean is,

but also the inherent variance in the data-generating process. We can see in both cases,

however, that the data pulls our estimates towards larger values, which is to be expected, as

the “true” mean of the data was greater than our prior’s mean.

Note that the predictive relative density is comparing the distribution of a new sample,

and thus is based on the X scale. The original relative density compares the distribution of

the parameters, and is based on the θ scale.
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Figure 4.2: The relative density of the predictive distributions, in orange, and the rela-

tive density of the parameter posterior to the prior, in purple. For simulation purposes,

θ ∼ N(0, 1) and X ∼ N(1, 2).
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CHAPTER 5

Summary and Discussion

The relative distribution gives us another way to compare two continuous univariate dis-

tributions. As a random variable itself, it maps values of a comparison distribution to the

reference distribution’s quantiles, as though that value came from the reference distribution.

Its density is most readily interpretable as a ratio of the comparison and reference densities

themselves, while still retaining the property that it integrates to 1.

While it can be used in general on any two distributions, here we focused on a Bayesian

setting and compared the posterior to the prior. The relative density here reduces to essen-

tially just the data likelihood, though compressed into a unit interval using the prior’s quan-

tiles. An interesting alternative perspective of the relative distribution is as a reparametriza-

tion of the model’s parameter using the prior’s CDF. A standard uniform prior on the

reparametrization induces the same marginal data probabilities as the original prior on the

original parameter.

There are several limitations to using the relative distribution. While thinking in terms of

quantiles allows us to think relatively on the unit interval, it also necessitates the existence of

a strictly monotonic CDF in order to use a proper quantile function of the prior, which is not

easily obtained for most distributions. Modern computational tools can alleviate this issue

to some extent. An extension to non-continuous distributions, such as purely discrete ones,

would require some new idea to be used. Additionally, the relative distribution becomes less

insightful as sampling variance decreases, such as when sample sizes become larger. The

increased precision makes the relative error smaller, and differences are less noticeable when
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viewed on the relative distribution.

Potential applications of the relative distribution include its connections to KL-divergence

and reference priors. The entropy of the relative density is the negative KL-divergence

between the posterior and prior. We could leverage this fact as an alternative to deriving

reference priors by minimizing the entropy of the relative density with respect to infinite

sample sizes and expected data values. Another application is in direct connection to relative

surprise inference, for which the relative belief ratio is simply another parametrization of the

relative density, though typically evaluated at single points and not for all prior quantiles.

Whether there are additional interesting properties of RBθ to be found when considering

that the relative distribution is a proper probability distribution is another potential avenue

of research.

Further work could include alternatives to using the quantile function and applications

to sensitivity analysis. If the limitation of using the quantile function can be overcome, then

even non-continuous distributions could be analyzed. We could use improper priors as well.

For sensitivity analysis, as the purpose of the relative distribution is to compare how the

posterior differes from the prior, with some slight tweaking we should be able to observe

how different options for the prior affect the resulting posterior. One potential complication

is that all results are cast into the quantiles of the prior, and thus different options for the

prior may not be immediately comparable to each other.

We make a quick note on Bayes factors. A general Bayes factor is essentially the ratio of

the likelihoods under two different models, not necessarily complement to each other. The

relative density is the transformed likelihood, and so a ratio of two relative densities from two

different models could serve a similar role as a Bayes factor. However, since the priors for the

two different models will differ, the relative densities will also be on a different quantile scale,

and so a further refinement must be made to directly compare relative densities themselves.
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APPENDIX A

Calculations

A.1 Chapter 2

A.1.1 Normal data likelihood

p(x|θ) =
n∏
i=1

1√
2πσ2

exp

(
−(xi − θ)2

2σ2

)

=
1

(2πσ2)n/2
exp

(
− 1

2σ2

n∑
i=1

x2
i − 2θxi + θ2

)
=

1

(2πσ2)n/2
exp

(
− n

2σ2

(
θ2 − 2θx̄+ x2

))
=

1

(2πσ2)n/2
exp

(
− 1

2σ2/n

(
(θ − x̄)2 − x̄2 + x2

))

=
exp

(
−x2−x̄2

2σ2/n

)
(2πσ2)n/2

exp

(
−(θ − x̄)2

2σ2/n

)
= L(θ|x)
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A.2 Chapter 3

A.2.1 Jeffreys Prior for Binomial Data

The Fisher Information can be found as

I(θ) = −E
[
∂2

∂θ2
log p(x|θ)

]
= −E

[
∂2

∂θ2

n∑
i=1

log

(
m

xi

)
θxi(1− θ)m−xi

]

= −E

[
∂

∂θ

n∑
i=1

xi
θ
− m− xi

1− θ

]

= −E

[
n∑
i=1

−xi
θ2
− m− xi

(1− θ)2

]
=
mn

θ
+

mn

1− θ

=
mn

θ(1− θ)

which implies that the Jeffreys prior satisfies π(θ) ∝ (θ(1 − θ))− 1
2 , leading to a Beta(1

2
, 1

2
)

distribution, also known as the arcsine distribution.

We find the proportionality constant by taking the integral of the kernel on [0, 1], and

substitute θ = 1
2

+ 1
2
x.∫ 1

0

1√
θ(1− θ)

dθ =

∫ 1

−1

1√(
1
2
− 1

2
x
) (

1
2
− 1

2
x
) 1

2
dx

=

∫ 1

−1

1

2
√

1
4
− 1

4
x2

dx

= (arcsinx|1−1 = π
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Then we can find the CDF using the substitution t = sin2 x =⇒ dt = 2 sin x cosxdx.

z(θ) =

∫ θ

0

1

π
√
t(1− t)

dt

=

∫ arcsin
√
θ

0

1

π
√

sin2 x(1− sin2 x)
2 sinx cosx dx

=

∫ arcsin
√
θ

0

2

π
dx

=
2

π
arcsin

√
θ

which implies that the quantile function is K(r) = sin2
(
π
2
r
)
.

For the relative distribution,

g(θ = K(r)) =
π(θ|x)

π(θ)

=

Γ(1+nm)

Γ( 1
2

+nx̄)Γ( 1
2

+nm−nx̄)
θ

1
2

+nx̄−1(1− θ) 1
2

+nm−nx̄−1

1
π
θ−

1
2 (1− θ)− 1

2

=
πΓ(1 + nm)

Γ(1
2

+ nx̄)Γ(1
2

+ nm− nx̄)
θnx̄(1− θ)nm−nx̄

=
πΓ(1 + nm)

Γ(1
2

+ nx̄)Γ(1
2

+ nm− nx̄)

(
sin2

(π
2
r
))nx̄ (

1− sin2
(π

2
r
))nm−nx̄

A.2.2 Uniform prior

We have π(θ) = 1
b−a =⇒ K(r) = a + (b − a)r. Using the standard uniform is special case

of Beta(1, 1).

With a standard uniform for a proportion parameter, the resulting relative distribution

looks exactly like the likelihood. No change in scale, all information in posterior comes from

the data, flat prior.
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A.2.2.1 Normal data

g(r) ∝ p(x|θ = K(r))

∝
n∏
i=1

exp

(
−(xi − θ)2

2σ2

)

= exp

(
n∑
i=1

−(xi − (a+ (b− a)r))2

2σ2

)

∝ exp

(
− 1

2σ2

(
n(b− a)2r2 + 2

(
na(b− a)− (b− a)

n∑
i=1

xi

)
r

))

= exp

(
− 1

2σ2/(n(b− a))2

(
r2 + 2

(
a

b− a
− x̄

b− a

)
r

))
∝ exp

(
−(r − (x̄− a)/(b− a))2

2σ2/(n(b− a)2)

)

A.2.2.2 Binomial data

X ∼ Bin(m, θ); set a = 0, b = 1.

π(θ|x) ∝
n∏
i=1

(
m

xi

)
θxi(1− θ)m−xi

∝ θ
∑n
i=1 xi(1− θ)nm−

∑n
i=1 xi

=⇒ θ|x ∼ Beta(1 + nx̄, 1 + n(m− x̄))

g(θ = K(r)) =
π(θ|x)

π(θ)

=
Γ(2 + nm)

Γ(1 + nx̄)Γ(1 + n(m− x̄))
θnx̄(1− θ)1+n(m−x̄) × (1− 0)

=
Γ(2 + nm)

Γ(1 + nx̄)Γ(1 + n(m− x̄))
rnx̄(1− r)1+n(m−x̄)

This is a Beta(1 + nx̄, 1 + n(m− x̄)) distribution.
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A.2.2.3 Poisson data

X ∼ Po(θ).

π(θ|x) ∝
n∏
i=1

θxi

xi!
e−θ

∝ θ
∑n
i=1 xie−nθ

Form of a Gamma, but note that θ ∈ [a, b], so this is a truncated Gamma. Denote C as

the mass of an untruncated Gamma in this interval, so that 1
C

is the additional normalizing

factor in the truncated Gamma.

g(θ = K(r)) =
π(θ|x)

π(θ)

=
1

C

nnx̄

Γ(nx̄)
(a+ (b− a)r)

∑n
i=1 xie−nθ × (b− a)

=
b− a
C

nnx̄

Γ(nx̄)
(a+ (b− a)r)

∑n
i=1 xie−nθ

A.2.2.4 Negative binomial data

X ∼ NegBin(m,Θ); set a = 0, b = 1.

π(θ|x) ∝
n∏
i=1

(
xi +m− 1

xi

)
(1− θ)xiθm

∝ θnm(1− θ)nx̄

=⇒ θ|x ∼ Beta(1 + nm, 1 + nx̄)

g(θ = K(r)) =
π(θ|x)

π(θ)

=
Γ(2 + nm+ nx̄)

Γ(1 + nm)Γ(1− nx̄)
θnm(1− θ)nx̄ × (1− 0)

=
Γ(2 + nm+ nx̄)

Γ(1 + nm)Γ(1− nx̄)
rnm(1− r)nx̄ × (1− 0)

This is a Beta(1 + nm, 1 + nx̄) distribution.
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A.2.3 Gamma (Exponential) prior

Using a Gamma(1, β) = Exp(β) prior. K(r) = − 1
β

log(1− r).

A.2.3.1 Poisson data

X ∼ Po(θ). Posterior is θ|x ∼ Gamma(1 + nx̄, β + n).

g(θ = K(r)) =

(β+n)1+nx̄

Γ(1+nx̄)
(K(r))1+nx̄−1 e−(β+n)K(r)

βe−βK(r)

=
(β + n)1+nx̄

βΓ(1 + nx̄)
(K(r))nx̄ e−nK(r)

=
(β + n)1+nx̄

βΓ(1 + nx̄)

(
− 1

β
log(1− r)

)nx̄
e−n(−

1
β

log(1−r))

=

(
1 + n

β

)1+nx̄

Γ(1 + nx̄)
(− log(1− r))nx̄ (1− r)

n
β

A.2.3.2 Change of variables R = z(S)

If we perform the change of variables − 1
β

log(1 − R) = S =⇒ R = 1 − e−βS, the resulting

density becomes

f(s) = g(r = 1− e−s)
∣∣∣∣drds
∣∣∣∣

=

(
1 + n

β

)1+nx̄

Γ(1 + nx̄)
(− log(1− r))nx̄ (1− r)

n
β ×

∣∣βe−βs∣∣
=
β
(

1 + n
β

)1+nx̄

Γ(1 + nx̄)
(βs)nx̄ e−nse−βs

=
β1+nx̄

(
1 + n

β

)1+nx̄

Γ(1 + nx̄)
snx̄e−(n+β)s

=
(β + n)1+nx̄

Γ(1 + nx̄)
snx̄e−(β+n)s

Therefore S ∼ Gamma (1 + nx̄, β + n), and R is a transformation of this.
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A.2.3.3 Normal precision, known mean µ

Denote S2 = 1
n

∑n
i=1(xi − µ)2. Posterior θ|x ∼ Gamma(α + n/2, β + nS2/2).

g(θ = K(r)) =
π(θ|x)

π(θ)

=

(β+ 1
2
nS2)

1+n/2

Γ(1+n/2)
θn/2e−(β+n

2
S2)θ

βe−βθ

=

(
β + n

2
S2
)1+n/2

βΓ(1 + n/2)
θn/2e−(n2 S2)θ

=

(
β + n

2
S2
)1+n/2

βΓ(1 + n/2)

(
− 1

β
log(1− r)

)n/2
e−(n2 S2)(− 1

β
log(1−r))

=

(
β + n

2
S2

β

)1+n/2
1

Γ(1 + n/2)
(− log(1− r))n/2 (1− r)

n
2β
S2

A.2.3.4 Pareto shape, known minimum k

p(x|θ) = θkθ

xθ+1 , x ≥ k. Posterior θ|x ∼ Gamma
(
α + n, β +

∑n
i=1 log xi

k

)
.

g(θ = K(r)) =
π(θ|x)

π(θ)

=

(β+
∑n
i=1 log

xi
k )

α+n

Γ(α+n)
θα+n−1e−(β+

∑n
i=1 log

xi
k )θ

βα

Γ(α)
θα−1e−βθ

=

(
β +

∑n
i=1 log xi

k

)α+n
Γ(α)

βαΓ(α + n)
θne−(

∑n
i=1 log

xi
k )θ

=

(
β +

∑n
i=1 log xi

k

)α+n
Γ(α)

βαΓ(α + n)

(
− 1

β
log(1− r)

)n
e−(

∑n
i=1 log

xi
k )(− 1

β
log(1−r))

=

(
β +

∑n
i=1 log xi

k

β

)α+n
Γ(α)

Γ(α + n)
(− log(1− r))n (1− r)(

∑n
i=1 log

xi
k )/β
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A.2.3.5 Gamma rate

X ∼ Gamma(m,Θ), the posterior is θ|x ∼ Gamma(α + nm, β + nx̄). Then the relative

density is

g(θ = K(r)) =
π(θ|x)

π(θ)

=

(β+nx̄)α+nm

Γ(α+nm)
θα+nm−1e−(β+nx̄)θ

βα

Γ(α)
θα−1e−βθ

=
(β + nx̄)α+nmΓ(α)

βαΓ(α + nm)
θnme−(nx̄)θ

=
(β + nx̄)α+nmΓ(α)

βαΓ(α + nm)

(
− 1

β
log(1− r)

)nm
e−(nx̄)(− 1

β
log(1−r))

=

(
β + nx̄

β

)α+nm
Γ(α)

Γ(α + nm)
(− log(1− r))nm (1− r)nx̄/β

A.2.4 Misc priors

A.2.4.1 Pareto prior to uniform data

π(θ) =
αxα0
θα+1 1{θ ≥ x0}, f(x|θ) =

∏n
i=1

1
θ
1{xi ≤ θ}. K(r) = x0

(1−r)
1
α

.

π(θ|x) ∝ f(x|θ)π(θ)

=
1

θn
1{xm ≤ θ} αx

α
0

θα+1
1{θ ≥ x0}

∝ 1

θα+n+1
1{θ ≥ x1}
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implies π(θ|x) =
(α+n)xα+n

1

θα+n+1 1{θ ≥ x1}.

g(θ = K(r)) =
π(θ|x)

π(θ)

=

(α+n)xα+n
1

θα+n+1 1{θ ≥ x1}
αxα0
θα+1 1{θ ≥ x0}

=
α + n

α

xα+n
1

xα0
θ−n1{θ > x1}

=
α + n

α

xα+n
1

xα0

(
(1− r) 1

α

x0

)n

1

{
x0

(1− r) 1
α

> x1

}

=
α + n

α

(
x1

x0

)α+n

(1− r)
n
α1

{
r > 1−

(
x0

x1

)α}
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