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REVIEW

The end of the message: multiple
protein–RNA interactions define
the mRNA polyadenylation site
Yongsheng Shi1 and James L. Manley2

1Department of Microbiology and Molecular Genetics, School of Medicine, University of California at Irvine, Irvine, California
92697, USA; 2Department of Biological Sciences, Columbia University, New York, New York 10027, USA

The key RNA sequence elements and protein factors nec-
essary for 3′ processing of polyadenylated mRNA precur-
sors are well known. Recent studies, however, have
significantly reshaped current models for the protein–
RNA interactions involved in poly(A) site recognition,
painting a picture more complex than previously envi-
sioned and also providing new insights into regulation of
this important step in gene expression. Here we review
the recent advances in this area and provide a perspective
for future studies.

Almost all eukaryotic mRNAs and primary microRNA
transcripts and many long intergenic noncoding RNAs
are polyadenylated at their 3′ ends. This involves a well-
studied two-step reaction consisting of an endonucleolyt-
ic cleavage followed by the synthesis of the poly(A) tail
(Colgan and Manley 1997; Zhao et al. 1999; Chan et al.
2011; Proudfoot 2011). Significantly, recent global analy-
ses have revealed that ∼70% of eukaryotic genes produce
multiple mRNA isoforms with distinct 3′ ends through
the process of alternative polyadenylation (APA) (Di
Giammartino et al. 2011; Shi 2012; Elkon et al. 2013;
Tian and Manley 2013). APA isoforms from the same
gene may encode different proteins and/or contain differ-
ent 3′ untranslated regions (UTRs). As longer 3′ UTRs
often harbor more binding sites for microRNAs and/or
RNA-binding proteins than shorter 3′ UTRs, APA iso-
forms may acquire different stability, translation efficien-
cy, and/or intracellular localization. APA is dynamically
regulated in development and in response to environmen-
tal stimuli (Flavell et al. 2008; Sandberg et al. 2008; Ji et al.
2009; Shepard et al. 2011; Graber et al. 2013), and deregu-
lation of APA has been associated with a number of hu-
man diseases (Mayr and Bartel 2009; Jenal et al. 2012;
Masamha et al. 2014). Therefore, it is critical to under-
stand how mRNA 3′ processing sites, often referred to as

the poly(A) site (PAS), are recognized and how PAS selec-
tion is regulated.
Mammalian PASs are generally AU-rich and have a

highly conserved nucleotide composition profile (Shi
2012; Tian and Graber 2012). A number of key cis ele-
ments have been identified in the mammalian PAS, in-
cluding the AAUAAA (or its close variant AUUAAA)
located 10∼30 nucleotides (nt) upstream of the cleavage
site, which is frequently defined by a CA dinucleotide im-
mediately 5′ to the site of endonucleolytic cleavage; a U/
GU-rich downstream element (DSE) located within ∼40
nt downstream from the cleavage sites; and U-rich up-
streamauxiliary elements (USEs) and upstream sequences
conforming to the consensus UGUA. PAS sequences are
divergent, andmany PASs lack one ormore of these cis el-
ements. For example, ∼30% of human PASs lack an A(A/
U)UAAA hexamer (Beaudoing et al. 2000), and ∼20% of
human PASs do not possess a U- or GU-rich DSE (Zarud-
naya et al. 2003). Unlike splicing, which relies on RNA
base-pairing for splice site recognition (Wahl et al. 2009),
PAS recognition is accomplished solely by protein–RNA
interactions (Colgan and Manley 1997; Chan et al. 2011).
The mRNA 3′ processing factors CPSF (cleavage and
polyadenylation specificity factor) and CstF synergisti-
cally bind to the AAUAAA hexamer and the DSE, respec-
tively, while the CFI complex binds to the UGUA motifs
(Hu et al. 2005). CPSF, CstF, and CFI directly bind to
RNAs to form a core complex and in turn recruit other
factors, including CFII, the scaffolding protein Symplekin,
and the poly(A) polymerase (PAP), to assemble the ac-
tive mRNA 3′ processing complex (Shi et al. 2009; Chan
et al. 2011). The assembly of these factors on PASs occurs
cotranscriptionally and is facilitated by the C-terminal
domain of the RNA polymerase II (RNAP II) large subunit
(Hirose and Manley 2000; Proudfoot et al. 2002; Bentley
2005).
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A detailed understanding of these key interactions is
critical for delineating the mechanisms for PAS recogni-
tion. Additionally, an increasing number of regulatory fac-
tors have been shown to modulate PAS selection. There
have been a number of recent reviews on APA and its
physiological impact (Di Giammartino et al. 2011; Shi
2012; Elkon et al. 2013;Mueller et al. 2013; Tian andMan-
ley 2013). Here we focus on the protein–RNA interactions
that are responsible for PAS recognition and its regulation.
An interesting and useful analogy to consider is the simi-
larities between the core PAS and the core RNAP II pro-
moter, specifically how multiple conserved sequence
motifs are organized and recognized by multisubunit pro-
tein complexes, which in both cases function to recruit
otherwise sequence-nonspecific polymerases.

CPSF and AAUAAA recognition

CPSF is a multisubunit protein complex consisting of
CPSF160, Wdr33, CPSF100, CPSF73 (the cleavage endo-
nuclease), Fip1, and CPSF30. CPSF specifically recognizes
the most important cis element in the mammalian PAS,
theAAUAAAhexamer (Fig. 1A; Bienroth et al. 1991;Mur-
thy and Manley 1992; Shi et al. 2009). CPSF160 has long
been implicated in directly binding to AAUAAA based
on several lines of evidence. First, two CPSF subunits of
∼160 and 30 kDa, presumed to be CPSF160 and CPSF30,
could be UV cross-linked specifically to AAUAAA-con-
taining RNA oligos (Keller et al. 1991). Second, Yhh1/
Cft1, the yeast homolog of CPSF160, binds to PAS-con-
taining RNA near the cleavage site via an evolutionarily
conserved central domain (Dichtl et al. 2002). Third, re-
combinant CPSF160 possesses RNA-binding activity
and shows preference for AAUAAA-containing sequences
(Murthy andManley 1995). However, the affinity and spe-
cificity of the CPSF160–RNA interaction is significantly
weaker than that of the CPSF complex (Murthy and Man-
ley 1995), and more recent global mapping of CPSF160–
RNA interactions failed to detect specific enrichment of
its binding signals at or near the AAUAAA hexamers
(Martin et al. 2012). Therefore, >20 years after the isola-
tion of CPSF, the identities of its subunits that directly
bind to AAUAAA remained to be determined.

Recent studies have provided unexpected new insight
into AAUAAA recognition. Using intact CPSF complexes
immunopurified frommammalian cell extracts or a CPSF
subcomplex reconstituted with recombinant subunits,
two recent studies provided direct evidence that Wdr33
andCPSF30 specifically recognize theAAUAAAhexamer
in vitro (Chan et al. 2014; Schonemann et al. 2014). In vivo
mapping of protein–RNA interactions using photoactivat-
able ribonucleoside-enhanced cross-linking and immuno-
precipitation (PAR-CLIP) detected specific binding of both
proteins at the AAUAAA regions of active PASs at the
global level (Chan et al. 2014; Schonemann et al. 2014).
Based on these data, a new model for CPSF–RNA interac-
tions was proposed in which Wdr33 and CPSF30 simulta-
neously and synergistically recognize AAUAAA (Fig. 1A).
The RNA-binding activity of CPSF30, which consists of
five C3H zinc finger repeats and a putative RNA-binding
zinc knuckle motif at the C terminus (Barabino et al.
1997), is mediated primarily by its zinc fingers 2 and 3
(Fig. 1B; Chan et al. 2014). Wdr33, which is a large protein
similar in size to CPSF160, interacts with RNA at least in
part via its N-terminal region, which includes a highly
conserved WD40 repeat domain (Fig. 1B; Schonemann
et al. 2014). Both zinc finger and WD40 repeat domains
areknown tomediate sequence-specific RNA interactions
(Hudson et al. 2004; Lau et al. 2009). It remains to be deter-
mined, however, whether Wdr33, CPSF30, or both are
required to confer sequence specificity to CPSF–RNA in-
teractions. A combination of biochemical and structural
approaches will be needed to delineate the specific contri-
bution of Wdr33 and CPSF30 to CPSF–RNA interactions
as well as determine the precise role of CPSF160 in PAS
recognition. It is noteworthy that both CPSF30 (Nemeroff
et al. 1998; Twu et al. 2006) and Wdr33 (Brass et al. 2009)
have been implicated in host cell defense against influen-
za virus infection, likely reflecting a pathway for viral in-
hibition of host mRNA production.

In addition to Wdr33 and CPSF30, and perhaps
CPSF160, Fip1 also contributes CPSF–RNA interactions
(Fig. 1A). Recombinant Fip1 binds to U-rich RNAs via
its arginine-rich C-terminal region (Kaufmann et al.
2004). Within the CPSF complex, Fip1 binds to RNA se-
quences upstream of the AAUAAA hexamer in vitro
(Chan et al. 2014). Consistent with this, in vivo mapping

Figure 1. (A) Schematic models showing
distinct modules within CPSF. CPSF73,
CPSF100, and Symplekin form a module
(which we refer to as mCF) that contains the
endonuclease activity. mCF may cooperate
with different RNA-binding modules, such as
mammalian polyadenylation specificity factor
(mPSF) (Wdr33, CPSF30, Fip1, and CPSF160),
for cleavage/polyadenylation of most mRNAs
or with SLBP and U7 snRNP for the cleavage
of histone mRNAs. (B, bottom panel) Domain
structures of the CPSF subunits involved or
implicated in RNA binding. The known or pu-
tative RNA-binding regions are marked with
red solid or dotted underlines.
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of Fip1–RNA interactions revealed that Fip1 binds to
U-rich sequences in the AAUAAA hexamer region
(Fig. 1B; Martin et al. 2012; Lackford et al. 2014). Fip1
was recently identified as a regulator of APA in embryonic
stem cells (ESCs), and Fip1-mediated APA regulation
is required for ESC self-renewal, further suggesting that
Fip1–RNA interactions play an important role in PAS se-
lection (Lackford et al. 2014). Finally, Fip1 and CPSF160
function directly in recruiting PAP to the mRNA 3′ pro-
cessing site (Murthy and Manley 1995; Kaufmann et al.
2004).
What, then, is the function of CPSF160 in PAS recogni-

tion? Most surprisingly, CPSF160–RNA interactions
were not detected in the two recent studies (Chan et al.
2014; Schonemann et al. 2014). Previous evidence for
CPSF160–RNA interactions were mostly based on exper-
iments using purified recombinant CPSF160 or its yeast
homolog, Cft1 (Murthy and Manley 1995; Dichtl et al.
2002). In contrast, both recent studies used CPSF com-
plexes (Chan et al. 2014; Schonemann et al. 2014). So it
is possible that the RNA-binding activity of CPSF160 is
inhibited within the CPSF complex. However, given the
conserved nature of the CPSF160 RNA-binding activity,
a more likely possibility is that CPSF160 participates in
RNA interactions at a specific stage during mRNA 3′ pro-
cessing or, intriguingly, at a specific subset of PASs.
Similarly complex protein–RNA interactions have been

observed in yeast PAS recognition. The yeast mRNA 3′

processing factor CPF contains Mpe1 (Rbbp6 homolog)
(see below), Pap1, Pta1 (Symplekin), and the homologs of
all six subunits of the mammalian CPSF complex, includ-
ing Cft1 (CPSF160), Cft2 (CPSF100), Ysh1/Brr5 (CPSF73),
Fip1 (Fip1), Yth1 (CPSF30), and Pfs2 (Wdr33) (Zhao et al.
1999). Similar to CPSF, multiple CPF subunits have
been shown to bind RNA, including Cft1, Cft2, Fip1,
Yth1, and Mpe1 (Barabino et al. 1997; Zhao et al. 1997;
Dichtl et al. 2002; Lee and Moore 2014).
We envision several scenarios to explainwhy such com-

plex protein–RNA interactions are necessary. First, given
the generally lower specificity of RNA–protein interac-
tions compared with DNA–protein interactions or RNA
base-pairing, combinatorial interactions may be neces-
sary to achieve the RNA-binding specificity necessary
for accurate PAS recognition. Second, due to the dynamic
nature of mRNA 3′ processing (Chan et al. 2011), it is pos-
sible that different factors participate in PAS binding at
different stages of 3′ processing. For example, Yth1 binds
to RNA and Fip1 in a mutually exclusive manner, and it
was proposed that Yth1 binds to PAS RNA during the
cleavage step but releases RNA to associatewith Fip1 dur-
ing the poly(A) synthesis step (Tacahashi et al. 2003). To
determine whether CPSF160 participates in RNA binding
at specific stages of mRNA 3′ processing, it will be critical
to characterize better the dynamics of the cleavage/poly-
adenylation machinery. Third, an attractive idea is that
there may be distinct CPSF subcomplexes or alternative
complexes that bind to PAS sequences through distinct
protein–RNA interactions. As mentioned earlier, mam-
malian PASs are highly diverse and may require multiple
alternative factors for their recognition.

An intriguing similarity exists between CPSF and the
general RNAP II transcription factor TFIID (Cler et al.
2009). Both aremultisubunit complexes that not only rec-
ognize key promoter/PAS sequences, which are strikingly
similar (TATAAA vs. AAUAAA), but also contain sub-
units that bind additional promoter/PAS elements. TFIID
exists as tissue-specific and cell type-specific subcom-
plexes and can also contain distinct isoforms of different
subunits (Muller et al. 2010). Aswe shall see, a similar pic-
ture of CPSF is beginning to emerge.
Several lines of evidence point to the existence of het-

erogeneous CPSF complexes. For example, Schonemann
et al. (2014) showed that a relatively stable complex,
called mammalian polyadenylation specificity factor
(mPSF), can be reconstituted with Wdr33, CPSF30, Fip1,
andCPSF160 and is active, with PAP, inAAUAAA-depen-
dent poly(A) synthesis (Fig. 1A). A distinct subcomplex
consisting of CPSF100, Symplekin, and CPSF73 functions
in 3′ processing of nonpolyadenylated histonemRNA pre-
cursors (Sullivan et al. 2009). This factor, which we refer
to asmCF, can either partnerwith SLBP, theRNA-binding
protein that functions in recognition of the histone
mRNA 3′ processing site, to carry out histone mRNA
cleavage (Marzluff et al. 2008) or, we suggest, associate
with mPSF to form CPSF (Fig. 1A). This modular design
seems to be evolutionarily conserved, as mPSF shares
most of its components with the yeast PFI, and mCF
shares most of its components with CFII (Zhao et al.
1999). Another more speculative idea is that distinct
CPSF complexes exist and may function at different
PASs. For example, CPSF160 and Wdr33 are similar in
size and domain structure, and perhaps both function in
different CPSF complexes. Although there is currently
no evidence in support of this, it is noteworthy that early
size estimates of native CPSF were in the 200- to 300-kDa
range (Christofori and Keller 1988; Takagaki et al. 1989),
too small to include both of these ∼160-kDa proteins. Fi-
nally, another possibility is that distinct CPSF complexes
can contain different subunit isoforms. For example, two
splice isoforms of CPSF30 exist and can be found in
CPSF complexes (Chan et al. 2014).

CstF and the DSE

CstF is a trimeric complex consisting of CstF77, CstF50,
and CstF64 or its paralog, CstF64τ (Takagaki et al. 1990;
Gilmartin and Nevins 1991; Wallace et al. 1999). CstF
is believed to form a homodimer, as both CstF77 and
CstF50 self-associate (Fig. 2A; Takagaki and Manley
2000; Bai et al. 2007; Moreno-Morcillo et al. 2011). CstF
specifically recognizes the DSEs, which are generally
characterized as U/GU-rich, and this interaction is medi-
ated by CstF64 or CstF64τ (MacDonald et al. 1994; Taka-
gaki and Manley 1997). It was originally suggested that
CstF64τ is a testis-specific factor that has more distinct
RNA-binding specificity than CstF64 and that CstF64τ
may play a role in mediating testis-specific PAS selection
(Wallace et al. 1999;Monarez et al. 2007). However, recent
studies provided compelling evidence that CstF64τ,
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similar to CstF64, is widely expressed in mammalian tis-
sues (Yao et al. 2013). Furthermore, in vitro and in vivo
analyses demonstrated that CstF64 and CstF64τ have
nearly identical RNA-binding specificities (Takagaki
and Manley 1997; Yao et al. 2013). Finally, individual
knockdowns of CstF64 orCstF64τhad little effect on glob-
al PAS selection, but double knockdowns led to signifi-
cant APA changes (Yao et al. 2012). Together, these
recent studies strongly suggest that CstF64 and CstF64τ
play largely redundant roles in mediating CstF–RNA in-
teractions. Another CstF64 isoform, called βCstF64, was
detected predominantly in the CNS (Shankarling et al.
2009), but its role in PAS recognition has yet to be
characterized.

The DSEs of mammalian PASs are highly variable, and
thus an important question is how CstF64/τ recognize
such diverse sequences. While properties of the CstF64
RNA recognition motif (RRM) allow it to recognize
diverse GU-rich sequences (Perez Canadillas and Varani
2003), recent in vivo and in vitro analyses of CstF64/τ–
RNA interactions provided evidence that these “general”
3′ processing factors only bind to a subset of PASs, which
are characterized by GU-rich sequences in the first 20 nt
downstream from the cleavage site followed by U-rich se-
quences (Fig. 2A; Yao et al. 2012, 2013). In contrast, PASs
that are not stably bound byCstF64/τ containmoreG-rich
DSEs (Fig. 2A). These results raised the possibility that
there may be distinct types of PASs that require different
combinations of factors for their recognition. This conclu-
sion is consistent with earlier studies. For example, it has
been shown that CstF andmRNA 3′ processing activity is
transiently inhibited following DNA damage due to an in-

teraction between CstF50 and the BARD1–BRCA1 com-
plex (Kleiman and Manley 2001). In the meantime,
DNA damage response genes must be expressed, which
would require mRNA 3′ processing activity (Gomes
et al. 2006). Providing an answer to this paradox, a recent
study revealed that the PAS of p53, a DNA damage-in-
duced gene, contains a G-rich DSE. A unique G-quadru-
plex structure is formed within this DSE region and is
recognized by hnRNP F/H to allow 3′ end formation of
p53 mRNAs after DNA damage (Decorsiere et al. 2011).
Together, these studies provide evidence for CstF-inde-
pendent PAS recognition, but additional work is needed
to delineate such mechanisms fully.

CFI–upstream UGUA interactions

CFI binds to UGUA motifs, which are typically located
upstream of the AAUAAA hexamer (Fig. 2B; Brown and
Gilmartin 2003; Hu et al. 2005). CFI consists of CFI25
and one of two related subunits, CFI59 or CFI68 (Ruegseg-
ger et al. 1996), and appears to exist as a tetramer of two
CFI25 subunits and two large subunits (Yang et al.
2011). All three CFI subunits participate in RNA binding,
as they can be UV cross-linked to RNA (Ruegsegger et al.
1996). The small subunit, CFI25, contains a Nudix
domain, which, in its canonical form, possesses pyrophos-
phohydrolase activities. The CFI25 Nudix domain, how-
ever, lacks such enzymatic activity due to substitutions
at key residues and instead is involved in specific interac-
tions with the UGUAmotif (Yang et al. 2010b). Similar to
CstF subunits, CFI25 forms a dimer and thus can bind and
recognize two UGUA sequences simultaneously (Fig. 2B,
bottom panel), a property that has been proposed to regu-
late PAS selection (Yang et al. 2010a,b). Extending these
results, PAR-CLIP analyses detected robust CFI binding
to UGUA motifs at the global level (Martin et al. 2012).
Both CFI59 and CFI68 contain an N-terminal RRM, a pro-
line-rich central region, and a C-terminal region rich in ar-
ginine–serine (RS) repeats (Ruegsegger et al. 1998). CFI59/
68 share domain structures similar to SR proteins, which
are well-known splicing regulators (Tacke and Manley
1996). Like SR proteins, CFI subunits have been detected
in purified spliceosomes (Rappsilber et al. 2002; Zhou
et al. 2002), implicating CFI in splicing itself or in mediat-
ing cross-talk between splicing and 3′ processing. In fact,
CFI has been shown to interact with U2AF65, which is in-
volved in the early steps of splicing, and this interaction
helps to stimulate mRNA 3′ processing (Millevoi et al.
2002, 2006).

CFI plays an important role in PAS recognition. Initial
studies established that, like CstF, it functions early in
the process, functioning to help stabilize CPSF binding
to the PAS (Ruegsegger et al. 1996, 1998). This again sug-
gests an analogy with core RNAP II promoter recognition,
in which two general factors, TFIIA and TFIIB, function in
part by stabilizing TFIID binding to promoter DNA (Tho-
mas andChiang 2006). Given the importance of CFI in not
only PAS recognition but also APA (Gruber et al. 2012;
Martin et al. 2012; Masamha et al. 2014), it will be

Figure 2. (A) CstF-dependent and potentially CstF-independent
PAS recognition. In the CstF-independent model, CstF is shown
in a dotted boundary to indicate that CstFmay or may not be pre-
sent in this complex. The scaffolding protein Symplekin plays a
role in bridging CPSF–CstF complexes. (B) CFI–RNA interac-
tions. (Top panel) CFI binds to UGUA motifs often found up-
stream of the AAUAAA hexamer. (Bottom panel) The CFI
dimer may bind to two UGUA sequences at different PASs,
thus looping out the proximal PASs. (C ) The role of Rbbp6 in
PAS recognition. The question mark denotes the fact that
Rbbp6 may or may not directly interact with upstream AU-rich
elements (AREs) or may rely on an unknown factor.
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important to delineate the detailedmechanisms bywhich
CFI–RNA interactions contribute to PAS recognition.

Rbbp6 and PAS recognition

Rbbp6 is a newly identified 3′ processing factor that also
functions in part by contacting RNA. Rbbp6 was original-
ly identified in a screen for Rb-binding proteins (Saijo et al.
1995; Sakai et al. 1995), hence the name, and was later
identified as a p53-binding protein as well (Simons et al.
1997). Although Rbbp6 was suggested to be the putative
mammalian homolog of the yeast 3′ processing factor
Mpe1 based on limited sequence similarity (Vo et al.
2001), it was not functionally implicated in mRNA 3′ pro-
cessing until a proteomic analysis detected Rbbp6 in the
purified mRNA 3′ processing complex (Shi et al. 2009),
and direct evidence for its involvement in 3′ processing
was provided only recently (Di Giammartino et al. 2014).
Rbbp6 was found to associate with CstF via its evolu-
tionarily conserved N-terminal regions, which contain a
DWNN (domain with no name)/ubiquitin-like domain,
a zinc knuckle, and a RING finger. This N-terminal re-
gion,which is the region of similaritywith its yeast homo-
log, Mpe1, is sufficient for 3′ processing activity in vitro.
In both proteins, the zinc knuckle and RING domains
function in RNA binding, although in neither case does
binding appear sequence-specific (Di Giammartino et al.
2014; Lee and Moore 2014). Interestingly, knockdown of
Rbbp6 in mammalian cells preferentially inhibits the 3′

processing of mRNAs that contain AU-rich elements
(AREs) in their 3′ UTRs (Di Giammartino et al. 2014). It
remains unknown, however, whether Rbbp6 directly in-
teracts with AREs or whether additional factors are in-
volved in determining this apparent specificity (Fig. 2C).
Rbbp6 has several other intriguing properties. For exam-

ple, Mpe1 has been implicated in regulating ubiquitina-
tion of PAP and potentially other factors (Lee and Moore
2014). Rbbp6 has also been shown to possess E3 ligase ac-
tivity and function as an activator of Mdm2-mediated
ubiquitination of p53 (Li et al. 2007;Miotto et al. 2014). Fi-
nally, a splice isoform of Rbbp6, called iso3 and consisting
solely of the DWNN, competes with the full-length pro-
tein to modulate cleavage efficiency (Di Giammartino
et al. 2014). As with a number of 3′ processing factors, lev-
els of Rbbp6 are elevated in many types of cancers (Chen
et al. 2013). Coupled with the fact that iso3 levels are re-
duced (Mbita et al. 2012), this likely contributes to the
changes in processing efficiency that modulate APA in
cancer cells (Mayr and Bartel 2009). It will be important
to determine howall of these properties of Rbbp6 function
in modulating 3′ processing and in tumorigenesis.

Regulation of PAS recognition

A growing number of factors have been shown to modu-
late PAS recognition by the core 3′ processing machinery.
In many cases, the effect of these regulatory factors, most
of which were initially described as functioning in pre-
mRNA splicing, depends on the positions of their binding

sites relative to a PAS (Fig. 3). For example, U1 snRNP sup-
presses polyadenylation at downstream PAS by U1A-70K-
mediated andU1-70K-mediated inhibition of PAPactivity
(Gunderson et al. 1997, 1998).More recent global analyses
revealed that U1 snRNP plays a critical role in protecting
pre-mRNAs from premature cleavage and polyadenyla-
tion (Kaida et al. 2010). Additionally, U1 snRNP levels rel-
ative to the cellular demand has been proposed to control
mRNA length and isoform expression bymodulating PAS
selection (Berg et al. 2012). On the other hand, U2 snRNP
promotes the usage of downstreamPASs throughmultiple
protein–protein interactions (Fig. 3; Kyburz et al. 2006;
Millevoi et al. 2006). In addition to splicing factors, the
m7G cap at the 5′ ends of mRNAs can stimulate mRNA
3′ processing (Cooke and Alwine 1996; Flaherty et al.
1997), possibly through interactions between the cap-
binding complex and 3′ processing factors (Yang et al.
2011).
Many RNA-binding proteins, also initially described as

splicing regulators, have been implicated in control of PAS
recognition (Fig. 3). Some of these factors directly com-
pete with core 3′ processing factors to block PAS recogni-
tion (Fig. 3). For example, PTBP1, TDP-43, sex-lethal (Sxl),
and ELAV/HuR have all been shown to directly compete
with CstF for binding to DSEs and in turn inhibit PAS us-
age (Castelo-Branco et al. 2004; Gawande et al. 2006; Zhu
et al. 2007; Avendano-Vazquez et al. 2012). PABPN1 was
suggested to compete with CPSF for binding to the
AAUAAA hexamer region, especially at many proximal
PASs (Jenal et al. 2012).
Notably, the effects of some regulatory factors on PAS

recognition are position-dependent. For example, NOVA
proteins, which are known splicing regulators in the brain
(Jensen et al. 2000), were shown to regulate APA by bind-
ing to sites in 3′ UTRs and repress or enhance PAS usage
in a position-dependent manner (Licatalosi et al. 2008).
Binding near the PASs was found to be repressive, likely
by interfering with core factor binding, while binding to
more distant sites tended to result in activation of PAS
utilization by currently unknownmechanisms. Likewise,
when muscleblind (Mbnl) proteins bind to core PAS se-
quences, especially between the cleavage sites and the
DSEs, they tend to inhibit PAS recognition, presumably
through steric hindrance (Batra et al. 2014). In contrast,
when they bind to sequences upstream of the core PASs,

Figure 3. Context-dependent regulation of PAS recognition.
Regulatory factors bound at different locations relative to the
core PAS sequence have different effects on PAS recognition by
the mRNA 3′ processing factors. Positive effects are indicated
by an arrow, and negative effects are indicated by a vertical line.
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Mbnl proteins stimulate PAS usage. CPEB1 has been sug-
gested to promote PAS recognition when it binds to either
upstream or downstream sequences (Bava et al. 2013).
Similar position-specific effects of RNA-binding proteins
on splice site recognition have also been reported (Wang
et al. 2012; Erkelenz et al. 2013; Fu and Ares 2014). It re-
mains an important question for future studies as to
how RNA-binding proteins bound to neighboring se-
quences regulate the interactions between the core
mRNA 3′ processing factors and the PASs. Furthermore,
recent studies have provided evidence that the effect of
some RNA-binding proteins, such as ELAV, on PAS selec-
tion is linked to the promoter and RNAP II pausing
(Oktaba et al. 2015).

Conclusions and future perspectives

Recent studies suggest that the protein–RNA interaction
network involved in PAS recognition is more complex
than previously thought, which raises many important
questions for future studies. For example, which factors
—Wdr33, CPSF30, or both—provide specificity for the
CPSF–AAUAAA interaction? Does CPSF160 participate
in PAS recognition? If so, when and where? How does
RNA binding by other CPSF subunits contribute to PAS
definition? How do alternative protein isoforms and dis-
tinct core complexes contribute to PAS recognition?
How do regulatory proteins modulate PAS usage in a posi-
tion-dependent manner? Solving these important prob-
lems will undoubtedly bring our understanding of
mRNA 3′ processing and its regulation to a new height.
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