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ABSTRACT OF THE DISSERTATION

Generative and Item-Specific Knowledge of Language

by

Emily Ida Popper Morgan

Doctor of Philosophy in Linguistics and Cognitive Science

University of California, San Diego, 2016

Professor Roger Levy, Chair

The ability to generate novel utterances compositionally using generative

knowledge is a hallmark property of human language. At the same time, languages

contain non-compositional or idiosyncratic items, such as irregular verbs, idioms,

etc. This dissertation asks how and why language achieves a balance between these

two systems—generative and item-specific—from both the synchronic and diachronic

perspectives.

Specifically, I focus on the case of binomial expressions of the form “X and

Y”, whose word order preferences (e.g. bread and butter/#butter and bread) are

xiii



potentially determined by both generative and item-specific knowledge. I show that

ordering preferences for these expressions indeed arise in part from violable generative

constraints on the phonological, semantic, and lexical properties of the constituent

words, but that expressions also have their own idiosyncratic preferences. I argue that

both the way these preferences manifest diachronically and the way they are processed

synchronically is constrained by the fact that speakers have finite experience with

any given expression: in other words, the ability to learn and transmit idiosyncratic

preferences for an expression is constrained by how frequently it is used. The finiteness

of the input leads to a rational solution in which processing of these expression relies

gradiently upon both generative and item-specific knowledge as a function of expression

frequency, with lower frequency items primarily recruiting generative knowledge and

higher frequency items relying more upon item-specific knowledge. This gradient

processing in turn combines with the bottleneck effect of cultural transmission to

perpetuate across generations a frequency-dependent balance of compositionality and

idiosyncrasy in the language, in which higher frequency expressions are gradiently

more idiosyncratic. I provide evidence for this gradient, frequency-dependent trade-off

of generativity and item-specificity in both language processing and language structure

using behavioral experiments, corpus data, and computational modeling.
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Chapter 1

Introduction

1.1 Storage and computation

To what extent are complex linguistic representations computed on the fly using

generative linguistic knowledge and to what extent are they stored (i.e. memorized as

chunks and reused holistically)? For example, when we encounter an inflected verb

such as walked, do we process it by decomposing it into its component morphemes

walk and -ed, or do we recognize it holistically in its inflected form? Likewise, is a

common expression such as bread and butter always generated in real time from its

component words, or can it be recognized holistically as a known expression?

From the perspective of describing language structure, we can ask a comparable

set of questions: to what extent are the structures we find in natural language data

compositional (able to be described as composed from smaller units via generative

principles) and to what extent are they idiosyncratic (unpredictable from generative

paradigms)? For example, should we think of bread and butter as merely the composi-

tional conjunction of two common nouns, or does its high frequency and sometimes

1
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metaphorical use grant it special status as a known collocation? Similarly, does the

extreme phonetic reduction of a high frequency phrase like I don’t know indicate that

it requires special distinction in our theories of language structure, or is it a purely

compositional utterance from the perspective of structural description, which just

happens to have some special attributes that manifest in online processing?

This dissertation takes up the above questions, asking to what extent language

processing relies on generative versus item-specific knowledge, to what extent language

structure is compositional versus idiosyncratic, and how these two levels of description

(language processing and language structure) are mutually constraining.

1.1.1 Some big questions

Big questions in language processing

To what extent are complex linguistic representations computed on the fly using

generative knowledge, and to what extent do they rely on pre-computed and stored

item-specific representations? Some amount of both computation and storage clearly

exists in language processing: the ability to generate novel utterances compositionally

is unquestionably a hallmark of human linguistic competence, while some amount of

storage is clearly required for, at minimum, monomorphemic lexical items, which are

not predictable from any component parts. But beyond these basic facts, theories of

language processing vary wildly in how much of language processing is attributed to

generative versus item-specific knowledge, from almost-total reliance on generative

knowledge (e.g. Hauser et al., 2002) to almost-total reliance on storage and reuse (e.g.

Bybee, 2001, 2009), with many in between (e.g. Pollard and Sag, 1994; Pinker, 2000;

Goldberg, 2003; O’Donnell et al., 2011, among many others).
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In addition to asking, in general, how much these two types of knowledge are

recruited in language processing, we can ask what factors influence how much one

or the other is recruited in a given instance. In particular, does the frequency of an

item influence whether it is processed using generative or item-specific knowledge?

We might expect that higher frequency items are more likely to recruit item-specific

knowledge than lower frequency items (e.g. compare walked to kayaked, or I don’t

know to I do not possess that knowledge). If frequency is a factor, does reliance upon

generative versus item-specific knowledge change categorically at some threshold, or

does it vary gradiently? At very high frequencies, might item-specific knowledge come

to block the use of generative knowledge altogether, even for items that are in principle

entirely compositional, or does generative knowledge always continue to exert a role?

From a functional perspective, we can ask why these two types of knowledge

might be recruited to different extents. Of course, novel items must be generated

compositionally, while idiosyncratic items such as idioms must be processed using

item-specific knowledge. But what of non-novel, compositional items (i.e. items which

have been previously experienced, which follow the compositional rules)? Does a limit

on human memory prevent us from storing everything we have experienced, such that

generative knowledge is required even for previously experienced items? Or does a

limit on computational speed prevent us from generating everything on the fly, such

that more reliance upon stored item-specific knowledge is required? Does the ability

to recruit two different types of knowledge provide an ability to hedge one’s bets

in cases where one isn’t certain about how a particular linguistic item ought to be

processed? And how must language processing adapt to the structure of the language

itself? Does the balance of compositionality and item-specificity within the language
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itself influence the language processor’s recruitment of generative and item-specific

knowledge?

Big questions in language structure

Once again, we can ask a comparable set of questions about language structure.

If we want to describe the patterns and structures we see in natural language data, to

what extent should we attribute to them systematic compositionality, and to what

extent should we think of various structures as idiosyncratic? Languages clearly

contain a great deal of structure, yet just as clearly contain idiosyncrasies in the form

of irregular inflections, idioms, etc. Can we draw a clear distinction between items

that behave compositionally versus idiosyncratically, or is there a compositionality-

idiosyncrasy spectrum, with some items (perhaps such as bread and butter and I don’t

know) lying in the middle?

Once we know how to define idiosyncrasy, what factors influence how likely an

item is to behave idiosyncratically? In particular, are higher frequency items more

likely to be idiosyncratic? We know that higher frequency verbs are more likely to

be irregular (Bybee, 1985; Lieberman et al., 2007); does this relationship hold more

broadly, including at other levels of linguistic structure such as multi-word expressions?

Whatever the exact balance of compositionality and idiosyncrasy in the lan-

guage, how is it preserved over time? We know that individual items can change

whether or not they are idiosyncratic: irregular verbs become regular, but new idiosyn-

crasies also get introduced (such as loan words that violate a language’s phonology,

or conscious language play resulting in novel constructions like because in “because

reasons”). How does synchronic language processing interact with processes of cultural
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transmission to effect language change over time that allows for variation in which

items are idiosyncratic, but maintains a structure that includes both compositionality

and idiosyncrasy?

Finally, from a functional perspective, we can ask why there are idiosyncrasies

in language in the first place. Are they merely hold-over historical accidents (such as

stem-changing verbs that follow what were once productive patterns, or expressions

such as hang up the phone that were once literal but no longer apply in the age of

cellphones)? Or do they serve a functional purpose, such as increasing efficiency of

communication? For example, a stem-changing irregular verb is the same length in

the past tense as in its base form, compared to a regular -ed past tense, which will be

longer than its base form. The savings in length might be particularly useful for high

frequency verbs, which irregular verbs generally are (Bybee, 1985; Lieberman et al.,

2007).

These big questions set the stage for the questions I ask in this dissertation. In

the remainder of this section, I provide a brief review of previous work and then give

my own definitions for key terms that will be used throughout the dissertation. In

Section 1.2 of the Introduction, I present the fact that speakers have finite linguistic

experience and that this motivates a rational solution in which generative and item-

specific knowledge trade off gradiently in language processing, which in turns predicts a

gradient trade-off between compositionality and idiosyncrasy in language structure. In

Section 1.3 I present two test cases, briefly presenting the case of verb inflection before

turning to binomial expressions (e.g. bread and butter, salt and pepper), which are

the topic of this dissertation. Finally in Section 1.4, I summarize chapter-by-chapter

the main claims made in the dissertation.
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1.1.2 A brief history

Beginning with Chomsky’s Syntactic Structures (1957) and Aspects (1965) (see

also Hauser et al., 2002), one school of thought in linguistics takes the generative

function of language to be the hallmark property of language, motivating what

Jackendoff (2002) calls the “syntactocentric” approach to linguistics, in which the

primary objective is to characterize with as much precision as possible the form of

humans’ generative linguistic knowledge. In particular, this school holds that when

studying syntax and semantics, the goal is to characterize the broadly applicable

combinatorial rules and the principles of Universal Grammar that allow us to learn

them, while the study of non-compositional structures such as idioms is merely a

secondary concern. Likewise, when approaching other levels of linguistic structure such

as morphology or phonology, this school still emphasizes the discovery of syntax-like

generative rules (see, for example, Everaert et al., 2015). In describing verb inflections,

for example, their primary interest lies in characterizing how affixes attach to stems

in the “regular” case, while irregular verbs are assumed to be memorized and thus

not given much serious attention (except in cases where the so-called “irregularities”

are themselves susceptible to a rule-based description; Chomsky and Halle, 1968).

Exceptions are consigned to the “periphery” of “phenomena that result from historical

accident, dialect mixture, personal idiosyncrasies, and the like” (Chomsky and Lasnik,

1993 as cited in Jackendoff and Pinker, 2005). In other words, under this paradigm,

generative computation is given a primary status, with item-specific storage reserved

only for those phenomena that cannot be accounted for otherwise.

However, the wisdom of this intense focus on the generative component of

linguistic knowledge has long been called into question. In one of the most direct
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challenges, exemplar- or usage-based grammatical theories (e.g. Langacker, 1987;

Johnson, 1997, 2006; Pierrehumbert, 2000; Bybee, 2001, 2006; Goldberg, 2003; Gahl

and Yu, 2006; van den Bosch and Daelemans, 2013) claim that people store tokens of

linguistic experience at all levels of analysis—from phonemes to multi-word utterances—

and that language processing relies upon online generalization from these exemplars.

Some of these theories go so far as to avoid abstract generative rules entirely in favor of

online generalizations over concrete exemplars (Bybee, 2001, 2009). Others (Langacker,

1987; Pollard and Sag, 1994; Jackendoff, 2002; Goldberg, 2003) take a more moderate

position, not excluding abstract rules entirely, but advocating for theories in which the

traditional lexicon is replaced with a much broader storage network of constructions

of different shapes and sizes (e.g. Goldberg’s construct-i-con, which contains such

diverse elements as words—both monomorphemic and complex, idioms, grammatical

constructions such as the double object construction, and more.) What these theories

all have in common is their emphasis on the storage and direct reuse of item-specific

representations as a central element of the grammar.

For structures which could potentially be either stored or generated (e.g.

inflected regular verbs), the primary diagnostic used to argue whether a given structure

is stored or not is whether its frequency of occurrence is predictive of its behavior in

language processing or language change. Such frequency effects are well documented at

the level of individual words: more frequent words are faster to read (Inhoff and Rayner,

1986; Rayner and Duffy, 1986; Rayner et al., 1996), more likely to be skipped in

reading (Rayner et al., 1996; Rayner and Well, 1996), and more susceptible to phonetic

reduction (Bybee, 1999; Gregory et al., 1999). Analogously, if other structures, such

as multimorphemic words or multi-word expressions, exhibit frequency effects—even
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when the frequency of their component parts is controlled for—this is taken as evidence

for the existence of a chunked mental representation of the structure as a whole. Under

this diagnostic, exemplar-based models have received support from demonstrations of

frequency effects in online processing of inflected verbs (see Section 1.3.1); in online

processing of multi-word expressions (Arnon and Snider, 2010); and in corpus-based

measures such as phonetic reduction of multi-word expressions (Bybee, 2006).

A conceptually similar (although architecturally distinct) challenge to the

Chomskyan syntactocentric approach comes from the connectionist modeling tradition

(Rumelhart and McClelland, 1986; Hare et al., 1995; Elman, 2003): in eschewing

abstract symbolic rules, connectionist models instead emphasize how online gener-

alizations are directly shaped by one’s previous linguistic experience. One of the

most famous test cases for the applicability of connectionist models to language

modeling has also been one of the mostly hotly debated test cases regarding storage

and computation: regular and irregular verb inflection. This debate will be explored

in more detail in Section 1.3.1. In short, Rumelhart and McClelland’s claim that a

single architecture could both apply a default (regular) rule and learn its exceptions

poses a direct challenge to the traditional Chomskyan framework, in which language

is characterized in terms of a relatively small and parsimonious set of generative rules

and lexical items.

A final challenge to the Chomskyan tradition comes from the literature on

prefabricated or formulaic language in the tradition of Sinclair (1991) (see also Barn-

brook, 2007). This tradition, much like the exemplar-based approaches, emphasizes

the need for including larger-than-single-word units in analyses of language. Based

largely on an analysis of corpus data, Sinclair (1991) posits that the choice of each
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word in language production follows one of two principles: the “principle of open

choice,” corresponding to insertion of words following standard generative principles,

or the “principle of idiom,” corresponding to the more constrained selection of a word

as part of a known chunk or prefab. Sinclair argues that the principle of idiom is used

much more prevalently than assumed in traditional Chomskyan analyses, with Erman

and Warren (2000) estimating that more than 50% of words (in both spoken and

written texts) are parts of prefabs rather than being freely chosen. Wray (2008) takes

this claim even further, arguing that the principle of idiom is the default mode of

processing, with the principle of open choice (i.e. standard generative analysis) used

only when no analysis via prefabricated chunks is possible.

Similar to proponents of exemplar-based theories, scholars in this tradition

have emphasized how wide a scope one can cast when looking for prefabricated chunks

in language, including not just entirely non-compositional examples such as idioms,

but any case in which a collocation occurs more frequently than would be expected

under a purely generative theory, including verb-preposition and adjective-preposition

collocations (e.g. dealing with, suitable for), discourse markers (e.g. for instance, in the

end), and colloquial expressions (e.g. I can’t see a thing, get the hang of ) (Erman and

Warren, 2000). However, their insistence upon a binary classification of all word choices

into one of two principles disallows the possibility of acknowledging cases such as verb-

preposition collocations that on the one hand clearly exhibit compositional structure,

but on the other hand are clearly restricted by known stochastic relationships between

words. This disadvantage is highlighted by Wray (2002) as she reviews proposed

diagnostics for, or ways to automatically detect, prefabs. Despite considering an

impressively wide range of options—from native speaker intuition to corpus frequency
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measures to psycholinguistic diagnostics such as pauses in spontaneous speech or

patterns of code-switching—she finds them all lacking due to the wide range of what

potentially counts as a prefab: each of the measures she considers draws different

black-and-white boundaries through the fuzzy grey space of potentially-compositional-

potentially-prefabricated constructions.

In short, there remains significant room for debate over the roles of, and the

boundaries between, storage and computation in language. In order to ask these

questions more precisely, I introduce some definitions.

1.1.3 Definitions

Language processing: generative and item-specific knowledge

To ask questions about language processing, I follow the previous literature

rather closely in drawing a distinction between two types of knowledge potentially used

in processing. On the one hand is knowledge that allows language users to generate

composite linguistic units from their component parts (e.g. expressions from words, or

words from morphemes). I refer to this knowledge as generative or compositional, or

sometimes—when I want to highlight the potential use of non-linguistic real-world

knowledge as well—abstract. This knowledge is defined by the fact that it is not

specific to particular lexical items, but rather is generally applicable: in particular,

it can apply to novel items.1 Such knowledge may take the form of categorical rules,

such as the compositional rules used in traditional syntactic analysis, or alternately

may take the form of violable constraints or probabilistic preferences. For example,
1Such generative knowledge could have been learned and generalized from particular lexical items

originally, but we refer here to knowledge that, in an adult grammar, applies broadly to a class or
classes of lexical items.
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in the case of the dative alternation, violable constraints referencing the definiteness,

animacy, etc. of the two arguments probabilistically determine preferences for use of

one alternate over the other (Bresnan et al., 2007). As these violable constraints apply

to never-before-seen utterances, they too constitute a form of generative knowledge.

The other type of knowledge language users can draw upon in processing is

item-specific knowledge learned from direct experience with the item in question. In

particular, processing of frequent utterances may employ stored holistic knowledge of

complex linguistic units, such as multi-word expressions or multimorphemic words.

Such knowledge is most evident in the case of idiosyncratic items that categorically

violate generative rules, such as irregular verbs, which violate inflectional rules, or

idioms, which violate the usual rules of semantic composition. But item-specific

knowledge need not only apply to items that deviate from what generative knowledge

would predict. Even an expression that is fully compositional could in principle be

processed using item-specific rather than generative knowledge, if it has been previously

experienced and stored. For example, Bybee (2006) argues that the extreme phonetic

reduction of the expression I don’t know is evidence of its holistic storage and reuse,

despite the fact that it seemingly follows the generative rules of English and could in

principle be processed via generative knowledge.

The distinction between generative and item-specific knowledge in language

processing is an empirical one, in that we can ask empirical questions about how much

processing relies upon these two knowledge sources; in fact even the existence of each

type of knowledge is in principle an empirical matter (although the existence of at

least some storage and some computation is uncontroversial).
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Language structure: compositionality and idiosyncrasy

In order to discuss which linguistic items might be more amenable to processing

via either generative or item-specific knowledge, I introduce a related duality in lan-

guage structure. Wray’s (2002) difficulty in finding a satisfactory empirical diagnostic

for prefabricated language suggests we take a somewhat different approach, so I will

instead draw a theoretical distinction: given a theory of the generative structure

of language, I will identify utterances that conform to the theory as compositional

and utterances that aren’t predicted by the theory as idiosyncratic. This distinction

sidesteps Wray’s issue with the heterogeneity of prefabricated language, because our

idiosyncrasies can be as heterogeneous as our generative linguistic theories. In other

words, for anything for which we can develop a generative theory, we can likewise

identify the idiosyncratic exceptions. As a simple example, if we have a theory of

English past tense formation that consists of adding -ed, then we can identify idiosyn-

cratic verbs as those that don’t follow this rule. Or if we have a (presumably more

elaborate) theory of syntactic and semantic combinatorial rules, then we can identify

idioms as those expressions that violate the compositional principles.

A further benefit of this definition is that under this theory, if our compositional

theory is probabilistic or gradient, then our idiosyncrasies can likewise be graded. For

example, returning to the case of the dative alternation, we find that even after the

violable constraints on definiteness, animacy, and so on have been taken into account,

the verb tell is disproportionately likely to take a double object construction, while

deliver is disproportionately likely to take a prepositional dative (Baayen, 2011). We

can attribute gradient idiosyncrasy to these verbs to the extent that they deviate from

our probabilistic predictions.
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Foreshadowing what’s to come, one might suppose that, to the extent that a

linguistic item is compositional, it is amenable to processing via generative knowledge

(although, as mentioned previously, processing via item-specific knowledge is also

possible), and to the extent that an item is idiosyncratic, processing via item-specific

knowledge will be preferred.

We have thus set up an empirical distinction between generative and item-

specific knowledge in language processing, and a related theoretical distinction between

compositionality and idiosyncrasy in language structure. This way of setting up our

definitions is logical given that language processing within an individual speaker is

itself an empirical phenomenon, whereas when we talk about language structure,

we are making a generalization about a community of speakers and their linguistic

behavior.

1.2 The finiteness of the input

What factors might influence the balance of generative and item-specific knowl-

edge in language processing, or the degree of compositionality and idiosyncrasy in

language structure? We first introduce the current predominant explanation—a speed-

memory trade-off—then propose a novel explanation centered on the finiteness of

one’s linguistic experience.

1.2.1 A speed–memory trade-off

In the domain of language processing, the trade-off between generative and

item-specific knowledge has generally been conceived as a speed-memory trade-off

(Nooteboom et al., 2002; Wiechmann et al., 2013). On the one hand, performing
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compositional operations takes time, and so the more computations are required, the

longer processing will take; conversely, if larger units can be precomputed and stored,

less computational time will be required, at the expense of more memory dedicated

to increase storage capacity. Under the assumption of this guiding principle, the

degree to which processing relies upon generative and item-specific knowledge should

be motivated by both the brain’s online processing speed and its long-term storage

capacity. While computational speed and finite memory are both real limitations on

human language processing, the precise bounds of each are not known. Thus while the

idea of a speed-memory trade-off can predict that there should be a trade-off between

generative and item-specific knowledge in language processing, it is difficult to form

more specific predictions without knowing more about humans’ speed and memory

limitations.

1.2.2 The finiteness of the input

Instead of conceiving of generative and item-specific knowledge as instantiating

a speed–memory trade-off, I propose that we view them in terms of a different,

environmental limitation: the finiteness of the input. Even if we completely ignore

limitations on both storage and processing speed, people are exposed to a finite

amount of linguistic input in their lifetimes. This fact has long been used to motivate

the need for generative knowledge to produce and comprehend never-before-seen

utterances. I extend this argument further, arguing that the fact that we have

differential amounts of experience with different linguistic items motivates a gradient

trade-off between generative and item-specific knowledge in language processing, and

between compositionality and idiosyncrasy in language structure.
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In considering the domain of language processing, let us take the goal of the

processor to be coming up with the best possible form-meaning mapping, where either

form or meaning is given, depending on whether the current task is comprehension

or production: in other words, in comprehension, the goal of the processor is to

determine the meaning that was most likely intended by the given linguistic form,

and in production, the goal is to determine a form that will mostly likely convey the

intended meaning. Of course, one of the hallmarks of human linguistic competence

is the ability to generate novel form-meaning mappings from generative knowledge,

and so using this strategy is one possibility. But what of cases when one has used a

particular form-meaning mapping before (e.g. conjugating a known verb like walked or

constructing a ditransitive utterance like Pass me the salt that one has direct previous

experience with)? Given no limitations on processing time, the processor could simply

compute a new form-meaning mapping from scratch using generative knowledge,

regardless of previous experience. At the same time, given unlimited storage, the

processor could store all previously used mappings, and thus could potentially reuse

any previous mapping directly, with no reference to generative knowledge. However, I

argue that, given the finiteness of the input, neither of these solutions is optimal.

In particular, the finiteness of the input means that language users can never

be 100% certain about the form-meaning mappings they have learned, either on the

basis of generative or item-specific knowledge. Given this uncertainty, a gradient

trade-off is the optimal way to estimate these mappings. To rely solely on generative

knowledge would not be rational as long as one believes the language contains some

idiosyncrasies, as reliance solely upon generative knowledge would preclude one from

ever using irregular verbs, idioms, or any other idiosyncratic items. Thus if one has
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direct evidence for a given form-meaning mapping, regardless of whether it agrees with

generative knowledge or not, it is rational to take this direct evidence into account.

At the same time, relying solely on a previously stored mapping for which one has

finite previous evidence is also not rational, when one could additionally be drawing

upon generative knowledge as a method of hedging one’s bets. Intuitively, if one has

used a form-meaning mapping only once before, one should not trust it entirely: it

could have been produced as a result of an error, or only due to some unknown and

unusual property of the context, or due to other unappreciated circumstances. Its

previous use provides some evidence of its suitability for future use, but the evidence

is relatively weak. A second, third, and so on use of this mapping would provide

increasingly strong evidence for its appropriate use. The rational solution, then, is to

rely gradiently upon both generative and item-specific knowledge as a function of how

often one has previously experienced the form-meaning mapping in question, relying

increasingly upon item-specific knowledge as the frequency of one’s direct experience

increases. And this, I will argue, is indeed what the language processor does. (Other

theories that make convergent predictions are discussed in Chapter 2.) This claim

will be made more precise using the language of probability theory in Section 1.2.3.

The finiteness of the input, and the resulting gradient trade-off between gener-

ative and item-specific knowledge in language processing, likewise predicts a balance

of compositionality and idiosyncrasy in language structure. For infrequent items—

items for which direct evidence for a specific form-meaning mapping is limited—each

production must rely primarily upon generative knowledge. Thus infrequent items

must by and large conform to the compositional structure of the language. The

more frequent an item, the more people’s productions can rely upon their previous
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direct experience with it. Thus these productions have more ability to deviate from

generative knowledge, and, crucially, it is possible for such deviations to be transmitted

reliably across generations so that they can persist in the language. The finiteness of

the input thus also predicts a balance between compositionality and idiosyncrasy in

language structure, with higher frequency items more likely to be idiosyncratic. I will

demonstrate that this prediction is confirmed in corpus data.

1.2.3 Rational Analysis and probability theory

The above line of argumentation falls naturally within the framework of Rational

Analysis (Anderson, 1990): rather than focusing on assumed limitations of cognition

(such as computational speed or memory), we instead focus on the constraints of

the environment (specifically, the finite input), and ask what a rational solution to

the problem is given these constraints. We can use probability theory to define the

rational solution as the solution that optimizes a desired outcome measure—in this

case, the probability of choosing the correct form for a given meaning, or vice versa.

Under this paradigm, one benefit to focusing on the environmental constraint of finite

input (rather than the assumed cognitive limitations of speed and memory) is that we

already have reasonable estimates of the amount of linguistic exposure people have

in their lifetimes, both in terms of total word counts (e.g. Levy et al., 2012) and in

terms of the relative frequencies of different words and structures as seen in large

corpora (e.g. Marcus et al., 1999; Lin et al., 2012), whereas cognitive limitations on

computational speed and memory are much more difficult to quantify.

The language of probability theory gives us a way to express this rational

argument more precisely. In particular, we turn to Bayes’ Rule, which relates the
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probability of data to the probability of hypotheses:

P (h|d) ∝ P (d|h)P (h) (1.1)

This rule tells us how to evaluate the probability of a hypothesis h given some data

d. In particular, suppose we have a variety of hypotheses h for how to map between

linguistic forms and meanings, and we need to choose between them on the basis of our

previous linguistic experience d. (For example, for a given verb, one hypothesis might

be that the verb has a regular past tense, while another hypothesis might consist of an

irregular past tense form. Alternately, hypotheses might be gradient: for a ditransitive

verb, a hypothesis might indicate how often it should appear in a double object versus

a prepositional dative construction.) Intuitively, to choose between hypotheses, we

want to compare the probability of different hypotheses given the data and choose a

hypothesis with a high probability. Bayes’ Rule tells us that this probability P (h|d) is

proportional to the product of the data likelihood P (d|h) and the prior probability of

the hypothesis P (h).

The data likelihood P (d|h) tells us how likely the known data d is to occur

under the hypothesis h. Intuitively, for us to consider a hypothesis plausible, it should

be a hypothesis that gives the known data a high likelihood. (For example, if one’s

hypothesis is that a given verb is regular, then occurrences of the predicted regular

form will have high likelihood, whereas occurrences of any irregular form will have

low likelihood.)

The prior probability P (h) reflects our belief in how likely a given hypothesis

is before any data has been observed. Where might we get priors on our linguistic

hypotheses? If we consider hypotheses at a fine level of granularity (in particular,
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preferences for individual linguistic items, such as individual verbs or expressions),

generative knowledge is the natural source of prior beliefs, as this is the type of

knowledge we bring to bear on processing linguistic items with which we have no

previous experience.

In other words, if we take generative knowledge as providing prior probabilities

on hypotheses, and our previous linguistic experience as providing data, then Bayes’

rule tells us how to optimally combine these two knowledge sources in order to put

a probability distribution on (and hence choose between) hypotheses about how an

item is used in the language.

When we compare across hypotheses, how strongly P (d|h) favors one hypothesis

over another will be determined in part by how much data we have. If we have

relatively little data, the data likelihood across different hypotheses will be not as

strongly differentiated as if we have a large amount of data. To see this intuitively,

imagine trying to decide if a coin is fair by flipping it repeatedly: i.e. we are trying

to decide between hypotheses h ∈ [0, 1] for how often a coin comes up heads on the

basis of coin flip data d, with h = 0.5 being a perfectly fair coin. If in four flips,

we obtain two heads and two tails, this small amount of data provides relatively

weak evidence: many possible coin weightings h could have produced this data with

reasonably high probability. (See Figure 1.1.) But if in ten flips we obtain five heads

and five tails—or better yet, if in one hundred flips we obtain fifty heads and fifty

tails—these increasingly large amounts of data provide increasingly strong evidence

that the coin is fair, as the probability of generating this data under hypotheses far

from 0.5 drops off more and more steeply. Likewise, for an unfair coin, more data

would provide stronger evidence for h 6= 0.5.
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Figure 1.1: Data likelihoods P (d|h) become more diagnostic with more data.

In contrast, the prior P (h) is independent of the data, and therefore how

strongly it favors one hypothesis over another does not change depending on the

amount of data. Since P (d|h) becomes more diagnostic with increasing data, and

P (h) does not change, the end result is that the more data one has, the more strongly

P (h|d) is determined by the data likelihood. (In fact, with arbitrarily large amounts of

data, the influence of the prior becomes vanishingly small.) Translating this back into

the terms described above, we see that Bayes’ rule makes the same prediction as we

made intuitively earlier: the lower an item’s frequency, the more its linguistic behavior

should be determined by generative knowledge; the higher an item’s frequency, the

more its behavior should be determined by item-specific experience.
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1.2.4 A chicken-and-egg proposal

The theory proposed above has a chicken-and-egg-like structure: it is rational

for language processing to rely gradiently upon generative and item-specific knowledge

as a function of item frequency if languages contain idiosyncrasies, and language

is predicted to contain frequency-dependent idiosyncrasies if processing relies upon

both generative and item-specific knowledge. This circular structure is of course

reflective of the fact that language processing and language structure truly are mutually

constraining: language processing must accommodate the existing language structure,

but language processing is also the driving mechanism of language change and is

therefore what ultimately shapes language structure.

1.3 Test cases

I describe two test cases for the questions raised above. First, I take up the

question of regular and irregular verb inflection, one of the most famous test cases for

generativity versus item-specificity in language processing as well as a famous case of

frequency-dependent idiosyncrasy in language structure. While reviewing results that

are convergent with the predictions I make above, I also note ways in which this case

does not provide the strongest test for some of these claims. I then turn to the case of

binomial expressions of the form “X and Y” (e.g. bread and butter, salt and pepper),

which is the test case taken up for the remainder of this dissertation.
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1.3.1 Regular and irregular verb inflection

Regular and irregular verbs in language processing

What are the roles of generative and item-specific knowledge in the processing

of inflected regular and irregular verbs? Inflected irregular verbs (e.g. sang, wrote)

must be processed using item-specific knowledge, as generative knowledge does not

apply.2 But what of inflected regular verbs (e.g. walked, laughed)? Such verbs could

be processed using generative knowledge, but could also in principle be processed

using item-specific knowledge—in other words, the inflected form could be stored and

retrieved holistically.

As described in Section 1.1.2, the primary diagnostic for whether a given item is

stored and reused directly in processing is whether it exhibits frequency effects specific

to its composite form, independent of frequency effects for its component parts. In the

case of regular verbs, if inflected forms exhibit effects of the frequency of the inflected

form (as opposed to of the stem)—called Surface Frequency Effects—this is evidence

that the inflected forms themselves are being stored. In contrast, if regular forms are

always computed generatively, we would expect to find effects of frequency of the stem,

or Base Frequency Effects, reflecting the effect of retrieval of this component of the

generated form, but we would predict that the further step of computing the inflected

form takes the same amount of time regardless of verb stem frequency. Both Surface

and Base Frequency Effects have been demonstrated for regular English (Taft, 1979)

and Italian verbs (Burani et al., 1984)—as well as for regular inflected nouns in a

variety of languages (Baayen et al., 1997, 2002; Sereno and Jongman, 1997; Alegre and
2Although some subregularities hold within the so-called irregular verbs, most theories still assume

item-specific knowledge is required to know exactly which verbs these subregularites apply to, e.g.
bring/brought, think/thought, but drink/*drought (Pinker, 2000).
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Gordon, 1999; Bertram et al., 2000)—suggesting that both generative and item-specific

knowledge play a role in processing regular inflected verbs.

The case of inflected regular verb processing thus confirms the basic prediction

that both generative and item-specific knowledge play a role in processing, even for

forms that are in principle compositional. However, it remains unknown whether and

how this trade-off is affected by verb frequency. Further, we note that verb inflection

is not the strongest test of item-specific storage because, particularly in English, the

number of possible inflections for any given verb is relatively small. Storing all possible

inflected forms for a verb may have a small multiplicative effect on the number of verb

forms one must store. In contrast, when one considers storing possible multi-word

expressions of varying lengths, as proposed by exemplar- and usage-based theories,

the item-specific storage requirements grow polynomially. Thus for a stronger test

of the storage claims made by these theories, we should consider a test case at the

phrasal rather than the single word level.

Regular and irregular verbs in language structure

How are irregular verbs distributed in language structure? Lieberman et al.

(2007) demonstrate using a historical corpus that higher frequency verbs are more

likely to be irregular and, moreover, that the higher their frequency, the more likely

they are to stay irregular for longer (rather than switching to the regular -ed pattern).

Their findings confirm the prediction that higher frequency items are more likely to

be idiosyncratic. (See also Bybee, 1985.)

How is a balance of compositionality and idiosyncrasy in verb inflection pre-

served over time? Lieberman et al. address the process by which verbs switch from
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being irregular to being regular, but not the reverse; they predict that more and more

English verbs will become regular over time, with new irregularities presumably only

emerging if the default rule changes in the future, leaving some of our currently-regular

verbs behind in its wake to become irregular in the new paradigm. While it may be

true of verb inflection in particular that new irregular forms do not arise spontaneously

without major changes in the default paradigm(s), this fact does not generalize to the

language as a whole. As discussed in Section 1.1.1, new idiosyncrasies are constantly

being introduced into the language. Verb inflection is thus limited in its ability to

serve as a test case for the dynamic preservation of a balance of compositionality and

idiosyncrasy.

A further downside of verb inflection as a test case for idiosyncrasies is that

English verbs are, to a first approximation, categorically regular or irregular, limiting

our ability to test for the possibility of gradient idiosyncrasies as a function of item

frequency.

1.3.2 Binomial expressions

To rectify some of the limitations discussed above, we turn to a test case involv-

ing multi-word expressions with gradient properties. Specifically, in this dissertation

I will take up the test case of word order preferences in binomial expressions of the

form “X and Y”. Ordering preferences for these expressions are gradient: for example,

“radio and television” is preferred to “television and radio” in a 63 to 37 ratio, while

“bread and butter” is preferred to “butter and bread” 99 to 1 (Lin et al., 2012). We

can ask what factors influence binomial ordering preferences from both a synchronic

and diachronic perspective. In particular, one possibility is that preferences arise from
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violable generative constraints that reference phonological, semantic, or other lexical

properties of the elements in a binomial (e.g. the shorter word should come first). An

alternate possibility is that preferences are driven by direct experience with the specific

binomials in question: an order is preferred because it has been experienced more often.

Thus in the domain of language processing, we can ask whether ordering preferences

in online processing are driven by generative knowledge of ordering constraints or by

item-specific direct experience. Likewise in the domain of language structure, we can

ask whether the distribution of binomial preferences seen in the language as a whole

is shaped by generative constraints versus to what extent it exhibits item-specific

idiosyncrasies. Moreover, in both processing and structure, we can ask whether the

influence of the two knowledge sources changes as a function of the frequency of an

expression.

To ask these questions, there are three properties of binomials we crucially

must be able to quantify:

• For a word pair (A,B), the first property we consider is the overall (unordered)

frequency of binomial expressions containing these elements—in other words, the

combined frequency of the expressions “A and B” and “B and A”. To estimate

the overall frequency of people’s experience with these expressions, we can obtain

frequency estimates from large corpora (generally measured in occurrences per

million words).

• Next we consider the relative frequency or observed preference of a given order.

The relative frequency of “A and B” is the number of occurrences of “A and B”

divided by the overall frequency of (A,B) binomial expressions. It is thus a real

number between 0 and 1, inclusive. The relative frequency of “B and A” is one
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minus the relative frequency of “A and B”. Again, we can estimate this from

corpus frequencies.

• Finally, we consider the compositional or abstract-knowledge-based preference

for a given order, i.e. the preference derived purely from people’s generative

knowledge of binomial ordering constraints. For a given order “A and B”, we

want a value between 0 and 1 corresponding to the probability of someone

producing that order based on their knowledge of the compositional constraints

governing binomial ordering, independent of their actual experience with a given

item. Unlike the previous two variables, we cannot directly estimate people’s

abstract knowledge from corpus frequencies. Instead, we will build probabilistic

models to give us these estimates.

Of these variables, the two that directly compete to explain binomial ordering

preferences in online processing are relative frequency and compositional preference

(although we predict that their weights will change as a function of overall frequency).

Crucially, although these two variables may be correlated, we assume that they are not

equivalent, as relative frequency can be influenced by factors beyond compositional

knowledge such as conventionalization and idiomaticity, famous quotations, or language

change that interacts with abstract ordering constraints (e.g. changes in word meaning

or pronunciation). I discuss this more below, and throughout the dissertation.

Why binomial expressions?

Binomial expressions are a good test case for the interaction of generativity

and item-specificity because they are at once theoretically interesting as well as com-

putationally and experimentally tractable. As discussed above, binomial expressions
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provide a test case concerning gradient preferences in multi-word expressions. In

particular, not only can we draw a theoretical dissociation between compositional

preferences, relative frequency, and overall frequency, but we can in fact obtain reliable

estimates for each factor independently, through a combination of statistical modeling

and modern corpora, allowing us to both ask and answer questions about how these

factors interact in determining binomial ordering preferences. Moreover, because

binomial ordering is a binary choice, we have a variety of well-understood, tractable

statistical models (in particular, logistic regression and beta-binomial models) at our

disposal to model their preferences. From an experimental perspective, these expres-

sions are convenient because we can manipulate their ordering (“X and Y” versus “Y

and X”) without changing the formal syntactic or semantic properties of the expression,

providing an experimental manipulation that minimizes confounds. Finally, binomial

expressions achieve all these aims while being a common construction in English (and

other languages). We thus have plentiful naturalistic data about their use, and we

can use them in experimental materials without them standing out as unusual.

Predicting distributions

As I will argue over the course of this dissertation, binomial expression prefer-

ences are determined both by generative knowledge and by item-specific idiosyncrasies.

In particular, while expressions on average conform to compositional preferences,

they also acquire idiosyncrasies as a function of their frequency, with more frequent

expressions being more idiosyncratic. While some aspects of these idiosyncrasies are

predictable (e.g. as we will show, higher frequency expressions have more polarized

preferences), some idiosyncrasies are due to unpredictable quirks of history. For
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example, men and mice would be compositionally preferred to mice and men—as

described in Section 2.2, a Perceptual Markedness constraint favors putting humans

before non-humans—but mice and men is much more frequently attested due to its

use in a Robert Burns poem, a Steinbeck novel, and other popular media (Burns, 1785;

Steinbeck, 1937). We don’t expect or even particularly want our linguistic theories to

predict that this exact binomial (rather than penguins and people, wombats and women,

etc.) would be used in a famous poem. However, we do want our theories to predict

probabilistic relationships between frequency and idiosyncrasy, such as how likely

an expression of a given frequency is to become frozen opposite its compositionally

preferred direction.

For this reason, in the parts of this dissertation that focus on language structure

and change, our focus will be on predicting distributions of binomial expression

preferences, rather than on predicting the exact preferences of individual items. While

we cannot reasonably expect to predict all the idiosyncratic quirks of individual items,

we can aim to predict how these idiosyncrasies will behave in aggregate over a large

number of expressions.

1.4 Summary of main claims

In this dissertation, I test the rational theory laid out in Section 1.2 using the

test case of binomial expressions. Specifically, I argue as follows:

In Chapter 2, I ask how generative and item-specific knowledge contribute to

the processing of both novel and highly frequent binomial expressions. I demonstrate

that while processing of novel expressions relies upon generative knowledge, processing

of highly frequent expressions relies in large part upon item-specific knowledge—even
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though these items are in principle fully compositional. I thus show that item-specific

knowledge has a larger role to play in language processing than has often been assumed,

and moreover that reliance upon the two types of knowledge varies as a function

of expression frequency. I propose a more specific form for this trade-off, namely

that reliance upon generative versus item-specific knowledge varies gradiently with

expression frequency. (This proposal will be tested in Chapter 6.)

Why would processing of binomial expressions rely upon item-specific knowledge

even when generative knowledge would suffice? As I argue above in Section 1.2,

reliance upon item-specific knowledge is rational if the language potentially contains

idiosyncrasies. In this case, one should rely upon one’s item-specific knowledge to the

extent that one believes an item to be idiosyncratic. To test this proposal, I first set

out to quantify how idiosyncratic binomial expressions are.

In Chapter 3, I describe the collection and annotation of a new corpus of

binomial expressions that provides the data used in the remainder of the dissertation.

In Chapter 4, I explore the degree and manner of idiosyncrasy in binomial

expressions through probabilistic models of the corpus data. I begin by showing that

observed preferences in the corpus differ substantially from compositional preferences

predicted by a basic model, suggesting that there is indeed a substantial amount of

idiosyncrasy in binomial expression preferences. Of many further models considered,

the only one which correctly predicts the distribution of observed preferences is one

that explicitly allows the regularization of expressions—i.e. how consistently they

are preferred in a given order—to vary as a function of expression frequency.3 In
3This use of regularization is different from the notion of “conforming to compositional

rules/preferences”. Here we are specifically concerned with how consistent a preference is, in-
dependent of whether or not that preference conforms to what would be predicted compositionally.
For further discussion of different types of regularization, see Section 5.1.1.
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particular, I find that more frequent expressions are more regularized. In other words,

I find that a) idiosyncrasy varies gradiently as a function of expression frequency, with

more frequent expressions tending to be more idiosyncratic, and b) this idiosyncrasy

tends to manifest in a particular way, namely for higher frequency expressions to be

more extreme in their preferences. These findings support my rational motivation for

the finding from Chapter 2. The language processor should rely on item-specific as

well as generative knowledge because binomial ordering preferences are not entirely

compositionally determined: as higher frequency items are more idiosyncratic, it is

rational for the processor to rely more heavily upon item-specific knowledge for these

items.

The results of Chapter 4 raise a further question: where does the tendency

towards regularization come from? Chapter 5 takes up this question, using iterated

learning models to simulate how language evolves over generations. Although previ-

ous iterated learning models have encoded across-the-board regularization biases, no

previous models have demonstrated the frequency-dependent regularization seen in

Chapter 4. I demonstrate that introducing a frequency-independent regularization

bias—independently motivated by regularization behavior previously observed in a

variety of statistical learning tasks—into the data-generation stage of a 2-Alternative

Iterated Learning Model yields frequency-dependent regularization in the long term.

This model demonstrates how the balance of compositionality and idiosyncrasy seen in

corpus data can be achieved and preserved over generations through a combination of

individuals’ cognitive biases and the bottleneck effect of cultural transmission. Individ-

uals’ cognitive architectures include the competing forces of generative knowledge and

an idiosyncrasy-promoting regularization bias. The cultural transmission bottleneck
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regulates how strongly these two forces apply to a given expression as a function of

its frequency: for lower frequency items, the bottleneck is tighter, favoring generative

knowledge; for higher frequency items, a wider bottleneck allows the effects of the

regularization bias to multiply over time, promoting idiosyncrasy. I thus demonstrate

how language processing and cultural transmission interact over the course of gen-

erations to preserve the balance of compositionality and idiosyncrasy seen in corpus

data.

Finally, in Chapter 6, I return to explicitly testing the gradience of the trade-off

between generative and item-specific knowledge in language processing. Modifying

the experiments from Chapter 2 to look at expressions that continuously span the

spectrum of overall frequencies from novel to highly frequent, we see a gradient trade-

off in reliance upon generative and item-specific knowledge as a function of expression

frequency, thus confirming the rational prediction made in Chapter 2.

In summary, the language processor flexibly recruits generative and item-specific

knowledge to process binomial expressions, as a function of their frequency, which is a

rational solution given that the expressions themselves are gradiently idiosyncratic as a

function of frequency. The fact that synchronic preferences depend on both generative

and item-specific knowledge in turn gives rise—in conjunction with a regularization

bias—to the preservation of frequency-dependent idiosyncrasy in language structure.



Chapter 2

Abstract knowledge versus direct

experience in processing of binomial

expressions

2.1 Introduction

When we encounter common expressions like I don’t know or bread and butter,

do we process them word-by-word or do we treat them as holistic chunks? Research on

sentence processing has largely focused on how single words are combined into larger

utterances, but intuitively it seems that high frequency multi-word expressions might

be processed holistically, even if they could in principle be treated compositionally.

Recent research has thus questioned what possible sizes of combinatory units should

be considered as the building blocks of sentence processing: Must all multi-word

expressions be generated compositionally each time they are used, or can the mental

lexicon contain holistic representations of some multi-word units?

32
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The primary diagnostic for this question is whether the frequency of occurrence

of multi-word expressions is predictive of their behavior in language processing. Such

frequency effects are well documented at the level of individual words: more frequent

words are faster to read (Inhoff and Rayner, 1986; Rayner and Duffy, 1986; Rayner

et al., 1996), more likely to be skipped in reading (Rayner et al., 1996; Rayner and

Well, 1996), and more susceptible to phonetic reduction (Bybee, 1999; Gregory et al.,

1999). But do comparable frequency effects exist for multi-word expressions, when

the frequency of their component words is controlled for? If the frequency of a given

expression is being mentally stored, this implies that there is a mental representation

of the expression as a whole. In contrast, if there are no frequency effects at the level

of multi-word expressions, this is evidence against them having holistic representations

akin to those of individual words.

A traditional view of grammar does not include holistic representations of multi-

word expressions. According to this view, as described by Pinker (2000) under the title

“traditional words-and-rules theory” (distinct from the modified words-and-rules theory

he ultimately argues for), there is a strict separation between the individual words of

a language and the rules for combining them. (See also Ullman, 2001; Ullman et al.,

2005.) One tenet of this theory is that forms which can be generated compositionally

are not stored: for instance, in the case of the English past tense, irregular forms are

stored, while regular forms are generated anew using the -ed suffix each time they

are used (Pinker, 1991). It remains possible within this theory that some regular

forms—particular extremely high frequency ones—may be stored as well, but this is

not the general method for dealing with such forms. As Pinker (2000) explains, one

key motivation for this theory is memory constraints on the representation of language
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knowledge: it is more efficient to store a single, widely applicable rule than to store

each regular form individually.

In a similar vein, this theory predicts that multi-word expressions should not be

stored holistically because they can be generated compositionally, except in the case

of non-compositional exceptions such as idioms (Swinney and Cutler, 1979). Again, as

with regularly inflected wordforms, some exceptions may exist, but the exponentially

larger number of multi-word expressions with which people have experience makes it

even less likely that these expressions would be stored holistically, given the motivating

concern with storage efficiency. The traditional words-and-rules theory thus does

not predict that the processing of a multi-word expression will be affected by the

frequency of the expression as a whole, though it can be affected by the frequencies of

the individual words making up the expression.1

In contrast, there exists a growing movement of grammatical theories that do not

draw a sharp distinction between the lexicon and the combinatory rules (e.g. Langacker,

1987; Johnson, 1997, 2006; Bybee, 2001, 2006; Goldberg, 2003; Gahl and Yu, 2006;

Baayen et al., 2011; van den Bosch and Daelemans, 2013). Instead these approaches

claim that people mentally store exemplars, or tokens of linguistic experience, which

can be larger than single words. Language users form generalizations from exemplars

at multiple levels of granularity (e.g. morpheme, word, or phrase) simultaneously, and

the resulting network of generalizations constitutes our grammatical knowledge. Single

words and multi-word expressions are thus on an equal footing: both are possible

units that can be inferred from exemplars, and frequencies of multi-word expressions
1It may be possible to accommodate frequency effects for multi-word expressions under this theory,

depending upon further details of the parser. In particular, processing of later words in an expression
could be conditioned upon earlier words, thus creating an overall frequency difference. But this is
not a direct prediction of the traditional words-and-rules theory.
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are predicted to be stored and tracked just as frequencies of single words are.

Similar claims are made by exemplar-based computational models, which, like

the exemplar-based grammatical theories, can incorporate combinatorial units of

varying sizes from morphemes to sentences (e.g. Bod, 1998; Bod et al., 2003; Bod,

2008; Pierrehumbert, 2000; Johnson et al., 2007; O’Donnell et al., 2011; Post and

Gildea, 2013). Within these models, the process of learning a grammar is explicitly

one of deciding what sizes of units are most applicable or probable to explain the

available language data. Under the learned grammars, many utterances can be parsed

in multiple ways, either as combinations of individual words, or as holistic expressions,

or various combinations thereof.

The development of these exemplar-based (or usage-based) theories is due in

large part to previous demonstrations of frequency effects for multi-word expressions.

Bybee (2006) reviews numerous corpus analyses demonstrating that the frequency of

multi-word expressions is predictive of phonological reduction, grammaticalization,

and other properties of usage, with a focus on highly frequent expressions such as

I don’t know or going to. Frequency effects for multi-word expressions have also

been demonstrated in a controlled experimental setting: in a phrasal-decision task

(analogous to a lexical decision task), Arnon and Snider (2010) found that more

frequent phrases—e.g. Don’t have to worry—were judged to be sensible phrases of

English faster than less frequent phrases matched for word and substring frequencies—

e.g. Don’t have to wait. They further demonstrate that these effects exist across

a wide range of frequencies, not just at the highest end of the frequency spectrum.

(For a comparable finding using phonetic duration in corpus data, see Arnon and

Cohen Priva, 2013.)
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The exemplar-based approach also accords with more recent work on idioms,

which challenges the traditional notion of idioms as strictly non-compositional. Gibbs

(1990) and Nunberg et al. (1994) argue that many idioms can be seen as conven-

tionalized metaphoric extensions of their literal meanings, and thus need not be

treated as exceptions to the prevailing rules. (Similarly, see Holsinger, 2013.) On the

whole, we thus see a broad shift towards recognizing that many expressions reside

in a grey zone between entirely compositional and entirely non-compositional, and

furthermore that an expression may be conventionalized while still being at least

somewhat compositional.

But there remain open questions regarding these exemplar-based approaches

and the interpretation of frequency effects for multi-word expressions. One limitation in

the work to date is that it is difficult to differentiate the effects of language experience

per se from the effects of real-world knowledge. Bybee (2006), for example, stresses

the importance of language experience:

As is shown here, certain facets of linguistic experience, such as the
frequency of use of particular instances of constructions, have an impact
on representation that we can see evidenced in various ways. . .

However, much of her cited evidence conflates linguistic experience with real-world

experience. For example, in the phonological reduction of extremely frequent phrases

such as I don’t know, is this reduction due to the frequency of the linguistic expression

per se, or is it due to the frequency of the event of not knowing something? Similarly,

in the case of Arnon and Snider’s contrast between phrases such as Don’t have to

worry and Don’t have to wait, there could be a difference in the real-world likelihood

of the events described by these expressions, which causes faster processing due to
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the difference in conceptual predictability, as opposed to linguistic predictability.2 In

general, this confound between linguistic experience and real-world knowledge exists

whenever one compares expressions describing different real-world events.

Another outstanding question is how to empirically measure the trade-off

between the reuse of stored multi-word expressions and the compositional generation

of expressions. In the case of novel or infrequently attested expressions, we assume

that such expressions must be processed compositionally using abstract linguistic

knowledge—that is, generalized knowledge that is not bound to specific lexical items

or expressions. In the case of frequently attested expressions, two potential processing

strategies exist: compositional generation or reuse of stored holistic representations.

Previous experimental work has primarily focused on the question of whether there is

any reuse of stored multi-word expressions, and has suggested that there is at least

some, but it remains possible that even very frequent and conventionalized multi-word

expressions could in part or at times also be generated anew using abstract knowledge.

Thus the major question now is to what extent both holistic reuse and compositional

generation play a role in language processing (Wiechmann et al., 2013). As mentioned

above, computational models have attempted to address this question by simulating

what combination of linguistic units of varying sizes most parsimoniously predict

corpus data (Bod et al., 2003; O’Donnell et al., 2011; Post and Gildea, 2013). But

there has been no attempt so far to directly measure the competing influences of reuse

and generation via behavioral experimentation.

Our work here does just that: we will quantify the extent to which people’s
2Arnon and Snider did attempt to control for this real-world likelihood difference by collecting

plausibility ratings for their materials, which they demonstrated did not differ in plausibility between
conditions. However, plausibility in all conditions was very high, so extent differences may not have
been detected due to ceiling effects.
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processing of attested expressions is influenced by their frequency of direct experience

with those specific expressions versus by the abstract linguistic knowledge that allows

them to generate such expressions compositionally. To do so, we need to investigate a

linguistic construction for which we can independently estimate people’s frequency

of direct experience and their abstract knowledge of its composition. Moreover, we

want a construction with wide variation in how frequently attested specific instances

of the construction are, so that we can measure how the influence of these competing

explanations changes as a function of the overall frequency of an expression. For these

reasons, an ideal construction is binomial expressions.

2.1.1 Binomial expressions

In this paper, we will address the generation and reuse of multi-word expressions

by focusing on binomial expressions of the form A and B, such as bread and butter

or sweet and sour. We include in our definition of binomial expressions all potential

items with this form, including unattested expressions (e.g. bishops and seamstresses).

Although binomial expressions are sometimes taken to include expressions with other

conjunctions (e.g. or), here for simplicity we consider only expressions joined with

and. Many binomial expressions have a preferred order (e.g. not butter and bread

or sour and sweet), but binomials vary in how strong these ordering preferences are:

some binomials are entirely fixed in order, or frozen (e.g. safe and sound/*sound

and safe), while others are quite free (e.g. television and radio/radio and television).

Binomial expressions are thus a case of multi-word expressions that vary along two

dimensions: how frequent they are, and how conventionalized their order is.

What causes binomial ordering preferences? One possibility is that preferences
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arise from abstract linguistic constraints that reference phonological, semantic, or

other lexical properties of the elements in a binomial (e.g. the shorter word should

come first). An alternate possibility is that preferences are driven by direct experience

with the specific binomials in question: an order is preferred because it has been

experienced more often.

Binomial expressions thus allow us to study the trade-off between abstract

knowledge and direct experience. Specifically, we ask whether ordering preferences

for binomials expressions are driven by direct experience with these expressions or

by abstract constraints on the order of their elements. Moreover, we ask whether the

influence of these two knowledge sources changes as a function of the frequency of an

expression.

Additionally, binomial expressions are particularly suitable for studying effects

of language experience per se, as opposed to real-world knowledge or other confounds,

because both the syntax and semantics of these expressions are preserved regardless

of ordering. We can thus study the effects of direct linguistic experience on these

expressions by manipulating binomial ordering while minimizing confounds.

Previous work on binomial ordering preferences

Siyanova-Chanturia et al. (2011) demonstrated online effects of binomial or-

dering preferences: In an eye-tracking study, participants read common binomial

expressions in either their preferred or dispreferred order, embedded in sentence

contexts, e.g.:

(2.1) John showed me pictures of the bride and groom both dressed in blue.
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(2.2) John showed me pictures of the groom and bride both dressed in blue.3

Expressions were read faster in their preferred order. Is this reading time difference

due to the frequency of people’s direct experience with these specific expressions or to

their abstract knowledge of constraints on binomial ordering?

It has long been known that at least in certain contexts, binomial ordering

preferences are sensitive to a variety of semantic, phonological, and lexical constraints,

but the degree to which these constraints apply in online processing remains unclear.

Early work portrayed these constraints as contributing to the diachronic longevity of

expressions, while more recent work has suggested, albeit inconclusively, that such

constraints play a role online as well.

Much of the existing work on binomial ordering preferences relies upon corpus

analyses or analyses of hand-selected examples. Malkiel (1959) was the first to propose

that the relationship between words in a binomial could contribute to the prominence

or longevity of the expression. Based on hand-selected examples of frozen binomials,

he proposes a number of constraints on ordering, both semantic and phonological,

as well as discussing other possible relationships between words (e.g. rhyming and

alliteration). A more extensive study of binomial ordering preferences was carried

out by Cooper and Ross (1975), whose work focuses on demonstrating a Me First

constraint, which posits that “first conjuncts refer to those factors which describe

the prototypical speaker.” (This prototypical speaker is later described as “Here,

Now, Adult, Male, Positive, Singular, Living, Friendly, Solid, Agentive, Powerful,

At Home, and Patriotic, among other things.”) They further introduce a number of

phonological constraints on ordering, noting that the various constraints seem to differ
3Binomial expressions are italicized here for clarity but were not italicized in the experiment.
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in strength and may interact with each other, but they do not attempt to quantify

these strengths or their interactions. Their investigation is based on a hand-selected

sample of common binomial expressions, and they explicitly frame their discussion

in terms of constraints that contribute to the diachronic longevity of an expression.

Fenk-Oczlon (1989) introduced the idea that these constraints might apply to online

processing as well as diachronic language change, arguing that most of Cooper and

Ross’s proposed constraints could be subsumed under the constraint that “the more

frequent and therefore informationally poorer elements tend to occupy initial position”

and that this new constraint is motivated by cognitive principles. His argument is

supported by corpus data, but he does not provide any evidence from online processing

measures. Similarly, Sobkowiak (1993), again based on corpus data, suggests that

most of the previously proposed constraints can be subsumed under a principle of

“unmarked-before-marked”, which he relates to the information structure principle of

“given before new”.

More recent work has stopped attempting to unify disparate constraints and has

instead focused on determining the relative rankings or weights of different constraints.

In particular, Benor and Levy (2006) surveyed a large number of proposed constraints

on ordering preferences from the previous literature, and considered a variety of

probabilistic modeling frameworks for combining them. They found that a logistic

regression model best predicts ordering preferences for a large selection of binomial

expressions randomly selected from a corpus. Similarly, Mollin (2012) inferred a

hierarchy of constraints from corpus data and found comparable rankings to those

found by Benor and Levy.

While the existence of binomial ordering constraints in corpus data is well
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demonstrated, it is unclear whether these constraints apply only diachronically or

whether they have synchronic cognitive status. Offline experimental tasks have

suggested the synchronic cognitive reality of some constraints, mostly phonological.

Using a forced-choice preference task in which subjects choose between possible orders

of a binomial expressions, Bolinger (1962) demonstrated a preference to avoid having

two stressed syllables in a row, comparable to findings in other domains of grammatical

encoding (Jaeger, 2006; Lee and Gibbons, 2007). Pinker and Birdsong (1979) used

a rating task with nonce words to argue for four phonological constraints, including

“Panini’s Law” (the shorter word, measured in syllables, should come first; named after

the 4th Century B.C. Sanskrit linguist), as well as constraints on vowel quality, vowel

length, and initial consonant obstruency. Wright et al. (2005) used a forced-choice

preference task to demonstrate that male names preferentially precede female names,

even when phonology and frequency are controlled for. Moreover, they showed that

male names tend to have “first-position” phonological properties and are on average

more frequent than female names. These offline tasks demonstrate that at least some

abstract constraints on ordering are synchronically cognitively active, but they do

not demonstrate whether these constraints are available during real-time language

processing or whether they are available only upon later reflection.

Prior to Siyanova-Chanturia et al.’s work, a small number of online investiga-

tions used recall tasks to simulate language production, with mixed results regarding

whether abstract ordering constraints are active in online production. Bock and

Warren (1985) did not find effects of concreteness in ordering preferences, although the

number of subjects and items in their task is small relative to the numbers we will use.

Kelly et al. (1986) and Onishi et al. (2008) did find effects of prototypicality. McDonald
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et al. (1993) found effects of animacy and prosody, but—in contrast to Pinker and

Birdsong—not word length. Thus the previous work provides weak evidence for some

effects of abstract ordering constraints in production. The existence of such effects in

comprehension has yet to be tested.

So based on our current knowledge, it is unclear whether to attribute the

processing differences found by Siyanova-Chanturia et al. to the frequency of people’s

direct experience with these specific expressions or to their abstract knowledge of

constraints on binomial ordering. Here we adopt a two-pronged approach to address

this question. We look for effects of abstract ordering constraints on novel binomial

expressions, thus establishing a baseline for such effects in the absence of direct

experience with the binomials in question. Additionally, we compare the processing of

these novel expressions with Siyanova-Chanturia et al.’s frequently attested expressions,

allowing us to assess the relative roles of abstract knowledge and direct experience in

the processing of attested expressions.

2.1.2 Our approach and its predictions

In this section, we describe in more detail the theoretical and methodological

approach that we will take to studying binomial expressions. We begin by identi-

fying three variables whose potential effects on processing we want to consider and

determining how to quantify each one.

Independent variables of interest

For a word pair (A,B), the first variable we consider is the overall frequency

of binomial expressions containing these elements—in other words, the combined
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frequency of the expressions “A and B” and “B and A”. To estimate the overall

frequency of people’s experience with these expressions, we can obtain frequency

estimates from large corpora. Frequency can thus be analyzed as a continuous variable

(generally measured in occurrences per million words). In this chapter we will treat

frequency dichotomously (unattested versus frequently attested), but we return to the

case of frequency as a continuous predictor in Chapter 6.

The next variable we consider is the relative frequency, or proportion of oc-

currences, of each order. Again, we can estimate this from corpus frequencies. The

relative frequency of “A and B” is the number of occurrences of “A and B” divided by

the overall frequency of (A,B) binomial expressions. It is thus a real number between

0 and 1, inclusive. The relative frequency of “B and A” is one minus the relative

frequency of “A and B”.

The final variable we consider is the ordering preference due to people’s abstract

knowledge of binomial ordering constraints. For a given order “A and B”, we want

a value between 0 and 1 corresponding to the probability of someone producing

that order based on their knowledge of the abstract constraints governing binomial

ordering. Unlike the previous two variables, we cannot directly estimate people’s

abstract knowledge from corpus frequencies. Instead, we will build a probabilistic

model based on that of Benor and Levy (2006) to give us these estimates. In this

paper, we make the simplifying assumption that abstract ordering preferences are

fixed for a given expression; that is, they do not depend on the local context, linguistic

or otherwise. This assumption would not always hold in a more naturalistic setting:

in the corpus presented in Chapter 3, we find that ordering preferences for 4% of

tokens are directly influenced by the local linguistic context, e.g. because one element
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in the pair was previously mentioned. However, our experimental materials (described

in Section 2.3) will as much as possible avoid local contexts that would influence

expression order, so we consider this a reasonable simplification for the present work.

Of these variables, the two that directly compete to explain binomial order-

ing preferences in online processing are relative frequency and abstract knowledge.

Crucially, although these two variables may be correlated, we assume that they are

not equivalent, as relative frequency can be influenced by factors beyond abstract

knowledge such as conventionalization and idiomaticity, famous quotations, or lan-

guage change that interacts with abstract ordering constraints (e.g. changes in word

meaning or pronunciation). For example, although abstract knowledge includes a

strong constraint to put men before women, ladies and gentlemen is strongly preferred

to gentlemen and ladies due to its conventionalized use in formal addresses. Discrep-

ancies between abstract knowledge and relative frequency are not necessarily limited

to such extreme cases as ladies and gentlemen but may exist in subtler ways for many

expressions in the language.

We further note that the roles of relative frequency and abstract knowledge

in determining ordering preferences may change depending on the overall frequency

of an expression: in the most extreme case, a never-before-encountered binomial by

definition cannot be influenced by its relative frequency in previous experience. Our

goal is therefore to measure the relative contributions of abstract knowledge and

relative frequency to binomial ordering preferences, and to determine whether and

how these change as a function of overall frequency.
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Dependent variables of interest

In this chapter, we consider two measures of people’s processing of binomial

expressions. First, we carry out a forced-choice preference experiment in which people

see both possible orders of a binomial expression and choose which they prefer. For

each expression, we can then calculate the proportion of people who prefer a given

order. Next, we measure reading times for expressions in each order as an online

measure of processing difficulty. We thus obtain two measures indexing degree of

human preference for one order over other. We can then test which combination of our

proposed independent variables—overall frequency, relative frequency, and abstract

knowledge—best predict the human data.

Predictions

Let us consider possible combinations of independent variables and what effects

they might have on the behavioral data.

Abstract knowledge only One possibility is that only abstract knowledge of

ordering constraints influences processing. This would be the case if a) there are no

effects of direct experience with specific binomial orders (in line with the traditional

words-and-rules theory of language processing), and b) there are online effects of

ordering constraints. In this case, we predict that abstract knowledge but not relative

frequency will have predictive power. More specifically, this theory predicts that

abstract knowledge will be the best predictor of the behavioral data, and that its

predictive power should not change as a function of relative or overall frequency.
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Relative frequency only If, as predicted by exemplar-based theories, there are

effects of direct experience with specific binomial orders, then relative frequency should

influence behavior for expressions that people have experience with, i.e. expressions

with nonzero overall frequency. If, furthermore, abstract ordering constraints are not

active in online processing, then only relative frequency should play a role. In this case

we predict that novel binomial expressions will show no ordering preferences because

people have no experience with them, but that relative frequency will be predictive of

the behavioral data for all attested binomials. Under such a theory, relative frequency

may improve as a predictor with increased overall frequency, but this would be due to

having more robust estimates of relative frequency with increased overall frequency,

not due to any change in the role of abstract knowledge.

Both abstract knowledge and relative frequency If exemplar-based theories

are correct that there are effects of direct experience, and moreover if abstract ordering

constraints are active in online processing, then we predict that both relative frequency

and abstract knowledge will be predictive of the behavioral data. For novel binomial

expressions, with which people lack direct experience, abstract knowledge will be

predictive. For attested expressions, some combination of abstract knowledge and

relative frequency will be the best predictor (as predicted by Bod et al., 2003; O’Donnell

et al., 2011; Post and Gildea, 2013).

To summarize, we investigate the roles of abstract knowledge and direct lin-

guistic experience in the processing of both novel and frequently attested binomial

expressions. We estimate people’s direct experience with expressions in each possible

order using corpus frequencies, and we estimate their abstract knowledge of ordering

preferences using a probabilistic model. We evaluate which combination of these best
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predicts behavioral data in a forced-choice preference task and a self-paced reading

task.

The organization of the remainder of this chapter is as follows: In Section 2.2,

we introduce the probabilistic model used to estimate abstract knowledge of binomial

ordering preferences. In Section 2.3, we describe the experimental materials used

in our behavioral experiments. In Sections 2.4 and 2.5, we discuss two experiments.

Section 2.6 gives a general discussion.

2.2 Probabilistic model of ordering preferences

We begin by developing a probabilistic model of binomial ordering preferences.

This model integrates the constraints on ordering that have been discussed in the

previous literature (as summarized by Benor and Levy, 2006), allowing us to approxi-

mate a native English speaker’s abstract of knowledge of ordering preferences for a

given binomial expression, independent of their direct experience with tokens of the

expression.

We develop a logistic regression model following Benor and Levy. For a given

word pair (A,B), this model predicts the probability that a binomial expression will

be realized as A and B. We train our model on Benor and Levy’s dataset, a random

selection of binomial expressions drawn from a collection of corpora.4 As Benor and

Levy note, conclusions drawn from token counts rather than type counts may be

skewed by the presence of a small number of very frequently attested frozen expressions

(e.g. back and forth, with a token count of 49). We thus train our model on binomial
4For reasons that could not be determined, the version of the dataset we had access to contained

689 binomial tokens, three tokens fewer than stated in Benor and Levy.
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types rather than tokens. This necessitated excluding expressions that appeared in

both orders (15 word pairs), leaving us with 379 binomial expression types.

Benor and Levy coded their dataset for twenty potential constraints on ordering

based on a thorough review of the previous literature. A constraint is said to be active

for a given word pair if it favors one order over another; not all constraints are active

for all word pairs. When constraints are active, they are binary-valued, favoring either

word A first or word B first. Specifically, constraints are coded as 1 when they favor

alphabetic order, −1 when they favor non-alphabetic order, and 0 when they are

inactive. Outcomes are coded as 1 if the binomial expression appears in alphabetical

order and 0 otherwise.

Benor and Levy did not do any model selection to determine which of their

constraints were good predictors, although their results show that some, particularly

among the nonmetrical phonological constraints, are very poor predictors. For our

model, we use a subset of their constraints. Our goal is to develop the best possible

model of binomial expression preferences that is nonetheless reasonably parsimonious

(in particular, does not include those constraints that are clearly poor predictors), but

it is not our goal to conclusively demonstrate that particular constraints are significant

predictors of preferences: rather, our goal is to develop an effective predictive model

that can be used to investigate the link between abstract knowledge of binomial

ordering preferences and behavioral responses in offline and online processing tasks.

We thus adopt relatively lenient criteria for inclusion of constraints in our final model.

From Benor and Levy’s twenty constraints, we begin by excluding two constraints

that are rarely active in the dataset, and all expressions in which they are active: the

Absolute Formal Markedness constraint (the two elements do not share a derivation,
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but one element is structurally more simple—i.e. contains fewer morphemes; active

once) and the Pragmatic constraint (ordering is directly influence by the local linguistic

context; active thrice). With the remaining constraints, we fit a logistic regression

model using the glm function in R (R Core Team, 2014). Each constraint was entered

as a predictor, with no interactions between constraints. We performed backwards

model selection, excluding constraints one at a time based on their Wald z statistic,

until all remaining constraints had p < 0.15.5 (Backwards model selection is anti-

conservative (Harrell, 2001), but this is not a problem in light of the desire for leniency

discussed above.)

Our final model contains seven constraints. All affected the model’s predicted

ordering preference in the direction expected by Benor and Levy or by the sources who

first proposed the constraint. See Table 2.1 for details of the constraint weightings.

The constraints included in our final model are (with examples of binomials that

satisfy each constraint drawn from the training data):

Formal markedness The word with more general meaning or broader distribution

comes first. For example, in boards and two-by-fours, boards are a broader class

of which two-by-fours is one member.

Perceptual markedness Elements that are more closely connected to the speaker

come first. This constraint encompasses Cooper and Ross’s (1975) ‘Me First’

constraint and includes numerous subconstraints, e.g.: animates precede inani-

mates; concrete words precede abstract words. For example, in deer and trees,
5We made one exception by keeping the Iconic Sequencing constraint in our model, although it

had a high p value. This constraint was never violated in our dataset, and estimation of the Wald z
statistic is unreliable in cases such as this with large estimated coefficients, due to inflated standard
error estimates (Agresti, 2002; Menard, 2002). A likelihood ratio test supports our keeping this
constraint in the model. (See Table 2.1.)
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deer is animate while trees is inanimate.

Power The more powerful or culturally prioritized word comes first. For example, in

clergymen and parishioners, clergymen have higher rank within the church.

Iconic/scalar sequencing Elements that exist in sequence should be ordered in

sequence. For example, in achieved and maintained, a state must be achieved

before it can then be maintained.

No final stress The final syllable of the second word should not be stressed. For

example, in abused and neglected, abused has final stress and should therefore

not be in the second position.

Frequency The more frequent word comes first, e.g. bride and groom.

Length The shorter word (measured in syllables) comes first, e.g. abused and

neglected.

2.2.1 Model validation

We validate the model by testing its predictions on the training data and on

the 42 attested binomials used by Siyanova-Chanturia et al. (2011).6 Constraint values

for the Siyanova-Chanturia et al. binomials were hand-coded as described in Section

2.3. The model correctly predicts the ordering preferences for 287/372 (77%) of the

training data and 30/42 (71%) of Siyanova-Chanturia et al.’s items, both significantly

greater than chance (50%) in a one-tailed binomial test (p < 0.001 and p < 0.01).
6The dataset on which we originally trained our model contained seven binomial expressions that

were also included in Siyanova-Chanturia et al.’s (2011) items. Therefore, after doing model selection
on the original dataset, we retrained our model, excluding these seven items from the training data.
All results, beginning with Table 2.1, are reported based on the retrained model.
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2.3 Experimental materials

Using our probabilistic model, we develop the linguistic stimuli used in both

experiments. Our stimuli consisted of 84 word pairs, with each pair producing two

possible binomial expressions (A and B or B and A). 42 of our items, taken directly

from Siyanova-Chanturia et al. (2011), are frequently attested. They range from

almost completely frozen (e.g. bread and butter) to relatively flexible (e.g. radio and

television/television and radio).

We further created 42 novel items which our model predicts to have strong

ordering preferences (e.g. bishops and seamstresses/seamstresses and bishops). To

ensure that speakers have no prior experience with these expressions, we consult the

nearly 500-billion-word Google books n-gram corpus (Lin et al., 2012). Our novel

binomials are not included in this corpus in either order.7

Our probabilistic model gives us an estimate of the direction and strength of

ordering preference for each item based on abstract ordering constraints. To generate

model predictions for these items, we must code them for the seven constraints

described in Section 2.2. Final Stress and Length were coded by either the first author

or a trained research assistant, both native speakers of American English. Frequency

estimates were obtained from the HAL database via the English Lexicon Project

(Balota et al., 2007).8 Coding the remaining four constraints requires real-world
7Levy et al. (2012) estimate that college-age English speakers have been exposed to no more than

350 million words of English in their lifetimes. To be included in the Google books corpus, an n-gram
must have appeared at least 40 times in their 468,491,999,592 word corpus. Thus our binomials can
have appeared at most 39 times in this corpus, and there is at most a roughly 3% chance that a
college-age speaker would have heard any given one of these expressions. Although our participants
are on average slightly older than college-age, we believe there is still an exceedingly small chance
that they will have substantial experience with any of these expressions.

8On three occasions, one word in a pair was not in the English Lexicon Project database
(groundskeeper, ninety-eighth, and wildfires). In these cases, the non-included word was assumed to
be the less frequent.
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Figure 2.1: Abstract knowledge model-predicted proportion and empirical
relative frequency of each attested binomial appearing in alphabetical order.
Abstract knowledge and relative frequency are significantly but not perfectly
correlated.

knowledge, and so they were coded twice, independently, by the first author and a

trained research assistant. Conflicting judgments were resolved through discussion;

with discussion, the two coders were always able to reach agreement.

As predicted in Section 2.1.2, our attested items show a significant but not

perfect correlation between model-predicted abstract ordering preference and relative

frequencies (computed from the Google n-grams corpus; Brants and Franz, 2006):

r(40) = 0.59; p < 0.0001. This relationship is visualized in Figure 2.1.

For our novel binomials, we chose expressions that our model predicts to have
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strong ordering preferences, with values less than 0.3 or greater than 0.7. As much as

possible, we chose expressions that minimized the correlations between constraints

(e.g. to dissociate length and frequency). A comparison of the profiles of constraint

activity for novel and attested items is given in A.1.3.

For all items, both novel and attested, we constructed a sentence context for

the binomial expression, e.g.:

(2.3) There were many bishops and seamstresses in the small town where I grew up.

(2.4) There were many seamstresses and bishops in the small town where I grew up.

Sentence structure was unrestricted, but the binomial expression was never in the

first two or the last four words of the sentence. Sentences were designed not to

introduce pragmatic constraints on binomial ordering: in particular, neither binomial

element (nor any word related exclusively or primarily to only one of the elements)

was mentioned in the sentence before the binomial occurred.

With these materials, we carried out two behavioral experiments, a forced-choice

preference experiment and a self-paced reading experiment.

2.4 Experiment 1: Forced-choice preference

2.4.1 Method

Participants

75 native English speakers (mean age=36 years; sd=14) participated. Partici-

pants were recruited through Amazon Mechanical Turk, restricted to people connecting

to the website from within the United States, and were paid 50 cents. Participants
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were asked to report their “Native language (what you learned to speak with your

mother as a child)”. Those who did not report English among their native languages

were excluded.

Procedure

The Amazon Mechanical Turk instructions directed participants to an external

website, where our experiment was presented using WebExp (Keller et al., 2009).

Participants first filled out a demographic questionnaire, then continued to the main

experiment. On each trial, participants saw one item embedded in sentence context,

in both possible orders, e.g.:

• There were many bishops and seamstresses in the small town where I grew up.

• There were many seamstresses and bishops in the small town where I grew up.

Participants were asked to choose which order “sounds more natural”. Each partici-

pant saw all 84 items. Which expression order was listed first was counterbalanced

across participants. Order of item presentation was randomized separately for each

participant. The experiment typically took 10-15 minutes.

2.4.2 Results

Before proceeding with multivariate analysis of the effects of abstract knowledge

and direct experience on ordering preference, we present a striking overall difference

between the distributions of preference strengths for attested versus novel binomials.

Figure 2.2 shows that ordering preferences are more polarized for attested than for

novel binomials (despite the fact that we selected our novel binomials to have extreme
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preferences); in other words, preferences are more consistent across subjects for the

attested expressions. We define a measure of extremity for each item as the difference

between its experimentally determined preference strength (i.e. proportion of times

preferred in alphabetical order) and 0.5. In a t-test, the attested items are significantly

more extreme than the novel (t = 8.31, p < 0.001). We discuss this issue further in

Sections 2.4.3 and 2.6.3.

Multivariate analysis

Next we analyze our data using mixed-effects logistic regression (Jaeger,

2008). Our dependent variable is the preferred order, coded as alphabetical or

non-alphabetical: alphabetical order is used as a neutral order because results of our

initial model selection—see Section 2.2—indicate that alphabetical order is not a

significant predictor of ordering preference. Our independent (fixed-effect) predictors

are:

• Type (attested/novel) is treatment coded with “attested” as the reference level,

i.e. the Intercept value applies to attested items, and this value is adjusted by

the Type:novel value for novel binomials. We predict no significant intercept (i.e.

attested binomials are not significantly more likely to be preferred in alphabetical

or non-alphabetical order, absent other factors), and no significant effect of type

(i.e. novel binomials are not significantly more or less likely to be preferred in

alphabetical order than attested binomials).

• Abstract knowledge is operationalized as our model’s predicted probability

(between 0 and 1) of the expression occurring in alphabetical order. We center

this predictor around 0.5. We nest the abstract knowledge predictor within type,
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Figure 2.2: Results of Experiment 1: Proportion of binomials occurring in
alphabetical order in Google n-grams corpus frequency (top) and subjects’
forced-choice preference judgments (middle/bottom). Dots show individual
binomial types, while lines show density estimates. In judgments, attested
binomials have more extreme preferences (i.e. more consistent across subjects)
than novel binomials, demonstrating a qualitatively similar distribution to
corpus frequencies.
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i.e. we fit separate parameters for the effect of abstract knowledge for novel and

attested binomials, allowing us to consider the effects of abstract knowledge

on each type independently. For each type, if abstract ordering constraints are

active in influencing offline judgments, then we predict a significant effect of

abstract knowledge.

• Relative frequency estimates are computed for attested binomials using the

Google n-grams corpus (Brants and Franz, 2006) as the frequency of “A and

B” divided by the frequency of “A and B” plus “B and A” (resulting in a value

between 0 and 1), and centered around 0.5. Relative frequency for all novel

binomials is set to 0 after centering. (Thus no interaction of relative frequency

with type is necessary.) If direct experience with attested expressions influences

offline judgments, then we predict a significant effect of relative frequency.

Following Barr et al. (2013), we use the maximal random effects structures for subjects

and items justified by the experimental design: by-subject and by-item intercepts,

and by-subject slopes for type, abstract knowledge, their interaction, and frequency.

Model results are given in Table 2.2.9 Significance levels for effects are reported

using the Wald z statistic and are confirmed using likelihood ratio tests. We see

a significant effect of abstract knowledge for both novel and attested expressions,

demonstrating that abstract ordering constraints are active in determining forced-

choice preferences for both binomial types. In a likelihood ratio test comparing this

model to a model with only an additive (non-nested) fixed effect of abstract knowledge,

we find no significant difference (χ2(1) = 1.63, p = 0.20); in other words, the effect of

abstract knowledge does not differ significantly between novel and attested expressions.
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Table 2.2: Model fit for results of Experiment 1. All VIF < 1.2.

Estimate Std. Error z value p value
Intercept -0.14 0.15 -0.98 0.33
Type: novel 0.25 0.19 1.32 0.19
Abs know (Type: attested) 2.32 0.56 4.12 .00004∗∗∗

Abs know (Type: novel) 1.45 0.35 4.11 .00004∗∗∗

Rel freq 6.18 0.49 12.55 < 2x10−16∗∗∗

The effect of abstract knowledge for novel binomials is displayed in Figure 2.3.

We also see a significant effect of relative frequency, demonstrating that direct

experience also plays a role in determining preferences for attested expressions. We

note that relative frequency is a stronger predictor than abstract knowledge, measured

in terms of larger regression coefficient estimate, larger z value, and larger change

in likelihood when removed from the model. The strong predictive power of relative

frequency is displayed in Figure 2.4.

2.4.3 Discussion

In this experiment, we set out to test whether abstract knowledge and direct

experience (specifically, relative frequency) predict ordering preferences in a forced-

choice preference task for both novel and frequently attested binomial expressions.
9The model presented here includes all the fixed-effect predictors and interactions that are of

crucial theoretical interest for the hypotheses we set out to test. In order to explore possible further
interactions between predictors, as well as possible changes in behavior over the course of the
experiment, we fit a mixed-effects logistic regression including as predictors all the previous predictors,
a trial order predictor, and all two-way interactions, using the MCMCglmm package in R (Hadfield,
2010). (The trial order predictor was not included in the original model presented here because
a main effect of trial order is implausible, as it would indicate a changing probability of prefering
binomials in alphabetical order over the course of the experiment. However, its interaction with
other predictors—in particular, abstract knowledge and relative frequency—is potentially of interest.)
No further interactions (beyond the type x abstract knowledge interaction included in the original
model) reached significance.
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Figure 2.3: Results of Experiment 1 (novel items): Ordering preferences for
novel binomials by model-predicted abstract knowledge. Each point represents
an item. x values are the abstract knowledge model’s prediction for how
often the item will appear in alphabetical order. y values are how often the
item was preferred in that order. Line shows best linear fit on the by-items
aggregated data. Abstract knowledge is a significant predictor of preferences
for novel expressions.
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Figure 2.4: Results of Experiment 1 (attested items), visualized as colors
overlaid on Figure 2.1. Each point represents an item. x values are the
abstract knowledge model’s prediction for how often the item will appear in
alphabetical order. y values are the item’s relative frequency of appearing
in that order. Points’ shading (white to black) shows often the item was
preferred in that order. Background shading (light to dark orange) shows the
best-fit model (Table 2.2) prediction for how often the item was preferred
in that order. Both relative frequency and abstract knowledge predict true
preferences, as depicted by the diagonal background gradient but relative
frequency is the stronger predictor, as depicted by the stronger vertical than
horizontal gradient.
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We demonstrate that preferences of both attested and novel expressions are affected

by abstract knowledge and that preferences of attested expressions are also strongly

predicted by relative frequency. This pattern of results supports a theory wherein

both abstract knowledge and direct experience play a role in processing. Moreover,

for attested expressions, we find that relatively frequency is a stronger predictor of

preferences than abstract knowledge, suggesting that processing of these expressions

relies more heavily upon direct experience than upon abstract knowledge.

Although the effect of abstract knowledge does not differ significantly across

binomial types, we do not think it is justified to draw strong theoretical conclusions

from this null result. As we will see in Section 2.5.2, abstract knowledge does interact

significantly with binomial type in Experiment 2. We defer further discussion of this

issue until Section 2.5.3.

We additionally find that forced-choice preferences are more extreme for attested

than for novel expressions; that is, attested expressions are more consistently preferred

in one direction than novel expressions. Taken at face value, this finding suggests

that increased overall frequency of an expression exaggerates or solidifies people’s

preferences. Another possibility, however, is that preferences for novel expressions

are underlying equally as extreme as those of the attested expressions, but that the

forced-choice judgement process for these items is noisier,10 making the resulting

preferences for novel expressions appear less extreme than they truly are. We will

return to this question in the general discussion.

One potential confound mentioned earlier is the role of local sentence context on

binomial order preferences. Although we tried to avoid biasing contexts in designing
10There are many reasons why this could be the case. For instance, when judging attested items,

participants may believe that there is a “right” answer and take care to give that answer, whereas
when judging novel items, they may put in less effort.
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our materials, it is always possible that some bias unintentially slipped through.

Thus we hasten to point out that even if such bias does exist within individual

sentences—i.e. the sentence context favors one order more than another, relative to

the binomials’ intrinsic ordering preference in a hypothetical neutral context—it would

not confound the results presented here. Specifically, because our dependent variable is

an alphabetical versus non-alphabetical preference, in order to bias our results the local

context biases would need to be systematically correlated with the alphabetical/non-

alphabetical preferences as given by our predictors of interest (abstract knowledge

and relative frequency). Since we have no reason to expect this to be the case, any

unintentional effects of local context will merely add noise to our estimates of ordering

preferences.

In the next experiment, we ask whether the patterns found in our forced-choice

preference experiment likewise hold in an online reading experiment.

2.5 Experiment 2: Self-paced reading

2.5.1 Method

Participants

400 native English speakers (mean age=34 years; sd=12) participated.11 Par-

ticipant recruitment was identical to Experiment 1, except that participants were paid

$1.00.
11Experiment 2 required substantially more participants than Experiment 1 because the self-paced

reading data is noisier than the forced-choice data, and because each subject saw approximately half
the items in Experiment 2 (compared to all the items in Experiment 1).
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Procedure

The experiment was presented within Amazon Mechanical Turk using flexspr

(Tily, 2012; previously used by Bergen et al., 2012; Singh et al., 2015). Using this

method online allows for collection of more data than would be possible in a laboratory

setting, and previous work has replicated multiple in-the-lab results with web-based

self-paced reading (Enochson and Culbertson, 2015). Participants first filled out a

demographic questionnaire, then read sentences in a self-paced reading paradigm:

sentences were presented one word at a time, and participants pressed a button to

advance to the next word. Reading times for each word were recorded. Participants

read three practice sentences, then continued to the main experiment.

Our materials consisted of the same 84 binomial expressions in sentence context

as used in Experiment 1, plus 84 unrelated filler sentences. Two stimulus lists

were constructed with items rotated and counterbalanced between lists so that each

participant only saw a given binomial in one of its two possible orders. Due to a

programming error, out of the 168 items in each list, each participant saw a random

selection of 80 items. Order of presentation was randomized separately for each

participant.

Presentation of each sentence was followed by a yes/no comprehension question.

Answers did not depend on the order of the binomial expression. The experiment

typically took about 30 minutes.
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Table 2.3: Comprehension question accuracy for Experiment 2. Novel and
attested items are divided into preferred/non-preferred order according to
abstract knowledge model predictions.

novel attested
preferred 0.97 0.97

non-preferred 0.97 0.96

2.5.2 Results

Comprehension question accuracy

Comprehension question accuracy is extremely high across all conditions. See

Table 2.3.

Multivariate analysis

We use regression analysis to compare abstract knowledge and relative frequency

as predictors of reading times, analagous to our analysis in Experiment 1.

We divide our experimental items into regions of analysis as shown below:

Prelim Word1 And Word2 Spill1 Spill2 Spill3

There were many
bishops

and
seamstresses

in the small . . .
seamstresses bishops

The Prelim region encompasses the entire beginning of the sentence up to the binomial

expression; all further regions are a single word. We analyze reading time data for

each trial summed over a six-word region spanning from Word1 through Spill3. By

summing across reading times for these regions, we take advantage of the controlled

properties of our stimuli: regardless of order of binomial presentation across conditions,

participants will have read the same group of words within the region being analyzed.
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(For more direct comparison with the previous literature, we present word-by-word

analyses of reading times in B.1.)

Specifically, we computed a summed reading time measure for each trial as

follows: we excluded all trials in which the reading time for any word was less than

100ms or greater than 5000ms (following Fine et al., 2013). To account for influences

of word length, as described by Ferreira and Clifton (1986), we then computed subject-

specific residualized reading times (regressed against word length) for each word from

the Word1 through Spill3 regions, using data from all non-sentence-final words in

non-practice trials.12 Summing the residuals for this six-word region gives us a residual

reading time for each trial. We performed outlier removal without regard to item

type or condition: we computed a grand mean and standard deviation and exclude

trials with summed times more than 2.5 standard deviations above or below the mean

(following Garnsey et al., 1997), resulting in a loss of 1.7% of data.

We analyze the data using a mixed-effects linear regression similar to that

used in Experiment 1. Our dependent variable is summed residual reading time. Our

independent (fixed-effect) predictors and their interpretations are identical to those

used in Experiment 1 (Section 2.4.2) with one addition:

• Trial order is the position in the experiment in which the given trial occurred.

As is common in reading experiments (e.g. Hofmeister et al., 2011; Fine et al.,

2013 and many others), we expect that subjects will read faster later in the

experiment due to practice effects.

In addition to our hypotheses regarding possible influences of abstract knowledge

and direct experience on reading times (which are the same as in Experiment 1), we
12For analyses using raw reading times, see Appendix B.2.
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additionally anticipate a possible statistically significant but theoretically uninteresting

main effect of binomial type because the two types contain different words in different

sentence frames, and thus one type may be read faster than the other. Following

Barr et al. (2013), we use the maximal random effects structure for subjects as

justified by the experimental design, namely an intercept and slopes for type, abstract

knowledge, their interaction, and relative frequency. We also include a by-subjects

random slope for trial order. For items, defined as unordered word pairs, we include

a random intercept, a random slope for trial order, and (in place of random slopes

for both abstract knowledge and relative frequency) a random slope for a binary

alphabetical/non-alphabetical factor, thus allowing for arbitrary item-specific ordering

preferences.

Model results are given in Table 2.4.13 Effects with t ≥ 2 are taken to be

significant. Positive coefficients indicate slower reading. We see a significant main effect

of type with novel expressions read slower, which we attribute to these expressions

containing less frequent words on average, in addition to being less frequent expressions

overall.

We do not find a significant effect of abstract knowledge for attested expressions,

suggesting that abstract ordering constraints are not active in the online processing

of these expressions. However, we do find a significant effect of abstract knowledge

for novel expressions. In a likelihood ratio test comparing this model to a model

with only an additive (non-nested) effect of abstract knowledge, we find a significant
13The model presented here includes all the fixed effect predictors and interactions that are of

crucial theoretical interest for the hypotheses we set out to test. In order to explore possible further
interactions between predictors, we fit a mixed-effects linear regression including as predictors all
these fixed-effect predictors and all two-way interactions using the MCMCglmm package in R (Hadfield,
2010). No further interactions (beyond the type x abstract knowledge interaction included in the
original model) reached significance.
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Table 2.4: Model fit for results of Experiment 2. Effects with t > 2 are taken
to be significant. All VIF < 1.7.

Estimate Std. Error t value
Intercept 196.34 26.04 7.54
Type: novel 195.17 25.77 7.57
Abs know (Type: attested) 13.88 23.14 0.60
Abs know (Type: novel) -48.73 18.02 -2.70
Rel freq -59.25 18.42 -3.22
Trial order -8.35 0.39 -21.24

difference (χ2(1) = 4.24, p < 0.04); in other words, the effect of abstract knowledge

differs significantly between novel and attested expressions, playing a significant role in

online processing for novel expressions only. We additionally find a significant effect of

relative frequency, demonstrating that higher relative frequency leads to faster reading

in the online processing of attested expressions.

Finally, we find a significant effect of trial order, with faster reading later in

the experiment. Results are visualized in Figures 2.5 and 2.6.

2.5.3 Discussion

We demonstrate for the first time that novel binomial expressions show online

effects of abstract ordering preferences. In contrast, reading times for frequently

attested binomial expressions are only influenced by relative frequency. These findings

imply a trade-off in online processing between reliance on abstract knowledge and

direct experience, where novel expressions must be processed on the basis of abstract

knowledge only, but highly frequent attested expressions can be processed primarily

with reference to previous direct experience.

Here we found a significant interaction of abstract knowledge with binomial
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Figure 2.5: Results of Experiment 2 (novel items): Reading time differentials
for novel binomials by model-predicted abstract knowledge. Each point
represents an item. x values are abstract knowledge model’s predictions
for how often the item will appear in alphabetical order. y values are the
differences between average summed residual reading times for the non-
alphabetical and alphabetical orders. Line shows best linear fit on the
by-items aggregated data. Abstract knowledge is a significant predictor of
reading times.
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Figure 2.6: Results of Experiment 2 (attested items), visualized as colors
overlaid on Figure 2.1. Each point represents an item. x values are the
abstract knowledge model’s prediction for how often the item will appear in
alphabetical order. y values are the item’s relative frequency of appearing in
that order. Points’ shading (white to black) shows the item’s true average
RT differential (the differences between average summed residual reading
times for the non-alphabetical and alphabetical orders). Background shading
(light to dark orange) shows the best-fit model (Table 2.4) prediction for RT
differential. Only relative frequency is a significant predictor of reading times,
as depicted by the strong vertical background gradient.
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type, such that abstract knowledge was significantly less active in determining reading

times for attested binomials than for novel binomials. In contrast, in Experiment

1, we found no such significant interaction. What is consistent across these two

experiments is that processing of attested expressions is more strongly influenced by

direct experience than by abstract knowledge. However, given the inconsistent results

concerning the interaction of abstract knowledge and binomial type, we cannot state

with confidence whether abstract knowledge is differentially active between novel and

attested binomials.

2.6 General discussion

We set out to investigate the roles of abstract knowledge and direct experience

in the processing of binomial expressions, asking whether binomial ordering preferences

are driven by constraints on the semantic, phonological, and lexical properties of words

in an expression, or by prior experience with the specific expression in question. Our

key findings are as follows. First, we demonstrated that abstract ordering constraints

are active in the comprehension of novel expressions in both an offline forced-choice

task and a online self-paced reading task. Second, we demonstrated that for frequently

attested expressions, effects of direct experience largely overwhelm abstract knowledge

in predicting behavioral data, both in the offline task and especially in the online task.

Our results support exemplar- or usage-based theories of language, which allow

for the storage and reuse of multi-word expressions. Specifically, our finding that

ordering preferences for attested binomial expressions are primarily driven by relative

frequency is evidence that the processing of these expressions makes use of holistic

multi-word mental representations. In contrast, a traditional words-and-rules theory



73

would predict that these expressions are generated compositionally each time they are

encountered, and that the ordering preferences of attested expressions, like those of

novel expressions, should stem from abstract ordering constraints rather than relative

frequency of direct experience.

Of the predictions made in Section 2.1.2, our results indicate that both abstract

knowledge and relative frequency play a role in the processing of binomial expressions.

Many patterns are possible for the manner in which these two knowledge sources trade

off as a function of the overall frequency of an expression: In one extreme, abstract

knowledge could apply only for expressions that have never before been encountered,

with relative frequency taking over as soon as any direct experience exists. In the other

extreme, abstract knowledge could apply in the vast majority of cases, with relative

frequency limited to playing a role only for the highest frequency items, such as those

used in our experiments. A middle ground position proposes a gradual switch from

reliance on abstract knowledge to reliance on relative frequency as overall frequency

increases.

We propose that both extremes are unlikely and that the middle position of

a gradual trade-off is the most likely. The first extreme is counterintuitive, since a

single encounter with an expression seems insufficient to thoroughly trump abstract

knowledge. The second extreme has been argued against by Arnon and Snider

(2010), who found frequency effects for multi-word expressions across a wide range

of frequencies. Their finding of frequency effects for low-to-medium frequency items

would not be predicted by a theory in which direct experience applies only to the

processing of extremely high frequency items. The gradual trade-off theory, on the

other hand, is supported by a wide variety of computational models.



74

2.6.1 Convergent evidence from computational models

Connectionist models

A similar trade-off has been demonstrated in connectionist models of language

learning in domains such as past-tense formation (Rumelhart and McClelland, 1986)

and grammatical structure (Elman, 2003), which learn both generalized patterns and

specific exceptions. These models learn to predict patterns within their training data

(e.g. Form the past tense by adding -ed). When new items are introduced, they are

at first treated accorded to the general patterns, but with further training, the model

can learn to treat certain items as exceptions.

These models have primarily been conceived as models of early language

acquisition and tested on frequent items (e.g. common verbs), where it can assumed

that by adulthood, most native speakers will have extensive experience with all the

items in questions, and will thus consistently recognize certain words as exceptions to

the general rules. However, their behavior on new items straightforwardly generalizes

to low frequency items that even adult native speakers would have relatively little direct

experience with, such as attested but low frequency binomial expressions, making the

prediction that these items could occupy a middle ground of partial reliance upon

both general patterns (i.e. abstract knowledge) and direct experience, even in a fully

developed adult grammar.

Exemplar-based computational models

A gradual trade-off is also predicted by exemplar-based computational models

of language (e.g. Bod, 1998; Bod et al., 2003; Bod, 2008; Johnson et al., 2007;

Demberg, 2010; O’Donnell et al., 2011). These models—which primarily focus on adult-
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like language representation, rather than acquisition—incorporate representations of

sentence fragments of varying sizes, thus allowing for the representation of holistic

multi-word expressions as well as the individual words and rules used to generate

such expressions compositionally. Within these models, multi-word expressions can

thus be parsed both through direct reuse and through compositional generation. The

probabilities assigned to these units—the holistic expressions, the individual words,

and the compositional rules—will collectively determine the relative likelihoods of reuse

versus regeneration. For more frequent expressions, the probability of reusing a holistic

unit will be higher, while for less frequent expressions, the probability of compositional

generation will be higher. These probabilities change gradually depending on the

frequency of a given expression as well as the frequencies of similar expressions. These

models thus also predict a gradual trade-off between reliance on abstract knowledge

for infrequent items and reliance upon direct experience for frequent items.

Nonparametric Bayesian models

The gradual trade-off theory is also supported by a nonparametric Bayesian

perspective (e.g. Goldwater et al., 2009; Xu and Tenenbaum, 2007), in which expecta-

tions are influenced by both a prior probability and the incoming data. In a Bayesian

model, when little data has been seen, expectations are driven by the prior probability.

As more data is seen, the data becomes increasingly influential, asymptotically ap-

proaching complete dominance. For binomial expressions, abstract knowledge can be

thought of as a prior probability for ordering preferences, absent any direct experience

with a given expression, and each direct encounter with an expression constitutes

further data. Under the Bayesian perspective, when one has little experience with an
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expression, expectations will be governed by abstract knowledge, but with increasing

experience, the relative frequency of ordering within the experienced data will be

increasingly dominant in determining expectations.

2.6.2 Advantages of our approach

While numerous models support our conclusions, the experiments presented here

crucially advance the state of our understanding beyond what was previously known by

providing a novel approach for using behavioral evidence, in conjunction with modern

corpora and multivariate statistics, to quantify the contributions of abstract knowledge

and direct experience. Our probabilistic model provides quantitative estimates for the

effects of abstract knowledge, while corpus frequencies provide estimates for direct

experience. Using multivariate regression modeling, we can directly compare the

predictive strength of these two influences on behavioral data such as the results

of our forced-choice and self-paced reading tasks. This approach allows us to move

beyond the previous modeling-based approaches, which focused on predicting corpus

data or language-wide trends. We can now investigate the trade-off between abstract

knowledge and direct experience using behavioral evidence.

Additionally, the statistical techniques employed here allow us to make quanti-

tative claims about the strength of reliance on both abstract knowledge and direct

knowledge. We have seen this in a limited way so far, as we demonstrated that

processing of frequently attested binomials is driven primarily by relative frequency,

and only to a lesser degree by abstract knowledge. We have also predicted that

there should be a gradual shift from reliance upon abstract knowledge to reliance

upon relative frequency estimates as overall frequency increases; however, we cannot
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conclude this directly from our current data because overall frequency has only been

explored as a dichotomous variable: either entirely novel or very frequent. In Chapter

6, we will look at an in-between zone of attested but not highly frequent expressions,

e.g. sunglasses and sunscreen/sunscreen and sunglasses (1/1000th the frequency of the

average attested expression in the current study). We predict that these expressions

should show noticeable effects of both abstract constraints and relative frequency.

Moreover, looking over a range of overall frequencies, we predict that we will see a

quantitative trade-off between reliance on abstract knowledge and reliance on direct

experience.

This approach to studying the trade-off between abstract knowledge and direct

experience generalizes beyond the study of binomial expression ordering preferences.

The cornerstone of this approach is that we are able to independently quantify the

contributions of direct experience with specific expressions and abstract knowledge in

the absence of direct experience. We propose that a combination of corpus frequencies

and probabilistic modeling can provide such estimates for a wide range of linguistic

constructions (e.g. the dative alternation [Bresnan et al., 2007] and adjective ordering

[Dixon, 1982; Truswell, 2009]) allowing us to ask broad questions about the trade-off

between compositional generation and the reuse of stored expressions in linguistic

processing. For example, to what extent are adjective ordering preferences due to

abstract rules (e.g. shape before color) versus to known collocations of highly frequent

adjective sequences? The methods we have developed here make these questions

accessible for future research.
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2.6.3 Further predictions about language structure

Our results additionally lead to predictions about language structure. Our

gradual trade-off theory predicts that items with higher overall frequency will be

more likely to have relative frequency preferences that contradict abstract knowledge

preferences. This prediction is analogous to the finding that more frequent verbs

are more likely to be irregular (Lieberman et al., 2007): in the case of high overall-

frequency items, people have enough exposure to learn idiosyncratic or abstract-

knowledge-violating preferences, but in the case of low overall-frequency items, people

have insufficient exposure to overcome their abstract knowledge. A further prediction

follows from the results of Experiment 1, in which we found that preferences for

attested items were more extreme, or polarized, than preferences for novel items.

Assuming that preferences for attested items are driven primarily by relative frequency,

this result predicts that as overall frequency increases, relative frequencies will become

more polarized.14

In Chapters 3 and 4, we will see these predictions are borne out in a corpus

analysis, which demonstrates that binomial expressions with higher overall frequency

have relative frequencies that deviate more from abstract knowledge—in particular,

by being more polarized. This finding in turn leads to further questions about the

historical trajectories of binomial expression ordering preferences, and the dual roles

of individuals’ language processing and cultural transmission in shaping language

structure (Kirby et al., 2007), which we address in Chapter 5. Thus the results

presented here additionally open the door to further investigation of the mutually
14We did not see the analog of this result in Experiment 2: reading time were not slower in the

dispreferred order and faster in the preferred order for attested than for novel expressions. Based on
the results of Chapter 4, we conclude that this is due either to noise or to floor/ceiling effects on
reading times.
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constraining processes of synchronic language processing and diachronic language

change.

Chapter 2, in full, contains material being prepared for publication in Morgan,

E., & Levy, R. (2015). Abstract knowledge versus direct experience in processing

of binomial expressions. The dissertation author was the primary investigator and

author of this paper.



Chapter 3

Creating a Corpus

To provide data for experiments in the remainder of this dissertation, we

created a new corpus of naturally occurring binomial expressions.

3.1 Identifying binomial expressions

To populate our corpus, we extracted all Noun-and-Noun binomials from the

parsed section of the Brown corpus—a 1 million word, hand-parsed, mixed-genre

corpus of English (Marcus et al., 1999)—using the following tregex (Levy and Andrew,

2006) search pattern:

/^N/=top < (/^NN/ !$, (/,/ > =top) . ((CC <: and > =top) .
(/^NN/ > =top)))

The pattern extracts all sequences of a noun followed by “and” followed by a noun,

with the entire sequence dominated by a noun phrase, except sequences preceded by

a comma (to rule out those conjunctions at the end of a list not using an Oxford

comma—it was manually verified that excluding sequences preceded by a comma

excluded only items at the end of lists). This search pattern is conservative in that

80
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it also identifies some additional sequences beyond those that meet our definition of

a binomial expression (e.g. sequences of the form “X and Y and Z”). However, as

described below, each binomial expression is manually inspected during coding for

semantic constraints, and so additional sequences can be excluded later. Proper names

were also excluded during coding.

3.2 Coding for generative constraints

Binomials were coded for generative constraints as described by Benor and

Levy (2006) but restricted to a subset of constraints based on the model selection

described in Chapter 2. Here we describe these constraints and how they were coded,

including example binomials in which each constraint applies, taken from the corpus.

Appendix C contains the full constraint coding guide used by the coders.

Three metrical constraints were considered:

Length The shorter word comes first, coded as difference in number of syllables, e.g.

food and shelter.

No final stress The final syllable of the second word should not be stressed, coded

as a categorical predictor. For example, in Japan and Holland, Japan has final

stress and should therefore not be in the second position.

Minimize Lapse Minimize unstressed syllables in a row, coded as difference in

number of unstressed syllables surrounding “and”, e.g. FARMS and HAYfields

preferred over HAYfields and FARMS.

Stress patterns were automatically extracted from the CMU Pronouncing Dictionary

(The Carnegie Mellon Speech Group, 2014). When multiple pronunciations were
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available for a given word, a native English speaking research assistant selected the

appropriate one. When no pronunciation was available, the research assistant manually

determined the stress pattern. Constraint values were computed automatically from

the given stress patterns.

The next constraint we consider is Frequency:

Frequency The more frequent word comes first, coded as difference in log frequency,

e.g. bride and groom.

Frequency was calculated from the Google Books corpus, counting occurrences of each

word from 1900 or later in all lowercase, all uppercase, and first letter only capitalized

(Lin et al., 2012).

Finally, the corpus was hand coded for semantic constraints. Semantic con-

straints were coded by two independent coders (drawing from the author and two

trained research assistants), and discrepancies were resolved through discussion, with

the opinion of a third coder if necessary. The constraints coded for were:

Formal markedness The word with more general meaning or broader distribution

comes first. For example, in boards and two-by-fours, boards are a broader class

of which two-by-fours is one member.

Perceptual markedness Elements that are more closely connected to the speaker

come first. This constraint encompasses Cooper and Ross’s (1975) ‘Me First’

constraint and includes numerous subconstraints, e.g.: animates precede inani-

mates; positive words precede negative words; concrete words precede abstract

words. For example, in attractions and repulsions, attractions are positive while

repulsions are negative.
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Power The more powerful or prioritized word comes first. For example, in clergymen

and parishioners, clergymen have higher rank within the church.

Iconic/scalar sequencing Elements that exist in sequence should be ordered in

sequence. For example, breakfast and dinner are generally eaten in that order.

Cultural centrality The more culturally central element should come first, e.g.

oranges and grapefruit.

Intensity The more intense element should come first, e.g. fear and relief.

Pragmatic The ordering is directly influence by the local context; for example, one

element has been mentioned previously. (Items for which this constraint is active

are excluded from further analysis.)

All semantic constraints were coded categorically. The constraints Cultural Centrality

and Intensity are additions to the repertoire of constraints proposed by Benor and

Levy (2006). They describe concepts included in Benor and Levy’s definitions of other

constraints, but it was decided to move these concepts into their own constraints

(rather than including them within the definitions of other constraints) based on

conflicting definitions discovered during the coders’ early experience, specifically

cases where the same type of semantic relationship could be classified under multiple

constraint definitions. Cultural centrality could previously fall under either Perceptual

markedness or Power. Intensity could fall under Power (predicting more intense

first), Iconic/scalar sequencing (in cases where elements exist on a scale of intensity,

predicting more intense second; e.g. sparks and flames), or Formal Markedness (in

cases where one item is a more intense subset of the other, also predicting more

intense second; e.g. apprehension and fear). For the type of corpus analyses we will
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be performing, it is better to err on the side of a proliferation of redundant constraints

rather than collapsing constraints that should be separate into one. In particular, in

our predictive models, it will always be possible for two constraints to be weighted

equally (e.g. if it turns out that we have separated what is underlyingly one constraint

into two), but to collapse two theoretically distinct constraints into one would prevent

us from ever distinguishing between them in our analyses.

Items for the which the Pragmatic constraint is active are excluded from

all further analyses. This is because our goal in future corpus analyses will be to

predict language-wide trends in binomial ordering preferences, but cases where the

Pragmatic constraint is active are cases in which the given ordering are due to highly

local influences, which would not generalize to other instances of the same binomial

expression. Including these instances in our future modeling would add unnecessary

noise.

3.3 Frequency counts

For each binomial type, we obtain the number of occurrences in each order

(“X and Y” and “Y and X”) in the Google Books ngrams corpus from 1900 and later,

counting all possible combinations of lowercase and capitalized versions of each word.

These values allow us to calculate both the overall (unordered) frequency of the

binomial type and the observed preference/relative frequency for each order.

The Google Books ngrams corpus only contains ngrams which have appeared

at least 40 times in the Google Books database. Because we are crucially interested

in the relative frequencies of a binomial’s two orders, it is important that we use

expressions with sufficient frequencies that we can be confident in these estimates.



85

For example, if an item appeared in the Google Books database 41 times in one order

and 39 times in the other, only the order that appeared 41 times would be included,

falsely implying that this binomial is entirely frozen, when in fact it is almost perfectly

balanced. To avoid this problem, for most of our analyses we consider only items with

at least 1000 total instances post-1900.

3.4 Totals

Our initial corpus contained 1280 binomial tokens. After exclusions, we were

left with 889 binomial expression types, of which 594 meet the criteria of having at

least 1000 total occurrences.



Chapter 4

Modeling idiosyncratic preferences:

How generative knowledge and

expression frequency jointly

determine language structure

Abstract

Most models of choice in language focus on broadly applicable generative

knowledge, treating item-specific variation as noise. Focusing on word order preferences

in binomial expressions (e.g. bread and butter), we find meaning in the item-specific

variation: more frequent expressions have more polarized (i.e. frozen) preferences. Of

many models considered, only one that takes expression frequency into account can

predict the language-wide distribution of preference strengths seen in corpus data.

Our results support a gradient trade-off in language processing between generative

86
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knowledge and item-specific knowledge as a function of frequency.

4.1 Introduction

A pervasive question in language processing research is how we reconcile

generative knowledge with idiosyncratic properties of specific lexical items. In many

cases, the generative knowledge is the primary object of study, while item-specific

idiosyncrasies are treated as noise. For instance, in modeling the dative alternation,

Bresnan et al. (2007) take care to demonstrate that effects of animacy, givenness, etc.

on structure choice hold even after accounting for biases of individual verbs. But the

verb biases themselves are not subject to any serious investigation. Here we present

evidence that patterns within the item-specific variation are meaningful, and that

by modeling this variation, we not only obtain better models of the phenomenon of

interest, we also learn more about language structure and its cognitive representation.

Specifically, we will develop a model of word order preferences for binomial

expressions of the form X and Y (i.e. bread and butter preferred over butter and

bread). Binomial ordering preferences are in part determined by generative knowledge

of violable constraints which reference the semantic, phonological, and lexical properties

of the constituent words (e.g. short-before-long; Cooper and Ross, 1975; McDonald

et al., 1993), but speakers also have idiosyncratic preferences for known expressions

(Siyanova-Chanturia et al., 2011; Morgan and Levy, 2015a). Binomial expressions are

a useful test case for modeling idiosyncracies because their frequencies can be robustly

estimated from the Google Books n-grams corpus (Lin et al., 2012). Here we will

demonstrate that explicitly modeling these expressions’ idiosyncrasies both produces

a better predictive model for novel expressions and also constrains our theory of these
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expressions’ cognitive representations.

Specifically, we identify two reasons why such a model is advantageous:

1. Models identify both rules and exceptions.

One intrinsic reason that modeling idiosyncrasies is advantageous is because

identifying exceptions can help identify rules. In a traditional linguistic setting (e.g.

identifying rules for past tense formation), we rely upon intuition to determine what is

the grammatical rule and which verbs should be treated as exceptions. In the case of

binomial expressions, we likewise expect there to be exceptions to the rules, particularly

for frequent expressions. For example, there is in general a strong constraint to put

men before women; however, ladies and gentlemen is preferred over the reverse due

to its conventionalized formal use. But compared with past tense formation, the

rules that determine binomial ordering are far more complex and gradient, such

that using traditional linguistic analysis to determine the full set of rules is not

viable. In this case, we require our model not only to identify what the rules are but

simultaneously to determine which expressions must be treated as exceptions. Having

such a model is useful for empirical cognitive science, e.g. for disentangling the effects

of people’s generative knowledge from effects of their item-specific linguistic experience

on language processing (Morgan and Levy, 2015a).

2. Models relate cognitive representations to language-wide structure.

As a further benefit, models can help us understand how structural properties

of the language relate to people’s cognitive linguistic representations. In particular, let

us look at the distribution of preferences for binomial expressions taken from a subset
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of the Google Books corpus (described later in Creating the Corpus.) Each binomial

can be assigned a preference strength corresponding to how frequently it appears

in alphabetical order, from 0 (always in non-alphabetical order) to 0.5 (perfectly

balanced) to 1 (always alphabetical). Binomials which always or nearly always appear

in one order are said to be frozen. The distribution of preference strengths is shown in

Figure 4.1. Preferences have a multimodal distribution with modes at the extremes as

well as around 0.5. This distribution poses a challenge to standard models of binomial

preferences. As we will show later, standard models predict only a single mode around

0.5. In other words, the true distribution of binomial expressions includes more frozen

binomials than standard models predict. As we develop a model that accounts for this

multimodal distribution, we will see that this language-structural fact puts constraints

on our theories of individuals’ cognitive representations of binomial expressions.

In the remainder of this paper, we first describe how we developed a new corpus

of binomial expressions. We then explore a variety of models with differing levels of

ability to model item-specific idiosyncrasies. Finally, we return to the issue of how

these models inform us about cognitive representations of language.

Histogram of binomial types

Proportion of occurrences in alphabetical order

D
en
si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

Figure 4.1: Binomial preferences are multimodally distributed in corpus
data
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4.2 Creating the Corpus

We extracted all Noun-and-Noun binomials from the parsed section of the

Brown corpus (Marcus et al., 1999) using the following Tregex (Levy and Andrew,

2006) search pattern:

/^N/=top < (/^NN/ !$, (/,/ > =top) .
((CC <: and > =top) . (/^NN/ > =top)))

This pattern finds all Noun-and -Noun sequences dominated by a Noun Phrase which

are not preceded by a comma (to exclude the final pair in lists of more than two

elements), a total of 1280 tokens.

Binomials were coded for a variety of constraints, originally described by Benor

and Levy (2006) but restricted to the subset determined to be most relevant for

predicting ordering preferences by Morgan and Levy (2015a):

Length The shorter word (in syllables) comes first, e.g. abused and neglected.

No final stress The final syllable of the second word should not be stressed, e.g.

abused and neglected.

Lapse Avoid unstressed syllables in a row, e.g. FARMS and HAY-fields vs HAY-fields

and FARMS

Frequency The more frequent word comes first, e.g. bride and groom.

Formal markedness The word with more general meaning or broader distribution

comes first, e.g. boards and two-by-fours.

Perceptual markedness Elements that are more closely connected to the speaker

come first. This constraint encompasses Cooper and Ross’s (1975) ‘Me First’ constraint

and includes numerous subconstraints, e.g.: animates precede inanimates; concrete

words precede abstract words; e.g. deer and trees.
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Power The more powerful or culturally prioritized word comes first, e.g. clergymen

and parishioners.

Iconic/scalar sequencing Elements that exist in sequence should be ordered in

sequence, e.g. achieved and maintained.

Cultural Centrality The more culturally central or common element should come

first, e.g. oranges and grapefruits.

Intensity The element with more intensity appears first, e.g. war and peace.

The metrical constraints, Length and No final stress, were automatically extracted

from the CMU Pronouncing Dictionary (2014), augmented by manual annotations

when necessary. Word frequency was taken from the Google Books corpus, counting

occurrences from 1900 or later. Semantic constraints were hand coded by two inde-

pendent coders (drawing from the first author and two trained research assistants).

Discrepancies were resolved through discussion.

For each binomial, we obtained the number of occurrences in both possible

orders in the Google Books corpus from 1900 or later. Items containing proper names,

those with errors in the given parses, those whose order was directly affected by the

local context (e.g. one element had been mentioned previously), and those with less

than 1000 total occurrences across both orders were excluded from analysis, leaving

594 binomial expression types.

4.3 Models

We will develop four models of binomial ordering preferences: a standard

logistic regression, a mixed-effects logistic regression, and two hierarchical Bayesian
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beta-binomial models. All are based on the idea of using logistic regression to combine

the constraints described above in a weighted fashion to produce an initial preference

estimate for each binomial. The models differ in whether and how they explicitly

model the fact that true preferences will be distributed idiosyncratically around these

estimates. The standard logistic regression includes no explicit representation of

item-specific idiosyncrasies. The mixed-effect logistic regression includes random

intercepts which account for item-specific idiosyncrasies, but which are constrained

to be distributed normally around the initial prediction. The two Bayesian models

assume that item-specific preferences are drawn from a beta distribution whose mean

is determined by the initial prediction. In the first of these models, the concentration

of the beta distribution is fixed, while in the second, it varies with the frequency of

the binomial in question.

4.3.1 Evaluation

One obvious criterion for evaluating a model is how well it predicts known

binomial preferences (i.e. the corpus data). For this, we report R2(X, X̂) as well

as mean L1 error, 1
N

ΣN
i=1 |x̂i − xi|, where x̂i is the model prediction for how often

binomial i occurs in a given order, and xi is the true corpus proportion.

In addition to considering model predictions for each individual item, we want

to consider the overall distribution of preferences within the language. As we will see, a

model can provide good predictions for individual items without correctly capturing the

language-wide multimodal distribution of these expressions’ preference strengths. Thus

our second desideratum will be the shape of the histogram of expression preferences.
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4.3.2 Logistic regression

Logistic regression is the standard for modeling syntactic alternations, both for

binomial expressions specifically (e.g. Benor and Levy, 2006; Morgan and Levy, 2015a)

as well as other syntactic alternations (e.g. Bresnan et al., 2007; Jaeger, 2010). Thus we

begin by constructing a baseline logistic regression model. Benor and Levy have argued

that one should train such a model on binomial types rather than binomial tokens

because otherwise a large number of tokens for a small number of overrepresented

types can skew the results. While agreeing with this logic, we note that to train only

a single instance of each type is to ignore a vast amount of data about the gradient

nature of binomial preferences. As a compromise, we instead train a model on binomial

tokens, using token counts from the Google Books corpus, with each token weighted

in inverse proportion to how many tokens there are for that binomial type, i.e. a type

with 1000 tokens will have each token weighted at 1/1000. In this way, we preserve the

gradient information about ordering preferences (via the diversity of outcomes among

tokens) while still weighting each type equally. The constraints described above are

used as predictors. Outcomes are coded as whether or not the binomial token is in

alphabetical order.

For this and all future models, predictions are generated for all training items

using 20-fold cross validation. Results for all models can be seen in Figure 4.2.

While the logistic regression model does a reasonable job of predicting preferences

for individual items, it does not capture the multimodal distribution of preference

strengths seen in the corpus data. We proceed to consider models in which item-specific

idiosyncrasies are modeled explicitly.
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4.3.3 Mixed-effects regression

By far the most common method in language modeling for accounting for item-

specific idiosyncrasies is mixed-effects regression models (Jaeger, 2008). Formally, this

model assumes that idiosyncratic preferences are distributed normally (in logit space)

around the point estimate given by the fixed-effects components of the regression

model.

We train a mixed-effect logistic regression on binomial tokens using the lme4

package in R. We use as predictors the same fixed effects as before, plus a random

intercept for binomial types. As described above, the fitted model now predicts

a distribution, rather than a single point estimate, for a novel binomial. To make

predictions for our (cross-validated) novel data, we sampled 1000 times from this

distribution for each item. The histogram in Figure 4.2(c) shows the full sample

distribution across all items. In order to generate point estimate predictions for

computing L1 and R2 (shown in Figure 4.2(b)), we take the sample median for each

item, which optimizes the L1 error.

Including random intercepts improves neither our point estimates nor our

language-wide distribution prediction. Apparently, the normal distribution of the

random intercepts is not well suited to capturing the true distribution of binomial

preferences. In particular, for a given item, the normality of random effects in logit

space leads to predictions that are skewed towards the extremities of probability space.1

1An alternative method of prediction for novel items would be to take the median random intercept
in logit space, i.e. to set all random intercepts to 0. This method yields results that are very similar
to—but all-around slightly worse than—the original regression model.
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4.3.4 Hierarchical Bayesian beta-binomial model

Having seen that normally distributed random intercepts do not adequately

capture the distribution of item-specific preferences, we introduce the beta distribution

as a potentially better way to model this distribution. The beta distribution, defined

on the interval [0, 1], has two parameters: one which determines the mean of the draws

from the distribution, and one which determines the concentration, i.e. whether draws

are likely to be clustered around the mean versus distributed towards 0 and 1. For

example, for a beta distribution with a mean of 0.7, a high concentration implies that

most draws will be close to 0.7, while a low concentration implies that roughly 70%

of draws will be close to 1 and 30% of draws will be close to 0. When we treat the

output of the beta distribution as a predicted binomial preference, a high concentration

corresponds to a pressure to maintain variation while a low concentration corresponds

to a pressure to regularize.

In order to incorporate the beta distribution into our model of binomial prefer-

ences, we combine the logistic regression and the beta distribution in a hierarchical

Bayesian model (Gelman et al., 2013), as shown in Figure 4.3. For each item, the

model determines a mean µ via standard logistic regression, using the same predictors

as before. The model also fits a concentration parameter ν. These two parameters

determine a beta distribution from which the binomial preference π is drawn. Observed

data is drawn from a binomial distribution with parameter π.

We fit this model using the rjags package in R (Plummer, 2003). After a

burn-in period of 2000 iterations, we run for 2000 more iterations sampling every 20

iterations. In order to predict novel data, we fix the point estimates for the regression

coefficients β̂ and the concentration parameter ν. We then sample 1000 draws of π
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for each item. As with the mixed-effects model, the histogram in Figure 4.2(c) shows

the full sample distribution, while point estimates (the sample median) are used to

calculate L1 error and R2 (Figure 4.2(b)).

This model performs better on L1 and R2 than the mixed-effects model, but

still worse than the initial logistic regression. The predicted histogram shows hints of

the multimodal distribution seen in corpus data, but is overall too flat.

4.3.5 Beta-binomial with a variable concentration parameter

A crucial fact that we have not taken into account in previous models is the

role of frequent reuse in shaping expressions’ preferences. In particular, the degree to

which an expression takes on a polarized preference may depend upon its frequency.

We build upon the beta-binomial model in the previous section by parameterizing the

concentration parameter by the frequency of the (unordered) binomial expression:

ν = exp(α + β · log(Mn)) (4.1)

where Mn is the total number of occurrences of binomial n in both orders. Training

and testing of the model are identical to above.

We find that β = −0.26 is significantly different from 0 (t99 = −94; p <

2.2× 10−16), indicating that the concentration parameter changes significantly as a

function of frequency: less frequent expressions have more dense distributions while

more frequent expressions have more polarized distributions, as shown in Figure 4.5.

We find that this model generates the best predictions of all our models, producing a

marginally significant improvement in both L1 (t593 = 1.86; p = 0.06) and R2 (by fold
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t19 = 1.76; p = 0.09) relative to the initial logistic regression. Moreover, it correctly

predicts the multimodal distribution of expression preferences.

4.4 Discussion

Overall, we found that all models made approximately similarly good best-

guess predictions for binomials they weren’t trained on, but the frequency-sensitive

beta-binomial model was clearly superior in predicting the language-wide distribution

of idiosyncratic binomial-specific ordering preferences. This model also indicates that

more frequent binomials are on average more polarized.

This modeling finding supports Morgan and Levy (2015a)’s claim that gener-

ative knowledge and item-specific direct experience trade off gradiently in language

processing, such that processing of novel or infrequent items relies upon generative

knowledge, with reliance upon item-specific experience increasing with increasing

frequency of exposure. Morgan and Levy support this claim with behavioral data,

showing that empirical preferences for binomials which are completely novel depend on

generative constraints while preferences for frequent expressions depend primarily on

frequency of experience with each order. Our modeling results augment this argument

by demonstrating that this trade-off is likewise necessary in order to predict the

language-wide distribution of preference strengths. In particular, we can conceive of

generative knowledge as providing a prior for ordering preferences. Under our final

model, the logistic regression component serves an estimate of generative knowledge,

which generates preferences clustered unimodally around 0.5. The amount of direct

experience one has with an expression then modulates whether it conforms to this

prior or whether it deviates. Items with low frequency have a high concentration: they
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maintain their variability and continue to contribute to the mode around 0.5. Items

with high frequency have a low concentration: they are more likely to regularize and

contribute to the modes at 0 and 1. Crucially, the inclusion of expression frequency

as a predictor of the concentration of the beta distribution is necessary in order to

achieve this effect in the model, demonstrating that expressions are indeed relying

differentially on generative knowledge versus direct experience depending on their

frequency.

This finding fits with previous models of cultural transmission in which, in

general, preferences gravitate towards the prior (Griffiths and Kalish, 2005), but with

sufficient exposure, exceptions can be learned (e.g. irregular verbs; Lieberman et al.,

2007). However, this raises a question which is not answered by our or others’ models:

why don’t all expressions converge to their prior preferences eventually? We present

two possibilities.

One possibility is that people’s probabilistic transmission behavior differs at

different frequencies. Convergence to the prior relies upon probability matching :

people must reproduce variants in approximately the proportion in which they have

encountered them. However, this is not the only possible behavior. Another possibility

is that people preferentially reproduce the most frequent variant they have encountered,

to the exclusion of all other variants, a process known as regularizing. If people’s

tendency to probability match versus regularize is dependent on the frequency of

the expression in question (with more regularizing at high frequencies), this could

produce the pattern of more polarized expressions at higher frequencies seen in our

data. Another possibility is that there is some other unspecified exogenous source of

pressure towards regularization, as for instance seems to be the case in child language
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acquisition (Hudson Kam and Newport, 2009). This pressure might be weak enough

that it is overwhelmed by convergence towards the prior at lower frequencies, but can

be maintained for items with high enough frequencies to have sufficient exposure to

deviate from the prior. Further work is necessary to disentangle these explanations.

In addition to contributing to our understanding of binomial expression pro-

cessing, we have demonstrated the value of modeling the distribution of idiosyncratic

preferences in two ways. First, it has improved our ability to predict preferences for

novel items, by better differentiating the rule-following training data from the excep-

tions. Second, this model turns an observation about language-wide structure (the

multimodal distribution of preferences) into a constraint on our theory of the cognitive

representation and processing of language (more polarization at higher frequencies).

Chapter 4, in full, is a reprint of the material as it appears in Morgan, E., &

Levy, R. (2015). Modeling idiosyncratic preferences: How generative knowledge and

expression frequency jointly determine language structure. In D. C. Noelle, R. Dale,

A. S. Warlaumont, J. Yoshimi, T. Matlock, C. D. Jennings, & P. P. Maglio (Eds.),

37th Annual Meeting of the Cognitive Science Society (pp. 1649-1654). Austin, TX:

Cognitive Science Society. The dissertation author was the primary investigator and

author of this paper.
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θβ

β̂ X̂ θν

µ ν

π

D
Mn

N

N : # unordered binomial types
Mn: Frequency of binomial n
X̂: Predictors (i.e. generative constraints)
β̂: Regression coefficients
θ: Uninformative priors

µ =
1

1 + e−X̂·β̂
ν ∼ exp(θν)
π ∼ Beta(µ, ν)
D ∼ Binomial(π,Mn)

Figure 4.3: Our initial hierarchical Bayesian beta-binomial model. The set
of nodes culiminating in µ implements a standard logistic regression. The
output of this regression determines the mean of the beta distribution (with
ν determining the concentration) from which π and finally the observed data
itself is drawn.

θβ

β̂ X̂ Mn

θα,β

µ ν

α, β

π

D

Mn

N

Figure 4.4: Hierarchical Bayesian beta-binomial model with variable con-
centration parameter
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Figure 4.5: Concentration parameter ν as a function of frequency with
95% confidence intervals. (Left) Parameterization given in Eq. 1. (Right)
Alternate parameterization with cubic splines, for comparison.



Chapter 5

Frequency-dependent regularization

in iterated learning

Abstract

Binomial expressions are more regularized—their ordering preferences (e.g.

“bread and butter” vs. “butter and bread”) are more extreme—the higher their frequency.

Although standard iterated-learning models of language evolution can encode overall

regularization biases, the stationary distributions in these standard models do not

exhibit a relationship between expression frequency and regularization. Here we

show that introducing a frequency-independent regularization bias into the data-

generation stage of a 2-Alternative Iterated Learning Model yields frequency-dependent

regularization in the stationary distribution. We also show that this model accounts

for the distribution of binomial ordering preferences seen in corpus data.

104
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5.1 Introduction

Languages are shaped both by the cognitive architectures of individual speakers

and by the process of cultural transmission that acts across generations. In this paper

we ask how these two factors jointly contribute to a key dichotomy in language

structure: the trade-off between broadly-applicable compositional knowledge and

knowledge of item-specific idiosyncrasies. Specifically, we take up the case of frequency

dependence in a type of regularization behavior we refer to as Entropy-Reducing- or

ER-regularization, in which the preference for a given form among multiple alternatives

becomes more extreme or polarized. Although ER-regularization is a well-attested

phenomenon in statistical learning, frequency-dependent ER-regularization is not.

Here we demonstrate that frequency dependence of ER-regularization can arise as

an emergent property of a frequency-independent regularization bias in language

production, combined with the bottleneck effect of cultural transmission.

Item-specific idiosyncrasies (i.e exceptions to the rules) are well known to

be frequency-dependent. For example, more frequent verbs are more likely to have

irregular conjugations (Lieberman et al., 2007). More recently, Morgan and Levy

(2015b) have demonstrated a different type of frequency-dependent idiosyncrasy at

the level of multi-word phrases, specifically binomial expressions of the form “X and

Y” (Cooper and Ross, 1975; Benor and Levy, 2006). Word order preferences for these

expressions are gradient; for example, “radio and television” is preferred to “television

and radio” in a 63 to 37 ratio, while “bread and butter” is preferred to “butter and

bread” 99 to 1 (Lin et al., 2012). These ordering preferences are partially determined

by productive, violable constraints, e.g. a constraint to put shorter words before longer

words. But these expressions are also subject to learned item-specific idiosyncrasies, e.g.
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despite a generally strong constraint to put men before women, “ladies and gentlemen”

is preferred over “gentlemen and ladies”. In addition to the possibility of the complete

reversal of compositional preferences, item-specific idiosyncrasies can also be gradient,

e.g. a binomial whose compositional preference predicts a 60/40 distribution might

instead be used in a 90/10 ratio. Morgan and Levy (2015b) showed that, as is

the case with irregular verbs, the distribution of idiosyncrasies in binomial ordering

preference is frequency-dependent: more frequent binomial expressions deviate more

from compositional preferences. In particular, more frequent binomials tend to have

more polarized preferences, i.e. they tend to be more ER-regularized.

5.1.1 What is regularization?

The term regularization has a complicated history in the literature on language

development and language evolution. In general, regularization refers to making a

language more systematic. However, systematicity can take multiple forms. For

example, it can involve making the language more consistent by more consistently

using one form over another (i.e. in a case of free variation, converging on a single form);

it can involve standarizing variation (i.e. moving from free variation to conditioned

variation); or it can involve switching a given item from an idiosyncratic pattern to a

pattern that better conforms to other items in the language (e.g. when an irregular

verb becomes regular).

While the idea of regularization as a mechanism of language change has a

long history, people have often not been consistent or specific with regards to what

form(s) of regularization they are discussing. Bickerton (1981) is the first author

generally cited with regards to the role of regularization in language change, although
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he doesn’t use the word regularization himself. He argues that children’s regularization

is an important mechanism of language change, particularly for forming consistent

languages out of pidgins—in particular, that children exposed to inconsistent input

data will draw upon innate knowledge of grammar to standardize the variation they

are exposed to. More recently, the term regularization has been popularized in large

part by Newport and colleagues (e.g. Newport, 1999; Hudson Kam and Newport, 2005).

Though disagreeing with Bickerton on the role of innate grammatical knowledge, they

broadly concur that children are rampant regularizers and that this regularization

is an important driver of language change. Newport and colleagues use the term

regularization to refer to multiple of the types of regularization described above. For

example, Hudson Kam and Newport (2005) give as one example of regularization an

adult second-language learner of German who produces the definite and indefinite

articles corresponding to one noun class consistently across all noun classes, i.e.

this speaker regularizes by using a single set of articles more consistently, but their

productions are not “regular” in the sense of conforming to the language’s rules. But

later on, they also use regularization to refer to an instance of creating conditioned

variation. In their Experiment 2, children are exposed to a novel language with nouns

that are inconsistently either marked with determiners or not. One child is described as

regularizing her noun production by introducing a conditioning factor: she consistently

produces nouns with determiners in transitive sentences and without determiners in

intransitive sentences. In this case, the relevant notion of regularization is not whether

a single a form is used more consistently, but rather whether the variation between

two forms is conditioned in a principled way.

In the case of binomial expressions, we see regularization in the form of more
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consistently using a single form over another (e.g. consistently using “bread and butter”

over “butter and bread”). We can formalize this notion of regularization as a reduction

in entropy of the probability distribution over alternates. Thus, to distinguish this

type of regularization from other uses of the same term, we will henceforth refer to

the phenomenon in question as Entropy-Reducing- or ER-regularization.

ER-regularization is a well-established phenomenon in statistical learning. In a

variety of tasks, both linguistic and non-linguistic, in which participants learn and

reproduce probability distributions over alternates, both children and adults tend to

ER-regularize their productions (Hudson Kam and Newport, 2005; Reali and Griffiths,

2009; Ferdinand et al., 2014). For example, Reali and Griffiths (2009) found that when

exposed to two labels for a novel object, subjects on average reproduced the more

frequent label even more frequently than that label was seen in training. Although

this tendency was weak, they demonstrated that even such a small bias towards

ER-regularization can have significant long-term impacts, as the bias acts across

successive generations to shape language over time.

Although some standard iterated-learning theories predict across-the-board ER-

regularization (in particular Reali and Griffiths, 2009), they do not predict frequency-

dependent ER-regularization. Thus Morgan and Levy’s finding is unexpected, and

poses a challenge to models of language evolution. In this paper, we review the key

data (Section 5.2) and show that standard iterated-learning models fail to account for

frequency-dependent ER-regularization (Section 5.3). We then show that frequency-

dependent ER-regularization emerges when the data-generation stage of a standard

iterated learning model is augmented with a frequency-independent regularization bias,

and that this augmented model accounts for the empirical distribution of binomial
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ordering preferences (Section 5.4). Section 5.5 concludes.

5.2 Dataset

We take advantage of a uniquely appropriate real-world data set: Morgan

and Levy (2015b)’s corpus of 594 binomial expression types hand-annotated for a

range of semantic, phonological, and lexical constraints known to affect binomial

ordering preferences, and with frequencies of each ordering extracted from the Google

Books corpus (Lin et al., 2012). Morgan and Levy also reported a model estimating

the quantitative compositional ordering preference for each binomial expression, as

expected on the basis of the above constraints (independent of actual occurrence

frequencies). The dataset and model thus give us three key measures for these

expressions:

• The overall (unordered) frequency of an expression: freq(“X and Y”)+freq(“Y

and X”)

• The observed preference for occurrence in a given order, expressed as a number

between 0 and 1: freq(“X and Y”)/(freq(“X and Y”)+freq(“Y and X”))

• The compositional preference for occurrence in a given order, expressed as a

number between 0 and 1, given by Morgan and Levy’s model.

Observed preferences are multimodally distributed, with modes at the extremes as well

as around 0.5 (Fig. 5.1(a)). Crucially, this pattern is not predicted by compositional

preferences, which predict only a single mode (Fig. 5.1(b)). This pattern reflects the

key generalization to be accounted for in the present paper: that expressions with
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Figure 5.1: Results from Morgan and Levy (2015). (a) Histogram of binomial
types’ observed preferences. (b) Histogram of binomial types’ compositional
preferences. (c) We define an expression’s extremity as the absolute difference
between its observed preference and 0.5. More frequent expressions have
more extreme/ER-regularized preferences; see Morgan & Levy (2015) for
alternative ways to quantify extremity that yield similar conclusions. Lower
panel shows density of overall frequency counts (scaled as described in Section
5.4.2). The distribution is non-Zipfian because the corpus is restricted to
binomial types with at least 1000 occurrences in the Google Books corpus to
ensure accurate observed preference estimates.

higher overall frequency diverge most from compositional preferences, and are more

ER-regularized (Fig. 5.1(c)).

5.3 ER-Regularization is Frequency-Independent in

Standard Iterated Learning

We use 2-alternative iterated learning (Reali and Griffiths, 2009; Smith, 2009) to

simulate the evolution of binomial expressions over generations of speakers. A learner

hears N tokens of a binomial expression, with x1 of them in a given order—we use

alphabetical order as a neutral reference order—and then infers a hypothesis θ1 ∈ [0, 1]

which is the proportion of time a binomial should be produced in alphabetical order.
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The learner then generates new data using θ1.

The prior probability P (θ1) of a binomial being preferred in a given order can

be expressed using the beta distribution. We can treat the compositional preference as

a form of prior knowledge of ordering preferences for a binomial. To incorporate this

prior knowledge, we use a parameterization of the beta distribution with a parameter

µ that determines the mean of draws and a concentration parameter ν that determines

how tightly clustered around the mean those draws are. (ν can also be thought of as

reflecting how confident in the prior we are, e.g. ν = 10 would indicate confidence

equivalent to having seen ten instances of a given binomial expression type before.)

Under this parameterization,

P (θ1) =
θµν−11 (1− θ1)(1−µ)ν−1

B(µν, (1− µ)ν)
(5.1)

where B is the beta function. Because µ represents compositional ordering preferences,

it varies for each binomial, and is set according to Morgan and Levy’s model. All

learners are assumed to have the same µ value for a given binomial. ν is constant for

all binomial expressions for all learners, and is a free parameter. Given θ1, data is

generated binomially:

P (x1|θ1) =

(
N

x1

)
θx11 (1− θ1)N−x1 (5.2)

We define a chain of learners under this model by initializing a single learner

with some hypothesis. This first generation produces N utterances according to the

distribution defined in Eq. 5.2. The learner in the next generation applies Bayes rule

and chooses a hypothesis from the resulting posterior distribution over hypotheses.
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This process continues iteratively.

Reali and Griffiths (2009) have demonstrated that ER-regularization occurs in

iterated learning models with sparse priors (i.e. those that favor hypothesis close to 0

and 1); given our parameterization of the beta distribution, these are hypothesis with

ν < 2. However, this ER-regularization is not dependent on the expression’s overall

frequency. We demonstrate this by modeling chains of learners with different values

of N . We model a single binomial expression with compositional preference µ = 0.6.

We explore different values of ν, specifically ν = 1 (a sparse prior) and ν = 10 (a

dense prior), and values of N = 10, 100, 200, 500. For each combination of ν and N ,

we approximate the distribution over expression preferences by running 100 chains of

learners for 500 generations each and taking the hypothesis of the final generation

in each chain, except in the N = 500, ν = 1 case where chains are run for 1000

generations each because convergence to the stationary distribution is slower for higher

values of N . (For all chains in all simulations in this paper, we initialize θ1 = 0.5 and

use MAP estimation to choose θ1 in each new generation. Results are qualitatively

similar under posterior sampling.) ER-regularization in the resulting distributions

does not depend on N (Fig. 5.2, dashed lines; the small apparent sensitivity to N for

a given value of ν is due to the finite number of chains used in the simulations.) The

number of times an expression is seen in each generation does not affect its ultimate

degree of ER-regularization.
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Figure 5.2: Simulated distribution of binomial ordering preferences for a
single expression type with µ = 0.6 in a standard 2-Alternative Iterated
Learning Model (dotted lines) and one with an explicit regularization bias in
data production of α = 1.1 (solid lines). Note that θ′1 = θ1 in the standard
model. ER-regularization depends upon N only in the model with an explicit
regularization bias.

5.4 Emergence of Frequency-Dependent ER-

Regularization in Iterated Learning

The standard 2-Alternative Iterated Learning Model does not predict

frequency-dependent ER-regularization. We now demonstrate that we can pre-

dict frequency-dependent ER-regularization by introducing a frequency-independent

regularization bias into our model. Under this model, frequency-dependent ER-

regularization is an emergent property of the interaction of the frequency-independent
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regularization bias with the bottleneck effect of cultural transmission.

We augment the learning and transmission process as follows. After hearing

data, the learner chooses a hypothesis θ1 as before, then applies a regularization

function to produce a new hypothesis θ′1, then generates data from θ′1.

To model this process, we need to choose a regularization function f : [0, 1]→

[0, 1] that captures the notion of ER-regularization. In particular, the values 0, 0.5,

and 1 should be fixed points—because 0 and 1 don’t permit further regularization, and

0.5 can’t be regularized without making an arbitrary choice about which direction to

regularize in—while values in (0, 0.5) should be pushed closer to 0 and values in (0.5, 1)

should be pushed closer to 1. Moreover, we would like the regularization function to

be parameterizable to control the degree of regularization, i.e. how strongly values are

pushed towards 0 and 1. To fit these criteria, a mathematically convenient function

to choose is the regularized incomplete beta function (equivalently, the cumulative

distribution function of the beta distribution), restricted to be symmetric such that it

has a single free parameter α:

f(x;α) =

∫ x
0
tα−1(1− t)α−1 dt

B(α, α)
(5.3)

As shown in Fig. 5.3, the bias parameter α controls strength of regularization. When

α = 1, this is the identity function, i.e. no explicit regularization is added. As α

increases, the regularization bias grows stronger.
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5.4.1 Results: Frequency-dependent ER-Regularization

We repeat the simulations from above using a non-trivial regularization bias

α = 1.1. (This value was chosen semi-arbitrarily to demonstrate the effects of a

small but non-trivial bias parameter. Section 5.4.2 shows the effect of manipulating

this parameter.) In these simulations, we see frequency-dependent ER-regularization

in the case with a dense prior (Fig. 5.2). Although the regularization bias itself is

frequency-independent, frequency-dependence emerges from the interaction of the

regularization bias with the process of cultural transmission: At lower frequencies,

there is not sufficient data for the regularization bias to overcome the prior. At

higher frequencies, the regularization bias becomes increasingly dominant as there is

increasingly enough data for the effects of this bias to be carried across generations.

Even a relatively weak bias (α = 1.1) can produce noticeable ER-regularization when

compounded across generations. However, the prior always continues to exert some

influence; thus, even the highest frequency expressions do not become completely

ER-regularized (i.e. they maintain some amount of variation).

Another linguistically accurate property of this model is that for sufficiently

high values of N , the distribution over hypotheses includes a mode on the opposite
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side of 0.5 from the prior. Thus the model correctly predicts that at high enough

frequencies, an expression can become idiosyncratically preferred in the opposite of its

compositionally predicted direction (as in “ladies and gentlemen”).

5.4.2 Results: Simulating corpus data

Having demonstrated that our augmented model produces frequency-depen-

dent ER-regularization, we now show that it additionally predicts the true language-

wide distribution of binomial preference strengths seen in corpus data. The target

distribution to be accounted for is shown in Fig. 5.1(a).

We take the true properties of each binomial expression in the corpus: its

compositional preference determines µ and its overall frequency determines N . We

scale overall frequency counts based on estimated lifetime exposure to 300 million

total words (Levy et al., 2012, footnote 10). The resulting distribution of values N is

shown in Fig. 5.1(c). For each binomial in the corpus, we approximate the stationary

distribution by modeling 10 chains of learners for 200 generations each and take the

hypothesis θ′1 of the final generation of each chain.

Our model has two free parameters, ν and α. We model the corpus data as

described above for a range of values of both of these parameters. As shown in Fig.

5.4, our model displays a trade-off between the prior and the regularization bias as

a function of these parameters. At a range of appropriately balanced values (e.g.

ν = 10, α = 1.1; ν = 15, α = 1.3; ν = 20, α = 1.5), our model correctly predicts the

multimodal distribution of corpus data as seen in Fig. 5.1(a).



117

α = 1 α = 1.1 α = 1.3 α = 1.5

ν = 10

D
en
si
ty

0.0 0.5 1.0

0
1

2

D
en
si
ty

0.0 0.5 1.0

0
1

2

D
en
si
ty

0.0 0.5 1.0

0
1

2

D
en
si
ty

0.0 0.5 1.0

0
1

2

ν = 15

D
en
si
ty

0.0 0.5 1.0

0
1

2

D
en
si
ty

0.0 0.5 1.0

0
1

2

D
en
si
ty

0.0 0.5 1.0

0
1

2

D
en
si
ty

0.0 0.5 1.0

0
1

2

ν = 20

D
en
si
ty

0.0 0.5 1.0

0
1

2

D
en
si
ty

0.0 0.5 1.0

0
1

2

D
en
si
ty

0.0 0.5 1.0

0
1

2

D
en
si
ty

0.0 0.5 1.0

0
1

2

Figure 5.4: Predicted distribution of θ′1. We see a trade-off between effects
of the prior and the regularization bias. When the prior is stronger (high ν,
low α), we see a unimodal distribution of preferences, similar to Fig. 5.1(b).
When the regularization bias is stronger (low ν, high α), we see too much
ER-regularization. At appropriately balanced values of α and ν, we see the
correct multimodal distribution of preferences as seen in corpus data (Fig.
5.1(a)).

5.5 Conclusion

We have demonstrated that a frequency-independent regularization bias in

data generation, combined with cultural transmission, can produce the pattern of

frequency-dependent ER-regularization of binomial ordering preferences seen in corpus

data. Cultural transmission creates frequency-dependence by introducing a bottleneck

effect (i.e. a limit on the number of tokens of a binomial seen by each generation)

that favors prior knowledge at lower frequencies while allowing the regularization

bias to be increasingly well transmitted at higher frequencies. This finding sheds

light on the origins of linguistic structure in two important ways: one, it confirms

earlier demonstrations of a bias to ER-regularize when learning stochastic linguistic

items. Second, it shows that this bias can apply equally across all levels of frequency,

but that the distribution of idiosyncrasy seen in the language emerges from the
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interaction of individuals’ cognitive biases with the bottleneck effect of cultural

transmission. Additionally, we have expanded the empirical coverage of iterated

learning models, showing that they can account not only for qualitative generalizations

in natural language and data from laboratory experiments, but also detailed patterns

of naturalistic corpus data. As we hope to have shown, binomial ordering preferences

are a particularly suitable test case for iterated learning models, at once theoretically

interesting, data-rich, and computationally tractable.

Chapter 5, in part, contains material being prepared for publication in Morgan,

E., & Levy, R. (2016). Frequency-dependent regularization in iterated learning. The

11th International Conference on the Evolution of Language. The dissertation author

was the primary investigator and author of this paper.



Chapter 6

Abstract knowledge versus direct

experience: Evidence of gradience

6.1 Introduction

As demonstrated in Chapter 2, processing of binomial expressions relies both

upon abstract generative knowledge and upon our previous direct experience with

particular expressions. In Chapter 2 we demonstrated a trade-off between these

knowledge sources as a function of expression frequency: novel binomial expressions’

ordering preferences were determined by abstract knowledge, while frequently attested

expressions’ preferences were determined largely by direct experience (with abstract

knowledge potentially still active but playing a smaller role). In the Discussion section,

we proposed that reliance upon these two knowledge sources varies gradiently as a

function of overall expression frequency; however, the experiments presented there

only tested the far ends of the overall frequency spectrum. Here we explicitly test

the gradience of this trade-off by looking at expressions that continuously span the

119
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spectrum of overall frequency from novel to highly frequent.

6.2 Experimental Materials

To develop experimental materials, we chose binomial expressions from the

corpus described in Chapter 3. As before, we can generate estimates of abstract

knowledge of ordering preferences for these expressions using probabilistic modeling,

and estimates of relative frequency can be collected from corpus frequencies.

Our primary goal in choosing materials for this experiment was to choose

items that continuously spanned the possible range of overall frequencies. As a

secondary goal, we wanted to choose a set of items for which abstract knowledge

model predictions and relative frequencies were as uncorrelated as possible, in order

to maximize statistical power for detecting independent effects of these two knowledge

sources. (As will be explained later, this second goal was not achieved, but it turned

out not to be a problem.) To achieve these goals, we divided the overall frequency

space spanned by our corpus items into eight equally sized bins and chose six items

from each bin for inclusion in the experiment. The items in each bin were chosen by

pseudorandomly sampling items from each bin and selecting a set that minimized the

absolute value of the correlation between abstract knowledge and relative frequency,

subject to the following constraints:

• No word was included in more than one item.

• We must be able to write a natural-sounding sentence for the item. (This

constraint is necessary because in a corpus of naturally occurring exemplars,

some items will of course be very context-specific and would sound bizarre in an
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experimental context.)

However, after running the experiment, we discovered that the items had been chosen

using a version of our abstract knowledge model with a bug that substantially changed

the model predictions. The data as presented here have been reanalyzed with a

corrected version of the model. The existence of the bug during model selection means

that the selection of items was essentially random with respect to the second stated

goal (of dissociating abstract knowledge and relative frequency). Fortunately, as we

will see below, we appear to nonetheless have had sufficient statistical power to detect

the relevant effects. The distribution of these items is visualized in Figure 6.1.
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Figure 6.1: Distribution of abstract knowledge model predictions and relative
frequencies of experimental items, excluding 6 novel items (for which relative
frequencies cannot be calculated). x values are the abstract knowledge
modelÕs prediction for how often the item will appear in alphabetical order.
y values are how often the item was preferred in that order. Shading shows
overall frequencies.

As before, we constructed sentence contexts for each item. Abstract knowl-

edge model predictions were obtained from the final model described in Chapter 4

(specifically, the value π from the beta-binomial model with a variable concentration

parameter), and relative frequencies were obtained from the Google Books ngram

corpus as described in Chapter 3.
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With these materials, we carried out a forced-choice preference experiment,

analogous to Experiment 1 in Chapter 2. No filler items were included (again analogous

to Experiment 1 in Chapter 2).

6.3 Methods

6.3.1 Participants

88 native English speakers (mean age=32 years; sd=10) participated. Partici-

pants were recruited through Amazon Mechanical Turk, restricted to people connecting

to the website from within the United States, and were paid 75 cents. Participants

were asked to report their “Native language (what you learned to speak with your

mother as a child)”. Those who did not report English among their native languages

were excluded.

6.3.2 Procedure

The procedure was identical to that of Experiment 1 in Chapter 2. The

experiment typically took 10-15 minutes.

6.4 Results

We begin by analyzing the data by dividing the experimental items into bins by

overall frequency. We predict that looking across the bins, we will see a gradual shift

from reliance upon abstract knowledge in the novel and low frequency bins, through

reliance upon both abstract knowledge and relative frequency in the medium frequency
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bin, to reliance primarily upon relative frequency in the high frequency bin. Next we

will do an all-items analysis by combining all items in a single regression model in

which we test for the interaction of overall frequency with both abstract knowledge

and relative frequency. We predict a negative interaction with abstract knowledge

(indicating that abstract knowledge is decreasingly important with increasing overall

frequency) and a positive interaction with relative frequency (indicated that relative

frequency is increasingly important with increasing overall frequency).

6.4.1 Binned analyses

We divide items into bins as follows: The 6 entirely novel items constitute

the Novel bin. The remaining items are split evenly into low-, medium-, and high-

frequency bins of 14 items each. Within each bin, we analyze the data using mixed-

effects logistic regression, analogous to that used in Experiment 1 of Chapter 2. Our

dependent variable is the preferred order, coded as alphabetical or non-alphabetical.

Our independent (fixed-effects) predictors are abstract knowledge model predictions

and relative frequency, both centered around 0.5. (Relative frequency is not included

in the analysis of novel items because it is not defined for these items.) We predict

that looking across bins from novel through high-frequency, abstract knowledge will

decrease in strength as a predictor of preferences, while relative frequency will increase.

Following Barr et al. (2013), we use the maximal random effects structures for subjects

and items justified by the experimental design: by-subject and by-item intercepts,

and by-subject slopes for abstract knowledge and relative frequency.

Model results for the predictors of interest are given in Table 6.1 and visualized

in Figures 6.2 and 6.3. For novel items, we see a significant effect of abstract knowledge
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Table 6.1: Coefficient estimates for key predictors in binned regression
analyses.

Novel LF MF HF
Coeff. p Coeff. p Coeff. p Coeff. p

Abs.know. 5.58 0.002 2.42 0.02 1.69 0.39 0.45 0.82
Rel.freq. NA NA 0.98 0.01 3.327 0.003 6.48 < 0.0001

on preferences. For low-frequency items, we see significant effects of both abstract

knowledge and relative frequency, with abstract knowledge being the stronger predictor,

indicated by its larger coefficient size. (Note that we can directly compare coefficient

estimates for the two predictors because they are both on the [0, 1] scale.) For

medium frequency items, we see a significant effect of relative frequency on preferences.

Although the abstract knowledge predictor does not reach significance in this analysis,

its coefficient has nontrivial magnitude; we suspect that abstract knowledge continues

to play a role in determining preferences for these items but that it does not reach

significance in this analysis due to lack of power. For high frequency items, relative

frequency is a significant predictors of preferences, with little evidence of any effect of

abstract knowledge.

Comparing across bins, we see that as overall frequency increases from novel

through high-frequency items, the role of abstract knowledge decreases, indicated

by decreasing coefficient estimates and increasing p values. At the same time, the

role of relative frequency increases, indicated by increasing coefficient estimates and

decreasing p values.
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Figure 6.2: Ordering preferences for novel subset of items by abstract
knowledge model predictions. x values are the abstract knowledge modelÕs
prediction for how often the item will appear in alphabetical order. y values
are how often the item was preferred in that order. Line shows best linear fit
on the by-items aggregated data. Abstract knowledge is a significant predictor
of preferences for these expressions.

6.4.2 All-items analysis

Next we analyze all items together, again using mixed-effects logistic regression.

Again, our dependent variable is preferred order. Our independent variables are:

• Abstract knowledge (as defined above; centered around 0.5)

• Relative frequency (as defined above; centered around 0.5, with values for

novel items set to 0 after centering)

• Overall frequency is estimated from the Google Books ngrams corpus as

described in Chapter 3. The predictor is logged and standardized. We include

two-way interactions of overall frequency with both abstract knowledge and

relative frequency.



126

Table 6.2: Coefficient estimates for key predictors in the all-items regression
analysis.

Predictor Coeff. p
Abs.know. 2.00 0.01
Rel.freq 3.06 < 0.001
Overall freq*Abs know -0.59 < 0.001
Overall freq*Rel freq 0.61 < 0.001

Following Barr et al. (2013), we use the maximal random effects structures for subjects

and items justified by the experimental design: by-subject and by-item intercepts,

and by-subject slopes for abstract knowledge, relative frequency, overall frequency,

overall frequency by abstract knowledge, and overall frequency by relative frequency.

Model results are given in Table 6.2. We see a significant negative interaction

of overall frequency with abstract knowledge— indicating that as overall frequency

increases, abstract knowledge plays less of a role in determining preferences—and a

significant positive interaction of overall frequency with relative frequency—indicating

that as overall frequency increases, relative frequency plays a greater role in determining

preferences.

6.5 Discussion

In this chapter we have shown evidence for the gradience of the trade-off

between abstract knowledge and direct experience in processing of binomial expressions.

Specifically, we have demonstrated using a forced-choice preference task that as

overall frequency increases, abstract knowledge gradiently decreases as a predictor of

expressions’ preferences and relative frequency gradiently increases. Moreover, we have
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replicated the results of the experiments presented in Chapter 2, again demonstrating

that preferences for novel items depend on abstract knowledge, while preferences for

highly frequent items depend primarily on direct experience.

We propose that this gradient trade-off provides a rational solution for the needs

for both robustness and efficiency in language processing. Abstract knowledge provides

robustness, allowing listeners to process never-before- or rarely-seen expressions. But

the additional ability to rely upon direct experience allows the language processor

to become appropriately specialized for higher frequency inputs, thereby increasing

efficiency. In other words, the trade-off between these two knowledge sources allows the

language processor to strike a balance between broadly applicable abstract knowledge

and highly specific knowledge of individual items.

In future work, we will also test the gradience of this trade-off using self-paced

reading.
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Chapter 7

Conclusion

In this dissertation I have argued that binomial expressions are processed

using a combination of generative and item-specific knowledge which varies gradiently

depending on the expression’s frequency. This processing strategy both is motivated

by and serves to perpetuate a frequency-dependent balance of compositionality and

idiosyncrasy in binomial ordering preferences, wherein more frequent expressions are

gradiently more idiosyncratic—in particular, tending to be more regularized. This

gradient frequency-dependent trade-off between generative and item-specific knowledge

is rationally predicted as a consequence of the fact that speakers have finite linguistic

experience.

In addition to informing us about properties of binomial expressions specifically,

the results presented here generalize to promote broader claims about the trade-off

between generativity and item-specificity in language generally. In particular, using

a multi-word construction as a test case provides a stronger test for the use of item-

specific knowledge in language processing generally, as compared to a single-word

case such as the verb inflections described in Chapter 1. Furthermore, I hope to
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have demonstrated the utility of conceiving of idiosyncrasy itself as a gradient rather

than binary phenomenon. In the case of binomial expressions, a gradient notion of

idiosyncrasy allows us to recognize and quantify regularization as a form of idiosyncrasy;

in contrast, a binary vision would recognize idiosyncrasy only in expressions whose

observed preferences are completely opposite their compositional preferences, and

would therefore not acknowledge the frequency-dependence of idiosyncrasies in binomial

ordering preferences. Likewise, I propose that this notion of gradience extends to

other phenomena we have discussed in passing, such as subcategorization preferences

for verbs that participate in the dative alternation, or selection of prepositions in

collocations such as dealing with and suitable for.

In the remainder of this Conclusion chapter I take up two broad questions

relating to but extending beyond the current work: why languages have idiosyncrasies,

and how generalization from specific items to abstract knowledge occurs. Although

these broad questions go beyond the scope of the current work, I speculate about how

the work presented in this dissertation suggests new avenues for approaching these

questions in the future.

7.1 Why do languages have idiosyncrasies?

I now return to a question raised in the Introduction: why should there be

idiosyncrasies in language at all? I have argued, in chicken-and-egg fashion, that

the balance of generative and item-specific knowledge in language processing, and

the balance of compositionality and idiosyncrasy in language structure, are mutually

promoting. However, another stable state of affairs would be for language structure and

processing to both be entirely compositional. If language contained no idiosyncrasies,
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all language processing could be purely generative, and in turn no idiosyncrasies

would be introduced. In fact, this state of affairs is predicted by iterated learning

models without a regularization bias, in which the basic result is convergence to the

prior (i.e. to purely generative knowledge). The argument I have thus far provided

against a purely compositional language is the existence of a regularization bias. Here

I address two further questions: First, why would there be a regularization bias in

language production? And second, what sources beyond this regularization bias might

additionally lead to or promote idiosyncrasy in language?

7.1.1 Whence the regularization bias?

ER-regularization is rational for statistical tasks in which the goal is to maximize

one’s chances of correctly guessing an outcome. For example, if a coin comes up heads

70% of the time, someone who guesses heads on every flip will be right 70% of the time,

whereas someone who guesses heads on 70% of flips and tails on 30% will be right only

58% of the time (0.7 ∗ 0.7 + 0.3 ∗ 0.3 = 0.58). How does this logic translate to the task

of language production? If a speaker believes there is a single best order for a given

binomial—for example, an order that will maximize the chance of their meaning being

understood—then applying a regularization bias to their productions increases their

probability of producing the best order. (For more on this topic, see the literature

on probability matching versus maximizing in decision making, e.g. Gaissmaier and

Schooler, 2008; Koehler and James, 2009; Shanks et al., 2002; Vulkan, 2000.)

However, the result presented in Chapter 5 relies not only on the fact that

speakers apply a regularization bias to their productions, but moreover on the fact that

learners do not take this regularization bias into account in learning (i.e. they do not
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reverse engineer the regularization process to derive what the speaker’s hypothesized

binomial expression preference was before regularizing). Although listeners are able

to reverse engineer aspects of language production in some circumstances (Goodman

and Stuhlmüller, 2013; Frank and Goodman, 2014), various factors might prevent

this reverse engineering in the case of binomial expression preferences. In particular,

because the amount of regularization applied by each individual speaker/generation

is very small, this regularization may be undetectable and therefore go unaccounted

for by learners. Alternately, if learners are attempting to take into account speakers’

regularization but have some uncertainty about how much regularization is occuring,

they may be erring on the side of assuming too little regularization, producing

qualitatively similar results to if they assumed no regularization at all.

7.1.2 What other sources might create idiosyncrasy?

In addition to the regularization bias discussed above, many other (non-exclu-

sive) explanations are possible for the existence of idiosyncrasies in language, spanning

many different aspects and levels of description of language. Mechanistically, we

know that some idiosyncrasies arise from historical language change, such as forms

that follow what was once a productive rule but is no longer. From a functional

perspective, such idiosyncrasies may improve efficiency in language: a stem-changing

irregular verb is the same length in the past tense as in its base form, whereas a

regular -ed past tense is longer than its base form. Given that irregular verbs tend

to have high frequency, the preservation of shorter past tense forms for this high

frequency verbs may promote efficient communication by assigning shorter forms to

higher predictability meanings and longer forms to lower predictability meanings, as
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predicted by Zipf (1949). Idiosyncrasies may also be introduced by the process of

language acquisition: Tomasello (2000), Pine and Lieven (2008) and many others

have argued that young children’s language processing, even more so than adults’, is

driven by item-specific knowledge, with productive generative rules emerging later

in acquisition. If knowledge of some early acquired items becomes fixed before

generative knowledge language is even fully available, and if these items continue to be

processed primarily via item-specific knowledge even into adulthood rather than being

reanalyzed via generative knowledge later on, then the process of acquisition may

introduce idiosyncrasies via these early acquired items. These are just a few possible

explanations for idiosyncrasy in language; there are undoubtedly many others. This

dissertation makes the prediction that regardless of the source of idiosyncrasy, it will

be gradiently apparent in language structure as a function of item frequency: lower

frequency items are processed primarily via generative knowledge and thus cannot

retain idiosyncrasies across generations, but the more experience one has with an item,

the more reliably its idiosyncratic usage can be stored and reproduced.

7.2 How does generalization occur?

Finally, we turn to one of the biggest questions in language research: how

does generative linguistic knowledge arise from generalization over knowledge of

specific items? Taking for granted that generative knowledge does in fact consist of

generalizations from known items, are those generalizations made in advance and

stored in abstract symbolic form, or does use of generative knowledge actually consist

of making on-the-fly comparisons to large numbers of known related items?

For example, suppose one wants to produce the binomial expression bread and
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Marmite/Marmite and bread, and let us assume that this is a novel item for the speaker.

An abstract symbolic approach to generalization would predict that the speaker has

a known repertoire of abstract ordering constraints—much like we have listed in

Chapters 2-4—each of which can be applied to the novel binomial and then combined

to produce the speaker’s generative preference (presumably bread and Marmite). An

online generalization approach would not posit the existence of such a repertoire of

ordering constraints, but rather would claim that a potential utterance such as bread

and Marmite (or Marmite and bread) is generated via on-the-fly comparison to all

other known expressions in the language—weighted somehow by similarity—and that

bread and Marmite will end up being preferred over Marmite and bread because it

is more similar to known expressions (on dimensions such as those captured by our

abstract ordering constraints, but without those abstract constraints having been

explicitly represented). A further difference between these two approaches is that the

abstract symbolic approach predicts that constraint weights are fixed across items:

the “Condiment rule” (i.e. main dishes should come before condiments, a subconstraint

of the Cultural Centrality constraint) will apply equally to bread and Marmite or

toast and Marmite. In contrast, the online generalization approach predicts that novel

binomial ordering preferences will be more strongly determined by the preferences

of other expressions that they most closely resemble, thus bread and Marmite might

be more strongly preferred over Marmite and bread than toast and Marmite is over

Marmite and toast due to its stronger resemblance to high frequency frozen expressions

such as bread and butter and bread and jam.

In the spirit of this dissertation, I propose a gradient position on this question as

well. Highly frequent, contextually diverse patterns (e.g. basic syntactic combinatorial
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operations along the lines of S→NP VP) are likely to be abstracted in advance

away from specific items (such that a simple SVO sentence need not be processed

via comparison to every other SVO sentence in one’s previous experience). But if

these abstractions themselves are built on the basis of their frequent use, then rarer

constructions, which speakers have less experience generalizing about, are more likely

to be processed via online analogy to known items. For example, a question such as

“got cookies?” is unlikely to be processed via a pre-existing VO-question abstraction,

since such questions are rare, but instead might be processed via direct analogy to

the famous “got milk?” quote that it alludes to.1 In between, we might find examples

like bread and Marmite which, on the one hand, consists of a relatively high frequency

pattern “X and Y” for which some abstract ordering constraints might already be

known, but on the other hand shares a high degree of similarity with known high

frequency expressions including bread and butter to which it can be directly analogized.

Binomial expressions may thus prove to be a valuable test case for this question

as well, allowing us to compare the predictive power of different models of generative

knowledge of binomial ordering preferences. In particular, we could compare abstract

symbolic models like the ones we have used in this dissertation—which rely upon a

known battery of abstract constraints with fixed weights—against models that directly

analogize a given expression to its close neighbors (such as bread and Marmite to

bread and butter). In this way, the work presented here may serve as a scaffold for

future work on language representation and processing.

1Thank you to Ryan Lepic for providing this example.



Appendix A

Experimental materials

A.1 Materials used in Chapter 2

Comprehension questions are used only in Experiment 2.

A.1.1 Novel expressions

1. He was abashed and sorry about his horrible behavior.
• Did he defend his behavior?

2. This bar is popular among the actresses and lumberjacks who live in the
neighborhood.
• Do the lumberjacks hate the bar?

3. Because Jim was allergic and unaccustomed to elderberries, he was careful
to avoid them.
• Did Jim like to eat elderberries?

4. My cousin’s new talking and singing toy is annoying and teal according to my
aunt.
• Does my cousin have a new toy?

5. The dentist told Sally that bacteria and candy would rot her teeth.
• Did the dentist recommend eating candy?

6. The elephants at the zoo were beautiful and stinky so the children loved them.
• Were there elephants at the zoo?

7. The engineer specialized in making bicycles and robots when he worked for
the company.
• Did the engineer specialize in destroying things?
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8. There were many bishops and seamstresses in the small town where I grew
up.
• Did I grow up in a small town?

9. The berries were bitter and purple when I ate them this morning.
• Did I eat berries this morning?

10. Seth told me that there are blankets and kittens in that box over there.
• Were there blankets in the box?

11. The rangers seemed to act like campfires and wildfires were the same thing.
• Did I hear about fires from a policeman?

12. At the wizard school, chanting and enchanting were very common occurrences.
• Did the wizards ride broomsticks frequently?

13. When I met many chauffeurs and stewardesses at a party, I started question-
ing my job.
• Did I go to a party?

14. The third grade class saw cherries and llamas at the state fair.
• Did the class go to the state fair?

15. There was nothing but chickens and fences in the field behind the house.
• Was the field behind the house?

16. His uncles were all coroners and senators in their day jobs, but they all wanted
to get into the movie industry.
• Did he have uncles?

17. The drink flavored with currant and pomegranate was delicious according to
Kim.
• Did Kim like the drink?

18. The dictator was deposed and murdered by his military adviser.
• Did the dictator survive?

19. I talked with my boss about whether to hire the determined and forgettable
job candidate that we interviewed.
• Did I discuss something with my boss?

20. The doctor said that discontent and tearfulness are signs of depression.
• Did the doctor talk about flu symptoms?

21. Luke always looked so disheveled and dreary but he was my best friend.
• Was Luke my best friend?

22. The kind minister donates and provides a lot of food to the charity.
• Was the minister kind?

23. My favorite animals have been felines and quails ever since I was a kid.
• Have I always hated animals?

24. The finalists in the tennis championship were ranked first and ninety-eighth
in the world prior to the tournament.
• Was there a golf champtionship?

25. In the spring, Julie will plant flowers and zinnias in her new garden.
• Does Julie have a garden?

26. The store owner was fuming and mad when he found out what was stolen.
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• Was something stolen?
27. As a vegetarian, gelatin and lard are difficult to avoid.

• Do vegetarians have a hard time?
28. Laura heard that the school’s groundskeeper and superintendent got married

over the summer.
• Did Laura hear about a divorce?

29. His mother didn’t hear when when Nate happily and rudely told his sister to
shut up.
• Did his mother hear what Nate said?

30. As Joe carried a tall stack of boxes, he had to hesitate and readjust before he
could go further.
• Was the worker carrying barrels?

31. At the zoo we saw horses and loons in their natural habitats.
• Did we go to the zoo?

32. I need to grab my jacket and phone before I leave the house.
• Do I have everything I need in order to leave?

33. Sarah likes to buy kale and vegetables at the famer’s market.
• Does Sarah only buy meat?

34. My cousins were all lankier and lanky but were surprisingly strong.
• Were my cousins weak?

35. The pet store was full of litter and newts when Martha visited on Saturday.
• Did Martha go to the pet store?

36. Peter met a man who was masculine and undignified at the conference he
went to last month.
• Did Peter go to the conference last year?

37. The pirate was marooned and missing for nearly five months.
• Was the pirate stranded for a year?

38. My grandparents were all nurses and patriarchs when they were alive.
• Were some of my grandparents teachers?

39. In my dream, I had puppies and tigers that I kept as pets.
• Was I dreaming?

40. Jenny was interested in rats and sharks as a young child.
• Was Jenny interested in kittens?

41. Maria could use therapy and vacations to feel less stressed.
• Is Maria stressed?

42. Irena had trouble with vocabulary and vowels while she was learning English.
• Did Irena have trouble with vowels?

A.1.2 Attested expressions

1. The clerk asked for Melissa’s address and name in order to complete the form.
• Did the clerk help Melissa complete the form?

2. Sarah was relieved to find that her friends were alive and well after the car
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crash.
• Were Sarah’s friends alright?

3. Most universities have programs in the arts and sciences in addition to having
various professional schools.
• Do most university have programs about law?

4. Soccer players practice running both backwards and forwards in order to stay
nimble.
• Do soccer players practice running sideways?

5. Hunter dislikes reading black and white text off a computer screen so he uses
an unusual color scheme.
• Does Hunter like the standard color scheme?

6. Learning to strengthen your body and mind is one of main purposes of doing
yoga.
• Does yoga improve your strength?

7. George always brings bread and butter with him when he goes camping.
• Does George always bring hot chocolate when he goes camping?

8. John showed me pictures of the bride and groom both dressed in blue.
• Did the couple wear green?

9. I always love seeing my brothers and sisters when I go home for the holidays.
• Do I enjoy going home?

10. Caleb likes to buy and sell electronics on eBay as a hobby.
• Does Caleb work with eBay professionally?

11. I watched the cat and mouse run frantically around the barn.
• Was there a dog in the barn?

12. It can be difficult to determine the cause and effect of weather patterns over
the ocean.
• Are ocean weather patterns hard to predict?

13. Clarissa found the painting of a child and mother to be very moving.
• Did Clarissa see a painting?

14. Catherine was not surprised that tensions between church and state ran high
during the election season.
• Was there tension during the election season?

15. Peter studied the laws concerning crime and punishment in Ancient Greece
and Rome.
• Did Peter study what happened in Ancient Greece?

16. Jesse felt like he had worked day and night on the project but he only got a B
on it.
• Did Jesse get an A?

17. The economist became famous for studying the way demand and supply affect
the steel industry.
• Did the economist study oil companies?

18. Mark finds working on development and research for the marketing company
to be a very satisfying career.
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• Does Mark want to change jobs?
19. Although some drink and food were provided at the reception, there was not

enough to go around.
• Was there something to eat at the reception?

20. Diane wrote a book about her travels east and west around the globe for a
year.
• Did Diane write a book about living in Paris?

21. Sometimes it feels like error and trial is the only way to learn.
• Do you sometimes need to learn by trying things?

22. Heather invited her family and friends to her annual holiday party.
• Does Heather have a holiday party every year?

23. It is important to study both the fauna and flora in a region in order to fully
understand the ecosystem.
• Can studying plant life tell you everything you need to know about an

ecosystem?
24. Many children find eating with a fork and knife to be a difficult skill to learn.

• Do some children have trouble with eating utensils?
25. Keith marveled at the gold and silver decorations on the walls of the palace.

• Were the walls dull?
26. Excercising regularly is important for your heart and soul according to my

mother.
• Did I receive advice from my aunt?

27. Michelle was surprised to learn that the husband and wife were getting a
divorce.
• Was the couple celebrating their anniversary?

28. I could not guess the intents and purposes of the confusing new regulations.
• Were the regulations confusing?

29. Everyone bowed as the king and queen entered the throne room.
• Did a jester enter the room?

30. Learning to forecast loss and profit was a topic in Brian’s business skills class.
• Did Brian take a class on business skills?

31. Paul primarily got his news through magazines and newspapers rather than
through television.
• Does Paul read the news?

32. I like to match and mix my clothing to create new outfits.
• Do I like to always wear the same thing?

33. Jen thought that the men and women in her dance class were all very talented.
• Did Jen think that some of her classmates were untalented?

34. Blake dislikes seeing all the pain and suffering in the world when he watches
the news.
• Does Blake enjoy watching the news?

35. The anthropologist studied the way different cultures conceived of peace and
war during the Middle Ages.
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• Did the anthropologist study dinosaurs?
36. By comparing the past and present we can learn about universal human

tendencies.
• Does history help us understand humanity?

37. Seth follows both radio and television broadcasts to stay informed about
current events.
• Does Seth like to follow current events?

38. Some children enjoy learning to read and write but others dislike it.
• Do some children enjoy reading more than others?

39. Teaching children what is right and wrong is a difficult task for parents.
• Is it easy to teach children morals?

40. After the storm, Haley was glad to hear that her grandparents were safe and
sound in their country home.
• Was there a storm?

41. The broker bought some risky shares and stocks without knowing it and only
discovered it later.
• Was the broker originally unaware of what he did?

42. Susan disliked the sour and sweet soup at the fancy restaurant.
• Was the restaurant fancy?

A.1.3 Constraint activity profiles

Figure A.1 shows the proportion of items for which each constraint is active

(recalling that each constraint can be active or inactive for a given expression). As we

can see, constraints are active approximately equally often in each group. Tables A.1

and A.2 show correlations between constraints: constraint activity is coded as 1 if it

predicts that an expression should occur in alphabetical order and -1 if it predicts

that an expression should occur in non-alphabetical order, or 0 for inactive constraints.

We see that, for both novel and attested expressions, most constraints are not highly

correlated. One noteworthy exception is Length and Final Stress, which are highly

correlated because single-syllable words are as short as possible (hence should come

first according to Length) and necessarily have final stress (hence should come first

according to Final Stress).
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Table A.1: Correlations of constraint activity for attested binomials.

Form Power Icon Percept Length Freq Stress
Form 1.00 0.22 0.01 0.01 0.01 −0.34 0.02
Power 0.22 1.00 0.01 0.06 −0.05 0.05 −0.06
Icon 0.01 0.01 1.00 −0.11 0.44 0.26 0.30
Percept 0.01 0.06 −0.11 1.00 −0.14 −0.10 −0.17
Length 0.01 −0.05 0.44 −0.14 1.00 0.30 0.83
Freq −0.34 0.05 0.26 −0.10 0.30 1.00 0.21
Stress 0.02 −0.06 0.30 −0.17 0.83 0.21 1.00

Table A.2: Correlations of constraint activity for novel binomials.

Form Power Icon Percept Length Freq Stress
Form 1.00 0.09 0.02 −0.01 0.15 0.44 0.18
Power 0.09 1.00 0.05 −0.02 0.10 0.13 0.11
Icon 0.02 0.05 1.00 0.03 0.13 0.03 0.04
Percept −0.01 −0.02 0.03 1.00 0.24 0.22 0.11
Length 0.15 0.10 0.13 0.24 1.00 0.10 0.50
Freq 0.44 0.13 0.03 0.22 0.10 1.00 −0.28
Stress 0.18 0.11 0.04 0.11 0.50 −0.28 1.00
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Figure A.1: Proportion of binomial expressions for which each constraint is
active.

A.2 Materials used in Chapter 6
Experimental materials in order of increasing overall frequency.

• The workers loaded the barriers and stakes into the cargo van and drove away.
• Mark measured the boards and two-by-fours before starting to build the new

shed.
• I believe thatCatholics andNon-Catholics can agree on most moral questions.
• Laura watched the farms and hayfields pass by on the long car ride.
• Emily studied linguistics and psychiatry before becoming an author.
• Dealing with frequent nagging and stress is bad for your health.
• The lecturer said that diffidence and gentleness are important qualities in a

nurse.
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• The country was ruled by a madman and tyrant after the failed revolution.
• The salesman said that appliances and cosmetics were on the third floor.
• It is difficult to deal with the ambiguities and fears that arise when a loved

one is ill.
• The documentary explored the culture of jazz and marijuana in the early
1930s.
• Judith’s favorite colors have been fuchsia and rose ever since she was a child.
• Ross was praised for his authority and decency during his performance review.
• The old woman loved her dogs and grandchildren despite all the noise they

made.
• Marissa avoided the derelicts and outcasts as she walked down the alley.
• The violinist played with abandon and fervor during the orchestra concert.
• Dennis bought salt and whiskey in preparation for the party.
• My boss insists on directness and truth in all of our communication.
• Tony had many scars and welts from his days as a boxer.
• Mary learned graces and manners while growing up with her grandmother.
• Todd was shocked by the look of blame and hate in his girlfriend’s eyes.
• I memorized facts and techniques for my final exam in medical school.
• The economist studied how the domination and influence of one country

affected a whole region.
• The committee discussed the job candidateÕs activities and character during

the hiring meeting.
• Gabe missed the comfort and companionship of owning a dog.
• The prevalence of online harassment is a danger and threat to children growing

up today.
• Liz likes to make pies and puddings for parties and special occasions.
• Dan appreciated the certainty and security of having a five-year job contract.
• Many students experience boredom and loneliness during their first year of

college.
• Courtney made a new skirt and sweater from the leftover fabric.
• Most of the counties and towns affected by the earthquake have since been

rebuilt.
• The kids saw the jaws and teeth of a dinosaur at the museum.
• Peter studied the charts and maps of the area around the Boy Scout camp.
• Ginny sends her friends and relations boxes of colorful holiday cookies every
year.
• It is important to cover your body and face with sunscreen during the summer.
• David avoids discussing politics and religion on a first date.
• Richard thought of his child and wife often while he was away from home.
• Megan wondered whether she had enough minerals and vitamins in her usual

diet.
• Sometimes your arms and hands become numb if you sit still for a long time.
• Scott prefers magazines and newspapers over watching shows on television.
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• Blake read about pressure and temperature in his atmospheric science text-
book.
• The company is switching away from gas and oil to use more renewable energy

sources.
• Barbara couldn’t find a good place and time to ask for a raise.
• Angela works on development and research for a large biomedical company.
• The organization provides goods and services to people in need.
• Jamie showed the boys and girls how to make a paper airplane.
• The artist painted a black and white pattern on the canvas.
• The guard instructed the men and women to form an orderly line.



Appendix B

Additional analyses from Chapter 2

B.1 Experiment 2 region-by-region analyses

Here we present region-by-region analyses of the self-paced reading data from

Experiment 2. Our goals in these analyses are to replicate the results of Siyanova-

Chanturia et al. (2011) that attested binomial expressions are read faster in their

preferred order, and to demonstrate that this finding extends to novel expressions

when categorized into preferred/dispreferred orders on the basis of abstract knowl-

edge. Specifically, we analyze reading times by dichotomizing binomials into pre-

ferred/dispreferred conditions, rather than using continous abstract knowledge and

relative frequency predictors as in Section 2.5.2. For simplicity of presentation, and

because we are not concerned here with comparisons across binomial types, we analyze

each type (attested/novel) separately.

Residualization on word length and outlier removal are identical to that reported

in Section 2.5.2, except that outlier removal was done for each region and each binomial

type separately (because each region within each type is analyzed separately in this

section).

For each binomial type and region, we fit a linear mixed-effects regression

model with residualized reading times (in milliseconds) as the dependent variable. Our

independent predictor of interest is a dichotomous preferred/non-preferred variable

146



147

(treatment coded with “preferred” as the reference level). Details of how preferred

order is assessed vary between binomial types and are discussed in more details below.

Trial order is also included as a predictor. Following Barr et al. (2013), we use the

maximal random effects structure for subjects justified by the experimental design,

namely an intercept and a slope for preferred/non-preferred order. We also include a

random by-subjects slope for trial order. For items, defined as unordered word pairs,

we use an intercept and a slope for a binary alphabetical/non-alphabetical factor

(comparable to that used in Section 2.5.2). Results for the predictor of interest are

shown in Table B.1.

Novel expressions For novel expressions, we assign each expression a preferred

and non-preferred order on the basis of our abstract knowledge model’s prediction for

ordering preferences. Results are shown in Figure B.1. As seen in Table B.1, we find

significant effects of order at the Word1 and Word2 regions, with preferred read faster

than non-preferred.

Attested expressions For attested expressions, we consider two ways to sort

expressions into preferred and non-preferred order: we can use corpus frequencies,

replicating Siyanova-Chanturia et al. (2011), or we can use abstract knowledge model

predictions for a more direct comparison with the novel expressions. We will show

results sorted both ways.

We begin by showing results with preferred/non-preferred determined by corpus

frequencies as reported by Siyanova-Chanturia et al.1 Results are shown in Figure

B.2. We find significant effects of order at the And, Word2, and Spill1 regions, with

preferred read faster than non-preferred.2

Next we analyze our attested expressions as sorted by abstract knowledge
1Siyanova-Chanturia et al.’s reported preferences differ from the Google n-gram preferences for

one item, family and friends.
2Siyanova-Chanturia et al. only report aggregate reading times, not word by word reading times,

so we cannot say whether our results directly replicate exactly where in the sentence these effects
appear.
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model predictions. Results are shown in Figure B.3. We find a significant effect of

order at the Spill1 region, with preferred read faster than non-preferred.

Discussion We replicate Siyanova-Chanturia et al.’s (2011) finding that attested

binomial expressions are read faster in their preferred order. We also demonstrate

for the first time that novel binomials show online effects of abstract constraints on

ordering, with faster reading times in our model’s predicted preferred direction.

We do not present a region-by-region version of the multivariate analyses

presented in Section 2.5.2 because we do not expect the results seen there to hold

at each region individually. As noted in Section 2.5.2, the analyses presented there

took advantage of the fact that within the six-word region analyzed, participants

read the same set of words regardless of order of binomial presentation. Within the

word-by-word analyses presented here, however, words differ across conditions: Word1

in the preferred condition becomes Word2 in the dispreferred condition, and vice versa

(e.g. “bishops and seamstresses” versus “seamstresses and bishops”). Moreover, recall

that effects of lexical frequency are one component of abstract knowledge (Section

2.2), such that binomials in preferred order on average have a more frequent word

preceeding a less frequent word, while binomials in dispreferred order on average have

a less frequent word proceeding a more frequent word. Thus, on the basis of lexical

frequency alone, we would expect to see the preferred order read faster around Word1

(or shortly thereafter, due to spillover), and the dispreferred order read faster around

Word2 (or shortly thereafter). In other words, on the basis of lexical frequency alone,

we would expect to see a local reversal of the effect of abstract knowledge around

Word2 (although we expect this reversal to be smaller in magnitude than the overall

benefit of conforming to abstract knowledge across the binomial as a whole). This

prediction is born out numerically in the Spill1 region for novel binomials, although it

does not approach significance.
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Table B.2: Model fit for results of Experiment 2 using raw reading times.
Effects with t > 2 are taken to be significant. All VIF < 1.6.

Estimate Std. Error t value
Intercept 2246.62 41.66 53.93
Type: novel 204.18 28.51 7.16
Abs know (Type: attested) 0.72 24.97 0.03
Abs know (Type: novel) -56.81 19.88 -2.86
Rel freq -57.46 19.98 -2.88
Trial order -198.11 9.46 -20.95

B.2 Experiment 2 results with raw reading times

Here we replicate the analyses presented in Section 2.5.2 with raw rather than

word-length-residualized reading times. Model results are given in Table B.2. Crucial

effects are very similar to those seen in Table 2.4. In a likelihood ratio test comparing

this model to a model with only an additive (non-nested) effect of abstract knowledge,

we find a marginally significant difference (χ2(1) = 3.12, p = 0.08). We attribute the

lower significant level here compared to that presented in in Section 2.5.2 to presence

of extra noise in the raw compared to the residualized reading time data.



Appendix C

Generative constraint coding guide

This coding guide is largely adapted from Benor & Levy (2006).

Pragmatic An element that has been previously mentioned will appear first.
Examples:
• English and Americans in the context: Oh yes, the other day I reread some of

EmersonÕs English Traits, and there was an anecdote about a group of English
and Americans visiting Germany, more than a hundred years ago.

Word order in a neighboring phrase will be preserved
Examples:
• music and comedy in the context: I admit that going back to Ralph Waldo
Emerson for humor is like going to a modern musical comedy for music and
comedy.

When one element is more closely related to a neighboring modifier, it is preferred in
the slot closer to the modifier
Examples:
• buttons and badge in the context: the buttons and badge of a policeman

Relative Formal Markedness Less marked items should come first. Less marked
items:

1. have a broader, more general meaning
2. have greater freedom of distribution
3. have a larger number of subcategorical distinctions

Examples:
• flowers and roses : a rose is a type of flower
• changing and improving : you can change without improving, but not vice versa
• first and only : something can be first without being only, but not vice versa

Less marked items are structurally more simple
Examples:
• linguistic and paralinguistic
• poetry and non poetry
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An item is more marked if it is defined by or discussed in relation to another
Examples:
• there and elsewhere

An item is more marked if it a logical subset of another:
Examples:
• sewing and alterations : alterations are a subset of sewing projects (if you assume

that all alterations involve sewing)
This can also include physical relationships:
Examples:
• kitchen and pantry

Perceptual Markedness Less marked elements appear first.
LESS MARKED MORE MARKED
Animate Inanimate
Singular Plural (For count nouns only)
Right Left (This one is context dependent.)
Positive Negative
Concrete Abstract
Front Back
Above Below
Vertical Horizontal
Here There

(Other markedness constrasts will turn up too, e.g. land before sea, objective before
subjective, solid before liquid/gas.) Although multiple constrasts could in principle
apply in conflicting directions for a single expression, this never occurred in our corpus.
Examples:
• people and soils
• individually and cumulatively
• individuals and couples
• physical and mental
• up and down
• high and inside (vertical and horizontal)
• Harvard and Yale (if you’re at Harvard) vs. Yale and Harvard (if you’re at Yale)
• honest and stupid (positive and negative)

N.B. Percept does not apply in cases of a singular mass noun and a plural count noun,
e.g. integrity and principles

Cultural Centrality More culturally central or common elements appear first
Examples:
• north and south
• mother and dad : mother is more central to raising a child
• day and night
• see and hear : seeing is the more salient form of perception
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• oranges and grapefruit
• family and friends
• food and drink : aka. the Condiment Rule—now Centrality rather than Power!

Power More powerful or culturally prioritized elements appear first
Examples:
• husband and wife: men before women
• mother and child : older first
• gold and silver
• clergymen and parishioners
• counter-example: peanuts and emeralds

Itensity Elements with more intensity appear first
Examples:
• cruel and unusual
• war and peace

Iconic/Scalar Sequencing When two elements are perceived as existing in a
sequence or on a scale they should appear in that same sequence. Sequences may be
e.g. chronological or cause-and-effect
Examples:
• wait and see
• kiss and tell
• slowed and stopped
• there and back : you must go there before coming back
• out and about : you must go out in order to go about
• unconstitutional and severable: in a context where a contract was severable

because it was unconstitutional
• eighth and nineth
• months and years

Notes on some subtle distinctions Preconditions count as RelForm if they’re in
a logical subset relation (e.g. sewing and alterations) or Icon if they’re temporal/cause-
and-effect relations (e.g. unconstitutional and severable, achieved and maintained).

Contrasts of intensity count as RelForm if they’re in a logical subset relation
(e.g. mad and fuming, where fuming is a subset of mad), or Intensity otherwise.
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Corpus
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