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Abstract

A typical model for a gyrating engine consists of an inertial wheel powered by an energy source that generates an angle-dependent
torque. Examples of such engines include a pendulum with an externally applied torque, Stirling engines, and the Brownian gyrat-
ing engine. Variations in the torque are averaged out by the inertia of the system to produce limit cycle oscillations. While torque
generating mechanisms are also ubiquitous in the biological world, where they typically feed on chemical gradients, inertia is not
a property that one naturally associates with such processes. In the present work, seeking ways to dispense of the need for inertial
effects, we study an inertia-less concept where the combined effect of coupled torque-producing components averages out variations
in the ambient potential and helps overcome dissipative forces to allow sustained operation for vanishingly small inertia. We exem-
plify this inertia-less concept through analysis of two of the aforementioned engines, the Stirling engine, and the Brownian gyrating
engine. An analogous principle may be sought in biomolecular processes as well as in modern-day technological engines, where for
the latter, the coupled torque-producing components reduce vibrations that stem from the variability of the generated torque.

Keywords: Stirling engine, Brownian gyrator, limit cycle oscillation, averaging

Significance Statement:

Certain mechanisms are capable of generating torque from temperature gradients and, by utilizing inertia, produce sustained op-
eration as thermodynamic engines. The present paper studies the effect of coupling several such mechanisms together to produce
a sustained torque so that inertia is no longer needed. It is envisioned that a similar principle might be at work in bio-molecular
engines that draw energy from chemical gradients and where inertia is not typically a significant factor.

Introduction
The paradigm studied herein, referred to as a gyrating engine, is
a system with a rotational degree of freedom characterized by an
angle θ and driven by an external torque T that depends on θ ,
which, however, may not necessarily retain the same sign during
a cycle. Specifically, the device obeys

θ̇ = ω

Iω̇ = T (θ ) − �ω, (1)

where I is the moment of inertia and � is the friction coefficient.
The term −�ω corresponds to external dissipation, though it can
just as well represent torque proportional to angular velocity ω ex-
changed with an external subsystem acting as a load. This model
captures the general principle behind a wide range of mecha-
nisms that convert thermal/chemical energy to rotary motion,
whether synthetic or natural, from steam-engines to biomolec-
ular motors.

We focus on two different types of gyrating engines, a low-
temperature-differential Stirling engine (1) that draws power from
a temperature differential and a Brownian gyrating engine pow-

ered by Nyquist–Johnson thermal noise of two resistors kept at
different temperature (2). The salient feature in embodiments
of these devices is the inertia needed to average out fluctua-
tions and ensure sustained operation. Analogous biomolecular
mechanisms, however, seem to dispense of such a need for in-
ertial effects (3–5). A cursory view of the workings of biomolec-
ular engines reveals a many-fold symmetry of multiple torque-
generating units at work. With this in mind, we study the cou-
pling of multiple gyrating engines as a way to eliminate the need
for inertia in sustained limit cycle oscillation.

The basic idea explored in this paper is based on the principle
that a phase difference between coupled gyrating engines can average out
the applied torque. Thereby, angular variations in torque and load
can be matched via a suitable geometric arrangement. We present
analysis that highlights similarities between the two paradigms,
the Stirling and Brownian gyrating engines, as well as provides
quantitative and qualitative features of such arrangements. Our
interest is mainly in enabling sustained operation in the presence
of sign-indefinite generated torque by individual engines, that is,
in ensuring that the combined torque of multiple units retains its
sign.
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The same principle can be used to minimize the variance of
the effective torque being applied. Indeed, the idea of coupling
engines to reduce torque variations is not new. Multicylinder in-
ternal combustion engines reduce torsional vibrations (6, 7). How-
ever, exploring this principle for inertia-less operation of gyrating
engines is new and may help elucidate the functionality of certain
biomolecular gyrating engines.

Specifically, there are three motor proteins that have been un-
ambiguously identified as rotary engines, the F0/F1 ATP synthase
and the bacterial flagellar motor (8); they are powered by chemi-
cal gradients with the flagellar and F0 motor tapping onto trans-
membrance ion-motive force while the F1 motor relying on ATP
hydrolysis. Yet, in spite of great strides over the past 40 years into
the workings of these 50-nm-scale motors, much remains to be
understood (9). In regard to the mechanics, their geometry, that
engages several torque-generating subunits (10, 11) (up to 11 in
flagellar motors, and often a three-fold symmetry in ATPases),
leads inescapably to the conclusion that a principle such as the
one studied herein must be at work.

The structure of the paper is as follows. As part of the Intro-
duction, in the “Stirling engine” and “Brownian gyrating engine”
sections, we present dynamical models for the Stirling engine and
the Brownian gyrating engine. In the “Results” section, we explain
how a suitable geometry of a multiengine coupled system oper-
ates without the need for inertia, and highlight the role of phase
difference in sustaining operation as well as in optimizing other
performance metrics. In the “Conclusions” section, we summa-
rize the gained insights. Finally, in the “Materials and methods”
section, we prove that the coupled system of engines has a glob-
ally attractive limit cycle and we expand on technical statements
given in the body of the paper.

Examples of gyrating engines
We describe the two main paradigms of gyrating engines that are
being considered along with their respective mathematical mod-
els.

Stirling engine
The first gyrating engine that we consider is the so-called Stir-
ling engine, invented by Robert Stirling in 1816, that generates
mechanical work from a temperature differential. It consists of a
cylinder filled with gas whose volume is adjusted by an oscillating
piston—the power piston—connected to a flywheel with a slider-
crank mechanism. Attached to this wheel and with a π/2 phase
difference with respect to the power piston, there is another rod
that is connected to a displacer piston, that forces the gas to switch
sides and alternate contact with heat baths at the two sides, top
and bottom plates, of the cylinder. Temperature fluctuations in
the gas result in changes in the internal pressure, which drive the
power piston accordingly (see Fig. 1). A detailed exposition along
with simplified models for a typical Stirling engine have been pre-
sented recently in the timely work by Izumida and Toyabe (1, 12,
13).

In order for the engine to operate sustainably, the temperature
difference must exceed a certain threshold, as noted in ref. (14);
we also refer to ref. (15) for a detailed exposition of the coupling
between the thermal gradient and the mechanics of the Stirling
engine from a thermodynamic perspective.

Indeed, the underlying thermodynamics of the Stirling engine
cycle have been thoroughly studied (16–20). However, models that
include the gyrating dynamics of the engine are scarce. The sim-
plified model that we adopt herein is based on the one developed
in (1) that has two degrees of freedom, the flywheel angle θ , and

Fig.1. Parts of the Stirling engine and definition of angle θ .

its angular velocity ω = θ̇ . The equations of motion are those given
in [1] with the torque given by

T S(θ ) = sr(p(θ ) − p0) sin θ, (2)

where s is the section area of the power piston, r is the crank ra-
dius, p(θ ) is the pressure inside the cylinder, and p0 is the exter-
nal atmospheric pressure. The pressure p(θ ) is estimated using the
ideal gas law scaled by a dimensionless parameter ζ that accounts
for the nonuniformity of temperature and pressure in the cylin-
der, and it is

p(θ ) = ζ
nRT(θ )
V(θ )

,

where n is the number of moles of gas in the cylinder and R is the
molar gas constant. The effective temperature T(θ ) and the volume
V(θ ) of the gas in the cylinder can be expressed as follows:

T(θ ) = T0 + α
�T
2

sin(θ ),

V(θ ) = V0 + sr(1 − cos θ ), (3)

where T0 = (Ttop + Tbtm)/2 is the mean of the top and bottom tem-
peratures, α is a dimensionless coefficient that models the heat
transfer, �T = Tbtm−Ttop is the temperature difference, and V0 is
the volume at θ = 0.

We remark that in the model proposed by (1), the temperature
is more generally expressed as a function of both θ and ω. Specifi-
cally, the temperature’s dependence on the angular position of the
engine is delayed by a factor of τω, with sin(θ − ωτ ) replacing sin(θ )
in [3]. However, experimental evidence (1) suggests that τ = 15 ×
10−3 (s). Thus, in our analysis, we have adopted the simplifying
assumption that ωτ � 0; numerical simulations confirm that for
our purposes, the effect of the small delay τ is indeed negligible.

Brownian gyrating engine
The second example is that of a Brownian gyrator-based engine
that was recently introduced in (2). This consists of the coupling
between an electrical system, known as the Brownian gyrator (21),
and a mechanical subsystem with an inertial wheel. Note that
we distinguish between the Brownian gyrator and the Brownian
gyrating engine, that consists of coupling the Brownian gyrator to
the mechanical subsystem that mediates energy extraction.

The electrical embodiment of the Brownian gyrator consists of
three capacitors and two resistors (see Fig. 2, top), which are in
contact with two heat baths at different temperatures giving rise
to Johnson–Nyquist fluctuating currents at the two resistors. The
temperature-induced amplitude imbalance in the fluctuating cur-
rents results in, on average, a circulating current (in a nonequi-
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Fig.2. Top: embodiment of the Brownian gyrator consisting of an
RC-circuit. Bottom: Brownian gyrating engine: the rotating wheel
couples θ-varying capacitances.

librium steady state) that effectively transfers heat between the
two heat baths. This particular embodiment was introduced in ref.
(22); equivalent realizations have been extensively studied, both
theoretically (21, 23–25) and experimentally (23, 26, 27).

The mechanical subsystem, that together with the Brownian
gyrator forms the Brownian gyrating engine, includes dielectric
padding in the three capacitors that can vary in its position
through mechanical coupling to the rotating wheel as depicted
at the bottom of Fig. 2. In this way, the angular position θ of
the (inertial) wheel forces the dielectric material in and out of
the respective capacitors. This mechanical coupling renders the
capacitance-matrix a function of the dynamic variable θ . In our
analysis, the geometry of the linkages actuating the dielectric ma-
terial has been chosen such that the capacitance matrix as a func-
tion of θ is of the form

C(θ ) =
[

C1(θ ) + Cc(θ ) −Cc(θ )
−Cc(θ ) C2(θ ) + Cc(θ )

]

= C0

[
2 + βg1(θ ) −1 − β cos(θ )

−1 − β cos(θ ) 2 + βg2(θ )

]
,

where C1, C2, and Cc, depicted in Fig. 2, are expressed in terms of a
nominal capacitance C0, and the θ-functions g1(θ ) = cos(θ + 2π/3)
+ cos(θ ) and g2(θ ) = cos(θ − 2π/3) + cos(θ ) with 0 < β < 1. The
mechanical part can provide inertia as well as a resistive torque
(modeled as −� dθ

dt ) that absorbs generated power.
As long as there is enough time-scale separation between the

mechanical and the electrical subsystems, as shown in (2), the
dynamics of the Brownian gyrating engine obey [1] with

T B(θ ) = − 1
2

Tr
[
∂θC−1(θ )�(θ )

]
,

where Tr[ · ] denotes the trace operation, and �(θ ) is the matrix co-
variance of the (Gaussian) state-vector qt = [q1(t), q2(t)]

′
of charges

at the two capacitors C1 and C2, respectively. By virtue of the time-
scale separation, the matrix covariance satisfies the algebraic Lya-
punov equation

− R−1C−1(θ )�(θ ) − �(θ )C−1(θ )R−1 + R−1DD′R−1 = 0,

Fig.3. Potential for the damped pendulum with constant torque. Two
cases are displayed. Top-left: inertial effects are not able to overcome
the uphills generated by gravity and the only stable solution is the
stationary one. Top-right: both inertial effects and constant torque
(slope) are enough to sustain continuous motion and the pendulum
reaches a stable periodic orbit. Bottom: the average of two potentials
displaced by a π phase difference is linear in θ . The graphic
representation provides insight into how two θ-equispaced coupled
pendula with a constant torque operate stably in a limit cycle: their
combined effective potential is a sloped line (red-dashed line in the
figure).

with diffusion matrix D = diag([
√

2kBR1T1,
√

2kBR2T2]), R = diag([R1,
R2]), kB the Boltzmann constant, and R1, R2, T1, T2 as in Fig. 2. The
solution �(θ ) of the above equation can be conveniently expressed
compactly as a function of C(θ ) as follows:

�(θ ) =
∫ ∞

0
e−R−1C−1 (θ )sR−1DD′R−1e−R−1C−1 (θ )sds.

Remark on the forced-pendulum abstraction
It was noted in (1, 2, 12) that, in both examples, the resulting dy-
namical system’s behavior resembles that of the damped pendu-
lum with constant torque (28), i.e. to a system that behaves ac-
cording to [1] with

T p(θ ) = γ − sin(θ ),

with γ representing the constant torque being applied. It is in-
sightful to consider the effective potential that drives the motion

U(θ ) = −
∫ θ

0
T (ϑ )dϑ.

This has the form of a tilted sinusoid. A cartoon in two parts, cor-
responding to two different sets of parameters (of inertia and fric-
tional forces), is displayed at the top row of Fig. 3. In this, the
position of a ball rolling down the corrugated hill-side embod-
ies the state of the pendulum; the drawing on the left exempli-
fies insufficient-inertia/excessive-friction for a limit cycle to exist,
while the one on the right exemplifies a continuous operation. The
second row of Fig. 3 depicts the collaborative effect of two coupled
engines. In the analogy of two coupled balls, the combined center
of gravity moves along a tilted straight line (red-dashed line in the
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figure), facilitating the downward sliding along the periodic poten-
tial, which is tilted due to the applied torque.

The situation with the Stirling and Brownian gyrating engines
is analogous. The coupling of a number of engines, with a suitable
phase difference between one another, averages out the “bumps”
in the “corrugated” potential and enables sustained operation for
a vanishingly small applied torque.

Results
We begin by highlighting the effect of coupling several damped
pendula with an applied constant torque and a certain phase dif-
ference. Specifically, for this case, we consider two pendula cou-
pled with a phase difference of π radians (see Fig. 3, bottom). The
effective torque on the combined system is

T p
2 (θ ) = 1

2
(T p(θ ) + T p(θ + π ))

= γ − 1
2

(sin(θ ) + sin(θ + π )) = γ ,

effectively canceling the undulations of the potential; the 1
2 fac-

tor scales the power of the two engines so as that they can be
compared to one engine. Thus, the effective torque remains con-
stant, and thereby the overall potential driving the system of two
engines has a constant tilt with no undulations. The system re-
quires neither any inertia nor a minimum amount of actuation
to achieve sustained continuous rotation. The cartoon shown in
Fig. 3 helps exemplify the effect.

The underlying principle is readily seen to rely on ensuring
the sign-definiteness of the effective torque. This is carried out
via cancellation of respective terms between the Fourier series
expansion of applied torques from contributing units. The sign-
definiteness of the effective torque guarantees stable limit cycle
oscillation (see the “Materials and methods” section for details.)
Evidently, in more complicated examples, higher order harmon-
ics are not immune and can likewise be eliminated or suppressed
by coupling more engines as shown in the analysis that follows.

Inertialess Stirling engine
We consider the equidistant (in the θ space) coupling of two and
three Stirling engines, which generate combined torque

T S
2 (θ ) = 1

2

(
T S(θ ) + T S(θ + π )

)
and

T S
3 (θ ) = 1

3

(
T S(θ ) + T S(θ + 2π/3) + T S(θ + 4π/3)

)
,

for the two- and three-engine configurations, respectively. The re-
sulting potential U is shown in the insert in Fig. 4 over two peri-
ods. It changes from a periodic slopped shape (in the case of one
engine), to practically a slopped straight line already for two cou-
pled engines, and more so for three. The main plot in Fig. 4 shows
the averaged steady state angular velocity as a function of inertia.
It is seen that, for this set of parameters, three engines dispense
completely of the need for inertia, ensuring a limit cycle; with two
engines, the need for inertia is already minimal.

Figure 5 illustrates how the averaged final angular velocity
varies with the temperature difference �T that powers the en-
gine(s). Evidently, the coupling of multiple Stirling engines reduces
the threshold temperature difference needed for continuous oper-
ation. When three engines are coupled, the threshold is virtually
eliminated, guaranteeing the existence of a limit cycle for vanish-
ingly small �T. In the “Materials and methods” section, we show
that a sufficient condition for the torque T S

3 (θ ) to be always posi-

Fig.4. Left: normalized averaged steady state angular velocity 〈ω/ωS
0〉 vs

log(I/IS
0 ) for one, two, and three coupled engines, with �T = 10 K. Note

that I is normalized by IS
0 = �/ωS

0 and plotted in a logarithmic scale,
where ωS

0 is obtained from [4]. Similarly, the angular velocity is also
normalized by ωS

0. The case with τ = 15 ms is plotted in a dashed line
and shows to what extent the assumption of the torque being
ω-independent holds. Right: effective potential along two cycles for one,
two and three coupled engines.

Fig.5. Averaged limit cycle angular velocity 〈ω〉 as a function of the
temperature difference �T for one, two, and three coupled Stirling
engines (solid lines). The yellow-dashed line represents the case with τ

= 15 ms and three coupled engines, and numerically shows to what
extent our assumption of the torque being ω-independent is valid. This
agreement is highlighted in the blow-up of the figure. An estimation of
the average angular velocity in the limit cycle, based on [4], has been
marked by black “×”, showing a good agreement with the numerical
results. The (flat) green line corresponds to a stable equilibrium present
when the effective torque fails to be sign-definite.

tive is

α�T
4T0

	 sr
V0

=: ε,

for a typical value ε ∼ 10−3 in experimental settings of (1). Therein,
we also prove that the torque being always positive is a sufficient
condition for convergence to an asymptotically stable limit cycle.
Then, the mean angular velocity of the wheel is, up to first order
in ε,

〈ω〉 ≈ α�TζnR
4�

ε =: ωS
0, (4)
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Fig.6. Left: normalized averaged final angular velocity 〈ω/ωB
0〉 vs

log (I/IB
0 ), with �T = 10 K for one, two, and three coupled Brownian

gyrating engines, respectively. As before, IB
0 = �/ωB

0 and ωB
0 is as defined

in [5]. Right: effective potential along two cycles.

in complete agreement with the numerical results (see the “Ma-
terials and methods” section for the derivation). Also, note that
the dependence of the angular velocity on the temperature dif-
ference is linear, confirming the hypothesis first introduced by
Kolin (29) and experimentally supported by Toyabe and Izumida,
and Boutammachte and Norr (1, 30).

Inertialess Brownian gyrating engine
We now consider the coupling of two and three Brownian gyrating
engines with combined torque

T B
2 (θ ) = 1

2

(
T B(θ ) + T B(θ + π )

)
and

T B
3 (θ ) = 1

3

(
T B(θ ) + T B(θ + 2π/3) + T B(θ + 4π/3)

)
,

respectively. The resulting potential U is drawn over two periods
in the insert of Fig. 6. It displays the same qualitative behavior as
that of the Stirling engine’s potential. As we decrease the inertia,
we observe that the the limit cycle is similarly maintained in the
case of three engines for vanishingly small inertia (see Fig. 6).

Figure 7 displays the averaged angular velocity during opera-
tion as a linear function of the temperature difference �T := T2 −
T1 that powers the gyrator, beyond a threshold that decreases with
the number of coupled engines, as before. Similarly to the Stirling
case, one can derive a sufficient condition for the existence of a
limit cycle, namely

√
3

64
�T
T0

	 β,

where T0 = (T1 + T2)/2. When this limit cycle is present, we can
approximate the average angular velocity as

〈ω〉 ≈
√

3kB�T
64�

β2 =: ωB
0, (5)

up to second-order terms in β.

Remarks on equalizing the torque
A main objective in coupling engines, in our exposition so far,
has been the sustenance of inertialess operation. To this end, we
sought to cancel harmonics by coupling engines with equal phase
difference from one another (equidistantly). However, this is by no
means the only metric that one may adopt for quantifying perfor-

Fig.7. Average limit cycle angular velocity 〈ω〉 vs �T for one, two, and
three coupled Brownian gyrating engines. An estimation of the average
angular velocity from [5] has been marked by black “×”, matching the
numerical results. The (flat) green line corresponds to a stable
equilibrium present when the effective torque fails to be sign-definite.

mance. In particular, one may optimize the phase difference be-
tween engines as to maximize the minimal value of the torque
along the cycle. Another possible metric for selecting phase dif-
ferences is the variance of the torque, so as to limit vibrations. We
highlight this point by considering the special case of two engines,
to be coupled accordingly.

We discuss the case where we seek to minimize the variance of
the effective torque, in coupling two engines. That is, we seek

θ
opt
0 = arg min

θ0

1
2π

∫ 2π

0

(
T (θ )+T (θ+θ0 )

2 − 〈T 〉
)2

dθ,

where 〈T 〉 is the mean value of the applied torque over a cycle and
θ0 represents a phase difference between engines.

Clearly, θ0 = 0 maximizes the variance of the effective torque.
As one may expect, θ0 = π represents another potential ex-
tremum. However, whether it corresponds to a minimum, a max-
imum or an inflection point depends on the specific shape of the
torque-profile as a function of θ . For instance, for a Stirling en-
gine (keeping terms up to second order in ε = sr

V0
), we obtain that,

as long as b2
1 < 4a2

2, θ0 = π corresponds to a maximum, while the
minimum is achieved for

θ
opt
0 = acos

(
− b2

1

4a2
2

)
,

where b1 = ε
(
1 − p0V0

ζnRT0

)
and a2 = ε α�T

4T0
(see the “Materials and

methods” section). Otherwise, θopt
0 = π , a value that was confirmed

by our numerical experiments. Intuitively, π is the optimal solu-
tion when the odd harmonics in T (θ ) dominate. The general case
with a larger number of coupled engines can be worked out simi-
larly.

Conclusions
The present paper details a proof-of-concept: the need for inertia
to ensure limit cycle oscillations in gyrating engines can be dis-
pensed of when a number of torque-generating subunits are cou-
pled with a suitable phase difference from one another. When the
effective torque produced by the combined contribution of sub-
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units remains sign-definite over a cycle, the system operates in a
limit cycle making power available for external work. The under-
lying principle was demonstrated with two examples, a Stirling
engine and a Brownian gyrating engine.

It is postulated that a similar principle is at work in biomolecu-
lar engines, albeit in a significantly more complicated guise, given
the complexity of such engines. Indeed, in ref. (31), a model was
presented and partially tested to explain specific physical mech-
anisms for torque generation in bacterial flagellar motors (BFMs).
In this, a number of torque generating units with a “wide and gen-
tly slopping energy well” contribute in ways that are reminiscent
of the principle presented herein. Although the physics of torque
generation remain poorly understood, it was proposed in ref. (31)
that both electrostatic and steric forces are at work, with the lat-
ter generating a “push.” The resulting torque profile may likely
necessitate multiple units to smooth out higher harmonics that
may thus be present. Understanding how ion-driven molecular
machines work is of fundamental importance in cellular biology,
and thus the authors see likely that the principle discussed herein
may help explain the workings of multiple torque-generating sub-
units (10, 11) and, perhaps, even the necessity for a large number
(up to 11 in flagellar motors) of such units for the corresponding
torque-generating potential.

Materials and methods
In this section, we provide further technical insights and proofs
to the claims in the paper. We begin by showing that sign-
definiteness of the effective torque implies that a system obey-
ing [1] has indeed a unique asymptotically stable limit cycle.
We continue on by showing that for any θ-periodic torque pro-
file for which a certain continuity condition holds, a finite num-
ber of engines always suffice to ensure sign-definiteness of the
torque, and thereby stable operation of the system of coupled en-
gines. We then specialize to the case of the Stirling and Brow-
nian gyrator-based engines with a fixed number of units (three,
in particular), and we derive alternative sufficient conditions for
sign-definiteness of the effective torque as well as explicit expres-
sions for the average angular velocity. We finally expand on a point
raised in the “Remarks on equalizing the torque” section by work-
ing out in detail the phase difference θ0 between two coupled en-
gines that minimizes the variation of the effective torque. We con-
clude by tabulating the values of parameters used in the numer-
ical simulations.

Sign-definiteness of torque implies a unique
stable limit cycle
Herein, we prove that if the torque T (θ ) is strictly positive for all
values of θ , then a unique globally attractive limit cycle exists for
any (and hence for a vanishingly small) amount of inertia I. The
basis of the argument to establish existence of such a limit cycle
is the Poincaré–Bendixson theorem (32, page 391, Theorem 2.1; 33,
Theorem 9.0.6). This theorem states that a trajectory of a second-
order system, confined in a bounded two-dimensional region of
the phase space that contains no fixed points, is either a periodic
orbit itself or it converges (asymptotically) to one. The phase space
can be a cylinder [0, 2π ) × R, as is the case of the system in [1].

A fixed point of [1] requires that ω = 0 (from the first of the
two equations). But then, T (θ ) − �ω cannot vanish, since T (θ ) > 0
for all θ , and hence [1] has no fixed points. We observe that any
(bounded) region D = {(θ , ω) ∈ [0, 2π ) × [ − M, M]}, for sufficiently
large M, is positively (in time) invariant. That is, any trajectory
that begins in D is confined within D for all times. Thus, by the

Poincaré–Bendixson theorem, there exists an asymptotically at-
tractive periodic orbit.

We now argue that the claimed periodic orbit is in fact unique,
i.e. it represents a globally attractive stable limit cycle. Starting
from a point [θ = 0, ω(0)] that lies on a period orbit, we integrate
Iω̇ = T (θ ) − �ω over the cycle θ ∈ [0, 2π ). The integral of the left
hand side is

∫ 2π

0
Iω̇dθ =

∫ tc

0
Iω̇ωdt = I

2

(
ω(tc )2 − ω(0)2) = 0,

where tc is the time-duration of a cycle. Integrating the right hand
side now gives

∫ 2π

0
ωdθ = 2π〈T 〉

�
, (6)

where 〈T 〉 is a (fixed) constant that only depends on the shape of
the torque profile. Since trajectories do not cross, [6] can only be
satisfied by a unique periodic orbit.

Number of gyrating engines required to dispense
of inertia
We consider gyrating engines obeying [1]. Following two different
approaches we show that provided the torque profile T (θ ) satisfies
|T (θ + �) − T (θ )| < L|�| for all θ , �, and with L < ∞ (i.e. it is Lip-
shitz) and provided the average torque over a cycle is not zero (and
which, without loss of generality, is assumed positive), there is an
integer m so that m equidistantly coupled engines ensure a glob-
ally attractive limit cycle. In other words, we establish that under
natural and mild conditions on the torque profile, a finite number
of coupled Stirling or Brownian gyrating engines is always suffi-
cient to maintain a stable limit cycle for any set of parameters.

To establish the claim, we show that a finite number of coupled
engines is sufficient to ensure strictly positive torque for all val-
ues of the angular position θ . Assuming that T (θ ) is Lipschitz and
periodic, we consider the Fourier series expansion

T (θ ) = c0 +
∞∑

k=1

ak cos(kθ ) + bk sin(kθ ). (7)

For m equidistantly coupled engines, the effective torque is

Tm(θ ) = 1
m

m−1∑
�=0

T
(
θ − 2π

m �
)

= c0 + 1
m

∞∑
k=1

m−1∑
�=0

ak cos(k(θ − 2π
m �)) + bk sin(k(θ − 2π

m �))

= c0 +
∞∑

k=1

akm cos(kmθ ) + bkm sin(kmθ )

=
∞∑

k=−∞
ckmeikmθ ,

where ck = 1
2 (ak + ibk ) for k > 0 and ck = c−k for k < 0. The third

equality follows from cancellation, due to phase difference, of all
terms with indices that are not multiples of m. Since T (θ ) is Lips-
chitz, the amplitude of the harmonics decays faster than k−1 and
the series {|ck|: k > 0} is summable, see e.g. refs. (32–34). Thus, there
exists an m such that c0 >

∑
k �= 0|ckm|, and for this m, Tm(θ ) > 0 for

all θ .
An alternative argument can be drawn as follows. Denote by L

the torque’s Lipschitz constant, i.e. L = inf{κ | ∣∣T (θ + �) − T (θ )
∣∣ <

κ|�|}, for all θ , � ∈ [0, 2π ]. Then, Tm(θ ) is also Lipschitz with Lip-
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shitz constant ≤ L. It is also periodic with period 2π/m and av-
erage c0, which we assume positive. Let ϑ0 be such that Tm(ϑ0) =
c0, which always exists since Tm is continuous. Then, over a
period θ ∈ [

ϑ0 − π
m , ϑ0 + π

m

]
, Tm(θ ) takes values in the interval[

c0 − Lπ
m , c0 + Lπ

m

]
. Thus, if we take m = � Lπ

c0
�, that is, we take the

smallest integer m such that m ≥ Lπ
c0

, it follows that Tm(θ ) > 0 over
the period, and hence for all θ .

We note that the number m = � Lπ
c0

� of the needed engines is
tight when T (θ ) has the shape of a triangular wave with slope L
and period 2π .

Alternative analysis for the Stirling case
We derive a condition for three coupled Stirling engines (m = 3) to
suffice for sustained limit cycle operation.

Let ε = sr
V0

and consider the expansion of the dimensionless
torque in terms of ε,

T S(θ )
ζnRT0

= ε

(
(1 + α �T

2T0
sin(θ ))

1 + ε(1 − cos θ )
− p0V0

ζnRT0

)
sin θ

= ε

(
1 + α

�T
2T0

sin θ − p0V0

ζnRT0

)
sin θ + O(ε2)

= ε
α�T
4T0

+ ε

(
1 − p0V0

ζnRT0

)
sin θ + ε

α�T
4T0

cos(2θ ) + O(ε2).

Note that the two first harmonics vanish when coupling three
Stirling engines, leaving only the constant term and higher order
terms in ε. Therefore, as long as

α�T
4T0

	 ε,

three engines are enough to ensure that the torque is sign-definite.
The resulting system will gyrate at approximately constant angu-
lar velocity

〈ω〉 ≈ α�TζnR
4�

ε.

Alternative analysis for the Brownian case
In analogy with the Stirling engine, we expand the dimensionless
torque for the Brownian gyrating engine in the dimensionless pa-
rameter β. This parameter controls the variation of the capaci-
tance and, by expanding around zero, we assume that this vari-
ation is small. That is, we assume that our system is within the
linear response regime. The expansion gives

T B(θ )
kBT0

= f1(θ )β + f2(θ )β2 + O(β3),

where f1(θ ) depends on θ through terms linear in sin(θ ) and cos(θ ),
while f2(θ ) contains second harmonics and a constant term. Terms
independent of β vanish, since for β = 0 energy cannot be ex-
tracted from the system. Therefore, up to second order in β, the
only term that contributes to the average torque is f2(θ )β2, whose
average value over a cycle can be computed to be

1
kBT0

∫ 2π

0
T B(θ )dθ ≈ β2

2π

∫ 2π

0
f2(θ )dθ =

√
3�T

64T0
β2.

Consequently, if two engines are coupled, the first-order term
in β vanishes, whereas, if three engines are coupled, the remaining
terms are of third order or higher. Thus, provided

√
3�T

64T0
	 β,

the constant term dominates over higher order terms and a glob-
ally attractive limit cycle operation is present for the three cou-
pled engines. In that case, the average angular velocity can be ap-
proximated by

〈ω〉 ≈
√

3kB�T
64�

β2.

Optimizing phase difference
We now expand on the point raised in the “Remarks on equaliz-
ing the torque” section that phase differences between coupled
engines may be optimized to minimize the variation of the effec-
tive torque. Doing so, for two coupled engines, amounts to solving
the following optimization problem:

min
θ0

1
2π

∫ 2π

0

(
T (θ )+T (θ+θ0 )

2 − 〈T 〉
)2

dθ.

Due to the periodicity of T , the problem reduces to minimizing
the integral of the product T (θ )T (θ + θ0) over a cycle.

We bring in the Fourier series expansion [7], written for the
terms in this product, and consider the partial derivative of the
integral with respect to θ0 so as to obtain the first-order condition
for optimality

−
∞∑

k=1

k(a2
k + b2

k ) sin(kθ0) = 0.

We see that θ0 = nπ, n ∈ N are solutions and thus potential ex-
trema. Minimality hinges on the second derivative, which suffice
to be strictly positive, i.e.

−
∞∑

k=1

k2(a2
k + b2

k ) cos(kθ0) > 0.

It is clear that θ0 = 0 corresponds always to a maximum, while θ0 =
π may correspond to a maximum, a minimum, or be inconclusive,
depending on the torque profile as a function of θ . For instance,
assuming b1 and a2 are the only nonzero terms in the Fourier ex-
pansion, as is the case of the Stirling engine (up to second-order
approximation in ε), θ0 = π corresponds to a maximum as long as
b2

1 < 4a2
2. In this case, there are two other extrema at

θ
opt
0 = ±acos

(
− b2

1

4a2
2

)
,

which are in fact minima. All in all, the optimal phase difference
for two coupled Stirling engines is equal to θ

opt
0 = π when

(
1 − p0V0

ζnRT0

)2

>

(
α�T
2T0

)2

,

and it is

θ
opt
0 = ±acos

(
−4

(
ζnRT0 − p0V0

ζnRα�T

)2
)

,

otherwise. For the parameters used in this paper, it follows that
the optimal phase is exactly π .

Parameters used
The parameters we have used in the different numerical experi-
ments are specified in Table 1. Note that, for proper comparison,
� has been chosen such that log10(I/I0) = 2 both for the Stirling
and the Brownian gyrating engines in Figs. 5 and 7, respectively.
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Table 1. Parameters used.

Parameter Value Units

Stirling engine problem

s 71 mm2

r 3.5 mm
ζ 0.94 –
p0 101.3 kPa
n 0.00185 mol
R 8.314 J K−1 mol−1

Ttop 297.15 K
α 0.17 –
V0 44900 mm3

I 10−1 to 10−8 (Fig. 4) kg m2

5.7 × 10−5 (Fig. 5)
�T 10 (Fig. 4) K

0 to 15 (Fig. 5)
� 4.38 × 10−6 kg m2 s−1

Brownian gyrator problem
C0 2 mF
β 0.1 –
R1, R2 1 �

T1 200 K
kB 1.38 × 10−23 kg m2 s−2 K−1

I 10−12 to 10−19 (Fig. 6) kg m2

5 × 10−16 (Fig. 7)
�T 10 (Fig. 6) K

0 to 15 (Fig. 7)
� 4.32 × 10−22 kg m2 s−1
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