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ABSTRACT OF THE DISSERTATION

Practical Dependable Systems with OS/Hypervisor Support

by

Diyu Zhou

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2020

Professor Yuval Tamir, Chair

Critical applications require dependability mechanisms to prevent them from failures

due to faults. Dependable systems for mainstream deployment are typically built upon

commodity hardware with mechanisms that enhance resilience implemented in software.

Such systems are aimed at providing commercially viable, best-effort dependability cost-

effectively.

This thesis proposes several practical, low-overhead dependability mechanisms for critical

components in the system: hypervisors, containers, and parallel applications.

For hypervisors, the latency to reboot a new instance to recover from transient faults is

unacceptably high. NiLiHype recovers the hypervisor by resetting it to a quiescent state that

is highly likely to be valid. Compared to a prior work based on reboot, NiLiHype reduces

the service interruption time during recovery from 713ms to 22ms, a factor of over 30x, while

achieving nearly the same recovery success rate.

NiLiCon, to the best of our knowledge, is the first replication mechanism for commercial

off-the-shelf containers. NiLiCon is based on high-frequency incremental checkpointing to

a warm spare, previously used for VMs. A key implementation challenge is that, compared
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to a VM, there is a much tighter coupling between the container state and the state of the

underlying platform. NiLiCon meets this challenge with various enhancements and achieves

performance that is competitive with VM replication.

HyCoR enhances NiLiCon with deterministic replay to address a fundamental drawback

of high-frequency replication techniques: unacceptably long delay of outputs to clients. With

deterministic replay, HyCoR decouples latency overhead from the checkpointing interval.

For a set of eight benchmarks, with HyCoR, the latency overhead is reduced from tens of

milliseconds to less than 600µs. For data race-free applications, the throughput overhead of

HyCoR is only 2%-58%.

PUSh is a dynamic data race detector based on detecting violations of the intended shar-

ing of objects, specified by the programmer. PUSh leverages existing memory protection

hardware to detect such violations. Specifically, a key optimization in PUSh exploits mem-

ory protection keys, a hardware feature recently added to the x86 ISA. Several other key

optimizations are achieved by enhancing the Linux kernel. For a set of eleven benchmarks,

PUSh’s memory overhead is less than 5.8% and performance overhead is less than 54%.
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CHAPTER 1

Introduction

Modern data centers consist of tens of thousands of machines. With such a large number

of machines, during each hour of the day, there is a relatively high probability of failure

of certain machines in the data center. For example, for a cluster of 1800 server machines

in Google, typically there are 1000 individual machines failures in the first year of deploy-

ment [goo]. Data centers commonly host a large number of critical services. Hence, there is

a need to deploy dependability mechanisms that prevent service failure due to hardware or

software faults.

There are two approaches to increase the dependability of a system. One is to enhance the

reliability of the applications by minimizing design faults and thus reducing the possibility of

encountering failures. The other approach recognizes the fact that faults cannot be entirely

eliminated and will eventually occur and cause system failures. This leads to the development

of fault-tolerance mechanisms that allow the system and the applications to continue to

operate correctly despite component failures.

A common method to reduce design faults is through the use of debugging tools to detect

programming errors in the code. Fault tolerance mechanisms are either application-specific

or application-transparent. Compared to their application-specific counterparts, application-

transparent fault-tolerance mechanisms require only a one time development cost, avoiding

an extra development cost for each new application. Application-transparent fault-tolerance

mechanisms can be developed by enhancing the software infrastructure or the underlying

hardware. This thesis presents a debugging tool that is designed to detect an important

1



type of programming errors in parallel applications and several application-transparent fault-

tolerance mechanisms based on the enhancement of the software infrastructure: hypervisors

and containers.

Building dependable systems involves a tradeoff between soundness and overhead. Sound-

ness represents the effectiveness of the dependability mechanisms and is measured by metrics

such as detection rate and recovery rate. Overhead is the cost of building the dependable

system and the cost of running applications under the dependable system. Overhead is mea-

sured by metrics such as development costs, throughput overhead, latency overhead, and

resource overhead. Dependable systems for mainstream deployment are typically built upon

commodity hardware with mechanisms that enhance resilience implemented in software. The

goal of such dependable systems is to provide commercially viable, best-effort dependability

cost-effectively. The focus of this thesis is on dependability mechanisms that can be deployed

in this type of systems.

This thesis proposes several practical, low-overhead dependability mechanisms for critical

components in the system: hypervisors, containers, and parallel applications. The approach

towards building such dependability mechanisms involves first, identifying sweet spots in

the design space that balance soundness and overhead. Second, novel use of hardware to

optimize critical operations in the dependability mechanisms. Third, dedicated optimizations

of the internals of operating systems/hypervisors. Based on these approaches, each of the

proposed dependability mechanisms in this thesis reduces some aspects of overhead by orders

of magnitude while still maintaining nearly the same level of soundness compared to directly-

comparable prior works.

The rest of the chapter is organized as follows. Section 1.1 discusses a key tradeoff

involved in dependability mechanisms. It argues that for mainstream deployment, it is ap-

pealing to trade a small reduction in soundness for a significant reduction in overhead. Sec-

tion 1.2 discusses the use of existing hardware features and/or dedicated optimizations of the

internals of operating systems and hypervisors for implementing dependability mechanisms.
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Section 1.3 presents the contributions of this thesis. Section 1.4 presents the organization of

the rest of the thesis.

1.1 A Key Tradeoff in Dependable Systems

As mentioned earlier, the two ways to enhance the dependability of a system is by minimiz-

ing design faults and building fault-tolerance mechanisms to allow applications to survive

failures. Software bugs are a significant source of design faults. Unfortunately, some bugs,

especially those in multithreaded applications, are hard to find manually since the manifes-

tation of the bugs is highly dependent on deployed environments, event timing, and thread

interleaving. This has motivated the development of debugging tools that aid programmers

in finding such bugs. In some cases, debugging tools are used only during the development

phase. If the overhead of the debugging tools is low enough, they can be used in deployed

systems to further detect and diagnose bugs that escape detection in the development phase.

Ideally, a dependability mechanism should have the following two characteristics.

(1) Maximum soundness: For a debugging tool, this means that it should have no false

positives (i.e., does not produce false alarms) nor false negatives (i.e., does not miss any

bugs that may eventually lead to failure). For a recovery mechanism, this means that after

a failure occurs, the mechanism should always result in a successful recovery.

(2) Minimal overhead: The mechanism should not rely on any customized hardware

to avoid the design and manufacturing overheads for new hardware. It incurs minimal

performance, memory, and resource overheads during normal operation. It incurs minimal

service interruption when recovery is necessary. Minimizing overhead is critical for any

fault-tolerance mechanism since for it to be effective, it needs to be on all the time. For a

debugging tool, as discussed earlier, low overhead enables it to be deployed in production

runs.

The design of dependability mechanisms involves a tradeoff between soundness and over-
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head. An extreme example is life-critical systems, such as those used to pilot airplanes. Such

systems are typically built using custom software and hardware. They often adopt formal

verification to minimize design faults in the system. The goal of such dependable systems

is to provide an extremely high level of soundness. This is typically associated with a high

level of overhead.

Dependable systems for mainstream deployment are built upon commodity hardware

with mechanisms that enhance resilience implemented in software. Extensive testing, with

or without debugging tools, is used to reduce the number of programming errors. The

goal of such dependable systems is to provide commercially viable, best-effort dependability

cost-effectively. Hence, for mainstream deployment, the sweet spot in the design space

generally involves accepting a reasonable reduction in soundness in order to reduce design,

implementation, and operational overheads.

An example of design tradeoff for mainstream deployment of dependability mechanisms

involves debugging tools. A debugging tool that incurs false positives is often not acceptable

to the programmers since it typically takes a significant amount of effort to investigate bugs

in applications. Programmers are unwilling to spend such an amount of effort on potentially

correct code. On the other hand, debugging tools that incur false negatives can be tolerated

by the programmers. The reason is that, for any debugging tool, it is impossible to guarantee

detection of all the bugs in one execution. This is because only a subset of the possible

execution paths is exercised in any single execution. Hence, a common practice is to run the

applications with the debugging tool multiple times with diverse inputs to ensure that most,

if not all, of the bugs, are caught. As a result, for a debugging tool, although not ideal, it

is likely to be acceptable that some bugs may be missed during any single execution as long

as there is a high probability that the bugs are detected in multiple executions.

The above discussion suggests that, for debugging tools, in order to reduce overhead,

there are at least two ways to reduce soundness that may be acceptable for mainstream

deployment: (1) accept a low rate of false negatives, and (2) accept that the tool may fail
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to detect some bugs in a single execution, as long as there is a high probability of detecting

them in multiple executions.

Another example of design tradeoff for mainstream deployment of dependability mech-

anisms involves fault-tolerance mechanisms. Every fault-tolerance mechanism is based on

some assumptions regarding the failure model of system components – how the components

behave as a result of faults. For example, the failure is fail-stop – the faulty component

immediately stops before corrupting any data in storage or communicating with other com-

ponents. No fault tolerance mechanism can guarantee recovery from all possible component

failures. Furthermore, for any particular component failure model, it is typically the case

that, as the recovery rate approaches 100%, each small increase in recovery rate involves

significant increases in design, implementation, and operational overheads. Hence, it is often

the case that, especially for deployment in mainstream systems, the sweet spot in the design

space is at a lower recovery rate than for life-critical systems in order to lower the various

overheads to commercially viable levels.

1.2 Commodity Hardware and Dedicated Privileged Software Sup-

port for Practical Dependable Systems

The dependability mechanisms developed in this thesis involve repurposing features in com-

modity hardware and/or implementing dedicated optimizations of the internals of operating

systems and hypervisors. This section motivates this approach.

Modern computer systems have a rich set of hardware features for many different pur-

poses. Some of these hardware features can be reused for optimizing the implementation of

dependability mechanisms. For example, the memory management unit, which is originally

used to virtualize the memory, is often used in the dependability mechanisms to track the

dirty pages between checkpointing. As shown in this thesis, novel reuse of hardware features

can significantly reduce the overhead of dependability mechanisms.
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Privileged software, such as operating systems and hypervisors, plays a critical role in

implementing dependability mechanisms. This is due to the following three reasons. Firstly,

as discussed above, hardware features are often reused to implement dependability mech-

anisms. Privileged software manages and provides access to hardware. To exploit these

hardware features, dependability mechanisms must interact with the privileged software.

Secondly, applications often have certain state (e.g., file descriptor tables) maintained by

the privileged software. A dependability mechanism often needs to interact with the privi-

leged software to access, restore, or modify such state. Thirdly, dependability mechanisms

often require changing the normal behavior of the privileged software. For example, many

checkpoint-based recovery mechanisms require network traffics to clients to be buffered until

the backup acknowledges the receipt of the corresponding checkpoint. In such a case, the

privileged software needs to provide interfaces, in this example, to buffer and release network

packets.

Unfortunately, commodity privileged software is often not tailored for implementing de-

pendability mechanisms. Thus, it either does not provide interfaces to perform the operations

discussed above or provides highly inefficient ones. Hence, the overhead of dependable sys-

tems can be significantly reduced, if the privileged software is enhanced to efficiently support

these operations.

1.3 Thesis Contributions

Table 1.1: Summary of the four dependable systems presented in the thesis.

Mechanism Fault/Failure Model Protected Component

NiLiHype Transient hardware and software faults Hypervisors

NiLiCon Fail-stop failures Containers

HyCoR Fail-stop failures Containers

PUSh Data race bugs Applications
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This thesis develops and evaluates four practical, low-overhead dependability mechanisms

that protect critical components in the system as summarized in Table 1.1. Each of these

mechanisms enhances the reliability of a different layer of the multilayer system architecture

used in data centers.

1.3.1 NiLiHype

NiLiHype is a recovery mechanism that recovers hypervisors from failures due to transient

hardware and software faults. NiLiHype is related to ReHype [LT11, LT14], a prior work

that similarly recovers hypervisors from failures due to these faults.

ReHype is built upon a component-level recovery mechanism: microreboot [CKF04].

Upon a hypervisor failure is detected, ReHype preserves all the VMs and boots a new

hypervisor instance. The state of the hypervisor is then updated to make it consistent with

the states of the other system components (e.g., the guest VMs). This requires ReHype

to reuse a significant amount of the state from the previous (failed) hypervisor instance.

However, it has been shown that recovery success rates above 85% are achieved. Achieving

such recovery rates despite reusing state from the failed instance is an indication that there

is a relatively low probability of a fault corrupting state critical to the survival of the entire

system.

A key drawback of ReHype is that for many important applications, the latency of the

reboot results in unacceptably long service interruption. Motivated by this and the above

observation that the critical state in the failed hypervisor is unlikely to be corrupted, this

thesis proposes a component-level recovery scheme: microreset. With microreset, a failed

component is reset to a quiescent state that is highly likely to be valid and where the

component is ready to handle new or retried requests from the rest of the system. By

avoiding the reboot step of microreboot, the recovery latency is dramatically reduced.

NiLiHype (Nine Lives Hypervisors) is an implementation of microreset on the Xen [BDF03]
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hypervisor. Both NiLiHype and ReHype incur negligible overhead during normal operation.

During recovery, compared to ReHype, NiLiHype trades a small reduction in recovery rate

(<2%) for a significant reduction in service interruption time. Specifically, the service inter-

ruption time is reduced from 713ms with ReHype to 22ms with NiLiHype, a factor of over

30x.

1.3.2 NiLiCon

NiLiCon (Nine Lives Containers) is a mechanism for running duplicated containers, thus

providing the ability to tolerate container fail-stop failures. Cloud computing typically relies

on VMs or containers to provide an isolation and multitenancy layer [Ber14, Mer14, RG05].

Containers are often an attractive alternative to VMs since they have the benefits of smaller

size, faster startup, and avoiding the need to manage updates of multiple VMs [Ber14,

LKG15]. However, despite the advantages of containers, there has been very little work

on fault-tolerance techniques for containers. To the best of our knowledge, NiLiCon is the

first container fault-tolerance mechanism that is transparent to applications and clients and

supports stateful applications.

NiLiCon applies the widely used VM replication technique: Remus [CLM08] to con-

tainers. Specifically, with NiLiCon, the applications run in a primary container, which is

periodically paused every tens of milliseconds, so that its state can be checkpointed to a

backup machine. If the primary container fails, the applications are started on the backup

machine in a new instance of the container, from the checkpointed state.

A container has a much tighter state coupling between the container and the underlying

kernel than between a VM and the underlying hypervisor. Specifically, there is much more

container state in the kernel (e.g., the list of open file descriptors) than there is VM state

in the hypervisor. Hence, a key challenge to implement NiLiCon is to efficiently checkpoint

parts of the container state that are in the kernel. We overcome this challenge with various

optimizations and among them, a key optimization is to enhance the kernel to identify
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the unchanged container state in the kernel since the previous checkpoint and skip the

checkpointing of such state in the current checkpoint iteration.

We have validated the operation of NiLiCon and evaluated its overhead using seven

benchmarks, five of which are server applications. The recovery rate with NiLiCon is 100%

with a recovery latency of ∼350ms. NiLiCon achieves performance that is competitive with

Remus. Specifically, the performance overhead with NiLiCon is in the range of 19%-67%

versus 13%-72% with Remus. During normal operation, the CPU utilization on the backup

is in the range of 6.8%-40%.

1.3.3 HyCoR

HyCoR builds upon NiLiCon and similarly provides the ability to tolerate container fail-

stop failures. HyCoR addresses a fundamental disadvantage of Remus-based replication

approaches [CLM08, LBV15, RZP19, WCJ18]: unacceptably long delay of outputs to the

clients. Specifically, with NiLiCon, for consistency between the server applications and their

clients after failover, outputs must be delayed and released only after the checkpoint of

the corresponding epoch is committed at the backup. Since checkpointing is an expensive

operation, for acceptable overhead, the epoch duration is typically set to tens of milliseconds.

On average, outputs are delayed by half an epoch plus the time to take and transfer the

checkpoint. This results in delays of tens of milliseconds.

HyCoR overcomes the above drawback by integrating deterministic replay and container

checkpoint. Specifically, during normal operation, execution on the primary is divided into

epochs and the primary state is checkpointed to an inactive backup at the end of each

epoch. The primary also records its non-deterministic events. When the primary sends

a reply to a client, the log containing the non-deterministic events is sent to the backup.

Hence, the external outputs are delayed only by the time it takes to commit the relevant last

portion of the log to the backup. In such a way, HyCoR decouples latency overhead from

the checkpointing interval.
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Upon failure of the primary, the backup begins execution from the last primary checkpoint

and then deterministically replays the primary’s execution of its last partial epoch, up to

the last external output. The backup then proceeds with live execution.

To achieve a practical overhead, HyCoR records an incomplete set of non-deterministic

events, namely the outcomes of synchronization operations and non-deterministic system

calls, on the primary. Untracked non-deterministic events, such as those caused by data

races, will cause the replay to fail and thus the recovery to fail. To overcome this challenge,

HyCoR includes a simple timing adjustment mechanism that results in a high recovery

rate for applications that contain data races, as long as their rate of unsynchronized write

operations is low.

With HyCoR, various enhancements are added to the kernel to facilitate the implemen-

tation of deterministic replay, integration of deterministic replay and checkpointing, and

preserving the network connection. We have evaluated HyCoR with eight benchmarks. Five

of these benchmarks are specifically designed to stress HyCoR. HyCoR requires the applica-

tions to link with a modified glibc library that records, sends, and replays non-deterministic

events. Furthermore, HyCoR incurs a small reduction in recovery rate (<0.5%) for appli-

cations with data races. In return, HyCoR has a much lower extra delay of outputs to

clients (reduced from 36ms-51ms to 150-572µs) and much lower throughput overhead if the

application is free of data races (2%-58% with HyCoR vs. 18%-139% with NiLiCon). For

applications without data races, HyCoR’s recovery rate is 100% and it recovers within one

second.

1.3.4 PUSh

PUSh is a dynamic data race detector. Most of the competitive approaches [thr, SBN97,

FF09, ZLJ16, SI09] are based on memory instrumentation to perform complex happens-

before or lockset analysis on global memory accesses to detect racy memory access pairs.

A key disadvantage of these mechanisms is that they incur prohibitive performance and
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memory overhead (often in the scale of hundreds of times), limiting them to be used only for

debugging with small workloads. PUSh overcomes the disadvantage mentioned above with

two core ideas. First, the detection of data races can be facilitated by requiring programmers

to explicitly specify any intended sharing of global objects and then verifying compliance

with these intentions. Second, hardware, in the form of page-level protection, instead of

memory instrumentation, can be used to efficiently enforce the specified sharing policies.

PUSh prevents the sharing of global objects unless the programmer explicitly specifies

sharing policies that permit it. Annotation can be added when an object is created to

specify its sharing policy, such as private: read/write accessible by one thread, or read-

shared : potentially readable by all the threads. Subsequently, change policy annotations can

be used to change the sharing policy of objects. If the policy changes on the same objects

are unordered, data races might escape detection. PUSh uses happens-before tracking of the

policy changes to detect such a scenario.

PUSh uses the conventional memory management unit to enforce sharing policies and

includes a key performance optimization that exploits memory protection keys (MPKs), a

hardware feature recently added to x86 platforms. Several key optimizations that signifi-

cantly reduce the performance and memory overhead are enabled by enhancing the memory

management subsystem in the Linux kernel. A drawback of PUSh is that it requires the

programmer to annotate the sharing policy of each object in the code. However, with our

benchmarks, the annotation is mostly <5% of the overall lines of code. Furthermore, in

rare cases, due to the limited number of protection domains supported by MPK, PUSh

might miss a manifested data race. Fortunately, PUSh has a so-called pseudo completeness

property: with a sufficient number of different executions, all data races will eventually

be detected. A key advantage of PUSh is that, compared to the competitive tools, such as

ThreadSanitizer(TSan), a widely used data race detector, PUSh has much lower performance

overhead (0%-54% with PUSh vs 304%-36000% with TSan) and memory overhead (0%-5.8%

with PUSh vs 54%-11000% with TSan). These results indicate that, in many deployment
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scenarios, PUSh can be used in production runs.

1.4 Organization

The rest of the thesis is organized as follows. Chapter 2 presents the background and

related work for this thesis. It starts with a brief introduction to virtualized systems and

fault models. It then presents background and related work of OS/hypervisor resilience,

duplication, deterministic replay, VM/process replication, container migration, and data

race detection.

Chapter 3 presents NiLiHype, a hypervisor recovery mechanism with extremely small

(22ms) service interruption time during recovery. Chapter 4 presents NiLiCon, to the best

of our knowledge, the first replication mechanism for commercial off-the-shelf containers.

Chapter 5 presents HyCoR, a container replication mechanism enhancing NiLiCon with

deterministic replay, that almost eliminates the unacceptably long delay on outputs to clients.

Chapter 6 presents PUSh, a low overhead data race detector based on hardware-supported

prevention of unintended sharing. Chapter 7 concludes this thesis and discusses the directions

of future work.
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CHAPTER 2

Background and Related Work

This chapter presents the background knowledge and the related work to facilitate the dis-

cussion for the rest of this thesis. The rest of the chapter is organized as follows. The

dependability mechanisms presented in this thesis are aimed at protecting critical compo-

nents in data center machines. Virtual machines and containers are the key components

of the software infrastructure of data centers. Section 2.1 presents the background knowl-

edge of virtual machines and containers. Section 2.2 presents the background knowledge

of fault models and failure models, focusing on those assumed by the dependability mecha-

nisms presented in this thesis. Related work on operating system/hypervisor dependability

is presented in Section 2.3.

Section 2.4 presents an overview of fault-tolerance mechanisms based on duplication to

facilitate the discussion of the rest of the chapter. Section 2.5 presents the background

knowledge and related work of deterministic replay. Section 2.6 presents the background

knowledge and related work of VM/process replication, which facilitates the discussion of

the container replication mechanisms presented in this thesis. Section 2.7 presents prior

work on container and process migration, with a focus on CRIU [cria], which is the starting

point of the container replication mechanisms presented in this thesis. Section 2.8 presents

related work on data race detection.
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Figure 2.1: Virtualized systems. Left: a system based on hardware virtualization. Right: a

system based on OS-level virtualization.

2.1 Virtualization

Figure 2.1 shows the overall architecture of a virtualized system. Two types of virtualization

are shown in the figure. The left part of the figure shows hardware virtualization, that

enables multiple VM instances to run on top of a single physical machine [RG05]. Each VM

instance has its own operating system. A hypervisor is placed between the hardware and

the VMs and is responsible for managing the VMs and virtualizing the underlying hardware

resources for the VMs. The particular hypervisor discussed throughout this thesis is the Xen

hypervisor [BDF03].

Another type of virtualization, as shown in the right part of the figure, is OS-level virtu-

alization [Ber14]. OS-level virtualization enables multiple container instances to run on top

of a single operating system. Each container instance has a separate namespace to provide

the processes within it an illusion that they are the only processes running on the operating

system. Furthermore, the operating system can be configured to limit the hardware resources

allocated to and seen by the processes in a container. Throughout this thesis, the OS-level

virtualization is provided by the Linux kernel.
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Both a container and a VM can be used as an encapsulation unit that contains ap-

plications and the runtime environment to run the applications. This greatly simplifies

the deployment and management of applications. Furthermore, both containers and VMs

can be used to provide an isolation and multitenancy layer on top of a physical machine

and thus to enable server consolidation [Ber14, Mer14, RG05]. Compared to VMs, con-

tainers have the advantages of lower virtualization overhead and shorter boot/shutdown

time [Ber14, LKG15]. On the other hand, VMs provide better isolation and are thus po-

tentially more secure. Sometimes, as shown in Figure 2.1, containers and VMs can be used

together by running containers inside a VM. In this case, applications from the same party

can be placed into multiple containers, and then these containers are placed in the VM.

Thus, the VM provides strong isolation to protect these applications from other applications

of untrustworthy parties co-located in the same physical machine. The containers allow

applications deployed in them to still enjoy the benefits of encapsulation.

2.2 Fault/Failure Models

This thesis is focused on enhancing reliability for critical components in the system. This

section presents the relevant background knowledge of fault models and failure models to

facilitate the discussion for the rest of the thesis.

Faults can be classified as hardware faults and software faults [LBK90]. Based on the

frequency of the occurrence, a hardware fault can be permanent, intermittent, and transient.

A permanent hardware fault persists until the faulty component is fixed or replaced. An

intermittent hardware fault occurs at random intervals. A transient hardware fault occurs

once and then disappears forever.

Software faults are programming errors in the code. Examples of software faults are

buffer overflow/underflow and use-after-free bugs. This thesis is focused on two important

types of software faults: data race bugs [SBN97] and Heisenbugs [Gra86]. A data race is
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caused by two threads that simultaneously access the same memory location without proper

synchronization and at least one of the accesses is a write. Old programming language

standards allow such behavior and programmers sometimes intentionally develop code with

data races to, for example, perform customized synchronization operations. However, it

is often the case that data races are caused by unintentional sharing and thus they are

good indicators for concurrency bugs. Modern language standards define all data races as

bugs [ISO11].

Another type of software faults is Heisenbugs [Gra86], which occur only under particular

timing and/or thread interleaving in the system. Similar to a transient hardware fault, a

software Heisenbug is unlikely to recur when the program is executed again.

A fault may lead to a system failure. A failure model describes the behavior of the system

as a result of a fault. One extreme case is a fail-stop failure [Sch84], where the fault halts

the system before it causes externally visible erroneous behaviors, such as writing corrupted

data to storage or sending incorrect messages to other components. Another extreme case

is a Byzantine failure. In such a case, the fault eventually causes the system to behave

arbitrarily.

2.3 Enhancing the Dependability of OSes/Hypervisors

A critical step in most fault tolerance mechanisms is that, after an error is detected, the

system is restored to a valid state. This state restoration is referred to as recovery. In many

cases, a simple yet effective recovery mechanism is to reboot the entire system since this

brings the system to a consistent, frequently tested, and well-understood state. However,

naively rebooting the entire system has two drawbacks: (1) it incurs a long service inter-

ruption time during recovery, and (2) it causes all the volatile state (e.g., those stored in

memory) in the system to lose.

To overcome these drawbacks, Candea et al. propose microreboot [CKF04]. Contrary to
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a whole system reboot, microreboot only reboots the failed component of the system and

then reintegrates it back to the system. There are three requirements from the target systems

for microreboot to be effective. First, components in the system need to be loosely coupled.

Specifically, the only way for one component to affect other components is through narrow,

well-defined interfaces. In such a system, faults that occur in one component are highly

unlikely to propagate to other components. Second, all the operations in the system must

be transactional to prevent state inconsistencies upon recovery. For example, a failure might

occur when a component is in the middle of handling a request from another component. If

the component that handles the request fails and the request handler is not transactional,

after recovery is attempted, state changes performed by the request handler prior to failure

may leave the system in an inconsistent state, resulting in recovery failure. Last, failed

requests can be retried transparently to hide failures from other components.

Otherworld [DS10] applies microreboot to the Linux kernel, where the kernel is viewed as

one of the components in the entire system. The state of the running processes is preserved

in place. After rebooting a new kernel instance, Otherworld rebuilds many kernel data struc-

tures associated with each process, such as the process descriptor, the file descriptor table,

and signal handler descriptors. Restoration of kernel data structures requires traversing

many complex data structures in a possibly corrupted kernel, increasing the chance of failed

recoveries. In many cases, user-level processes require custom crash procedures in order to

properly resume execution.

Similar to Otherworld, ReHype [LT11, LT14] applies microreboot to the Xen hypervi-

sor [BDF03]. Upon the detection of a hypervisor failure, ReHype pauses all the VMs and

boots a new hypervisor instance. Critical state in the old hypervisor is preserved and is

reused in the new hypervisor to allow the hypervisor to continue managing existing VMs.

After the reboot, ReHype resolves various inconsistencies between the new hypervisor and

the preserved components in the system. For example, it acknowledges all pending interrupts

in all processors to avoid blocked interrupts after recovery. Finally, it unpauses all the VMs
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to finish the recovery.

A hypervisor maintains less state for each VM compared to the state for each process

maintained by the kernel. This makes the microreboot of a hypervisor simpler than of kernel

and increases the chance of a successful recovery [LT11].

RootHammer [KC07] uses microreboot to rejuvenate virtualized systems based on Xen.

It reduces the time for this rejuvenation by rebooting only the Xen hypervisor and the

privileged VM (PrivVM, also known as Dom0) [BDF03]. The PrivVM is a VM that performs

management operations, such as creating and destroying VMs. It may also host the device

drivers for the I/O devices in the system and facilitate their sharing among the application

VMs. RootHammer preserves in memory the states of VMs and their configurations while

rebooting the hypervisor and the PrivVM. During rejuvenation, the PrivVM is properly

shut down and the VMs suspend themselves cleanly. Hence, RootHammer operates within

a healthy and functioning system. RootHammer is not designed to recover from failure and

thus does not deal with possible arbitrary corruptions and inconsistencies in the system.

There are works focusing on ways to partition the kernel or the hypervisor, isolate the

partitions (fault domains) from each other, and recover failed partitions without requiring a

full system reboot [BVK16, DCC08, HBG06, LAK09, NB13]. In many cases this is facilitated

by an underlying design, based on a small microkernel and a collection of drivers and servers

isolated from each other by the memory-management hardware [BVK16, DCC08, HBG06].

VirtuOS [NB13] proposes vertical slicing of the Linux kernel to service domains. The

encapsulation of the slices is performed using virtualization based on Xen. Requests from

user processes interact directly with the appropriate service domain, which is isolated from

the rest of the kernel. Since VirtuOS requires virtualization, applying the idea to a hypervisor

would require nested virtualization with its associated overheads.

Akeso [LAK09] dynamically partitions the Linux kernel into request-oriented recovery

domains. A recovery domain is formed by the execution thread that handles a request, such
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as a system call or interrupt. A modified compiler is used to instrument the code to track

state changes caused by the domain as well as dependencies among domains. When an error

is detected, the affected domain and dependent domains are rolled back. Due to the code

instrumentation, the performance overhead of Akeso is between 8% and 560%.

Yoshimura et al. [YYK11b, YYK12] proposes the idea that it is possible to recover from

some errors in the Linux kernel without reboot. Their recovery scheme always involves killing

a running process. This achieves a recovery success rate of 60%.

TinyChecker [TXC12] proposes the use of nested virtualization to manage hardware en-

forced protection domains during hypervisor execution. TinyChecker is a small hypervisor

that runs underneath the commodity hypervisor, monitors transitions between the commod-

ity hypervisor and the VMs it hosts, limits the memory regions writable during hypervisor

execution, and attempts to detect accesses that are possibly erroneous and take checkpoints

to facilitate recovery. TinyChecker has never been fully implemented or evaluated. In a

full implementation, the nested virtualization mechanism is expected to involve significant

overhead.

There are works that use virtualization to provide resilience to device driver failures [JKJ10,

LGT09] and the ability to recover from PrivVM failures [LT12]. The hypervisor, device

drivers, and PrivVM together form the virtualization infrastructure (VI). The resilient VI

can be combined with appropriate middleware to provide, on a virtualized system, a resilient

platform for applications and services [LHT11, LT14].

2.4 Fault Tolerance Based on Duplication

Duplication is one of the foundational fault-tolerance mechanisms and has been in use for

many decades. One way to achieve duplication is through active replicas. With active

replicas, a primary replica and a backup active receive identical inputs in the same order.

In one form of active replication, the outputs from two replicas are continuously compared
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and any mismatch signals an error. This can be used to detect Byzantine replica failures

(§2.2). In such a case, an additional mechanism is needed for recovery. Another form of

active replication relies on failed replicas to be fail-stop. In this case, there is no need to

compare the outputs and recovery from a primary replica failure is achieved by the backup

replica taking over. The duplication mechanisms developed in this thesis target fail-stop

replicas.

A key requirement for active replication is that the replicas are deterministic so that

execution on the backup precisely tracks the primary. Unfortunately, in reality, there are

many sources of non-determinism in a system. This greatly complicates the use of active

replications in many deployment scenarios. One approach for overcoming this challenge is

to force the backup replica to mirror the execution of the primary replica through the use

of deterministic replay (§2.5). Another approach replaces the active backup replica with

a “warm spare” backup replica. In this case, the backup replica state is kept almost, but

not fully, in sync with the primary replica through high-frequency asynchronous incremental

checkpointing. In this case, the backup replica is active only if the primary backup fails

and thus non-determinism is not a problem. This approach is proposed by Remus [CLM08]

in the context of VM replication (§2.6). We discuss these two approaches in the following

sections.

2.5 Deterministic Replay

Deterministic replay is the reproduction of some original execution in a subsequent exe-

cution [CZG15]. With deterministic replay, during the original execution, the results of

non-deterministic events are recorded in a log. This log is used in the subsequent execution.

There are two forms of deterministic replay: offline replay and online replay. With offline

replay, the replay is performed after the original execution has completed. This can be used

for debugging or forensics. With online replay, the replay proceeds concurrently with the
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original execution. An important use case for online replay is to provide fault-tolerance

based on active replication (§2.4). Specifically, in such a case, the primary replica records

non-deterministic events and sends them to the backup replica. The backup replica replays

non-deterministic events based on the log [BS95, GHY14, MGT17, LWV10]. With this, the

determinism requirement for active replica is satisfied.

With a uniprocessor, non-deterministic events include asynchronous events, such as in-

terrupts; system calls, such as gettimeofday ; and inputs from the external world. These

kinds of non-deterministic events occur rarely. Thus, uniprocessor deterministic replay sys-

tems [DKC03, KDC05, SKA04, GWT08, OJF17] have a low overhead. Deterministic replay

on uniprocessors is considered a solved problem [CZG15, OJF17, VLW11].

Shared-memory multiprocessors introduce a new type of non-deterministic events: the or-

der of memory accesses to the same memory location performed by different processors. Such

non-deterministic events occur at a high frequency. A straightforward approach that instru-

ments memory accesses to record these non-deterministic events incurs prohibitive overhead.

Various works have been proposed to address this challenge. Some of them require devel-

oping custom hardware [XBH03, HH08, MCT08, NPC05]. Others rely on utilizing existing

commodity hardware, for example, the memory management unit [DLF08, LVN10, CC13]

and the hardware virtualization extensions [RTL16]. Nonetheless, without custom hard-

ware support, the performance overhead of deterministic replay on multiprocessor systems

is prohibitive.

A common practical approach supporting deterministic replay on multiprocessors is to

require the programs being replayed to be data-race-free [OAA09, RB99]. If this condition

is met, as long as the results of synchronization operations are deterministically replayed,

any ordering of shared memory accesses that can affect execution results is preserved. This

incurs much lower overhead since the frequency of synchronization operations is much lower

than normal memory accesses.

There are various works aimed at achieving full deterministic replay in the presence of
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data races even though only results of synchronization operations are recorded [AS09, PZX09,

LWV10]. ODR [AS09] adopts an offline search algorithm to find the order of shared memory

accesses that satisfies the recorded results of synchronization operations and produces the

recorded outputs. PRES [PZX09] detects data races during replay. It then enumerates the

order of memory accesses in the detected data races to find one possible order that leads to

a successful replay.

Respec [LWV10] is an online deterministic replay system. With Respec, to handle replay

failures caused by data races, the execution of the primary replica is divided into epochs

and a checkpoint is taken before an epoch starts. A replay failure caused by data races

is detected if the backup replica executes an unlogged system call or the state of the two

replicas is different at the end of an epoch. In such a case, the two replicas are rolled back to

the checkpoint of the previous epoch and then continue with a conservative thread scheduling

where only one thread is allowed to execute at a time.

The recording of non-deterministic events can occur at different levels: hardware [XBH03,

HH08], hypervisor [DKC03, KDC05, DLF08], operating system [GWT08, LVN10], or li-

brary [RB99, OAA09]. Without dedicated hardware support, the recording must be done in

software. It is advantageous to record the events at the user level, thus avoiding the overhead

for entering the kernel or hypervisor [LWV10].

The degree to which the replay must recover the details of the original execution depends

on the use case [CZG15]. To support seamless failover with replication, it is sufficient to

provide externally deterministic replay [LWV10]. This means that, with respect to what

is visible to external clients, the replayed execution is identical to the original execution.

Furthermore, the internal state at the end of replay must be a state that corresponds to a

possible original execution that could result in the same external behavior. This latter re-

quirement is needed so that the replayed execution can transition to consistent live execution

at the end of the replay phase.

With deterministic replay, to support seamless failover with replication, outputs to the
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Figure 2.2: Workflow of Remus on the primary VM.

external world must be buffered for a short amount of time before they can be released. This

is because, before releasing any output, the backup replica must ensure it can replay to a

state consistent with the released output. Hence, outputs must be buffered until the backup

replica has received the corresponding non-deterministic event log.

2.6 VM/Process Replication

This section presents prior works related to replication, with a specific focus on VM/process

replication. As discussed in Section 2.4, another approach to achieve duplication is through

high-frequency asynchronous incremental checkpointing to a warm spare. This approach is

first proposed by Remus [CLM08], in the context of VM replication. In this section, we

first present in detail Remus [CLM08]. We then present other related works on VM/process

replication.

2.6.1 VM Replication with Remus

Figure 2.2 shows the workflow of Remus. With Remus, there is a primary VM that executes

the applications and a backup VM that receives periodic checkpoints so that it can take over

execution if the primary VM fails. As shown in Figure 2.2, processing on the primary VM

consists of a sequence of epochs (intervals). Once per epoch, the VM is paused and changes

in the VM state (incremental checkpoints) since the last epoch are copied to a staging buffer

(Local state copy in Figure 2.2). The primary VM then resumes execution while the content

23



of the staging buffer is concurrently transferred to the backup VM (Send state). In order

to identify the changes in VM state since the last state transfer, during the Pause interval

of each epoch all the pages within the VM are set to be read-only. Thus, an exception is

generated the first time that a page is modified in an epoch, allowing the hypervisor to track

modified pages.

A key issue addressed by Remus is the handling of the output of the primary VM to the

external world. There are two key destinations of output from the VM: network and disk. For

the network, incoming packets are processed normally. However, outgoing packets generated

during the Execute phase are buffered. The outgoing packets buffered during an epoch, k,

are released (Release output) during epoch k + 1, once the backup VM acknowledges the

receipt of the primary VM’s state changes produced during epoch k. The delay (buffering)

of outputs is needed to ensure that, upon failover, the state of the backup is consistent with

the most recent outputs observable by the external world. Due to this delay, in order to

support client-server applications, the checkpointing interval is short — tens of milliseconds.

Remus handles disk output as changes to internal state. Specifically, the primary and

backup VMs have separate disks, whose content are initially identical. During each epoch,

reads from the disk are processed normally. Writes to the disk are directly applied to the

primary VM’s disk and asynchronously transmitted to the backup VM. The backup VM

buffers the disk writes in memory. Disk writes from an epoch, k, are written to the backup

disk during epoch k + 1, after the backup receives all the state changes performed by the

primary VM during epoch k.

2.6.2 Related Work on VM/Process Replication

Early works on VM replication are based on deterministic replay (§2.5) and are limited to

uniprocessor systems. Specifically, hypervisor-based fault-tolerance (HBFT) [BS95] leverages

online deterministic replay to let the primary VM record non-deterministic events and send

them to an active backup VM for replay. To simplify replaying interrupts, HBFT buffers
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interrupts and only delivers them until the end of an epoch. Another work [CSX16] similarly

requires the primary VM to record non-deterministic events and send them to the backup.

However, to reduce resource usage, instead of executing an active VM in the backup, the

primary VM periodically performs checkpointing and sends the checkpoint image to the

backup.

It is challenging to extend these works to multiprocessor systems with low overhead. This

is due to the cost of recording non-deterministic events caused by shared memory accesses

with multiprocessors. While the technique of recording the outcomes of synchronization

operations instead of shared memory accesses (§2.5) can be leveraged to reduce the record

overhead, this requires the application to be free of data races. More importantly, applying

this technique to VMs would be complicated since there would be a need to track and replay

non-deterministic events in the kernels of the primary and backup VMs, respectively.

Realizing the above challenge, Remus [CLM08] achieves VM replication on multiprocessor

systems based on high frequency incremental checkpointing to a warm backup as discussed

above. Many of the follow-up works of Remus are focused on reducing the performance

overhead incurred by Remus.

Phantasy [RZP19] uses Intel’s page-modification logging to reduce the overhead of track-

ing dirty pages. It further uses RDMA to speculatively transfer the content of dirty pages

during execution to reduce the pause time due to checkpointing. Phantasy reduces the

throughput overhead of Remus and because of this, Phantasy can sustain a shorter check-

pointing interval to further reduce the latency overhead.

Tardigrade [LBV15] uses the Remus mechanism, but operates with lightweight VMs

(LVMs). The use of LVMs significantly reduces the amount of state transferred between

the primary and backup for each epoch, thus allowing higher frequency checkpointing and

resulting in a shorter delays for outgoing packets. An LVM typically runs only the application

and a library OS (LibOS), which translates and forwards system calls to the host OS. An LVM

is similar to a container in that it also does not include a privileged software component, has
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a separate namespace, and only contains the target application. Compared to a container,

an LVM has looser coupling with the host OS kernel since: (1) the LibOS maintains in

the LVM state that for a container is maintained in the kernel, and (2) the interface (ABI)

between the LibOS and the host kernel is narrower.

A disadvantage of Tardigrade is that it requires deploying a LibOS, not currently a

common part of the software stack, potentially resulting in compatibility problems. A severe

limitation of Tardigrade is that it breaks all the established TCP connections upon failover

since the ABI does not provide a way to access the TCP stack in the host OS.

COLO [DYJ13] reduces the performance overhead by deploying active replication. Inputs

to the primary VM are also transferred to the backup VM. Outputs from the primary VM

and the backup VM are compared. If there is a match, one copy of the outputs is released

immediately. If the outputs differ, state synchronization is performed. Compared to Remus,

with some workloads COLO requires less data (state) to be transferred between the primary

and backup. Furthermore, when the primary and backup outputs match, the only delay of

outgoing packets is for the comparison, far less than the buffering delay with Remus. A key

downside of COLO is that, for largely non-deterministic workloads, mismatches are frequent,

resulting in prohibitive overhead.

PLOVER [WCJ18] optimizes Remus with active VM replication to reduce the size of

the transferred state, which is mainly the dirty pages generated in an epoch. Specifically,

PLOVER duplicates inputs, enforces a total order on the inputs, and sends them to both

primary VM and the backup VM. The state of the two VMs are synchronized when they are

both idle. Only the dirty pages whose content are different in the two VMs are sent from

the primary VM to the backup VM.

Rex [GHY14] and Castor [MGT17] use online deterministic replay (§2.5) to perform

active replication of multithreaded processes. To avoid prohibitive performance overhead,

with Rex and Castor, the outcomes of synchronization operations, instead of shared memory

accesses, are recorded. As a result, untracked non-deterministic events, such as data races,
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can lead to replay failure in the backup. Rex [GHY14] requires the application to be free

of data races. Castor [MGT17] handles data races by buffering the output to the external

world until the backup finishes replaying the associated log. If a divergence, due to a data

race, prevents the backup from continuing replay, the primary’s state is transferred to the

backup and overwrites the backup’s state.

2.7 Container/Process Live Migration

Container/process checkpointing mechanism can be used as a basic building block to imple-

ment migration. Specifically, migration requires the state of a container or a process to move

from one physical machine to another. This can be achieved by checkpointing the container

or the process state on the source physical machine, transferring the checkpoint image to

the destination physical machine and finally restoring the container or the process state in

the destination machine. Checkpointing can also be a basic building block in the implemen-

tation of replication. Specifically, as discussed in prior sections (§2.4, §2.6), replication can

be implemented by high-frequency checkpointing.

This section first presents CRIU (Checkpoint/Restore In Userspace) [cria], a container

checkpointing tool, which is the starting point for the implementation of the container repli-

cation mechanisms discussed in this thesis. We then briefly present related work on process

checkpoint/migration.

CRIU is a tool that can checkpoint and restore complicated real-world container state on

Linux. Obviously, user-level memory and register state of the container are checkpointed.

Additionally, due to the tight coupling between the container and the underlying operating

system, there is critical container state, such as opened file descriptors and sockets, within

the kernel that must be checkpointed. For checkpointing and restoring in-kernel container

state, CRIU relies on kernel interfaces, such as the proc and sys file systems, as well as

system calls, such as ptrace, getsockopt, and setsockopt. This requires CRIU to run as a

27



privileged process within the root namespace.

In order to obtain a consistent state, CRIU ensures that the container state does not

change during checkpointing. This is done utilizing the kernel’s freezer feature that sends

virtual signals to all the threads in the container, forcing them to pause. For threads exe-

cuting system calls, the virtual signal forces a return from the system calls, as if they are

interrupted by a normal signal.

Without significant kernel modifications or prohibitive overhead, parts of container state

can only be obtained from within the processes being checkpointed. This includes the timers,

signal mask, and memory contents. Hence, CRIU maps (injects) a code segment (parasite

code) into each of the processes being checkpointed (using ptrace). The parasite code com-

municates with the CRIU process via pipes and processes requests, such as to obtain the

signal mask.

CRIU can checkpoint and restore established TCP connections using a socket repair mode

supported by the Linux kernel [TCP]. When a process places a socket in repair mode, it can

get/set critical state that cannot be otherwise accessed. This includes sequence numbers,

acknowledgment numbers, packets in the write queue (transmitted but not acknowledged),

and packets in the read queue (received but not read by the process).

CRIU supports incremental checkpointing of the user-space memory state. It identifies

the memory pages modified since the last checkpoint using a kernel feature called soft-dirty

pages [sof]. A process writes to a special file (/proc/pid/clear refs) to cause the kernel to

start the tracking of modified pages and reads from another file (/proc/pid/pagemap) to

identify the pages modified since the beginning of the tracking.

There are other wide variety of works on process checkpointing/migration [BW89, AAC09,

RR81, DO91, MDP00]. However, with these works, it is difficult to avoid potential resource

naming conflicts upon process restore/migration as well as to identify and isolate all the

necessary state components that need to be checkpointed. Zap [OSS02] addresses the limi-
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tations of process checkpointing/migration by allocating separate namespaces for groups of

processes. This approach, in its essence, is the same as the namespace implementation for

Linux containers.

2.8 Data Race Detection

A data race occurs when two threads access the same memory location concurrently without

proper synchronization and at least one of the accesses is a write. The problem of precisely

detecting data races is known as an NP-hard problem [NM92]. This is because a complete

solution requires enumeration of all possible interleavings among threads.

One way to detect data races is based on static analysis of the application code. The

benefits of this approach include no extra overhead during normal operation and the ability

to find data races in rarely executed code paths. Static data race detectors without any false

positive nor false negative can be developed for programming languages that are carefully

designed to facilitate the detection of data races [Gro03]. However, it is hard for static

analysis to deal with common programming language features such as dynamic memory

allocation, pointer arithmetic, and syntactically unscoped synchronization operations. Some

data race detectors require special annotations by the programmer and can only be applied

to certain languages whose syntax is more restricted, such as Java [BLR02]. Static data race

detectors for programming languages with less restricted syntax, such as C, suffer from high

false positives and false negatives [EA03, PFH06, VJL07].

Another way to detect data races is to execute the program and then identify those

racy memory accesses that occur during the execution. We refer to this type of data race

detectors as dynamic data race detectors. Some of the dynamic data race detectors are based

on happens-before analysis [Lam78]. Specifically, the detector instruments global memory

accesses of the program. Happens-before analysis is performed on each memory access to

identify racy memory accesses [FF09, SI09]. These data race detectors do not generate false

29



alarms and can detect most of the manifested data races during the execution. However,

they suffer from high performance and memory overhead during normal operation.

Another type of dynamic data race detectors replaces happens-before analysis with lock-

set analysis [SBN97, EQT07, CLL02]. Specifically, lockset analysis assumes that all shared

variables are protected by a lock and the algorithm checks whether a thread is holding

the correct lock when it accesses a shared variable. Lockset analysis is much simpler than

happens-before analysis and can thus lead to lower performance overhead. However, a fun-

damental disadvantage of lockset analysis is that it incurs false positives. This is because,

for example, with lockset analysis, memory accesses to a shared variable properly synchro-

nized by a barrier are mistakenly flagged as data races. Some enhancements are proposed

to reduce the false positives of the lockset analysis [SBN97] but do not eliminate them.

There are a large number of works aiming at reducing the performance overhead of dy-

namic data race detectors. Some of them adopt static analysis to eliminate unnecessary

memory instrumentation [CLL02, EQT07]. FastTrack [FF09] proposes a new algorithm to

simplify happens-before analysis. RaceTrack [YRC05] adaptively changes the granularity of

detection during execution. MultiRace [PS03] uses page-level protection hardware to de-

tect the first access to a shared page in each time frame. Aikido [OZK12] is a memory

instrumentation framework that maintains a per-thread page table to monitor pages that

are shared among threads and based on this, it only instruments memory accesses to these

shared pages. As shown in the paper, Aikido can be used to speed up dynamic data race

detectors. TxRace [ZLJ16] speeds up data race detection with hardware transactional mem-

ory in commodity Intel x86 processors. IFRit [ELC12] detects data races based on region

overlapping.

Despite these optimizations, dynamic data race detectors still suffer from high perfor-

mance overhead. Specifically, for IFRit [ELC12]; TxRace [ZLJ16]; FastTrack [FF09] and

ThreadSanitizer [SI09, thr], with the data reported in [LLZ18], with eight threads, for ap-

plications from PARSEC benchmarks [Bie11]: blackscholes, streamcluster, swaptions, and
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ferret, these mechanisms incur performance overheads of 1.82x-79.2x. For streamcluster

with 32 threads, the performance overhead for these mechanisms are 20x-400x [LLZ18].

Some dynamic data race detectors rely on the programmers to specify the sharing policies

of the shared objects through annotations. The detectors then catch the memory accesses

that violate the specified sharing policy to detect data races. Examples of the sharing policies

are read write accessible to a thread (private) or read-only among all the threads (read-only).

These works also provide a way for programmers to annotate the changes of the sharing

policies during execution. Examples of these works are SharC [AGE08], Shoal [AGN09] and

a work that we refer to as DCOP [MHC10] (Dynamically Checking Ownership Policies).

Since checking whether a memory access violates the specified sharing policy is much faster

than the happens-before or lockset analysis, the annotation-based approaches incur lower

performance overhead at a cost of extra burdens on programmers due to annotation.

The annotation-based works are typically a combination of static analysis and dynamic

memory instrumentation. DCOP [MHC10] instruments memory accesses to enforce the

specified sharing policies in the runtime. Static analysis is used to eliminate unnecessary

instrumentation of memory accesses.

To reduce the performance overhead, SharC uses static analysis to enforce the private

and read-only policies. Other sharing polices are enforced during runtime by instrumenting

memory accesses to those objects. To facilitate static analysis, the following requirements

are imposed: (1) the sharing policy of an object can only be changed when its reference count

is 1, and (2) after the policy change, the pointer pointing to an object whose sharing policy

is changed is set to NULL. These requirements make SharC difficult to apply to programs

containing data structures such as linked lists and trees.

Shoal [AGN09] partially mitigates the impact of SharC’s restrictions by introducing the

concept of groups of objects whose sharing policy can be atomically changed. Shoal also

adds the barrier sharing policy, which allows an object to be either read only or write by

one thread between two barrier operations. However, there remain restrictions on dynamic
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policy changes, which increase the burden on programmers. Furthermore, for both SharC

and Shoal, there is a need for a runtime mechanism to track object reference counts and this

incurs a performance overhead of up to 30% [AGN09].

Some dynamic data race detectors are aimed at performing data race detection dur-

ing production runs. These works rely on sampling-based approaches. Specifically, with

sampling-based approaches, only a small portion of the memory accesses performed by the

application are used to detect data races [MMN09, EMB10, SVE11, ZJL17]. Obviously,

this approach will miss some of the data races that occur during execution. The amount of

missed data races depends on the average sampling frequency. However, to keep the per-

formance overhead low, the average sampling frequency cannot be too high. For example,

with RACEZ [SVE11], an average sampling frequency of every 20,000 retired instructions

can incur an overhead of 30%.

Finally, there are also works developing custom hardware to perform data race detec-

tion. These works are mostly based on modifying memory caches. Specifically, these works

store metadata in cache lines and piggyback information on coherence protocol messages of

the cache to detect data races. HARD [ZTZ07] implements lockset analysis while ReEn-

chant [PT03], CORD [Prv06], and RADISH [DWS12] implement happens-before analysis.

Lucia et al. propose conflict exceptions that detect data races in synchronization-free regions

among threads [LCS10]. Pacman detects asymmetric data races [QON12]. Unlike the above

works, SigRace does not modify the cache and detects data races by using hardware memory

signatures [MSQ09]. Compared to software-based dynamic data race detectors, works based

on custom hardware incur a much lower performance overhead.
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CHAPTER 3

NiLiHype: Fast Hypervisor Recovery with Microreset

With hardware virtualization (§2.1), errors that occur during the execution of one of the

virtual machines (VMs) due to a transient hardware fault or software fault are highly likely

to be confined within that particular VM. Hence, other VMs are not affected. However, if

such errors occur during the execution of hypervisor code, the resulting hypervisor failure

leads to the failure of all the VMs on the host, and thus, potentially, to a significant impact

on datacenter operation. Thus, as explained further below, there is strong motivation to

develop fault tolerance mechanisms that allow the VMs to survive across hypervisor failure

[LT11, LT14, TXC12]. A critical step in most fault tolerance mechanisms is that, after an

error is detected, the system is recovered to a valid state. This chapter presents a hypervisor

recovery mechanism: NiLiHype (Nine Lives Hypervisor).

VM replication [CLM08] (§2.6) is often used to provide fault tolerance with respect to

VM failures, including with commercial products, such as VMware’s vLockstep [VMw]. If

the replicas are running on different hosts, failures during the execution of the hypervisor

are also covered. Obviously, the resource overhead during normal operation is high; too

high for many deployment scenarios. A decision not to use VM replication implies that

the loss of any one specific VM is tolerable. For example, this might be the case when a

VM is providing web service [ZZ03]. However, the loss of all the VMs on a host has more

impact since it leads to the unavailability of a larger fraction of datacenter capacity, which

is particularly significant in a small datacenter. Furthermore, even if VM replication is used,

there are performance benefits as well as greater flexibility in VM placement, if the replicas
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are on the same host [RHK06]. Placing replicas on the same host can only be considered if

an error during hypervisor execution is unlikely to lead to a hypervisor crash.

In order to prevent the hypervisor from being a single point of failure, the system must

support recovery from hypervisor failure while preserving the hosted VMs. This has been

done in ReHype [LT11, LT14]. With ReHype, upon detection of an error in the hypervisor,

microreboot [CKF04] of the hypervisor is performed, while allowing other system components

to maintain their states. The overhead during normal operation is small and essentially no

work is lost when recovery is performed.

ReHype involves booting a new hypervisor instance. The state of the hypervisor is then

updated to make it consistent with the states of the other system components (e.g., the

guest VMs) [LT11, LT14]. This requires reusing a significant amount of state from the

previous (failed) hypervisor instance. Obviously, this reused state is potentially corrupted.

However, it has been shown that recovery success rates above 85% are achieved. Achieving

such recovery rates despite reusing state from the failed instance is an indication that there

is a relatively low probability of a fault corrupting state critical to the survival of the entire

system.

Fault injection studies of the Linux kernel [YYK11b, YYK12] have shown that the errors

caused by most faults affect “process local” state as opposed to state that can impact the ker-

nel itself or other processes. Based on this motivation, recovery of the Linux kernel without

reboot was proposed. For a subset of possible faults (those leading to kernel oops), a simple

recovery scheme was proposed that involves aborting the faulting process. This yielded a

recovery rate of approximately 60%. These results for the Linux kernel together with the

ReHype results discussed in the previous paragraph raise the possibility that recovery from

hypervisor failure may not require booting a new hypervisor instance.

For many important applications, the latency of the reboot step of microreboot results in

unacceptably long service interruption. This chapter investigates component-level recovery

of a hypervisor without reboot. Using a mechanism which we call microreset, a failed com-
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ponent is reset to a quiescent state that is highly likely to be valid and where the component

is ready to handle new or retried interactions with the rest of the system. By avoiding the

reboot step of microreboot, the recovery latency is dramatically reduced.

We implement and evaluate microreset for the Xen hypervisor [BDF03], using a mecha-

nism which we call NiLiHype. We show that NiLiHype and ReHype have the same relatively

small overhead during normal operation. NiLiHype achieves a successful recovery rate of

over 88%, slightly lower than ReHype’s rate of over 90%. However, NiLiHype performs the

recovery more than 30 times faster than ReHype. NiLiHype’s recovery latency is low enough

(22ms) that service interruption is negligible in most deployment scenarios. Considering this

recovery rate vs. recovery latency tradeoff, NiLiHype is an attractive point in the design

space.

We make the following contributions: 1) present the design of microreset-based

component-level recovery as an alternative to microreboot; 2) describe the implementa-

tion issues involved in converting the microreboot-based ReHype to the microreset-based

NiLiHype; 3) use fault injection to evaluate the recovery rate of NiLiHype for different fault

types and workloads; 4) evaluate the hypervisor processing overhead of NiLiHype during

normal operation, NiLiHype’s recovery latency, and its implementation complexity.

The next section presents microreset and compares it to microreboot as a technique for

component-level recovery. The basic operation of Xen hypervisor recovery using ReHype and

NiLiHype is described in Section 3.2. The starting point for our implementation was the

ReHype source code [LT11, LT14]. Section 3.3 describes the porting of ReHype to a more

modern platform and key enhancements that improve its recovery rate. The implementation

of NiLiHype is described in Section 3.4. The experimental setup and evaluation results are

presented in sections 3.5 and 3.6, respectively.
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3.1 Component-Level Recovery

The key idea in component-level recovery (CLR) is to reduce recovery latency by limiting

recovery to the failed component instead of involving the entire system [CKF04]. This section

presents the key challenges in CLR as well as two alternative CLR mechanisms that involve

low overhead during normal operation: microreboot and microreset, in Subsections 3.1.1 and

3.1.2, respectively.

Three main challenges must be overcome in any CLR implementation: (1) preventing the

process of recovering the failed component from harming the rest of the system while also

preventing the rest of the system from interfering with the recovery process; (2) restoring the

failed component to a valid state; and (3) ensuring that the state of the recovered component

is consistent with the state of the rest of the system.

One example of interference between CLR and the rest of the system is when the com-

ponent being recovered is an OS kernel [DS10]. If an I/O interrupt is generated during

recovery, when the kernel is not in a valid state to handle the interrupt, the result is likely

to be recovery failure. The simple step of disabling interrupts during part of the recovery

process is an obvious solution for this example.

As an example of challenge (2) above, consider the case where recovery involves stopping

further execution of the failed component. At that point different parts of the component

state may be inconsistent with each other. For instance, a lock may have been acquired by an

execution thread within the component but that execution thread is abandoned [LT11, LT14].

Hence, component recovery must involve one, or a combination of, booting a new instance,

rollback to a known valid checkpoint, and/or a roll forward procedure to fix the invalid state.

Ensuring that the state of the recovered component is consistent with the rest of the

system is the most difficult challenge for CLR (challenge (3) above). Again we use an

example where the component being recovered is an OS kernel [DS10]. If recovery involves

booting a new kernel, the new kernel instance will not have the up-to-date state of the data
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structures that maintain information regarding the user processes that were running prior to

the failure. Hence, there is no way to continue running these processes following recovery. To

resolve this issue, the recovery mechanisms must reuse part of the state from the previous

instance. This introduces an obvious vulnerability since, when recovery is triggered, the

state of the previous instance is, by definition, invalid. Recovery can be successful only if

the error is not propagated to the reused part of the state or the recovery mechanism can

somehow fix corrupted reused state.

3.1.1 Microreboot: Component-Level Recovery with Reboot

Microreboot is a CLR that involves booting a new component instance. As discussed in

connection with the third challenge above, this requires reuse of part of the state of the

previous instance. Therefore microreboot needs to preserve part of the state of the failed

instance across the reboot and then reintegrate it with the state of the newly booted in-

stance [DS10, LT11, LT12, LT14]. The state of the component after recovery is thus a

combination of the state of the initial boot and the reused state from the failed instance.

3.1.2 Microreset: Component-Level Recovery without Reboot

A significant drawback of microreboot is recovery latency. This latency includes the time

to reboot plus the time to re-integrate the state from the previous instance. For large,

complex components, such as kernels and hypervisors, this latency can be from multiple

hundreds of milliseconds [LT14] to tens of seconds [DS10]. It is possible to reduce part of

the reboot time by replacing the reboot with a rollback to a checkpoint saved right after a

previous reboot [YYK11a]. However, even in this case, there would be significant latency

for reintegrating state from the previous instance. For example, with a mechanism similar

to ReHype, this latency would be multiple hundreds of milliseconds even for a very small

workload of three simple application VMs [LT14].
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With the goal of reducing the recovery latency, this chapter investigates an alternative to

microreboot, which we call microreset. Microreset is suitable for large, complex components

that process requests from the rest of the system. OS kernels and hypervisors are examples

of such components. Specifically, a hypervisor receives requests in the form of hypercalls or

traps from the VMs as well as interrupts from hardware timers and potentially other devices.

Multiple requests may be processed simultaneously by separate execution threads.

With microreset, upon error detection, the processing of all current requests is abandoned.

This resets the component to a quiescent state. At that point, the microreset mechanism

must perform additional operations to deal with the last two CLR challenges discussed

above. Specifically, there is a need to perform roll forward operations to fix any corruptions

in the component state as well as inconsistencies among different parts of the component

state. Next, inconsistencies between the recovering component state and the states of other

components in the system must be resolved. For example, this may require retrying requests

from other components that were abandoned when the error was detected.

With microreset, only a small fraction of the component state is discarded during recovery.

Specifically, it is just the “local” states of the abandoned execution threads (e.g., variables

on the stacks). The entire remaining state is kept in place and reused. On the other hand,

with microreboot, only part of the global state from the failed instance is reused and the

rest of the state is restored to its initial values by the reboot. Microreset’s reuse of a larger

fraction of the pre-recovery component state increases the probability that the post-recovery

state is invalid. Hence, there is a reason to expect some reduction in recovery rate with

microreset compared to microreboot.

3.2 Implementing CLR of a Hypervisor

This section discusses how component-level recovery (CLR) can be applied to the Xen [BDF03]

hypervisor, based on microreboot and microreset. Subsection 3.2.1 is a brief overview of the
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Xen virtualization platform and examples of CLR challenges (Section 3.1) applicable to this

particular component. Subsection 3.2.2 provides a high-level description of how microreboot

has been applied to Xen with ReHype [LT11, LT14]. Subsection 3.2.3 provides a high-level

description of how we apply microreset to Xen with NiLiHype.

3.2.1 The Xen Virtualization Platform

The Xen virtualization platform consists of two components: the hypervisor and the privi-

leged VM (PrivVM, also known as Dom0). The hypervisor provides the core functionality of

the virtualization platform, such as memory management and scheduling of the VMs. The

PrivVM performs management operations, such as creating, checkpointing, and destroying

VMs. The PrivVM may also host the device drivers for the I/O devices in the system and

facilitates their sharing among the application VMs (AppVMs) [BDF03].

There are three ways for control to transfer from the VMs to the hypervisor: hypercalls,

exceptions and hardware interrupts. VMs issue hypercalls to the hypervisor to request service

from the hypervisor. An example of a hypercall is a request by a VM for the hypervisor

to update page table entries. This particular example is relevant for paravirtualized VMs,

(PVMs) [RG05, BDF03] and it should be noted that the PrivVM is a PVM. Exceptions occur

when VMs execute privileged or illegal instructions. An interrupt is triggered by hardware

and causes a trap to a handler in the hypervisor, from which it is sometimes forwarded to

some VM.

The ability to recover from a failure during the execution of any part of the virtualization

platform requires dealing with the PrivVM as well as the hypervisor. This issue has been

addressed in previous work [LT12, LT14] and is not discussed in this thesis.

The challenges faced by any CLR, discussed in Section 3.1, must, of course, be handled

by CLR of the Xen hypervisor. For example (challenge (1)), if VMs continue to execute

during recovery, a trap from a VM may cause the hypervisor to fail since it is not in a proper
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state for handling such events. An example of challenge (2) from Section 3.1 is that internal

hypervisor data structures, such as timer heap, may be corrupted by the fault or left in an

inconsistent state. An example of challenge (3) is that the hypervisor may be in the middle

of handling a hypercall when an error is detected. The failure to complete this hypercall

may cause the initiating VM to fail following hypervisor recovery.

3.2.2 ReHype: Microreboot of the Xen Hypervisor

ReHype [LT11, LT14] recovers from failures of the Xen hypervisor using microreboot. When

an error is detected, a recovery handler is invoked. The first few steps cause all the CPUs to

disable interrupts and all but one to halt. The CPU that does not halt handles most of the

rest of the recovery process. These initial steps prevent interference between the recovery

process and the rest of the system. The handler then saves a copy of the data in the static

data segments to a memory location where it will not be overwritten by the new hypervisor

instance. The next step is to boot a new hypervisor instance. During reboot, parts of the

preserved static data segments are used to overwrite some of the values initialized earlier

in the boot process. The non-free heap pages in the pre-recovery hypervisor instance are

preserved and re-integrated in the new heap. Pre-recovery page tables are restored. The

final step of the basic scheme is to wake up all the CPUs and resume normal operation.

Enhancements of the basic mechanism outlined above are used to achieve a high recovery

rate [LT11, LT14]. These enhancements deal with the last two CLR challenges discussed in

Section 3.1. For example, the reused state from the previous hypervisor instance includes

locks. In order to make the new hypervisor state self-consistent, all of these locks are

released. In order to resolve inconsistencies with respect to the VMs, for any partially

executed hypercall, the VM state of the corresponding VM is set up so that the hypercall is

retried once VM execution is resumed. To partially resolve inconsistencies with respect to

the hardware, all pending and in-service interrupts are acknowledged.
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3.2.3 NiLiHype: Microreset of the Xen Hypervisor

NiLiHype is essentially ReHype without reboot. Many of the basic operations as well as

enhancements that are performed by NiLiHype are identical or similar to those in ReHype.

For example, both have to ensure that partially executed hypercalls are retried following

recovery. Similarly, as part of recovery, both have to release locks used by the hypervisor.

Since NiLiHype does not include reboot, some complex operations required by ReHype

are not needed. An example of this is the ReHype step of rebuilding the heap to re-integrate

the data reused from the previous instance. On the other hand, the reboot in ReHype

does help in producing a hypervisor state that is self-consistent. Thus, NiLiHype requires

additional enhancements to overcome some CLR challenges (challenge 2 in Section 3.1) that

ReHype overcomes by performing a reboot.

When an error is detected, the recovery handler of NiLiHype is invoked on the CPU

where the error is detected. The handler disables interrupts on its own CPU and interrupts

all the other CPUs, which then disable interrupts. Each of the CPUs discards its execution

thread within the hypervisor by discarding the hypervisor stack (resetting the stack pointer).

All the CPUs, except for the one that detected the error, then enter busy waits. At this

point, enhancements to increase the recovery rate should be performed by the CPU that

detected the error (see below). The above initial steps prevent interference between the

recovery process and the rest of the system. The final step of the basic scheme is to allow

all the CPUs to exit their busy waits and resume normal operation.

With the basic mechanism described above, recovery always fails. Enhancements that

deal with the last two CLR challenges discussed in Section 3.1 are necessary to achieve a

high recovery rate. These enhancements are described in Subsection 3.4.1.

With NiLiHype, all threads of execution within the hypervisor are discarded. A possible

alternative design choice would be to discard only the execution thread of the CPU that

detects the error. The choice made in NiLiHype makes it more similar to ReHype, where the
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reboot effectively discards all the execution threads. It is expected that the alternative choice

would be more complex to implement and result in lower recovery rate. The reasons for this

are interactions among hypervisor threads of execution as well as interactions between these

threads and the recovery process itself. An example of this is if CPU1 sends an interprocessor

interrupt (IPI) to CPU2 and waits for a response. An error may be detected on CPU2 after

receiving the IPI but before responding. Since CPU2 discards its execution thread, CPU1

may be blocked forever. A second example is related to the impact of changes to the global

state by the recovery process. These changes may cause non-discarded threads to encounter

unexpected state changes that lead to their failure.

3.3 Porting and Enhancing ReHype

Due to the similarity between NiLiHype and ReHype, the starting point for the NiLiHype

implementation was the ReHype source code [LT11, LT14]. Our first step was to port this

implementation to the x86-64 ISA (from x86-32), Xen version 4.3.2 (from 3.3.0), with all VMs

running Linux 3.16.1 kernels. As described in the rest of this section, we then implemented

enhancements to improve the recovery rate.

Our initial port mostly resolved the expected porting issues caused by the evolution of

Xen code, such as changes in function/variable/macro names. We then used fault injection

to evaluate the port and guide further enhancements. This was based on running a simple

workload (one AppVM) and injecting fail-stop faults. After the initial port, the recovery

rate was 65%. Three enhancements were required due to platform changes while the fourth

would also have been useful for the older platform. Together, these enhancement increased

the recovery rate to 96%.

Syscall retry. With the x86-32 ISA, system calls from the VM processes directly trap

into the VM kernel. However, with the x86-64 ISA, system calls from the VM processes trap

into the hypervisor which then forwards them to the appropriate kernel. In order to handle
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the possibility that an error is detected when the hypervisor is forwarding a system call,

ReHype had to be enhanced to ensure that such system calls are retried following recovery.

The implementation is similar to hypercall retry.

Fine-granularity batched hypercall retry. With the new Xen platform, in order to

reduce the virtualization overhead, several hypercalls may be batched into one hypercall. In

order to better handle such batched hypercalls, the hypervisor logs the completion of each

hypercall within a batch as it completes. If, following recovery, the batched hypercall is

retried, those component hypercalls that completed earlier are skipped.

Save FS/GS. Xen on x86-64 doesn’t use the FS and GS registers and thus does not

save them when the hypervisor is entered. Xen on x86-32 does save these registers. Hence,

with the initial ReHype port, these registers are lost following recovery. The fix is for the

hypervisor to save these registers when an error is detected.

Mechanisms to mitigate hypercall retry failure. With the above three enhance-

ments, the recovery rate is 84%. The remaining recovery failures are largely caused by re-

executing non-idempotent hypercalls. For example, several hypercalls increase or decrease a

reference counter in the page frame descriptor by one. If an error is detected after a hypercall

updates the counter but before completion, the re-execution results in an inconsistent state.

A comprehensive solution to the above problem would be to transactionalize all the

non-idempotent hypercalls. Doing that would require major changes to the code and/or

significant overhead. Instead, we used fault injection to identify problem cases and resolve

them using lightweight logging and code reordering. A downside of our approach is that we

have not tested all hypercall handlers. Thus, there are likely to be several infrequently-used

non-idempotent hypercall handlers that we have not properly enhanced. Furthermore, even

for the handlers that have been modified, the changes do not resolve 100% of the problem.

However, the changes do significantly reduce the window of vulnerability and minimize the

probability of recovery failure.
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Table 3.1: Mechanisms to enhance ReHype with the corresponding successful recovery rate

after the enhanced mechanisms are deployed as well as the 95% confidence interval of the

successful recovery rate.

Mechanism Successful Recovery Rate

ReHype after initial port 65.4% ± 2.9%

+ Mechanisms to deal with platform differences 83.8% ± 2.3%

+ Mechanisms to mitigate hypercall retry failure 96.4% ± 1.2%

Logging enables undoing changes performed by partially executed hypercalls. Changes to

critical variables are logged and the changes are undone following recovery, before a retried

hypercall reads or modifies these variables. For some hypercalls, it was possible to reduce the

window of vulnerability by simply reordering the code, without changing the functionality

or incurring overhead. An example of this is moving modifications of critical variables to

the end of the hypercall so that there is minimal code to execute between the state changes

and the completion of the hypercall. Altogether, these changes for handling non-idempotent

hypercalls increase the recovery rate from 84% to 96%.

After adding the above mechanism, the successful recovery rate of ReHype boosts to

96.4%. Table 3.1 summarizes all the mechanisms to enhance ReHype with the corresponding

successful recovery rate after the enhanced mechanisms are deployed as well as the 95%

confidence interval of the successful recovery rate. To further validate the correctness of our

implementation, we have changed the benchmark in the AppVM to BlkBench and ReHype

achieves a similar successful recovery rate of 96.8%.
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3.4 NiLiHype Implementation

The starting point for the NiLiHype implementation is the enhanced ReHype implementation

described in Section 3.3. Some of the features that are common to NiLiHype and ReHype are:

1) VMs are suspended and interrupts are disabled during recovery; 2) almost all the ReHype

enhancements described in [LT11, LT14]; 3) all the enhancements described in Section 3.3.

As mentioned in Subsection 3.2.3, since NiLiHype does not involve reboot, some of the

most complex and time-consuming operations required by ReHype are not needed. Specif-

ically, these include hardware initialization as well as operations to preserve and later re-

integrate state from the pre-recovery hypervisor instance. These operations are described

in detail in Section 3 of [LT11] and their latencies are presented in Section 10 of [LT14].

Similar latency measurements, for our enhanced ReHype implementation, are presented in

Subsection 3.6.3.

This section focuses on additional enhancements needed by NiLiHype to overcome CLR

challenges that are resolved by the reboot in ReHype. Subsection 3.4.1 presents the en-

hancements. Section 3.4.2 presents the measurement-based incremental development of the

NiLiHype-specific enhancements.

3.4.1 Enhancements Required by NiLiHype

With ReHype, a very low recovery rate (5.6%) is achieved without any enhancements [LT11].

That recovery is even possible with the basic scheme is due to the operations performed by

the reboot, that include re-initializing the hardware and initializing a new, valid hypervisor

memory state. As mentioned in Subsection 3.2.3, with just the basic NiLiHype mechanism

(discard all hypervisor threads of execution), recovery never succeeds. Hence, the enhance-

ments of the basic scheme, that resolve the CLR challenges (Section 3.1), are even more

critical in NiLiHype.

One of the enhancements developed for NiLiHype is needed to bring the hardware to
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a consistent state: reprogram hardware timer. Four additional enhancements deal with

hypervisor memory state. All of these enhancements are described below.

Reprogram hardware timer. Xen relies on the hardware timer in the interrupt con-

troller (APIC) to trigger the examination of the software timer heap. The handler reprograms

the APIC timer to fire again at a time determined by the top node of the timer heap. If the

fault occurs after the APIC timer has fired but before Xen reprograms it, without additional

mechanisms, the APIC timer will never fire again after recovery. NiLiHype handles this issue

by ensuring that each CPU reprograms its APIC timer before resuming normal operation.

Clear IRQ count. In Xen, each CPU maintains a per-CPU variable named local irq count

that records the nesting level of interrupts. When the CPU enters or leaves an interrupt han-

dler, local irq count is, respectively, incremented or decremented. The local irq count value

is used in hypervisor assertions to check whether the CPU is currently servicing an inter-

rupt. As NiLiHype discards all the execution threads in the hypervisor, the local irq count

variables of all the CPUs are set to zero during the recovery.

Ensure consistency within scheduling metadata. Xen maintains scheduling meta-

data that includes: (1) the runqueue of each CPU, which is a linked list of vCPUs; (2) per-

CPU variables indicating the current executing vCPU; and (3) per-vCPU variables repre-

senting the execution states of the vCPUs. Hypervisor failure followed by recovery can easily

leave this scheduling metadata in an inconsistent state. Inconsistencies within the scheduling

metadata can cause the hypervisor to incorrectly restore the register context of one vCPU

when another vCPU is scheduled to run. Such inconsistencies can also result in the failure

of assertions in the scheduling routine, leading to hypervisor failure.

Resolving potential scheduling metadata inconsistencies is done based on two key ideas:

1) where possible, initialize the data to a fixed valid value instead of relying on the existing

value; 2) if it is necessary to use existing data, pick the most reliable source and make the

rest of the metadata consistent with that.
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With NiLiHype, we encountered a particularly critical problem related to scheduling

metadata inconsistencies. The information regarding which vCPU is currently running on

each CPU is stored redundantly in multiple places. Specifically, it is stored in the per-CPU

structures as well as two different locations in the per-vCPU structures. To resolve the

inconsistencies, the information in the per-CPU structures is used to set the information in

all the per-vCPU structures.

Unlock static locks. Since both ReHype and NiLiHype effectively discard all threads

of execution in the hypervisor, all locks should be in their unlocked state following recovery.

ReHype includes a mechanism to release all the locks stored in the heap. NiLiHype uses

the same mechanism. With ReHype, locks in the static data segment (“static locks”) are

initialized to their unlocked state during boot. NiLiHype requires an additional mechanism

to release all such locks.

NiLiHype avoids a complex mechanism for tracking the static locks. Instead, NiLiHype

takes advantage of the fact that, in Xen, all the static locks are defined using a macro. We

modified the linker script used to build the Xen image and the macro defining locks to put

all the static locks in a separate segment in the Xen image, effectively placing them all in

one array. During the recovery process, before multiple CPUs are allowed to execute, the

CPU that detects the error iterates over all the locks in the segment and unlocks any locked

locks.

Reactivate recurring timer events. Xen uses several recurring timer events. These

include events to synchronize system time among CPUs and to update the execution time of

vCPUs for the scheduler. For each of these timers, the handler re-activates the timer each

time it is fired. If a fault occurs while a CPU is executing one of these timer handlers, before

the handler successfully re-activates the timer, the recurring timer is lost.

This problem is very similar to the problem described above that motivates the reprogram

hardware timer enhancement. To solve the problem discussed here, for each relevant timer

event, there is a flag that is set on entry to the handler and cleared upon exit. As part of the
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Table 3.2: Summary of Mechanisms to enhance NiLiHype

Mechanism Successful Recovery Rate

Basic 0%

+ Clear IRQ count 16.0% ± 2.3%

+ Enhanced with ReHype mechanisms 51.8% ± 3.1%

+ Ensure consistency within scheduling metadata 82.2% ± 2.4%

+ Reprogram hardware timer 95.0% ± 1.4%

+ Unlock static locks + Reactivate recurring timer 96.1% ± 1.2%

recovery process, for any of these flags that is set, the corresponding timer is re-activated.

3.4.2 Incremental Development of NiLiHype Enhancements

To identify the need for the enhancements discussed in Subsection 3.4.1, we use the same

incremental procedure, based on fault injection, used in multiple previous works [NC99,

LT11]. Results from fault injections are analyzed to identify the cause of the plurality of

recovery failures. A mechanism is developed to handle that particular problem. The process

is repeated with new fault injections in each iteration.

Table 3.2 summarizes all the mechanisms we use to enhance NiLiHype with their impact

on the recovery rate. The fault injection setup is the same one used in Section 3.3. Specif-

ically, we use the 1AppVM workload with the UnixBench benchmark (Subsection 3.5.1).

1000 fail-stop faults are injected in each iteration.

Table 3.2 shows that the Clear IRQ count enhancement is mandatory in order for NiL-

iHype recovery to succeed. This is because the CPU that detects the error sends IPIs to

other CPUs to initiate the recovery. Each of the CPUs receiving the IPI increments its
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local irq count. Since the CPU then discards its thread of execution (discards its stack), it

never returns from the IPI. As a result, local irq count ends up with an inconsistent value

(not 0). This later causes hypervisor failure as a result of the failure of assertions in several

critical routines that check whether the CPU is in interrupt context.

Table 3.2 also shows that, with all the enhancements, for this particular setup, NiLiHype

achieves the same recovery rate as ReHype (Section 3.3).

3.5 Experimental Setup

This section presents the experimental setup used to evaluate NiLiHype and ReHype. This

setup is very similar to the one used in [LT11, LT14]. The key difference is the use of a

more modern platform (ISA and Xen/Linux versions). The configurations of the systems

evaluated (target systems) are described in Subsection 3.5.1. Subsection 3.5.2 presents the

error detection mechanisms used in the target systems. Details regarding the fault injection

are described in Subsection 3.5.3.

3.5.1 Target System Configurations

We evaluate virtualized systems running synthetic benchmarks designed to stress different

aspects of the system. The hypervisor is Xen 4.2.3. The system includes the privileged VM

(PrivVM) and either one application VM (AppVM), in the 1AppVM configuration, or three

AppVMs, in the 3AppVM configurations. Each VM consists of one vCPU (virtual CPU)

and each of the vCPU is pinned to a different physical CPU. The physical machines used

for all the experiments are 8-core systems based on Intel Nehalem CPUs.

All the AppVMs are paravirtualized VMs (PVMs). It should be noted that previous work

has shown that fault injection results obtained with AppVM supported by full hardware vir-

tualization (HVMs) are very similar to those obtained with paravirtualized AppVMs [LT14].

49



Table 3.3: Benchmarks used to evaluate NiLiHype

Benchmark Description

BlkBench
a program that creates, copies, reads, writes and removes multiple

1MB files containing random content.

UnixBench [Uni]
a collection of programs designed to stress different aspects of the

system.

NetBench a user-level network ping program.

As summarized in Table 3.3, three synthetic benchmarks are used: BlkBench, UnixBench,

and NetBench. BlkBench focuses on the interface to block devices (disk). To ensure that

the device is actually accessed, requiring hypervisor activity, caching of block and file system

data in the AppVM is turned off. Without this setting, caching within the AppVM would

minimize the chances for exposing recovery failure. We use a subset of the programs in the

original UnixBench. The programs were selected for their ability to stress the hypervisor’s

handling of hypercalls, especially those related to virtual memory management. NetBench

involves two processes: the receiver runs in an AppVM in the target system, and the sender

runs on a separate physical host. The sender sends a UDP packet to the receiver every 1ms.

Upon receiving a packet, the receiver sends a reply back to the sender.It is used to exercise

the interface to the network as well as to evaluate the recovery latency.

For BlkBench and UnixBench, the execution is considered as failed if 1) one or more

files produced by the benchmark are different from the ones in a golden copy, or 2) logging

messages from the benchmarks indicate that one or more than one system calls to the OS of

the AppVM failed. NetBench execution is considered as failed if the packet reception rate of

the sender drops by more than 10% compared to its reception rate during normal execution

in any one-second interval.

In the 1AppVM setup, the AppVM runs either BlkBench or UnixBench. Each one of the
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benchmarks is configured to run for around 10 seconds. This setup is mostly used to guide

the measurement-based incremental development of recovery enhancement mechanisms.

In the 3AppVM setup, the system initially runs two AppVM: one with UnixBench and the

other with NetBench. Following recovery, a third AppVM is created and it runs BlkBench.

The third AppVM is used to check whether the hypervisor still maintains its ability to create

and host newly created VMs after recovery. The first two AppVMs are configured to run for

approximately 24 seconds.

3.5.2 Error Detection

The focus of this chapter is on error recovery, not error detection. However, an error detection

mechanism is necessary for the experimental evaluation since such a mechanism is responsible

for initiating recovery.

We rely on the built-in panic and hang detectors in Xen to detect errors. A panic is

detected when a fatal hardware exception occurs or a software assertion fails. The hang

detector is based on a watchdog timer. It is implemented based on hardware performance

counters and software timer events. A performance counter on each CPU is used to generate

an NMI every 100ms of unhalted CPU cycles. There is also a recurring software timer event

that increments a counter every 100ms. The handler of the performance counter checks for

changes in the counter. If the counter is not incremented for three consecutive invocations

of the performance counter handler, a hang is detected.

3.5.3 Fault Injection

Software-implemented fault injection is used to determine the recovery rate of NiLiHype and

ReHype. A fault injection run consists of booting the target system, starting the benchmarks

in the AppVMs, injecting one fault, and collecting logs that allow the results to be analyzed.

For each fault type and system configuration there is an injection campaign that consists of
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Figure 3.1: Fault injection setup with the 3AppVM workload. The entire target system is

in a VM. The injector is in the outside hypervisor

multiple runs.

We ported the Gigan fault injector [LT15] to a modern platform (ISA and Xen/Linux

version). To minimize intrusion by the injector and simplify campaign setups, we use Gigan

in a configuration based on two-level nested virtualization. Specifically, the entire virtualized

target system runs in a VM supported by full hardware virtualization (i.e., an HVM). It has

been shown that fault injection and recovery results obtained with this setup are similar to

those obtained when the target system runs on bare hardware [LT14, LT15].

The injector runs outside the target system, in the hypervisor (the “outside” hypervisor)

that hosts the HVM with the target system. A user-level campaign script, the Campaign

Agent, runs in the PrivVM of the outside hypervisor. The Campaign Agent creates the VM

with the target system, configures the fault injector, and collects logs and output from each

run. The fault injection setup with the 3AppVM workload is shown in Figure 3.1.

We inject three types of faults: Failstop, transient Register faults, and Code faults.
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Failstop faults are injected by changing the value of the program counter to 0. Register

faults are injected by flipping a random bit in a random register selected from the 16 general-

purpose registers, the stack pointer, the flag register, and the program counter. Code faults

are injected by flipping a random bit in a random byte chosen within the 15-byte range (the

maximum length of an x86-64 instruction) starting from the current value of the program

counter. When/if the Code fault causes an error that is detected, the injector “repairs” the

fault. Thus, the effects of a Code fault do not persist during the recovery process. Hence,

the effects of a Code fault are almost the same as if it was a transient fault.

The injected faults do not cover all possible faults. NiLiHype is designed to recover from

transient hardware faults as well as rare software bugs (Heisenbugs) [Gra86], that occur

only under particular timing and ordering of asynchronous events in the system. Transient

hardware faults in the CPU datapath are likely to be manifested as erroneous values in

registers. Hence, register bit flips can be expected to be reasonably representative of such

faults. Injection of bit flips in the code attempts to partially represent faults in the instruction

fetch and decode hardware. Similar injection campaigns have been widely used in prior

works [DCC08, JF12, BVK16]. As discussed in Subsection 3.6.1, results from the injection

of failstop faults, together with other results, help with the understanding of the tradeoffs

between microreboot and microreset.

All the faults are injected by using a two-level chained trigger. When the first-level trigger

fires, it triggers the second-level, which, when fired, triggers the fault injection. The first-

level trigger is a timer that fires after a specified amount of time has elapsed. It is configured

differently in the 1AppVM and 3AppVM setups. With the 1AppVM setup, it is set to fire

at a random time after the initial 10% and before the final 10% of the benchmark execution

time. With the 3AppVM setup, the first-level trigger is configured to fire at a random time

between 500ms and 6 seconds. This is well past the start of the UnixBench and NetBench

AppVMs while leaving most of their 24 seconds execution to occur after recovery.

The second-level trigger fires after a random number of instructions between 0 to 20000
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have been executed in the target hypervisor. This trigger ensures that faults are injected

only while the CPU is executing code of the target hypervisor.

3.6 Evaluation

This section presents an evaluation of NiLiHype using the experimental setup described in

Section 3.5. Along every axis, NiLiHype is compared to ReHype. The recovery rate, recov-

ery latency, hypervisor processing overhead during normal operation, and implementation

complexity are presented in Subsections 3.6.1, 3.6.2, 3.6.3, and 3.6.4, respectively.

3.6.1 Successful Recovery Rate

It has been shown that, for typical deployments of virtualization, less than 5% of CPU

cycles are spent executing hypervisor code [BHH13, BDD10]. Hence, a random transient

fault is much more likely to occur when executing code in a VM than when executing

hypervisor code. Thus, a random transient fault is highly likely to affect one of the VMs,

possibly causing it to fail, even if the virtualization platform is completely immune to all

faults. Whether a fault in the hypervisor can affect a single VM becomes relevant only if

mechanisms implemented strictly within the VM itself allow it to mask or recover from the

overwhelming majority of faults that may occur during the execution of the VM. Taking this

into account, it is not meaningful to evaluate any hypervisor resilience mechanism based on

a criterion that a manifested fault in the hypervisor should not affect even one VM.

Without any resilience mechanisms, a single transient fault can cause the hypervisor

to fail, taking down all the VMs it hosts. Based on the discussion above, we can define

a reasonable goal for a hypervisor resilience mechanism. Specifically, taking into account

only transient faults (including Heisenbugs [Gra86]), running multiple VMs on a single host

should not be worse than running them without virtualization on separate physical ma-

chines [LHT11]. In practice, this goal cannot really be met due to practical issues, such as
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power supplies, network connections, etc. However, this forms the basis for our definition of

“successful recovery” from hypervisor failure.

We define recovery from hypervisor failure to be “successful” if no more than one AppVM

is affected by the fault and, after recovery, the hypervisor continues to operate correctly (new

VMs can be created, etc). The 3AppVM setup is designed to allow evaluation based on this

definition. Specifically, the setup includes creating a new AppVM (BlkBench) after recovery,

and an ability to verify that BlkBench runs correctly to completion. Note that, for the

1AppVM setup, we define “recovery success” to mean that no VM is affected.

The recovery rate is evaluated with the 3AppVM setup. Separate campaigns are run with

the three fault types: Failstop, Register, and Code. For each fault injection run, the out-

come can be classified into three categories: non-manifested, silent data corruption (SDC),

and detected. Non-manifested means that the injected fault does not cause any observable

abnormal behavior: the benchmarks finish successfully (produce the correct outputs) and

the detection mechanisms are not triggered. SDC means that the detection mechanisms

are not triggered but at least one of the benchmarks fails to produce the expected outputs.

Detected means that one of the detection mechanisms is triggered. Obviously, the recovery

mechanism is triggered only for fault outcomes in the last category.

The breakdown of injection outcomes varies with fault type. Obviously, all Failstop faults

are detected. For Register faults, the breakdown in our campaign is: 74.8% non-manifested,

5.6% SDC, and 19.6% detected. For Code faults, the breakdown is: 35.0% non-manifested,

12.1% SDC, and 52.9% detected.

The fault injection campaigns for evaluating the recovery rate include 1000 Failstop faults,

5000 Register faults, and 2000 Code faults. In each case, the number of the injected faults

was chosen so that, for both NiLiHype and ReHype, the 95% confidence interval for the

recovery rate was within ±2%.

Figure 3.2 presents the successful recovery rate of NiLiHype and ReHype with the 3Ap-
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Figure 3.2: Successful recovery rates of NiLiHype and ReHype for different fault types with

the 3AppVM setup. Error bars show the 95% confidence intervals. noVMF stands for no

AppVM failure cases.

pVM setup. For the completeness, we also report the portion of detected errors (recovery

initiations) that resulted in no AppVM failures (noVMF — no VM failures). The differences

between Success and noVMF are due to injection runs where the only impact of the fault is

to cause one of the first two initial AppVMs to fail.

Figure 3.2 shows that NiLiHype and ReHype achieve essentially identical recovery rates

for Failstop faults, but not for the other fault types. Failstop faults can only result in

inconsistencies within the hypervisor state or between the hypervisor state and the states
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of other hardware and software components. The other fault types can result in the same

inconsistencies but also in state corruption. It is likely that, for Register and Code faults,

ReHype’s small advantage is due to cases where the fault corrupted part of the hypervisor

state that is discarded and re-initialized by the reboot.

To understand the reasons for recovery failures, we analyzed the recovery failure cases

when Register faults are injected. ReHype resulted in 35 such cases and NiLiHype in 54. The

reasons for recovery failures with ReHype and NiLiHype are similar. The top three reasons

are: 1) the recovery routine fails to be invoked due to the corrupted hypervisor state, 2) the

PrivVM fails, and 3) the error causes a data structure in the hypervisor, typically a linked

list or the heap, to be corrupted or left in an inconsistent state.

Figure 3.2 shows that Code faults result in the lowest recovery rate. This is likely due

to the significantly longer detection latency of these faults [LT15], providing more time for

errors to propagate and cause greater state corruption.

3.6.2 Recovery Latency

When hypervisor recovery is in progress, all the AppVMs are paused. Hence, it is easy to

measure the recovery latency by measuring the service interruption of a service executing in

an AppVM in the target system. Latency measurements may be distorted when the system is

deployed in a nested virtualization configuration. Hence, in order to obtain accurate latency

results, the target system runs on bare hardware. As a service, we use NetBench in the

1AppVM setup. The service interruption is measured at the sender, that runs on a separate

physical host (Subsection 3.5.1).

For NiLiHype, we measured a recovery latency of 22ms. For ReHype, with all the re-

covery latency optimizations discussed in [LT14], we measured a recovery latency of 713ms.

Repeating each experiment five times, the latencies varied by no more than 1ms for NiLiHype

and 10ms for ReHype.
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Table 3.4: Recovery Latency breakdown of ReHype

Operations Time

Hardware initialization: 412ms

- Early initialize of the boot CPU 12ms

- Initialize and wait for other CPUs to come online 150ms

- Verify, connect and setup local APIC and setup IO ACPI 200ms

- Initialize and calibrate TSC timer 50ms

Memory initialization 266ms

- Record allocated pages of old heap (Use to preserve content of old heap) 21ms

- Restore and check consistency of page frame entries 21ms

- Re-initialize the page frame descriptor for un-preserved pages 13ms

- Recreate the new heap 211ms

Misc 35ms

- SMP initialization 20ms

- Identify valid page frame, relocate boot up modules 2ms

- Others 13ms

Total 713ms

To determine how much time the different operations involved in recovery contribute to

the overall recovery latency, we added code in the recovery code of NiLiHype and ReHype

to record the value of the time stamp counter (TSC) after each major recovery step is

completed. The results for ReHype and NiLiHype are shown in Table 3.4 and Table 3.5,
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Table 3.5: Recovery Latency breakdown of NiLiHype

Operations Time

- Restore and check consistency of page frame entries 21ms

- Others 1ms

Total 22ms

respectively. These tables list every step that takes more than 1ms.

Most of NiLiHype’s recovery latency is due to an operation done to ensure consistency of

the page frame descriptors. This is an operation that ReHype also performs [LT11, LT14].

The problem that this operation solves is that, following recovery, there are two components

in each page frame descriptor that may be left in inconsistent states: the validation bit and

the page use counter. This can cause the hypervisor to hang following recovery. To fix this

issue, the recovery routine iterates over all the page frame descriptors in the hypervisor to

check for the inconsistency and update as required to restore consistency.

The latency of the operation described above is proportional to the size of the host

memory (and thus the number of page frame descriptors). In our system, 8GB of physical

memory results in a latency of 21ms. Obviously, this would be a problem in a large system

with tens or hundreds of GB of memory. The problem could be mitigated by exploiting

parallelism. For example, use multiple cores to perform the operation. Another option is

to not perform this recovery step. This option has the disadvantage that it results in a

reduction of 4% in the recovery rate [LT11].

3.6.3 Hypervisor Processing Overhead in Normal Operation

A key question regarding any resilience mechanism is how much performance overhead during

normal operation it incurs. With NiLiHype, this translates to the extent to which, for a
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fixed workload, the count of CPU cycles spent executing hypervisor code is higher with the

NiLiHype modifications compared to with stock Xen.

To get accurate results, the hypervisor processing overhead is measured with the target

system running on bare hardware. In each one of the CPUs (including the one running

the PrivVM), a hardware performance counter is used to count the unhalted cycles spent

in the hypervisor. For repeatable results, the precise points in time for starting and ending

the measurement are carefully controlled. All the benchmarks running in all the AppVMs

are synchronized. Measurement starts when all the benchmarks are ready to begin execut-

ing. Measurement ends when all the benchmarks complete. The benchmarks “inform” the

measurement code when they begin and end using traps (the CPUID instruction). All the

benchmarks execute for approximately the same amount of time (21s).

We define the hypervisor processing overhead as the percent increase in the unhalted

cycle count in the hypervisor with NiLiHype relative to that same count with stock Xen.

We used four target system configurations. The first three use the 1AppVM setup with

the three benchmarks: BlkBench, UnixBench, and NetBench. Obviously, for these three

configurations, synchronizing the execution of the benchmarks is not relevant. The fourth

configuration is a slightly modified version of the 3AppVM setup. Since recovery is not

actually done in these measurements, all three of the AppVMs are created at the same time

and they all run their benchmarks throughout the experiment. For each configuration, we

repeated the measurements five times and found that the differences in the measurement

results were all less than 1%.

Figure 3.3 shows the hypervisor processing overhead for NiLiHype for all the configura-

tions. Most of this overhead is due to logging used to mitigate recovery failures due to retries

of non-idempotent hypercalls. To show that, the figure also shows the overhead of NiLiHype

without this logging (NiLiHype*).

We have also measured the hypervisor processing overhead of ReHype and found it to be
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Figure 3.3: Hypervisor processing overhead (based on CPU cycles) of NiLiHype during

normal execution. NiLiHype* stands for NiLiHype without logging to mitigate hypercall

retry failure.

the same as for NiLiHype. This is not surprising since the logging in NiLiHype and ReHype

are almost identical,

As mentioned earlier (Subsection 3.6.1), it has been shown that, for typical deployments

of virtualization, less than 5% of CPU cycles are spent executing hypervisor code [BHH13,

BDD10]. Hence, even with logging, the actual impact of the hypervisor processing overhead

is negligible. Specifically, even in the worst case (BlkBench), the overhead in terms of total

CPU cycles can be expected to be less than 1%. If this overhead is not acceptable, there

is the option of turning the logging off. As discussed in Section 3.3, this will reduce the

recovery rate by approximately 12%.
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Table 3.6: Implementation Complexity of NiLiHype and ReHype

Type Mechanisms NiLiHype ReHype

Normal operation
Mitigating hypercall retry failure 991 991

Other logging 532 594

Recovery routine
Shared recovery mechanism 543 543

Specific recovery mechanism 113 642

Total Total 2179 2770

3.6.4 Implementation Complexity

As a measure of the implementation complexity of NiLiHype and ReHype, we use the total

number of lines of code (LOC) added and modified starting with the source code of the stock

Xen hypervisor. We use the code line count tool CLOC [CLO] to measure the LOC.

We partition the LOC added and modified into two categories: (1) code that executes

during normal operation to enable or enhance NiLiHype/ReHype functionality, and (2) code

that executes only during recovery. Table 3.6 presents the results.

For both NiLiHype and ReHype, most of the added/modified code in category (1) is

related to mitigating hypercall retry failure (Section 3.3). For all the code in category (1),

NiLiHype requires slightly less code. This is due to two types of logging that are not needed

for NiLiHype. Firstly, ReHype needs to log changes to the I/O APIC registers during the

normal execution. This is because ReHype recovery re-initializes these registers as part of

the boot process. However, for recovery to succeed, these registers must be restored to

their pre-recovery values. Secondly, ReHype needs to log the values of the boot line options

during the normal boot up. These values are used by the hypervisor to correctly initialize

the system during boot. Hence, ReHype recovery needs to reuse the previously logged boot

line options to correctly boot up the hypervisor.
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The main difference in the implementation complexity between NiLiHype and ReHype

is in code that executes during recovery. ReHype has significantly more code needed to

preserve and re-integrate the failed hypervisor state back to the new hypervisor instance.

3.7 Summary

There are compelling reasons to enhance hypervisors with the ability to recover from failures

while allowing the VMs they host to resume normal operation without loss of work. With

such capability, the fraction of datacenter capacity unavailable due to a single fault is reduced,

there is greater flexibility in assigning VMs to hosts, and VM replication with both replicas

running on a single host becomes an attractive point in the design space in some deployments.

ReHype, which is based on microreboot, has been previously presented as a mechanism

for providing the above hypervisor recovery capability. This chapter investigated an al-

ternative to microreboot, which we call microreset, that allows component-level recovery

without reboot. Instead of rebooting a new instance, microreset resets the component to

a quiescent state that is highly likely to be valid. Microreset is suitable for large, complex

components that process requests from the rest of the system. The state reset it performs

involves discarding all threads of execution within the component. By avoiding component

reboot, microreset has the potential to achieve significantly lower recovery latencies than

microreboot.

NiLiHype utilizes microreset to implement recovery from hypervisor failures. To achieve

a high recovery rate, NiLiHype includes numerous enhancements needed to restore the hy-

pervisor to a valid consistent state. Thus, the idea of microreset, by itself, is not sufficient

for building an effective recovery scheme.

We have implemented NiLiHype and evaluated it in terms of recovery rate, recovery

latency, hypervisor processing overhead during normal operation, and implementation com-

plexity. We have shown that NiLiHype achieves a recovery rate of over 88%, only 2% lower
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than the rate achieved by ReHype. In return, NiLiHype’s recovery latency is over a fac-

tor of 30 lower, at 22ms. With this low recovery latency, for many important application,

service interruption would not be noticeable. Based on our measurements, the performance

overhead of NiLiHype during normal operation is expected to be under 1%. NiLiHype’s

implementation required adding or modifying less than 2200 lines in the Xen hypervisor.
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CHAPTER 4

NiLiCon : Fault-Tolerant Replicated Containers

NiLiHype, presented in the last chapter, prevents a single fault that occurs during the exe-

cution of hypervisor code from taking down all the VMs hosted by the hypervisor, including

the applications running on these VMs. However, NiLiHype does not protect an individual

critical application from failures. This chapter presents a container replication mechanism:

NiLiCon (Nine Lives Containers) that achieves this goal.

Servers commonly host applications in virtual machines (VMs) and/or containers to fa-

cilitate efficient, flexible resource management [Ber14, Mer14, RG05]. In some environments

containers and VMs are used together. However, in others containers alone have become the

preferred choice since their storage and deployment consume fewer resources, allowing for

greater agility and elasticity [Ber14, LKG15].

The strong isolation and encapsulation provided by virtual machines or containers make

them a natural framework for implementing application-transparent fault-tolerance mecha-

nisms. Despite the advantages of containers, there has been very little work on high availabil-

ity and fault tolerance techniques for containers [LK15]. In particular, there has been limited

work on high availability techniques [LKG15, Liu16]. However, to the best of our knowl-

edge, there are are no prior works that report on application-transparent, client-transparent,

container-based fault tolerance mechanisms that support stateful applications. NiLiCon, as

described in this chapter, is such a mechanism.

The VM-level fault tolerance techniques discussed in §2.6, in particular, Remus [CLM08],

do support stateful applications and provide application transparency as well as client trans-
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parency. Hence, NiLiCon uses the same basic approach. Since container state does not

include the entire kernel, the size of the periodic checkpoints can be expected to be smaller,

potentially resulting in lower overhead when the technique is applied at the container level.

On the other hand, there is a much tighter coupling between a container and the underlying

kernel than between a VM and the underlying hypervisor. In particular, there is much more

container state in the kernel (e.g., the list of open file descriptors of the applications in the

container) than there is VM state in the hypervisor. Thus, implementing the warm backup

replication scheme with containers is a more challenging task. NiLiCon is an existence proof

that this challenge can be met.

The starting point of NiLiCon’s implementation is based on a tool called CRIU (Check-

point/Restore in User Space) [cria], which is able to checkpoint a container under Linux.

However, the existing implementation of CRIU and the kernel interface provided by Linux

kernel incur high overhead for some of CRIU’s operations. For example, our measurements

show that collecting container namespace information may take up to 100ms. Hence, using

the unmodified CRIU and Linux, it is not feasible to support the short checkpointing inter-

vals (tens of milliseconds) required for client-server applications. An important contribution

of our work is the identification and mitigation of all major performance bottlenecks in the

current implementation of container checkpointing with CRIU.

The implementation of NiLiCon has involved significant modifications to CRIU and a

few small kernel changes. We have validated the operation of NiLiCon and evaluated its

overhead using seven benchmarks, five of which are server applications. For fail-stop failures,

the recovery rate with NiLiCon was 100%. The performance overhead was in the range of

19%-67%. During normal operation, the CPU utilization on the backup was in the range of

6.8%-40%.

We make the following contributions: 1) Demonstrate a working implementation of the

first container replication mechanisms that is client-transparent, application-transparent,

and supports stateful applications; 2) Identify the major performance bottlenecks in the
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current CRIU container checkpoint implementation and the Linux kernel interface and pro-

pose mechanisms to resolve them.

The rest of the chapter is organized as follows. The key differences between NiLiCon

and Remus are explained in §4.1. The design and operation of NiLiCon are discussed in

§4.2. Key implementation optimizations are presented in §4.3. The experimental setup and

evaluation results are presented in §4.4 and §4.5, respectively.

4.1 NiLiCon vs Remus

This section presents the key differences between NiLiCon and Remus. These differences

are due to the fact that, unlike VMs with respect to the hypervisor, a significant part of the

container state is in the kernel. This in-kernel state is a combination of processes state: file

descriptors, virtual memory area (VMA), sockets, signals, process trees; and container state:

control groups, namespaces, mount points, and file system caches. For checkpointing and

restoring most of these state components, NiLiCon relies on existing CRIU code (§2.7).

NiLiCon does not rely on CRIU code for handling file system caching. CRIU expects the

container to use a NAS (network attached storage), accessible from the original container

host and the host on which the container checkpoint is restored. CRIU flushes the file system

cache to the NAS after the checkpoint completes, thus committing that part of the state.

With NiLiCon, flushing the file system cache at every epoch (tens of milliseconds) is not

practical since, for disk-intensive applications, it may introduce prohibitive overhead of up

to hundreds of milliseconds per epoch.

NiLiCon includes kernel changes to efficiently deal with file system caching. These

changes add a new state that is maintained for pages in the page cache and inode cache

entries: “Dirty but Not Checkpointed” (DNC ). For checkpointing, a new system call, fgetfc,

obtains all the DNC inode and page cache entries and clears the DNC state. For restoring

a file system cache checkpoint, existing system calls are used, such as chown for the inode
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cache and pwrite for the page cache.

NiLiCon and Remus handle the backup differently. Remus maintains a ready-to-go

backup VM — it commits state changes directly to the backup VM during each epoch.

Thus, if the primary VM fails, Remus can resume the backup VM with minimal delay.

With NiLiCon, maintaining a ready-to-go backup container is impractical. This is due to

the latency of the large number of system calls that must be invoked in order to apply

the in-kernel container state changes to the kernel — potentially adding up to hundreds of

milliseconds. Hence, at the backup, NiLiCon maintains all the in-kernel container state in

buffers, applying this state to the kernel only upon a failover.

Both NiLiCon and Remus pause the primary while state changes are saved in order

to prevent inconsistent state changes. With Remus, once a VM is paused, its state can

no longer be affected by packets incoming from the network. However, with NiLiCon,

pausing the primary is insufficient since incoming packets can modify the primary state

while the primary is paused. Thus, NiLiCon blocks incoming packets at the primary during

checkpointing. With NiLiCon, incoming packets are also blocked during recovery at the

backup. During recovery, the network namespace must be restored before restoring the

sockets. If incoming packets are not blocked, an incoming TCP packet arriving after the

network namespace is restored but before the relevant socket is restored would cause the

kernel to send an RST (reset) packet to the client, breaking the connection.

4.2 NiLiCon Basics

This section presents the basic design and operation of NiLiCon, without the optimizations

described in §4.3. The overall architecture of NiLiCon is shown in Figure 4.1. The core com-

ponents are the primary and backup agents, that coordinate with the rest of the components

and also perform the main task of checkpointing/restoring the container state.

While NiLiCon is focused on error recovery, an error detection mechanism is needed to
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Figure 4.1: The architecture of NiLiCon.

initiate the recovery. As with most VM replication works [CLM08, WCJ18, DYJ13, LBV15,

BS95], we assume a fail-stop failure model. NiLiCon includes a simple error detector that

sends a heart beat from the primary agent to the backup agent every 30ms, as long as there

is an increase in the CPU cycles usage of the container. The detector obtains the CPU cycles

usage from the cpuacct.usage file of the container’s control group. To prevent false alarms

when the container is idle, the container includes a simple keep-alive process that wakes up

every 30ms and executes 1000 instructions. If the backup agent fails to receive the heart

beat in three consecutive 30ms intervals, recovery is initiated.

As with Remus, execution on the primary consists of a sequence of epochs (Figure 2.2).

With the implementation of NiLiCon used in this chapter, the duration of the execution

phase of each epoch is 30ms. NiLiCon uses the CRIU code to checkpoint/restore the con-

tainer state. After the execution phase of an epoch completes, the primary agent forks a

CRIU process to take an incremental checkpoint (§2.7) and send it to the backup agent.
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When recovery is initiated, the backup agent forks a CRIU process to restore the container.

Most of NiLiCon’s code for handling network and disk I/O is from the Remus implemen-

tation in Xen (RemusXen) [rem]. For network I/O, the implementation is unchanged. The

buffering and releasing is performed using the sch plug kernel module in the mainstream

kernel. For disk I/O, RemusXen uses a modified version of the DRBD module [drb] (a dis-

tributed software RAID implementation), as described in §2.6. We ported the RemusXen

DRBD modifications to the latest version of DRBD, which is currently in the mainstream

kernel.

During each epoch’s execution phase, network output is buffered (§2.6). File system

updates are tracked using the DNC state for page and inode cache entries (§4.1). Disk writes

are sent asynchronously to the backup by the primary’s DRBD module. The backup’s DRBD

module receives and buffers disk writes in memory. When the primary’s execution phase

completes, the primary agent stops the container using virtual signals (§2.7) and directs the

network buffering module to block network input. The primary agent also directs the DRBD

module to send to the backup a “barrier” to mark the end of this epoch’s disk writes. The

primary agent obtains the register and memory state from the parasite code (§2.7), as well

as in-kernel container state, including the file system cache, from the kernel. The primary

agent sends this state to the backup agent. The backup agent receives and buffers the state

in memory. The primary agent then unblocks the network input and resumes the container

to execute another epoch. Once the backup agent has received both the disk writes and

container state, it sends an acknowledgment to the primary agent, which then releases the

buffered outgoing packets. The backup then commits all the buffered disk, register and

memory state, thus completing one checkpoint iteration.

If the backup agent detects a failure, recovery is initiated. The backup agent discards

any uncommitted state and uses the committed state to create image files in a format that

CRIU expects. It then forks a CRIU process to restore the container state. The container

network namespace connects to the external network via a virtual bridge. During recovery,
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the backup agent disconnects the container network namespace from the virtual bridge, thus

blocking network input (§4.1). After the container has been restored, the backup agent

reconnects the container network namespace to the bridge, thus reestablishing the network

connection.

4.3 Optimizations

The basic implementation of NiLiCon presented in §4.2 imposes a prohibitive performance

overhead. This overhead is due to the checkpointing time, which is often hundreds of mil-

liseconds. While such latency is acceptable for container migration, it is not for replication,

that requires repeated high-frequency checkpointing. This section presents optimizations in

the implementation of NiLiCon that brought the overhead down to a level competitive with

the overhead of similar VM replication schemes. In addition, it presents a key optimization

that reduced the recovery latency.

The CRIU developers have indicated that checkpointing is slow due to the prohibitive

latencies to obtain in-kernel container state using existing kernel interfaces [tas]. The causes

are: (1) a large number of system calls are needed; (2) some of the kernel interfaces provide

extra information that is not needed for checkpointing, but is expensive to generate; and

(3) some of the kernel interfaces provide information in a format that is expensive to gen-

erate and parse. In addition, the kernel lacks mechanisms for identifying modified in-kernel

container state, requiring all the in-kernel container state to be checkpointed at every epoch.

An example of cause (1) above is that to obtain the state of memory-mapped files, the

stat system call needs to be invoked for each one. Since memory-mapped files are used for

dynamically-linked libraries, applications often have a large number of such files, resulting

in high overhead. An example of cause (2) is related to obtaining the process memory

state, stored in the VMAs (Virtual Memory Areas) maintained by the kernel. CRIU reads

this information from /proc/pid/smaps. However, smaps also provides a large number of
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Table 4.1: Impact of NiLiCon’s performance optimizations.

Optimization Overhead

Basic implementation 1940%

+ Optimize CRIU 619%

+ Cache infrequently-modified state 84%

+ Optimize blocking network input 65%

+ Obtain VMAs from netlink 53%

+ Add memory staging buffer 37%

+ Transfer dirty pages via shared memory 31%

page statistics, such as the number of clean/dirty pages in the VMA, that is not needed

for container checkpointing. An example of cause (3) is that the proc and sys file systems

provide the information as formatted text, instead of the binary format in which they exist

in the kernel.

An ideal solution for the problems above would be to develop new kernel interfaces opti-

mized for fast container checkpointing. However, this would require substantial modification

to the underlying kernel. Instead, this section shows that, with only minor changes to the

kernel, it is possible to achieve for container replication performance overhead that is com-

petitive with that of VM replication.

Table 4.1 lists NiLiCon’s optimizations, described in the rest of this section, and their

impact on the overhead for the streamcluster benchmark (§4.4). Altogether, these optimiza-

tions reduced the overhead from 1940% to 31%.

In total, NiLiCon’s implementation consists of 7494 lines of code (LOC). 257 LOC are

in the main part of the kernel, mostly for dealing with the file system cache (§4.1). 1093

LOC are in two kernel modules: changes to DRBD (§4.2) and a module for tracking some

in-kernel state changes (§4.3.2). In addition, we applied an 1140 LOC kernel patch from the

CRIU developers [crib] that speeds up obtaining VMA information from the kernel (§4.3.4).
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4.3.1 Optimizing CRIU

NiLiCon implements three optimizations to CRIU. The most important of these is a change

in the way the pages from each incremental checkpoint are stored in the backup. CRIU uses

a linked list of directories in the file system, each containing files containing an incremental

checkpoint. For each page received in an incremental checkpoint, CRIU iterates through this

linked list to possibly find and remove a previous copy of the page. NiLiCon’s optimization is

to store the committed pages in a four-level radix tree, mimicking the implementation of the

hardware page tables. The time to process each received page is thus short and independent

of the number of previous checkpoints.

With the original CRIU implementation, the primary agent issues virtual signals to

pause all the threads (§2.7), sleeps for 100ms, and then checks whether all the threads are

paused. The goal is to avoid busy waiting (CPU usage) but this increases checkpointing

time. NiLiCon’s optimization is to eliminate the sleep and implement continuous polling of

the thread state. Even with our most system call intensive benchmarks, the average busy

looping time is less than 1ms, resulting in negligible additional CPU usage.

The stock CRIU uses proxy processes at the primary and backup hosts that serve as

intermediaries in the state transfer from the primary agent to the backup agent. This adds

extra copies to the state transfer and complicates the overall structure. NiLiCon’s third

optimization of CRIU is the removal of the proxy processes, allowing the primary agent to

directly transfer state to the backup agent.

4.3.2 Caching Infrequently-Modified In-Kernel Container State

The most effective optimization in NiLiCon is based on the observation that part of the in-

kernel container state is rarely modified and thus rarely changes between checkpoints. Hence,

it is wasteful to retrieve all of this state for every checkpoint. We identified the following

infrequently-modified in-kernel state components: control groups, namespaces, mount points,
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device files, and memory mapped files. As an example, the time to obtain these state

components while executing streamcluster is approximately 160ms.

NiLiCon’s optimization is to avoid retrieving infrequently-modified in-kernel state com-

ponents if they have not changed since the last checkpoint. Instead, the values of these state

components are cached and the cached values are included in the checkpoint sent to the

backup.

The optimization described above requires the ability to detect when infrequently-modified

state components are modified and retrieve their new values. We developed a kernel module

that utilizes the ftrace debugging functionality provided by the kernel to detect these state

change and inform the checkpointing agent. Ftrace has negligible overhead and allows ker-

nel modules to add a “hook function” to any target kernel function such that, whenever the

target function is called, the hook function is invoked.

NiLiCon uses ftrace to add hooks to target kernel functions that potentially modify

the infrequently-modified state components listed above. Each hook function invokes the

actual target function and then performs additional checks based on the argument and the

return value of the target function as well as the identity of the calling thread. These checks

determine whether there may have been a change in the infrequently-modified state of a

thread in the container. If the check result is positive, a signal is sent to the primary agent.

The hook function then returns with the return value of the target function. In our research

prototype, we did not attempt to find and instrument all possible code paths that change

the infrequently-modified state components. Instead, our implementation only covers the

most common paths and that was sufficient for all of our benchmarks.

4.3.3 Optimizing Blocking Network Input

As explained earlier (§4.1), network input must be blocked and then unblocked during every

epoch. CRIU does this using the firewall. However, setting up and removing firewall rules
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adds a 7ms delay during each epoch. Furthermore, if the dropped packets are part of a TCP

connection establishment, this can introduce delays of up to three seconds.

NiLiCon’s optimization is to use for network input the same mechanism used to buffer

and release network output (§4.2). Input network packets arriving during checkpointing are

buffered by a kernel module instead of being dropped. These packets are released to the

container once the checkpoint completes. This implementation avoids long delays for TCP

connection establishment and introduces a delay of only 43µs during checkpointing.

4.3.4 Optimizing Memory Checkpointing

Three optimizations that reduce the overhead of checkpointing memory address three corre-

sponding deficiencies of the basic implementation: (1) VMA information of the processes is

obtained using /proc/pid/smaps, which is slow; (2) containers do not resume execution until

all dirty memory pages have been transferred to the backup; and (3) the content of the dirty

pages are transferred by the parasite code via a pipe, involving multiple system calls.

The developers of CRIU are aware of deficiency (1) and have proposed a kernel patch [tas]

that uses the netlink functionality to transfer the memory mapping information. NiLiCon

utilizes this patch to resolve deficiency (1).

NiLiCon resolves deficiency (2) using a staging buffer. During checkpointing dirty pages

are first copied to a local staging buffer and later transferred to the backup after the container

has resumed execution (as with Remus (§ 2.6)).

Deficiency (3) is resolved by using shared memory to transfer the dirty pages. Specifically,

NiLiCon creates a shared memory region between the parasite code and the primary agent

to allow for the parasite code to directly transfer dirty pages to the primary agent.
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4.3.5 Reducing Recovery Latency

After recovery, the backup container needs to retransmit the unacknowledged packets to the

client. At that time, TCP sockets in the backup are new and for new TCP sockets the

default retransmission timeout is long — at least one second. This leads to an unnecessarily

long recovery latency. NiLiCon resolves this problem with a small modification to the kernel

TCP stack (two LOC). Specifically, if the socket is in the special repair mode (§2.7), NiLiCon

sets the retransmission timeout to be the minimum value: 200ms.

4.4 Experimental Setup

This section presents the experimental setup used to evaluate NiLiCon, including the de-

scription of the experimental platform and the benchmarks.

For logistical reasons, two pairs of hosts were used in the evaluation. The first pair was

used to measure the recovery rate and the recovery latency. Each of these hosts had 8GB

of memory and dual quad-core Intel Xeon-E5520 CPU chips. The second pair was used to

measure the performance overhead during normal operation. Each of these hosts was more

modern, with at least 32GB memory and dual 18-core Intel Xeon CPU chips (one with E5-

2695v4 chips and the other with Xeon Gold 6140 chips). Each pair of hosts were connected

to each other via a dedicated 10Gb Ethernet link and connected to the client host via 1Gb

Ethernet.

We used Fedora 29 Linux with kernel version 4.18.16. Containers were hosted by runC

version 1.0.1 [run], a container runtime used in Docker to host and manage containers.

The NiLiCon implementation was based on CRIU version 3.11. Experiments with VMs,

were hosted by KVM with QEMU version 2.3.50, the latest version that supports micro-

checkpointing (MC), KVM’s implementation of Remus [qem]. VMs were fully virtual with

paravirtual drivers. Each VM or container was hosted on a dedicate core and allocated 4GB

physical memory.
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Table 4.2: Benchmarks used to evaluate NiLiCon.

Benchmark Description

Redis

key-value store, no persistence, 100K 1KB records, evaluated with

200K requests batch, each consists of 1K requests consisting of 50%

reads and 50% writes.

SSDB

key-value store, full persistence, 100K 1KB records, evaluated with

200K requests batch, each consists of 1K requests consisting of 50%

reads and 50% writes.

DJCMS

content management system platform that uses Nginx, Python, and

MySQL, evaluated with concurrent requests on the administrator

dashboard page.

Lighttpd
web server, evaluated with concurrent requests to a PHP script that

watermarks an image.

Node

a Node.js program that searches through a database for a keyword

and generates a static web page consisting of text and figures, eval-

uated with concurrent requests with random keywords.

Streamcluster
a kernel that solves online clustering problems, evaluated with na-

tive input suite.

Swaptions
a kernel that uses HJM framework to price a portfolio of swaption,

evaluated with native input suite.
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As summarized in Table 4.2, the evaluation was based on five server benchmarks: Re-

dis [red], SSDB [ssd], Node [nod], Lighttpd [lig], and DJCMS [djc]; as well as two non-

interactive CPU/memory-intensive PARSEC [Bie11] benchmarks: streamcluster and swap-

tions. Unless otherwise mentioned below, all benchmarks were configured with the default

characteristics.

For Redis and SSDB, we use YCSB [CST10] to generate 2M requests with 100K 1KB

records. And then we use a custom client with the hiredis library [hir] to batch and send

these requests to Redis/SSDB. For DJCMS, Lighttpd, and Node, we use the SIEGE [sie]

client to send to each of them concurrent requests. The original Node benchmark sends a

response as a Facebook chat message, we modified it to reply with a static web page.

4.5 Evaluation

This section presents the validation (§4.5.1), recovery latency (§4.5.2), and the performance

overhead (§4.5.3) of NiLiCon.

4.5.1 Validation

Fault injection is used to test NiLiCon’s ability to recover from container failures. Two

microbenchmarks are used in addition to the benchmarks described in §4.4. The first mi-

crobenchmark stresses the handling of the disk, file system cache, and heap memory. It

performs a mix of writes and read of random size (1-8192 bytes) to random locations in a

file. An error is flagged if the data returned by a read differs from the data written to that

location earlier. The second microbenchmark stresses the handling of the kernel’s network

stack as well as a server application’s stack in memory. A client sends a message of random

size (1B-2MB) to the server, the server saves it on its stack and then sends it back to the

client. The client flags an error if the message it receives is different or if the TCP connection

is broken.
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All the benchmarks are configured to run for at least 60 seconds. A fault is injected at

a random time during the middle 80% of the benchmark’s execution time, thus triggering

recovery on the backup host. A fail-stop failure is emulated, using the sch plug module, by

blocking incoming and outgoing traffic on all the primary container’s network interfaces. For

the microbenchmarks, recovery is considered successful if no errors are flagged. For Redis

and SSDB, the client program records the value it stores with each key, compares that value

with the value returned by the corresponding get operation, flagging an error if there is

a mismatch. Recovery is considered successful if no errors are flagged. For all the other

benchmarks, the container output is validated by comparison with a golden copy.

Each benchmark is executed 50 times. We find that in all the executions NiLiCon is

able to detect and recover from the container failure with no broken network connections!

We also manually unplug the network cable a few times for each benchmark, and verify that

NiLiCon is able to recover from these failures as well.

4.5.2 Recovery Latency

We measure the service interruption duration due to a fault using server applications. This

duration is the sum of the detection and recovery latencies, which increase the response time

at the client. With the detection mechanism used by NiLiCon (§4.2), the detection latency

is, on average, 90ms. Hence, the recovery latency is obtained by subtracting 90ms from the

average increase in response time.

Two benchmarks are used: Net and Redis. Net is a microbenchmark, where the client

sends 10 bytes to the server and the server responds with the same 10 bytes. For Redis,

a client uploads (sets) approximately 100MB of data to the server. Next, one client keeps

sending batched requests to stress the server, resulting in approximately 30% CPU usage.

Each member of another set of four clients continuously sends a single get or set request at

a time. The service interruption latency measurements are based on the responses to these

latter requests.
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Table 4.3: Recovery latency breakdown.

Restore ARP TCP Others Total

Net 218ms (71%) 28ms (9%) 54ms (18%) 7ms (2%) 307ms

Redis 314ms (84%) 28ms (8%) 23ms (6%) 7ms (2%) 372ms

Each experiment is executed ten times and the variations in the measured service inter-

ruption latencies are within 10% of the mean. Table 4.3 shows the key components of the

recovery latency. Restore is the time to restore the container state. ARP is the time to

broadcast a gratuitous ARP reply to advertise the new MAC address. TCP is the portion

of the delay for packet retransmission (§4.3.5) that is not overlapped with other recovery

actions. The recovery latency difference between Net and Redis is due to the additional

time to restore the 100MB memory state of Redis.

4.5.3 Performance Overhead During Normal Operation

This subsection presents the performance overhead of NiLiCon during normal operation as

well as additional measurements to help explain the high-level results. The results include

comparisons with MC, the Remus implementation on KVM [qem]. MC only supports disk-

IO over a networked file systems. Thus, due to network buffering, MC has a significant

extra delay for each file access, giving NiLiCon an unfair performance advantage in many

comparisons. We have verified that the disk state replication we use (§4.2) has no perfor-

mance impact with our benchmarks. Hence, with MC, we use a local disk, without disk

state replication, even though this does not provide correct handling of disk state.

Unless otherwise specified, the non-interactive benchmarks use the native input set [Bie11]

and are set to utilize four worker threads. For the server benchmarks, clients are configured

to “saturate” the server to reach its maximum request processing rate.

Overhead with Maximum CPU Utilization. With non-interactive applications,

such as streamcluster and swaptions, the performance overhead is the relative increase in
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Figure 4.2: Performance overhead comparison between MC and NiLiCon with breakdown

of sources of overhead.

execution time. For server applications, the performance overhead is the relative reduction

in maximum throughput.

Figure 4.2 presents the performance overhead of NiLiCon, with a comparison against

MC. Each of the benchmarks is executed for 100 times. The results have a coefficient of

variation of less than 2%. The overheads of NiLiCon and MC are comparable and are due to

two sources: the pause time of the container/VM for checkpointing and the overhead during

normal operation for tracking the pages that are modified during each epoch. For MC, most

of the overhead is the runtime overhead while for NiLiCon, except Redis and DJCMS, most

of the overhead is the stop overhead.

NiLiCon’s runtime overhead component is lower than MC’s for all the benchmarks. This

is mainly due to the high overhead of VM exit and entry operations needed in MC for
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Table 4.4: Average pause time & #dirty pages per epoch, MC and NiLiCon.

SwapT StreamC Redis SSDB Node Lhttpd DJCMS

Pause
MC 2.4ms 3.0ms 9.3ms 3.0ms 9.4ms 4.8ms 4.5ms

NiLiCon 5.1ms 7.4ms 18.9ms 10.4ms 38.2ms 25.0ms 19.1ms

DPage
MC 212 462 6.2K 1107 6.4K 2.9K 2.8K

NiLiCon 46 303 6.3K 590 5.4K 1.6K 3.0K

tracking modified pages.

Table 4.4 presents the average pause time and number of dirty pages per epoch. For

NiLiCon, the pause time is higher since NiLiCon needs to obtain container in-kernel state

using the slow kernel interface (§4.3). This is the main reason for NiLiCon’s higher overhead

for most of the benchmarks. For example, the Node benchmark has the highest pause time

since 128 clients are required to reach saturation. The result is that the container has a large

number of sockets and NiLiCon spends around 13ms collecting the socket states.

Since the pause time is the main source of overhead for NiLiCon, Table 4.5 provides a

detailed breakdown of the pause time. The largest factor is shown on the first row – the time

to retrieve various components of the in-kernel container state. These state components have

not been individually discussed in this chapter since, out of these, we have not identified any

one component or a small subset of components responsible for most of the overhead. The

second largest factor, as shown in the second row, is the time to copy dirty pages to the

staging buffer.

Pause Time and Transferred State Variations. The pause time and size of the

state transferred per epoch vary among the epochs of an application as well as from one

application to another. Table 4.6 shows these variations, providing the 10, 50, and 90

percentile values of these metrics. The results indicate that the impact of NiLiCon on

an application’s performance can vary significantly over time (e.g., due to pause time for
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Table 4.5: Breakdown of the pause time. Sorted by the average portion across all bench-

marks. Reset dirty pages is the time to change all the tracked dirty pages back to clean.

Mprotect is the time to modify/restore the permission of read-only memory regions.

SwapT StreamC Redis SSDB Node Lhttpd DJCMS

Collect Other State 66% 48% 25% 42% 25% 34% 25%

Copy Dirty Pages 2% 8% 50% 8% 24% 10% 23%

Find Dirty Pages 18% 15% 4% 15% 7% 13% 18%

Reset Dirty Pages 1% 17% 10% 21% 9% 8% 14%

Collect Sockets 3% 2% 7% 9% 32% 13% 4%

Collect VMAs 4% 4% 1% 2% 1% 13% 8%

Inject ParaCode 5% 4% 1% 2% 1% 5% 3%

Mprotect 1% 2% 2% 1% 1% 4% 5%

Table 4.6: Pause time and transferred state size for NiLiCon.

SwapT StreamC Redis SSDB Node Lhttpd DJCMS

Pause

10% 5.1ms 6.3ms 15ms 9ms 38ms 20ms 16ms

50% 5.1ms 6.4ms 18ms 10ms 41ms 25ms 18ms

90% 5.2ms 13.1ms 20ms 11ms 46ms 35ms 21ms

State

10% 189K 257K 17.9M 1.43M 22.7M 2.05M 53.1K

50% 193K 269K 24.2M 2.88M 24.2M 7.17M 9.5M

90% 201K 306K 30.0M 3.41M 25.2M 14.65M 13.3M
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Table 4.7: Core utilization on active and backup hosts.

SwapT StreamC Redis SSDB Node Lighttpd DJCMS

Active 3.96 3.91 0.98 1.70 1.01 3.95 1.41

Backup 0.07 0.08 0.28 0.12 0.40 0.18 0.26

streamcluster, state size for DJCMS ).

The main components of the transferred state are the dirty pages and the read/write

queues of TCP sockets. For our benchmarks, the dirty pages portion is in the range of 85%

to over 95%.

Backup CPU Utilization. A benefit of schemes like Remus and NiLiCon over active

replication (§2.6) is lower utilization of the CPU on the backup host. Table 4.7 shows an ap-

proximation of the CPU utilization on the backup host with NiLiCon. These measurements

are done by pinning all of NiLiCon activities on the backup to a single core and running it

with high priority (niceness −20). A simple program that continuously increments a counter

is pinned to the same core, running with low priority (niceness 19). The core utilization is

derived by comparing the rate at which the counter increments on the backup to the rate

at which it increments on an otherwise idle dedicated core. For comparison, similar core

utilization measurements were done on a host executing the benchmarks without replication.

As shown in Table 4.7, with NiLiCon the core utilization on the backup host is indeed

significantly lower than on an active host. On an active host, the utilization is evenly divided

among the container’s four cores. Most of the backup CPU cycles are spent reading the state

transferred from the primary. This processing increases when the granularity at which this

state arrives is finer, since more read system calls must be invoked. For example, a significant

portion of Node’s transferred state is the state TCP sockets, which arrives at the backup in

small chunks. Thus, Node’s backup CPU utilization is higher than Redis ’s even though they

have similar sizes of transferred state.
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Table 4.8: Response latency with a single client.

Redis SSDB Node Lighttpd DJCMS

Stock 3.1ms 93ms 2.4ms 285ms 89ms

NiLiCon 36.9ms 143ms 39.4ms 542ms 245ms

Request Response Latency. For server applications, one of the impacts of schemes

like Remus and NiLiCon is to increase the latency of responding to requests. There are two

causes for this increase: (1) more time is spent processing each request due to checkpointing

and runtime overhead; and (2) the response outgoing packets are delayed due to buffering

(§2.6). Table 4.8 compares the response times with NiLiCon and with the stock server

application (no replication). In all cases there is only one client. For benchmarks with short

processing time, such as Node and Redis, overhead (2) dominates. For the other benchmarks,

overhead (1) dominates.

Scalability. We present the scalability of NiLiCon with respect to the number of threads

or processes in the container as well as the number of clients sending requests to a server

application executing in the container.

To evaluate the impact of varying the number of threads, streamcluster is executed with

1 to 32 threads, with another core allocated to the container for each additional thread.

NiLiCon’s performance overhead increases from 23% to 52%, respectively. This is caused by:

(1) the average time to retrieve the per-thread states (e.g., registers, signal mask, scheduling

policies) increases from 148µs to 4ms; (2) the process’ memory footprint increase from 49K to

111K pages, increasing the time to identify dirty pages from 1441µs to 2887µs; and (3) due to

the increased number of cores, more processing is performed per epoch, causing the number of

dirty pages to increase from 121 to 495, resulting in increased runtime overhead for tracking

dirty pages and increased memory copying time, from 263µs to 1099µs.

Lighttpd is used to evaluate the impact of: (1) varying the number of clients, and (2) vary-

ing the number of processes in the container. For (1), the number of Lighttpd processes is
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fixed at 4 and the number of clients is varied from 2 to 128. With 32 or fewer clients, the

overhead is approximately 34%. This overhead increases to 45% with 128 clients. This over-

head increase is almost entirely caused by the increased time to checkpoint socket states:

from 1.2ms with 2 clients to 13ms with 128 clients.

The number of Lighttpd processes is varied from 1 to 8, with another core allocated to the

container for each additional process. The overhead increases from 23% to 63%, respectively.

This is caused by: (1) the average time to retrieve the per-process states increased from 6.5ms

to 28.7ms; (2) with more cores, more clients are needed (from 2 to 8) to saturate the server,

requiring more sockets, increasing the time to retrieve socket states from 1.2ms to 3.8ms;

(3) with more cores, more processing is performed per epoch, causing the number of dirty

pages to increase from 391 to 2062, resulting in increased runtime overhead for tracking dirty

pages and increased memory copying time, from 519µs to 3.5ms.

4.6 Summary

The ability to provide application-transparent fault tolerance can be highly beneficial in data

centers and cloud computing environments in order to provide high reliability for legacy ap-

plications as well as to avoid burdening application developers with the need to develop cus-

tomized fault tolerance solutions for their particular applications. VM replication was devel-

oped and has been continuously enhanced in order to provide such application-transparent

fault tolerance. This has led to not only many publications but also several commercial

products. Due to their lower resource requirements and reduced management costs, in many

situations there are compelling reasons to deploy containers instead of VMs to provide an

isolation and multitenancy layer. Hence, there is strong motivation to explore the possibility

of using container replication to provide transparent fault tolerance.

We have presented NiLiCon, which, to the best of our knowledge, is the first working

prototype of container replication that provides fault tolerance in a way that is transparent
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to both the protected applications and external clients. NiLiCon does this by providing

seamless failover from a failed container to a backup container on a different host. NiLiCon

uses the basic mechanism developed for VM replication. However, in its implementation it

overcomes unique challenges due to the tight coupling between containers and the underlying

kernel. NiLiCon’s implementation is based on CRIU, an open source container checkpointing

and migration tool. However, the overhead of the available CRIU is too high for use in

replication. NiLiCon implements critical optimizations that reduce this overhead, resulting

in a tool with performance overhead that is competitive with the overhead of VM replication

schemes.
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CHAPTER 5

HyCoR: Fault-Tolerant Replicated Containers based

on Checkpoint and Deterministic Replay

As discussed in Chapter 2, replication has long been used to implement application-transparent

fault-tolerance mechanisms. The two approaches for replication are: (1) high-frequency

transfer of the primary replica state (checkpoint), at the end of every execution epoch, to

an inactive backup, so that the backup can take over if the primary fails [CLM08]; and

(2) active replication, where the backup mirrors the execution on the primary so that it is

ready to take over. NiLiCon discussed in the last chapter is based on the first approach.

The second approach is challenging for multiprocessor workloads, where there are many

sources of nondeterminism. Hence, it is implemented in a leader-follower setup, where the

outcomes of identified nondeterministic events, namely synchronization operations and cer-

tain system calls, on the primary are recorded and sent to the backup, allowing the backup

to deterministically replay their outcomes [GHY14, MGT17].

A key disadvantage of the first approach above is that, for consistency between server

applications and their clients after failover, outputs must be delayed and released only after

the checkpoint of the corresponding epoch is committed at the backup (§2.6). Since check-

pointing is an expensive operation, for acceptable overhead, the epoch duration is typically

set to tens of milliseconds. Since, on average, outputs are delayed by half an epoch, this

results in delays of tens of milliseconds. A key disadvantage of the second approach is that

it is vulnerable to even rare replay failures due to untracked nondeterministic events, such

as those caused by data races.
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This chapter presents a novel fault tolerance scheme, based on container replication, called

HyCoR (Hybrid Container Replication). HyCoR overcomes the two disadvantages above

using a unique combination of periodic checkpointing [CLM08], externally-deterministic

replay [CZG15, VLW11, LWV10, AS09, PZX09], user-level recording of nondeterministic

events [LWV10, MGT17], and failover of network connections [ABE01, AT01]. A critical

feature of HyCoR is that the checkpointing epoch duration does not affect the response

latency, enabling HyCoR to achieve sub-millisecond added delay (§5.4.2). This allows ad-

justing the epoch duration to trade off performance and resource overheads with recovery

latency and vulnerability to untracked nondeterministic events. The latter is important

since, especially legacy applications, may contain data races (§5.4.4). HyCoR is focused on

dealing with data races that rarely manifest and are thus more likely to remain undetected.

Since HyCoR only requires replay during recovery and for the short interval since the last

checkpoint, it is inherently more resilient to data races than schemes that rely on replay of

the entire execution [GHY14]. Furthermore, HyCoR includes a simple timing adjustment

mechanism that results in a high recovery rate even for applications that include data races,

as long as their rate of unsynchronized writes is low.

Replication can be at the level of VMs [BS95, CLM08, RZP19, WCJ18, DYJ13], pro-

cesses [GHY14, MGT17], or containers (§4). We believe that containers are the best choice

for mechanisms such as HyCoR. Applying HyCoR’s approach to VMs would be complicated

since there would be a need to track and replay nondeterministic events in the kernel. On

the other hand, with processes, it is difficult to avoid potential name conflicts upon failover.

A simple example is that the process ID used on the primary may not be available on the

backup. While such name conflicts can be solved, the existing container mechanism already

solves them efficiently.

With HyCoR, execution on the primary is divided into epochs and the primary state

is checkpointed to an inactive backup at the end of each epoch [CLM08]. Upon failure

of the primary, the backup begins execution from the last primary checkpoint and then
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deterministically replays the primary’s execution of its last partial epoch, up to the last

external output. The backup then proceeds with live execution. To support the backup’s

deterministic replay, HyCoR ensures that, before an external output is released, the backup

has the log of nondeterministic events on the primary since the last checkpoint. Thus,

external outputs are delayed only by the time it takes to commit the relevant last portion of

the log to the backup.

There are several other works combining checkpointing with externally-deterministic re-

play for replication [LWV10, GHY14, CSX16, KDC05, MGT17]. However, Respec [LWV10]

requires an average external output delay greater than half an epoch and is based on active

replication. [CSX16, KDC05] do not provide support for execution on multiprocessors. See

§2.6 for additional discussion. Furthermore, these prior works do not provide an evaluation

of recovery rates and are not designed or evaluated for containers.

We have implemented a prototype of HyCoR and evaluated its performance and reliability

using eight benchmarks. NiLiCon (§4) is the basis for the implementation of checkpointing

and restore. The rest of the implementation is new, involving instrumenting standard library

calls at the user level, user-level agents, and small kernel modifications. With 1s epochs,

HyCoR’s performance overhead was less than 59% for all eight benchmarks. With more

conservative 100ms epochs, the overhead was less than 68% for seven of the benchmarks and

145% for the eighth. HyCoR is designed to recover from fail-stop failures. We used fault

injection to evaluate HyCoR’s recovery mechanism. For all eight benchmarks, after data

races identified by ThreadSanitizer [thr] were resolved, HyCoR’s recovery rate was 100% for

100ms and 1s epochs. Three of the benchmarks originally included data races. For two of

these, without any modifications, with 100ms epochs and HyCoR’s timing adjustments, the

recovery rate was over 99.4%.

We make the following contributions: 1) A novel fault tolerance scheme based on con-

tainer replication, using a unique combination of periodic checkpointing, deterministic replay

of multiprocessor workloads, user-level recording of non-deterministic events, and an opti-
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mized scheme for failover of network connections. 2) A practical “best effort” mechanism

that enhances the success rate of deterministic replay in the presence of data races 3) A

thorough evaluation of HyCoR with respect to performance overhead, resource overhead,

and recovery rate, demonstrating the lowest reported external output delay compared to

competitive mechanisms.

An overview of HyCoR is presented in §5.1. HyCoR’s implementation is described in

§5.2, with a focus on key challenges. The experimental setup and evaluation are presented

in §5.3, and §5.4, respectively. Limitation of HyCoR and of our prototype implementation

are described in §5.5.

5.1 Overview of HyCoR

HyCoR provides fault tolerance by maintaining a primary-backup pair with an inactive

backup that takes over when the primary fails. As discussed earlier, this is done using a hy-

brid of checkpointing and deterministic replay [CSX16]. The basic checkpointing mechanism

is based on NiLiCon (§4).

Figure 5.1 shows the overall architecture of HyCoR. The primary records nondeterministic

events: operations on locks and nondeterministic system calls. The record and replay are

done at the user level, by instrumentation of glibc source code. When the primary executes,

the instrumented code invokes functions in a dedicated RR (Record and Replay) library that

create logs used for replay. There is a separate log for each lock. For each thread, there is a

log of the nondeterministic system calls it invoked, with their arguments and return values.

Details are presented in §5.2.1.

When the container sends a reply to a client, the RR library collects the latest entries

(since the last transmission) of the nondeterministic event logs and sends them to the backup.

To ensure consistency upon failover, the reply is not released until the backup receives the

relevant logs.
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Figure 5.1: Architecture of HyCoR. (ND log: non-deterministic event log).

HyCoR does not guarantee recovery in the presence of data races. Specifically, unsyn-

chronized accesses to shared memory during the epoch in which the primary fails may cause

replay on the backup to fail to correctly reproduce the primary’s execution, leading the

backup to proactively terminate. However, HyCoR includes a simple “best-effort” mecha-

nism that increases the probability of success in such circumstances for application with a

low rate of unsynchronized accesses to shared memory (§5.2.6). With this mechanism, the

order and timing of returns from nondeterministic system calls by all the threads is recorded

during execution on the primary. During replay, the recorded order and relative timing are

enforced.

If the primary fails, network connections must be maintained and migrated to the

backup [ABE01, ZMA09, AT01, AT09]. Like CoRAL [AT01, AT09], requests are routed
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through backup by advertising the service IP address in the backup. Unlike FT-TCP [ABE01,

ZMA09] or CoRAL, replies are also routed through the backup, resulting in lower latency

(§5.2.3).

As with most other state replication work [CLM08, WCJ18, RZP19], HyCoR assumes

fail-stop failures. Either the primary or the backup may fail. Heartbeats are exchanged

between the primary and backup so failures are detected as missing heartbeats. Handling of

primary failures have already been discussed. If the backup fails, the primary configures its

network, advertises the service IP address, and communicates with the clients directly.

5.2 Implementation

This section presents the implementation of HyCoR, focusing on the mechanisms used to

overcome key challenges. HyCoR is implemented mostly at the user level but also includes

small modifications to the kernel. At the user level, the implementation includes: agent

processes on the primary and backup hosts that run outside the replicated container; a

special version of the glibc library (that includes Pthreads), where some of the functions

are instrumented (wrapped), used by the application in the container; and a dedicated RR

(record and replay) library, that provides functions that actually perform the record and

replay of nondeterministic events, used by the application in the container.

The kernel modifications include: an ability to record and enforce the order of access

to key data structures (§5.2.1); support for a few variables shared between the kernel and

RR library, used to coordinate checkpointing with record and replay (§5.2.2); and a new

queueing discipline kernel module used to pause and release network traffic (§5.2.3).

In the rest of this section, §5.2.1 presents the basic record and replay scheme. §5.2.2

deals with the challenge of integrating checkpointing with record and replay. §5.2.3 presents

the handling of network traffic. The transition from replay to live execution is discussed in

§5.2.4. The performance-critical operation of transmitting the nondeterministic event log to
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1 i n t read ( fd , buf , nbytes ) :
2 before :
3 replayed , re t , e r r =
4 r ead be fo re ( fd , buf , nbytes ) ;
5
6 i f ( replayed ) :
7 i f ( r e t == −1) :
8 se t e r rno ( e r r )
9 return r e t ;

10
11 r e t = r e a l r e a d ( fd , buf , nbytes ) ;
12
13 goto before = r e a d a f t e r ( fd ,
14 buf , nbytes , re t , er rno ) ;
15
16 i f ( go to before ) :
17 goto before ;
18
19 return r e t ;

Figure 5.2: Pseudo Code for recording and replaying read. L3 - L14 is explained in §5.2.1,

L16 - L17 is explained in §5.2.2.

1 i n t l ock ( lock ) :
2 before :
3 replayed , r e t = l o c k b e f o r e ( lock ) ;
4
5 i f ( replayed && r e t != 0)
6 return r e t ;
7
8 r e t = r e a l l o c k ( mutex ) ;
9

10 goto before = l o c k a f t e r ( mutex , r e t ) ;
11
12 i f ( go to before ) :
13 unlock ( mutex ) ;
14 goto before ;
15
16 return r e t ;

Figure 5.3: Pseudo Code for recording and replaying acquiring locks. L3 - L10 is explained

in §5.2.1, L12 - L14 is explained in §5.2.2.

the backup is explained in §5.2.5. §5.2.6 presents our best-effort mechanism for increasing

the probability of correct replay in the presence of infrequently-manifested data races.
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5.2.1 Nondeterministic Events Record/Replay

To minimize overhead and implementation complexity, HyCoR records synchronization op-

erations and system calls at the user level. This is done by code added in glibc before (before

hook, Fig 5.2: L4 and Fig 5.3: L3) and after (after hook, Fig 5.2: L13 and Fig 5.3: L10) the

original code. Recording is done in the after hook, replay is in the before hook.

For each lock there is a log of lock operations in the order of returns from those operations.

The log entry includes the ID of the invoking thread and the return value. The return values

is recorded to handle the trylock variants as well as errors. During replay, in most cases

synchronization operations must actually be performed in order to properly enforce the

correct semantics. However, if the recorded return value indicates that the thread failed to

acquire the lock, the thread directly returns instead of trying to acquire the lock (Fig 5.3:

L5 - L6). For each lock, the total ordering of returns from each operation is enforced. This is

not really necessary for reader-writer locks and trylock operations. However, it simplifies the

implementation and there are minimal negative consequence since these events are relatively

rare.

For each thread, there is a log of invoked system calls. The log entry includes the

parameters and return values. During replay, the recorded parameters are used to detect

divergence (replay failure). For some functions, such as gettimeofday(), replay does not

involve the execution of the function and the recorded return values are returned. However,

as discussed in §5.2.4, functions, such as open(), that involve the manipulation of kernel

state, are actually executed during replay.

A key challenge is the replay of system calls that are causally dependent. These func-

tions interact with the kernel and HyCoR does not replay synchronization within the ker-

nel [LVN10]. Thus, for example, if two threads invoke open() at approximately the same

time, without user-level synchronization, the access within the kernel to the file descriptor

table may occur in a different order during record and replay. As a result, during replay,
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each thread would not obtain the same file descriptor as it did during the original execution.

To meet the above challenge, HyCoR uses a modified version of the Rendezvous mecha-

nism in Scribe [LVN10]. Specifically, the kernel is modified to maintain an access sequence

number for each shared kernel resource, such as the file descriptor table. Each thread regis-

ters the address of a per-thread variable with the kernel. When the thread executes a system

call accessing a shared resource, the kernel increments the sequence number and copies its

value to the registered address. At the user level, this sequence number is attached to the

corresponding system call log entry. During replay, the before and after hooks enforces the

recorded execution order.

5.2.2 Integrating Checkpointing with Record/Replay

Two aspects of HyCoR complicate the integration of checkpointing with record/replay: I) the

RR library and the data structures it maintains are in the user level and are thus part

of the state that is checkpointed and restored with the rest of the container state; and

II) checkpointing is triggered by a timer in the agent, external to the container, and is thus

not synchronized with the recording of nondeterministic events on the primary.

Based on the implementation described so far, the above complications can lead to the

failure of HyCoR in two key scenarios: (1) a checkpoint may be triggered while the RR

library is executing code that must not be executed in the replay mode, such as sending

the nondeterministic event log to the backup; (2) a checkpoint may be triggered while a

thread’s execution falls between the beginning of a before hook and the end of an after hook

((Fig 5.2: L5 - L12, Fig 5.3: L4 - L9), potentially resulting in a state from which replay

cannot properly proceed;

To handle Scenario (1), HyCoR prevents the checkpoint from occurring while any ap-

plication thread is executing RR library code. Each thread registers with the kernel the

address of a per-thread in rr variable. In user mode, the RR library sets/clears the in rr

96



1 void e n t e r r r ( void ) :
2 i f (mode i s record ) :
3 i f ( checkpoint f l a g i s set ) :
4 dummy syscall ( ) ;
5 i n r r = 1 ;
6
7 void l e a v e r r ( void ) :
8 i f (mode i s record ) :
9 i n r r = 0 ;

10 i f ( checkpoint f l a g i s set ) :
11 dummy syscall ( ) ;

Figure 5.4: Pseudo Code for Entering and Leaving RR library.

when it respectively enters/leaves the hook function (Fig 5.4: L4, L9). An addition to the

kernel code that handles the freezer virtual signal (§2.7) prevents the thread from being

paused if the thread’s in rr flag is set. However, the virtual signal remains pending. To

prevent checkpointing from being unnecessarily delayed, after checkpointing is requested by

the agent, threads are paused immediately before entering or after returning from RR library

code. A checkpointing flag, shared between the agent that controls checkpointing and the

RR library code, is used by the agent to indicate that checkpointing is requested, causing

the RR library code to invoke a do nothing system call ((Fig 5.4: L3 - L4, L10 - L11)), thus

allowing the virtual signal to pause the thread.

Scenario (2) cannot be handled as Scenario (1) since preventing checkpointing from oc-

curring while a thread is between the before hook and after hook could delay checkpointing

for a long time if the thread is blocked on a system call, such as read(). To handle this

problem, HyCoR uses three variables: two per-thread flags – in hook and syscall skipped, as

well as a global current phase variable. The addresses of these variables are registered with

the kernel and are accessed by kernel modifications required by HyCoR. The current phase

variable is in memory shared between the agent and the applications in the container (the

RR library code). It indicates the current execution phase of the container and is thus set

to record, replay, or live. In the record phase, in hook is set in the before hook and cleared

in the after hook. Flag syscall skipped is used to indicate whether, during the record phase,
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the checkpoint was taken before or after executing the system call. This flag is cleared in

the before hook. In kernel code executing a system call, if current phase is set to replay and

in hook is set, the system call is skipped and syscall skipped is set.

Replay is performed in the before hook (§5.2.1). During replay, if the after hook finds

that in hook is set, that indicates that checkpointing occurred between the before and after

hooks. Thus, if current phase is replay and in hook is set, the after hook passes control

back to the before hook (Fig 5.2: L13 - L17). This allows the system call to be correctly

replayed. For system calls that are actually executed during replay (§5.2.1), there is a need

to determine whether the system call was actually invoked during the record phase. If it

was, the system call must not be invoked again during replay. This required determination

is accomplished based on the syscall skipped flag.

The key problem in Scenario (2) is relevant for lock operations as well as for system calls.

The solution described above for system call is thus also used, in a simplified form, for lock

operations. In this case, the syscall skipped flag is obviously not used. In the after hook, if

in hook is found to be set, the lock is released and control is passed to the before hook, thus

allowing enforcement of the order of lock acquires (Fig 5.3: L10 - L14).

5.2.3 Handling Network Traffic

The current HyCoR implementation assumes that all network traffic is via TCP. To ensure

failure transparency with respect to clients, there are three requirements that must be met:

(1) client packets that have been acknowledged must not be lost; (2) packets to the clients

that have not been acknowledged may need to be resent; (3) packets to the clients must not

be released until the backup is able to recover the primary state past the point of sending

those packets.

Requirements (1) and (2) have been handled in connection with other mechanisms, such

as [ABE01, ZMA09, AT01, AT09]. With HyCoR, this is done by mapping the advertised
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service IP address to the backup. Incoming packets are routed through the backup, where

they are recorded by the PackRec thread in the agent, using the libpcap library. Outgoing

packets are also routed through the backup. To meet requirement (2), copies of the outgoing

traffic are sent to the backup as part of the nondeterministic event log.

The PackGate kernel module on the backup is used to meet requirement (3). PackGate

maintains a release sequence number for each TCP stream. When the primary container

sends an outgoing message, the nondeterministic event log it sends to the backup (§5.1)

includes a release request that updates the stream’s release sequence number.

PackGate operates frequently and must thus be efficient. Hence, it is critical that it is

implemented in the kernel. Furthermore, it must maintain fairness among the TCP streams.

These goals are met by maintaining a FIFO queue of release requests that is scanned by

PackGate. Thus, PackGate avoids iterating through the streams looking for packets to

release and releases packets based on the order of sends.

5.2.4 Transition to Live Execution

As with [LVN10, GHY14] and unlike the deterministic replay tools for debugging [SKA04,

Sai05, LWV10, VLW11], HyCoR needs to transition from the replay mode to the live mode.

The switch occurs when the backup replica finishes replaying the nondeterministic event

log, specifically, when the last system call that generated an external output during the

original execution is replayed. To identify this last call, after the checkpoint is restored,

the RR library scans the nondeterministic event log and counts the number of system calls

that generated an external output. Once replay starts, this count is decremented and the

transition to live execution is triggered when the count reaches 0.

To support live execution, after replay, the kernel state must be consistent with the state

of the container and with the state of the external world. For most kernel state, this is

achieved by actually executing during replay system calls that change kernel state. For
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example, this is done for system calls that change the file descriptor table, such as open(),

or change the memory allocation, such as mmap(). However, this approach does not work

for system calls that interact with the external world. Specifically, in the context of HyCoR,

these are reads and writes on sockets associated with a connection to an external client. As

discussed in §5.2.1, such calls are replayed from the nondeterministic event log. However,

there is still a requirement of ensuring that, before the transition to live execution, the state

of the socket, e.g., sequence numbers, must be consistent with the state of the container and

with the state of external clients.

To overcome the above challenge, when replaying system calls that affect socket state,

HyCoR records the state changes on the sockets based on the nondeterministic event logs.

When the replay phase completes, HyCoR updates all the sockets based on the recorded state.

Specifically, the relevant components of socket state are: the last sent sequence number,

the last acknowledged (by the client) sequence number, the last received (from the client)

sequence number, the receive queue, and the write queue. The initial socket state is obtained

from the checkpoint. The updates to the sent sequence number and the write queue contents

are determined based on writes and sends in the nondeterministic event log. For the rest

of the socket state, HyCoR cannot rely on the event log since some packets received and

acknowledged by the kernel may not have been read by the application. Instead, HyCoR

uses information obtained from PackRec (§5.2.3).

With respect to incoming packets, once the container transitions to live execution, HyCoR

must provide to the container all the packets that were acknowledged by the primary but

were not read by applications. During normal operation, on the backup host, PackRec

keeps copies of incoming packets while PackGate extracts the acknowledgment numbers on

each outgoing stream. If the primary fails, PackGate stops releasing outgoing packets and

it thus has the last acknowledged sequence number of each incoming stream. Before the

container is restored on the backup, PackRec copies the recorded incoming packets to a

log. PackRec uses the information collected by PackGate to determine when it has all the

100



required (acknowledged) incoming packets. Using the information from the nondeterministic

event log and PackRec, before the transition to live execution, the packet repair mode (§2.7)

is used to restore the socket state so that it is consist with the state of the container and the

external world.

5.2.5 Transferring the Event Logs

Whenever the container on the primary sends a message to an external client, it must collect

the corresponding entries from the multiple nondeterministic event logs (§5.2.1) and send

them to the backup (§5.1). Hence, the collection and sending of the log is a frequent activity,

which is thus performance critical. To optimize performance, HyCoR includes performance

optimizations, such as a specialized heap allocator for the logs and maintaining a list of

logs that have been modified since the last time log entries were collected. However, such

optimizations proved to be insufficient. Specifically, with one of our benchmarks, Memcached,

under saturation, the performance overhead was approximately 300%.

To address the performance challenge above, HyCoR offloads the transfer of the nonde-

terministic event log from the application threads to a dedicated logging thread added by

the RR library to the application process. With available CPU cycles, such as additional

cores, this minimizes interruptions in the operation of the application threads. Furthermore,

if multiple application threads generate external messages at approximately the same time,

the corresponding multiple transfers of the logs are batched together, further reducing the

overhead. When an application thread sends an external message, it notifies the logging

thread via a shared ring buffer. The logging thread continuously collects all the notifications

in the ring buffer and then collects and sends the nondeterministic logs to the backup. To

reduce CPU usage and enable more batching, the logging thread sleeps for the minimum

time allowed by the kernel between scans of the buffer.

To minimize the performance overhead, HyCoR allows concurrent access to different logs.

Thus, one application thread may log a lock operation concurrently with another application
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thread that is logging a system call, while the logging thread is collecting log entries from a

third log for transfer to the backup. This enables the logging thread to collect entries from

different logs out of execution order. Thus, the collected log transferred to the backup for a

particular outgoing message may be missing log entries on which some included log entries

depend. For example, for a particular application thread, a log entry for a system call may

be included but the entry for a preceding lock operation may be missing. This can result in

an incomplete log, leading to replay failure.

There are two key properties of HyCoR that help address the correctness challenge above:

A) there is no need to replay the nondeterministic event log beyond the last system call that

outputs to the external world, and B) when an application thread logs a system call that

outputs to the external world, all nondeterministic events on which this system call may

depend are already logged in nondeterministic event logs. To exploit these properties, the

RR library maintains on the primary a global sequence number that is accessible to the

application threads and the logging thread. We’ll refer to this sequence number as the

primary batch sequence number (PBSN). A corresponding sequence number is maintained

on the backup, which we’ll refer to as backup batch sequence number (BBSN).

When an application thread logs a system call that outputs to the external world, it

attaches the PBSN to the log entry. When the logging thread receives a request to collect

and send the current event log, it increments the PBSN before taking any other action.

Thus, any log entry corresponding to a system call that outputs to the external world that

is created after the logging thread begins collecting the log, has a higher sequence number.

When the backup receives the event log, it increments the BBSN. If the primary fails, before

replay is initiated on the backup, all the nondeterministic event logs collected during the

current epoch are scanned and the entries for system calls that output to the external world

are counted if their attached sequence number is not greater than the BBSN. During replay,

this count is decremented for each such system call replayed. When it reaches 0, relay

terminates and live execution commences.
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5.2.6 Mitigating the Impact of Data Races

Fundamentally, HyCoR is based on being able to identify all sources of non-determinism

that are potentially externally visible, record their outcomes, and replay them when needed.

This implies that applications are expected to be free of data races. However, since HyCoR

only requires replay of short intervals (up to one epoch), it is inherently more tolerant to

rarely manifested data races than schemes that rely on accurate replay of the entire execu-

tion [GHY14]. As an addition to this inherent advantage of HyCoR, this section describes an

optional mechanism in HyCoR that significantly increases the probability of correct recovery

despite data races, as long as the manifestation rate is low.

HyCoR mitigates the impact of data races by adjusting the relative timing of the applica-

tion threads during replay to approximately match the timing during the original execution.

As a first step, in the record phase, the RR library records the order and the TSC (time

stamp counter) value when a thread leaves the after hook of a system call. In the replay

phase, the RR library enforces the recorded order on threads before they leave the after

hook. As a second step, during replay, the RR library maintains the TSC value correspond-

ing to the time when the after hook of the last-executed system call was exited. When a

thread is about to leave a system call after hook, the RR library delays the thread until the

difference between the current TSC and the TSC of the last system call is larger than the

corresponding difference in the original execution. System calls are used as the basis for the

timing adjustments since they are replayed (not executed) and are thus likely to cause the

timing difference. This mechanism is evaluated in §5.4.4.

5.3 Experimental Setup

All the experiments were hosted on Fedora 29 with the 4.18.16 Linux kernel. The containers

were hosted using runC [run] (version 1.0.1), a popular container runtime used in Docker.

Three hosts were used in the evaluation. The primary and backup were hosted on 36-
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Table 5.1: Benchmarks used to evaluate HyCoR.

Benchmark Description

Redis
a key-value store, evaluated with requests consisting of 50% reads

and 50% writes driven by YCSB on 100K 100 byte records.

Memcached
a key-value store, evaluated with requests consisting of 50% reads

and 50% writes driven by YCSB on 100K 100 byte records.

SSDB
a key-value store, evaluated with requests consisting of 50% reads

and 50% writes driven by YCSB on 100K 100 byte records.

Tarantool
a key-value store, evaluated with requests consisting of 50% reads

and 50% writes driven by YCSB on 100K 100 byte records.

Aerospike
a key-value store, evaluated with requests consisting of 50% reads

and 50% writes driven by YCSB on 100K 100 byte records.

Lighttpd
a web server, evaluated with concurrent requests to a 1KB static

page.

Streamcluster
a kernel that solves online clustering problems, evaluated with the

native input suite.

Swaptions
a kernel that uses HJM framework to price a portfolio of swaption,

evaluated with the native input suite.

core servers, using modern Xeon chips. These hosts were connected to each other through

a dedicated 10Gb Ethernet link. The clients were hosted on a 10-core server, based on a

similar Xeon chip. The client host was in a different building, interconnected through a

Cisco switch, using 1Gb Ethernet.

Table 5.1 summarizes the benchmarks used to evaluate HyCoR. Mechanisms like Hy-

CoR are most useful for server applications. The mechanism is stressed by applications

that manage significant state, execute frequent system calls and synchronization operations,

and interact with clients at a high rate through many TCP connections. Hence, five of
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the benchmarks used were in-memory databases handling short requests: Redis [red], Mem-

cached [mem], SSDB [ssd], Tarantool [tar] and Aerospike [aer].

The evaluation also included a web server, Lighttpd [lig], and two batch PARSEC [Bie11]

benchmarks: swaptions and streamcluster. For Lighttpd, benchmarking tools SIEGE [sie],

ab [ab] and wget [wge] were used to evaluate, respectively, the performance overhead, re-

sponse latency, and recovery rate. Swaptions and streamclusters were evaluated using the

native input test suites.

Redis, SSDB, Lighttpd, Streamcluster and Swaptions are the same benchmarks as the

ones presented in §4.4. Streamcluster and Swaptions use the same workload as the ones in

§4.4 while others use a different workload. Specifically, for Redis and SSDB, requests to the

servers are not batched so that the clients can interact with the server much more frequently

to stress the system. For Lighttpd, a static webpage, instead of the PHP program that

watermarks an image, is replied to the clients. As further discussed in §5.5, our prototype

implementation of HyCoR currently only supports C programs and containers with a single

process.

We used fault injection to evaluate HyCoR’s recovery mechanism. Since fail-stop failures

are assumed, a simple failure detector was sufficient. Failures were detected based on heart

beats exchanged every 30ms between the primary and backup hosts. The side not receiving

heart beats for 90ms identified the failure of the other side and initiates recovery.

For swaptions and streamcluster, recovery was considered successful if the output was

identical to the golden copy. For Lighttpd, we used multiple wget instances that concurrently

fetched a static page. Recovery was considered successful if all the fetched pages were

identical to the golden copy. For the in-memory database benchmarks, the YCSB clients

could not be used since they do not verify the contents of the replies and thus could not

truly validate correct operation. Instead, we developed customized clients, using existing

client libraries [hir, libb, libc, liba], that spawns multiple threads and let each thread work

on separate set of database records. Each thread records the value it stores with each key,

105



compares that value with the value returned by the corresponding get operation and flags an

error if there is a mismatch. Recovery was considered successful if no errors were reported.

A possible concern with the customized client programs is that, due to threads working on

separate sets of database records, lock contention is reduced and this could skew the results.

We compared the recovery rate and recovery latency results of the customized clients with the

YCSB clients. For the YCSB clients, recovery was considered successful if replay succeeded

and the clients finished without reporting errors. The results were similar: the recovery rate

difference was less than 2% and the recovery latency difference was less than 5%. In §5.4.4,

we report the more robust results obtained with the customized client programs.

For the fault injection experiments, for server programs, the clients were configured to

run for at least 30 seconds and drive the server program to consume around 50% of the

CPU cycles. A fail stop failure was injected at a random time within the middle 80% of

the execution time, using the sch plug module to block network traffic on all the interfaces

of a host. To emulate a real world cloud computing environments, while also stressing

the recovery mechanism, we used a perturb program to compete for CPU resources on the

primary host. The perturb program busy loops for a random time between 20 to 80 ms and

sleeps for a random time between 20 to 120ms. During fault injection, a perturb program

instance was pinned to each core executing the benchmark.

5.4 Evaluation

This section presents HyCoR’s performance overhead and CPU usage overhead (§5.4.1), the

added latency for server responses (§5.4.2), service interruption time during normal operation

(§5.4.3), as well as the recovery rate and recovery latency (§5.4.4). Two configurations of

HyCoR are evaluated: HyCoR-SE (short epoch) and HyCoR-LE (long epoch), with epoch

durations of 100ms and 1s, respectively. Setting the epoch duration is a tradeoff between

the lower overhead with long epochs and the lower susceptibility to data races and lower
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recovery time with short epochs. Hence, HyCoR-LE may be used if there is high confidence

that the applications are free of data races. Thus, with the HyCoR-SE configuration, the

data race mitigation mechanism described in §5.2.6 is turned on, while it is turned off for

HyCoR-LE .

HyCoR is compared to NiLiCon (§4) with respect to the performance overhead under

maximum CPU utilization and the server response latency. NiLiCon is configured to run

with an epoch interval of 30ms. The short epochs of NiLiCon are required since, unlike

HyCoR, the epoch duration with NiLiCon determines the added latency in replying to client

requests (§4). In all cases, the “stock setup” is the application running in an unreplicated

container.

5.4.1 Overheads: Performance, CPU Utilization

Two measures of the overhead of HyCoR are, for a fixed amount of work, the increase in

execution time and the increase in the utilization of CPU cycles. These measures are distinct

since many of the actions of HyCoR are in parallel with the main computation threads.

For the six server benchmarks, the measurements reported in this section were done with

workloads that resulted in maximum CPU utilization for the cores running the application

worker threads1 with the stock setup. To determine the required workloads, the number of

client threads was increased until an increase by 20% resulted in an increase of less than 2%

in throughput. This led to CPU utilization of above 97% for all the worker threads except

with SSDB. With SSDB a bottleneck thread resulted in utilization of 98%, while the rest

resulted in utilization of approximately 48%. Additional measurements were done to verify

the network bandwidth was not the bottleneck.

With four of the server benchmarks, the number of the worker threads cannot be config-

ured (Lighttpd, Redis : 1, Tarantool : 2, SSDB : 12). Memcached, Aerospike were configured

1Some application “helper threads” are mostly blocked sleeping.
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to run with four worker threads. For these applications, the number of the worker threads

is set to four because, with our experimental setup, it was not possible to generate enough

client traffic from YCSB to saturate more than four worker threads. For consistency, the

two non-interactive benchmarks were also configured to run with four threads.

For each benchmark, the workload that saturates the cores in the stock setup was used

for the stock, HyCoR, and NiLiCon setups. With NiLiCon, due to the long latencies it

normally incurs for server responses (§5.4.2), it is impossible to saturate the server with

this setup. Hence, for the NiLiCon measurements in this subsection, the buffering of the

server responses was removed. This is not a valid NiLiCon configuration, but it provides a

comparison of the overheads excluding buffering of external outputs.

Performance Overhead. The performance overhead is reported as the percentage

increase in the execution time for a fixed amount of work compared to the stock setup.

Figure 5.5 shows the performance overheads of NiLiCon, HyCoR-SE , and HyCoR-LE , with

the breakdown of the sources of overhead. Each benchmark was executed 50 times. The

margin of error of the 95% confidence interval was less than 2%.

The record overhead is caused by the RR library recording non-deterministic events. The

pause overhead is due to the time the container is paused for checkpointing. The page fault

overhead is caused by the page fault exceptions that track the memory state changes of each

epoch (§4).

As shown by a comparison of the results for HyCoR-SE and HyCoR-LE , due to locality

in accesses to pages, the pause and page fault overheads decrease as the epoch duration is

increased. This comparison also shows that the fact that the data race mitigation mechanism

is on with HyCoR-SE and of with HyCoR-LE , has no significant impact on the record

overhead.

Table 5.2 can be used to explain the sources of the performance overhead shown in Fig-

ure 5.5. With HyCoR-SE , the average incremental checkpoint size per epoch was 0.2MB for
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Figure 5.5: Performance overheads: NiLiCon, HyCoR-SE , HyCoR-LE .

Swaptions, 15.6MB for Redis, and 41.2MB for Aerospike, partially explaining the differences

in pause overhead, which is also affected by the time to obtain required kernel state. With

HyCoR-SE , the average number of logged lock operations plus system calls per epoch was

9 with streamcluster, 907 with Tarantool, and 2137 with Aerospike, partially explaining the

differences in record overhead. However, the overhead of logging system calls is much higher

than for lock operations. Memcached is comparable to Aerospike in terms of the rate of

logged system calls plus lock operations, but has 341 compared to 881 logged system calls

per epoch and thus lower record overhead.

CPU utilization overhead. The CPU utilization is the product of the average numbers
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Table 5.2: Average checkpoint size in MB (CP), average number of page faults caused by

tracking memory state changes per epoch (PF) and non-deterministic system call (SYS) and

lock acquisition (LK) rate per milliseconds for HyCoR-SE .

ST SC Lig Redis Taran SSDB Mem$ Aero

CP 0.2 1.3 0.3 15.6 15.4 3.3 24.3 41.2

PF 61 326 88 3986 3936 823 6195 10508

LK 942 9 101 8 618 849 1711 1256

SYS ∼0 ∼0 167 438 289 1243 341 881

Table 5.3: CPU utilization overhead for HyCoR-SE . LogTH: logging thread. KerNet: ker-

nel’s handling of network packets. P: primary host and B: backup host.

ST SC Lig Redis Taran SSDB Mem$ Aero

P
LogTH ∼0 ∼0 17% 11% 12% 5% 12% 20%

others 6% 3% 27% 63% 45% 55% 36% 87%

B

KerNet ∼0 ∼0 43% 70% 43% 18% 31% 45%

PKRec ∼0 ∼0 17% 15% 10% 4% 9% 13%

others 1% 2% 41% 54% 35% 15% 13% 20%

total 7% 5% 145% 213% 145% 97% 101% 185%

of CPUs (cores) used and the total execution time. The CPU utilization overhead is the

percentage increase in utilization with HyCoR compared to with the stock setup. The

measurement is done by pinning each HyCoR component to a dedicated set of cores. All user

threads are configured to run at high priority using the SCHED FIFO real-type scheduling

policy. Instances of a simple program that continuously increments a counter run at low

priority on the different cores. The CPU utilization is determined by comparing the values

of counts from those instances to the values obtained over the same period on an idle core.

The experiment is repeated 50 times, resulting in a 95% confidence interval margin of error

of less than 1%.
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Table 5.3 shows a breakdown of CPU utilization overhead with HyCoR-SE . The “oth-

ers” row for the primary is the overhead for recording the nondeterministic events, handling

the page fault exceptions for tracking memory changes, and collecting and sending the in-

cremental checkpoints. The “others” row for the backup is the overhead for receiving and

storing the nondeterministic event logs and the checkpoints. The KerNet row for the backup

is the overhead for packet handling in the kernel, that includes the routing of requests and

responses to/from the primary and the PackGate module.

In terms of CPU utilization overhead, the worst case is with Redis. A significant factor

is the overhead for packet handling in the backup kernel (KerNet). We have found that this

overhead is mostly due to routing, not PackGate. Redis involves only one worker thread and

it receives and sends a large number of small packets, leading to this overhead. Techniques

for optimizing software routing [KMC00] can be used to reduce this overhead.

With HyCoR-LE , the CPU utilization overhead is 2% to 169%, with Redis still being the

worst case. The CPU utilization on the primary is 1% to 69% – significantly less than that

with HyCoR-SE due to the reduction in CPU time to handle checkpointing and page faults.

The CPU utilization overhead on the backup is only slightly lower than with HyCoR-SE ,

due to the reduction in CPU time to receive checkpoints.

5.4.2 Response Latency

A key advantage of HyCoR compared to schemes based on checkpointing alone, such as

Remus [CLM08] and NiLiCon is significantly lower response latency. Table 5.4 shows the

response latencies with the stock setup, HyCoR-SE and NiLiCon. The number of client

threads for stock and HyCoR-SE is separately adjusted so that the CPU load on the cores

running application worker threads is approximately 50%. For NiLiCon, due to its long

response latencies, it is not possible to reach 50% CPU usage. Instead, NiLiCon is evaluated

with the same number of client threads as HyCoR-SE , resulting in CPU utilization of less

than 5%, thus favoring NiLiCon. To evaluate the impact of response size, Lighttpd is eval-
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Table 5.4: Response Latency in µs. S: Stock, H: HyCoR-SE , N: NiLiCon

Lig1K Lig100K Redis Taran SSDB Mem$ Aero

S
avg 549 2059 406 393 388 643 373

99% <1ms <3ms 734 617 622 2982 711

H
avg 740 2215 637 651 709 1092 945

99% <1ms <9ms 1105 1191 1087 5901 1724

N
avg 38ms 38ms 42ms 42ms 45ms 45ms 51ms

99% <39ms <39ms 44ms 42ms 47ms 53ms 63ms

uated serving both 1KB as well as 100KB files. Each benchmark is executed 50 times. We

report the average of the mean and the 99th percentile latencies of the different runs. For

the average response latencies, the 95% confidence interval has a margin of error of less than

5%. For the 99th percentile latencies, it is less than 15%.

With HyCoR, there are three potential sources for the increase in response latency: for-

warding packets through the backup, the need to delay packet release until the corresponding

event log is received by the backup, and increased request processing time on the primary.

With HyCoR-SE , the increase in average latency is only 156µs to 581µs. The worst case

is with Aerospike, which has the highest processing overhead (Fig. 5.5) and a high rate of

nondeterministic events and thus long logs that have to be transferred to the backup. The

increase in 99th percentile latency is 371µs to 6ms. The worst case is with Lighttpd serving

a 100KB file. This is because the request service time is much longer than with the other

benchmarks and thus a checkpoint is more likely to happen in the middle of this time. The

pause time for checkpoint of this benchmark is approximately 6ms. It should be noted that,

in terms of increase in response latency, NiLiCon is not competitive, as also indicated by

the results in Chapter 4.

With HyCoR-LE , the increase in the average response latency is from 40µs to only 343µs,

due to the lower processing overhead. The increase in the 99th percentile latency is under
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Table 5.5: The pause time of HyCoR-SE in ms

ST SC Lhttpd Redis Taran SSDB Mem$ Aero

avg 5.9 7.6 7.2 14.9 18.4 13.9 28.7 42.9

median 5.9 7.7 7.3 16.1 19.5 14.1 31.1 45.1

90% 5.9 8.0 7.4 16.7 20.2 14.8 33.7 45.8

534µs since checkpoint are much less frequent and thus less likely to interrupt the processing

of a request.

5.4.3 Service Interruption Time During Normal Operation

The container needs to frequently pause to take a checkpoint. If the container is paused, it

cannot process any existing or new requests. Hence, the pause time of the container shows

the service interruption time during normal operation. Table 5.5 shows the pause time of

HyCoR-SE . In the worst case, the pause time is around 45.8ms with Aerospike. The results

for HyCoR-LE are similar with only a slight increase (<2ms) in the mean, median and 90

percentile of the pause time.

5.4.4 Recovery Rate and Latency

This subsection presents an evaluation of the recovery mechanism and the data race mitiga-

tion mechanism. The service interruption time is obtained by measuring, at the client, the

increase in response latency when a fault occurs. The service interruption time is the sum

of the recovery latency plus the detection time. With HyCoR, the average detection time is

90ms (§5.3). Hence, since our focus is not on detection mechanisms, the average recovery

latency reported is the average service interruption time minus 90ms.

Backup Failure. 50 fault injection runs are performed for each benchmark. Recovery

is always successful. The service interruption duration is dominated by by the Linux TCP
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Table 5.6: Recovery rate and replay time (in ms). HyCoR with different levels of mitigation

of data race impact.

Recovery Rate Replay Time

Mem$ Aero Mem$ Aero
10

0m
s

stock 94.1% 83.4% 23 33

+ Total order of syscalls 93.9% 92.8% 128 289

+ Timing adjustment 99.5% 99.8% 234 377

1s

stock 50.2% 35.3% 245 370

+ Total order of syscalls 50.6% 78.1% 1129 1342

+ Timing adjustment 98.7% 99.2% 1218 1474

retransmission timeout, which is 200ms. The other recovery events, such as detector timeout

and broadcasting the ARP requests to update the service IP address, occur concurrently with

this 200ms. Thus, the measured service interruption duration is between 203ms and 208ms.

The 95% confidence interval margin of error is less than 0.1%.

Primary Failure Recovery Rate. Three of our benchmarks contain data races that

may cause recovery failure: Memcached, Aerospike and Tarantool. Running Tarantool with

HyCoR-SE , through 50 runs of fault injection in the primary, we find that, due to data

races, in all cases replay fails and thus recovery fails. Due to the high rate of data race

manifestation, this is the case even with the mechanism described in §5.2.6. Thus, we use

a modified version of Tarantool in which the data races are eliminated by manually adding

locks.

We divide the benchmarks into two sets. The first set consists of the five data-race-free

benchmarks and a modified version of Tarantool. For these, 50 fault injections are performed

for each benchmark. Recovery is always successful.
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The second set of benchmarks consists of Memcached and Aerospike, used to evaluate the

data race mitigation mechanisms (§5.2.6). For these, to ensure statistically significant results,

1000 fault injection runs are performed with each benchmark with each setup. The results

are presented in Table 5.6. For both the recovery rate and replay time, the 95% confidence

interval is less than 1%. Without the §5.2.6 mechanism, the recovery rate for HyCoR-LE

is much lower than with HyCoR-SE , demonstrating the benefit of short epochs and thus

shorter replay times. Enforcing a total order of the recorded system calls in the after hook

is not effective for Memcached but increases the recovery rate of Aerospike for both HyCoR

setups. However, with the timing adjustments, both benchmarks achieve high recovery rates,

even with HyCoR-LE . The total order of the system calls is the main factor that increase

the replay time. Thus, there is no reason to not also enable the timing adjustments.

To explain the results above, we measured the rate of racy memory accesses in Taran-

tool, Memcached and Aerospike. To identify “racy memory accesses”, we first fixed all the

identified data races by protecting certain memory access with locks. We then removed

the added locks and added instrumentation to count the corresponding memory accesses.

For Tarantool, the rates of racy memory writes and reads are, respectively, 328,000 and

274,000 per second. For Memcached the respective rates are 1 and 131,000 per second and

for Aerospike they are 250 and 372,000 per second. These results demonstrate that when

the rate of accesses potentially affected by data races is high our mitigation scheme is not

effective. Fortunately, in such cases, data races are unlikely to remain undetected.

As an additional validation of HyCoR, the three benchmarks mentioned above were

modified to eliminate the data races. With the HyCoR-LE setup, 200 fault injection runs

are executed with Memcached and Aerospike. 50 fault injection runs are executed with the

remaining six benchmarks. Recovery is successful in all cases.

Primary Failure Recovery Latency. Figure 5.6 shows a breakdown of the factors

that make up the recovery latency with HyCoR-SE and HyCoR-LE . The batch benchmarks,

swaptions and streamcluster, are not included since their execution times are above 60s, so
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Figure 5.6: Recovery Latency (ms) breakdown with HyCoR-SE and HyCoR-LE .

their recovery latency is insignificant. With HyCoR-SE , the data race mitigation scheme is

enabled, while with HyCoR-LE it is disabled. The 95% confidence interval margin of error is

less than 5%. Restore is the time to restore the checkpoint, mostly for restoring the in-kernel

states of the container (e.g., mount points and namespaces). Read log is the time to process

the stored logs in preparation for replay. Others include the time to send ARP requests and

connect the backup container network interface to the bridge.

The recovery latency differences among the benchmarks are due mainly to the replay

time. It might be expected that the average replay time would be approximately half an

epoch duration. However, replay time is increased due to different thread scheduling by the

kernel that causes some threads to wait to match the order of the original execution. This

increase is more likely when the data race impact mitigation mechanism is enabled since

it enforces more strict adherence to the original execution. A second factor that impact
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the replay time is a decrease due to system calls that are replayed from the log and not

executed.

5.5 Limitations

We have identified one inherent limitation of HyCoR and four limitations of the current

research prototype implementation. An inherent limitation is that the mechanism used for

mitigating the impact of data races (§5.2.6) is incapable of handling a high rate of racy

accesses (§5.4.4). However, as discussed in §5.4.4, such data races are easily detectable and

are thus easy to eliminate, even in legacy applications.

HyCoR does not currently support multiple processes. To overcome this limitation, the

RR library would need significant enhancements, such as support for inter-process communi-

cations via shared memory. Techniques presented in [BHC10] may be applicable. HyCoR also

does not handle asynchronous signals. This may be resolved by techniques used in [LVN10],

that delay signal delivery until a system call or certain page faults.

HyCoR does not handle C atomic types, functions, intrinsics and inline assembly code

that performs atomic operations transparently. In this work, such cases were handled by

protecting such operations with locks. Specifically, this was done for Aerospike and glibc.

Compiler support [MGT17] is needed to overcome this limitation.

Recovery currently fails if a socket is created via accept() or connect() during replay.

Resolving this limitation would require recording and restoring during replay various socket

state components, such as the timestamp and window scale. This can be done by enhancing

the RR library with code used in NiLiCon to checkpoint and restore socket state.
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5.6 Summary

HyCoR is a unique point in the design space of application-transparent fault tolerance

schemes for multiprocessor workloads. By combining checkpointing with externally deter-

ministic replay, it facilitates trading off performance and resource overheads with vulnera-

bility to data races and recovery latency. Critically, the response latency is not determined

by the frequency of checkpointing, and sub-millisecond added delay is achieved with all

our server applications. As we have found (§5.4.4), legacy applications may still have data

races. HyCoR targets data races that are most likely to remain undetected and uncorrected,

namely, rarely-manifested data races. Unlike mechanism based strictly on active replication

and deterministic replay [GHY14], HyCoR is not affected by data races that manifest during

normal operation, long before failure. For handling data races that manifest right before

failure, HyCoR introduces a simple best effort mechanism that significantly reduces of the

probability of the data races causing recovery failure. HyCoR is a full fault tolerance mech-

anism. It can recover from primary or backup host failure and includes transparent failover

of TCP connections.

This chapter describes key implementation challenges encountered in the development of

HyCoR and outlines their resolution. The extensive evaluation of HyCoR, based on eight

benchmarks, included performance and resource overheads, impact on response latency, as

well as recovery rate and latency. The recovery rate evaluation, based on fault injection, sub-

jected HyCoR to particularly harsh conditions by intentionally perturbing the scheduling on

the primary, thus challenging the deterministic replay mechanism (§5.3). With high check-

pointing frequency (HyCoR-SE ), HyCoR’s throughput overhead is less than 68% for seven

of our benchmarks and 145% for the eighth. If the applications are known to be data race

free, with a lower checkpointing frequency (HyCoR-LE ), the overhead is less than 59% for all

benchmarks, significantly outperforming NiLiCon. With data race free applications, HyCoR

recovered from all fail-stop failures. With two applications with infrequently-manifested data
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races, the recovery rate was over 99.4% with HyCoR-SE .
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CHAPTER 6

PUSh : Data Race Detection Based on

Hardware-Supported Prevention of Unintended

Sharing

Prior chapters present several fault-tolerance mechanisms. This chapter presents a debugging

tool called PUSh (Prevention of Unintended Sharing). PUSh helps to detect an important

type of programming errors: data races in parallel applications. Thus, PUSh enhances the

dependability of the system by reducing design faults in the applications (Chapter 1).

Data races are a major cause of concurrency bugs. Data races are caused by unin-

tended sharing. Hence, motivated by limitations of the various alternatives, one approach

to detecting data races is to require the programmer to specify the intended sharing, us-

ing special annotations, and detect accesses that violate these intentions [FF00, AGE08,

AGN09, MHC10, BLR02, Gro03, HBS14]. Especially for languages like C and C++, this

approach can simplify and reduce the overhead of data race detection since tools based on

this approach do not need to autonomously differentiate between accesses that correspond

to intended sharing and those that violate these intentions.

detection tools that require program annotations, PUSh are: SharC [AGE08], Shoal [AGN09],

and a tool that we refer to as DCOP (Dynamically Checking Ownership Policies) [MHC10].

All three tools use a combination of static analysis and software instrumentation of memory

accesses. PUSh requires programs to be similarly annotated. However, with PUSh, the

detection of unintended sharing is implemented using off-the-shelf hardware. Thus, PUSh
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does not rely on static analysis and does not require high-overhead software instrumentation

of any normal memory accesses.

With PUSh, when an object is allocated (statically or dynamically), annotation indicates

the sharing policy of the object, such as private – read/write accessible by one thread, or

read-shared – potentially readable by all the threads (§6.1.1). Subsequently, change policy

annotations can be used to change the sharing policy of objects. Unannotated objects are

accessible by only a single thread. While annotating programs is an extra burden on the

programmer, prior work has provided positive indications that many programmers are willing

to annotate their programs for this purpose [SY14].

Logically, PUSh maps sharing policies to per-thread read/write access permissions (§6.1.3)

and enforces these permissions without instrumenting any normal (read/write) memory ac-

cesses. Ideally, this enforcement would be performed by specialized hardware that efficiently

supports fine-grained memory protection for variable size objects [WCA02, ZKD08]. A key

contribution of PUSh is an efficient implementation of the mechanism with off-the-shelf hard-

ware, utilizing page-level protection. ISOLATOR [RRR09] also uses page-level protection

for data race detection. However, ISOLATOR only addresses one particular type of data

race, where one thread acquires a lock for an object and another thread accesses the object

without acquiring a lock. ISOLATOR cannot detect other types of data races. Furthermore,

ISOLATOR incurs high overhead if an object protected by a lock is repeatedly accessed by

different threads.

If two threads perform conflicting change policy operations on the same object in un-

ordered (concurrent) vector time frames [PS07] (epochs [FF09]), unordered conflicting ac-

cesses to the object (data races) may not be detected by simply checking sharing policy

violations (§6.1.2). To deal with this problem, PUSh identifies conflicting unordered change

policy operations utilizing the FastTrack algorithm [FF09] to perform happens-before track-

ing of those operations. The number of change policy operations in a program is much lower

than the number of normal object accesses. Hence, the performance overhead of the tracking
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performed by PUSh is dramatically lower than mechanisms, such as FastTrack, that track

every object access. This idea has the potential to enhance any dynamic race detector that

relies on explicit sharing policy changes.

PUSh could be implemented in a straightforward manner by placing each object in a

separate page and using a separate page table for each thread. Such an implementation would

require significant changes to the OS kernel and involve memory overhead for multiple page

tables. More importantly, such an implementation would involve high performance overhead

since every sharing policy change would require a system call which, at times, would require

synchronously updating all the page tables. Critically, this would have to be done every time

a lock is acquired or released. PUSh avoids most of these disadvantages with a novel use of

memory protection keys (MPKs), recently added to the x86 ISA [Int18]. Multiple additional

optimizations further reduce the performance and memory overheads of the straightforward

implementation.

One way to evaluate PUSh is by comparing it to ThreadSanitizer (TSan) [SI09, thr].

TSan is a widely-used and well-maintained data race detector, which is included as part of

gcc. A clear advantage that TSan has over PUSh is that it does not require annotation.

Our comparison was based on eleven C benchmarks. Running with eight threads, in terms

of performance overhead (additional execution time relative to the stock applications), for

TSan the range was 384% to 12,820%, while for PUSh it was 0% to 67%. For four applica-

tions, the TSan slowdown exceeded 1600%, while the maximum overhead of PUSh for those

applications was negligible. In terms of race detection, neither TSan nor PUSh had any false

positives (identified false races). Excluding races due to standard library calls (see §6.4.1),

PUSh detected all the data races detected by TSan. These results indicate that, in many

deployment scenarios, PUSh can be used in production runs, while TSan is restricted to use

in offline debugging.

We have evaluated PUSh using the eleven C benchmarks mentioned above running with

up to 32 threads. PUSh’s memory overhead is negligible for all benchmarks: <5.8%. The
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worst performance overhead was 67% for one benchmark, due to a high rate of policy changes.

For nine of the benchmarks the performance overhead was under 35% for all thread counts.

PUSh detected a total of ten data races. As mentioned above, these were also the races

detected by TSan.

We make the following contributions: 1) a novel technique for using current MMUs with

MPKs for efficient data race detection by the prevention of unintended sharing coupled with

happens-before tracking of only sharing policy changes; 2) several optimizations for increas-

ing detection accuracy as well as reducing memory and performance overheads, including

enhanced annotations, kernel changes, software caching, and the use of a universal family of

hash functions; 3) analysis of the sources of overhead of PUSh and the effectiveness of the

different optimizations; 4) comparison of PUSh to the most closely-related annotation-based

race detectors schemes [AGE08, AGN09, MHC10] as well as TSan.

Section 6.1 is an overview of the sharing policy annotation framework of PUSh and

the basic approach of preventing unintended sharing using access permissions of protection

domains. §6.2 is a detailed description of the implementation, including the various opti-

mizations and their potential impact. The experimental setup and evaluation results are

presented in §6.3 and §6.4, respectively. §6.5 is a summary of the limitations and disadvan-

tages of PUSh and of its current implementation.

6.1 Overview of PUSh

For any data race detection mechanism based on detection of violations of explicitly-specified

intended sharing, there are two key issues: how the intended sharing is specified and how are

violations of these intentions detected. The core sharing policies of PUSh and the permitted

sharing policy changes are described in §6.1.1. In order to avoid hiding some data races,

some combinations of sharing policy change operations on the same object performed by

different threads must not be concurrent. The use of happens-before tracking [PS07, FF09]
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of these operations to detect these situations is described in §6.1.2.

PUSh relies on hardware-enforced protection domains to detect unintended sharing. To

facilitate efficient implementation, PUSh supports two additions to the core sharing policies:

sticky-read (§6.1.2) and locked (§6.1.3). As explained in §6.1.3, in some specific scenarios, the

use of the locked policy can result in false negatives (undetected races). §6.1.3 also provides

a high-level overview of PUSh’s mapping of sharing policies to read/write access permissions

in “ideal” protection domains. The implementation using off-the-shelf hardware is described

in §6.2.

For a single execution, PUSh, as all dynamic data race detectors, can only detect races in

code that is actually executed. However, PUSh also has the “pseudo-completeness” property,

as defined in [ELC12]: with a sufficient number of different executions, PUSh will eventually

detect all the data races. As other tools, PUSh requires synchronization operations to be

explicitly identified. Only Pthreads operations are currently supported.

6.1.1 Core Sharing Policies and Policy Changes

The core sharing policies of PUSh are essentially identical to those of DCOP [MHC10]. Since

every global object is potentially shared, PUSh must associate sharing policies with all such

objects, which we will henceforth refer to as tracked objects. There are five core sharing

policies: private, read-shared, racy, inaccessible, and untouched. We use the term “private

object” to refer to an object whose current sharing policy is private. Similarly for “read-

shared object,” etc. Two additional sharing policies: sticky-read and locked, are discussed

in §6.1.2 and §6.1.3, respectively.

A private object is read/write accessible by one thread. A read-shared object is poten-

tially readable by all the threads. Racy objects are read/write accessible by all the threads.

This sharing policy is used for objects that are intentionally racy, such as synchronization

objects (e.g. lock variables). An inaccessible object is not accessible by any thread. An
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untouched object becomes private to the first thread that accesses it. The initial sharing

policy for an object is specified when a static object is declared or when an object is dy-

namically allocated. Static objects that are not annotated are untouched. Objects allocated

dynamically with the standard API (e.g., malloc) are private to the invoking thread.

The racy policy allows incorrect annotation to hide races. However, with the C11 Stan-

dard [ISO11], this policy can be removed (used only internally for synchronization objects).

Without racy, incorrect annotation cannot result in false negatives. Incorrect annotation can

cause false positives. However, those are eliminated during the annotation process (§6.4.2).

C11 atomics are currently not supported.

During execution, the intended accessibility of an object may change. For example, a

private object may later become read-shared by multiple threads. Hence, PUSh supports

runtime change policy operations. Acquire/release write operations by a thread make an

object private to the thread or release the association between the object and the thread.

Similarly, acquire/release read operations allow or disallow the thread from reading and

object. Since one thread cannot force another to relinquish its access, a thread can acquire

write only if the object is untouched, inaccessible, locked, or is the only thread for which the

object is read-shared. Similarly, a thread can acquire read only if the object is untouched,

inaccessible, locked, private to this thread, or read-shared by other threads. An object that is

released by all the threads becomes inaccessible. An object that is untouched or inaccessible

can be changed to racy.

6.1.2 Ensuring Ordering of Policy Changes

Simply enforcing the sharing policies presented in §6.1.1 does not guarantee that all data

races will be detected. For example, as shown in Fig. 6.1, a thread may write to a private

object, release the write permission, and later, without an intervening synchronization op-

eration, another thread can acquire write and write to the object. Allowing this kind of

scenario is a limitation of prior data race detectors based on the detection of sharing policy
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T1 T2

Y=3;

Y=5;

T1 T2
PUSh_acq_w(&Y);
Y=3;
PUSh_rel_w(&Y);

PUSh_acq_w(&Y);
Y=5;
PUSh_rel_w(&Y);

Figure 6.1: Left: original code with a data race. Right: sharing policy correctly annotated,

but possibility of detection failure under some execution interleavings.

violations [AGE08, AGN09, MHC10].

PUSh detects conflicting concurrent policy changes on the same object using the Fast-

Track algorithm [FF09] for happens-before tracking. Specifically, since a thread must have

exclusive access in order to write to an object, in PUSh’s deployment of FastTrack, acquire

write and release write are processed as writes, while acquire read and release read are pro-

cessed as reads from the object. Thus, the happens-before tracking is performed only for

sharing policy changes. By combining this idea with hardware enforcement of sharing poli-

cies, it is possible to significantly reduce the performance overhead compared to conventional

mechanisms based on happens-before tracking, without incurring false negatives.

With the happens-before tracking of policy changes, an ideal implementation of PUSh

would be sound and precise (no false negatives or positives), without requiring instrumenta-

tion of normal read/write accesses.

A drawback of all happens-before tracking is the memory overhead for each tracked

object. This overhead is particularly large for read-shared objects [FF09]. PUSh mitigates

this overhead by introducing the sticky-read sharing policy. All the threads can read sticky-

read objects. Once an object is changed to sticky-read, its sharing policy can never be

changed. Hence, following the change, there is no need to perform any tracking of the object
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and this does not compromise soundness. To avoid false negatives, a policy change to sticky-

read is allowed only when happens-before tracking guarantees that there is only one thread

in the process. PUSh enforces this constraint and flags violations.

6.1.3 Enforced Protection Domains

PUSh prevents unintended sharing by associating each global object with a Logical Pro-

tection Domain (LPD). “LPD” denotes a set of addresses for which each thread has the

same read/write access permissions, but the access permissions for different threads may be

different. Sharing policies are enforced by assigning the proper access permissions (§6.1.1)

to each of the LPDs. While LPDs could be implemented using software instrumentation of

normal memory accesses, this would result in excessive performance overhead. Thus, ide-

ally, the LPDs should be implemented using hardware-enforced fine granularity, variable size

protection domains [WCA02, ZKD08].

In general, the overhead associated with protection domains increases as the number of

domains increases. This motivates PUSh to map the LPDs to a smaller number of Enforced

Protection Domains (EPDs). This requires including multiple objects in the same EPD,

regardless of their physical location. For each thread, PUSh maps all the LPDs that are

private to that thread to the same EPD. For each of the sharing policies untouched, inacces-

sible, racy, and sticky-read, all the LPDs containing objects with that policy are mapped to a

single EPD. The above consolidations of LPDs into fewer EPDs do not impact the soundness

of PUSh.

PUSh places all the read-shared objects in a single EPD. This consolidation does impact

soundness since it is not possible to strictly enforce the requirement for a thread to acquire

read before it can read the object. Once one thread performs an acquire read, all the threads

are able to read. Thus, PUSh would not detect a data race where a thread writes to a

private object, later it, or another thread, changes the object to read-shared, and finally a

third thread reads the object but there is no intervening synchronization between the original
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write and this read. Fortunately, in many cases, all the reading threads are executing the

same code. In such cases, either none of the threads or all of the threads perform the acquire

read. With either possibility, the data race will be detected.

With DCOP [MHC10], and thus also with the core annotations in §6.1.1, every critical

section requires changing the sharing policy of all the accessed objects to private and then

back to inaccessible. If policy changes to/from private are slow (e.g., require a system

call §6.2.2), this may incur prohibitive overhead. Hence, PUSh adds the locked sharing

policy [AGE08], that associates an object with a specific lock. Multiple objects can be

associated with the same lock. A locked object is read/write accessible by a thread that

holds the lock associated with that object. All the LPDs containing locked objects protected

by the same lock are mapped to the same EPD. Policy changes to/from locked are processed

as writes (§6.1.2).

Once an object’s sharing policy is changed to locked, any thread holding the associated

lock can access the object even if that access is unordered with respect to a prior access to

the object before its sharing policy was changed to locked. Thus, when a thread performs

a change policy operation to locked, PUSh actually maps the object to the inaccessible

EPD. Hence, the first access to the object is trapped. PUSh then verifies that the access

is performed while the thread holds the lock and the access is ordered (happens-after) with

respect to the sharing policy change. If this verification succeeds, the object is moved to the

EPD of the associated lock. Subsequent accesses to the object under the lock are data race

free, as such accesses are ordered by the lock.

Since a locked object may be accessed by any thread holding the associated lock, a change

policy from locked should be ordered with respect to accesses under the lock. Verifying

this would involve happens-before tracking of every access to an object under a lock. For

performance reasons, PUSh avoids tracking normal read/write accesses to objects. Hence, in

some executions, the current implementation of PUSh can fail to detect accesses under lock

which are unordered with respect to a change policy from locked, leading to the possibility
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of failing to detect a data race.

6.2 Implementation

PUSh is usable with current widely-available off-the-shelf hardware. In fact, the development

of PUSh was motivated by the introduction of memory protection keys (MPKs) to the Intel

x86 ISA [Int18]. This section describes the implementation of PUSh, including motivating

and evaluating key optimizations.

Subsection 6.2.1 describes a straightforward implementation based on off-the-shelf hard-

ware with only one modification to the OS: a separate page table for each thread. This

subsection also lists the deficiencies of the straightforward implementation. PUSh’s op-

timizations that mitigate the impact of these deficiencies are discussed in the remaining

subsections.

6.2.1 Basic Implementation

PUSh implements EPDs using page-level protections. Specifically, each EPD is implemented

as a set of pages with the same access permissions. These access permissions are set as

described in §6.1.3. A straightforward implementation of this idea requires a separate page

table for each thread. Since with standard OS kernels all the threads of a process share the

same page table, this implementation requires a change in the kernel’s memory subsystem.

With the above implementation, access permissions are enforced at the granularity of

pages. Hence, tracked objects that have different sharing policies must be in separate virtual

pages [DA06]. If several tracked objects are in the same virtual page, a change policy for

one of them would require a memory copy. Thus, tracked objects that may have different

sharing policies in the future should also be in separate virtual pages.

PUSh places each tracked object in separate pages upon creation. For statically-allocated
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objects, this is done by a script that modifies the alignment of global objects in the assembly

file. For dynamically-allocated objects, this is done by modified functionality of the calls to

functions such as malloc. Due to the way the glibc heap allocator handles its metadata, it is

not suitable for use with PUSh. Instead, PUSh links to the application the tcmalloc [Ghe]

heap allocator, which uses a dedicated memory region for its metadata.

Ideally, local objects on the stack should also be tracked objects and placed in separate

pages upon creation. However, this would require compiler supports and the current PUSh

implementation does not implement it. Instead, PUSh treats all the local objects allocated

on the stack as a single private object. A challenge to achieve this is under Linux, objects

that are shared with other threads, such as environmental variables, are also placed on the

stack and such objects must not be private. PUSh overcomes this by using a script to

modify the assembly file to direct the entrance point of the program to a specialized main

function. The specialized main function first adds a page between the local variable and the

shared variable on the stack, by declaring a local array of page size, which isolates the local

variables from the shared variable and also places these local variables on a separate page.

It then makes the all the local variables a private tracked objects and invoke the actual main

function. An option is provided for the programmers to disable the local variable protection

in case the program shares the local variables among threads.

Lock acquire and release operations change the access permissions of pages containing

the protected object. This is necessary so that locked objects are only accessible to threads

that acquire the appropriate locks. PUSh utilizes the --wrap option in the Linux linker

to intercept Pthreads synchronization operations and add the required functionality. The

alignment requirement for dynamic memory allocation is enforced in the same way.

PUSh incurs storage overhead for metadata for each tracked object, each synchronization

object, and each executing thread. For each tracked object, this metadata consists of at

least 48 bytes, out of which 24 bytes are for the happens-before tracking. The storage

overhead for synchronization objects and executing threads is mostly for vector clocks. Since
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the number of synchronization objects and executing threads is typically small, the related

storage overhead is insignificant.

The rest of this section addresses the following deficiencies with the straightforward

implementation:

(1) Each thread needs a separate page table, which requires significant changes to the OS

kernel’s memory subsystem. Keeping the page tables properly synchronized incurs significant

overhead.

(2) Several operations performed by PUSh require system calls to change page table

permissions. The resulting performance overhead is exacerbated by item (1) above. The

relevant operations are: (2.1) acquiring and releasing locks, (2.2) allocating and freeing

dynamically-allocated objects, and (2.3) sharing policy changes.

(3) Allocating each tracked object on separate pages incurs substantial memory overhead

due to internal fragmentation: the remaining space in the page is wasted.

6.2.2 Permission Management Using MPKs

Starting with the straightforward implementation of PUSh (§6.2.1), deficiencies (1) and (2.1)

can be largely alleviated using memory protection keys (MPKs), recently added to the x86

ISA [Int18]. This optimization is the focus of this subsection.

With MPKs, each virtual page is tagged, in its page table entry, with a single protection

domain number. There are 16 domains. A per-thread user-accessible register, PKRU, con-

trols the access permissions to each protection domain for the current thread. The possible

access permissions are: no access, read-only access, and read-write access. An access to the

memory only succeeds when both the page table entry permission bit and the control bits

in PKRU for the corresponding protection domain permit the access.

MPKs enable a user-level program to modify the memory access permissions of its threads

without the overhead of a system call (mprotect on Linux). Specifically, such changes are
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performed by simply changing the contents of the PKRU register. With our experimental

platform (§6.3), changing the PKRU register takes approximately 13ns, while the latency of

an mprotect call is between 913ns and 12µs, for 1 and 32 threads, respectively.

For PUSh, with a small number of EPDs, MPKs eliminate the need for separate page ta-

bles. Specifically, the access permissions of each thread to the different EPDs are determined,

in part, based on the contents of its PKRU register.

MPKs can also reduce the overhead for acquiring and releasing locks. Specifically, if an

object protected by the lock is in a separate MPK domain, only a thread with the appropriate

value in its PKRU register can access the object. By default, the PKRU registers of all the

threads are set to prevent any access to the object. The lock acquire operation is augmented

to modify the PKRU register to allow the thread to access the protected object after the

thread acquires the lock. Before actually releasing the lock, the lock release operation

changes the PKRU register to restore the accessibility of the object to what it was prior to

the lock acquire. Thus lock acquire and release operations can be performed without the

slow mprotect system calls.

We use the ctrace benchmark (§6.3) to demonstrate the value of MPKs for PUSh. In

ctrace a lock protects a hash table, which is accessed frequently by multiple threads. In a

simple setup, this lock protects objects that are stored in six pages. Without MPKs, a PUSh

implementation would have to invoke mprotect a total of twelve times during critical section

entry and exit. We approximate the execution time of ctrace with an implementation of

PUSh without the MPK optimization by delaying the thread acquiring or releasing a lock by

the measured latency of the mprotect call multiplied by the required number of invocations.

For one execution thread, with PUSh the execution time compared to the stock version

increased by only 18%, while for the version without the MPK optimization, the execution

time increased by a factor of 32.2.

PUSh maps the four EPDs for read-shared, racy, inaccessible, and untouched objects to

a single domain: domain 1. Normal page table permissions are used to provide the access
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permissions appropriate for each of these sharing policies. For example, read-only access for

the read-shared EPD. All the objects private to a particular thread are in a single EPD. All

the locked objects protected by the same lock are in a single EPD. Each EPD is mapped to

a different MPK domain, chosen from domain 2 to domain 15. MPK domain 0 is used for

memory that is not tracked. For private and locked EPDs, PUSh maps each thread IDs and

each lock addresses, respectively, to an MPK domain number between 2 and 15.

6.2.3 Dealing with the Limited Number of MPKs

The sum of the number of threads and number of locks often exceeds 14, while only 14

MPK domains are available for the private and locked EPDs. PUSh uses hashing to map

thread IDs and lock addresses to domains. Obviously, multiple EPDs may map to the same

MPK domain. These hashing collisions can hide data races. For example, a lock address

may map to the same domain as a particular thread ID, allowing that thread to access the

protected object without acquiring the lock. Similar problems can occur if the addresses of

two different locks map to the same MPK domain or the thread IDs of two threads map

to the same domain. PUSh’s mechanism for mitigating this problem is presented in this

subsection.

If the sum of the number of threads and number of locks is much larger than 14, when

a single instance of a race occurs, there is a probability of 1/14 that the race will not

be detected. If the hash function is changed and the same race occurs again, there is a

probability of 1/14 that the second instance of the race will not be detected. However, the

probability that both instances of the race will be missed is 1/142. This is the basis for

PUSh’s mechanism for mitigating the problem of hashing collisions.

PUSh periodically changes the hash function. For this, it uses a universal family of hash

functions, based on multiply-mod-prime [Tho18]. Based on linearity of expectation, it can be

shown that, with n inputs (thread IDs and lock addresses), b MPK domains, and k different

hash functions, for any pair of inputs, an upper bound on the probability of a collision in
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all k hash functions is (n(n − 1))/(2bk). This bound is useful only when it is small. For

example, if n = 40, b = 14 (as it is with PUSh), and k = 6, the upper bound is 0.01%. Thus,

if, due to a hashing collision, a race is missed the first time it is encountered, as long as it

occurs multiple times in the program, it will be detected later, when another hash function

is in use. Since a different starting hash function is chosen every time the program executes,

executing the program multiple times will ensure detection even if the race occurs only once

in the program.

To implement the above, a timer periodically interrupts the main thread, causing it to

generate a new hash function and send signals to all the other threads, causing them to

stop. The main thread then iterates over the metadata of all the tracked objects. The MPK

domain of every private or locked object, is reset, based on the new hash function. The

main thread then signals all the other threads to resume execution. Based on the new hash

function, each one of the application’s threads re-initialize its PKRU register to “open” the

protection domain for its current private domain and the domain whose corresponding locks

are currently held by the thread. To facilitate this operation, the PUSh runtime maintains

a list of all the locks currently held by threads. Finally, all threads return back to the user

application. This entire rehashing procedure is effectively atomic since all the threads are

blocked for its duration.

The effectiveness of the rehashing mechanism in practice is demonstrated in §6.4.3. The

results presented in §6.4.5 show that, if the hash function is changed every few seconds, the

performance overhead of rehashing is negligible.

6.2.4 Reducing the Memory Overhead

PUSh’s memory overhead is directly related to the number of tracked objects, due to frag-

mentation (deficiency (3)) and the required metadata (§6.2.1). This is especially a severe

limitations for programs that have large arrays. Specifically, if different array elements have

different sharing policies, they must all be tracked objects allocated in separate pages. With
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Figure 6.2: Mapping objects in different virtual pages into the same physical page.

the implementation of PUSh discussed so far, this would incur prohibitive memory overhead.

This section is focused on how the memory overhead of PUSh can be reduced. Three ideas

are presented: (1) reducing the overhead for metadata of arrays by incrementally increasing

the size of the metadata on demand; (2) reducing the impact of fragmentation using memory

mapping; and (3) using annotation to specify array slices, where all the elements within a

slice have the same sharing policy.

An object’s metadata includes its starting address and size. With optimization (1), all

the elements of the array initially share one metadata structure. If the sharing policy of a

slice of an array is modified to be different from its neighbors, a new metadata structure is

allocated for this slice.

Optimization (2) reduces the memory overhead caused by internal fragmentations. Each

tracked objects, including elements of array and structs, may have a different sharing policy

and must thus be placed in a separate EPD. The optimization is based on mapping multiple

virtual pages to a single physical page [DA06, AHM09, LZW17]. Specifically, as shown in

Figure 6.2, each element is allocated in a different virtual page and at a different offset from

the beginning of the page and they are mapped to the same physical page. No physical

memory is wasted – consecutive elements are mapped to consecutive addresses in physical

memory. Following the Linux’s terminology, we refer to this type of mapping as nonlinear

mapping. We refer to an array or struct to which this optimization is applied as a split array

or split struct, respectively.

135



Unfortunately, with the current memory subsystem implementation in Linux, a large

number of nonlinear mappings would incur prohibitive memory and performance overheads.

Specifically, in terms of memory overhead, each nonlinear mapping would create 80 byte

metadata. The metadata is collectively referred to as a VMA (Virtual Memory Area). There

are typically multiple VMAs for each process in the system. Each VMA stores information

for a contiguous memory region of the process, where each page in the region has the same

VMA flags (e.g., same access permission). The VMA is used in the implementation of

various memory-related functionalities, such as demand paging and page swapping. For

each memory-related system call, such as mmap or pkey mprotect, the kernel would need to

find the corresponding VMA. Thus, in addition to the memory overhead, a large number of

VMAs would also incur high performance overhead.

We overcome the above challenge of adopting optimization (2) by modifying the Linux

kernel. Given that the VMA is a basic building block of Linux’s memory subsystem, a key

implementation challenge is to minimize the changes to the Linux kernel and also avoid

affecting processes that do not use PUSh. The key goal of our kernel modifications is to

avoid adding a VMA for each nonlinear mapping. This is done by introducing a new special

type of VMA, which we call NM-VMA (Nonlinear Mapping VMA). Only pages within the

NM-VMA are used for the nonlinear mapping. For memory pages within the NM-VMA,

the kernel does not support features that rely on metadata stored in the VMA, such as

on-demand mapping, page swapping and automatic page migration for NUMA machines.

As a result of disabling those features, VMAs are not needed for each nonlinear mapping.

We currently only apply this optimization to dynamically-created objects, using an ap-

proach that is similar to that used in [DA06]. To simplify the implementation, we implement

a layer above the heap allocator that still uses the heap allocator to manage the underlying

physical memory. Specifically, upon process creation, PUSh creates an NM-VMA with a

large number of virtual pages (100 million in the current implementation). When the appli-

cation invokes malloc to create a tracked object, PUSh intercepts malloc (§6.2.1) and first
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invokes the real malloc to obtain a memory region for the object. We refer to this memory

region: real virtual memory region and its address: real virtual memory address. PUSh then

accesses each page of the real virtual memory region to force the kernel to allocate a physical

page for each virtual page in it. PUSh then finds unused virtual pages in the NM-VMA and

invokes an added system call that maps these virtual pages (shadow virtual memory region)

in the NM-VMA to the same physical page mapped from the real virtual memory region. The

real virtual address is stored in the metadata of the object and the shadow virtual address is

returned to the application. When the application invokes free, PUSh first invokes an added

system call to unmap the virtual pages in the shadow virtual memory region, finds the real

virtual address in the metadata and then invokes the real free on the real virtual address to

return the real virtual memory region to the heap allocator.

A downside of optimization (2) is that a system call is invoked by each nonlinear map-

ping. For arrays with a large number of elements that do not share the same sharing policy,

creating such an array with optimization (2) will incur a long time. Optimization (3) fa-

cilitates efficient handling of such situation. It is suitable for applications where groups of

array elements (array slices) have the same sharing policy. A runtime function allows the

programmer to specify the number and sizes of the slices when the array is allocated. Each

slice is handled as a separate tracked object. An array allocated and managed in this way is

a sliced array .

For split struct , split array and sliced array , elements/members must be placed at dif-

ferent virtual addresses from those generated by the standard compiler. In our prototype

implementation, this is done by modifying application source code. For split struct , padding

is manually inserted in the struct definition. For split array and sliced array we use a script

to replace the reference to the array with a macro that computes the correct memory address.

The metadata for each sliced array includes an array that stores the starting and ending

index of each slice. In order to access a sliced array element, the code that maps an index

to the correct memory address needs to walk through a metadata array. To reduce the per-
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formance overhead for such accesses, a very simple per-thread software cache is maintained

for each sliced array . This cache stores the single most-recently-accessed slice.

To demonstrate the potential benefit of the software cache, we used a micro-benchmark

that iterates over the one million integer elements of an array that consists of 32 slices. The

software cache reduces the execution time overhead of PUSh from 4.7x to 2.2x.

6.2.5 Reducing Permission Changes Overhead

This section is focused on optimizations that mitigate the performance overhead of deficien-

cies (2.2) and (2.3) discussed in §6.2.1: (1) recycling recently-freed pages tagged with the

same domain number, and (2) eliminating unnecessary remote TLB shootdowns. (3) Avoid-

ing the serialization on policy changes incurred by kernel.

Upon every allocation of a dynamically-allocated object, the object needs to be placed in

an EPD, requiring setting the protection domain tag in the corresponding page table entries

(PTEs). When the object is freed, domain tags in the corresponding PTEs must be restored

to 0 (§6.2.2), so that the freed pages may be reused by application components, such as

standard libraries, that have not been annotated and instrumented for PUSh.

Optimization (1) reduces the number of PTE changes associated with allocate and free

operations. For each protection domain number, PUSh maintains a simple software cache

of up to 64 pages that are in that domain. The cache holds contiguous blocks of pages

consisting of up to 32 pages. When possible, objects are allocated using pages from the

cache and pages of freed objects are placed in the cache. Allocating objects using pages from

the cache or freeing pages to the cache are done without requiring system calls. We call this

cache a domain-tagged page cache (DTPC).

The DTPC is effective in reducing the overall overhead of swaptions (See §6.3). With-

out the DTPC, PUSh increases the execution time a factor of 2, 147 with 2, 32 threads

respectively. With the optimization, the overhead caused by PUSh is less than 2%.
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Optimization (2) reduces the performance overhead for TLB shootdowns. Following every

change to PTEs in the page table, those PTEs must be flushed from any TLB that may

cache them. In multithreaded programs, PTEs of pages containing shared objects may be

cached in TLBs of multiple CPUs. TLB consistency is ensured by broadcasting IPIs (inter-

processor interrupts) to all cores running the same process, causing each of them to flush

the stale PTEs. The IPIs incur a significant overhead as the number of threads increase and

thus limits the scalability of PUSh.

Optimization (2) utilizes the information provided by the PUSh annotations to identify

whether a stale PTE can possibly be cached in remote TLBs. Specifically, private objects

and inaccessible objects cannot be accessed by any remote CPUs and thus the corresponding

PTEs cannot be cached in remote TLBs. Thus, when a change policy operation is applied

on these objects, no IPI broadcasting is needed.

For Optimization (2), we implemented a small kernel modification, adding a local counter-

part (pkey mprotect l) of the system call that changes the page table entry (pkey mprotect).

The local version does not broadcast IPIs for TLB flush. When a change policy is invoked

on private or inaccessible objects, pkey mprotect l is invoked. It is critical to note that this

works correctly only if threads are not allowed to migrate among cores. Hence, in all our

experiments each application thread is pinned to a specific core.

We use pfscan (§6.3) to illustrate the benefit of Optimization (2). Originally, for 8 and 32

threads, the execution time increases by 31% and 80%, respectively, due to the 570 thousand

calls to pkey mprotect, where, on average, each call takes 15µs and 51µs, respectively. With

the optimization, all but one pkey mprotect is replaced by pkey mprotect l. The average

latency of pkey mprotect l for 8 and 32 threads is 6µs and 34µs, respectively, resulting in

application execution time increases of only 6.5% and 33%, respectively. The dependency

of pkey mprotect l latency on the number of threads is due to contention for the kernel’s

memory subsystem lock.

Optimization (3) deals with the serialization of policy changes imposed by Linux kernel.
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Specifically, in the Linux kernel, a single read-write lock (mmap sem) protects all the VMAs

of a process. A single lock is used in Linux because to minimize the overhead, VMAs will

merge with adjacent VMAs if their VMA flags are the same, and also one VMA might split

into several VMAs, if their VMA flags are no longer the same. As pkey mprotect needs to

modify the VMAs and thus possibly cause merge or split, concurrent pkey mprotect needs

to acquire a write lock of mmap sem and thus serialized by this lock, limiting the scalability

of PUSh with respect to increasing number of process threads. In fact, the Linux kernel

developer is aware of the issue imposed by mmap sem but unfortunately, due to the wide

usage and the complex locking pattern of this lock, proposals to mitigate this problem,

such as replacing mmap sem with several finer granularity locks appear to be an extremely

difficult task [lwna, lwnb].

We found that with the optimization (2) proposed in §6.2.4, the serialization can be easily

resolved. Specifically, as the pages in the NM-VMA does not need to support VMA-related

memory functionalities, for pkey mprotect performed on the NM-VMA, no VMA changes

are needed nor performed and hence, only a read lock needs to be acquired on mmap sem.

This enables pkey mprotect applied on NM-VMA to be performed concurrently. We have

found that the remaining shared resources, such as page tables, are protected by the fine

granularity locks and thus does not cause a scalability problem. As almost all tracked objects

are dynamically allocated and thus will be placed on the NM-VMA, allowing concurrent

pkey mprotect on this significantly reduces the performance overhead of PUSh (§6.4.5).

6.3 Experimental Setup

The experiments are performed on a machine running Fedora 27 with Linux Kernel version

4.15.13. The machine is equipped with 192GB memory and two 2.3GHz Intel Xeon Gold

6140 processor chips. Each chip contains 18 cores and a 24.75MB L3 cache.

Table 6.1 summarizes the 11 benchmarks used for evaluation. Streamcluster and Swap-

140



Table 6.1: Benchmarks used to evaluate PUSh.

Benchmark Description

Ctrace [Ctr]
a multithreaded debugging library, evaluated by printing

32,000,000 debug records.

Pfscan-1.0 [Eri]
a parallel file scanner, evaluated by finding ‘hello’ in 500

copies of DSN proceedings.

Pbzip2-0.9.4 [Jie, YN09]
a parallel version of bzip2 file compressor, evaluated by

compressing a 2GB file with random content.

nullhttpd-0.5.1 [nul]
a simple multithreaded web server evaluated with multiple

ab [ab2] clients to retrieve a 10KB file 10K times.

Memcached-1.2.2 [mem]

key-value store, evaluated with Workload A (50% read,

50% write) and B (95% read and 5% write) of

YCSB [CST10], with 100K 1KB records and 2M requests.

Streamcluster
a kernel that solves online clustering problems, evaluated

with native input suite.

Blackscholes

a program that calculates the prices for a portfolio of Eu-

ropean options analytically with the Black-Scholes partial

differential equation, evaluated with the native input suite.

Swaptions
a kernel that uses HJM framework to price a portfolio of

swaption, evaluated with the native input suite.

Ferret
Content-based similarity search application, evaluated

with the native input suite.

Dedup

a kernel that compresses a data stream with a combination

of global and local compression, evaluated with the native

input suite.

Fft
a program that performs fast Fourier transform, evaluated

with the native input suite.
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tions are the same benchmarks as the ones used in prior sections: 3.5 and 5.3 with the same

workload. We use an earlier version of the Memcached compared to the one used in the prior

sections. This version of the Memcached is its first version that supports multithreading.

We expect this version is likely to contain some data races so that we can evaluate PUSh’s

ability to detect them.

Ctrace, pbzip2, pfscan, and nullhttpd are selected to facilitate direct comparisons with

SharC [AGE08] and DCOP [MHC10]. For all benchmarks inputs are set so that the execu-

tion time is at least 10 seconds with the maximum number of threads. For all benchmarks,

to minimize the performance skew caused by disk I/O, all the input/output files are placed

in ramdisk. All the threads are pinned to dedicate cores to eliminate the intrusion caused

by thread migration. To eliminate variable network latency effects, for nullhttpd and mem-

cached, the client programs run on the same machine as the server program on a disjoint set

of cores.

Since PUSh currently only supports C, C++ benchmarks: pbzip2, streamcluster, swap-

tions and fft were ported to C. We have verified that performance was not affected. To

remove operations that can distort performance measurements, for ctrace we removed all

printf s (which create extensive I/O activity) and replaced localtime (which serializes the

threads) with a customized scalable version. We removed unnecessary sleeps in nullhttpd.

6.4 Evaluation

This section presents the discovered data races(§6.4.1), information regarding the annotations

and changes to the source code (§6.4.2), a validation of the rehash mechanism (§6.4.3), the

memory overhead (§6.4.4), and the performance overhead (§6.4.5). The section includes

comparisons of PUSh with SharC [AGE08], DCOP [MHC10], and TSan [SI09, thr], in terms

of the required annotations and code changes as well as memory and performance overheads.

An important optimization of PUSh is the use of the NM-VMA, which significantly

142



reduces both the memory overhead (§6.2.4) and the performance overhead (§6.2.5). To

illustrate this, we report both the memory and performance overhead of PUSh without

this optimization (PUSh-oo: One to One mapping) and with this optimization (PUSh-mo:

Multiple to One mapping) in §6.4.4 and §6.4.5.

6.4.1 Discovered Data Races

PUSh detected ten data races: eight were violations of the intended sharing policies and two

due to detection of conflicting concurrent sharing policy changes (§6.1.2). The data races

were: one each in ferret and nullhttpd, two each in streamcluster and memcached, and four

in pbzip2. Out of the eight sharing policy violations, in four one thread was attempting to

read an object private to another thread. In the remaining cases, the relevant object was

locked and a thread attempted to access the object without acquiring the lock.

The two races, one in nullhttpd and the other in pbzip2, identified due to detection of

conflicting concurrent sharing policy changes were related to customized synchronization

code, where concurrent memory accesses are used. Since the C11 C standard prohibits such

accesses to normal variables, these are data races. In these cases, inserting into the code the

change policy operations necessary to avoid PUSh detecting violations of intended sharing

policies, resulted in PUSh detecting conflicting concurrent policy changes.

To validate PUSh’s results, we ran our benchmarks with TSan [SI09, thr]. Initially,

TSan detected three races that PUSh did not. However, these were all related to calls to

standard library functions, for which TSan uses versions which are instrumented for data

race detection. As a test, we also instrumented these functions. For example, to handle a

call to free() of an object as an acquire write. Once this was done, PUSh also detected all

three races.
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Table 6.2: Annotation overhead & code changes for PUSh.

Benchmark LOC Annotations Changes

ctrace 859 13 1.5% 7 0.8%

pfscan 753 19 2.5% 8 0.0%

pbzip2 7410 31 0.4% 0 0.0%

fft 723 33 4.6% 0 0.0%

streamcluster 1097 159 14.5% 0 0.0%

blackscholes 294 18 6.1% 0 0.0%

swaptions 1099 14 1.3% 0 0.0%

ferret 9663 80 0.8% 9 0.1%

nullhttpd 1348 3 0.2% 0 0.0%

memcached 3552 43 1.2% 3 0.1%

dedup 3416 33 1.0% 3 0.1%

6.4.2 Annotation and Code Changes

PUSh and related data race detectors [AGE08, AGN09, MHC10] require the programmer to

annotate their code. This subsection quantifies this burden, based on our benchmarks (§6.3).

Table 6.2 shows the annotations overhead of PUSh. The LOC column shows the count of

the lines of code in the stock benchmarks, without blank lines or comments, as measured by

CLOC [CLO].

The Changes column shows the source code modifications, which were all due to adding

the padding space for split struct (§6.2.4). In addition to the changes reported in Table 6.2,

a script was used to replace all the element references for split array and sliced array with

macros (§6.2.4). The number of lines changes by the script were 15 for fft, 72 for streamclus-

ter, 5 for blackscholes, 30 for swaptions and 4 for dedup.

Similarly to [AGE08, AGN09, MHC10], annotations are added using a trial-and-error
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approach. Initially, we run the benchmark with PUSh, without any annotations, and the

benchmark aborts on the first shared access. We then analyze the code and add the proper

annotations. With this methodology, annotations were added to most of the benchmarks

within a few hours. The one exception was streamcluster, which took around 35 hours, due

to complicated object sharing patterns. It should be noted that almost all of the time spent

on code annotation was on understanding the code, with which we were not familiar. Hence,

the task would have been much easier for the developers or maintainers of the code.

Annotation Burden Comparison. We compare the annotation burden of PUSh to

DCOP [MHC10] and SharC [AGE08] based on the sum of annotations and other code

changes, referred to as mods. For pfscan, pbzip2, ctrace, and nullhttpd, the numbers of

mods required for PUSh are 27, 31, 20, 3. DCOP [MHC10] requires 62 (2.3x), 103 (3.3x)

and 41 (2.1x), 13 (4.3x). DCOP’s burden is higher since: (1) DCOP lacks the locked policy

and thus requires insertion of two annotations for every object accessed in every critical

sections, and (2) with DCOP, for statically-allocated objects, the default sharing policy is

inaccessible, as opposed to untouched with PUSh (§6.2).

For pfscan and pbzip2 the numbers of mods required for PUSh are 27 and 31. The

SharC [AGE08] mods counts are comparable: 19 and 46. In general, compared to PUSh, the

SharC (and Shoal [AGN09]) type system requires additional annotations on, for example,

function arguments, local variables, and function return values. On the other hand, unlike

PUSh, SharC does not require annotations before and after accessing read-shared objects.

The barrier annotations supported in Shoal (§2.8), can significantly reduce the annotation

overhead for programs with many barriers, such as streamcluster.

6.4.3 Validation and Effectiveness of Rehashing

This section demonstrates the effectiveness of the mechanism that periodically changes the

hash function that maps thread IDs and lock addresses to MPK domains (§6.2.3). This is

done using the eight data races reported in §6.4.1 detected as violations of intended sharing
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policies. These races were detected in ferret, memcached, pbzip2, and streamcluster.

In one test, the rehashing interval was set to five seconds and the thread count to 7-8.

Each one of the four benchmarks was executed 50 times. The execution times were in the

range of 15 to 222 seconds. For four of the benchmarks, all the races reported in §6.4.1 were

detected in every execution. For pbzip2, out of the 50 executions, 43 detected all three data

races. In each of the remaining seven runs, one race was missed. The missed race was always

one of the two races that occurs only once, when the program exits. As discussed in §6.2.3,

for such races, rehashing during a single execution obviously does not help.

In a second test, to increase the potential impact of domain collisions, thread IDs and

lock addresses were mapped to only two MPK domains. Furthermore, the applications

were run with the minimal number of threads that can trigger the race. With a fixed hash

function, six out of the eight data races have a 50% probability to escape detection. The two

remaining races are in Streamcluster, that performs multiple iterations on the input data.

Each iteration creates new threads, with new thread IDs, that are terminated at the end

of the iteration. Consequently, even with this setup, the probability of these races escaping

detection is much smaller than 50%. Thus, in our experiments, they were always detected.

Changing the hash function once per second resulted in the detection of four out of the six

problem data races in every execution. In those cases, the relevant code executed multiple

times during a single execution of the program. As in the first test above, periodically

changing the hash function did not help with two of the data races in pbzip2 that only occur

when pbzip2 finishes processing.

6.4.4 Memory Overhead

This section presents PUSh’s memory overhead, including an evaluation of the effectiveness

of the optimization mechanisms in §6.2.4.

We measured the memory usage of PUSh by measuring the maximum virtual memory
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Table 6.3: Memory overhead. V: vsize, R: rss, oo: PUSh-oo, mo: PUSh-mo, max #threads.
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V-oo ∼0 ∼0 ∼0 ∼0 ∼0 2.3% ∼0 ∼0 260% 127% NA

R-oo ∼0 ∼0 ∼0 ∼0 ∼0 64% ∼0 ∼0 309% 444% NA

R-mo ∼0 ∼0 ∼0 ∼0 ∼0 2.1% ∼0 ∼0 3.7% 5.8% 2.4%

size (vsize) and resident set size (rss) during the execution of each of the benchmarks with

the maximum number of threads. For PUSh-oo, the measurement of vsize is not meaningful,

due to the pre-allocation of the NM-VMA (§6.2.4) and hence is not reported. Also, dedup

cannot run with PUSh-oo (§6.2.4). Each of the benchmarks was executed twenty times, and

the average results are reported. The measurement variations were less than 2%.

We compare the results for the stock benchmarks, linked with tcmalloc [Ghe] (§6.2.1)

to the results with the full overhead of PUSh, which includes additional libraries, memory

fragmentation, the metadata. These measurement are not completely accurate due to, for

example, the granularity at which tcmalloc allocates virtual memory to the application.

As shown in Table 6.3, seven of the benchmarks do not have a measurable overhead in

terms of both vsize and rss. With PUSh-oo, for Swaptions, both Memcached workloads, and

Ferret, the increases are 7MB, 452MB, and 553MB, respectively, in both vsize and rss. With

PUSh-mo, for Swaptions, both Memcached workloads, Ferret and dedup, the increases in

rss are 260.0KB, 5.1MB, 7.2MB, 42.2MB respectively. Since the memory overhead increases

negligibly with the number of threads, we report the results with just the maximum number

of threads (31 or 32). As discussed in §6.2.4, PUSh-mo almost eliminates the fragmenta-

tion caused by placing objects on page boundaries and thus explains the memory overhead

advantage.

As explained in §6.2.1, PUSh’s memory overhead is directly related to the number of

tracked objects, since it is due to the metadata associated with each object, and for PUSh-
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Table 6.4: Maximum number of tracked objects in each application with different thread

counts. Memcached results are the same with both workloads.
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2 19 53 20 37 39 1810 NA 38 100K 7 141K 9 682K

8 25 71 26 49 75 1834 78 44 100K 23 141K 21 754K

16 33 95 34 65 113 1852 141 52 100K 27 141K 27 767K

32 49 143 50 97 219 1861 268 68 NA 31 142K 33 869K

oo, fragmentation. Thus, the memory overhead results can be explained using Table 6.4,

which shows the maximum number of tracked objects in each application. For most of the

benchmarks, the number of tracked objects is so small that the memory overhead caused by

them is below what our measurement procedure can detect. There are a few other sources of

memory overhead, such as the DTPC (§6.2.5). However, with our benchmarks, the overhead

due to these other sources is negligible.

The memory overhead due to metadata can be calculated based on the number of tracked

objects shown in Table 6.4. In the best case, with no read-shared objects, the size of the

metadata for each object would be 48 byte (§6.2.1). Thus, for swaptions, memcached, ferret

and dedup, the required storage for metadata would be 86KB (2% of rss), 4.8MB (5% of rss),

and 6.6MB (6% of rss) and 39.8MB (2.2% of rss) respectively. This overhead is negligible

in terms of vsize. Half of this overhead is due to happens-before tracking. This best-case

metadata overhead is not a significant portion of the total overhead reported above.

In the worst case for metadata overhead, every object is read-shared, requiring a full

vector clock for happens-before tracking (§6.1.2). However, with our benchmarks, due to

the sticky-read sharing policy (§6.1.2), the number of read-shared objects was less than 100.

Ferret benefits most from the sticky-read policy since 99% of its objects are read shared by

multiple threads. With the sticky-read sharing policy, the metadata overhead in Ferret is
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only 6% of rss.

For PUSh-oo, in most cases, the major source of memory overhead is fragmentation

(§6.2.1). Several memory overhead optimization techniques are presented in §6.2.4. For

our benchmarks, there are few opportunities to benefit from the split struct and split array

optimizations. The most common situation for split struct was where one of struct members

is a lock protecting the struct and must thus be a separate tracked object. The largest

benefits of split struct was with ferret, that has five instances for which split struct was

useful. For most of the arrays, the number of elements was well beyond the limit of 10000

that can be handled by the split array optimization. The largest reductions in memory

overhead were 512KB with swaptions and 2MB with streamcluster. PUSh-mo eliminates

almost all the memory overhead caused by the fragmentation and thus almost all of the

PUSh-mo’s memory overhead is caused by the metadata.

For our benchmarks, the most effective memory overhead reduction technique was sliced

array . Several data-parallel programs, such as fft and blackscholes, have a simple sharing

pattern: each thread works on a disjoint set of the array elements. Such patterns are a

good match for sliced array . Since these arrays are large, without sliced array , the memory

overhead would have been prohibitive. The largest memory overhead reduction was with fft.

Without sliced array , a total of 4TB of memory is needed for two large arrays. However,

with sliced array , the memory overhead is negligible.

Memory Overhead Comparison. The most closely-related annotation-based race

detectors [AGE08, MHC10], were not available to us for evaluation with our configuration.

Hence, we compared the published results for several benchmarks that we also evaluated

with PUSh. With SharC [AGE08], benchmarks in common are pbzip2 and pfscan. For

these benchmarks, the memory overheads of PUSh (Table 6.3) and the reported memory

overhead of SharC were negligible. With DCOP [MHC10], benchmarks in common are

ctrace, nullhttpd, pbzip2, and pfscan. For all these benchmarks, the memory overheads of

PUSh were negligible, while the reported overheads for DCOP were in the range of 6.5% to
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Table 6.5: Memory (rss) overhead comparison: additional memory use as percentage of use

by stock application. P-oo: PUSh-oo vs. P-mo: PUSh-mo vs. T: TSan. Max #threads.
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P-oo ∼0 ∼0 ∼0 ∼0 ∼0 64 ∼0 ∼0 309 444 NA

P-mo ∼0 ∼0 ∼0 ∼0 ∼0 2.1 ∼0 ∼0 3.7 5.8 2.4

T 94 391 406 11K 408 170 54 203 412 386 376

14%.

If [MHC10, AGE08] were enhanced to flag unordered sharing policy changes (§6.1.2),

their memory overhead for every dynamically-checked 16/8-byte block would increase from

one byte by at least 16 more bytes. PUSh requires the extra tracking metadata per object,

as opposed to per fixed-size block. Thus, at least for the benchmarks evaluated, PUSh would

have a much greater memory overhead advantage.

To compare PUSh’s memory overhead with that of TSan, we evaluated TSan on our

experimental platform. The results in Table 6.5 are based only on rss since, due to TSan’s

implementation, vsize measurements for it are meaningless [thr]. The results are that, with

PUSh-oo for nine out of the ten benchmarks, PUSh’s memory overhead is lower, much lower

for eight of them. With ferret, PUSh-oo’s memory overhead is a little higher, but this must

be weighed against PUSh-oo’s dramatically lower (factor of 145) performance overhead 6.5.

With PUSh-mo, its memory overhead is always two orders of magnitude lower than that of

TSan.

As in Table 6.3, the results in Table 6.5 are with the maximum number of threads.

With TSan, for eight of the benchmarks, the number of threads does not affect the memory

overhead. For pbzip2 and pfscan, TSan’s performance overhead is very high (§6.4.5) and

this affect the execution characteristics with TSan so that the maximum memory use does

decrease with decreasing thread counts. The memory overhead for pfscan is still much higher
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Table 6.6: Performance overhead (in percentage) and policy change rates with different

thread counts. The policy change rates are the number of changes per second. Left:PUSh-oo,

Right:PUSh-mo
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2 14 1.9 1.9 1.7 1.2 ∼0 NA ∼0 59 19 6.0 11
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8 7 3.0 2.0 6.5 13 1.1 1.9 ∼0 99 39 8.2 23

16 7 3.2 2.1 14 21 1.4 2.3 ∼0 82 23 9.1 27

32 12 3.3 2.1 33 99 1.4 3.9 ∼0 NA NA 11 31
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1 19 1.8 NA NA NA NA NA ∼0 37 9 7 0.4 6 30

2 14 1.9 1.8 ∼0 ∼0 ∼0 NA ∼0 48 18 11 0.5 9 30

4 10 2.1 1.9 ∼0 ∼0 ∼0 ∼0 ∼0 51 19 19 0.5 15 31

8 7 3.0 2.0 ∼0 ∼0 ∼0 ∼0 ∼0 67 35 23 0.5 21 36

16 7 3.2 2.1 ∼0 ∼0 ∼0 ∼0 ∼0 59 21 27 0.6 27 55

32 12 3.2 2.2 7.0 29 0.3 ∼0 ∼0 NA NA 31 0.6 33 54

Policy Change Rate

4 0.9 3.0 0.5 7K 2K 6.4 78 0.3 41K 6K 7 1K 15 205K

16 0.8 12.2 3.3 14K 16K 27.8 648 0.3 35K 5K 27 8K 27 276K

32 0.7 23.1 7.6 18K 55K 48.6 1361 0.2 NA NA 31 9K 33 261K

than PUSh’s —at least 300% for all thread counts. For pbzip2 the maximum memory use is

significantly lower than that of the stock application for low thread counts.

6.4.5 Performance Overhead

This section presents the performance overhead of PUSh with the performance optimization

discussed in §6.2.

Table 6.6 presents the performance overhead of PUSh, varying the number of threads

from 1 to 32. For all the benchmarks, the performance measure is execution time. For

memcached and nullhttpd, it is the execution time under maximum throughput. The reported

overheads are averages over 20 executions. The measurements varied less than 2% over

20 runs. An NA in a cell of the table indicates that the benchmark could not be run with

the corresponding number of threads.

For PUSh-oo, as shown in Table 6.6, for 7 out of 10 benchmarks, the performance overhead
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is under 19% for all thread counts. Memcached with YCSB Workload A is the worst case,

reaching 59% overhead with two threads and 99% overhead with eight threads. For PUSh-

mo, only two benchmarks: Memcached with YCSB workload A and dedup has a overhead

greater than 35%, with the worst case being only 67%. The performance advantage of PUSh-

mo over PUSh-oo is because PUSh-mo eliminates the serialization of policy changes caused

by mmap sem (§6.2.5).

For ctrace and memcached-B, due to frequent lock operations, most of the performance

overhead is caused by modifying PKRU registers (13ns) and happens-before tracking. For

fft and blackscholes, the main overhead is due to additional time spent accessing the array

elements for sliced array (§6.2.4). For all the other benchmarks, most of the overhead is

due to page table permission changes caused by sharing policy changes. The lower part of

Table 6.6 presents the policy change rate for the different benchmarks. In all the cases where

the performance overhead of PUSh is over 19%, that overhead is highly correlated with the

policy change rate.

For most of the benchmarks, the performance overhead of the happens-before tracking

is insignificant. The exceptions are ctrace and memcached-B. For ctrace, with one thread,

happens-before tracking is responsible for around 33% out of the 18% or 19% overhead.

When the number of threads is 16 or higher, this tracking is responsible for nearly all the

overhead. For memcached-B, happens-before tracking it responsible for 17% to 51% of the

overhead.

With PUSh-oo, for streamcluster and pfscan, the overhead of PUSh is highly dependent

on the number of threads. This is due to the fact that, in the Linux kernel, a single lock

(mmap sem) serializes all page table changes invoked by the threads of a process. To directly

quantify the impact of the serialization caused by the mmap sem, we measured the average

time spent in page table changes by streamcluster. With two threads, only one of which

is active when the page table change is invoked, the average latency of the operation was

1µs. With 32 threads, this latency was 89µs. We repeat the measurements for PUSh-mo
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and found that the latency was 4µs with 32 threads. The latency is still higher than the

one thread case for two reasons: (1) the serialization caused by other kernel locks such as

the lock for page table entry and (2) the overhead of broadcasting IPIs to perform TLB

shootdown (§6.2.5) increases as the number of threads increase.

Table 6.7: The average latency, in µs, of changing the hash function with different thread

counts. The results for memcached are the same with the two workloads. Benchmarks for

which the average latency is less than 1ms are not shown.
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1 9K NA NA NA 135K 7 24K 6 226K

2 10K 1.4K 200 3.0K 136K 11 25K 9 230K

4 10K 1.8K 282 3.4K 136K 19 25K 15 256K

8 11K 2.3K 430 3.6K 137K 23 25K 21 273K

16 12K 2.6K 737 4.0K 137K 27 26K 27 282K

32 13K 2.8K 1547 4.5K NA 31 26K 33 304K

As discussed in §6.2.3, PUSh must periodically change the hash function used to hash

thread IDs and lock addresses to MPK domain numbers. The latency of this operation

contributes to the performance overhead of PUSh. We measured this latency for all the

benchmarks for all thread counts as shown in Table 6.7. The highest latency for changing

the hash function was 304ms for dedup with 33 threads. The second highest latency is

137ms for memcached with 8 or 16 threads. For all the other benchmarks, the highest

latency was 26ms. These results indicate that, for most benchmarks, if the hash function is

changed every few seconds, the associated overhead is negligible.

The most significant factors that determine the latency of changing the hash function
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are the number of private or locked objects and the total size (number of pages) of those

objects. Both of these factors affect the time spent resetting the protection domains. Dedup

and Memcached are extreme cases since they have a large number of objects and a significant

portion of them are locked objects.

Performance Overhead Comparison. With SharC [AGE08], benchmarks in com-

mon, pbzip2 and pfscan, were executed with thread counts of 5 and 3, respectively, with

reported performance overheads of 11% and 12%, respectively. For PUSh-oo, its corre-

sponding overheads were 2% or less, with overheads of 6.5% or less for 8 or fewer threads

(Table 6.6). For PUSh-mo, its corresponding overheads were all negligible.

With DCOP [MHC10], benchmarks in common ctrace, nullhttpd, pbzip2, and pfscan were

executed with thread counts of 2, 50, 5, and 3, respectively, with reported performance

overheads of 27%, 0, 49% and 37.2%, respectively. PUSh’s closest corresponding overheads,

as presented in Table 6.6, were significantly lower. For PUSh-oo, they are 14%, 0, 1.9%,

and 2% and for PUSh-mo, they are 14%, 0, 0%, 0%. PUSh had lower overheads even with

32 threads.

As explained in §6.3, we modified ctrace and nullhttpd in order to be able to obtain

meaningful performance results. However, for this comparison with DCOP, we also evaluated

the original versions of ctrace and nullhttpd. With the unmodified ctrace, PUSh does not

incur any performance overhead. For the original nullhttpd with 50 threads, DCOP reports

and overhead of 24% in CPU cycles, while PUSh does not incur any overhead in CPU cycles,

throughput, or latency.

If [MHC10, AGE08, AGN09] were enhanced to flag unordered sharing policy changes

(§6.1.2), PUSh’s performance overhead advantage would be even greater. Specifically, for

each object larger than 16/8-bytes, these operations would require checking and modifying

tracking metadata for multiple blocks, as opposed to PUSh, where the metadata is per

object.

154



Table 6.8: Performance overhead comparison: additional execution time as percentage of

the stock application execution time. P-oo: PUSh-oo vs. P-mo: PUSh-mo vs. T: TSan.
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8 threads

P-oo 7 3.0 2.0 6.5 13 1.1 1.9 ∼0 99 39 8.2 NA

P-mo 7 3.0 2.0 ∼0 ∼0 ∼0 ∼0 ∼0 67 35 0.5 36

T 423 507 473 13K 2567 746 4245 529 780 384 1612 1303

Max #threads

P-oo 12 3.3 2.1 33 99 1.4 3.9 ∼0 82 23 11 NA

P-mo 12 3.2 2.2 7.0 29 0.3 ∼0 ∼0 59 21 0.6 54

T 304 392 1420 36K 6588 693 3940 2485 873 356 1595 1397

Table 6.8 presents a performance overhead comparison between PUSh and TSan. For

PUSh-oo, its overhead is at least a factor of 7.8 lower and for PUSh-mo, its overhead is at

least a factor of 11.6 lower. In several cases, compared to TSan, PUSh’s overhead is three

orders of magnitude lower. These results reinforce the argument that PUSh can be used in

production runs while TSan is restricted to offline debugging.

6.5 Limitations and Disadvantages

Like all data race detectors, PUSh has limitations and disadvantages. Some of these are

inherent (§6.1), some are associated with tradeoffs made for efficient implementation. This

section summarizes these limitations and disadvantages. Despite these, as shown in other

sections of this chapter, PUSh, as currently implemented, is a useful tool with important

advantages over other existing race detectors.

A key disadvantage of PUSh is that it requires annotation of the code. Furthermore,
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since PUSh relies on happens-before tracking [PS07, FF09] (§6.1.2), races that, in a single

execution, can escape detection by full happens-before tracking [SBN97], can also escape

detection by PUSh.

Implementation considerations motivate the mapping of LPDs to a smaller number of

EPDs (§6.1.3). A consequence of that is that all read-shared objects are placed in a single

EPD and this introduces the possibility of failing to detect races in limited specific scenarios.

The locked sharing policy is also introduced as a performance optimization (§6.1.3). Asso-

ciated with this is the fact that, under certain scenarios, a change policy from locked can

result in missed races.

PUSh’s implementation relies on MPKs (§6.2.2). The problem of potential missed races

due to the limited number of MPKs is mitigated by periodically changing the hash function

(§6.2.3). While this rehashing mechanism is highly effective (§6.4.3), there is, still, a small

probability of missing races due to hash collisions, especially for races that occur only once

during the execution of the program. The pkey mprotect l optimization (§6.2.5) requires

threads to be pinned to cores. If this cannot be done, in some cases, the performance

overhead may increase significantly.

6.6 Summary

Decades of development of date race detectors have resulted in a rich design space of tech-

niques and tools that vary widely in terms of precision, soundness, types of races detected,

performance overhead, memory overhead, scalability, burden imposed on programmers, and

applicability to various programming languages. A useful subspace of this design space cov-

ers race detectors that require explicit specification of intended sharing and then identify

violations of these intentions. Since such tools don’t have to infer the intended sharing, they

have the potential of reduced complexity, increased precision and soundness, and reduced

overhead.
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PUSh advances the state-of-the-art in the design subspace described above by introducing

the use of happens-before tracking to check for conflicting concurrent sharing policy changes.

A second key novel feature of PUSh is the way it uses off-the-shelf hardware to reduce

the performance overhead for detecting unintended sharing. A key aspect of the design

and implementation of PUSh is the use of memory protection keys (MPKs). PUSh uses

a universal family of hash functions to overcome the limitations of the widely-available

implementation of MPKs. Additional optimizations that range from enhanced annotations

to OS kernel changes further reduce memory and performance overheads. In many cases,

the performance overhead of PUSh is at a level that allows its use during production runs.

We evaluated PUSh with eleven benchmarks and up to 32 threads. PUSh detected ten

races. Comparison with results from ThreadSanitizer [SI09, thr] shows that, excluding races

due to standard library calls, no data races were missed. PUSh’s memory overhead was under

5.8% for all the benchmarks. PUSh’s performance overhead exceeded 35% for only two of

the benchmarks, reaching only 67% overhead in the worst case. Our work included targeted

evaluations of the various optimization introduced in this work. For example, we have shown

that, in an extreme case, PUSh’s novel use of MPKs reduces the performance overhead from

a factor of 32.2 to just 18%. The kernel support added to PUSh significantly reduces the

memory and performance overhead. We have also shown how additional annotations can

dramatically reduce PUSh’s memory overhead.
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CHAPTER 7

Conclusion and Future Work

Critical services require dependability mechanisms to prevent service failures due to hardware

and/or software faults. Building a dependable system involves a tradeoff between soundness

and overhead. Dependable systems for mainstream deployment are built upon commodity

hardware with mechanisms that enhance resilience implemented in software. The goal of

such dependable systems is to provide commercially viable, best-effort dependability cost-

effectively. The focus of this thesis is on dependability mechanisms that can be deployed in

this type of systems.

This thesis presents several practical, low-overhead dependability mechanisms for criti-

cal components in the system: hypervisors, containers, and parallel applications. The ap-

proaches towards building such dependability mechanisms are first, identifying sweet spots

in the design space that balance soundness and overhead. Second, novel use of hardware to

optimize critical operations in the dependability mechanisms. Third, dedicated optimiza-

tions of the internals of operating systems/hypervisors. Each of the proposed mechanisms in

this thesis reduces some aspects of overhead by orders of magnitude while still maintaining

nearly the same level of soundness compared to directly-comparable prior works.

Specifically, this thesis proposes four dependability mechanisms: NiLiHype, NiLiCon,

HyCoR, and PUSh. We have implemented and evaluated the prototypes of these four de-

pendability mechanisms on widely used software platforms: the Xen hypervisor [BDF03] and

the Linux kernel.

NiLiHype is a recovery mechanism that recovers hypervisors from failures due to tran-
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sient hardware and software faults. NiLiHype advances the prior start-of-the-art technique

for hypervisor fault tolerance: ReHype [LT11, LT14], which similarly recovers hypervisors

from failures due to these faults. ReHype is based on recovering the hypervisor from fail-

ure by rebooting the hypervisor. This thesis proposes a novel component-level recovery

mechanism called microreset and NiLiCon is an implementation of microreset on the Xen

hypervisor [BDF03]. Specifically, upon hypervisor failure, instead of rebooting a new hy-

pervisor instance, NiLiCon resets the hypervisor to a quiescent state that is highly likely to

be valid and where the hypervisor is ready to handle new or retried requests from the rest

of the system. NiLiCon then resolves state inconsistencies within the restored system. It

finally retries requests interrupted by the failure transparently and thus finishes the recov-

ery. NiLiHype trades a small reduction in recovery rate (<2%) for a significant reduction in

recovery latency. NiLiHype reduces recovery latency from 713ms (with ReHype) to 22ms, a

factor of over 30x.

Microreset is suitable for large, complex components that process requests from the rest

of the system. One direction of future work related to NiLiHype is to investigate whether

it is possible to apply microreset to microkernels. With the increasing demand for high

reliability and security, microkernels are likely to become widely used in the near future.

However, there is very little work on fault tolerance mechanisms for microkernels. With a

microkernel, each component is isolated from other components by page-level protection, and

communication among components is through well-defined interfaces. Hence, a fault that

occurs in one component is unlikely to propagate to others and thus makes microkernels

suitable targets for component-level recovery mechanisms, such as microreset.

Data centers often rely on VMs and containers to provide an isolation and multitenancy

layer [Ber14, Mer14, RG05]. Due to their lower resource requirements and reduced man-

agement costs [Ber14, LKG15], in many situations, there are compelling reasons to deploy

containers alone instead of VMs. However, there has been very little work on the fault tol-

erance of containers. This thesis proposes NiLiCon, which, to the best of our knowledge, is
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the first container fault-tolerance mechanism that is transparent to applications and clients

and supports stateful applications. NiLiCon is a mechanism for running duplicated contain-

ers, thus providing the ability to tolerate container fail-stop failures. NiLiCon applies the

algorithm of a widely used VM replication mechanism: Remus [CLM08] to containers. The

starting point for the implementation of NiLiCon is CRIU [cria], a container checkpoint/re-

store tool. Due to the tight state coupling between a container and the underlying kernel, a

key challenge in implementing NiLiCon is to efficiently checkpoint and restore parts of the

container state that are in the kernel. To overcome this challenge, NiLiCon adopts various

critical optimizations to the Linux kernel and CRIU. NiLiCon achieves performance that

is competitive with Remus. Specifically, for a set of seven benchmarks, the overhead with

NiLiCon is from 19%-67% versus 13%-72% with Remus.

HyCoR builds upon NiLiCon and similarly provides the ability to tolerate container

fail-stop failures. HyCoR enhances NiLiCon with deterministic replay. HyCoR leverages de-

terministic replay to decouple the checkpointing interval from output delay and thus resolves

a fundamental disadvantage of all Remus-based schemes: long delay of outputs to clients.

This also enables configurations with low throughput overhead by using longer checkpoint-

ing intervals. HyCoR includes a simple timing adjustment technique to effectively replay

applications containing data races, as long as their rate of unsynchronized write operations

is low. HyCoR operates in two modes: a long epoch mode that is suitable for applications

that are known to be data-race-free and a short epoch mode that is suitable for applications

that may include data races. We evaluate HyCoR with a set of eight benchmarks. HyCoR

incurs only a small extra delay on outputs to the clients. Specifically, the latency overhead

of HyCoR is 150µs-572µs versus 36ms-51ms with NiLiCon. In short epoch mode, HyCoR’s

performance is comparable to NiLiCon’s (8%-145% versus 18%-139% with NiLiCon). The

long epoch mode has much better performance: in all cases, the overhead is <58%. For

applications without data races, HyCoR’s recovery rate is 100%. For applications with a low

rate of unsynchronized write operations, HyCoR’s recovery rate is >99.5%.
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One direction of future work related to HyCoR is to investigate the use of other hardware

features to further optimize HyCoR. For example, Intel PT is a hardware feature that records

the control flow of program executions with fine-granularity timing information. Intel PT can

be used in HyCoR to record the outcomes of synchronization operations and also identify

the results of data races. As another example, RDMA can be used to efficiently transfer

non-deterministic event logs and checkpoints to the backup to further reduce the latency

overhead. Together, these enhancements may enable HyCoR to provide microsecond-scale

fault tolerance for the emerging microsecond-scale applications in data centers.

PUSh is a dynamic data race detector with extremely low overhead. PUSh requires

programmers to annotate each global object with its intended sharing policy. It then uses

existing memory protection hardware to enforce the annotated sharing policies. PUSh con-

tributes an efficient algorithm to detect incorrect annotations that can hide data races. This

algorithm can be applied to other annotation-based data race detectors. Another key con-

tribution of PUSh is to show that it can be implemented on top of commodity hardware

with low overhead. This is achieved with a key optimization that exploits Intel MPK, a

hardware feature recently added to the x86 ISA. PUSh also develops novel enhancements to

the memory management subsystem in the Linux kernel to eliminate the memory overhead

due to placing each object in a separate page. Comparing PUSh to conventional data race

detectors, such as the widely used ThreadSanitizer(TSan) [thr], a clear advantage of these

conventional detectors is that they do not require annotations. Furthermore, in rare cases,

due to the limited number of protection domains supported by MPK, PUSh might miss a

manifested data race. Thus, PUSh may require several executions to eventually detect all the

data races in the application. However, in return, the memory and performance overhead of

PUSh is often orders of magnitude smaller. Specifically, for a set of eight benchmarks, with

TSan, the memory overhead is 54%-11000% and the performance overhead is 304%-36000%.

While with PUSh, the memory overhead is only 0%-5.8% and the performance overhead is

only 0%-54%. Such low overhead allows PUSh to be used in production runs or at least
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during beta testing.

One direction of future work based on PUSh is to further reduce the performance over-

head. As discussed in §6.4.5, with PUSh, most of the overhead is associated with policy

changes. Specifically, each of the policy changes involves a system call to change the page

table and sometimes requires broadcasting an IPI to flush the TLB entry. Hence, PUSh is

not suitable for applications that have small objects with very frequent policy changes. It

may be worthwhile to incorporate memory instrumentation into PUSh. Specifically, page-

level protection could be used to enforce sharing policies for large objects with low policy

change rates. The memory instrumentation could be used to enforce sharing policies for

small objects with high policy change rates. Such a combination could lead to a practical

default-on data race detectors for parallel applications.
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