
UC San Diego
UC San Diego Previously Published Works

Title
MMTF—An efficient file format for the transmission, visualization, and analysis of 
macromolecular structures

Permalink
https://escholarship.org/uc/item/8qn7v2fm

Journal
PLOS Computational Biology, 13(6)

ISSN
1553-734X

Authors
Bradley, Anthony R
Rose, Alexander S
Pavelka, Antonín
et al.

Publication Date
2017

DOI
10.1371/journal.pcbi.1005575

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8qn7v2fm
https://escholarship.org/uc/item/8qn7v2fm#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


RESEARCH ARTICLE

MMTF—An efficient file format for the

transmission, visualization, and analysis of

macromolecular structures

Anthony R. Bradley1,2, Alexander S. Rose1, Antonı́n Pavelka1, Yana Valasatava1, Jose

M. Duarte1,2, Andreas Prlić1,2, Peter W. Rose1,2*

1 Structural Bioinformatics Laboratory, San Diego Supercomputer Center, University of California, San

Diego, La Jolla, CA, United States of America, 2 RCSB Protein Data Bank, San Diego Supercomputer

Center, University of California, San Diego, La Jolla, CA, United States of America

* pwrose@ucsd.edu

Abstract

Recent advances in experimental techniques have led to a rapid growth in complexity, size,

and number of macromolecular structures that are made available through the Protein Data

Bank. This creates a challenge for macromolecular visualization and analysis. Macromolec-

ular structure files, such as PDB or PDBx/mmCIF files can be slow to transfer, parse, and

hard to incorporate into third-party software tools. Here, we present a new binary and com-

pressed data representation, the MacroMolecular Transmission Format, MMTF, as well as

software implementations in several languages that have been developed around it, which

address these issues. We describe the new format and its APIs and demonstrate that it is

several times faster to parse, and about a quarter of the file size of the current standard for-

mat, PDBx/mmCIF. As a consequence of the new data representation, it is now possible to

visualize structures with millions of atoms in a web browser, keep the whole PDB archive in

memory or parse it within few minutes on average computers, which opens up a new way of

thinking how to design and implement efficient algorithms in structural bioinformatics. The

PDB archive is available in MMTF file format through web services and data that are

updated on a weekly basis.

This is a PLOS Computational Biology Software paper.

Introduction

The Protein Data Bank (PDB) [1] is the global archive of 3D structures of proteins, nucleic

acids, and complex assemblies. Recent advances in experimental techniques have led to an

explosion in both the number and size of such structures. The entire PDB now exceeds one bil-

lion atoms and the largest structure currently contains about 2.4 million atoms [2] (Fig 1A). In

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005575 June 2, 2017 1 / 16

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Bradley AR, Rose AS, Pavelka A,

Valasatava Y, Duarte JM, Prlić A, et al. (2017)

MMTF—An efficient file format for the

transmission, visualization, and analysis of

macromolecular structures. PLoS Comput Biol 13

(6): e1005575. https://doi.org/10.1371/journal.

pcbi.1005575

Editor: Dina Schneidman, Hebrew University of

Jerusalem, ISRAEL

Received: April 6, 2017

Accepted: May 16, 2017

Published: June 2, 2017

Copyright: © 2017 Bradley et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This project was funded by the National

Cancer Institute/National Institutes of Health Award

U01 CA198942. The funder had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1005575
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005575&domain=pdf&date_stamp=2017-06-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005575&domain=pdf&date_stamp=2017-06-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005575&domain=pdf&date_stamp=2017-06-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005575&domain=pdf&date_stamp=2017-06-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005575&domain=pdf&date_stamp=2017-06-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005575&domain=pdf&date_stamp=2017-06-16
https://doi.org/10.1371/journal.pcbi.1005575
https://doi.org/10.1371/journal.pcbi.1005575
http://creativecommons.org/licenses/by/4.0/


addition to a growing number of depositions per year (Fig 1B) and average number of atoms

per structure (Fig 1C), 68 of the 100 largest structures were deposited in the past three years. In

Fig 1D, we show the rising importance of Cryo-Electron microscopy as a technique [3]. It is

expected that much larger molecular machines and molecular assemblies will be modeled by

combining multiple experimental techniques [4].

Significant increases in data sizes have been seen in many fields. Efficient storage and trans-

mission of data using novel file formats and data compression methods are integral to these

development, e.g., for the transport of HD-TV, video, and audio. A similar trend has emerged

in the handling of whole genome data [5].

Few notable developments have been made in developing such a format for macromole-

cules. First, WPDB [6] stored the data as binary files with limited precision, allowing efficient

access. WPDB is however no longer maintained and was tied to the Windows operating sys-

tem. The second development is mmJSON [7], which represents all data from the PDBx/

mmCIF format (http://mmcif.wwpdb.org/) in the JSON serialization format that can be effi-

ciently parsed by modern web browsers. After compression with gzip (a commonly used

Fig 1. Growth of the Protein Data Bank archive. (A) The currently largest asymmetric structure in the PDB—the HIV Capsid (PDB ID 3J3Q) contains over

2.4 million atoms. (B) The number of depositions per year (obsoleted or superseded entries are excluded). (C) The average structure size (asymmetric unit

size for crystallographic structures). (D) Electron microscopy structures are contributing ~10 million atoms per year for the past 3 years (1% of the archive).

https://doi.org/10.1371/journal.pcbi.1005575.g001

MMTF—An efficient file format for macromolecular structures

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005575 June 2, 2017 2 / 16

http://mmcif.wwpdb.org/
https://doi.org/10.1371/journal.pcbi.1005575.g001
https://doi.org/10.1371/journal.pcbi.1005575


general purpose compression tool) the largest structure (PDB ID 3J3Q) takes up 27 MB in

mmJSON. In addition, a “lite” version of mmJSON is available that contains a minimal

amount of information to render backbone structures (3.3 MB for PDB ID 3J3Q). Neither

WPDB, mmJSON, nor other formats such as PDBx/mmCIF, provide all data necessary to rep-

resent a full macromolecular model including bond information. Furthermore, as text based

formats, they are slow to parse, and clean Application Programming Interfaces (APIs) are gen-

erally not made available.

Commercial software providers have produced their own internal representations of mac-

romolecular structures. No such format, however, is openly available and thus they cannot be

incorporated into third party software or developed with community involvement. For this

reason, structural analysis is currently a laborious and error-prone process, often involving

substantial duplicated effort to reliably process the entire PDB archive into a 3rd party data

structure. Structure visualization can be equally challenging for large structures, due to slow

data download and high client-side memory requirements to parse large structure files. Some

of the largest structures in the PDB require more memory than is typically available within in

web browser.

In this paper we describe a new data representation, the MacroMolecular Transmission

Format (MMTF) (http://mmtf.rcsb.org/) that aims to resolve these deficiencies. MMTF is a

binary machine-readable file format that can be parsed, in some instances at least an order of

magnitude faster than existing text-based formats. Custom lossless and lossy compression

methods with either full atom level detail and a reduced representation (C-alpha, P atoms) are

applied [8] to reduce the file size and thus further improve transmission and parsing speeds.

MMTF uses a combination of encoding and compression techniques, such as delta encoding,

and reduced precision for lossy compression, which have also been used for MD trajectory

compression [9–11]. Finally, MMTF is designed for interoperability and use by a broad com-

munity. APIs are provided in common programming languages and a full chemical descrip-

tion required to understand a structure is included in the file. The PDB archive is provided in

MMTF format through web services and updated weekly. A number of third-party tools

already support MMTF.

Design and implementation

Design considerations

Above we demonstrated that existing file formats are becoming less suitable for modern mac-

romolecular data. Due to these challenges, the MMTF format was designed with three core

aims. First, to minimize data storage requirements and transfer times, the format should repre-

sent data in compressed form without loss of accuracy. Second, it should be fast to parse, since

I/O is often a bottleneck in structural analysis and visualization. Third, we designed MMTF to

be as extensible, self-contained, and interoperable as possible. As a binary, machine-readable

format, the preferred access to MMTF data is through the APIs provided in several program-

ming languages. This allows the developers to focus on scientific applications and not on

developing custom file parsers.

Data items and encoding

The MMTF format was designed to include the core data commonly used by macromolecular

visualization and analysis tools (Table 1), rather than support all metadata available in PDBx/

mmCIF. A comprehensive list of the data items is available in the MMTF specification. Addi-

tional metadata present in PDBx/mmCIF files and other annotations, if required, can be

accessed through web services [12][13][14].

MMTF—An efficient file format for macromolecular structures

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005575 June 2, 2017 3 / 16

http://mmtf.rcsb.org/
https://doi.org/10.1371/journal.pcbi.1005575


MMTF files have been augmented with calculated DSSP [15] secondary structure using the

BioJava implementation [16]. This information speeds up both visualization and analysis

applications and ensures data consistency across all structures in the PDB archive. MMTF

includes the full chemical description of all molecules in a PDB entry. Bonds and bond orders

for both standard and non-standard residues, e.g., ligands, are included from the Chemical

Component Dictionary [17] and additional covalent bonds (struct_conn category in the

PDBx/mmCIF files), such as disulfide bonds or covalent bonds between ligands and polymers

are also included in MMTF. Metal coordination and hydrogen bond information is not

included in MMTF, since there are no generally agreed upon standards how to define them.

Fig 2 describes the creation of an MMTF file from a PDBx/mmCIF archive file.

Encoding strategies

In order to reduce the overall file size, we applied specialized encoding techniques to make the

data more compressible. These techniques either reduce redundancy in the data or reduce the

dynamic range (entropy) of numbers, to make them more compressible using standard

entropy encoding techniques.

Fields of the same type are grouped together in MMTF to create a flat data structure. For

instance, the coordinates of all atoms are stored together, instead of in atom objects with other

atom-related data. This avoids imposing a deeply nested hierarchical structure on consuming

programs, while still allowing efficient traversal of models, chains, groups, and atoms. This

approach represents a columnar encoding [18] of data, which facilitates data encoding and

enhances data compressibility. Columnar encoding is also used in mmJSON [7] to increase

compressibility.

Lossless integer encoding is applied to all fixed precision floating point numbers. Integer

numbers have a simpler bitwise representation and are therefore more compressible than the

equivalent floating-point numbers [8]. Atomic coordinates are typically represented with a

precision of 3 decimal places, and temperature factors with 2 decimal places. For lossless

encoding, we multiply coordinate and temperature factor values by 1000 and 100, respectively,

and round the values to the nearest integer.

Table 1. Data categories described in MMTF format.

Data Category Data Items

Metadata PDB ID, title, deposition date, release date, experimental method(s)

Crystallographic info Space group, unit cell, NCS operators, resolution, Rfree, Rwork

Primary structure Polymer sequences

Secondary structure DSSP secondary structure assignments*

Structural model Models, chains, groups (residues), atoms, bonds* and bond orders*

Quaternary structure Biological assembly transformations

* These data items are not available in the PDBx/mmCIF files and are added to MMTF files.

https://doi.org/10.1371/journal.pcbi.1005575.t001

Fig 2. Steps in the creation of a MMTF file from a PDBx/mmCIF file. After parsing a PDBx/mmCIF file, DSSP secondary structure is

calculated and bond information is added for all residues. Custom encoding strategies are applied to the different data categories to achieve

a compact representation. These data are serialized in binary form and then further compressed with standard compression tools to create a

compressed MMTF file.

https://doi.org/10.1371/journal.pcbi.1005575.g002

MMTF—An efficient file format for macromolecular structures

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005575 June 2, 2017 4 / 16

https://doi.org/10.1371/journal.pcbi.1005575.t001
https://doi.org/10.1371/journal.pcbi.1005575.g002
https://doi.org/10.1371/journal.pcbi.1005575


A further increase in compression can be obtained through lossy encoding by rounding

coordinates to 0.1 Å precision and temperature factors and occupancy to 0.1 precision. Lossy

compression is particularly important for the visualization of large complexes, for which the

reduced precision is not visually perceptible [6,8].

Dictionary encoding is used for data repeated across multiple residues. In standard PDB

and PDBx/mmCIF files, atoms within a residue are listed in a standard order. Exploiting this,

atom name, element symbol, intra residue bonds and bond orders, etc. can be stored once for

each unique residue type and not repeated across the file, as shown for the dictionary entry for

serine (Fig 3). MMTF has been designed to handle exceptions to a consistent atom order, if

they occur, however, the encoding will be less efficient.

Delta encoding is applied to data of large magnitude that change in small increments. For

example, instead of storing absolute atom coordinate values, differences in the x, y, and z coor-

dinates are stored. Due to the covalent bond structure in molecules, these differences typically

lie within a small dynamic range bound by their bond distances. Previous work determined

this method to be the most effective encoding technique [8]. Temperature factors are also delta

encoded, since their variation from residue to residue is typically low.

Run-length encoding compresses a list of repeated values, such as occupancy values in X-

ray structures, most of which are constant (1.0). Here the value itself and the number of repeti-

tions is stored. For atom serial numbers, delta and run-length encoding are combined to

achieve a very compact encoding.

Recursive indexing—Given the small dynamic range of delta encoded coordinates, most,

but not all values can be represented as 16-bit signed integers, rather than 32-bit signed inte-

gers. We have explored the effect of packing on compression [8] and identified recursive

indexing as a simple and effective packing strategy for this data type. Any values that lie outside

the 16-bit integer range [–32,768, 32,767] are decomposed into a series of values, such that the

individual values fit into the 16-bit range (Fig 4D), and their sum adds up to the original value.

The overall workflow for the encoding of columnar data is shown in Fig 4.

Serialization

MMTF data are stored in the MessagePack format (version 5, http://msgpack.org) binary con-

tainer format. MessagePack is an efficient binary serialization format, similar to JSON, but

faster to parse and more compact. Encoding and decoding libraries for MessagePack are avail-

able in many languages. The top-level of the container holds the field names as keys and field

data as values. Non-columnar data are described using standard MessagePack data types.

Columnar data, e.g., most data columns in the “ATOM” records, are custom encoded. The

MMTF specification defines Codec Types used to custom encode columnar data. These data

Fig 3. Dictionary entry for amino acid serine.

https://doi.org/10.1371/journal.pcbi.1005575.g003

MMTF—An efficient file format for macromolecular structures

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005575 June 2, 2017 5 / 16

http://msgpack.org/
https://doi.org/10.1371/journal.pcbi.1005575.g003
https://doi.org/10.1371/journal.pcbi.1005575


Fig 4. Workflow for encoding columnar data within MMTF. (A) Columnar data are first converted to integer arrays. Depending on the

type of the values in the array, three types of custom encoding are applied to: 1. Repeated values, 2. Sequential values, 3. Small differences

between adjacent values. All encoded values are finally encoded as a byte array. (B) Example of encoding 2,000 occupancy values by

integer encoding (x100) followed by run-length encoding. (C) Example of encoding 2000 atom serial numbers by applying delta and run-

length encoding. (D) Example of encoding atom coordinate values by integer encoding (x1,000), delta encoding, and recursive index

encoding into a 16 bit signed integer array. Here, the value 32,867 exceeds the maximum value (32,767) for a 16-bit signed integer.

Therefore, recursive index encoding decomposes this value into two numbers 32,767 and 100 that sum up to the original value. All

subsequent values are within range and are represented directly by their values 2,001, and 1,053.

https://doi.org/10.1371/journal.pcbi.1005575.g004

MMTF—An efficient file format for macromolecular structures

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005575 June 2, 2017 6 / 16

https://doi.org/10.1371/journal.pcbi.1005575.g004
https://doi.org/10.1371/journal.pcbi.1005575


records are described by the following data structure (Fig 5), which is represented as a binary

array in MessagePack.

MMTF data files

MMTF files for all PDB entries are updated weekly as part of the RCSB PDB weekly update pipe-

line. Semantic versioning (http://semver.org) is employed to the file specification and the APIs.

Major version changes of the specification may require code updates to decode and parse data.

For this reason, after the release of a new major version of the specification, the previous major

version will be retained for a number of months to allow time for code updates and testing. Such

version changes will be disseminated through a mailing list and updates to the documentation.

MMTF files are generated with two types of molecular representation (Table 2). The reduced

representation, which uses lossy compression and less atomic level detail is suitable for 3D visu-

alization, e.g., ribbon diagrams, or calculations that require only a C-alpha representation.

MMTF application programming interface

MMTF files are accessible through RESTful web services via HTTP and HTTPS protocols, or

downloadable as individual gzipped files (http://mmtf.rcsb.org/download.html). A weekly

update procedure ensures the availability of the latest structures, as provided by the wwPDB.

For large-scale analysis of the PDB archive, where loading of thousands of individual files is

inefficient, a single Hadoop Sequence file (https://wiki.apache.org/hadoop/SequenceFile) is

provided. These files can be efficiently processed in parallel by Big Data frameworks such as

Apache Hadoop (http://hadoop.apache.org/) or Apache Spark (http://spark.apache.org/).

The preferred access to MMTF data is via the provided decoder APIs, which are available

through open source GitHub repositories. API documentation and example code are available

from the MMTF project page (http://mmtf.rcsb.org/). Fig 6 shows the integration of third-

party applications and software libraries with the MMTF APIs.

Results

The benefits of the MMTF file format were assessed in three different ways. First, the relative

sizes of the files in different formats were measured. Second, the file load time was

Fig 5. Data structure of custom encoded record in MMTF. A Codec Type describes the columnar encoding

strategy. A Codec may describe the combination of several encoding strategies. For example, coordinate data are

encoded by a Codec that combines integer encoding, delta encoding, recursive index encoding. Data Length

represents the number of values that have been encoded, and here the Codec Parameter for coordinate encoding

is a divisor to convert integers to floating point numbers.

https://doi.org/10.1371/journal.pcbi.1005575.g005

Table 2. MMTF file types.

Type Representation Coordinate precision (Å) Temperature factor (Å2) and

Occupancy precision

full all atoms 0.001 0.01

reduced C-alpha (polypeptide),

P (polynucleotide),

all atoms (non-polymers)

0.1 0.1

https://doi.org/10.1371/journal.pcbi.1005575.t002

MMTF—An efficient file format for macromolecular structures

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005575 June 2, 2017 7 / 16

http://semver.org/
http://mmtf.rcsb.org/download.html
https://wiki.apache.org/hadoop/SequenceFile
http://hadoop.apache.org/
http://spark.apache.org/
http://mmtf.rcsb.org/
https://doi.org/10.1371/journal.pcbi.1005575.g005
https://doi.org/10.1371/journal.pcbi.1005575.t002
https://doi.org/10.1371/journal.pcbi.1005575


benchmarked in Python, JavaScript, and Java. Third, the simplicity of using the new format is

demonstrated.

File size comparison

In Fig 7 we compare the size of the PDB archive in PDBx/mmCIF, PDB, and MMTF file for-

mats. In the MMTF file format the PDB archive can be stored in about 8 GB, making it less

than 1/4 the size of the PDBx/mmCIF files and 1/3 the size of the PDB files. In practice, being

stored in about 8 GB also means the entire archive can be stored in RAM on many standard

desktop and laptop computers.

Load time benchmarks

The following benchmarks assess the file load time for MMTF compared to PDBx/mmCIF

and PDB data formats. The load times reported in the figures below consist of reading the files

from a local disk, decompressing and parsing the data, instantiating a hierarchical molecular

data structure (model->chain->residue->atom), and storing the metadata. All parsing bench-

marks were performed using a single core on a MacMini, 2.6 GHz Intel Core i5, 16 GB RAM

1600 MHz DDR3, with a solid state drive.

The first benchmark uses the existing file parsers (PDBx/mmCIF, PDB) in BioJava and

compares their performance with the new BioJava MMTF parser, which uses the MMTF-Java

API. In Fig 8 we compare the load times for ~127,000 PDB entries as individual gzip com-

pressed PDBx/mmCIF, PDB, and MMTF files, and as uncompressed Hadoop Sequence files.

Next, we compared the load time of implementations in different programming languages.

We benchmarked three commonly used software libraries: BioPython [19] (http://biopython.

org/), NGL Viewer [20] (https://github.com/arose/ngl), and BioJava [21] (http://biojava.org/)

written in Python, JavaScript, and Java, respectively. A benchmark set of 1,000 randomly

selected PDB entries was used for the assessment (S1 Table) (Fig 9).

The MMTF format has clear advantages over PDBx/mmCIF and PDB. For BioPython,

MMTF is parsed about 4 times faster than PDBx/mmCIF using the FastMMCIFParser (353

seconds), and about 30 times faster compared to the default MMCIFParser (2650 seconds),

which creates a more complete data model. For NGL (JavaScript), MMTF loading is about 18

Fig 6. Third party software integration through MMTF APIs and web services. The PDB archive can be

accessed in MMTF format through RESTful web services. APIs available in common programming languages

provide efficient access to the MMTF data. Third party applications then access the data through the

language-specific APIs.

https://doi.org/10.1371/journal.pcbi.1005575.g006

MMTF—An efficient file format for macromolecular structures

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005575 June 2, 2017 8 / 16

http://biopython.org/
http://biopython.org/
https://github.com/arose/ngl
http://biojava.org/
https://doi.org/10.1371/journal.pcbi.1005575.g006
https://doi.org/10.1371/journal.pcbi.1005575


times faster than PDBx/mmCIF. For BioJava, loading MMTF files is about 45 times faster than

loading the corresponding PDBx/mmCIF files.

To assess the effect of structure size on load time (Fig 10), we created samples of 100 struc-

tures around the 25 percentile (S2 Table), 50 percentile (S3 Table), and 75 percentile (S4

Table) from the atom size distribution of the PDB archive. To create these subsets, we selected

100 structures symmetrically around the quartile values. S1 Appendix contains links to the

software repositories to run the BioPython and BioJava benchmarks.

According to this benchmark, most small to medium sized PDB structures can be parsed in

milliseconds using the BioJava/MMTF-Java API and NGL/MMTF-JavaScript API. The load

time is approximately linear with the number of atoms in a PDB entry. MMTF file loading

with BioPython is consistently about a factor of 40–50 slower than with BioJava. This is due in

part that Python is an interpreted language. Our profiling points to the creation of the hierar-

chical molecular data structure as the time limiting factor for BioPython.

MMTF was specifically designed to handle the efficient transfer and visualization of very

large structures that could not be parsed and visualized using the PDBx/mmCIF format due to

the large memory overhead. For example, the currently largest asymmetric structure (PDB ID

3J3Q) in the PDB with 2,440,800 atoms, shown in Fig 1A, was rendered with NGL viewer

using the MMTF-reduced format. Table 3 compares the load times for this entry using BioPy-

thon, NGL, and BioJava.

Fig 7. Comparison of the gzipped file sizes for the PDB archive (~127,000 entries) in PDBx/mmCIF, PDB, and MMTF formats as of March 2017.

About 500 large structures (> 99,999 atoms or > 62 chains) cannot be represented in the PDB format, however, they are available as split PDB files (.tar.gz

files) and take up about 2.7 GB, which is included in the reported PDB file size. For MMTF, we report the size of the all atom representation (MMTF-full) and

the reduced representation (MMTF-reduced).

https://doi.org/10.1371/journal.pcbi.1005575.g007

MMTF—An efficient file format for macromolecular structures

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005575 June 2, 2017 9 / 16

https://doi.org/10.1371/journal.pcbi.1005575.g007
https://doi.org/10.1371/journal.pcbi.1005575


Simple application programming interfaces

The MMTF file format is designed to be easy to use and incorporate into 3rd party applica-

tions. While MMTF has a flat, columnar data structure, it can be traversed following the struc-

ture hierarchy: Models -> Chains -> Groups -> Atoms. In Fig 11, we demonstrate the

simplicity in retrieving data using the Java, JavaScript and Python APIs.

Availability and future directions

In this paper we present a modern macromolecular transmission format. MMTF addresses the

growing size and complexity of macromolecular structures in the PDB archive through a new

binary, custom compressed file format. Furthermore, MMTF is self-contained and simple

APIs are provided in multiple popular programming languages. Software developers do not

need to implement their own parsers—often an error-prone process, but rather build on the

tools provided by MMTF. Through both these advances MMTF allows rapid user-friendly

access to any structure in the PDB archive with a few lines of code. We demonstrate that the

format is 75% smaller, an order of magnitude faster to parse, and is provided along with a user

friendly API that promotes interoperability.

The MMTF project page (http://mmtf.rcsb.org) is the entry point to all documentation and

software, including the MMTF specification, links to GitHub repositories of the MMTF APIs

Fig 8. Comparison of BioJava load time for the PDB archive using different file formats. Load time for the PDB archive (~127,000) entries

using the gzip compressed PDBx/mmCIF, PDB, and MMTF formats. For MMTF, we report the load time for individual gzipped files, as well as, the

load time for uncompressed Hadoop Sequence Files containing MMTF records in the full (all atom, MMTF-full) and the reduced format (MMTF-

reduced). For PDB file loading, about 500 large structures that cannot be represented in the PDB format (>99,999 atom, > 62 chains) were excluded.

https://doi.org/10.1371/journal.pcbi.1005575.g008

MMTF—An efficient file format for macromolecular structures

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005575 June 2, 2017 10 / 16

http://mmtf.rcsb.org/
https://doi.org/10.1371/journal.pcbi.1005575.g008
https://doi.org/10.1371/journal.pcbi.1005575


(Java, JavaScript, Python, C, and C++), and API descriptions. The versioned specification and

all software libraries are available under either an Apache 2 or MIT license. A description how

to download MMTF files is also available. A “Try it” feature demonstrates the transfer and

parsing performance of MMTF-JavaScript in a web browser, and a “See it in Action” page

demonstrates the fast data transfer, parsing, and rendering in NGL viewer [20].

Due to simple API, user-friendly specification and licensing model, the format has already

been incorporated into several protein analysis tools and 3D structure visualization tools

(Table 4).

We envisage the above advances will have a major impact in two areas of structural bioin-

formatics (Fig 12).

The first key area of impact is visualization of macromolecular structures, in particular

when used on mobile device or in a web browser. MMTF enables low bandwidth file transfer,

low client-side memory consumption, and fast parsing of PDB structures. For example, the 3D

visualization on the RCSB PDB website is powered by MMTF [24], using the MMTF-full

representation for entries < 10,000 residues and the MMTF-reduced representation for larger

entries. Using the NGL viewer [20] and MMTF, the currently largest structure in the PDB, the

HIV viral capsid (PDB ID 3J3Q) [2], can now be visualized on a mobile device (Fig 1A).

Second, by greatly increasing file-parsing speed, a rapid analysis of the entire PDB archive

can be carried out. As an example, we have used the MMTF format to rapidly mine the PDB

Fig 9. Comparison of the average load times for different file formats using three software libraries in three programming languages on a

set of 1000 random PDB entries.

https://doi.org/10.1371/journal.pcbi.1005575.g009

MMTF—An efficient file format for macromolecular structures

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005575 June 2, 2017 11 / 16

https://doi.org/10.1371/journal.pcbi.1005575.g009
https://doi.org/10.1371/journal.pcbi.1005575


for interatomic distance distributions. Coupled with the use of an efficient geometric hashing

algorithm in BioJava, the distances between all C-alpha carbons can be calculated in minutes.

Parsing of the text-based PDBx/mmCIF format alone would take several hours. Using a

Hadoop Sequence file with MMTF records enables the scalable analysis of the PDB using stan-

dard distributed parallel processing frameworks. Further work is ongoing to demonstrate the

use of MMTF with Big Data frameworks.

MMTF is an open source project and we welcome additions and new applications that use

the new technology. As an example, the MMTF-C and MMTF-C++ decoders were developed

in collaboration with community members.

Fig 10. Comparison of the average load times per structure using the MMTF format for three structure sizes. The benchmarks contain 100 structures

each around the 25, 50 and 75 percentile of the PDB size distribution: Q25 (2,309–2,313 atoms), Q50 (4,054–4,063 atoms), Q75 (7,862–7,885 atoms).

https://doi.org/10.1371/journal.pcbi.1005575.g010

Table 3. Average load time for large PDB entry 3J3Q with about 2.4 million atoms.

Library Load Time (seconds) Load Time (seconds) Load Time (seconds)

PDBx/mmCIF (50.1 MB) MMTF-full (14.1 MB) MMTF-reduced (1.0 MB)

BioPython 164.7 59.7 11.8

NGL (JavaScript) 26.0 0.9 0.3

BioJava 52.1 2.2 0.4

Average load time (100 repeats) for the gzip compressed PDBx/mmCIF and MMTF files from a local file system. MMTF-full represents the all atom model

and MMTF-reduced represents the C-alpha only model.

https://doi.org/10.1371/journal.pcbi.1005575.t003

MMTF—An efficient file format for macromolecular structures

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005575 June 2, 2017 12 / 16

https://doi.org/10.1371/journal.pcbi.1005575.g010
https://doi.org/10.1371/journal.pcbi.1005575.t003
https://doi.org/10.1371/journal.pcbi.1005575


Fig 11. Traversal of the structure hierarchy using the MMTF API. These code snippets (A) Java, (B) JavaScript, and (C) Python demonstrate how to

load and decode an MMTF file (PDB ID 4CUP) from http://mmtf.rcsb.org and then traverse the hierarchical data structure (Models ->Chains ->Groups ->
Atoms). The code shown here loops through the Model and Chain hierarchy. For each model, the model index is printed, and for each chain, the chainId,

chainName, and number of groups (residues) are printed. In an analogous fashion, the group and atom data can be traversed.

https://doi.org/10.1371/journal.pcbi.1005575.g011

Table 4. Applications that support the MMTF file format.

Application Link Reference

3DMol.js http://3dmol.csb.pitt.edu/ [22]

BioJava http://biojava.org/ [21]

BioPython http://biopython.org/ [19]

ICM http://www.molsoft.com/icm_browser.html

iCn3D https://www.ncbi.nlm.nih.gov/Structure/icn3d/icn3d.html [23]

JSmol/Jmol http://www.jmol.org/

MDAnalysis http://www.mdanalysis.org/

NGL https://github.com/arose/ngl [20]

PyMol https://www.pymol.org/

https://doi.org/10.1371/journal.pcbi.1005575.t004

MMTF—An efficient file format for macromolecular structures

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005575 June 2, 2017 13 / 16

http://mmtf.rcsb.org/
https://doi.org/10.1371/journal.pcbi.1005575.g011
http://3dmol.csb.pitt.edu/
http://biojava.org/
http://biopython.org/
http://www.molsoft.com/icm_browser.html
https://www.ncbi.nlm.nih.gov/Structure/icn3d/icn3d.html
http://www.jmol.org/
http://www.mdanalysis.org/
https://github.com/arose/ngl
https://www.pymol.org/
https://doi.org/10.1371/journal.pcbi.1005575.t004
https://doi.org/10.1371/journal.pcbi.1005575


Supporting information

S1 Table. Benchmark set of 1000 randomly selected PDB entries.

(XLSX)

S2 Table. Benchmark set Q25. 100 PDB entries symmetrically selected around the 25 percen-

tile of the PDB atom size distribution (2,309–2,313 atoms).

(XLSX)

S3 Table. Benchmark set Q50. 100 PDB entries symmetrically selected around the 50 percen-

tile of the PDB atom size distribution (4,054–4,063 atoms).

(XLSX)

S4 Table. Benchmark set Q75. 100 PDB entries symmetrically selected around the 75 percen-

tile of the PDB atom size distribution (7,862–7,885 atoms).

(XLSX)

S1 Appendix. Software and documentation. Links to software repositories, documentation,

and benchmarks.

(PDF)

Acknowledgments

We thank Robert Hanson, Thomas Holder, and David Koes for their feedback on the MMTF

specification and API. We thank Thomas Holder, Julien Ferté, Gazal Kalyan for developing

the MMTF-C decoding library and Gerardo Tauriello, Stefan Bienert, Gabriel Studer, and

Andrew Waterhouse for developing the MMTF-C++ decoding library. Robert Hanson pro-

vided efficient Java code for decoding of MessagePack. We also thank all users who helped

with MMTF file transfer benchmarks worldwide, and Shih-Cheng Huang for performing the

BioPython benchmarks. We thank Ezra Peisach for help with data validation, and Cole

Fig 12. Main applications of the MMTF file format. (A) MMTF enables fast transfer, parsing, and low client side

overhead for high-performance visualization in web-based viewers and in particular mobile devices. (B) MMTF

can be represented in “Big Data” formats and the small size enables high-performance, in-memory analysis and

calculations of the entire PDB archive using Big Data frameworks for parallel processing.

https://doi.org/10.1371/journal.pcbi.1005575.g012

MMTF—An efficient file format for macromolecular structures

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005575 June 2, 2017 14 / 16

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005575.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005575.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005575.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005575.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005575.s005
https://doi.org/10.1371/journal.pcbi.1005575.g012
https://doi.org/10.1371/journal.pcbi.1005575


Christie and Chris Randle for setting up the weekly update process and data download for

MMTF files.

Author Contributions

Conceptualization: PWR.

Data curation: ARB APa ASR YV.

Formal analysis: ARB APa ASR YV.

Funding acquisition: PWR.

Investigation: ARB ASR PWR.

Methodology: ARB ASR APa APr JMD PWR YV.

Project administration: PWR.

Resources: APr JMD PWR.

Software: ARB ASR APa APr JMD PWR YV.

Supervision: PWR.

Validation: ARB APa ASR PWR.

Visualization: ARB PWR YV.

Writing – original draft: ARB PWR.

Writing – review & editing: ARB PWR.

References
1. Berman HM. The Protein Data Bank. Nucleic Acids Res. 2000; 28: 235–242. https://doi.org/10.1093/

nar/28.1.235 PMID: 10592235

2. Zhao G, Perilla JR, Yufenyuy EL, Meng X, Chen B, Ning J, et al. Mature HIV-1 capsid structure by cryo-

electron microscopy and all-atom molecular dynamics. Nature. 2013; 497: 643–6. https://doi.org/10.

1038/nature12162 PMID: 23719463

3. Callaway E. The revolution will not be crystallized: a new method sweeps through structural biology.

Nature. 2015; 525: 172–174. https://doi.org/10.1038/525172a PMID: 26354465

4. Callaway E. Data bank struggles as protein imaging ups its game. Nature. 2014; 514: 416–416. https://

doi.org/10.1038/514416a PMID: 25341769

5. Paten B, Diekhans M, Druker BJ, Friend S, Guinney J, Gassner N, et al. The NIH BD2K center for big

data in translational genomics. J Am Med Informatics Assoc. 2015; 43: ocv047. https://doi.org/10.1093/

jamia/ocv047

6. Shindyalov IN, Bourne PE, IUCr. WPDB–PC Windows-based interrogation of macromolecular struc-

ture. J Appl Crystallogr. 1995; 28: 847–852. https://doi.org/10.1107/S0021889895005723

7. Bekker G-J, Nakamura H, Kinjo AR. Molmil: a molecular viewer for the PDB and beyond. J Cheminform.

2016; 8: 42. https://doi.org/10.1186/s13321-016-0155-1 PMID: 27570544

8. Valasatava Y, Bradley AR, Rose AS, Duarte JM, Prlić A, Rose PW. Towards an efficient compression

of 3D coordinates of macromolecular structures. PLoS One. 2017; 12: e0174846. https://doi.org/10.

1371/journal.pone.0174846 PMID: 28362865

9. Lundborg M, Apostolov R, Spångberg D, Gärdenäs A, van der Spoel D, Lindahl E. An efficient and

extensible format, library, and API for binary trajectory data from molecular simulations. J Comput

Chem. 2014; 35: 260–269. https://doi.org/10.1002/jcc.23495 PMID: 24258850

10. Huwald J, Richter S, Dittrich P. Compressing molecular dynamics trajectories: breaking the one-bit-per-

sample barrier. J. Comput Chem. 2016; 1–23. https://doi.org/10.1002/jcc.24405

MMTF—An efficient file format for macromolecular structures

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005575 June 2, 2017 15 / 16

https://doi.org/10.1093/nar/28.1.235
https://doi.org/10.1093/nar/28.1.235
http://www.ncbi.nlm.nih.gov/pubmed/10592235
https://doi.org/10.1038/nature12162
https://doi.org/10.1038/nature12162
http://www.ncbi.nlm.nih.gov/pubmed/23719463
https://doi.org/10.1038/525172a
http://www.ncbi.nlm.nih.gov/pubmed/26354465
https://doi.org/10.1038/514416a
https://doi.org/10.1038/514416a
http://www.ncbi.nlm.nih.gov/pubmed/25341769
https://doi.org/10.1093/jamia/ocv047
https://doi.org/10.1093/jamia/ocv047
https://doi.org/10.1107/S0021889895005723
https://doi.org/10.1186/s13321-016-0155-1
http://www.ncbi.nlm.nih.gov/pubmed/27570544
https://doi.org/10.1371/journal.pone.0174846
https://doi.org/10.1371/journal.pone.0174846
http://www.ncbi.nlm.nih.gov/pubmed/28362865
https://doi.org/10.1002/jcc.23495
http://www.ncbi.nlm.nih.gov/pubmed/24258850
https://doi.org/10.1002/jcc.24405
https://doi.org/10.1371/journal.pcbi.1005575


11. Marais P, Kenwood J, Smith KC, Kuttel MM, Gain J. Efficient compression of molecular dynamics tra-

jectory files. J Comput Chem. 2012; 33: 2131–2141. https://doi.org/10.1002/jcc.23050 PMID:

22730053

12. Rose P W., Beran B, Bi C, Bluhm WF, Dimitropoulos D, Goodsell DS, et al. The RCSB Protein Data

Bank: Redesigned web site and web services. Nucleic Acids Res. 2011; 39: D392–D401. https://doi.

org/10.1093/nar/gkq1021 PMID: 21036868

13. Velankar S, van Ginkel G, Alhroub Y, Battle GM, Berrisford JM, Conroy MJ, et al. PDBe: improved

accessibility of macromolecular structure data from PDB and EMDB. Nucleic Acids Res. 2016; 44:

D385–D395. https://doi.org/10.1093/nar/gkv1047 PMID: 26476444

14. Kinjo AR, Bekker G-J, Suzuki H, Tsuchiya Y, Kawabata T, Ikegawa Y, et al. Protein Data Bank Japan

(PDBj): updated user interfaces, resource description framework, analysis tools for large structures.

Nucleic Acids Res. 2017; 45: D282–D288. https://doi.org/10.1093/nar/gkw962 PMID: 27789697

15. Kabsch W, Sander C. Dictionary of protein secondary structure: Pattern recognition of hydrogen-

bonded and geometrical features. Biopolymers. 1983; 22: 2577–2637. https://doi.org/10.1002/bip.

360221211 PMID: 6667333

16. Prlić A, Yates A, Bliven SE, Rose PW, Jacobsen J, Troshin P V., et al. BioJava: an open-source frame-

work for bioinformatics in 2012. Bioinformatics. 2012; 28: 2693–2695. https://doi.org/10.1093/

bioinformatics/bts494 PMID: 22877863

17. Westbrook JD, Shao C, Feng Z, Zhuravleva M, Velankar S, Young J. The chemical component dictio-

nary: complete descriptions of constituent molecules in experimentally determined 3D macromolecules

in the Protein Data Bank. Bioinformatics. 2015; 31: 1274–1278. https://doi.org/10.1093/bioinformatics/

btu789 PMID: 25540181

18. Abadi DJ, Madden SR, Hachem N. Column-stores vs. Row-stores: How Different Are They Really? Pro-

ceedings of the 2008 ACM SIGMOD International Conference on Management of Data. New York, NY,

USA: ACM; 2008. pp. 967–980. https://doi.org/10.1145/1376616.1376712

19. Cock PJA, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, et al. Biopython: freely available Python

tools for computational molecular biology and bioinformatics. Bioinformatics. 2009; 25: 1422–1423.

https://doi.org/10.1093/bioinformatics/btp163 PMID: 19304878

20. Rose AS, Bradley AR, Valasatava Y, Duarte JM, Prlić A, Rose PW. Web-based molecular graphics for

large complexes. Proceedings of the 21st International Conference on Web3D Technology—Web3D

‘16. New York, New York, USA: ACM Press; 2016. pp. 185–186. https://doi.org/10.1145/2945292.

2945324

21. Prlić A, Yates A, Bliven SE, Rose PW, Jacobsen J, Troshin P V., et al. BioJava: An open-source frame-

work for bioinformatics in 2012. Bioinformatics. 2012; 28: 2693–2695. https://doi.org/10.1093/

bioinformatics/bts494 PMID: 22877863

22. Rego N, Koes D. 3Dmol.js: molecular visualization with WebGL. Bioinformatics. 2015; 31: 1322–1324.

https://doi.org/10.1093/bioinformatics/btu829 PMID: 25505090

23. NCBI Resource Coordinators. Database Resources of the National Center for Biotechnology Informa-

tion. Nucleic Acids Res. 2017; 45: D12–D17. https://doi.org/10.1093/nar/gkw1071 PMID: 27899561

24. Rose PW, Prlić A, Altunkaya A, Bi C, Bradley AR, Christie CH, et al. The RCSB protein data bank: inte-

grative view of protein, gene and 3D structural information. Nucleic Acids Res. 2017; 45: D271–D281.

https://doi.org/10.1093/nar/gkw1000 PMID: 27794042

MMTF—An efficient file format for macromolecular structures

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005575 June 2, 2017 16 / 16

https://doi.org/10.1002/jcc.23050
http://www.ncbi.nlm.nih.gov/pubmed/22730053
https://doi.org/10.1093/nar/gkq1021
https://doi.org/10.1093/nar/gkq1021
http://www.ncbi.nlm.nih.gov/pubmed/21036868
https://doi.org/10.1093/nar/gkv1047
http://www.ncbi.nlm.nih.gov/pubmed/26476444
https://doi.org/10.1093/nar/gkw962
http://www.ncbi.nlm.nih.gov/pubmed/27789697
https://doi.org/10.1002/bip.360221211
https://doi.org/10.1002/bip.360221211
http://www.ncbi.nlm.nih.gov/pubmed/6667333
https://doi.org/10.1093/bioinformatics/bts494
https://doi.org/10.1093/bioinformatics/bts494
http://www.ncbi.nlm.nih.gov/pubmed/22877863
https://doi.org/10.1093/bioinformatics/btu789
https://doi.org/10.1093/bioinformatics/btu789
http://www.ncbi.nlm.nih.gov/pubmed/25540181
https://doi.org/10.1145/1376616.1376712
https://doi.org/10.1093/bioinformatics/btp163
http://www.ncbi.nlm.nih.gov/pubmed/19304878
https://doi.org/10.1145/2945292.2945324
https://doi.org/10.1145/2945292.2945324
https://doi.org/10.1093/bioinformatics/bts494
https://doi.org/10.1093/bioinformatics/bts494
http://www.ncbi.nlm.nih.gov/pubmed/22877863
https://doi.org/10.1093/bioinformatics/btu829
http://www.ncbi.nlm.nih.gov/pubmed/25505090
https://doi.org/10.1093/nar/gkw1071
http://www.ncbi.nlm.nih.gov/pubmed/27899561
https://doi.org/10.1093/nar/gkw1000
http://www.ncbi.nlm.nih.gov/pubmed/27794042
https://doi.org/10.1371/journal.pcbi.1005575



