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Abstract 

 
Biotechnology has the potential to deliver solutions to many global problems in 

medicine, materials science, nutrition, agriculture, natural resource preservation, and energy. 

Engineered cells and enzymes can perform chemical transformations that are rare or unknown in 

nature, and even catalyze reactions not accessible to traditional synthetic chemistry while also 

operating at gentler, more environmentally friendly conditions. Decreases in the price of DNA 

sequencing and synthesis has led to generation of vast databases that can be screened for any 

imaginable function. These sequence databases are even more powerful now due to the 

development of software to enable rapid generation of 3D protein structures, like AlphaFold2. 

However, tools to predict the function of these proteins or their performance in engineered cells 

are not yet robust, leading to long development times and limited successful applications to date. 

New tools and methods must be developed for the true potential of biotechnology to be 

unlocked. 

For my thesis, I explore metabolic pathway construction and screening, protein design, 

and protein sequence-structure-function relationships across broad contexts with the objective of 

tool and knowledge development for future efforts in biotechnology. My first chapter discusses 

the introduction of the triazine degradation pathway, of interest for remediation of contaminated 

sites, into E. coli and methods for characterizing pathway flux and identifying bottlenecks to 

guide engineering efforts and limit accumulation of metabolic intermediates. My second chapter 

focuses on methods for the design of supercharged proteins, which have many interesting 

potential applications, and parameters that increase the likelihood of successful design of these 

proteins. My third chapter regards the generation and characterization of a library of single point 

mutations in the enzyme b-glucosidase B and use of kinetic data to predict the effects of changes 
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in sequence on enzyme function. These seemingly disparate topics all serve to improve tools for 

protein screening, production, functional prediction, and application, addressing several gaps 

toward improved development timelines and success rates for biocatalysts. 
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Chapter 1: 

Characterization of Bottleneck Steps in Triazine Degradation Illuminates the 

Path Toward Pathway Improvement 

 

Abstract 

 Bioremediation has long been a desirable approach for removal of contaminants from 

affected sites. However, the application of this method is often restricted by low rates of 

degradation and the accumulation of intermediate metabolites. The triazine degradation pathway 

from Pseudomonas sp. ADP has been characterized to identify the enzymes responsible and the 

rate of atrazine hydrolysis to the first intermediate hydroxyatrazine has been determined. 

However, there has not been detailed characterization of the pathway flux through each 

intermediate, so the rate-limiting step for atrazine degradation is not known. Through in vitro and 

in vivo assays, it was determined that the dechlorination of atrazine to hydroxyatrazine was rate 

limiting in Escherichia coli expressing either an AtzABC or TrzNAtzBC operon. This 

knowledge is important to guide engineering strategies to improve pathway flux and reduce 

accumulation of intermediates.  

 

Introduction 

 Environmental contamination by man-made chemicals is a widespread problem, with 

1,333 sites in the United States on the Superfund National Priorities List as of July 2022(1). 

Bioremediation is a promising approach for removal of contaminants from such sites due to 

potentially lower costs and environmental impact relative to other remediation methods. 

However, the application of bioremediation at contaminated sites is often limited by slow 
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turnover rates and the accumulation of metabolic intermediates, which may pose their own risks. 

Therefore, strategies for increasing flux through degradative pathways while limiting the buildup 

of intermediate products will be critical for the expansion of bioremediation. 

 Triazine herbicides are used for weed control in commercial production of various crops. 

Due to their high usage they are common ground and stream water contaminants in the United 

States and levels of these compounds can exceed the U.S. EPA maximum contaminant levels in 

waters draining areas of high usage (2). A robust system for microbial degradation of triazines 

could be a useful tool in mitigating risks posed by exposure to triazine contaminants.  

 The bacteria Pseudomonas sp. ADP (PADP) has been extensively studied for its ability to 

degrade the triazine herbicide atrazine. This strain is able to fully mineralize the triazine ring of 

atrazine to ammonia and carbon dioxide, making it a promising system for bioremediation due to 

the non-toxic nature of the products (3). However, field studies using PADP have shown mixed 

results in terms of the performance of this strain outside of laboratory conditions, making its 

applicability in bioremediation dubious (4–7). The genetic and phenotypic instability of PADP 

also limits the relevance of this organism in bioremediation outside of laboratory environments 

((8–10). Due to the limited range of substrates catalyzed by the atrazine chlorohydrolase (AtzA) 

enzyme of PADP, many commercially and environmentally relevant triazines are not degraded 

by this organism (11). In this study we have therefore chosen to focus on the triazine degradation 

pathway expressed heterologously in the model system Escherichia coli rather than the native 

PADP. Field studies using E. coli expressing AtzA, catalyzing the first reaction of atrazine 

degradation, have shown similar rates of atrazine degradation to those of PADP (12). The vast 

array of genetic tools available in E. coli presents the opportunity to improve pathway flux to 
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improve bioremediation of triazine herbicides including the ability to utilize enzymes with 

broader substrate ranges than AtzA from PADP, such as TrzN from Arthrobacter aurescens (13). 

 Many studies on triazine degradation have focused on the initial degradation of atrazine 

to hydroxyatrazine, but as the risks associated with hydroxyatrazine are not well studied, a more 

comprehensive approach to degradation would focus on the degradation to either the final 

products ammonia and carbon dioxide, or the intermediate cyanuric acid, as environmental 

bacteria able to degrade cyanuric acid are widespread (14, 15). It should also be noted that the 

EPA guideline for cyanuric acid is over 10,000 times higher (40 mg/L) than the maximum 

contaminant level for atrazine of 0.003 mg/L so cyanuric acid produced as a result of atrazine 

degradation at relevant concentrations is unlikely to present a health concern (16, 17). This study 

will therefore focus on improving degradation of atrazine to cyanuric acid using E. coli. 

 

Materials and Methods 

Bacterial strains and plasmids 

 A sample of Pseudomonas sp. ADP was graciously provided by the laboratory of Dr. 

Lawrence Wackett at University of Minnesota. This strain was grown on minimal media with 

100 ppm atrazine as the sole nitrogen source as previously described (18). 

 Coding sequences of TrzN, AtzA, AtzB, and AtzC were codon optimized and cloned 

under control of a T7 promoter into the pET29b(+) vector by Twist Biosciences. The 

TrzNAtzBCDEF operon was synthesized by Life Technologies and cloned into pASK-IBA63a+ 

under control of the tetracycline promoter by restriction digest and ligation. The coding 

sequences for AtzDEF were removed by restriction and Gibson cloning. The TrzN coding 
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sequence was replaced with AtzA by Gibson cloning to produce the pASK-AtzABC plasmid. 

DNA sequences used can be found in Supplementary Material S1-1. 

 

Quantitation of pathway metabolites 

 All assay materials were assessed using high performance liquid chromatography-mass 

spectrometry (LC-MS). A Synergi 4 µm Fusion-RP 80 Å column was used with water with 0.1% 

formic and acid and acetonitrile with 0.1% formic acid as mobile phases. Atrazine and 

hydrozyatrazine were quantified based on the area of the M+1 ion in single ion monitoring (SIM) 

positive mode. N-isopropylammelide was quantified based on the area of M-1 ion in SIM 

negative mode.  Atrazine, hydroxyatrazine, and cyanuric acid were quantified compared to 

commercial chemical standards. N-isopropylammelide standards were prepared by incubation of 

hydroxyatrazine with purified AtzB for 72 hours, after which no hydroxyatrazine was detected. 

Cyanuric acid was not robustly detected by this method, so cyanuric acid produced in both the in 

vitro and in vivo assays was calculated by the molar deficit after quantitation of the other three 

metabolites. 

 

In vitro enzyme assays 

 For enzyme deficit assays, the “Balanced” enzyme mix represents a mixture of 100 nM 

of each enzyme specified (i.e. TrzN with AtzB and AtzC) with 150 uM atrazine. Reactions were 

quenched with acetonitrile and analyzed by the given LC-MS method. Enzyme deficit assays 

were incubated for 1 hour at room temperature. An enzyme deficit denotes a 10-fold deficit of 

the specified enzyme relative to the other enzymes in the mixture, resulting in a concentration of 

10 nM in the reaction mixture.  
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For enzyme enrichment assays, the “Balanced” enzyme mix represents a mixture of 10 

nM of each enzyme specified (i.e. TrzN with AtzB and AtzC) with 150 uM atrazine. Reactions 

were quenched with acetonitrile and analyzed by the given LC-MS method. Enzyme enrichment 

assays were incubated for 4 hours at room temperature. An enzyme enrichment denotes a 10-fold 

enrichment of the specified enzyme relative to the other enzymes in the mixture, resulting in a 

concentration of 100 nM in the reaction mixture. Both enzyme deficit and enrichment assays 

were conducted as technical duplicates. Purified green fluorescent protein (GFP) at the same 

concentration as the enzymes was incubated with 150 uM atrazine as a negative control. 

 

In vivo atrazine degradation assays 

 To prepare cells for the in vivo assay, E. coli strains with pET-29b+ plasmids were 

induced with 1 mM IPTG and E. coli strains with pASK-IBA63a+ were induced with 200 µg/L 

anhydrotetracycline. Induced cells were incubated at 18oC for 20 hours, harvested by 

centrifugation, and resuspended in phosphate buffered saline with metals added to an optical 

density of 1.0. PADP were cultured in minimal media with atrazine as the sole nitrogen source as 

previously described, harvested by centrifugation, and resuspended in phosphate buffered saline 

with metals added to an optical density of 1.0. The resulting cell suspensions were incubated 

with 150 µM atrazine or hydroxyatrazine then quenched with acetonitrile and analyzed by the 

given LC-MS method. Both enzyme deficit and enrichment assays were conducted as technical 

duplicates. E. coli expressing either pET-29b+-GFP or pASK-IBA63a+-GFP were incubated 

with 150 uM atrazine as a negative control. 
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Results 

In vitro enzyme enrichment and depletion 

Enrichment of the first enzyme of the triazine degradation pathway, TrzN, increased flux 

to cyanuric acid. The 10-fold enrichment of TrzN relative to AtzB and AtzC led to complete 

hydrolysis of atrazine within 4 hours, with only hydroxyatrazine and N-isopropylammelide 

present at measurable levels. In comparison, when TrzN when stoichiometrically based with 

AtzB and AtzC with each enzyme at 10 nM, only 23.3% of the available atrazine was hydrolyzed 

within 4 hours (Figure 1-1A). Interestingly, a small amount (7.8 uM) of cyanuric acid was 

calculated in the Balanced enzyme mixture, but no cyanuric acid was calculated in the TrzN-

enriched sample. This may suggest an over-estimation in the calculations used to quantify 

atrazine, hydroxyatrazine, and N-isopropylammelide relative to the chemical standards. This is 

further suggested by the total metabolite concentration calculated in the AtzB-enriched sample 

being greater than the 150 uM which was initially input to the assay. 

A deficit of TrzN greatly hindered flux toward cyanuric acid. While the 

stoichiometrically balanced mixture of TrzN, AtzB, and AtzC at 100 nM of each enzyme 

achieved complete atrazine hydrolysis and produced a calculated 62.9 uM cyanuric acid, the 10-

fold depletion of TrzN led to only 19.5% atrazine hydrolysis and produced only a calculated 20.9 

uM cyanuric acid (Figure 1-1B). No atrazine loss was observed for reactions incubated with 

GFP. 

 

In vivo degradation of triazines in E. coli and PADP 

 Rates of atrazine hydrolysis were substantially lower in E. coli expressing both pASK-

AtzABC and pASK-TrzNAtzBC than in PADP (Table 1-1). Interestingly, in E. coli strains fed 
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atrazine, a maximum concentration of 4 uM hydroxyatrazine and no N-isopropylammelide were 

detected during the time course, suggesting that hydrolysis of atrazine to hydroxyatrazine is rate 

limiting in these strains. To further this point, hydrolysis of hydroxyatrazine was much higher 

than that of atrazine in both pASK-TrzNAtzBC and pASK-AtzABC, reaching 86% of 

hydroxyatrazine degraded, suggesting that the pathway can operate at higher fluxes after the 

initial transformation from atrazine to hydroxyatrazine is complete (Table 1-1). 

 It is possible to achieve high rates of atrazine hydrolysis in E. coli. High levels of AtzA 

were produced by IPTG-induced expression via T7 promoter of pET29b+ whereas achieving 

high expression of TrzN required both the T7 expression system and used of the mutant TrzN 

with higher expression (heTrzN) identified by Jackson et al. (19) When AtzA or TrzN are highly 

expressed in E. coli, rates of atrazine hydrolysis approached that of PADP (Figure 1-2). In 

addition to demonstrating that high rates of atrazine hydrolysis are possible in E. coli, similarity 

of these strains to PADP suggests that differential transport of atrazine is not responsible for the 

difference in atrazine hydrolysis between the engineered E. coli and PADP.  

 

Discussion 

 Hydrolysis of atrazine to hydroxyatrazine limits flux through the atrazine degradation 

pathway. The system is likely secondarily constrained by hydrolysis of hydroxyatrazine to N-

isopropyl ammelide. Given the performance of in vitro mixtures with deficits of AtzC, limited 

availability of this enzyme does not have substantial impacts on performance, as mixtures with a 

10-fold deficit of AtzC produce similar amount of cyanuric acid as when AtzC is in 

stoichiometric balance with the other pathway enzymes. 
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 Enzyme expression, rather than activity, seems to most restrict the rate of atrazine 

hydrolysis and thus limit progress of the pathway toward later metabolites. This is shown by the 

stark impact of a 10-fold stoichiometric deficit of TrzN in in vitro mixtures of pathway enzymes. 

Deficit of TrzN caused reduced production of cyanuric acid in 4 hours by 66.8% compared to the 

balanced 100 nM mixture. This is further supported by the complete loss of atrazine when TrzN 

was enriched within 4 hours. The balanced 10 nM enzyme mixture achieved only 23.3% 

degradation of atrazine in the same amount of time. This shows the critical role that the level of 

available atrazine chlorohydrolase plays in the performance of the triazine degradative pathway. 

Strong expression of AtzA or TrzN in E. coli was sufficient to achieve improve atrazine 

degradation, further suggesting that enzyme expression rather than activity is the key constraint 

on the current triazine degradation operon system in E. coli. 

 The assertion that enzyme expression is the factor most limiting flux through the triazine 

degradative pathway agrees with prior data regarding kinetics of the pathway enzymes. 

Published kinetic constants for TrzN, AtzA, AtzB, and AtzC fall within 10-fold of each other on 

their respective substrates (20–23). Thus, no enzyme within the pathway has a large difference in 

activity on its substrate compared to other pathway enzymes so tuning of expression levels 

would be the main determinant of flux to the final product and accumulation of metabolites. 

 Knowledge of the factors most limiting atrazine hydrolysis in the recombinant E. coli 

system described here can be used to target engineering strategies to design an improved 

biocatalyst for remediation of triazine herbicides. As expression of the TrzN or AtzA enzyme 

seems to be most constraining in this system, investigation of alternative promoters, ribosome 

binding sites, and/or protein variants could be useful in overcoming this obstacle. Strains with 

improved rates of atrazine degradation and reduced accumulation of intermediates could be a 
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useful tool in removing triazine contaminants from the environment and helping to mitigate the 

risks associated with these compounds. 
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Figures 

  A) 

 

  B) 

 

 

Figure 1-1. Concentrations of atrazine and its metabolites after incubation with the designated 

enzyme mixtures. “Enriched” enzymes are 100 nM with other enzymes at 10 nM, while 

“Deficit” enzymes are 10 nM with other enzymes at 100 nM. Deficit reactions were incubated 

for 1 hour while enrichment reactions were incubated for 4 hours. Compounds are abbreviated as 
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follows: ATZ = atrazine, HA = hydroxyatrazine, NIA = N-isopropylammelide, CA = cyanuric 

acid. Cyanuric acid (striped) was calculated based on the remaining stoichiometric amount after 

quantitation of atrazine, hydroxyatrazine, and N-isopropylammelide. Values shown represent the 

mean of technical duplicates, with error bars indicating +/- 1 standard deviation. 

 

Table 1-1. Average and standard deviation substrate 

consumption for triazine degrading strains incubated with 

150 µM atrazine or hydroxyatrazine for 24 hours 

Strain Substrate 

Change in 

Concentration 

(µM) 

St. Dev. 

(µM) 

pASK-

NBC 

Atrazine 10.0 27.4 

Hydroxyatrazine 129.7 3.0 

pASK-

ABC 

Atrazine 0.0 52.0 

Hydroxyatrazine 129.6 7.4 

PADP 

Atrazine 150.0 0.0 

Hydroxyatrazine 87.1 7.6 
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Figure 1-2. Atrazine concentration during incubation of E. coli expressing AtzA or high-

expressing TrzN under the strong T7 promoter compared to Pseudomonas PADP. Points 

represent the mean of technical duplicates, with error bars indicating +/- 1 standard deviation. 
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Supplementary Material 

Figure S1-1. DNA sequences used in this study 

>pET29-b+-heTrzN Insert 

ATGATCCTGATTCGTGGCGCTCGCCGTGTAATTACGTTTGATGACCAAGACCGCGAG

CTCGAAGATGCCGATATCCTGATCGATGGCCCGAAAATTGTGGCTGTAGGTAAGAA

CCTGCCAGATGAAGACGTGGATCGCGTGATTGATGGTCGTGGGTGTATTGCTCTGCC

TGGTCTGATCAACACCCATCATCATCTGTACGAGGGCGCAATGCGCGCCATTCCACA

GCTCGAGCGCGTGACCATGTTTGAATGGCTCCGCGGTGTCTATGAACTGAATGCGCA

ATGGTGGCGCGACGGCAAATTCGGCCCTGATGTTGTGCGTGAGGTCGCGCGCGCGG

CGCTCCTGGAACTGCTGTTAGGTGGGTGTACGACGGTATCGGACCAGCACCCGATCT

TCCCCGGTGGGACCCCAGAACGTTATATTGATGCGACGATTGAAGCCGCACGCGAC

CTGGGCATCCGGTTTCATGCCGTGCGTGGCTCCATGACACTGGGTAAATCACAAGGC

GGCTTCTGCCCGGACGAGTTTGTCGAACCCGTGGACGCCGTGGTTAAGCACTGTCAA

CGCCTGATCGATAAATACCATGACCCGTCGCCGTACGCTATGGTTCGTATCGCGTTG

GGTCCGTGCTCACCTCCATACGATACGCCGGAATTATTTCGCGAATTTGCGCAAATG

GCACGCGACTACGATGTCCGCCTGCATACTCATTTCTATGAACCATTGGACGCGCGC

TACAGCCTTGAACTGTATGGTATGACGCCGTGGCGTTTTCTTGAGAAACACGGTTGG

GCGGGTGACCGTGTGTGGTTTGCGCATGCGGTGAAGCCGCCTGATGATGAAATTCCG

GAATTTGCCCGTGCGGGTACAGGCATCGCACACTGTATTGCGTCCGACCTTCGTATG

GGTTGGGGCCTTGCACCGATTCGTGAATACCTCGATGCCGGTATCCCTGTTGGGTTT

GGCACCACCGGTAGCGCCAGCAATGATGGTGGCAATCTGCTGGGCGATCTGCGCCT

GGCGATGCTGGCCCATCGCCCGGCTAATCCCAATGAACCGGAAAAGTGGTTGAGTG

CCCGTGAATTGCTGCGCATGGCTACTCGTGGTGGCGCCGAATGCTTGGGTCGTCCGG
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ACCTTGGGGTCCTGGAGCCGGGTAAAGCCGCTGACATCGCGTGCTGGCGTTTGGACG

GGGTCGATCGGGTGGGTGTGCACGACCCGGCAATCGGGCTGATTATGACAGGCCTG

AGCGATCGTGCGCACCTGGTAATCGTGAATGGCCAGGTCCTGGTCGAAAATGAGCG

CCCTGTCACCGCCGATCTGGAGCGTATCGTTGCGGAAACTACAGCCCTCATCCCAAA

AAATTTG 

>pET29b+-AtzA-Insert 

ATGCAAACACTCAGCATCCAGCATGGTACGCTGGTCACCATGGATCAGTATCGTCGG

GTCCTGGGTGACAGCTGGGTACACGTTCAGGATGGCCGCATTGTAGCTCTGGGTGTG

CATGCGGAAAGCGTACCACCGCCCGCCGACCGGGTGATTGACGCCCGTGGCAAAGT

TGTCTTACCAGGCTTCATTAACGCCCATACGCACGTAAATCAAATCCTGCTGCGCGG

GGGACCGTCACATGGGCGTCAGTTCTACGACTGGCTGTTTAATGTGGTTTACCCAGG

CCAGAAGGCGATGCGTCCAGAGGATGTGGCCGTCGCTGTCCGCCTCTACTGCGCGG

AGGCGGTTCGTTCGGGGATTACCACCATCAACGAAAACGCTGATTCTGCCATCTACC

CGGGTAATATTGAGGCAGCAATGGCGGTGTATGGCGAAGTAGGCGTGCGCGTTGTT

TATGCACGTATGTTCTTCGATCGTATGGATGGCCGGATTCAGGGCTATGTGGATGCC

CTTAAAGCGCGCTCACCTCAGGTTGAGCTGTGTTCGATTATGGAAGAGACCGCAGTG

GCAAAAGACCGTATCACCGCACTGTCGGACCAGTACCACGGCACCGCCGGCGGTCG

CATCTCTGTGTGGCCGGCACCAGCAACGACCACCGCTGTGACAGTTGAAGGTATGC

GTTGGGCGCAGGCATTCGCACGTGATCGCGCCGTCATGTGGACCCTCCACATGGCGG

AGAGCGACCACGACGAACGTATCCATGGTATGAGCCCTGCGGAGTATATGGAGTGT

TATGGCCTGCTGGATGAACGTCTGCAGGTCGCCCATTGCGTGTACTTCGACCGTAAA

GATGTCCGCCTGCTGCATCGTCACAACGTAAAAGTTGCTAGCCAGGTTGTATCCAAC

GCCTACTTGGGATCGGGCGTCGCACCGGTGCCGGAAATGGTCGAGCGTGGCATGGC
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CGTGGGAATCGGCACGGACAACGGCAATAGCAACGACAGCGTGAATATGATCGGTG

ACATGAAATTCATGGCCCATATTCATCGTGCGGTTCATCGCGACGCGGATGTGCTGA

CCCCAGAAAAAATTCTGGAGATGGCCACTATCGACGGTGCCCGTTCCTTAGGAATGG

ACCACGAAATTGGCTCCATCGAGACGGGCAAACGCGCGGATCTGATCCTGCTGGAT

TTGCGTCATCCCCAAACCACTCCGCATCACCACCTCGCGGCTACTATTGTGTTTCAG

GCTTATGGGAACGAAGTAGACACGGTTCTTATCGATGGGAATGTTGTCATGGAAAA

CCGCCGGCTGAGCTTCCTGCCGCCGGAACGTGAGCTGGCCTTTCTCGAAGAGGCGCA

GTCCCGCGCCACCGCGATCCTGCAGCGTGCTAACATGGTGGCCAACCCGGCTTGGCG

CAGCCTC 

>pASK-IBA63a+-AtzA-Insert 

GAAGTGCCATTCCGCCTGACCTGTGAAATGAATAGTTCGACAAAAATCTAGAAATA

ATTTTGTTTAACTTTAAGAAGGAGATATACCATGCAGACGCTGCTGATTCGTCACGG

CACGGTGGTTACCATGGACGATGACCGTCGCGTCCTGGAAGACGGATGGGTCCATG

TCCAGGACGGTCGCATTGTGGCGCTTGGCGTGCATGCTACGTCGGTCCCGCCACCTG

CAGATCGCGTGATTGATGCGCGCGGAAAAGTAGTGCTCCCGGGCTTTATTAACGCCC

ATACGCATGTCAACCAGATTCTGCTTCGTGGAGGCCCGAGCCACGGTCGTCAGTTTT

ACGATTGGCTTTATAATGTGGTGTATCCAGGCCTGAAGGCGATGCGGCCGGAAGAT

GTTGCCGTTGCCGTCCGTCTGTATTGCGCGGAAGCAGTGCGCAGTGGTATCACTACG

ATCAACGAAAACGCGGATTCCGCTATTTATCCGGGAAATATCGAAGCCGCCATGGC

CGTCTATGGTGAAGTGGGTGTACGTGTTGTTTACGCCCGTATGTTCTTCGATCGCGTC

GACGGCCGGCTGCAGGAATACGTGGACGCAATTTTTGCAAAAGCCCCGCAGGTGGA

GCTGTGCTCGATTTTTGAACCGACAGATAAAGCCAAAAAAGACATTGAACGCCTTGC

GGATAAATGGCACGGCACCGCTAACGGTCGTATTCGGGTTTGGCCGGCGCCTGCAA
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CCCCGACGACCGTATCTGAAGAAGGTATGCGGTGGGCTCAGGAGTTTGCACGCGAC

CGTGGCGTCATGTGGACCCTGCATATGGCAGAAAGTCCGCACGATGAACGCGTGCA

TGGAATGAGCCCAGCAGAATATCTGGAGAAGTATGGTTTACTCGATGAACGTCTGCT

GGTCGCGCACTGTGTTTATCTCGATGACAAAGATATTGAACTTCTCGCACGCCATGA

TGTGAAAGTCGCACACTGCCCGGTTAGCAATGCATACCTGGGATCCGGCGTTGCGCC

GGTGCCGGAAATGGTTGAACGTGGTATCGCCGTCGGCATTGGCACAGATAACGGGG

CAAGCAACGACAGCGTTAATATGATCGAAGATATGAAATTCGCCGCGCACATCCAC

CGTGCCGTGCATCGTGATGCAGACGTCCTGACGCCTGAAAAAGTTCTGGAAATGGCC

ACTATTGATGGGGCGCGCGCTCTGGGCATGGAGGACGAGATCGGTTCCATCGAACC

GGGCAAGCGCGCCGATCTGATCCTGGTGGATCTGCGCCATCCGCAGACCACGCCGC

ATCATCATCTGGCCGCTACGATCGTGTTCCAAGCTTATGGTAACGAAGTTGATACGG

TCTTAATTGATGGGAATGTGGTGATGGAAAATCGCCGTCTGTCGTTCCTGCCTCCGG

AACGCGAGTTGGAATTTCTGGAAGAAGCTCAACGTCGCGCCACGGAAATCCTGCAA

CGTGCCAACATGGATGCTAACCCAGCGTGGCGTAGTCTCCTCGAGTGATAGATTCGA

GACTCGAATATAAGAGAGGCTAGGTGGAGGCTCAGTG 
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Chapter 2: 

Comparison of the Impacts of Various Computational Protein Supercharging 

Methods on Protein Expression and Stability 

Abstract 

 Supercharged proteins are of interest both for their unique stability properties and 

applications based on electrostatic interactions. However, the literature to date on protein 

supercharging is heavily skewed to studies on green fluorescent protein (GFP), with few other 

published successful use cases. A more comprehensive assessment of different computational 

methods for the design of supercharged proteins on a structurally diverse set of benchmarking 

proteins could be instrumental in determining the circumstances in which protein supercharging 

is most likely to succeed. In this work, we test two established and a newly developed 

supercharging method on a panel of five structurally diverse de novo designed proteins to 

characterize the effects of these methods on protein stability. 

 

Introduction 

 Supercharged (SC) proteins have been demonstrated to have many interesting properties 

such as high thermostability, reversible denaturation, and the ability to penetrate cell 

membranes.1–4 high surface charge also creates opportunities for interactions with materials or 

other macromolecules based on electrostatic interactions. However, despite the many potential 

uses of SC proteins, few successful use cases of this design approach exist in the literature and 

those that are published only cover a small portion of the structural diversity available across 

known protein sequences.2,3,5,6  
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  Many SC variants of green fluorescent protein (GFP) have been designed and 

characterized to demonstrate their high stability.2,3 Fusions of SC GFP variants with protein 

cargo have been demonstrated to penetrate mammalian cells.4 SC GFP variants have also been 

shown to increase transfection of DNA and RNA cargo into mammalian cells.7 Anti-MS scFv 

antibody fragments were supercharged, resulting in increased thermostability and binding 

affinity.6 Cellulase domains were supercharged to prevent non-specific lignin binding, but the 

resultant proteins showed an unintended reduction in catalytic activity.5 These represent most of 

the published cases of successful design of folded supercharged proteins. However, they do not 

show an effective sampling of the structural diversity available in known proteins. Notably, most 

of these proteins are composed of entirely or predominantly beta strand secondary structures, 

with the exception of the cellulase (PDB ID 4IM4).2,3,5,6 A systematically chosen set of proteins 

with diverse secondary structure elements would more effectively evaluate the success of 

supercharging design methods to produce successfully folded protein. 

Two main methods for the design of supercharged proteins have been developed: 

AvNAPSA (Average Neighboring Atoms Per Side Chain Atom) and Rosetta Supercharge. 

AvNAPSA uses an energy independent approach in which selected amino acid residues are 

ranked in order of surface exposure, determined by the number of atoms in other residues within 

10 A, and deterministically mutated to lysine in positive mode and glutamate in negative (except 

in the case of asparagine residues which are mutated to aspartate).2 Rosetta Supercharge expands 

the mutational possibilities by allowing mutation of neutral polar, hydrophobic, and oppositely 

charged residues to either lysine or arginine in positive mode and aspartate or glutamate in 

negative mode.3 Here we present a third method, Supercharging Incorporating Neutralizing 

Mutations (ScIN). ScIN uses the residue selection of AvNAPSA then passes these potential 
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mutation sites to an expanded version of Rosetta Supercharge that includes mutations that 

neutralize oppositely charged residues to small nonpolar residues (Figure 2-1). These three 

methods were benchmarked on a set of structurally diverse proteins for their impact on soluble 

expression and thermostability.  

A set of hyperstable de novo proteins was chosen for benchmarking of the various 

supercharging methods. Two proteins with only beta secondary structure (Protein DataBank 

(PDB) ID 6D0T and 6E5C), one with only alpha secondary structure (PDB ID 1P68), and two 

with mixed alpha/beta secondary structure (PDB ID 2LN3 and 2LV8) were chosen to represent a 

sampling of potential structural diversity available in known proteins. Each of these proteins has 

been shown to have high stability in the presence of chemical and thermal stressors.8–11 

Therefore, this study characterizes a set of proteins most likely to tolerate the potentially 

destabilizing effects of high net charge, and thus a set of proteins most likely to tolerate 

supercharging. Analysis of the products of each supercharging method on these hyperstable 

scaffolds could enable the identification of parameters that determine the likelihood of success 

for each supercharging method based on protein secondary structure.  

 

Methods 

 

Computational Design of Supercharged Proteins 

AvNAPSA and Rosetta Supercharge designs for each scaffold were run using the default 

parameters in the Rosetta Online Server that Includes Everyone (ROSIE) server.12 When the 

default parameters produced a protein with a net charge of less than +/- 0.1 per residue, the 

scaffold was run again with an additional parameter of target net charge set at the boundary of 
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+/- 0.1 net charge per residue to obtain designs with sufficient net charge for consideration. ScIN 

designs for each scaffold were produced using a PyRosetta script available at 

https://github.com/mpconnolly/supercharging/blob/main/ScIN_Supercharging.ipynb. Naming 

conventions for these designs will be as follows: PDB ID, design method (R= Rosetta 

Supercharge, A=AvNAPSA, S = ScIN), and charging mode (+ or -). As an example, the 1P68 

scaffold charged in negative mode with Rosetta will be denoted 1P68 R+.  

 

Cloning, Expression, and Characterization of Supercharged Proteins 

 The coding sequence for each protein was codon optimized and synthesized under control 

of the T7 promoter and terminator from pET29b+ in the pTwist Kan Medium Copy vector by 

Twist Biosciences. These sequences can be obtained in Supplementary Information S1. DNA 

encoding the 2LN3 scaffold designed with AvNAPSA in positive mode was not able to be 

synthesized and was omitted from further analysis. The resulting plasmids were transformed into 

E. coli BLR(lDE3) cells, cultured in 50 mL of Terrific Broth at 37oC to OD 0.7 then induced 

with 1 mM IPTG. Cells were harvested, sonicated to lyse, clarified, and purified on Ni-NTA 

beads as previously described. Purified proteins were diluted 2-fold and quantified compared to a 

standard curve of bovine serum albumin using the Pierce BCA Assay Kit. 

 

Results and Discussion 

 

ScIN Designed Proteins are Distinct from Those Designed by Existing Methods 

 All design methods were able to design proteins with net charge greater than +/- 0.1 per 

residue for all scaffolds. AvNAPSA produced the highest net charge in both positive and 



 24 

negative modes for all scaffolds. Rosetta Supercharge typically resulted in the lowest absolute 

net charges, with the net charge of ScIN designed proteins in between those of the previous 

methods, with the exception of 2LV8 in positive mode where the net charge resulting from ScIN 

and Rosetta Supercharge are equal (Table 2-1). This validates that ScIN is capable of designing 

proteins of comparable net charge to those produced by previous methods. 

 

Soluble Expression of Supercharged Proteins (Preliminary Data) 

 Two rounds of expression and purification have been completed on the library of 

designed supercharged proteins. For three designs (1P68 A+, 1P68 S+, and 6D0T R+), no 

colonies were obtained in multiple attempts of transformation. Further investigation is needed to 

determine if this is the result of growth inhibition due to toxicity of the proteins. While a 

quantifiable amount of soluble protein can be measured in all samples of successfully 

transformed supercharged proteins, both the absolute and relative amounts of each protein vary 

substantially between rounds of purification (Figure 2-4A). This must be rectified to obtain a 

more reliable characterization of the performance of each supercharging method on each of the 

scaffolds.  

However, when the maximum concentration of each protein is extracted from the data, 

some preliminary patterns start to emerge, though more robust results are needed before drawing 

definitive conclusions (Figure 2-4B). In all tested scaffolds, Rosetta Supercharge produced the 

highest amount of soluble protein in positive, though it should be noted that 6D0T R+ was not 

tested due to the absence of viable colonies discussed above. In negative mode, ScIN produced 

the highest amount of soluble protein in three of the scaffolds (1P68, 2LN3, and 6E5C) and 

Rosetta Supercharge produced the highest amount of soluble protein in the remaining two 
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scaffolds (2LV8 and 6D0T). Thus, for all scaffolds in both positive and negative modes the 

energy-dependent Rosetta Supercharge and ScIN produced higher amounts of soluble protein 

than the energy-independent AvNAPSA, suggesting the importance of energetic calculations in 

selection of mutations for supercharging. Rosetta Supercharge and ScIN also produce proteins 

with lower absolute net charges, reiterating the previous observation that soluble expression of 

supercharged proteins decreases at high net charge.3 The low levels of soluble expression of the 

alpha helical protein 1P68 may suggest the importance of protein secondary structure elements in 

determining the success of supercharging efforts, with beta strands potentially more tolerant to 

supercharging. 
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 The location and residue identities of mutations produced by ScIN were distinct from 

those produced by AvNAPSA or Rosetta Supercharge. Across all scaffolds, 28% of mutations in 

positive mode and 41% of mutations in negative were mutations of opposing charged residues to 

neutral residues, an option not available in the previous design methods (Figure 2-1). This is also 

reflected in the presence of a substantial amount of unique mutation sites selected by ScIN that 

were not selected by AvNAPSA or Rosetta Supercharge (Figure 2-2). Thus, the supercharged 

proteins designed are distinct from those designed by previous methods and ScIN represents an 

orthogonal supercharging strategy. 

  



 27 

Figures 

 

Figure 2-3. Summary of key features differentiating the new method ScIN from the previous 

methods, AvNAPSA and Rosetta Supercharge 
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Table 2-1. Net charges for de novo scaffolds designed with each of the three computational 
design methods evaluated. 

Scaffold Length Native Rosetta SC AvNAPSA ScIN 

  Pos Neg Pos Neg Pos Neg 

1P68 
102 -9 13 -26 27 -37 36 -27 

2LN3 
83 -5 9 -17 23 -27 20 -18 

2LV8 
110 -3 29 -16 42 -38 29 -25 

6D0T 
111 -2 24 -17 32 -38 25 -19 

6E5C 
79 0 9 -14 24 -28 18 -17 
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Figure 2-2. Categorization of parent and mutant residue types aggregated across the five selected 

protein scaffolds 

 

 
Figure 2-3. Comparison of mutation sites resulting from design of 5 scaffolds with AvNAPSA, 

Rosetta Supercharge, or ScIN aggregated across the five protein scaffolds 
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 A) 

 
B) 

 
Figure 2-4. A) Heatmap of the soluble concentrations measured in each of two rounds of 

purification of each given protein. B) Maximum values extracted from 4A, representing the 

highest concentration achieved for each protein in each design strategy. 
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Conclusion 

 A novel and distinct method of designing supercharged proteins, Supercharging 

Incorporating Neutralizing Mutations (ScIN) was developed and validated. This method is 

undergoing benchmarking against the previously developed methods AvNAPSA and Rosetta 

Supercharge using systematically chosen, hyperstable de novo protein scaffolds. The resulting 

dataset could enable a more comprehensive understanding of the factors influencing the success 

of supercharging efforts and thus enable better access to the potential applications of 

supercharged proteins. 
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Supplementary Information 

Figure S1. FASTA sequences of DNA inserts cloned into pTwist Kan Medium Copy for use in 

this study 

>1P68_A- 

TAATACGACTCACTATAGGGGAATTGTGAGCGGATAACAATTCCCCTCTAGAAATAATTTTGTTT

AACTTTAAGAAGGAGATATACATATGTACGGTGAGCTTAACGACCTGCTGGAAGATTTGCAGGA

GGTCCTTGAAAACCTTCACGAAAATTGGCATGGTGGTGAGGATGACCTCCATGATGTCGATGACC

ATTTAGAAGACGTTATTGAGGATATCCATGATTTTATGGAAGGCGGCGGCAGCGGTGGCGAACTC

GAAGAAATGATGGAAGAGTTTCAGGAAGTGCTGGATGAACTGAACGACCACCTTGAGGGTGGCG

AACATACCGTGCATCACATTGAGGAAAACATTGAGGAAATCTTTCATCACCTGGAAGAACTGGTG

CATGAGCTCGAGCACCACCACCACCACCACTGAGATCCGGCTGCTAACAAAGCCCGAAAGGAAG

CTGAGTTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTCTAAACGGGTC

TTGAGGGGTTTTTTGCTGAAAGGAGGAACTATATCCGGAT 

>1P68_A+ 

TAATACGACTCACTATAGGGGAATTGTGAGCGGATAACAATTCCCCTCTAGAAATAATTTTGTTT

AACTTTAAGAAGGAGATATACATATGTATGGCAAATTAAATAAACTCTTGAAAAAGTTGCAGAA

GGTGCTGAAGAACTTACACAAGAATTGGCATGGCGGCAAGAAGAAACTGCATAAGGTGGACAAA

CACCTGAAAAAAGTGATTAAGGACATCCACAAGTTCATGAAAGGCGGCGGCAGCGGTGGGAAGT

TGAAAAAAATGATGAAAGAATTTCAAAAGGTCCTGAAGGAACTGAATAAACATCTGAAAGGAGG

AAAACATACTGTGCACCATATTGAAAAAAATATCAAAAAAATCTTTCACCATCTGAAAAAGCTTG

TACATCGCCTCGAGCACCACCACCACCACCACTGAGATCCGGCTGCTAACAAAGCCCGAAAGGA

AGCTGAGTTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTCTAAACGGG

TCTTGAGGGGTTTTTTGCTGAAAGGAGGAACTATATCCGGAT 
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>1P68_S- 

TAATACGACTCACTATAGGGGAATTGTGAGCGGATAACAATTCCCCTCTAGAAATAATTTTGTTT

AACTTTAAGAAGGAGATATACATATGTATGGGGAACTGAATGAGTTGCTGGAAGAACTCCAGGA

AGAACTGAGCGAACTGCATAACAACTGGCATGGGGACTCGGATGAACTCCATGATGTGGATAAC

CATCTGCAAGAAGTGATTGAAGATATCCATGATTTTATGCAAGGCGACGGTAGTGGGGGGAAAC

TGCAAGAGATGATGTCGGAGTTCGAACAGGTGCTGGAGGAGCTGAACAACCACTTAGATGGCGG

CGAGGAGACGGTTCACCATATCGAACAGAATATTAACGAAATTTTTCACCATCTGGAGGAACTGG

TGCATCGTCTCGAGCACCACCACCACCACCACTGAGATCCGGCTGCTAACAAAGCCCGAAAGGA

AGCTGAGTTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTCTAAACGGG

TCTTGAGGGGTTTTTTGCTGAAAGGAGGAACTATATCCGGAT 

>1P68_S+ 

TAATACGACTCACTATAGGGGAATTGTGAGCGGATAACAATTCCCCTCTAGAAATAATTTTGTTT

AACTTTAAGAAGGAGATATACATATGTATGGTAAATTGAAAAAGCTGTTGAAAAAATTGCAAAA

AGTCCTCAAGAAATTACATAAGAAATGGCATGGAGGCAAAAAAAACCTTAAGAAAGTTGACAAA

CACTTGCAAAAAGTTATTAAAGATATCAAAAAATTCATGCAGGGGAAAGGCTCGGGCGGCAAGC

TGAAGAAAATGATGAAAAAGTTCCAGAAAGTTCTCAAGGAACTGAAGAAACACCTTAAAGGTGG

GAAAAAGACGGTTCGCCACATCAAACAAAATATTAAAGAAATCTTCAAACATCTGAAAAAATTA

GTGAAACGTCTCGAGCACCACCACCACCACCACTGAGATCCGGCTGCTAACAAAGCCCGAAAGG

AAGCTGAGTTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTCTAAACGG

GTCTTGAGGGGTTTTTTGCTGAAAGGAGGAACTATATCCGGAT 
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>1P68_R- 

TAATACGACTCACTATAGGGGAATTGTGAGCGGATAACAATTCCCCTCTAGAAATAATTTTGTTT

AACTTTAAGAAGGAGATATACATATGGATGGCAAACTTGACGATCTGTTAGAAGATTTAGAAGA

AGTGGATAAAAACTTGGAAAAAAACGATGAAGGTGGCAAAGACAACCTGCATGACGTTGACGA

AGATCTGCAAAACGTTATTGAGGACATCCACGATGAAGATCAGGGCGG 

TGGTTCCGGCGGTAAACTGCAGGAAATGATGAAAGAATTCCAGCAGGTCGATGATGAATTGAAT

AATCATCTTCAAGGCGGTAAAGACACCGTTCATGATATTGAGGACGAAATTAAGGAGGAATTTC

ATCACCTGGAAGAACTGGTACACCGTCTCGAGCACCACCACCACCACCACTGAGATCCGGCTGCT

AACAAAGCCCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACCCC

TTGGGGCCTCTAAACGGGTCTTGAGGGGTTTTTTGCTGAAAGGAGGAACTATATCCGGAT 

>1P68_R+ 

TAATACGACTCACTATAGGGGAATTGTGAGCGGATAACAATTCCCCTCTAGAAATAATTTTGTTT

AACTTTAAGAAGGAGATATACATATGAAAGGCAAACTTCGTGATCTGTTAGAGGATTTGCGTGAG

GTGCTTAAGAATCTGAAGAAAAATTGGCGCGGCGGGAAAGATCGTTTGCACGATGTAGACCGTC

GCCTGCAGAATGTGATCGAAAAAATCCATAAAAAGATGCAGGGCGGTGGTTCCGGTGGCAAGTT

GCAAGAAATGAAGAAAGAGTTCCAAAAGGTGCGTGACGAATTGAACAACCATCTTCAGGGCGGG

AAAAAAACCGTGCATCGCATCGAACAACGTATTAAACGCCGTTTCCACCATCTGGAAGAACTCGT

ACATCGTCTCGAGCACCACCACCACCACCACTGAGATCCGGCTGCTAACAAAGCCCGAAAGGAA

GCTGAGTTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTCTAAACGGGT

CTTGAGGGGTTTTTTGCTGAAAGGAGGAACTATATCCGGAT 
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>1P68_WT 

TAATACGACTCACTATAGGGGAATTGTGAGCGGATAACAATTCCCCTCTAGAAATAATTTTGTTT

AACTTTAAGAAGGAGATATACATATGTACGGGAAACTCAATGATCTGCTGGAAGACTTGCAGGA

AGTGCTGAAAAACCTTCATAAAAACTGGCATGGCGGTAAAGATAACTTACATGATGTCGACAAC

CACCTTCAGAACGTAATCGAAGACATCCATGATTTTATGCAAGGGGGCGGCTCCGGTGGTAAACT

CCAAGAAATGATGAAGGAGTTCCAACAGGTGCTGGACGAACTGAACAACCATCTTCAGGGGGGC

AAGCACACGGTGCATCATATCGAGCAAAACATTAAAGAAATCTTTCACCACCTGGAAGAATTGG

TCCACCGCCTCGAGCACCACCACCACCACCACTGAGATCCGGCTGCTAACAAAGCCCGAAAGGA

AGCTGAGTTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTCTAAACGGG

TCTTGAGGGGTTTTTTGCTGAAAGGAGGAACTATATCCGGAT 

>2LN3_AV- 

TAATACGACTCACTATAGGGGAATTGTGAGCGGATAACAATTCCCCTCTAGAAATAATTTTGTTT

AACTTTAAGAAGGAGATATACATATGGGCTTGACCGAAACTATCACGTCTGAAGATAAAGAAGA

ATTGCTGGAAATCGCCCTCGAATTCATCAGCGAGGGCCTGGACCTGGAGGTGGAGTTTGATAGCA

CGGATGATGAAGAAATTGAAGAATTTGAAGAAGATATGGAAGATCTGGCGGAAGAAACGGGCG

TGGAAATTGAAAAAGAGTGGGAGGGCGATAAGCTCCGCATTCGTCTTGAGGGCTCCCTCGAACA

CCACCATCACCACCACCTCGAGCACCACCACCACCACCACTGAGATCCGGCTGCTAACAAAGCCC

GAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTCT

AAACGGGTCTTGAGGGGTTTTTTGCTGAAAGGAGGAACTATATCCGGAT 
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>2LN3_AV+ 

TAATACGACTCACTATAGGGGAATTGTGAGCGGATAACAATTCCCCTCTAGAAATAATTTTGTTT

AACTTTAAGAAGGAGATATACATATGGGTTTAACCCGCACAATCACGAGCAAGAAGAAGAAGAA

GCTCCTGAAAATCGCATTGAAGTTCATTAGCAAAGGGCTGGATCTTGAAGTCGAGTTCAAGTCGA

CGAAGAAGAAGGAAATTAAGAAGTTTGAGCGTGATATGGAGAAGTTGGCAAAGAAGACCGGAG

TCAAGATCAAGAAGAAGTGGAAGGGGAAGAAGCTGCGCATTCGCCTTAAGGGCAGCTTAAAGCA

CCACCACCACCACCACCTTGAACATCATCATCATCATCATTAAGATCCGGCTGCTAACAAAGCCC

GAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTCT

AAACGGGTCTTGAGGGGTTTTTTGCTGAAAGGAGGAACTATATCCGGAT 

>2LN3_S- 

TAATACGACTCACTATAGGGGAATTGTGAGCGGATAACAATTCCCCTCTAGAAATAATTTTGTTT

AACTTTAAGAAGGAGATATACATATGGGTGAGACCACGACCATTACCAGTCAAGATAAGGAAGA

GCTGCTGGAGATTGCGCTGCAATTTATCTCGCAGGGATTAGATCTTGAAGTTGAATTCGATAGCA

CCGATGAGACCGAAATCGAAGAATTCGAGCAGGATATGGAAGAGCTGGCGACGCAGACAGGCG

TGGAAATCCAGCAGCAGTGGCAGGGTAACACGCTGCGTATCCGTCTGAAAGGAAGCCTGGACCA

CCATCACGATGAGCACCTCGAGCACCACCACCACCACCACTGAGATCCGGCTGCTAACAAAGCC

CGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTC

TAAACGGGTCTTGAGGGGTTTTTTGCTGAAAGGAGGAACTATATCCGGAT 

>2LN3_S+ 

TAATACGACTCACTATAGGGGAATTGTGAGCGGATAACAATTCCCCTCTAGAAATAATTTTGTTT

AACTTTAAGAAGGAGATATACATATGCGCCAGACCCGCGTTACAGTTAAACCGGGGCGTACCTA

CCAAGTAAAGGTGAAACCCGGAAAACGCGTGGAGATTCAGGCGAAAGGCCCGGCGGAATTCCA

GGGTGGCGGTACCAAAACCCGCCTGAAACCCGGACAGAGCTATAAATTTAAAAATAAAACGTCA

CAACCGTTGAAAATCAAATTGCGGAACCTGTCCAAAAAACCGATTACCTTTCGTATTAAAGAAGA

GCTCGAGCACCACCACCACCACCACTGAGATCCGGCTGCTAACAAAGCCCGAAAGGAAGCTGAG

TTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTCTAAACGGGTCTTGAG

GGGTTTTTTGCTGAAAGGAGGAACTATATCCGGAT 
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>2LN3_R- 

TAATACGACTCACTATAGGGGAATTGTGAGCGGATAACAATTCCCCTCTAGAAATAATTTTGTTT

AACTTTAAGAAGGAGATATACATATGGGTTTGGACCGCACCATTACCTCAGATAATAAAGAAGA

ACTGCTGGAAATCGCCGAAAAATTCATTGAACAGGGGCTGGATCTGGAGGTTGAGTTCGATTCGG

ATGATGATAAAGAAGAAGAGGAATTTGAACGTGACATGGAAGACCTCGCTAAAAAAACCGGTGT

GCAAATTGATAAACAATGGCAAGGCAATGATCTCCGTATCCGGCTGAAAGGTGATGACGAAGAT

CACCACCATCATCACCTCGAGCACCACCACCACCACCACTGAGATCCGGCTGCTAACAAAGCCCG

AAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTCTA

AACGGGTCTTGAGGGGTTTTTTGCTGAAAGGAGGAACTATATCCGGAT 

>2LN3_R+ 

TAATACGACTCACTATAGGGGAATTGTGAGCGGATAACAATTCCCCTCTAGAAATAATTTTGTTT

AACTTTAAGAAGGAGATATACATATGGGTTTGACCCGCACCATTAAGAGTCAGAATAAGGAAGA

ATTATTGGAGATCGCAAAAAAATTTATCAAAAAAGGGCTGGACCTCGAGGTGGAATTCCGTAGT

ACCGACGATAAGAAAATTGAAGAATTTGAGCGTAAAATGGAAGATCTGGCCAAGAAAACCGGTC

GTCAAATCCAGAAACAGTGGCAGGGTAATAAATTGCGTATCCGCCTGAAAGGCTCGAAAAAACA

TCATCACCATCATCATCTCGAGCACCACCACCACCACCACTGAGATCCGGCTGCTAACAAAGCCC

GAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGA 

GCAATAACTAGCATAACCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGTTTTTTGCTGAA 

AGGAGGAACTATATCCGGAT 
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>2LN3_WT 

TAATACGACTCACTATAGGGGAATTGTGAGCGGATAACAATTCCCCTCTAGAAATAATTT 

TGTTTAACTTTAAGAAGGAGATATACATATGGGCCTTACACGTACCATTACGAGCCAGAA 

CAAAGAGGAGCTGTTAGAAATCGCCCTGAAATTTATCTCTCAGGGTCTTGATTTAGAAGT 

TGAATTTGATAGCACCGACGACAAAGAAATTGAGGAGTTCGAGCGCGATATGGAAGACTT 

AGCGAAAAAAACCGGCGTGCAAATTCAGAAACAGTGGCAGGGCAATAAATTGCGCATCCG 

TTTGAAAGGCAGTCTGGAACATCATCATCATCATCACCTCGAGCACCACCACCACCACCA 

CTGAGATCCGGCTGCTAACAAAGCCCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGA 

GCAATAACTAGCATAACCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGTTTTTTGCTGAA 

AGGAGGAACTATATCCGGAT 

>2LV8_A- 

TAATACGACTCACTATAGGGGAATTGTGAGCGGATAACAATTCCCCTCTAGAAATAATTT 

TGTTTAACTTTAAGAAGGAGATATACATATGCTGCTCTACGTCCTGATTATTAGTGATGA 

TGAGGAACTTATCGAGGAAGCGGAAGAAATGGCCGAAGAAGCCGATCTGGAATTAGAGAC 

TGTTGAAACCGAGGATGAACTGGAGGAATATCTGGAAGAATTCGAAGAAGAATCAGAAGA 

TATTAAGGTGCTGATCTTGGTTTCTGATGATGAAGAACTGGATAAAGCGAAAGAATTAGC 

GCAGGAAATGGAAATTGATGTTCGCACACGCGAGGTAACCAGCCCGGACGAAGCCAAGGA 

ATGGATCGAGGAATTCAGCGAAGAAGGGGGTAGCCTGGAACATCACCATCATCATCATCT 

CGAGCACCACCACCACCACCACTGAGATCCGGCTGCTAACAAAGCCCGAAAGGAAGCTGA 

GTTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTCTAAACGGGT 

CTTGAGGGGTTTTTTGCTGAAAGGAGGAACTATATCCGGAT 
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>2LV8_A+ 

TAATACGACTCACTATAGGGGAATTGTGAGCGGATAACAATTCCCCTCTAGAAATAATTT 

TGTTTAACTTTAAGAAGGAGATATACATATGCTGCTTTACGTATTGATTATTAGCAAAAA 

AAAGAAACTCATTAAAAAAGCACGTAAGATGGCGAAAAAAGCTAAACTCAAACTGCGCAC 

GGTGAAAACTAAGAAAAAACTTAAGAAGTATCTCAAAAAATTTCGCAAAAAATCGAAAAA 

AATTAAAGTGCTGATTCTGGTTTCGAAAAAAAAAGAACTGAAAAAAGCTAAAAAGTTAGC 

CCAGAAGATGAAAATCGACGTCCGTACTCGTAAAGTCACGTCGCCGAAAAAAGCCAAGCG 

TTGGATCAAAGAATTTAGCAAGAAAGGGGGTTCGCTGGAACATCACCACCACCACCACCT 

CGAGCACCACCACCACCACCACTGAGATCCGGCTGCTAACAAAGCCCGAAAGGAAGCTGA 

GTTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTCTAAACGGGT 

CTTGAGGGGTTTTTTGCTGAAAGGAGGAACTATATCCGGAT 

>2LV8_S- 

TAATACGACTCACTATAGGGGAATTGTGAGCGGATAACAATTCCCCTCTAGAAATAATTT 

TGTTTAACTTTAAGAAGGAGATATACATATGCTGCTGTATGTGCTCATCATTAGTAATGA 

CGAAGATCTGATTGATGAAGCACGTGAAATGGCCGAGCAGGCGAATCTGGACTTGCGCAC 

AGTTACCACCGAAGAGGAGTTAAAAACGTACCTGGAAGAATTTCAGAACGAAAGCGATGA 

TATTAAGGTTCTCATCCTGGTCAGTGAAGATGAAGAATTAGAAAAGGCAAAAGAACTTGC 

CCAGCAAATGGAAATTGACGTTCGGACGCGGCAAGTCACTGATCCAGAAGAGGCTAAAAC 

ATGGATCAAAGAATTCTCTGAGGAAGGGGGCTCTGAAGAACACGACGATCACGATCACCT 

CGAGCACCACCACCACCACCACTGAGATCCGGCTGCTAACAAAGCCCGAAAGGAAGCTGA 

GTTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTCTAAACGGGT 

CTTGAGGGGTTTTTTGCTGAAAGGAGGAACTATATCCGGAT 
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>2LV8_S+ 

TAATACGACTCACTATAGGGGAATTGTGAGCGGATAACAATTCCCCTCTAGAAATAATTT 

TGTTTAACTTTAAGAAGGAGATATACATATGTTGCTTTACGTGCTGATTATTTCGAATGA 

TAAAAAACTGATTAAGGAAGCACGCAAAATGGCAAAAAAAGCAAACCTGCAGCTGCGCAC 

TGTGCGGACCAAAAAACAATTGAAAAAATATCTGAAACAGTTTAAGAAAAATAAACGCAA 

CATTAAGGTCCTGATTCTGGTATCCCGGAATAAAGAACTGAAAAAGGCTAAAACCCTGGC 

TCAGCGCATGAATATCGATGTGCGTACTCGCAAGGTCACAAGCCCAAATGAAGCCAAACG 

CTGGATTAAACAGTTTAGTCAGCAGGGTGGATCCAAACAGCATCACCACAAGAAGCATCT 

CGAGCACCACCACCACCACCACTGAGATCCGGCTGCTAACAAAGCCCGAAAGGAAGCTGA 

GTTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTCTAAACGGGT 

CTTGAGGGGTTTTTTGCTGAAAGGAGGAACTATATCCGGAT 

>2LV8_R- 

TAATACGACTCACTATAGGGGAATTGTGAGCGGATAACAATTCCCCTCTAGAAATAATTT 

TGTTTAACTTTAAGAAGGAGATATACATATGCTGCTGTACGTTTTAATCATTAGCGACGA 

CAAAGACCTGATCGAGGAGGCGCGTAAGATGGCGGAGAAAGCAAACCTGGAGCTGCGTAC 

CGTCAAAACGGAGGATGAACTCAAAAAGTACTTGGAGGAGTTCGAAGAAGAAGACGATAA 

TATCAAGGTACTCATTCTGGTCAGTAATGATGAAGAACTTGACAAAGCAAAAGAACTGGC 

GCAAAAGATGGAAATCGACGTGCGCACACGCAAAGTGACCAGCCCGGATGAAGCAAAACG 

CTGGATTAAAGAATTCTCAGAAGAGGGTGGCTCAGAAGAACACGAAGACGACCACCATCT 

CGAGCACCACCACCACCACCACTGAGATCCGGCTGCTAACAAAGCCCGAAAGGAAGCTGA 

GTTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTCTAAACGGGT 

CTTGAGGGGTTTTTTGCTGAAAGGAGGAACTATATCCGGAT 
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>2LV8_R+ 

TAATACGACTCACTATAGGGGAATTGTGAGCGGATAACAATTCCCCTCTAGAAATAATTT 

TGTTTAACTTTAAGAAGGAGATATACATATGTTGCTGTATGTTTTAATCATTTCGAAAAA 

GAAGAAACTGATCGAAGAAGCGCGTAAAATGGCAGAGAAAGCGAACTTAGAGCTGCGTAC 

GGTCAAAACCGAGAAAGAACTGAAAAAATACTTGAAGAAATTCCGCAAACGGCGTAAAAA 

CATCAAGGTGTTGATCCTGGTGTCGAAAAAGAAGGAACTGAAGAAAGCAAAAAAACTGGC 

GCAGAAAATGAAAATTGACGTGCGCACCCGTAAAGTGACGAAACCTGACAAAGCTAAACG 

TTGGATCAAGGAATTTAGTGAAAAAGGCGGGTCGAAGGAGCATAAAAAACATCATCACCT 

CGAGCACCACCACCACCACCACTGAGATCCGGCTGCTAACAAAGCCCGAAAGGAAGCTGA 

GTTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTCTAAACGGGT 

CTTGAGGGGTTTTTTGCTGAAAGGAGGAACTATATCCGGAT 

>2LV8_WT 

TAATACGACTCACTATAGGGGAATTGTGAGCGGATAACAATTCCCCTCTAGAAATAATTT 

TGTTTAACTTTAAGAAGGAGATATACATATGCTGTTGTATGTTCTGATTATTAGCAACGA 

TAAGAAACTGATCGAAGAAGCGCGCAAGATGGCCGAAAAAGCCAACCTGGAACTGCGCAC 

CGTCAAAACCGAAGATGAGCTGAAAAAATATCTGGAAGAGTTTCGTAAGGAGTCACAAAA 

CATCAAGGTGCTGATCCTGGTCAGTAACGATGAGGAACTGGATAAAGCGAAAGAACTGGC 

GCAGAAAATGGAAATCGATGTTCGCACCCGGAAAGTTACTAGCCCCGACGAGGCTAAACG 

CTGGATTAAAGAATTTTCCGAGGAAGGTGGGAGCCTGGAACATCATCATCACCACCACCT 

CGAGCACCACCACCACCACCACTGAGATCCGGCTGCTAACAAAGCCCGAAAGGAAGCTGA 

GTTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTCTAAACGGGT 

CTTGAGGGGTTTTTTGCTGAAAGGAGGAACTATATCCGGAT 
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>6D0T_A- 

TAATACGACTCACTATAGGGGAATTGTGAGCGGATAACAATTCCCCTCTAGAAATAATTT 

TGTTTAACTTTAAGAAGGAGATATACATATGGTTGATGCGGCGGAATATTTTCCTGGTAC 

CTGGGAGTTTGAATTCGAAAGCAGTGACGGAGAAGAGTATGAAGGTACAGTGGAAATGGA 

ACCTGAGACCCCGACCGAGATCGAAATTGAATTTGAAGGGGAGTCTAGTGACGGTGAACC 

GGTGGAAGGCGAAGGCTCTATCGAAGTAGAATCTCCCTACGAGTACGAATTTGAAATGGA 

ATCGAGCGATGGAGCGGAGTGGGAGGGTACCCTGGAAGTTGAGTCCCCGGATTCTGTGGA 

AGTTGAATTTGAGTCCAGTGATGGCCGCGAATATTCCGGCGAATTCCGCCGTGAAGAGGG 

TCTCGAGCACCACCACCACCACCACTGAGATCCGGCTGCTAACAAAGCCCGAAAGGAAGC 

TGAGTTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTCTAAACG 

GGTCTTGAGGGGTTTTTTGCTGAAAGGAGGAACTATATCCGGAT 

>6D0T_A+ 

TAATACGACTCACTATAGGGGAATTGTGAGCGGATAACAATTCCCCTCTAGAAATAATTT 

TGTTTAACTTTAAGAAGGAGATATACATATGGTTAAAGCGGCGAAATACTTCCCTGGAAC 

GTGGAAGTTCCGTTTCCGCAGCTCTAAAGGCAAGGAATACCGGGGGACCGTCAAAATGAA 

GCCCCGTACGCCGACCAAAATTGAAATCCGGTTTAAAGGTAAATCCAGCAAAGGTCGCCC 

GGTGAAAGGCCGTGGCAGTATTGAAGTACGTTCCCCGTATAAGTACCGTTTCGAAATGAA 

ATCTAGTGATGGAGCTCGGTGGAAGGGGACGCTTAAAGTCCGTTCGCCCAAATCCGTCAA 

AGTGCGTTTCAAAAGCTCAAAGGGACGCAAATATAGTGGCGAATTTCGCCGCAAAAAGGG 

GCTCGAGCACCACCACCACCACCACTGAGATCCGGCTGCTAACAAAGCCCGAAAGGAAGC 

TGAGTTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTCTAAACG 

GGTCTTGAGGGGTTTTTTGCTGAAAGGAGGAACTATATCCGGAT 
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>6D0T_S- 

TAATACGACTCACTATAGGGGAATTGTGAGCGGATAACAATTCCCCTCTAGAAATAATTT 

TGTTTAACTTTAAGAAGGAGATATACATATGGTTGACGCGGCCCAATACTTTGAAGGCAC 

CTGGGAATTCCGTTTTCGTTCCTCAGACGGCAAGGAATACGAGGGTACGGTGGAAATGCA 

ACCGACGACCCCCACGGAAATCGAAATTCAGTTCCAGGGGCAGTCCAGCGACGGGGAACC 

GGTAGAGGGCTCAGGATCGATCGAAGTCACCAGTCCAGAAGAGTACCGTTTCGAAATGCA 

GTCTAGTGACGGCGCGACGTGGGAGGGCACGCTGCAGGTCCAATCACCGGAGAGCGTCGA 

GGTCCAATTCGAATCATCGGATGGACGCGAATATAGCGGCGAGTTTCAACGTCAGGAAGG 

CCTCGAGCACCACCACCACCACCACTGAGATCCGGCTGCTAACAAAGCCCGAAAGGAAGC 

TGAGTTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTCTAAACG 

GGTCTTGAGGGGTTTTTTGCTGAAAGGAGGAACTATATCCGGAT 

>6D0T_S+ 

TAATACGACTCACTATAGGGGAATTGTGAGCGGATAACAATTCCCCTCTAGAAATAATTT 

TGTTTAACTTTAAGAAGGAGATATACATATGGTCAACGCGGCGAAATATTTCAAAGGCAC 

CTGGAGCTTTCGTTTCCGGAGCAAACAAGGACGCCAATATAAAGGCACCGTTGAGATGCG 

TCCTAAAACCCCCACACAGATTGAAATTCGTTTCAAGGGTAAGTCGAGCAGCGGGAAACC 

GGTTACCGGTCGCGGCTCCATCGAAGTGCGCAGCCCTAAGCAGTATCGGTTTAAAATGCA 

GAGCAGCCAAGGGGCGAAATGGAAAGGAACGCTGCAGGTCCGCAGCCCGAAAAAAGTACA 

GGTTAAATTCAAATCCAGCACCGGTCGCACGTATAGCGGAGAATTCAAACGTCAGAATAA 

ACTCGAGCACCACCACCACCACCACTGAGATCCGGCTGCTAACAAAGCCCGAAAGGAAGC 

TGAGTTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTCTAAACG 

GGTCTTGAGGGGTTTTTTGCTGAAAGGAGGAACTATATCCGGAT 
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>6D0T_R- 

TAATACGACTCACTATAGGGGAATTGTGAGCGGATAACAATTCCCCTCTAGAAATAATTT 

TGTTTAACTTTAAGAAGGAGATATACATATGGTGGACGCAGCAGAATATTTTCCGGGTAC 

CTGGGAATTCCGCTTTCGTAGTGAGGACGGCAAAGAGTACCGCGGGACGGTTGAGATGGA 

ACCTGAGACGCCGACCGAAATTGAAATTCGGTTCGAAGGCGAAGACTCTGATGGCCGTCC 

AGTCGAAGGAGAAGGAAGCATCGAGGACCGCAGTCCGGACGAATATCGCTTTGAAATGGA 

AAGCAGTGATGGGGCCCGCTGGGAGGGTACTCTGCAAGTCCGCAGTCCGGACAGCGTGGA 

AGTGCGGTTCAAAGAAAGCGATGGCCGTGAATATTCTGGTGAATTTCGTCGGCAGGAAGG 

CCTCGAGCACCACCACCACCACCACTGAGATCCGGCTGCTAACAAAGCCCGAAAGGAAGC 

TGAGTTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTCTAAACG 

GGTCTTGAGGGGTTTTTTGCTGAAAGGAGGAACTATATCCGGAT 

>6D0T_R+ 

TAATACGACTCACTATAGGGGAATTGTGAGCGGATAACAATTCCCCTCTAGAAATAATTT 

TGTTTAACTTTAAGAAGGAGATATACATATGGTCAAAGCCGCGAAATATTTTCCCGGCAC 

CTGGGAGTTCCGCTTTCGTTCAAAAAAAGGGAAACGCTATCGCGGCACCGTAGAAATGCG 

TCCACGTCGGCCGACCGAAATCGAGATTCGCTTCAAAGGTCGTCGCTCACGGGGTCGCCC 

GGTAGAAGGCCGCGGATCGATCGAAAAGCGCTCGCCGCGGGAATATCGCTTTCGCATGCG 

TAGTTCCGATGGTCGTCGCTGGCGCGGTACTTTGCAAGTTCGGAGTCCGCGTTCGGTGCG 

CGTTCGGTTCAAAAGCTCCGACGGGCGGGAATACAGCGGTGAATTCCGTCGTCAAGAAGG 

CCTCGAGCACCACCACCACCACCACTGAGATCCGGCTGCTAACAAAGCCCGAAAGGAAGC 

TGAGTTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTCTAAACG 

GGTCTTGAGGGGTTTTTTGCTGAAAGGAGGAACTATATCCGGAT 
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>6D0T_WT 

TAATACGACTCACTATAGGGGAATTGTGAGCGGATAACAATTCCCCTCTAGAAATAATTT 

TGTTTAACTTTAAGAAGGAGATATACATATGGTTGACGCTGCGCAGTATTTCCCGGGAAC 

GTGGGAATTCCGTTTTCGGAGTAGCGATGGCAAAGAATACCGTGGCACGGTGGAAATGCA 

GCCCCGCACGCCAACGGAAATTGAGATCCGTTTTAAGGGCCAATCGAGTGACGGCCGTCC 

TGTTGAGGGTCGCGGGTCTATTGAAGTGCGTAGTCCGTACGAGTATCGCTTTGAAATGCA 

GAGCTCGGACGGGGCGCGCTGGGAAGGTACGCTGCAAGTTCGTTCGCCGGATTCCGTCGA 

AGTCCGCTTTAAAAGCAGCGATGGCCGCGAATATAGCGGGGAATTCCGTCGCCAAGAGGG 

CCTCGAGCACCACCACCACCACCACTGAGATCCGGCTGCTAACAAAGCCCGAAAGGAAGC 

TGAGTTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTCTAAACG 

GGTCTTGAGGGGTTTTTTGCTGAAAGGAGGAACTATATCCGGAT 

>6E5C_A- 

TAATACGACTCACTATAGGGGAATTGTGAGCGGATAACAATTCCCCTCTAGAAATAATTT 

TGTTTAACTTTAAGAAGGAGATATACATATGACCGAGGAAACAGAAGTCACGGTCGATCC 

AGGGGAAGAATACGAAGTTGAAGTAGACCCGGGCACCGAAGTCGAGATTCAGGCGGAAGG 

TCCTGCAGAGTTTGAGGGTGGTGGCACCGAAACTGAGCTGGATCCGGGCGAATCGTACGA 

ATTCGAGAACTTAACCTCAGAGCCGTTGGAAATTGAACTCCGGAACCTGTCTGATACTCC 

GATTGAGTTTGAGATCGAAGAAGAACTCGAGCACCACCACCACCACCACTGAGATCCGGC 

TGCTAACAAAGCCCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAGCAATAACTAGC 

ATAACCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGTTTTTTGCTGAAAGGAGGAACTAT 

ATCCGGAT 
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>6E5C_A+ 

TAATACGACTCACTATAGGGGAATTGTGAGCGGATAACAATTCCCCTCTAGAAATAATTT 

TGTTTAACTTTAAGAAGGAGATATACATATGACCCGCAAAACCAAAGTGACCGTAAAACC 

GGGCAAGAAATATAAGGTCAAAGTAAAACCCGGAACACGTGTGGAAATCCAGGCGAAAGG 

GCCGGCGGAATTCAAAGGAGGGGGGACGCGTACACGTCTGAAGCCGGGCAAAAGCTATAA 

ATTTAAGAACCTGACGTCAAAGCCGCTTCGCATCCGCCTCCGCAACCTCTCCAAAACGCC 

GATCAAGTTCCGCATTCGCGAGAAGCTCGAGCACCACCACCACCACCACTGAGATCCGGC 

TGCTAACAAAGCCCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAGCAATAACTAGC 

ATAACCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGTTTTTTGCTGAAAGGAGGAACTAT 

ATCCGGAT 

>6E5C_S- 

TAATACGACTCACTATAGGGGAATTGTGAGCGGATAACAATTCCCCTCTAGAAATAATTT 

TGTTTAACTTTAAGAAGGAGATATACATATGACGCAGGAAACCAGCGTTACAGTTGAACC 

CGGCGATGAATACGAAGTTGAGGTAGAACCAGGTACCCAGGTGGAAATTCAGGCAAAGGG 

CCCGGCCGAATTCGAGGGTGGTGGGACCACCGACCAATTAAATCCGGGTGAAAGTTACAC 

GTTTGAAAATTTAACGGATGAACCGCTGACCATTACATTACGCAATCTTTCCGAAACTCC 

GATTGAGTTCACCATCACTGAAGACCTCGAGCACCACCACCACCACCACTGAGATCCGGC 

TGCTAACAAAGCCCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAGCAATAACTAGC 

ATAACCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGTTTTTTGCTGAAAGGAGGAACTAT 

ATCCGGAT 
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>6E5C_S+ 

TAATACGACTCACTATAGGGGAATTGTGAGCGGATAACAATTCCCCTCTAGAAATAATTT 

TGTTTAACTTTAAGAAGGAGATATACATATGACGCGTCAAACACGCGTTACTGTCAAACC 

TGGGCGTACTTATCAGGTGAAAGTCAAGCCGGGCAAACGTGTAGAGATTCAGGCAAAAGG 

GCCAGCCGAATTTCAGGGCGGCGGGACAAAAACCCGTCTGAAACCTGGGCAAAGCTATAA 

ATTTAAAAATAAAACCTCCCAGCCGTTGAAGATTAAATTACGCAATTTATCCAAGAAACC 

TATTACCTTCCGCATTAAAGAGGAACTCGAGCACCACCACCACCACCACTGAGATCCGGC 

TGCTAACAAAGCCCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAGCAATAACTAGC 

ATAACCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGTTTTTTGCTGAAAGGAGGAACTAT 

ATCCGGAT 

>6E5C_R- 

TAATACGACTCACTATAGGGGAATTGTGAGCGGATAACAATTCCCCTCTAGAAATAATTT 

TGTTTAACTTTAAGAAGGAGATATACATATGGAACGTGAAACCAAAGTCGAGGTAGAACC 

TGGTGAGGAGTACGAGGTTAAAGAGGAGCCGGGGACCCGCGTTGAGATTCAGGCGAAAGG 

CCCGGCAGAGTTCGAGGGTGGTGGTGAACGTACCCGTGAAAACCCAGGTGAATCATATGA 

AGAAGAGAATCTTACTAGCCAACCTCTGCGCGATCGTGAACGTAATCTGTCAGATGAGCC 

CGAGGAGTTTCGGATTCGTGAAGAACTCGAGCACCACCACCACCACCACTGAGATCCGGC 

TGCTAACAAAGCCCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAGCAATAACTAGC 

ATAACCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGTTTTTTGCTGAAAGGAGGAACTAT 

ATCCGGAT 
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>6E5C_R+ 

TAATACGACTCACTATAGGGGAATTGTGAGCGGATAACAATTCCCCTCTAGAAATAATTT 

TGTTTAACTTTAAGAAGGAGATATACATATGCGTCGTGAAACTAAAGTGAAAGTTAAGCC 

CGGCAAAGAAAAGGAAGTTAAAGTAAAACCGGGTACACGCGTCGAGATTCAGGCAAAGGG 

ACCGGCCGAGTTTGAGGGTGGCGGTAAACGCACCCGCTTGAACCCGGGCGAAAGCTACAA 

GTTCGAAAATCTGACCTCGCAGCCATTGCGCATCCGTCTCCGTAACCTCTCCGATAAGCC 

GATTGAATTCCGCATCCGTGAAGAGCTCGAGCACCACCACCACCACCACTGAGATCCGGC 

TGCTAACAAAGCCCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAGCAATAACTAGC 

ATAACCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGTTTTTTGCTGAAAGGAGGAACTAT 

ATCCGGAT 

>6E5C_WT 

TAATACGACTCACTATAGGGGAATTGTGAGCGGATAACAATTCCCCTCTAGAAATAATTT 

TGTTTAACTTTAAGAAGGAGATATACATATGACCCGCGAAACCAAGGTGACAGTGAATCC 

GGGTGAAGAGTATGAAGTTAAAGTAAACCCGGGTACCCGTGTGGAAATTCAGGCTAAGGG 

CCCTGCTGAGTTTGAAGGCGGTGGAACGCGTACCCGTCTTAACCCGGGCGAATCTTATAA 

ATTTGAAAACCTGACTTCCCAGCCACTGCGTATTCGTTTACGCAACCTGTCGGATACGCC 

AATTGAATTTCGTATTCGTGAAGAGCTCGAGCACCACCACCACCACCACTGAGATCCGGC 

TGCTAACAAAGCCCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAGCAATAACTAGC 

ATAACCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGTTTTTTGCTGAAAGGAGGAACTAT 

ATCCGGAT 
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>GFP 

TAATACGACTCACTATAGGGGAATTGTGAGCGGATAACAATTCCCCTCTAGAAATAATTT 

TGTTTAACTTTAAGAAGGAGATATACATATGGGTGGCAGCAAAGGTGAAGAACTGTTTAC 

CGGTGTTGTTCCGATTCTGGTTGAACTGGATGGTGATGTTAATGGCCACAAATTTTCAGT 

TCGTGGTGAAGGCGAAGGTGATGCAACCAATGGTAAACTGACCCTGAAATTTATCTGTAC 

CACCGGCAAACTGCCGGTTCCGTGGCCGACCCTGGTTACCACCCTGACCTATGGTGTTCA 

GTGTTTTAGCCGTTATCCGGATCACATGAAACGCCACGATTTTTTCAAAAGCGCAATGCC 

GGAAGGTTATGTTCAAGAACGTACCATCTCCTTTAAAGATGATGGCACCTATAAAACCCG 

TGCCGAAGTTAAATTTGAAGGTGATACCCTGGTGAATCGCATTGAACTGAAAGGCATCGA 

TTTCAAAGAAGATGGTAATATCCTGGGCCACAAACTGGAATATAATTTCAATAGCCACAA 

CGTGTATATCACCGCAGACAAACAGAAAAATGGCATCAAAGCCAACTTTAAAATCCGGCA 

TAATGTTGAAGATGGCAGCGTTCAGCTGGCAGATCATTATCAGCAGAATACCCCGATTGG 

TGATGGTCCGGTTCTGCTGCCGGATAATCATTATCTGAGCACCCAGAGCGTTCTGAGCAA 

AGATCCGAATGAAAAACGTGATCACATGGTGCTGCTGGAATTTGTTACCGCAGCAGGTAT 

TACCCATGGTATGGATGAACTGTATAAAGGTAGCCTCGAGCACCACCACCACCACCACTG 

AGATCCGGCTGCTAACAAAGCCCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAGCA 

ATAACTAGCATAACCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGTTTTTTGCTGAAAGG 

AGGAACTATATCCGGAT 
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Chapter 3: 

Evaluating Protein Engineering Thermostability Prediction Tools Using an 

Independently Generated Dataset 

Abstract 

Engineering proteins to enhance thermal stability is a widely utilized approach for 

creating industrially relevant biocatalysts. The development of new experimental datasets and 

computational tools to guide these engineering efforts remains an active area of research. Thus, 

to complement the previously reported measures of T50 and kinetic constants, we are reporting an 

expansion of our previously published dataset of mutants for β-glucosidase to include both 

measures of TM and ΔΔG. For a set of 51 mutants, we found that T50 and TM are moderately 

correlated, with a Pearson correlation coefficient and Spearman’s rank coefficient of 0.58 and 

0.47, respectively, indicating that the two methods capture different physical features. The 

performance of predicted stability using nine computational tools was also evaluated on the 

dataset of 51 mutants, none of which are found to be strong predictors of the observed changes in 

T50, TM, or ΔΔG. Furthermore, the ability of the nine algorithms to predict the production of 

isolatable soluble protein was examined, which revealed that Rosetta ΔΔG, FoldX, DeepDDG, 

PoPMuSiC, and SDM were capable of predicting if a mutant could be produced and isolated as a 

soluble protein. These results further highlight the need for new algorithms for predicting 

modest, yet important, changes in thermal stability as well as a new utility for current algorithms 

for prescreening designs for the production of mutants that maintain fold and soluble production 

properties. 
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Introduction 

A common goal of enzyme engineering is the enhancement of thermal stability [1]. For 

industrial applications, improving a protein’s robustness to thermal challenges or half-life at 

elevated temperatures can often be the deciding factor for the commercialization of a biocatalyst 

[2−5]. Currently, the most common approach for improving thermal stability is through directed 

evolution methodologies [6,7], which can be time consuming, costly, and limited in the ability to 

search sequence space. Computational design tools to predictably identify single and 

combinatorial mutations that enhance thermal stability are rapidly developing and growing in 

popularity [8−14]. However, accurate predictions using computational tools to guide protein 

stability design remain an active area of research and is not always successful. The use of large 

datasets on the mutational effect on protein stability, such as ProTherm [15] now maintained by 

ProtaBank [16], is often used to train computational methods for predicting thermal stability. The 

datasets utilized generally consist of the equilibrium constant of unfolding (Ku) or the melting 

temperature of an enzyme (TM) [17]. In our previous study, we determined the thermal stability 

of 79 β-glucosidase B (BglB) variants by finding T50, a type of kinetic stability that is 

determined by the temperature at which a mutant’s residual activity is reduced by 50% after a 

heat challenge over a defined time [4,17,18]. When analyzing this set of mutants using two 

established computational programs (Rosetta ΔΔG and FoldX PSSM) for predicting thermal 

stability, we found that there was no significant correlation between the predictions and the 

observed T50 [19]. 

One hypothesis explaining the poor predictive performance of the algorithms with the 

BglB dataset is that the algorithms are evaluated on TM, a direct measure of structural thermal 

stability. However, the algorithms were being used to predict T50, which is an indirect measure of 
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the protein’s thermal stability [17]. Alternatively, the poor performance could have come from 

the narrow T50 range (extreme variants are +6.06 and −5.02 °C from the wild type (WT)) as the 

algorithms are generally benchmarked on larger changes in thermal stability and ±3 °C may be 

within the error of the currently developed algorithms. In this study, we evaluated both 

hypotheses. To assess if there was a significant difference in TM and T50, we developed a dataset 

of 51 BglB mutants (Figure 1) in which both thermal stability measurements, T50 and TM, were 

measured. Interestingly, for the set of 51 measurements, there was only a modest correlation 

between T50 and TM, with a Pearson coefficient correlation (PCC) and Spearman’s rank 

correlation (SRC) of 0.58 and 0.47, respectively. This highlights the difference in the physical 

properties being measured using these two techniques, TM being the thermal stability of the 

protein’s structural elements and T50 reporting on the thermal stability to irreversible 

denaturation. However, similar to the previous study [19], the relationship between the predicted 

stability with the experimental TM only results in a weak correlation not only with the previous 

algorithms evaluated (Rosetta ΔΔG and FoldX PSSM) but also with five other commonly used 

methods: ELASPIC, DeepDDG, PoPMuSiC, SDM, and AUTO-MUTE. This result suggests that 

while the two measurements are reporting on different physical properties, this is not the key 

factor that led to the low predictive accuracy of established algorithms on this dataset. 

To evaluate the second hypothesis, that the changes in thermal stability of the BglB 

dataset are too small for current algorithms, we investigated the ability of the algorithms to 

predict if a mutation reduced thermal stability to the point that the protein could no longer be 

produced and isolated in a soluble form. Analysis of the computational algorithms to predict 

destabilization to the point where no soluble protein could be isolated showed a significant 

enrichment based on the calculated energetics of the mutants for several algorithms, the most 
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significant of which is for Rosetta ΔΔG. This supports the hypothesis that the lack of 

performance on the BglB dataset is due to the narrow range in changes observed for thermal 

stability. These slight molecular changes, especially interactions that are less than 1 kcal/mol, are 

challenging to accurately model. This highlights the need for new algorithms for predicting 

modest, yet important, changes in thermal stability as well as a new utility for current algorithms 

for prescreening designs for the production of mutants likely to maintain protein structure and be 

produced as a soluble protein. 

 

Methods 

Mutant Selection, Protein Expression, and Purification 

 Out of 79 mutants of BglB that were previously characterized with T50 data [19], 51 

variants with plasmid readily available were transformed into chemically competent Escherichia 

coli BLR (DE3) cells. The variants were produced and purified, as previously described [14]. 

Expression was carried out by growing a 5 mL overnight culture in a 50 mL falcon tube with a 

breathable seal in Terrific broth (TB) medium with kanamycin while shaking at 250 rpm at 

37°C. After the initial overnight culture, cells were spun down and resuspended in fresh TB with 

kanamycin with 1 mM isopropyl β-d-1-thiogalactopyranoside in a 50 mL falcon tube with a 

breathable seal and incubated while shaking at 250 rpm at 18°C for 24 h. Then, the cells were 

spun down, lysed, and purified using immobilized metal ion affinity chromatography, as 

previously described [19]. The purity of the protein samples was analyzed using 12–14% SDS-

PAGE (Figure SI 3-1), and the yield was assessed based on the A280 for proteins that appeared 

>75% pure in the SDS-PAGE analysis. Protein samples were considered expressed if they were 
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detectable in the SDS-PAGE analysis and greater than 0.10 mg/mL using A280, as previously 

described [19]. 

 

Melting Temperature Assay 

The melting temperature (TM) of BglB was determined using the Protein Thermal Shift 

(PTS) kit (Applied Biosystems, from Thermo Fisher Scientific). Standard protocols provided by 

the manufacturer were used. Protein concentrations ranged from 0.1–0.5 mg/mL, and 

fluorescence reading was monitored with a QuantaStudio 3 system from 20 to 90 °C. The 

temperature melting curve was first smoothed with a 20 step sliding window average (Script SI 

3-2). TM was determined from the average of three to four replicates at which the derivative was 

largest, and all melting curves can be found in Figure SI 3-3. 

 

ΔG Calculations from TM 

Calculations were conducted, as previously described [21].  First, we assumed that the 

protein follows the two-state folding mechanism, a binary conversion of native state to full 

denaturation. Second, to derive ΔG°unfolding, the fluorescence intensity was first translated into 

fractions of folded (Pf) and unfolded (Pu) proteins of the linear portion of the graph at different 

temperatures starting from the minimum fluorescence (Fmin) to the maximum fluorescence (Fmax) 

shown in Equation 1. 

 

Equation 1 

By taking a two-state folding–unfolding model, the equilibrium constant of unfolding (Ku) at 

different temperatures is then given by Equation 2. 
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Equation 2 

We plotted ln Ku against 1/T using the van’t Hoff method shown in Equation 3 (Script SI 3-2), 

the is defined by the slope,  is the y-intercept, T is temperature, and R is the ideal gas 

constant. 

 

Equation 3 

The Gibbs free energy of protein-unfolding can then be determined using Equation 4, where 

ΔG°unfolding is the unfolding energy at a TRT of 298 K. All calculations can be found in Script SI 

3-2.  

 

Equation 4 

 

Molecular Modeling 

Seven popular, readily accessible, and recently developed molecular modeling methods, 

many of them force-field and machine-learning-based, were evaluated for their ability to 

recapitulate the experimental data: Rosetta ΔΔG [22],  FoldX [23],  ELASPIC 

[24],  DeepDDG [25],  PoPMuSiC [26],  SDM[27],  and AUTO-MUTE (DDG) [28]. The crystal 

structure of BglB (PDB ID: 2JIE) was used across seven different algorithms. First, using a 

previously described method [19] the 2JIE structure was used as input to the Rosetta 

ΔΔG application and run, as previously described (Script SI 3-5). Briefly, 50 poses of the WT 

and the mutant were generated for which 15 energy terms were reported from the score function 
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used. [22] The three lowest system energy scores out of 50 from WT and the mutant were 

averaged to give the final Rosetta ΔΔG score. Second, for the FoldX position-specific scoring 

metric (PSSM) protocol, the 2JIE structure was first minimized for any potential inaccurate 

rotamer assignment using the RepairPDB application [23]. The repaired PDB structure was 

mutated with single-point mutants and then modeled using FoldX PSSM. The model was scored 

based on 17 terms within the FoldX force-field [23]. Third, the ELASPIC protocol first 

constructed a homology model of the WT using the crystal structure, sequence, molecular, and 

energetics information. Using the standard procedure described, the FoldX algorithm was used to 

construct the mutant model. The final mutational change is predicted using Stochastic Gradient 

Boosted Decision Trees based on the energetic, chemical, and structural features from FoldX 

[24,29]. Fourth, using a curated dataset derived from the Protherm database [15], DeepDDG 

used their previously described shared residue pair neural network structure to make a prediction 

of stability [25]. The DeepDDG output indicated that >0 kcal/mol could be considered stable, 

whereas <0 kcal/mol could be considered unstable. Fifth, PoPMuSiC estimated the stability of 

the WT structure and mutants using 13 statistically potential terms, and an additional two terms 

that account for the volume differences of the residues between WT and the mutant [26].  Sixth, 

the SDM method evaluated mutational changes using a statistical potential energy function based 

on environment-specific substitution tables. These tables consisted of data such as structural 

information, solvent accessibility of the sidechain, and hydrogen bonding [27]. Lastly, similar to 

SDM, the seventh method, AUTO-MUTE, which predicts for ΔTM and ΔΔG, utilized a statistical 

potential to calculate the environmental changes of the residue compared to the WT [28].  The 

protocol was performed using tree regression at 23 °C and pH 7.5. 
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Apart from predicting ΔΔG, two additional methods were used to evaluate the 

algorithms’ ability to predict ΔTM changes. As mentioned above, the AUTO-MUTE prediction 

using the Stability Changes (ΔTM) protocol was performed with tree regression. Also, HotMuSiC 

was used to evaluate the mutational effect with the temperature-dependent potential and other 

statistical potential terms such as solvent accessibility, structural, and sequence-based 

information [30].  

Pearson correlation coefficient (PCC) and Spearman’s rank correlation (SRC) analyses 

were performed between their respective ΔΔG (ΔΔG = ΔGmutants – ΔGWT) or the change in total 

system energy (ΔTSE) of the nine computational methods. Additionally, the available individual 

features within the Rosetta ΔΔG and FoldX PSSM force field were further evaluated against 

the TM dataset for correlation. 

Finally, ΔTSE was evaluated against mutants that could be isolated as a soluble protein 

and those that lost structural integrity and either precipitated or were degraded and therefore 

could no longer be isolated as a soluble protein (nonisolated). A Student’s t-test was used to 

obtain p-values for the nine computational methods. The two categories between isolated and 

nonisolated protein were treated as an independent sample using an unequal variance. 

 

Results 

Evaluating the Relationship between TM and T50 

To the best of our knowledge, there has not been a large dataset (>50 data points) directly 

comparing the TM and T50 relationship for a single set of protein mutants uniformly produced and 

characterized. It is important to distinguish both TM and T50 methods since the measurements are 

quantifying and reporting different structural and functional properties. TM is the temperature at 
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which half the enzyme is found in the unfolded state over the folded state [17,31]. This is often 

evaluated through denaturation assays, where the thermodynamic measurements (ΔGunfolding) can 

be obtained [31]. This method is generally a lower throughput method as purified protein is 

required to obtain an accurate measurement for the structural properties for the mutant being 

evaluated. T50 measures the temperature of half-inactivation that leads to irreversible unfolding 

[11,32], and it is determined by the reduction of half of the enzymatic activity due heat 

challenges [17]. This is a very common assay for protein engineering due to its compatibility 

with high-throughput assays and the ability to use cell lysates to evaluate function. 

To complement our previously measured dataset of T50, 51 of the 92 expressed proteins with 

available plasmids [19] were selected and evaluated for TM using the Protein Thermal Shift assay 

to compare T50 and TM. The WT BglB TM was determined to be 45.97 ± 1.03 °C, while the 

previously determined T50 was 39.9 ± 0.1 °C [19]. When evaluating the entire dataset, 

the TM ranged between 37.1 and 54.3 °C, slightly larger than what was observed for T50, which 

was between 34.9 and 46.0 °C (Figure SI 3-1-2). The variant that had the highest TM in this 

dataset was E167A, with a ΔTM of 54.3 °C (+8.33 °C), which was also observed to have a similar 

increase in T50 compared with the WT (+6.06 °C) [19]. The variant that had the lowest TM in this 

dataset was found to be E225A, with a ΔTM of −8.9 °C, which had a corresponding T50 of −3.1 

°C. 

 The relationship between T50 and TM is plotted in Figure 3-2A. The PCC and SRC of 0.58 

and 0.47, respectively, indicate that the two methods are moderately positively correlated. 

Correlation between methods increased in cases where mutations resulted in extremely stable 

and unstable products, for example, E167A and E225A, respectively. This is an expected result 

for small changes (<3 °C) in thermal stability; the differences in measurement methods would be 
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expected to play a more significant role than for larger changes (>5 °C). The evaluation of 

ΔTM and ΔT50 with experimentally derived ΔΔG is also plotted in Figure 3- 2B and 3-2C, 

respectively. The PCC and SRC show that the TM method and experimentally derived ΔΔG are 

strongly correlated (PCC and SRC of −0.76), compared to those between ΔΔG and T50 (PCC of 

−0.35 and SRC of −0.24). 

 

Evaluating Computational Stability Tools Using the BglB TM Dataset 

The computational evaluation of protein stability of the current experimental TM dataset 

was analyzed in the same manner as our previous study on T50 [19]. An energetically evaluated 

model for each mutant was generated using established computational methods and subsequently 

plotted as a function of TM to evaluate the calculated energies related to the observed TM. The 

PCC and SRC for the most commonly assessed term, the ΔTSE, was found to be highest for 

FoldX PSSM (PCC of −0.34 and SRC of −0.35) with ΔTM (Figure 3-3). Similarly, the FoldX 

PSSM correlations with experimentally derived ΔT50 data were found to be −0.21 and −0.16 for 

PCC and SRC, respectively. The overall relationship between the ΔTSE and the ΔTM thermal 

stability dataset slightly improved for FoldX, DeepDDG, PoPMuSiC, and AUTO-MUTE (Figure 

SI 3-1-3), while Rosetta ΔΔG and ELASPIC remained relatively unchanged with no significant 

correlation. Interestingly, SDM was the only method where the correlation with ΔT50 is stronger 

than that of ΔTM (Figure SI 3-1-3). 

An analysis of individual energetic term from Rosetta ΔΔG and FoldX PSSM did not 

uncover any specific feature in either method’s energetic evaluation that was strongly correlated 

with the TM dataset, as was previously observed for the T50 dataset [19] (Figure SI 3-4). The 

strongest PCC for TM against any of the available energetic terms was 0.39 for the Δbackbone 
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clash term from FoldX PSSM and −0.31 for the Omega energy term from Rosetta ΔΔG. To be 

consistent with the previous performance assessment, we also evaluated the algorithms on 

experimentally derived ΔΔG in this dataset (Figure 3-3). The PCC and SRC of 0.39 and 0.36, 

respectively, between experimental ΔΔG and ΔTSE for FoldX PSSM outperformed six other 

algorithms that were compared. The correlation between experimental ΔΔG with ΔTSE was not 

unexpected as TM showed a correlation with ΔΔG with a PCC and SRC of −0.76 (Figure 3-2B). 

Analysis of AUTO-MUTE and HotMuSiC to predict for ΔTM revealed no significant correlation 

with the experimental ΔTM (Figure SI 3-1-3). 

Based on this analysis, it is apparent that the general performance of all given methods at 

best only weakly correlates with the experimentally determined effects of the mutations. This 

data fails to support the hypothesis that the lack of a previously observed correlation of these 

established computational tools with observed changes in thermal stability in the BglB dataset is 

due to the difference in the physical property being measured. 

 

Prediction of Mutant Soluble Expression 

The current dataset consists primarily of modest changes in thermal stability of <5 °C, 

calculated to be ±4 kcal/mol of the WT, and therefore may be challenging for current 

computational methods to predict. However, this change has only been analyzed in a fraction of 

the 129 mutants tested in the overall BglB dataset. Of the 129 mutants, only 92 were found to be 

produced and isolated in a soluble form. All purification procedures are conducted at ∼20 °C. 

Since the WT has a T50 of 39.9 °C, any reduction in T50 of >18 °C would result in a loss of 

structural stability from which insoluble aggregates or proteolytic degradation would readily 

occur during production and purification. In this case, the proteins would no longer be able to be 
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isolated in a soluble form similar to the WT protein. Therefore, it seemed pertinent to evaluate if 

any of the nine algorithms could differentiate variants in this dataset that could be isolated as a 

soluble protein versus those that were not able to be separated as a soluble protein. 

For this evaluation, all of the previously reported 129 mutants were assessed using the nine 

algorithms following the same methods used for T50 and TM. A mutant was generally considered 

soluble if it was observed on an SDS-PAGE analysis and had an A280 >0.1 mg/mL. The WT 

protein produced using the methods described generally resulted in an average A280 of 1.5 

mg/mL, which would provide a >10-fold change in yield for mutants having an A280 less than 

0.1 mg/mL. While factors other than thermal stability can affect production and isolation of 

soluble protein, in this case, it is assumed that the primary factor that decreases soluble protein 

yield is from denaturation of the mutant protein either during expression or purification. The 

results of this analysis are presented in Figure 3-4. 

 Of the nine algorithms evaluated, Rosetta ΔΔG, FoldX, DeepDDG, PoPMuSiC, and 

SDM can capture the enrichment of mutants isolated as a soluble protein. The differences were 

evaluated for statistical significance using the Student’s t-test, and the highest among the top five 

methods was shown for Rosetta ΔΔG with a p-value of 1.0 × 10–5. In contrast, enrichment was 

lower for ELASPIC, AUTO-MUTE (DDG), AUTO-MUTE (ΔTM), and HotMuSiC with p-values 

of 0.06, 0.38, 0.65, and 0.07, respectively. 

A few outliers were observed in all methods, except for ELASPIC (Figure SI 3-1-4). For 

example, the mutant G15N for both Rosetta ΔΔG and FoldX PSSM was identified as severely 

energetically unfavorable, which is consistent with the observation that this variant was not able 

to be isolated as a soluble protein. 
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Discussion 

 Both TM and T50 are methods commonly used to quantify different physical aspects of 

protein thermal stability; however, to date, there has been relatively little experimental data 

collected to empirically evaluate the relationship of these two measurements. Using a dataset of 

51 protein mutants, we observed that there is a moderate positive correlation (PCC of 0.58 and 

SRC of 0.47) between these two properties. The theory comparing two methods has been 

extensively described in the work of Hei and Clark [33]. Briefly, T50 can only be used to assess 

the temperature at which half of the protein is irreversibly unfolded. Meanwhile, TM provides 

information on the folded state of the protein regardless of whether or not the unfolding events 

are irreversible. Therefore, it is not surprising that there is only a moderate correlation between 

the relationship of T50 and TM. 

Mutants with extreme stability changes, such as E164A (>6 °C), usually exhibit a similar 

magnitude of change in TM and T50 results. However, the majority of the mutants show a change 

of ∼3 °C or less in this TM and T50 dataset being analyzed, a range in which the relationship 

between TM and T50 appears to be weaker. Therefore, analysis with larger datasets with more 

extreme stability changes may reveal an even stronger correlation between these two properties. 

The relationship between ΔTM and the experimentally derived ΔΔG of this dataset (PCC and 

SRC of −0.76) is not expected to reach a perfect correlation since it is dependent on the 

temperature at which ΔΔG was evaluated, as described by Pucci et al. [34]  For example, the 

ΔΔG evaluated at TM of the WT will yield a correlation closer to −1 and ΔΔG(25°C) will lead to a 

lower correlation (−0.68). [34]  

Consistent with our previous analysis, we found a lack of performance using established 

computational tools when predicting TM and T50 from the WT for this dataset. According to Jia et 
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al., stability prediction using the experimentally derived free energy change of unfolding 

ΔΔG (kcal/mol) outperforms the prediction using ΔTM (°C). [35] However, in this case, we saw 

no significant change in the predictive performance for all seven computational tools compared 

to the experimentally derived free energy change. In addition, we found TM and ΔΔG to be 

strongly correlated with this dataset, which may suggest that the improved performance is only 

relevant for more diverse datasets composed of different proteins as opposed to mutants of a 

single protein. 

While none of the computational methods demonstrated a strong predictive power for the 

mutants in this study, Rosetta ΔΔG, FoldX PSSM, ELASPIC, and PoPMuSiC all have 

previously been shown to have high correlations with experimental data (PCC between 0.69 to 

0.83) [22, 26, 29, 36]. This dataset with an experimental ΔΔG range of ±∼4 kcal/mol is within 

the majority of the mutants observed in the algorithms that were typically evaluated on (+8 to −5 

kcal/mol) [17, 25, 26, 29]. One potential reason for the lack of performance could be that the 

structure used in this dataset has a ligand bound structure, and often, the structures used in the 

development of the methods were apoprotein structures. However, using the PDBFlex 

database, [37]  a clustering of five available PDBs of BglB from the bacterium P. 

polymyxa showed an average RMSD of 0.234 and a maximum RMSD of 0.274, thus making 

BglB a rigid structure. As there are no significant structural changes between the apo-form and 

holo-form of the protein, it is unlikely that the exact structure used for this study resulted in the 

low level of performance by the algorithms. Another possibility is that the protein evaluated here 

(BglB) is an outlier when compared to the proteins used to develop the algorithms in terms of its 

structure–function relationship. However, a related study to our analysis has been conducted for 

human superoxide dismutase 1 in which a low correlation is observed between experimental and 
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predicted stability. [38] This further validates that current algorithms have limited utility for 

proteins outside of those they were benchmarked on. This limitation hindered by an over-

representation of protein families such as lysozyme, tryptophan synthase, and ribonuclease in 

curated datasets is often utilized in benchmarking. [39] Thus, this highlights the importance of 

generating high-quality and diverse datasets of more proteins for evaluating and training new 

computational tools. 

This study underlines the need for new computational tools that can more accurately predict 

modest changes, rather than major changes, in thermal stability. This becomes particularly 

important because single-point mutants often increase thermal stability by a few degrees at a 

time, while major changes are more often produced from the synergistic effect of combining 

multiple mutations [11, 40-42]. Furthermore, as larger datasets of protein mutants with explicitly 

measured biophysical properties are generated, opportunities to explore combinations of 

molecular modeling and machine learning methods will become practical. These algorithms and 

datasets will enable the development of robust predictors of thermal stability. 
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Figures 

 
Figure 3-4. Structure of BglB (PDB ID: 2JIE) from the bacterium Paenibacillus polymyxa. 

PyMOL rendering [20] of BglB showing the 28 sequence-positions (teal spheres) of the 51 

mutants chosen out of the original 92 previously expressed proteins for the TM analysis [19]. The 

reaction scheme of the hydrolysis of 4-nitrophenyl β-D-glucopyranoside by BglB used in 

the T50 study [19].  
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Figure 3-2. Comparison of two different experimental thermal stability datasets and 

experimentally derived ΔΔG. (A) Relationship for each mutant between T50 and TM. The PCC of 

0.58 illustrates that the two methods are modestly positively correlated with mutations that are in 

the extreme ends of the temperature range (±5 °C). (B) Evaluation of ΔTM with experimentally 

derived ΔΔG shows the two qualities are highly correlated (PCC = −0.76), unlike (C) where the 

relationship between ΔT50 and experimentally derived ΔΔG has a PCC of −0.35. 
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Figure 3-3. Evaluation of the algorithms ΔTSE versus the experimentally derived ΔΔG and 

the TM and T50 datasets. The Pearson correlation coefficient and Spearman’s rank correlation for 

each performance against three types of experimental data were determined. Five representative 

comparisons are illustrated above, with four additional algorithms, SDM, AUTO-MUTE (DDG), 

AUTO-MUTE (ΔTM), and HoTMuSiC provided in Figure SI 3-1-3. No algorithm resulted in a 

significant correlation between the calculated energies and the observed TM, T50, or ΔΔG for this 

dataset. 
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Figure 3-4. Computational prediction for the effect on mutant soluble protein production using 

nine different algorithms. From left to right: Rosetta ΔΔG, FoldX PSSM, ELASPIC, DeepDDG, 

PoPMuSiC, SDM, AUTO-MUTE (DDG), AUTO-MUTE (ΔTM), and HoTMuSiC of soluble 

(green) and nonisolated protein (blue). In this case, mutants that resulted in a significant (>10-

fold) decrease in yield of purified soluble protein are considered nonisolatable. Significance in 

population differences was determined using a Student’s t-test. The units (ΔTSE and ΔTM) of all 

algorithms are individually normalized between 1 to −1. For visualization purposes, outliers were 

omitted after normalization. Each graph without normalization and with outliers can be found 

in Figure SI 3-1-4 and all raw values in Figure SI 3-4. 
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Supplementary Information 

 

SI 3-1-1. 12-14% SDS-PAGE for 51 BglB mutants and wild type (WT) using Protein Plus 

Kaleidoscope as ladder. 

 

SI 3-1-2. A distribution analysis of temperatures observed for each method. Black circles 

represent mutants and the red circle represents the native protein observed TM or T50. 
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SI 3-1-3. Evaluation of AUTO-MIUTE, SDM, and HoTMuSiC on thermal stability dataset. 
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SI 3-1-4. Evaluation of nine computational methods on protein expression. Top panel is Rosetta 

ΔΔG, FoldX, and ELASPIC ΔTSE; middle panel is PoPMuSic,DeepDDG, and AUTOMUTE 

(ddG) ΔTSE; and bottom panel is SDM ΔTSE, and AUTOMUTE(ΔTM), and HotMuSiC ΔTM 

of soluble (blue) and non-isolated protein (blue).  

SI 3-2. The SI_script.ipynb script contains method used for data acquisitions to generate all the 

graphs from experimental TM data, as well as methods to obtain all the thermodynamics 

parameters (ΔΔG, ΔΔH, ΔΔS, and ΔTM). The folder also includes individual .csv files of all raw 

data used (fluorescence vs temperature) for data acquisitions. Available at 

https://pubs.acs.org/doi/10.1021/acsomega.9b04105 
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SI 3-3. The PDF file contains images of fluorescence graphs, 1st derivative graphs, and Van’t 

Hoff plot for 51 mutants in quadruplicates and 6 biological replicates for WT in .pdf format. All 

graphs were generated using matplotlib found in SI 2. Available at 

https://pubs.acs.org/doi/10.1021/acsomega.9b04105 

SI 3-4. The SI 4 file contains two folders (Rosetta ΔΔG and FoldX PSSM) consisted of PCC 

graphs of ΔTM with each individual energy term described in the Rosetta ΔΔG and FoldX 

PSSM energy scoring protocols. The two folder also has a .csv file containing all the raw data 

from FoldX PSSM and Rosetta ΔΔG for all previously described mutants. An excel files (.csv) 

containing raw data for DeepDDG, ELASPIC, PoPMuSiC, AUTO-MUTE(ΔTM), AUTO-

MUTE(ΔΔG), HoTMuSiC, and SDM are also included. Lastly, the SI 4 file contains a 

Finalized_exp_dgg.csv file including all the thermodynamic parameters 5 (ΔΔG, ΔΔH, ΔΔS, and 

ΔTM) derived from the fluorescence melting curve, as well as gel number that corresponds to 

each of the 51 mutants. Available at https://pubs.acs.org/doi/10.1021/acsomega.9b04105 

SI 3-5. This folder contains bglb_apo.pdb, flags, mutant_file, and sub.sh file needed to execute 

Rosetta_ddg_monomer application that have been previously described in Kellogg 2011.1 (1) 

Kellogg, E. H.; Leaver-Fay, A.; Baker, D. Changes in Protein Structure and Stability. Proteins 

2011, 79 (3), 830–838. https://doi.org/10.1002/prot.22921.Role. Available at 

https://pubs.acs.org/doi/10.1021/acsomega.9b04105 

 
 

 

 

 




