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Abstract. We consider the simple linear Boolean model, a fundamental coverage process also

known as the Markov/General/∞ queue. In the model, line segments of independent and identi-

cally distributed length are located at the points of a Poisson process. The segments may overlap,

resulting in a pattern of “clumps” – regions of the line that are covered by one or more segments –

alternating with uncovered regions or “spacings.” Study and application of the model have been im-

peded by the difficulty of obtaining the distribution of clump length. We present explicit expressions

for the clump length distribution and density functions. The expressions take the form of integral

equations, and we develop a method of successive approximation to solve them numerically. Use of

the fast Fourier transform greatly enhances the computational efficiency of the method. We further

present inference procedures for the model using maximum likelihood techniques. Applications in

engineering and biomedicine illustrate the methods.
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1. Introduction

Coverage processes are random set processes in which a random mechanism governs the position

of random sets on a line, plane or other space. We study inference for one of the most fundamen-

tal coverage processes, the Poisson distribution of segments on a line. This process, termed the

simple linear Boolean model by Hall (1988), has been broadly applied in diverse disciplines, in-

cluding engineering (Hall, 1988; Takacs, 1962), physics (Bingham and Pitts, 1999), epidemiology

(Parthasarathy, 1997), medicine (Crespi et al., 2005), and genetics (Arratia et al., 1991; Percus,

2002). In queueing theory, the model is equivalent to the Markov/General/∞ queue (Kleinrock,

1975).

Figure 1 illustrates the model. In the model, segments of independent and identically distributed

(iid) length {Si, i ≥ 1} are located at the points of a stationary Poisson process, {ξi, i ≥ 1}. The

Poisson process is taken to be independent of the segment lengths. The segments may overlap,

resulting in a pattern of “clumps” – regions of the line that are covered by one or more segments

– alternating with uncovered regions or “spacings.”

The problem we consider is to estimate the intensity of the Poisson process and the segment

length distribution from a sample of clump and spacing lengths. The challenge of this problem has

been noted in the literature (Hall, 1988; Handley, 1999) and stems from the difficulty of obtaining

the distribution of the length of a clump. Expressing the distribution of clump length has been

uniquely challenging since each clump arises from a random number of line segments in a random

configuration. Previous expressions for the clump length distribution have involved the degenerate

case of fixed segment length (Hall, 1988), analytically intractable expressions such as an infinite

sum of self-convolutions (Stadje, 1985), discrete approximation (Handley, 1999) and recursion (Da-

ley, 2001). Thus tractable methods of obtaining the clump length distribution, preferably for an

arbitrary segment length distribution, are needed.

We develop a procedure for obtaining the distribution and density of clump length in the simple

linear Boolean model when segment lengths follow an arbitrary distribution. Beginning with the

expression of Daley (2001), we derive explicit representations of the clump length distribution and

density functions. Each representation takes the form of an integral equation, which can be solved

numerically by constructing a sequence of functions that converges uniformly to its solution. The

familiar method of successive approximations furnishes the functional iterates (Perko, 1991). We

greatly reduce the computational complexity of each iteration by invoking the fast Fourier transform

(Lange, 1999). Thus we are able to obtain the clump length distribution and density functions as
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Figure 1. The simple linear Boolean model.

the limit of a suitably defined sequence of functions in a computationally efficient manner.

We further show how these methods can be applied to estimate the intensity of the Poisson

process and the segment length distribution, when determined up to a set of unknown parameters,

from a sample of clumps and spacings. We use maximum likelihood techniques and include a

procedure for estimating the asymptotic variances of the estimators. We illustrate the methods

with two examples: the measurement of particle mass flow and the estimation of the frequency and

duration of a recurrent viral infection.

Previous work on estimation for the model includes Handley (2004), who uses a discrete Boolean

model as an approximation to the continuous model and provides an algorithm to compute the

discrete clump length density. We compare this algorithm with our method. We focus on parametric

estimation procedures; nonparametric methods are discussed in Bingham and Pitts (1999) and

Handley (1999).

2. Main Results

We begin with a statement of the model and its properties, drawing from Hall (1988). Suppose

that points on the real line are produced by a stationary Poisson process with unknown constant

intensity λ and that each point serves as the left-hand end of a line segment. Equivalently, we may

consider placing the segment midpoints or right-hand ends at the points. Line segments are chosen

independently of anchoring points and have independent lengths with common distribution G(x),

determined up to an unknown parameter vector θ. A connected set of segments not intersected

by any other segments is called a clump, and the interval between successive clumps is called a

spacing.
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Let X1, X2, ... and Y1, Y2, ... denote the lengths of successive clumps and spacings, respectively.

All of these random variables are independent (Hall, 1988). Each of the random variables Y1, Y2, ... is

exponentially distributed with mean λ−1 (Hall, 1988). The variables X1, X2, ... are also identically

distributed. Daley (2001) has shown that their common cumulative distribution function Z(x)

satisfies the integral equation

Z̄(x) = Ḡ(x) +
∫ x

0

∫ u

0
λZ̄(x− v)e−λ

R v
0 Ḡ(t)dtdv dG(u) (1)

where Z̄(x) = 1 − Z(x) and Ḡ(x) = 1 − G(x). This equation uses the logic that for the clump

length to exceed x, either (i) the length of the first segment exceeds x, or else (ii) the first segment

has length u < x, and (iii) another segment begins at the point v < u which starts (iv) a “pseudo-

clump” with length at least x−v. A pseudo-clump is the clump that a segment would have started

if the line had been vacant at the epoch of the segment’s arrival. Pseudo-clumps have the same

distribution Z(x) as true clumps. The probabilities of these events are (i) Ḡ(x), (ii) dG(u), (iii)

λdv and (iv) Z̄(x− v). In order to capture the first segment with pseudo-clump length extending

beyond x, we additionally require that there are no segments starting in [0, v] that extend beyond

v. If we let Q(v) denote the probability of this event, it follows that

Q(v +4v) = [1− λ4v + λ4vG(v) + o(4v)]Q(v).

Forming the difference quotient

Q(v +4v)−Q(v)
4v

= −λ[1−G(v)]Q(v) +
o(4v)
4v

and sending 4v to 0 produce the ordinary differential equation

Q′(v) = −λ[1−G(v)]Q(v),

with explicit solution Q(v) = exp{−λ
∫ v
0 [1−G(t)]dt} subject to the initial condition Q(0) = 1.

We note that equation (1) may be simplified via Fubini’s Theorem to

Z̄(x) = Ḡ(x) +
∫ x

0
Z̄(x− v)[G(x)−G(v)]h(v)dv, (2)

where h(v) = λe−λ
R v
0 Ḡ(t)dt. This expression is a Volterra integral equation (Yosida, 1960) of the

form

f(x) = b(x) +
∫ x

0
f(x− v)[G(x)−G(v)]h(v)dv, (3)

which can be solved by functional iteration, as laid out in the following proposition.
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Proposition 1. Consider the sequence of functions defined by

fn(x) = b(x) +
∫ x

0
fn−1(x− v)[G(x)−G(v)]h(v)dv (4)

starting from f0(x) ≡ 0. If the function b(x) is bounded on a closed interval I containing 0, then

a unique bounded solution f(x) exists, and fn(x) converges to f(x) uniformly on I. If b(x) is

continuous as well as bounded, then f(x) is also continuous.

The proof of this and the subsequent proposition can be found in the Appendix.

To implement this result and compute the function f(x) at m equally spaced points in an

interval [0, d], one may approximate the integral in (4) by a sum and compute, for k = 0, ...,m, the

nth iterate

fn

(
kd

m

)
= b

(
kd

m

)
+G

(
kd

m

)
d

m

k∑
j=0

fn−1

[
(k − j)d

m

]
h

(
jd

m

)

− d

m

k∑
j=0

fn−1

[
(k − j)d

m

]
G

(
jd

m

)
h

(
jd

m

)
. (5)

The sums in equation (5) are convolutions and may be computed efficiently using the fast Fourier

transform (Brigham, 1988; Lange, 1999). This tactic decreases the computational complexity of

each iteration from O(m2) to O(m lnm).

If we assume that the segment length distribution G(x) possesses a bounded density g(x), then

it is natural to conjecture that the clump length distribution Z(x) also possesses a density z(x).

This is indeed the case, and differentiation of equation (2) using Leibniz’s rule for differentiation

under the integral sign shows that z(x) satisfies the integral equation in the next proposition.

Proposition 2. The density of clump length exists and satisfies the equation

z(x) = g(x)
[
1−

∫ x

0
Z̄(x− v)h(v)dv

]
+

∫ x

0
z(x− v)[G(x)−G(v)]h(v)dv. (6)

This integral equation has the form of equation (3), and Proposition 1 may be used to solve it

numerically. In particular, solutions for both the distribution and density of clump length for an

arbitrary segment length distribution may be obtained by first computing Z̄(x) as the limit of the

sequence

Z̄n(x) = Ḡ(x) +
∫ x

0
Z̄n−1(x− v)[G(x)−G(v)]h(v)dv

starting from Z̄0(x) ≡ 0 and then using Z̄(x) to compute the limit z(x) of the sequence

zn(x) = g(x)
[
1−

∫ x

0
Z̄(x− v)h(v)dv

]
+

∫ x

0
zn−1(x− v)[G(x)−G(v)]h(v)dv

starting from z0(x) ≡ 0.
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3. Estimation

The methods in Section 2 can be used to estimate the intensity of the Poisson process and the

parameters of the segment length distribution from a sample of clump and spacings lengths. The

first step is to express the likelihood. Imagine that a simple linear Boolean model is observed over

an interval whose left and right endpoints each coincide with the end of a clump or spacing, yielding

a sample S of spacing lengths, {yi : i ∈ S}, and a sample C of clump lengths, {xi : i ∈ C}. Collect

unknown parameters into a vector ψt = (λ,θt) of length p. Due to the mutual independence of

clump and spacing lengths, the likelihood function appropriate for maximum likelihood estimation

of ψ is

L1(ψ) =
∏
i∈S

λe−λyi
∏
i∈C

z(xi,ψ). (7)

In some cases, the endpoints of the observation interval may not coincide with the endpoints

of clumps or spacings, so there may be remnants of clumps or spacings at the beginning or end

of the interval. If the left endpoint of the interval occurs at a random point within a spacing,

this spacing remnant contributes a factor λe−λyi to the likelihood. A spacing remnant at the right

will contribute a factor e−λyi , and a clump remnant at the right will contribute a factor Z̄(xi).

The contribution of a clump remnant at the left of the interval is complicated and we neglect this

possibility. Thus a more general expression for the likelihood is

L2(ψ) =
∏

i∈S∪SL

λe−λyi
∏
i∈SR

e−λyi
∏
i∈C

z(xi,ψ)
∏
i∈CR

Z̄(xi,ψ) (8)

where SL and SR denote the sets of remnant spacings at the left and right, respectively, and CR

denotes the set of remnant clumps at the right. The terms z(xi,ψ) and Z̄(xi,ψ) in (8) may be

obtained as described in Section 2.

The first partial derivatives ∂
∂ψi

lnL(ψ) of the log likelihood provide the gradient for opti-

mization purposes and the raw material for obtaining the asymptotic variances of the estimators.

To compute one of these derivatives accurately, it clearly suffices to compute the components
∂
∂ψi

Z̄(x,ψ) and ∂
∂ψi

z(x,ψ) accurately. Differentiating equation (2) shows that the former function
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satisfies

∂

∂ψi
Z̄(x,ψ) =

∂

∂ψi
Ḡ(x,ψ) +

∫ x

0

∂

∂ψi
Z̄(x− v,ψ)[G(x,ψ)−G(v,ψ)]h(v,ψ)dv

+
∫ x

0
Z̄(x− v,ψ)

∂

∂ψi
[G(x,ψ)−G(v,ψ)]h(v,ψ)dv

+
∫ x

0
Z̄(x− v,ψ)[G(x,ψ)−G(v,ψ)]

∂

∂ψi
h(v,ψ)dv (9)

= b1(x,ψ) +
∫ x

0

∂

∂ψi
Z̄(x− v,ψ)[G(x,ψ)−G(v,ψ)]h(v,ψ)dv,

and differentiating equation (6) shows that the latter function satisfies

∂

∂ψi
z(x,ψ) =

∂

∂ψi
g(x,ψ) +

∫ x

0

∂

∂ψi
z(x− v,ψ)[G(x,ψ)−G(v,ψ)]h(v,ψ)dv

+
∫ x

0
z(x− v,ψ)

∂

∂ψi
[G(x,ψ)−G(v,ψ)]h(v,ψ)dv

+
∫ x

0
z(x− v,ψ)[G(x,ψ)−G(v,ψ)]

∂

∂ψi
h(v,ψ)dv

− ∂

∂ψi
g(x,ψ)

∫ x

0
Z̄(x− v,ψ)h(v,ψ)dv (10)

−g(x,ψ)
∫ x

0

∂

∂ψi
Z̄(x− v,ψ)h(v,ψ)dv

−g(x,ψ)
∫ x

0
Z̄(x− v,ψ)

∂

∂ψi
h(v,ψ)dv

= b2(x,ψ) +
∫ x

0

∂

∂ψi
z(x− v,ψ)[G(x,ψ)−G(v,ψ)]h(v,ψ)dv.

These derivatives are integral equations of the form (3), and if b1(x,ψ) and b2(x,ψ) are bounded,

then the partial derivatives can be obtained as the limits of sequences suitably defined by equation

(4).

In principle, second partial derivatives can be computed by the same methods. In practice,

numerical differentiation of the first partial derivatives is simpler to implement. Standard errors

may be attached to the maximum likelihood estimates by inversion of the observed information

matrix

I =
(

∂2

∂ψi∂ψj
lnL(ψ)

)
evaluated at the maximum likelihood estimate ψ̂.

4. Comparison to Discrete Approximation

Handley (2004) uses the one-dimensional binomial germ-grain model as a discrete approximation

to the continuous Boolean model and presents approximate likelihood procedures. The discrete
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model involves a Bernoulli process that marks points on the discrete line with marking probability

p. Marks are associated with line segments whose lengths have distribution C(x). Using a recursive

accounting of all possible events leading to a covered interval of length x, Handley and Dougherty

(1996) show that clump length in their model has discrete probability density

Pr(X = x) =
x∑
j=1

[F (x)− F (j − 1)]
j−1∏
i=1

F (i− 1) Pr(X = x− j)

for x = 1, 2, ..., where F (x) = 1−p+pC(x) and Pr(X = 0) = (1−p)/p. By discretizing an interval

of length x into mx pieces of length 1/m and approximating a Poisson process by a Bernoulli

process with p = λ/m, one obtains the recurrence

Pr(X = x) =
[mx]∑
j=1

[
F (x)− F

(
j − 1
m

)] j−1∏
i=1

F

(
i− 1
m

)
Pr(X = x− j/m)

for x = 1/m, 2/m, ..., where F (x) = 1− λ/m+ λC(x)/m. This expression can be used to compute

the discrete density function on an array of m points starting at Pr(X = 1) = [F (1)−1+p](1−p)/p.

The computational efficiency of Handley’s algorithm can be increased by storing intermediate

products and distribution values. However, because computing most values requires O(m) oper-

ations, the total number of operations required to obtain values for all m points is O(m2). In

contrast, our algorithm sequentially obtains Z̄(x) and z(x) by functional iteration, and application

of the fast Fourier transform reduces the computational complexity of each iteration to O(m lnm).

In practice, convergence is typically achieved in 3-8 iterations, resulting in an overall computation

complexity well below O(m2). In general, the number of iterations will depend on the rate of

convergence. In equation (12) of the Appendix, we prove that convergence occurs at a geometric

rate of 1− e−λµ, where µ is the mean segment length. Note that 1− e−λµ = E(X)/[E(X)+E(Y )],

the proportion of the real line expected to be covered by clumps (Kleinrock, 1975). Thus our

algorithm converges rapidly when clumps are sparse and slowly when clumps are large relative

to spacings. Even in extreme cases, the number of iterations is likely to be well below m/ lnm.

However, statistical inference will be difficult using either method in this limiting case.

Our approach has the further advantage of providing accurate approximation to partial deriv-

atives, which are essential to fast optimization. Solution of the integral equations for the various

partial derivatives is apt to be more accurate than numerical differentiation, which by definition is

prone to round-off error owing to cancellation of quantities of comparable magnitude. Functional

iteration for the partial derivatives also benefits from the fast Fourier transform, producing even

further gains in computational speed.

8



Handley (2004) constructs approximate 100(1−α)% confidence regions for maximum likelihood

estimates using the likelihood ratio statistic, whereas we invert the observed Fisher information

matrix to obtain standard errors. Both methods rely on asymptotic normality assumptions and

are likely to produce similar results.

5. Examples

We illustrate our procedure with two examples: measurement of particle mass flow, and esti-

mation of the frequency and duration of a recurrent viral infection. In both examples, the clump

length distribution (2), density (6) and first partial derivatives (9) and (10) were computed at m

= 2000 points in less than a second using the R software package on a Windows-based personal

computer. The negative log likelihood was minimized using the nlm function in R, which uses a

Newton-type algorithm.

5.1. Example: Particle Flow Measurement

A Type II counter (Hall, 1988; Takacs, 1962) is a basic type of device for measuring particle

flow. Some electronic counters follow similar principles. In a Type II counter, flowing particles pass

by a sensor, giving rise to a signal that is “on” as any particle passes the sensor and “off” otherwise.

The passage times of particles may overlap; thus an “on” signal corresponds to a clump with an

unknown number of particles. The “off” signals correspond to the spacings between clumps. When

particle arrivals are Poisson, the clump and spacing lengths follow a simple linear Boolean model.

A fundamental problem with Type II counters is to estimate the total number of particles

passing through the device. We illustrate how our methods can be used to solve this problem using

data collected from the particle flow measurement device described by Grift (2003).

In an experiment with the device, 4000 identical steel spheres of diameter 4.45 millimeters (mm)

were dispensed through a flow tube in a manner approximating a Poisson process. Optical sensors

recorded the lengths of the clumps and spacings. Our objective was to use the clump and spacing

lengths to estimate the particle flow rate (in particles per second), total number of particles flowing

through the device, and the mean particle diameter.

Particle diameter, which corresponds to segment length in the Boolean model, is measured with

approximately normal error by the device (Grift et al., 2001). Thus particle diameter was assumed

to be normally distributed with unknown mean and standard deviation (µ, σ), and the object of

inference was ψ = (λ, µ, σ), where λ represents flow rate. The total number of particles N flowing
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through the device was calculated as λL, where L is the length of the observation period, recorded

as 8.5255 seconds. Preliminary analysis suggested a small excess of short clumps and spacings

compared to a perfect Boolean model. Hence the shortest six percent of clumps and spacings were

omitted, yielding a sample of 2781 clumps and 2781 spacings for the present analysis.

The likelihood (7) of the clump and spacing data was maximized to obtain ψ̂. Standard errors

were obtained as described in Section 3. The estimated flow rate was λ̂ = 478.7 ± 7.9 particles

per second, corresponding to a total particle flow of N̂ = 4081 ± 67, an estimate that compares

favorably with the known total of 4000. Mean particle diameter was estimated as µ̂ = 4.445± .005

mm, which also compares favorably with the known value of 4.45 mm. The estimated standard

deviation of particle diameter was σ̂ = 0.187± .004 mm.

Figure 2 provides a histogram of clump lengths overlaid with an estimate of the clump length

density, calculated using equation (6) and the methods in Section 2 with the maximum likelihood

estimates as parameter values. The density features a peak at the mean particle diameter, sug-

gesting clumps composed predominantly of single particles, a plateau spanning the range of one to

two particle diameters, and then a monotone decline. These features reflect this particular model

specification.

5.2. Example: Frequency and Duration of a Recurrent Viral Infection

Crespi et al. (2005) use the Markov/Markov/∞ queueing model, which is equivalent to the

simple linear Boolean model with exponentially distributed segment lengths, to describe chronic

infection with herpes simplex virus type 2 (HSV-2), the principal cause of genital herpes. Our meth-

ods provide a way of generalizing the model to other segment length distributions. Application of

the model to HSV-2 is described in detail in Crespi et al. (2005). In brief, HSV-2 establishes a per-

sistent infection in the nervous system and intermittently reactivates. Reactivations are associated

with short periods of viral shedding from the mucosa. Successive reactivations may overlap in time.

Thus individuals alternate between viral shedding periods, composed of one or more reactivations,

and non-shedding periods. Referring to Figure 1, let ξ1, ξ2, ... represent the reactivation times and

let S1, S2, ... represent the reactivation durations. Then X1, X2, ... represent viral shedding periods,

in which one or more reactivations are present, and Y1, Y2, ... represent non-shedding periods.

During the clinical trial described by Wald et al. (1997), subjects received anti-HSV therapy

for 10 weeks and placebo for 10 weeks, in random order. The time course of the subjects’ shedding

and non-shedding periods, during both treatment and placebo, was assayed by daily collection and

analysis of mucosal secretions to detect viral shedding. Our objective was to use the durations of

10
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Figure 2. Histogram of clump lengths from a particle flow counter overlaid with the estimated
clump length density, computed using the methods in Section 2.

the shedding and non-shedding periods to estimate the frequency and duration of the reactivations

of the virus.

For simplicity, we consider data from a single subject. For both the placebo and treatment

arms of the trial, observation of the subject began and ended during non-shedding periods. Thus

the data include spacing remnants at the left and right endpoints. The data for the placebo arm

are SPl = {15, 2, 4, 1, 3, 13}, CPl = {2, 1, 2, 7, 1, 1} and SPlR = {13}, and the data for the treatment

arm are STx = {38, 20}, CTx = {6, 1} and STxR = {7}. We note that since the secretion samples

were taken at discrete daily time points, these data are an approximation of the continuous-time

process.

We modeled reactivation duration as a Weibull(α, β) distribution, where α is the shape parame-

ter and β is the scale parameter. The Weibull is a flexible distribution covering a range of plausible

biological assumptions, and includes the exponential distribution as a special case. The mean of

the Weibull is βΓ(1 + 1/α).

The likelihood of the data was expressed using equation (8) without the fourth term and maxi-

mized to obtain ψ̂ = (λ̂, α̂, β̂). Standard errors were obtained as described in Section 3. The mean

reactivation duration was estimated as β̂Γ(1+1/α̂), and its standard error was approximated using

11



a first-order Taylor expansion. Based on this approach, the reactivation frequency, with standard

error, was estimated to be 3.6 ± 1.5 reactivations per month under placebo and 0.9 ± 0.7 reac-

tivations per month under treatment. The mean duration of a reactivation was estimated to be

2.1 ± 0.6 days under placebo and 3.3 ± 1.7 days under treatment. A likelihood ratio test of the

null hypothesis H0 : ψPl = ψTx yielded a test statistic of 3.629, distributed as χ2 with 3 degrees

of freedom, corresponding to a p-value of 0.304. Although this is nonsignificant, the estimates hint

that the treatment was efficacious. More data are needed to resolve the issue.

6. Discussion

We have derived an analytical expression for the clump length density in the simple linear

Boolean model along with a numerical solution and procedures for conducting maximum likelihood

estimation under the model. The analytical expression and method of solution are general and can

be applied with an arbitrary segment length distribution. Implementation is straightforward, with

minimal computational effort.

The simple linear Boolean model is the basis for more complex coverage processes, including two-

and three-dimensional models (Hall, 1988; Handley, 1999). The model also has a close connection to

certain queuing theory (Kleinrock, 1975) and spatial models (Molchanov, 1997). We hope that the

results presented here may stimulate further study, application, and improvement of these models.

Appendix

Proof of Proposition 1. We demonstrate convergence of the telescoping series

fn(x) =
n∑

m=1

[fm(x)− fm−1(x)]

under the sup norm ‖a‖∞ = supx∈I |a(x)| defined for bounded functions a(x) on I. Because the

terms of the series satisfy

fm(x)− fm−1(x) =
∫ x

0
[fm−1(x− v)− fm−2(x− v)][G(x)−G(v)]h(v)dv,

the fundamental theorem of calculus entails

‖fm − fm−1‖∞ ≤ ‖fm−1 − fm−2‖∞
∫ ∞

0
Ḡ(v)h(v)dv

= ‖fm−1 − fm−2‖∞(1− e−λµ),

12



where µ =
∫∞
0 Ḡ(t)dt <∞. If b(x) is bounded, induction demonstrates that

‖fm − fm−1‖∞ ≤ ‖fm−2 − fm−3‖∞(1− e−λµ)2

...

≤ ‖f1 − f0‖∞(1− e−λµ)m−1

= ‖b‖∞(1− e−λµ)m−1.

For n ≥ m, this inequality in turn implies that

‖fn − fm‖∞ ≤ ‖b‖∞
n−1∑
k=m

(1− e−λµ)k

≤ ‖b‖∞
∞∑
k=m

(1− e−λµ)k (11)

= ‖b‖∞eλµ(1− e−λµ)m.

Hence, the sequence fn(x) satisfies Cauchy’s criterion and converges uniformly to a bounded limit

f(x) on I. If b(x) is continuous as well as bounded, then each iterate fn(x) is also continuous, and

the limit f(x) must be continuous on I.

To see that the solution is unique, let f(x) and f∗(x) be two bounded solutions. Then the

equation

f(x)− f∗(x) =
∫ x

0
[f(x− v)− f∗(x− v)][G(x)−G(v)]h(v)dv

implies the contraction property

‖f − f∗‖∞ ≤ (1− e−λµ)‖f − f∗‖∞,

which is untenable unless ‖f − f∗‖∞ = 0.

Finally, for the record, it is worth observing that inequality (11) carries over to

‖f − fn‖∞ ≤ ‖b‖∞eλµ(1− e−λµ)n. (12)

In other words, fn(x) converges to f(x) at the geometric rate 1− e−λµ in the sup norm.

Proof of Proposition 2. If a sequence of differentiable functions fn(x) and its sequence of

derivatives f ′n(x) both converge uniformly on I, then the limit function f(x) = limn→∞ fn(x) is

differentiable with derivative f ′(x) = limn→∞ f ′n(x) (Theorem 7.17, Rudin (1964)). We will apply

13



this principle to fn(x) = −Z̄n(x). Now induction and Leibniz’s rule imply that fn(x) is differentiable

with derivative satisfying the integral equation

f ′n(x) = g(x)
[
1−

∫ x

0
Z̄n−1(x− v)h(v)dv

]
+

∫ x

0
f ′n−1(x− v)[G(x)−G(v)]h(v)dv

On the other hand, the sequence

zn(x) = g(x)
[
1−

∫ x

0
Z̄(x− v)h(v)dv

]
+

∫ x

0
zn−1(x− v)[G(x)−G(v)]h(v)dv

is known to converge uniformly to a limit z(x). Our strategy therefore is to prove that f ′n(x) also

converges uniformly to z(x). With this end in mind, we first note that the integral c =
∫
I h(v)dv

is finite whenever I is finite. We put this fact to use in the bound

‖zn − f ′n‖∞ ≤ c‖g‖∞‖Z̄ − Z̄n−1‖∞ + ‖zn−1 − f ′n−1‖∞(1− e−λµ). (13)

Inequality (12) with b(x) = Ḡ(x) implies that

‖Z̄ − Z̄n−1‖∞ ≤ eλµ(1− e−λµ)n−1.

Substituting this bound in inequality (13), setting a = c‖g‖∞eλµ and r = 1 − e−λµ, and iterating

produce

‖zn − f ′n‖∞ ≤ c‖g‖∞eλµ(1− e−λµ)n−1 + ‖zn−1 − f ′n−1‖∞(1− e−λµ)

= arn−1 + ‖zn−1 − f ′n−1‖∞r

≤ arn−1 + arn−1 + ‖zn−2 − f ′n−2‖∞r2

...

≤ narn−1.

Since 0 ≤ r < 1, the product narn−1 tends to 0, and f ′n(x) converges uniformly to z(x) on I.
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