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a b s t r a c t

Here we investigate the effects of fluid properties on the morphology and dynamics of convection in the
Earth’s outer core. The results of two quasi-geostrophic convection simulations are carried out at
comparable convective velocities for fluids in which the ratio between the kinematic viscosity and
thermal diffusivity (the Prandtl number, Pr) is 0.1 and 10. The Pr¼0.1 case is representative of thermal
convection in a liquid metal, whereas the Pr¼10 case is representative of chemical convection. We find
the influence of the Prandtl number to be significant; low Prandtl number fluids have a propensity for
large-scale coherent vortex formation and slowly varying dynamics. Conversely, the high Prandtl case
is dominated by significantly smaller length scales and more rapidly varying dynamics. However, both
cases have zonal flows with similar strength, demonstrating that Reynolds stresses in high Prandtl
number convection can be large when the buoyancy forcing is strong. By using a simple kinematic
magnetic induction model we show that the structure of the magnetic field is not a direct indication of
the underlying convective morphology when the magnetic diffusivity is large, as in Earth’s core. Thus,
our simulation results imply that the convective turbulence differs between thermally and chemically
dominated convection, but that it may be difficult to determine the dominant forcing from geomagnetic
field structure alone.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

The geomagnetic field is thought to be sustained by a combi-
nation of thermal and chemical convective turbulence within
the Earth’s liquid outer core (Buffett, 2000). As the inner core
solidifies, chemical fractionation releases light elements at the
inner core boundary (ICB) that results in chemical convection.
Similarly, latent heating at the ICB and secular cooling of the Earth
results in convection due to thermally buoyant core fluid. Ther-
mal and chemical (or compositional) convection are distinct from
one another due to their vastly different molecular diffusivities;
the chemical diffusivity in the fluid outer core is thought to be
approximately 103 times weaker than the thermal diffusivity (e.g.
Braginsky and Roberts, 1995). Whereas studies have suggested
that chemical convection is the dominant mechanism driving
convection in the core (Lister and Buffett, 1995; Buffett et al.,
1996), it is not yet clear as to how the structure and dynamics of

thermal and chemical convection differ, and whether or not these
differences have an observable signature in the geomagnetic field.

Molecular dynamic simulations find a kinematic viscosity and
chemical diffusivity for Earth’s liquid outer core to be n"
10#6 m2 s#1 and kC " 5$ 10#9 m2 s#1, respectively (Alfé et al.,
2000; Voc̆adlo et al., 2003). In contrast, estimates for the thermal
diffusivity for the outer core give kT " 627$ 10#6 m2 s#1 (Stacey,
2007; Pozzo et al., 2012). These values can be recast in the form of a
dimensionless ratio known as the Prandtl number, PrT ,C ¼ n=kT,C .
Thus, the thermal Prandtl number is PrT %Oð10#1Þ, whereas the
chemical Prandtl number (also known as the Schmidt number) is
PrC %Oð102Þ. Neglecting differences in boundary conditions bet-
ween thermal and chemical convection, the latter can be considered
equivalently as high Prandtl number thermal convection and we
take PrT ,C ¼ Pr.

The Prandtl number is known to control the critical wavenum-
ber of fluid motion that is present near the onset of convection
(Busse, 1970). The critical azimuthal wavenumber, mcr, represents
the scale at which fluid motion is forced when inertial effects
are weak. The Reynolds number, Re¼UL=n, where U and L are
characteristic velocity and geometric length scales, respectively, is
a measure of the relative effects of inertia and viscous forces in a
given flow. For the Earth’s core U % 10#3 m s#1 and the outer core
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fluid layer depth is L" 2300 km, leading to Re% 109. As the
forcing strength is increased, and the Reynolds number becomes
large, fluid motion becomes characterized by a broad spectrum
of wavenumbers (e.g. Tennekes and Lumley, 1972). Numerical
simulations of convection in a spherical shell geometry suggest,
however, that the most energetic motions remain in the vicinity
of mcr even as the Reynolds number becomes large (e.g. ReC103)
(Gillet and Jones, 2006). This finding leads to the hypothesis that
core turbulence is forced over two distinct wavenumber ranges
corresponding to a thermally driven (i.e. low Prandtl number)
component of core convection and a chemically driven (i.e. high
Prandtl number) component of core convection.

Observations show that the geomagnetic field is dominantly
dipolar, but it is also characterized by time-varying nonaxisym-
metric coherent flux patches (e.g. Hulot et al., 2002; Finlay and
Jackson, 2003; Jackson, 2003). Many three-dimensional dynamo
studies have offered explanations for how such structures might
be generated (Christensen et al., 1998; Aubert et al., 2008a,b). In
general, they find that the viscous columnar structures that form
near the onset of convection are able to generate dipolar magnetic
fields that can be morphologically similar to the geomagnetic
field (e.g. Christensen et al., 2010). However, computational
constraints limit these simulations to parameter values that are
extremely distant from those of the Earth’s core. As a result,
three-dimensional models are often dominated by viscous forces
(e.g. Olson and Deguen, 2012) and are thus unlikely to correctly
describe the dynamics of magnetic field generation under plane-
tary core conditions. The large Reynolds number in the core
suggests that turbulence plays an important role in determining
geomagnetic field structure, whereas viscous forces are not likely
to be relevant.

It is well known that the self-organization of turbulent fluid
motions can result in the formation of coherent structures (e.g.
Hussain, 1986). Coherent structures are characterized as fluid
masses that possess like-signed vorticity (Hussain, 1986). Isolated
vortices such as hurricanes in the Earth’s atmosphere, and
Jupiter’s Great Red Spot (e.g. Marcus, 1993) are good examples
of coherent structures. Recent simulations of rapidly rotating,
plane-layer convective turbulence observe the formation of large-
scale coherent vortices that are aligned with the rotation axis
(Julien et al., 2012). It is thus possible that the coherent flux
patches observed in the geomagnetic field are created by a similar
mechanism.

The current work seeks to understand how the fluid proper-
ties, as represented by the Prandtl number, influence the con-
vective dynamics and the potential for convective turbulence to
form coherent vortices in a spherical shell, and whether these
effects can be observed in the geomagnetic field. We use the
quasi-geostrophic convection model (QGCM) to compare turbu-
lent flows for two different Prandtl numbers, Pr¼0.1 and 10. The
QGCM is a quasi-two-dimensional numerical model that allows
for the investigation of more extreme parameter values than is
possible in three-dimensional calculations; it is an extension of
the asymptotic model originally developed by Busse (1970).
Because the onset of convection is Prandtl number dependent
we compare the two cases at a comparable Reynolds number. We
then employ a simple kinematic model for the induction of the
vertical component of a magnetic field to test whether thermal
and chemical convection will generate distinct observable signa-
tures in the geomagnetic field.

2. The quasi-geostrophic convection model

The QGCM employed in the current study is explained in detail
in Calkins et al. (2012). Here we point out the general features and

primary assumptions of the model. The equations of motion are
solved in a cylindrical coordinate system ðs,f,zÞ in the equatorial
plane of a spherical shell of inner radius ri and outer radius ro,
rotating at a rate of O. Gravity is taken to vary linearly with
cylindrical radius, g¼#gs. The radius ratio used throughout this
study is given by Z¼ ri=ro ¼ 0:30. No-slip, constant temperature
boundary conditions are employed at the inner and outer bound-
aries, where Ti and To denote the temperatures at the respective
boundaries. The equations are made dimensionless by employ-
ing d¼ ro#ri as the length scale, d2=k as the time scale, and
DT ¼ Ti#To as the temperature scale. The dimensionless inner and
outer radii are then given by ri ¼ Z=ð1#ZÞ and ro ¼ 1=ð1#ZÞ,
respectively. The Proudman–Taylor theorem states that when
the influence of rotation is strong enough, the radial and azi-
muthal velocities, u and v, respectively, remain invariant in the
direction of the rotation axis (Greenspan, 1968). By continuity
this implies that the vertical velocity, w, varies linearly in z, a
central assumption made in the QGCM. It should be noted,
though, that Gillet and Jones (2006) have shown that this linear
dependence is only approximately observed in the limit of E-0
for the three-dimensional problem.

The nondimensional QGCM equations are then
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where z is the axial vorticity, /vS is the f-averaged azimuthal
velocity, y is the temperature perturbation, the half-height of the
flow domain is hðsÞ ¼
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, and
the conductive temperature profile is given by TcðsÞ ¼ lnðs=roÞ=
lnðri=roÞ. The streamfunction, c, is defined by the relations
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The Ekman number and the Rayleigh number are denoted by
E¼ n=Od2 and Ra¼ aDTgd3=kn, where a is the thermal expansiv-
ity. The Ekman number is the ratio of viscous forces to the Coriolis
force, whereas the Rayleigh number is the strength of convective
forcing. The first term on the right-hand side of Eq. (1) represents
the effects of vortex stretching and is given by Schaeffer and
Cardin (2005)

@w
@z
¼#

2s

h2
u#

roE

h3

! "1=2

zþ s

2h2
v#

s

h2

@u
@f
þ

5ros

2h3
u

! "
: ð7Þ

Eqs. (1)–(4) are time-stepped using a second-order Adams–
Bashforth backward differentiation scheme, and discretized in
space with second-order finite differences in radius and Fourier
series in azimuth.

The zonal and nonzonal (i.e. convective) kinetic energies are
defined, respectively, as KEz ¼ 0:5½/vS2*A and KEc ¼ 0:5½ ~u2þ ~v2*A,
where ½+*A represents an average over the area of the flow domain,
and ~u and ~v ¼ v#/vS are the nonzonal velocity components.
Using these relations we define the zonal and convective Reynolds
numbers as Rez ¼

ffiffiffiffiffiffiffiffiffiffiffi
2KEz

p
=Pr and Rec ¼

ffiffiffiffiffiffiffiffiffiffiffi
2KEc

p
=Pr, where the over-

line, ð+Þ, denotes a time-averaged quantity. For completeness, we
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also include the time-averaged Nusselt number for each case,
defined as

Nu¼ 1þri log
ri

ro
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$$$$
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:

3. Results

The linear equations were solved to determine the critical
Rayleigh number, Racr, and critical azimuthal wavenumber, mcr,
for the two Prandtl numbers used in the current study. The Ekman
number is fixed at E¼ 10#6. For Pr¼0.1 we found Racr ¼ 1:7$ 107

and mcr ¼ 18 and for Pr¼10 we found Racr ¼ 2:2$ 108 and
mcr ¼ 31. Because Racr depends on Pr, we choose to compare the
two different Prandtl number cases at a comparable convective
Reynolds number. In the results presented below, the convective
Reynolds number is Rec " 3600, whereas the zonal Reynolds
numbers are Rez¼4874 and Rez¼3451 for Pr¼0.1 and Pr¼10,
respectively. These values correspond to approximate supercriti-
calities (i.e. Ra=Racr) of 18 for Pr¼0.1 and 455 for Pr¼10. Denoting
N as the number of radial grid points and M as the number of
Fourier modes, we used N¼769 and M¼1856 for Pr¼0.1, and
N¼1921 and M¼4992 for Pr¼10. Note that even for comparable
Reynolds numbers the Pr¼10 case required over six times the
spatial resolution (i.e. N$M) as the Pr¼0.1 case. The input and
output parameters for both cases are given in Table 1.

Figs. 1a and 2a present snapshots of the vorticity for the Pr¼0.1
and Pr¼10 cases, respectively. Both cases show a significantly
radial-dependent flow field, with narrow thermal plumes originat-
ing from the inner boundary and prograde-traveling thermal Rossby
waves near the outer boundary, where the slope @shðsÞ-1 as s-ro

and strong convective motions are suppressed. Also shown by the
solid black curves are the instantaneous zonal flow profiles. Both
cases exhibit similar zonal flow structure with a predominantly
retrograde motion, and a weaker prograde flow near the outer
boundary. At the Rayleigh numbers employed here, the time-
averaged zonal flow is approximately 40% stronger for the low Pr
case. Stokes’ theorem relates the azimuthally averaged vorticity to
the zonal flow strength as

/vS¼
1
s

Z s

ri

s/zS ds: ð8Þ

By this relation we can conclude that the retrograde zonal flow
observed near the inner boundary for both cases requires /zSo0 in
this region (Aubert et al., 2002, 2003). This effect is seen for the
Pr¼0.1 case in Fig. 1a where " 7 anticyclonic vortices are present.
The dominant wavenumber in the retrograde zonal flow region is
m¼8 for the Pr¼10 case, though the anticyclonic vortices are much
less coherent due to the presence of small length scales in the flow.

Figs. 1b and 2b show the instantaneous temperature perturba-
tions, where the azimuthally averaged value has been removed to
improve visualization. For the Pr¼0.1 case the thermal structure
is larger scale than the corresponding vortical structure shown in
Fig. 1a. The opposite is true for the Pr¼10 case where the weaker

thermal diffusivity results in finer thermal scales in comparison to
the vorticity of Fig. 2a.

To quantify the structural differences in the flow-field morphol-
ogy for the two cases we compute the vorticity kurtosis, Kuz ¼
½z#½z**4A=½z

2*2A. The kurtosis is a measure of the occurrence
of extreme values in a given quantity, and has thus been used
traditionally in identifying the presence of coherent vortices in
decaying (e.g. McWilliams, 1984) and forced (e.g. Maltrud and
Vallis, 1991) two-dimensional turbulence. For reference, the kurtosis
of the Gaussian distribution is 3 and the kurtosis of an exponential
distribution is 6.

Fig. 3 shows the time evolution of the kurtosis for the two
cases. The Pr¼0.1 case is characterized by a significantly higher
time-averaged kurtosis of Kuz ¼ 19:2 in comparison to the Pr¼10
case with Kuz ¼ 5:04. These differences are consistent with the
vorticity plots shown in Figs. 1a and 2a. For both cases, the flow
structure is highly dependent upon radius; one-dimensional
kurtosis calculations (i.e. integrating only in f) showed that the
vortical structures distributed azimuthally are of nearly identical
size and shape. Note that because the kurtosis is a normalized
quantity, the forcing scale (or critical wavenumber, mcr) does not
directly enter the calculation. Thus, differences in Kuz can be

Table 1
Input and output parameters for the current study. Pr is the Prandtl number, N is
the number of radial grid points, M is the number of azimuthal Fourier modes, E is
the Ekman number, mcr is the critical wavenumber, Racr is the critical Rayleigh
number, Ra is the Rayleigh number, Rec is the convective Reynolds number, Rez is
the zonal Reynolds number, and Nu is the Nusselt number. See text for definitions.

Pr N M E mcr Racr Ra Rec Rez Nu

0.1 769 1856 10#6 18 1:7$ 107 3$ 108 3672 4874 3.93

10 1921 4992 10#6 31 2:2$ 108 1$ 1011 3637 3451 102.47

Fig. 1. Images of instantaneous: (a) vorticity and (b) modified temperature
perturbation, y#/yS, for Pr¼0.1. The instantaneous zonal flow profile is shown
by the black solid curve in (a), where it has been normalized by the maximum
absolute value ð9/vS9max=Pr¼ 11 670Þ. The simulation parameters are given in
Table 1.
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attributed to dynamical differences, rather than simply differ-
ences in mcr. It can be seen that the high Pr case exhibits rapid,
low amplitude fluctuations in kurtosis due to the presence of
small length scales in the flow field. The more slowly varying
kurtosis observed in the Pr¼0.1 case is the result of the larger
length scales present in the vorticity field, with anticyclonic
vortex merging events generating the large, transient peaks in
kurtosis.

3.1. Magnetic field structure

To determine how the convective flow structures in the core
might influence the structure of the geomagnetic field we have
performed simulations of a simple model that calculates the
induced component of a vertical magnetic field (cf. Schaeffer
and Cardin, 2006; Gillet et al., 2007a). This purely kinematic
model assumes the flow is permeated by a uniform vertical
magnetic field, B0. The induced component bz is then calculated
according to the nondimensional equation

@bz
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where we have used B0 as the magnetic scale, and the magnetic
Prandtl number is given by Pm¼ n=l with magnetic diffusivity l.
For the present study we employ Pm¼0.03 such that the magnetic
Reynolds number Rm¼ Rec Pm%Oð100Þ, similar to estimates for
Earth’s core. For the core, Pm%Oð10#6Þ, whereas three-dimen-
sional numerical simulations typically employ Pm%Oð1Þ due to
computational constraints.

The magnetic induction is due entirely to the vortex stretching
term, @w=@z, on the right-hand side of (9); as for the vorticity
equation, this stretching term is calculated via (7). For simplicity
we employ homogeneous Dirichlet boundary conditions on the
induced magnetic field such that bzðri,fÞ ¼ bzðro,fÞ ¼ 0. The numer-
ical methods used to solve Eq. (9) are identical to those used for the
solution of Eqs. (1)–(4).

Fig. 4 presents the instantaneous views of the induced mag-
netic field at the same instant as the vorticity plots given in
Figs. 1a and 2a. We see that whereas the morphological differ-
ences in the vorticity fields are clear, these differences become
less pronounced in the structure of the induced magnetic field.
This disparity in vortical and magnetic length scales is due to
the relatively low magnetic Prandtl number employed here (cf.
Soderlund et al., 2012, Fig. 2); the magnetic field is able to diffuse
over the small scales present in the flow field. The kurtosis of the
induced field, Kubz

, is shown in Fig. 5. The time-averaged magnetic
field kurtosis for the Pr¼0.1 and Pr¼10 cases is Kubz

¼ 2:42 and
Kubz
¼ 2:01, respectively. These similar kurtosis values demon-

strate an important geophysical point: structural differences in
the convective flow fields need not translate to similar structural
differences in induced magnetic fields.

4. Discussion

We have presented a pair of simulations that demonstrate the
importance of the fluid properties in controlling the morphology and
dynamics of turbulent convection in a rotating spherical shell. The
low Prandtl number case that we have investigated is representative
of thermal convection in a liquid metal, whereas the high Prandtl
case is representative of chemical convection. To allow for useful
comparison between the thermal and chemical convection cases, the
forcing strength (Ra) has been adjusted such that the typical
convective velocities (Rec) are approximately equal for the two cases.
Both the high (Pr¼10; chemical) and low (Pr¼0.1; thermal) Prandtl
cases exhibit zonal flows with comparable strength and similar

Fig. 2. Images of instantaneous: (a) vorticity and (b) modified temperature perturba-
tion, y#/yS, for Pr¼10. The instantaneous zonal flow profile is shown by the black
solid curve in (a), where it has been normalized by the maximum absolute value
ð9/vS9max=Pr¼ 9012Þ. The simulation parameters are given in Table 1.

Fig. 3. Time variation of the vorticity kurtosis, Kuz , for Pr¼0.1 (black line) and
Pr¼10 (red line). The solid (dashed) lines show the instantaneous (time-averaged)
vorticity kurtosis for each Prandtl number. (For interpretation of the references to
color in this figure caption, the reader is referred to the web version of this article.)
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structure. This observation demonstrates that Reynolds stresses
can be large in high Pr fluids when the Rayleigh number is highly
supercritical (as is thought to be the case in Earth’s core).
Morphologically, the high Pr case is characterized by the presence
of significantly smaller length scales in comparison to the low Pr
case. The vorticity kurtosis calculations show that the low Pr case
possesses a greater propensity for coherent vortex formation with
a mean value that is approximately four times that for the high Pr
fluid. This tendency for higher vorticity kurtosis in the lower
Prandtl number case may be due to the larger forcing scales (i.e.
lower wavenumbers) present in low Prandtl number convection.

Both cases also show substantially different time dependences,
with the low Pr case characterized by more slowly varying dynamics
than the high Pr case. The observable temporal variations in the
geomagnetic field are limited to annual timescales and longer (e.g.
Finlay et al., 2010). In contrast, we were able to simulate less than
200 rotations after our runs equilibrated. These simulated time-
series are not long enough to meaningfully compare against longer
period geomagnetic secular variation signatures. Nevertheless, tem-
poral statistics of geomagnetic secular variation may be useful in
determining the dominant forcing mechanism in the core (e.g.
Christensen et al., 2012).

From our convection simulation results alone, it is natural to
conjecture that large-scale coherent flux patches in the geomagnetic
field are generated from low Prandtl number convection. However,
when viewed only through magnetic field measurements, our

kinematic induction model shows that the effects of strong mag-
netic diffusion tend to remove the morphological differences
between high and low Pr convection. Thus, when magnetic diffusion
is strong (i.e. low Pm), as in planetary cores, our results indicate it
will be difficult to discern between structural differences in the
planetary magnetic field that are of thermal and/or chemical
convective origin. The closeness of the magnetic field kurtosis for
the two cases quantifies this behavior. Moreover, crustal filtering of
the geomagnetic field only allows for the large-scale structure of the
field to be observed, further hindering our ability to relate magnetic
field structure to the underlying convective flow field.

Our results show that the value of the thermal (and chemical)
diffusivity has a fundamental influence on the structure and
dynamics of convective turbulence. Three-dimensional dynamo
simulations have previously shown that the magnetic field
structure is dependent upon the Prandtl number (e.g. Simitev
and Busse, 2005), but, so far, have not made comparisons between
cases with different Prandtl numbers at a comparable Reynolds
number. Because the value of the thermal diffusivity selects
the scales at which the fluid is forced, we conjecture that the
structure and dynamics of convective turbulence will remain
dependent on this value even for very high (i.e. planetary core-
like) Reynolds numbers. A good example of this dependence is
double-diffusive convection in the oceanic and astrophysical
contexts where the diffusivities of both heat and solute play an
important role in determining both the scales of fluid motion and
the resulting dynamics (Traxler et al., 2011).

Furthermore, our finding that structurally and dynamically
distinct flows arise due to differences in thermal diffusivity values
suggests that the use of turbulent diffusivities in spherical shell
convection is physically unrealistic. A reason that is cited com-
monly for employing Pr¼1 in numerical simulations is that this
value represents an effective turbulent Prandtl number whereby
heat and momentum are transported equally throughout the fluid
volume (e.g. Roberts and Aurnou, 2012). This equivalence in the
transport of heat and momentum is known as the Reynolds
analogy and has been shown to hold only in mechanically forced
convection where buoyancy forces are negligible, and only for
those cases for which Pr is already Oð1Þ (Bejan, 1993).

The results presented here help to bridge the gap between
three-dimensional models in which viscous forces are important
(e.g. Soderlund et al., 2012), and the turbulent, rotationally
constrained motions that characterize the Earth’s core. Following
recent three-dimensional models (Manglik et al., 2010; Breuer
et al., 2010; Trümper et al., 2012), future work is required to
examine the case in which both thermal and chemical buoyancy
sources drive fully turbulent flows, and to determine how the
convection dynamics and induced fields depend on the strength of
each buoyancy force. Although the QGCM has been used to model
kinematic three-dimensional magnetic fields (e.g. Schaeffer and
Cardin, 2006; Gillet et al., 2007b), to date it has not been used

Fig. 4. Images of the instantaneous induced magnetic field for: (a) Pr¼0.1 and (b) Pr¼10. In both cases, Pm¼0.03 such that Rm¼ RecPm" 100. The color scales have been
shifted slightly for enhanced visualization.

Fig. 5. Time variation of the induced magnetic field kurtosis, Kubz
, for Pr¼0.1

(black line) and Pr¼10 (red line). The solid (dashed) lines show the instantaneous
(time-averaged) magnetic field kurtosis for each Prandtl number. (For interpreta-
tion of the references to color in this figure caption, the reader is referred to the
web version of this article.)
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successfully for studying dynamos (e.g. Busse, 1975). Nevertheless,
it has proven to be a valuable tool for advancing our understanding
of planetary core physics by reaching parameter values that are not
accessible to current three-dimensional models.
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