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Abstract

Regulatory T-cells (Tregs) play a crucial role in maintaining immune homeostasis, ensuring a balanced immune response. Tregs primarily
operate in an antigen-specific fashion, facilitated by their distinct distribution within discrete niches. Tregs have been studied extensively,
from their point of origin in the thymus origin to their fate in the periphery or organs. Signals received from antigen-presenting cells
(APCs) stimulate Tregs to dampen inflammation. Almost all tumors are characterized by a pathological abundance of immune suppression
in their microenvironment. Conversely, the lack thereof proves detrimental to immunological disorders. Achieving a balanced expression
of Tregs in relation to other immune compartments is important in establishing an effective and adaptable immune tolerance towards
cancer cells and autoantigens. In the context of cancer, it is essential to decrease the frequency of Tregs to overcome tumor suppression. A
lower survival rate is associated with the presence of excessive exhausted effector immune cells and an increased frequency of regulatory
cells. However, when it comes to treating graft rejection and autoimmune diseases, the focus lies on immune tolerance and the transfer
of Tregs. Here, we explore the complex mechanisms that Tregs use in human disease to balance effector immune cells.

Keywords: regulatory T-cells (Tregs); immune imbalance; Foxp3; natural Treg (nTreg); induced Treg (iTreg); thymic Treg (tTreg);
peripheral Treg (pTreg)

1. Introduction

Immune regulation balances pro-inflammatory and
anti-inflammatory immune responses. Classifications char-
acterize the immune compartments in an effort to improve
understanding of the mechanisms involved [1]. Regulatory
T-cells (Tregs) are known for their powerful function in reg-
ulating the immune system and improving self-tolerance,
which is pivotal in immune homeostasis [2,3]. Tregs ac-
count for 3–10% of the peripheral CD4+ T-cell population
in humans [4]. Tregs are initially observed in the thymus
during embryogenesis, specifically at the 12th week of ges-
tation, and their levels remain constant throughout preg-
nancy and infancy [4]. The immunosuppressive charac-
terization of Tregs from the thymus during fetus develop-
ment showed early expression of forkhead box P3 (Foxp3)
and other markers associated with their function, such as
glucocorticoid-induced TNFR-related protein (GITR) and
the cytotoxic T-lymphocyte-associated protein 4 (CTLA-4)
[5].

Tregs are derived from either the thymus, referred to as
(tTregs), or conventional T-cells in tissues outside the thy-
mus, known as peripheral Tregs cells (pTregs). The tTregs
typically possess T-cell receptors (TCRs) with higher affin-
ity for autoantigens compared to conventional T-cells and
pTregs [6]. In both homeostatic and inflammatory condi-
tions, the conversion of conventional CD4+ T-cells into

pTregs occurs on interaction with self-antigens or exoge-
nous antigens and in the presence of transforming growth
factor beta (TGF-β) [7]. The presence of pTregs is impor-
tant for regulating peripheral tolerance, particularly in the
gut, lungs, and skin [8]. It is unknown how conventional
T-cells turn into pTregs, especially in humans. In vitro
stimulation of CD4+ T-cells with TGF-β and interleukin-
2 (IL-2) leads to the generation of induced Foxp3+ Treg
cells (iTregs) [9]. On transfer to mice, iTregs exhibit sup-
pressive abilities, confirmed by their transcriptional profile,
which differs from both pTreg and tTregs [10]. However,
these cells do not possess the ability to suppress immune re-
sponses [11]. Despite this, there are no definitive markers
to distinguish Tregs of different origins in either humans or
mice [12]. While the gene expression profiles of pTreg and
tTreg cell lineages in mice are similar, there are some dis-
cernible differences. Their TCR repertoires are different,
showing that TCR affinity is one of the things that sets tTreg
and pTregs apart [13]. It was discovered that the best results
for pTreg induction were obtained through TCR stimulation
with low doses of high-affinity peptide. The efficient Foxp3
expression is largely dependent on determining the opti-
mal ratio of antigen concentration to TCR avidity, which
is determined by TCR-peripheral major histocompatibility
complex (pMHC) affinity. The regulation of this process
is influenced by surface ligands like CD28 and soluble me-
diators TGF-β and retinoic acid [14]. Since the cascades
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of interactions are vast, we are going to focus in our article
on the origin, biological role, and clinical benefits of Tregs
cells.

2. Origin and Biology of Regulatory T-cells
2.1 Thymic Development of Treg

The development of Tregs in the thymus during the
neonatal period leads to dominant tolerance [15]. Only 2–
3% of developing CD4+ single positive (SP) thymocytes
are represented by thymic Tregs. Their development is
propelled by the combination of a strong TCR stimulation
and a CD28 co-stimulatory signal [15]. The progression of
CD25+ Foxp3+ Tregs into a mature stage is enhanced by a
third signal mediated by γ-chain cytokines, which also pro-
motes their survival [16]. The tTreg has been found to be a
more varied and ever-changing population. The ontogeny
of Tregsin the thymus plays a crucial role in shaping their
phenotypic and functional diversity [17]. Thus, Tregs show
a highly self-reactive TCR repertoire, distinct from conven-
tional T-cells, which contributes to their functional diversity
[18,19].

Treg development is dependent on TCR/CD28 stim-
ulation and cytokine signaling, both of which follow a
two-step model. First, induction of CD25 occurs in
CD25− Foxp3− CD4+ SP thymocytes through moderately
to slightly strong binding on TCR signals. The outcome of
this process is the generation of CD25+ Foxp3− Treg pre-
cursors, commonly referred to as CD25+ Tregs. The bind-
ing to the TCR signal is required to be lower than the clonal
deletion binding of SP CD4+ thymocytes [18,19]. The
CD28- CD80/86 co-stimulatory axis plays a crucial role
in Treg development, starting from their precursor stage
and facilitating the induction of Foxp3 expression [20].
The binding of TCR signaling when associated with CD28
drives to the upregulation of tumor-necrosis factor receptor
superfamily (TNFRSF) members, which are TNFR2, GITR
and OX40 [21]. Second, the maturation of CD25+ Treg
through stimulatory γ-chain cytokines, like IL-2, -4, -7, -
9, -15, and -21, to express the intracellular Foxp3+ [22].
Among all γ-chain cytokines, only IL-2 and IL-15 are re-
quired for Tregs maturation and to protect Tregs against the
pro-apoptotic effects of Foxp3 [23]. By activating GITR,
OX40, or TNFR2, the conversion of CD25+ Treg into ma-
ture Tregs is enhanced during this second stage, allowing
for heightened responsiveness to IL-2 [21]. The source of
IL-2 is puzzling, as it is initially thought to be secreted by
thymic dendritic cells [24], which are precisely assigned to
self-reactive CD4+ thymocytes [15]. Later it was found
that stromal cells such as cortical thymic epithelial cells
(cTEC) and medullary thymic epithelial cells (mTEC) are
the main source for both IL-2 and IL-15 as well as different
levels of major histocompatibility complex (MHC) class II
molecules [25].

Identification of another Treg precursor subset, which
expresses a low level of Foxp3 and lack CD25 (CD25−

Foxp3low) suggests another developmental pathway [17].
When migrating from thymus, it is found that CD25+ Treg
differentiates into mature Treg. These findings confirm that
both CD25+ and Foxp3low Treg can be the sources of the
generation of the mature Tregs. Foxp3low Tregs appear to
be dependent on IL-15 for survival, and IL-2 is necessary
for maturation into Tregs. The development of periphery
CD25+ Treg is likely dependent on IL-2. Therefore CD25+
Tregs show a higher affinity for self-antigens than Foxp3low
Tregs [17].

2.1.1 Subsets of CD4+ Tregs
CD4+ Tregs were phenotypically known as CD4+

CD25+ Foxp3+ cells. Based on surface marker expres-
sion, different classifications emerged. The first functional
classification was based on the cytokine expression of Th-
like Treg subtypes [26]. In this classification, CD45RA
is crucial for the division of CD4+ Tregs. This subset is
further subdivided into three subsets. First is the resting
(rTreg) or naïve Tregs with phenotype CD45RA+ Foxp3low
CD25low. The second is the effector Tregs (eTregs) with
phenotype CD45RA− Foxp3high CD25high that has strong
inhibitory and stabilizing functions. The third is non-Tregs
(noTregs) with phenotype CD45RA− Foxp3low CD25low
that mainly secrete inflammatory cytokines and promote the
immune response [27]. The rTregs can suppress the im-
mune system as it expresses CD62L and the IL-7 receptor
(CCR7), which are indicators of naïve cells. Upon anti-
gen stimulation, they differentiate into eTregs, which ex-
hibit stronger immunosuppressive and higher proliferation
capabilities. These eTregs are short-lived andmore prone to
apoptosis. Unlike the earlier identified Tregs subsets, non-
Tregs are categorized as Tregs and have the ability to secrete
pro-inflammatory cytokines like interferon-γ (IFN-γ) and
IL-17, despite not having immunosuppressive capabilities
[15]. A subset of non-Tregs possess CD127+ which is like
conventional T-cells, while another subset does not possess
CD127− which is similar to eTregs. The CD127− subset is
subdivided into CD127− CCR4+ CD49d− cells that have
high levels of IL-2 and CD127− CCR4− CD49d+ cells that
have high levels of IFN-γ and IL-17 [28].

Another classification is based on the cytokine secre-
tion profiles and transcription factor expression (Table 1,
Ref. [27,30–42]). CD4+ Treg has been classified into four
distinct subtypes. The first, Th1-like Tregs secrete IFN-
γ and tumor necrosis factor-α (TNF-α) (CCR4+ CCR6−
CXCR3+). The second, Th2-like Tregs secrete IL-2, IL-
4, IL-5, and IL-13 (CCR4+ CCR6− CXCR3−). The third,
Th17-like Tregs secrete IL-17A/IL-17F (CCR4+ CCR6+
CXCR3−). The fourth, Th1/17-like Treg which is secret-
ing IFN-γ and IL-17A (CCR4+ CCR6+ CXCR3+) [29].
The similarity between Th-like Treg subset and their cor-
responding Th cell counterparts was evident in their shared
transcription factor expression and cytokine secretion pat-
terns.
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Table 1. Overview of the immunophenotypes of Tregs subsets based on maturation origin, function, and markers for differentiation.
Treg subset Origin Phenotype Function Markers for Differentiation References

Natural or Naïve
Tregs (nTregs) Cells

Thymus CD4+CD25+Foxp3+ Maintain self-tolerance and immune homeostasis by sup-
pressing immune responses via direct cell-cell contact and
secretion of inhibitory cytokines like IL-10 and TGF-β.

Express CD4+, CD25+, Foxp3+, Helios+,
CTLA-4+, GITR+.

[27,30–32]

Induced Tregs
(iTregs)

Peripheral tissues from
nTregs

CD4+CD25+Foxp3+ Induced in response to specific antigens and cytokines.
Suppress immune responses and maintain tolerance.

Express CD4+, Foxp3+, CD25+, CTLA-4+,
ICOS+.

[27,31,33–35]

Type 1 Regulatory T
(Tr1) Cells

Peripheral tissues from
CD4 T-cells

CD4+CD25‒CD49b+LAG-3+ Suppress immune responses through the secretion of IL-10
and TGF-β particularly in the gut.

Do not express Foxp3‒ but produce high levels
of IL-10, IFN-γ, GITR, and TNFSRF9.

[33,34]

T Helper 3 (Th3)
Cells

Peripheral tissues from
CD4 T-cells

CD4+CD25−Foxp3‒LAP+ Regulate mucosal immunity and oral tolerance primarily
through TGF-β production.

CD4+, TGF-β+, Foxp3+/‒. [36–38]

CD8+ Regulatory T-
Cells

Thymus and peripheral
tissues from CD8+

T-cells

CD8+CD25+Foxp3‒ Suppress immune responses through direct cytotoxic activ-
ity or cytokine production. They can inhibit the function of
other T-cells and APCs.

Express CD25 and Foxp3 in some cases. [39,40]

Double Negative
Regulatory T- (DN
Tregs) Cells

Develop from CD4‒

CD8‒ T-cells in
Peripheral tissues

CD3+CD4‒CD8‒TCRαβ+/γδ+ Suppress immune responses through cytokine production
and direct cell-cell contact. They are involved in control-
ling autoimmune responses and graft-versus-host disease.

T-cells are expressing the αβ or γδ T-cell re-
ceptor (TCR), but not the CD4 nor the CD8
co-receptors.

[41,42]

CD25, IL-2 Receptor Alpha; Foxp3, Forkhead box P3; CTLA-4, Cytotoxic T-Lymphocyte Associated Protein 4; GITR, Glucocorticoid-induced tumor necrosis factor receptor; LAG-3, Lymphocyte Activation Gene-3;
TGF-β, Transforming Growth Factor Beta; TNFRSF9, tumor-necrosis factor receptor; LAP, Latency-associated peptide; ICOS, Inducible co-stimulator; IL-10, interleukin 10; IFN-γ, interferon-γ; APCs, antigen-
presenting cells.
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In both classifications, Foxp3 expression was not as-
sociated with any immunosuppressive potentiality, which
leads to conclusions not in line with majority of studies that
have employed Foxp3 to demonstrate immunosuppressive
capacity. Still, the most acceptable phenotype for CD4+
Treg isolation and detection is CD4+ CD25+ CD127low/−,
because CD127low/− cells have higher suppressor poten-
tiality than CD25+ subsets [29]. Different classes of Tregs
were characterized in Table 1.

2.1.2 Foxp3 Functional Role in Tregs
Foxp3 is essential for deciding which lineages to com-

mit to throughout the formation of tTregs in the thymus. In
addition, this mechanism is responsible for the maintenance
of the extrathymic tTregs population and ensuring the con-
tinuous expression of genes that are fundamental in defin-
ing the specific characteristics of the Tregs signature [43].
Under homeostatic conditions, the majority of Tregs main-
tain their commitment to the tTregs lineage even after leav-
ing the thymus. Despite this, a notable fraction (10-20%)
of Foxp3+ Tregs experience a loss of Foxp3 expression,
leading them to become exhausted Tregs [44]. This popu-
lation mainly originates from activated conventional T-cells
that exhibit temporary expression of Foxp3, as well as from
pTregs [8]. Foxp3 plays a crucial role in determining the
lineage commitment of Tregs. Foxp3 is not the only fac-
tor that influences the Treg gene program and suppressor
activity (Fig. 1) [45].

Foxp3 is responsible for maintaining the stability of
the core suppressive mechanism of Tregs, ensuring that pe-
ripheral inflammatory and non-inflammatory signals do not
interfere with it [46]. Tregs driven by Foxp3 are character-
ized by a distinct gene signature. They express a gene set as-
sociated with an activation program that is shared with con-
ventional T-cells [47]. Foxp3 is essential for the establish-
ment of suppressive activity of Tregs since a frameshift mu-
tation of Foxp3 leads to immune dysregulation and polyen-
docrinopathy, enteropathy X-linked (IPEX) syndrome [48].
It is possible to repair the severe autoimmunity of Treg-
deficient mice and efficiently restore their suppressive func-
tion by restoring Foxp3 transcription [48]. This suggests
that there is a mechanistic role of Foxp3 in the establish-
ment of Tregs, that grants periphery Tregs suppressive ac-
tivity. It also implies that there are multiple molecules and
mechanisms that likely play a role in regulating the function
of both tTregs and pTregs.

When non-self-antigens are recognized, thymus de-
rived Tregs develop based on their interactions with self-
peptide-MHC complexes in the presence of TGF-β for in-
duction [49]. Both tTregs and iTregs express Foxp3 as
the most important and lineage-specific transcription fac-
tor [50]. Foxp3 gene contains a highly conserved CpG-
rich region in the intron (+4201 to +4500) that is termed
the Treg-specific demethylated region (TSDR). TSDR is
differentially methylated and fully de-methylated in tTregs

(CD4+ CD25+) [49–52]. The TSDR demethylation pro-
cess is closely linked to the high and stable expression
of Foxp3, which is why it is commonly used to identify
Tregs. A quantitative methylation-specific droplet digi-
tal PCR (ddMSP) assay was established for assessment of
TSDRFoxp3methylation status in ex vivo expanded nTregs
as a marker for nTreg stability [30]. The presence of IL-2
is vital for both the homeostatic maintenance and thymic
development of Tregs [53]. IL-2 is produced by CD4+
T-cells, not the regulatory T-cells [35,54]. Binding of IL-
2 to surface ligand IL-2Ra or CD25, phosphorylates sig-
nal transducer and activator of transcription 5 (STAT5).
STAT5 binds to both the promoter and intronic elements of
the Foxp3 gene, and activates the transcription of tFoxp3
[35]. The absence of either IL-2 or IL-2 receptor results in
the enlargement of peripheral lymphoid organs, impaired
activation-induced cell death, and the occurrence of autoim-
mune disorders. These effects are linked to a decrease in the
generation of Tregs [55]. Tregs can lose their Foxp3 ex-
pression and adopt the role of autoimmune effector cells in
certain situations [56,57]. Foxp3 gene expression handles
the maturation functions and phenotype of Tregs. When
TGF-β is secreted, retinoic acid-related orphan receptor
gamma (RORγT) is expressed stimulating the differenti-
ation of Tregs and Th17 T-cells. Foxp3 has the ability to
suppress the function of RORγT and promote the differen-
tiation of Tregs. However, if inflammatory cytokine IL-6
inhibits the function of Foxp3 and activates the Th17 differ-
entiation pathway. Consequently, achieving the right equi-
librium between Foxp3 and RORγT expression is of utmost
importance in determining the destiny of CD4 T-cells and
the subsequent immune response [57].

The signaling pathway mediated by TGF-β is com-
mon to both Th17 and Tregs. In the presence of pro-
inflammatory cytokines released in infection, naïve CD4+
T-cells differentiate into Th17 cells which promote inflam-
mation, produce IL-17, IL-22, and IL-23, and recruit neu-
trophils. In contrast, due to the absence of inflammation,
TGF-β drives differentiation into Tregs, which produce
anti-inflammatory cytokines IL-10 and TGF-β [58].

Metabolic pathways can determine the Th17/Treg bal-
ance. Naïve T-cells rely on oxidative phosphorylation and
fatty acid oxidation or become anabolic to match cell pro-
liferation and growth. Activated naïve T-cells rely on mam-
malian target of rapamycin (mTOR) as a critical regulator
of differentiation and function. The proper complex func-
tion of the two mTOR complexes is necessary for glycoly-
sis upregulation and specific effector subset differentiation.
Without this, CD4 T-cells cannot activate glycolytic ma-
chinery for effector function, leading to a regulatory pheno-
type [59]. On the other hand, Tregs metabolize fatty acids,
amino acids, and glucose, besides carrying out oxidative
phosphorylation. Rapamycin enhances Foxp3 expression
and expands tTregs. Therefore, faulty mTOR activity af-
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Fig. 1. Tregs thymic development, excursion to periphery, cytokine profiling, and Foxp3. In the cortex of thymus, pre-double
positive T (pre-DP)-cells are matured and Foxp3 is not yet expressed. Foxp3− DP cells are committed to be either traditional T-cells or
tTregs, depending on the presence of IL-2 and IL-15. Foxp3− DP or Foxp3+ DP cells are ready to migrate to the medulla of the thymus
for maturation. In the medulla, Foxp3− DP mature to become naïve CD4 single positive T-cells (CD4-SP) or CD8 single positive T-cells
(CD8-SP), which then migrate to the peripheral organs. A subset of CD4-SP and CD8-SP cells are converted to serve as Tregs expressing
Foxp3. When Foxp3+ DP migrate from the cortex to medulla, they become Foxp3+ CD4 T-cells or Foxp3+ CD8 T-cells. TCR, T-cell
receptor.

fects the Th17/Treg balance by enhancing T-cell sensitivity
to TGF-β, resulting in insensitivity to proinflammatory cy-
tokines and STAT3 signaling [60].

2.1.3 Molecular Signature of Tregs
Tregs modify their phenotypes without compromising

their suppressive function. They express transcription fac-
tors and chemokine receptors associated with various T-cell
types, but they do not produce inflammatory cytokines due
to Foxp3-dependent repression [61]. These events enable
Tregs to express a Th-determining transcription factor and
migrate to the site of inflammation. Tregs in healthy tissues
are involved in immune suppression, tissue repair, and other
non-immune activities [62]. Skeletal muscle Tregs produce
amphiregulin to aid muscle repair [63]. The molecular sig-
nature of Tregs differs with the pathogenic condition. The
transcriptomic profile of Foxp3+ Tregs from individuals
with colorectal cancers compared to cells from people with-
out cancer. Tregs showed upregulation of chemokine recep-
tors -4, -1, -2, and -7, and cytokines IFN-γ, IL-10, IL-22, as
well as chemokine ligands 1 and 10 (Fig. 1) [64]. In terms
of functionality, the molecular signatures may serve as a
roadmap for the successful functioning of Tregs in main-
taining homeostasis and suppressing the immune system.

Foxp3 is being now studied in the development and
function of Tregs [65]. Foxp3 is the primary transcrip-

tion factor accounting for Treg function [15]. Mutations
in the Foxp3 gene have a detrimental effect on the func-
tion of Tregs, with a particular impact on their ability to
suppress immune responses [63,65]. Foxp3+ nTregs are
highly stable and can effectively prevent autoimmune dis-
eases in animal models [33,34,63]. Upon constant exposure
to self-antigens and microbial antigens, their functionality
becomes stable through flexibility of their highly prolifer-
ative state [66]. However, Foxp3 gene expression alone
was reported insufficient to maintain Treg function. In line
with this, 70% of genes were noted to vary between conven-
tional T-cells and Foxp3+ naïve Tregs. Ikzf2 (Helios), Ikzf4
(Eos), CTLA-4, NFAT, Nr4a2, and AP-1 and TNF-receptor
superfamily are examples of gene differences that are corre-
lated with and/or were able to enhance Foxp3 transcription
in Tregs [67]. At a Treg precursor stage, histone modifica-
tions occur before Foxp3 expression, and the genes reach
their peaks of expression prior to Foxp3 induction [63].

The signature of specific genes affects the behavior
and pathological role of Tregs. For example, in mice with
psoriasis, mutations in inhibitor of Kappa B Kinase beta
(IKBKB) disrupted the balance between pro-inflammatory
(TNF and IFNγ) and anti-inflammatory cytokines (IFNα,
IFNβ, IL-12p70, IL-1b, and IL-4), resulting in systemic in-
flammation and psoriatic arthritis. The activity of IKBKB
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not only control the number of Tregs but also determines the
growth of a specific group of Tregs found in tissues [68].

2.2 Peripheral Tregs Source and Induction

The development of Tregs, both in the thymus (tTregs)
and in the periphery (pTregs), is triggered by the induc-
tion of Foxp3 in response to antigen exposure. TGF-β in-
duces Foxp3 expression and suppressive activity in conven-
tional T-cells in vitro. This suggested the possibility of ex-
trathymic generation of Tregs from naïve T-cells (Fig. 1)
[69]. However, the mechanisms by which signals induce
the development of pTregs in vivo have yet to be precisely
elucidated. The induction of pTregs is associated with sub-
immunogenic antigen exposure and foreign antigen pres-
ence in a lymphogenic environment. pTregs can be a sig-
nificant part of Tregs, particularly in tissues like the lam-
ina propria, and are found in various conditions. pTregs
have a vital role in regulating autoimmune responses. Nrp-
1low Foxp3+ cells undergo upregulation of neuropilin re-
ceptor (Nrp-1) while developing in the thymus, which helps
distinguish pTregs from tTregs in circulating cells in non-
inflamed tissues. Notably, pTregs display the ability to up-
regulate Nrp-1 specifically during inflammation [70].

pTregs are identified as true Tregs with the expression
of canonical Treg markers like CTLA-4, GITR, and CD103
and their correlation with IL-2 [15]. Non-immunogenic
antigen delivery methods are the most effective triggers
for the induction of pTregs [71]. When tTregs are em-
ployed for in vitro assays, the pTregs are obtained and ac-
companied with highly effective suppressive function. Al-
though TGF-β induced iTregs show some suppressive ac-
tivity, they do not completely adopt the transcriptional sig-
nature that is typical of Tregs, highlighting the differences
between iTregs and pTregs [72].

By examining different cell populations, a fascinating
variation was found that sheds light on the inherent adapt-
ability of pTregs. Helios, which is an ikaros family tran-
scription factor, is a specific marker for tTregs. Helios
is highly expressed on Foxp3+ Tregs in the thymus [73].
Approximately 70% of pTregs express Helios, which can
be used to distinguish genotypically between tTregs and
pTregs [74].

2.3 Functional Hallmarks of Treg Subsets
2.3.1 The Role of Tregs in Immune Tolerance

When stimulated with CD28, TCR signaling, or IL-
2, Tregs undergo differentiation into mature or eTregs,
which exhibit strong suppressive activity. These eTregs
express more immunosuppressive molecules like Human
Leukocyte Antigen – DR isotype (HLA-DR), CTLA-4,
Helios, and T-cell immunoreceptor with Ig and ITIM do-
mains (TIGIT), chemokine receptor 4 (CCR4), C–X–C
chemokine receptor Type-4 (CXCR4), and CXCR5, to en-
hance infiltration of Tregs into tumor microenvironment

(TME) and maturation of nTregs to become eTregs (Fig. 2)
[75]. This type of infiltration of eTregs promotes immune
tolerance.

Tregs exhibit diverse inhibitory activities for efficient
immune cell control [76] including expression of immune
suppressive cytokines, such as IL-10 and TGF-β, and de-
pletion of effector T-cell essential cytokine, IL-2 [77,78].
Tregs suppressive effects can also be achieved by degrad-
ing pro-inflammatory mediators and inactivating APCs by
eliminating CD80 and CD86. Tregs have multiple roles
in immune suppression, including increasing negative sig-
nals like indoleamine 2, 3-dioxygenase [79], and convey-
ing inhibitory signals through the process of trogocytosis,
which includes the transmission of MHC class II [80]. By
performing these various functions, the inflammatory mi-
croenvironment can be altered, resulting in the recruitment
of other immunosuppressive cell types to amplify and ex-
tend the tolerogenic effects [77].

Long-term tolerance can be achieved through adop-
tive transfer of Tregs and depletion of Tregs did not affect
tolerance in this situation. T-cells from immuno-tolerant
mice can establish long-term tolerance in recipient animals,
demonstrating the long-term tolerogenic qualities of Tregs
to surrounding immune cells both directly and indirectly,
and ensuring the durability of their effect [33,34].

2.3.2 The Role of Tregs in Modulating the Innate Immune
Response

The innate immune response is finely tuned by regu-
latory Tregs, which work to maintain immune homeostasis
and modulate the activities of other immune cells, through
suppressing effector cell functions, controlling antigen pre-
sentation, controlling cytokine production, maintaining tis-
sue integrity, and via their interaction with innate-like T-
cells [80,81].

Tregs help prevent excessive inflammation and tissue
damage that can occur during immune responses by damp-
ening the activity of themacrophages, dendritic cells (DCs),
and natural killer (NK) cells [81]. Tregs inhibit the matura-
tion and antigen-presenting function of DCs, which modu-
late the activation of T-cells and other effector cells of the
innate immune system. Tregs controls other immune sub-
sets by the production of anti-inflammatory cytokines, such
as IL-10 and TGF-β [82]. Tregs prevent immune-mediated
damage to tissue integrity, which is especially important in
tissues damage infections or autoimmune reactions. The in-
teraction between Tregs and innate-like T-cells, such as γδ
T-cells and NK T-cells, plays a role in fine-tuning the innate
immune responses within diverse tissues and under varying
physiological circumstances [80].

Treg can exert their anti-inflammatory and pro-
tolerogenic effects by modulating the behavior of neu-
trophils. During immune/inflammatory responses, neu-
trophils and different Treg subtypes establish a complex
crosstalk. Lipopolysaccharide (LPS) or CD3/CD28 lig-
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ation triggers the activation of Tregs, resulting in the
expression of a range of immune suppressive pathways
in neutrophils through various mediators, alongside the
promotion of their apoptosis [83]. Culturing human
neutrophils with activated Treg led to elevated levels
of anti-inflammatory molecules such as IL-10, TGF-β1,
indoleamine-2,3-dioxygenase (IDO), and haemoxygenase
1. The secretion of CXCL8 by Tregs has helps recruit
neutrophils. The close spatial distribution of neutrophiles
and Foxp3+ Tregs hint that both cells modulate CD4+ T-
cell differentiation via programmed death-ligand 1 (PD-
L1)/PD-1 interactions [84]. In mice with autoimmune hep-
atitis, autoantigen-specific Tr1 cells and B regulatory cells
(Breg) worked together to attract neutrophils to the liver
and transform them into myeloid-derived suppressor cell
(MDSC) subtypes using granulocyte-macrophage colony-
stimulating factor (GM-CSF), IL-10, and TGF-β [85].

2.3.3 The Role of Tregs in Tissue Repair and Homeostasis

Tregs possess the capability to restore injured tissues
through the production of healing molecules like amphireg-
ulin, and tissue-regulatory protein peroxisome proliferator–
activated receptor γ (PPARγ) [86]. Tissue-resident Tregs
can effectively regulate immune responses involving dif-
ferent innate and adaptive immune subsets by adjusting lo-
cal conditions [87]. Thus, the current challenge to develop-
ing Treg-based therapeutics is how to harness the properties
of these cells to durably re-establish immune tolerance in
acute and chronic inflammatory diseases [11]. Tregs poly-
pharmaceutical attributes are hard to imitate with drugs.
For instance, medications that target inflammatory signal-
ing pathways are not as safe as nTregs in preventing infec-
tions and cancers, and they only address a portion of the
effects induced by Tregs [11,27].

Tregs play a crucial role in tissue repair and regenera-
tion by regulating inflammation and orchestrating the activ-
ity of both innate and adaptive immune systems [83]. Fol-
lowing tissue injury, a symphony of immune responses is
set in motion until a new tissue is regenerated. Tregs play
a role in each of the various stages. Tregs can counteract
the onset of inflammation by suppressing the secretion of
inflammatory cytokines such as IL-6, IFN-γ, TNF-α, and
IL-1β, and by preventing neutrophil extravasation through
the release of IL-10 [88]. Furthermore, Tregs have the ca-
pacity to trigger neutrophil apoptosis and promote the up-
take of dead neutrophils bymacrophages. At the same time,
Tregs inhibit monocyte function, enhance their longevity,
and secretion of anti-inflammatory cytokines like IL-4, IL-
10, and IL-13 [89]. Tregs have the natural ability to quell
inflammation mediated by CD4 and CD8 T-cells, employ-
ing cytokines such as IL-10, TGF-β, and IL-35. The overall
effect of these Treg-mediated mechanisms is the inhibition
of neutrophil, inflammatory macrophages, CD4, and CD8
T-cell activity, which supports the process of tissue repair
and regeneration [83].

In skeletal muscle, Tregs are linked to mesenchy-
mal stromal cells, nerves, and IL-33 secretion. All are
connected when, through calcitonin-gene-related peptide,
Tregs accumulated [90]. IL-33 acts on Tregs containing the
ST2 receptor encoded by the IL1rL1 gene compared to that
of Tregs in lymphoid tissue. IL1rL1 is upregulated in Tregs
isolated from damaged muscle [91]. Tregs in muscles have
been found to express significant amounts of amphiregulin
[92]. By directly interacting with satellite cells, these spe-
cialized Tregs have an impact on supporting muscle regen-
eration. The administration of amphiregulin normalized the
muscle transcriptome during muscle repair. Amphiregulin
also enhances myogenic differentiation [92]. Treg deple-
tion in injured muscle was associated with less tissue regen-
eration, prolonged inflammation, and impaired production
of myogenic transcription factors, macrophages polariza-
tion from M1 to M2 phenotype [93]. Tregs protect against
tissue deterioration in neurodegenerative [89], cardiac [94],
lung [95], autoimmune [27], atherosclerotic [86], and skin
diseases [96].

2.3.4 The Role of Tregs in Immune Regulation During
Infections

Tregs have a crucial role in preventing im-
munopathogenic reactions to various viral, bacterial,
fungal, protozoal, and helminth infections [97]. During
acute infection, Tregs inhibit the accumulation of cytotoxic
CD8+ T-cells. Second, Tregs produce IL-10 that promotes
the maturation of memory T-cells [15]. Different Treg
populations that emerge during acute infection with Liste-
ria monocytogenes [98]. These populations have distinct
effects on regulating CD8+ T-cell responses at various
stages, including the priming and contraction phases [99].
Different Treg subpopulations separated from several time
points of the same animal model were clonally unique,
suggesting that they most likely came from different cell
progenitors [100].

During chronic infection, limiting Treg number boosts
immune responses mediated by cytotoxic CD8+ T-cells,
leading to improved control of the infection [101]. The
generation of clones of Tr1 cells that produce IL-10 was
only observed in situations involving persistent infection
[102,103]. Meta-analyses compared the role of Tregs in
acute versus chronic infections. Increased CD4+ Treg fre-
quencies were noted in chronic hepatitis B virus (HBV) in-
fection, pointing to the role of Tregs in disease progression,
viral load, absence of therapy, and risk of hepatocellular
carcinoma [104]. Tregs attracted CD4+ and CD8+ T-cells
to the liver through chemokines CCL17 and CCL22 and re-
duced their inflammatory response in cases of chronic hep-
atitis C virus (HCV) infection, leading to the prolonged ex-
istence of pathogens [15]. On the other hand, Tregs may be
functional in reducing the amount of liver damage caused
by HCV [105–107].
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CD4+ Tregs mediated inconclusive anti-HIV immune
responses and were comparatively more abundant in the
mucosa and bloodstream [108]. CD4+ Tregs decreased
HIV replication in T-cells in vitro by altering ectonucleotide
levels through CD39 and by transferring cAMP through gap
junctions formed with conventional T-cells [109]. Blocking
CD39 restored the ability of HIV-gag-stimulated CD8+ T-
cells to produce cytokines [110]. By interferingwith the im-
munological synapse, they inhibited the spreading of virus
from DCs to T-cells [109]. There is a positive correlation
between the frequency of CD4+ CD39+ Tregs and HIV vi-
ral load and disease progression [108]. These somewhat
contradictory data may be resolved by distinguishing be-
tween acute and chronic infection [108].

2.3.5 The Role of Tregs in Transplantation
An understanding of Tregs stimulated efforts to treat

autoimmune disorders, organ transplant rejection, and
inflammation-related neurodegenerative diseases. This is
a result of extensive comprehension of the molecular and
mechanistic aspects of Treg biology (Fig. 2) [27]. High
expression of IL-2Rα (CD25) is a characteristic of Tregs
which is involved in immune regulation. Low-dose IL-2
provides selective advantages to Tregs in proliferation and
survival. IL-2 and IL-2 muteins both raise the proportion of
Tregs in individuals with autoimmune diseases and graft-
versus-host disease (GvHD). These therapies have shown
clinical efficacy [111].

The advantage of Treg therapies lies in their capacity
to educate and propagate endogenous cells to exhibit sup-
pressive activities, thereby facilitating long-term tissue pro-
tection even in the absence of survival of the infused Tregs
[112]. Preclinical research showed that Tregs have the abil-
ity to prevent and reverse disease. Adoptive Treg therapy
prevented GvHD in individuals after allogeneic hematopoi-
etic stem cell transplant. Tregs were applied to r transplant-
and autoimmune-related diseases [113]. Tregs were in-
fused efficacious without adverse side effects such as sys-
temic immunosuppression [114]. As well, Tregs were used
in the treatment of solid organ transplantation [113,115–
119], spontaneous abortion [114], and autoimmune disease
[14,120–123].

2.3.6 Tregs and Metabolic Crosstalk
Tregs can modify their metabolic functions, includ-

ing glycolysis, oxidative phosphorylation (OXPHOS), fatty
acid oxidation (FAO), and amino acid metabolism, in order
to meet their energy needs. Nevertheless, there is disagree-
ment and a lack of clarity about the connections between
these processes and the underlying mechanisms [124]. The
metabolic program of the cell is influenced by its activ-
ity state, and varies between naïve, activated, and memory
cells. To illustrate, when cells are in a resting state which
needs energy to maintain survival and circulation, they rely
on energy sources from OXPHOS such as ATP [125,126].

Through the TCR and co-stimulatory CD28, effector T-cells
switch from OXPHOS to glycolysis [125,127]. Upon their
activation, cells use glutaminolysis in addition to glycoly-
sis to generate energy [125,126]. Tregs exhibit a distinct
metabolic profile compared to other T-cell subsets. Ini-
tially, they employ glycolytic metabolism for activation,
migration, and proliferation. However, they subsequently
undergo a metabolic shift, becoming independent of glu-
cose and relying on the oxidation of lipids and pyruvate
[128,129].

Tregs that proliferate exhibit heightened glucose trans-
porter 1 (GLUT1) expression and mammalian target of ra-
pamycin (mTOR) activity, resulting in reduced suppressive
capacity and simultaneous downregulation of Foxp3 ex-
pression [114,116,127–129]. Tregs are regulated glycolyt-
ically by different mechanisms, such as the phosphoinosi-
tide 3-kinase (PI3K)-Akt-mTOR signaling network. This
pathway enhances the glycolytic rate of Tregs and signif-
icantly influences their differentiation and functional sta-
bility [130]. The PI3K-Akt-mTOR pathway is regulated
by many factors including AMP-activated protein kinase
(AMPK), phosphatase and tensin homolog (PTEN), and
hypoxia-inducible factor 1 α (HIF-1α) [131]. AMPK is
a metabolic energy regulator of both glycolysis and FAO
in Tregs. When it is stimulated to increase the ratio of
AMP/ATP, catabolism is activated [132,133].

Tregs were generated from humanCD4+ cells by inhi-
bition of fatty acids binding proteins. This dysregulated mi-
tochondria, decreased OXPHOS, and increased glycolytic
pathways [134]. The persistence of eTregs is linked to mi-
tochondria, as they acquire energy through FAO. The trans-
fer of mesenchymal stem cell mitochondria to CD4+ T-
cells aids in the differentiation of Tregs, providing relief
from GvHD [135,136]. Mitochondrial complex III and mi-
tochondrial transcription factor A prevented DNA hyper-
methylation to suppress Foxp3 expression [137].

The pro-migratory molecule lymphocyte function-
associated antigen 1 when stimulated by its ligand, in-
creases iglucose uptake [138]. Multiple metabolic pro-
cesses rely on the participation of amino acids. Immune
homeostasis and responses are regulated by the availability
and metabolism of amino acids. Treg generation and func-
tion is linked to amino acid transporters, such as those re-
sponsible for branched-chain amino acids (glutamate, glu-
tamine, and glutathione). Furthermore, the catabolism
of tryptophan and arginine was noted [127]. Maintain-
ing cholesterol balance is essential for Tregs as it impacts
their lipid metabolism, biofilm and lipoprotein composi-
tion, mTOR-class 1 activation, and immune synapse forma-
tion [139]. The rise in cholesterol levels in cells interferes
with mTOR signaling, leading to the promotion of Tregs.
Insufficient lipids disrupt the mevalonate pathway, result-
ing in protein modification [140] and increases PD-1 and
eTreg numbers [141].
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2.4 Face-off Roles of Tregs in Immune Balance
2.4.1 Tregs in Cancer versus Autoimmune Diseases and
Graft Rejection

Tregs are essential for the development of im-
munotherapies against cancer and autoimmune diseases. In
cancer models, Treg depletion induced an anti-tumor im-
mune response [142,143]. Tregs are important players that
can either contribute or protect against diseases. This raises
the question of the dual role of these cells. Within the hepa-
tocellular tumor microenvironment, the frequency of γδ T-
cells decreased and was inversely correlated with the num-
ber Tregs. This phenomenon may be attributed to the sup-
pressive action of Tregs, mediated by TGF-β and IL-10,
on the cytotoxic anticancer γδ T-cells [144]. Alternatively,
γδ T-cells may become tumor-derived γδ Tregs and pro-
mote the tolerance of DCs and T-cells [145]. Tregs abun-
dance in the tumor microenvironment is correlated with
poor prognosis and is found to suppress CD8+ T-cells num-
bers [142]. Depletion of Tregs by anti-chemokine (CCR4)
antibody results in a favorable immune response [146]. On
the other hand, in the tumor microenvironment, metabolites
like IDO and adenosine stabilized Treg function. Due to
accelerated cancer cell metabolism, glycolysis is decreased
and replaced by increased fatty acid metabolism. Within
this microenvironment, Tregs actively absorb the lactic acid
that is generated, eliminating cMyc-mediated expression by
Foxp3. This, in turn, leads to a rise in oxidative phospho-
rylation and the oxidation of nicotinamide adenine dinu-
cleotide [115,118]. The rise in central memory Tregs fol-
lowing T-cell engagers immunotherapy, points to a more
balanced bone marrow in individuals with acute leukemia.
Thus, Treg expression can have positive therapeutic effects
[147]. Currently, anti-Treg-CCR4 mAb (mogamulizumab)
for advanced or recurrent solid tumor substantially decrease
eTregs in periphery [148]. The CCR8+ receptor was in-
creased in Tregs. This encouraged, binding to chemokine
CCL1 (secreted by CD11b+ CD14+ myeloid cells) to in-
crease Tregs infiltration in breast cancer. The communica-
tion between CCL1 and CCR8 boosts the levels of Foxp3
through the STAT3. Activated CCR8+ Tregs effectively
suppress the immune response against tumors by stimu-
lating ATP-adenosine metabolism through CD39, as well
as by secreting IL-10 and granzyme B [149]. Tregs in-
hibit excessive activation of effector T-cells through the
suppression of TCR and CD28 signals and inducing dys-
functional exhaustion to T-cells [150]. Through the expres-
sion of PD-1 on Tregs, immune suppression in the tumor
microenvironment can overcome therapeutic interventions
(Fig. 2) [151]. Tregs in mesenteric lymph nodes and colon
cancer expressed IL-17 receptor-A (IL-17RA) and ablating
IL-17RA increased IL-17 cells and exacerbated tumor de-
velopment. When IL-17RA is lost in tumor Tregs, it re-
duced RNA splicing downregulation of several RNA bind-
ing proteins to deregulate immune actions in colorectal can-
cer [152].

Tregs are one of the main gatekeepers of the immune
system and serve as a protector in preventing and treating
autoimmune diseases. In glomerulonephritis, Tregs pro-
vided protection against renal tissue injury that is linked
with pathogen driving Th1 and Th17 effector cell activa-
tion [153,154]. The incidence ofmost autoimmune diseases
is somehow correlated with dysfunction of suppressor im-
mune cells, mainly Tregs [155]. The mutation of the au-
toimmune regulator gene in Tregs leads to loss of normal
immune tolerance and increased the incidence of autoim-
mune polyendocrine syndrome type 1 (APS-1) [155,156].
Furthermore, a close link between Tregs malfunction and
the type 1 diabetes was noted. Specifically, adoptive trans-
fer of genetically engineered Tregs in non-obese diabetic
mice limited disease [157]. Inflammatory and autoimmune
diseases are now treated by adoptively transferred and ge-
netically altered Tregs (Fig. 2) [158].

Germane to this, most autoimmune diseases and trans-
plantation rejection emerges from abnormal immune toler-
ance as well as deficiency or malfunctions of normal exist-
ing Tregs in tissue and periphery [159–161]. Tregs induce
immune suppression to other immune subsets by crosstalk
though cytokines, chemokines, and cell-to-cell contacts,
such as Tregs crosstalk towards T-cells [162], myeloid cells
[163], B-cells [164], NK cells [165], and γδ T-cells [166].
In autoimmune diseases, Tregs are lower frequencies with
higher inflammatory pathways, for example: autoreactive
T-cells [167], uncontrolledmyeloid cells [168–170], uncon-
trollable B-cells [171], pro-inflammatory NK cells [172],
self-reactive DCs [173] and γδ T-cells [174] (Fig. 2).

2.4.2 Tregs in the Newborn, Youth, and Elderly

Ageing enhances Treg senescence and limits prolif-
eration [175]. Tregs migrated less and did not regenerate
muscle in aged animals [176]. In order individuals, Tregs
had less ability heal lung damage caused by influenza [177].
Differentiation of Tregs diminished with age, which is sig-
nificant when comparing the differentiation of naïve T-cells
from aged mice to those of young animals [178]. Simi-
larly, a reduction in the de novo induction of antigen spe-
cific Tregs in the aged mice was less compared to young
animals [179].

Retinaldehyde dehydrogenase 2 (RALDH2) was de-
creased in DCs from mesenteric lymph nodes (MLN) from
older mice [15]. Additionally, CD11b− CD103+ PD-L1high
DCs, characterized by elevated RALDH2, were fewer [179]
in conjunction with TGF-β, RALDH2-mediated retinoic
acid production allowsMLNDCs to promote Treg develop-
ment [180]. Despite a decrease in the generation of tTregs
and pTregs, elevated numbers of Tregs in the spleen and
lymph nodes of aged mice were noted [181].

The accumulation of Tregs appears to be age depen-
dent, with middle-aged mice exhibiting Treg levels that
are in between those of young and old mice [182]. For
obvious reasons, Tregs are assessed in human blood sam-
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Fig. 2. Role of Tregs in protection from autoimmune diseases and cancer development. In cancers, Tregs induce immune sup-
pression of other immune subsets through cytokines, chemokines, and cell-to-cell contacts, tolDCs, Tolerogenic dendritic cells; CCR,
chemokine receptor; TIGIT, T-cell immunoreceptor with Ig and ITIM domains; LAG-3, lymphocyte activation gene-3; CTLA-4, cyto-
toxic T-lymphocyte-associated protein 4; CXCR1, C–X–C chemokine receptor 1; MDSCs, myeloid-derived suppressor cells; NK/NKT-
cells, natural killer; PD-1, programmed cell death protein 1; TNF-α, tumor necrosis factor-α.

ples. More aTregs (Foxp3high CD45RA−) and less rTregs
(Foxp3low CD45RA+) were noted in blood from older in-
dividuals [181,183]. Related to this, Tregs were more nu-
merous in the skin of older subjects and could account, in
part, for fewer in the circulation [184].

3. Future Research Directions in Current
Treg-Targeting Therapies

Technology advancements and a better understanding
of Treg biology will likely drive the development of Treg-
targeting therapeutics in several fascinating ways.

A Precision Medicine: Treg-targeting therapies may be
more effective and less likely to cause side effects if they
are customized to each individual based on their unique
immune profile and genetic background. This is becom-
ing more possible with advances in proteomics and ge-
nomic technology [185].
B Combination Therapies: Combining Treg-targeting
strategies with other immunotherapies to increase thera-
peutic efficacy, such as checkpoint inhibitors or chimeric
antigen receptor (CAR)-T cell therapy [186]. The goal
is to produce synergistic effects that enhance anti-tumor
or autoimmune responses. Combination checkpoint in-
hibitor therapy slowed tumor growth by blocking sev-
eral pathways, such as PD-1 (Nivolumab), LAG-3 (Re-
latlimab), and CTLA-4 (Ipilimumab) [187]. The FDA
approved six CAR-T therapies for cancer includingKym-
riah (tisagenlecleucel), Tecartus (brexucabtagene au-

toleucel), Yescarta (axicabtagene ciloleucel), Abecma
(idecabtagene vicleucel), Breyanzi (lisocabtagene mar-
aleucel), and Carvykti (ciltacabtagene autoleucel) [186].
C Nanotechnology: Using nanoparticles (NPs) and
nanocarriers to precisely deliver drugs or therapeutic
agents to Tregs to improve efficacy and lower systemic
toxicity [188–190]. NPs can administer monoclonal an-
tibodies (anti-PD1). Other NP formulations deliver small
interfering RNAs to disrupt immunological checkpoints
[191,192]. Using NPs, antigen, such as CAR-encoding
DNA in vivo and CAR-encoding mRNA, can be deliv-
ered to T-cells [193]. NPs that release TGF-β and IL-2
can increase the number of Tregs in vivo, reducing lupus
symptoms [194]. Poly(lactic-co-glycolic) acid (PLGA)
NPs have been used to administer immunomodulators
and prevent allograft rejection [195].
D Gene Editing Technologies: Tregs can be precisely
modified using tools like CRISPR/Cas9. This could in-
volve engineering Tregs to either enhance their suppres-
sive functions for autoimmune diseases or reduce their in-
hibitory effects for cancer treatment. CRISPR/Cas9 can
edit both primary T-cells and engineered T-cells, includ-
ing CAR-T and TCR-T, in vivo and in vitro to regulate T-
cell differentiation and activation [196]. Tregs can more
effectively detect islet-associated antigens and improve
the immune-suppressive environment using CRISPR-
Cas9 to replace endogenous TCRwith islet-specific TCR
and stable Foxp3 expression [197,198]. CRISPR/Cas9-
edited dual-targeted (CD19/CD22) CAR-T, was safe and
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efficient in individuals with B-cell acute lymphoblastic
leukemia (B-ALL) [196].
E Novel Drug Development: Novel pharmaceuticals or
biological treatments that precisely modulate Treg sur-
vival or function are being developed. These may pro-
vide more efficient and selective modulation of Tregs.
F Selective Targeting: Developing therapies that target
pathogenic Tregs precisely while protecting Tregs that
maintain normal immune tolerance. This may lessen ad-
verse effects and improve safety profiles [11].

4. Conclusions
Integrating regulatory T-cells into medicine requires

careful consideration and is not straightforward. Clinical
correlative studies should be considered when examining
the delicate immunological balance of Tregs in their macro-
and microenvironments. Varying roles of regulatory T-cells
are found in many situations and diseases, in aging, be-
tween sexes, and potentially underestimated factors. Tregs
crosstalk to other immune cells through complicated net-
work mechanisms. This is necessary for a balanced im-
mune reaction. Sometimes Tregs have a beneficial role and
sometimes a harmful role. In autoimmune diseases, Tregs
are not of adequate number or function mainly secondary to
hyperactive immune cells recognizing self-antigens. Con-
sequently, proinflammatory cytokines and chemokines are
secreted to augment the immune reaction. Enrichment of
the affected organ with autologous Tregs might restore the
immune balance. In cancers, Tregs are abundant and un-
der the control of cancer cells to maintain a balanced less
severe tumor immune response. In this case, depletion of
Tregs from the immune compartments of the tumor may in-
crease cancer killing.
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