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In solids containing elements with f-orbitals, the interaction between f-electron spins and those of itinerant electrons
leads to the development of low-energy fermionic excitations with a heavy effective mass. These excitations are
fundamental to the appearance of unconventional superconductivity observed in actinide- and lanthanide-based
compounds. We use spectroscopic mapping with the scanning tunneling microscope to detect the emergence of heavy
excitations with lowering of temperature in Ce- and U-based heavy fermion compounds. We demonstrate the sensitivity
of the tunneling process to the composite nature of these heavy quasiparticles, which arises from quantum entanglement
of itinerant conduction and f-electrons. Scattering and interference of the composite quasiparticles is used in the Ce-
based compounds to resolve their energy-momentum structure and to extract their mass enhancement, which develops
with decreasing temperature. Finally, by extending these techniques to much lower temperatures, we investigate how
superconductivity, with a nodal d-wave character, develops within a strongly correlated band of composite excitations.

1. Introduction

A remarkable variety of collective electronic phenomena
have been discovered in compounds with partially filled
f-orbitals where electronic correlations are dramatically
enhanced.1,2) In these compounds the entanglement of the
rather localized f-electrons with the surrounding itinerant
electrons starts at relatively high temperature leading to the
development of low-energy composite quasiparticles with a
heavy effective mass. Tuning the hybridization between
f-orbitals and itinerant electrons can destabilize the heavy
Fermi liquid state at low temperatures towards an anti-
ferromagnetically ordered ground state.3–8) In proximity to
such a quantum phase transition, between itinerancy and
localization of f-electrons, many heavy fermion systems
exhibit magnetism and unconventional superconductivity at
low temperatures [Fig. 1(a)].9)

Thermodynamic and transport studies have long provided
evidence for heavy quasiparticles, their unconventional
superconductivity, and non-Fermi liquid behavior in a variety
of Kondo lattice systems.1,2,9–12) However, the emergence of
a coherent band of heavy quasiparticles near the Fermi
energy, as a result of the hybridization of the localized
f-electrons with conduction electrons [Fig. 1(b)], remains
not well understood.12–15) Part of the challenge has been
the inability of spectroscopic measurements to probe the
development of heavy quasiparticles with lowering of
temperature and to characterize their properties with high-
energy resolution. Recently, various theoretical approaches,
including several numerical studies, remarkably reproduce
the generic composite band structure of Fig. 1(b).16–20)

Theoretical modeling has also shown that tunneling spec-
troscopy can be a powerful probe of this composite nature of
heavy fermions.21–24) Depending on the relative tunneling
amplitudes to the light conduction (tc) or to the heavy f-like
(tf) components of the composite quasiparticles, and due to
their interference, tunneling spectroscopy can be sensitive to
different features of the hybridized band structure [Figs. 1(c)

and 1(d); see detail below]. Such precise measurements of
heavy fermion formation are not only required for under-
standing the nature of these electronic excitations close to
quantum phase transitions25) but are critical to identifying
the source of unconventional superconductivity near such
transitions, which continues to be at the forefront of unsolved
problems in all of physics.

Here we review our recent advances in the application of
STM techniques to study the formation of heavy fermions
and their superconductivity.26–28) To provide a controlled
study of the formation of heavy fermion excitations within a
Kondo lattice system and visualize the emergence of heavy
electron superconductivity, we carried out studies on the
Ce1M1In5 (with M ¼ Co, Rh) material system. These so-
called 115 compounds offer the possibility to tune the
interaction between the Ce’s f-orbitals and the itinerant spd
conduction electrons using isovalent substitutions at the
transition metal site within the same tetragonal crystal
structure. Consequently, the ground state of this system can
be tuned (in stoichiometric compounds) between antiferro-
magnetism, as in CeRhIn5 (TN ¼ 3:5K), to superconductiv-
ity, as observed in CeCoIn5 (Tc ¼ 2:3K) and CeIrIn5
(Tc ¼ 0:4K).9) Transport studies show a drop in the electrical
resistivity in CeCoIn5 around T� ¼ 50K, which has been
interpreted as evidence for the development of a coherent
heavy quasiparticle band, followed by a linear resistivity
at lower temperature (above Tc)29)— a behavior that has
been associated with the proximity to the QCP. Quantum
oscillations and thermodynamic measurements find a heavy
effective mass (10{50m0, where m0 is the bare electron mass)
for CeCoIn5, while in the same temperature range the f-
electrons in CeRhIn5 are effectively decoupled from the
conduction electrons.30,31)

We demonstrate the sensitivity of the tunneling process
to the composite nature of these heavy quasiparticles in
CeCoIn5, which arises from quantum entanglement of
itinerant conduction and f-electrons. We contrast this
observation in CeCoIn5 with the exotic heavy fermion
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compound URu2Si2, which also shows similar composite
heavy fermion behavior at high temperatures but undergoes
an enigmatic second order phase transition at THO ¼ 17:5K
to a “hidden order” state. Using spectroscopic imaging of
quasiparticle interference in Ce-115 compounds, we visualize
the energy-momentum structure of these composite heavy
fermion excitations which develops below T� near the Fermi
energy. Upon further lowering of temperature, we find the
spectrum of these heavy excitations to be strongly modified
just prior to the onset of superconductivity by a suppression
of the spectral weight near EF, reminiscent of the pseudogap
state in the cuprates.32,33) Finally, we demonstrate how nodal
superconductivity develops within this strongly correlated
band of composite excitations.

2. Experimental Results

2.1 Cleaved surfaces and topographs of CeCoIn5
Figures 2(a) and 2(b) show STM topographs of a single

crystal of CeCoIn5 doped with 0.15% of Hg–CeCo-
(In0.9985Hg0.0015)5 for reasons which will be addressed below.
All high temperature measurements (T � 20K) were per-
formed on CeCo(In0.9985Hg0.0015)5. For simplicity however,
from here on we will refer to it as CeCoIn5. The samples were
cleaved in situ in our variable temperature ultra-high vacuum
STM. The cleaving process results in exposing multiple

surfaces terminated with different chemical compositions.
The crystal symmetry necessarily requires multiple surfaces
for cleaved samples, as no two equivalent consecutive layers
occur within the unit cell. Therefore breaking of any single
chemical bond will result in different layer terminations
on the two sides of the cleaved sample. Experiments on
multiple cleaved samples have mostly revealed three different
surfaces, two of which are atomically ordered (termed
surfaces A and B in Fig. 2) with a periodicity corresponding
to the lattice constant of the bulk crystal structure, while the
third surface (termed surface C, Fig. 2) is reconstructed.
Comparison of the relative heights of the sub-unit cell steps
between the different layers [Figs. 2(c) and 2(d)] to the
crystal structure determined from scattering experiments34)

enables us to identify the chemical composition of each
exposed surface [Fig. 2(d)]. Experiments on the isostructural
CeRhIn5 reveal similar results (not shown here), where
cleaving exposes the corresponding multiple layers.

2.2 Composite nature of heavy fermion excitations in
CeCoIn5

Spectroscopic measurements of CeCoIn5 show the sensi-
tivity of the tunneling process to the composite nature of
the hybridized heavy fermion states. As shown in Fig. 3(a),
tunneling spectra on surface A (identified as the Ce–In layer)

Fig. 1. (Color online) Tunneling into a Kondo lattice. (a) Schematic phase diagram of heavy-fermion systems where the electronic ground state can be tuned
from antiferromagnetism (AFM) with localized f-moments to a heavy Fermi liquid (HFL) with itinerant f-electrons. At low temperatures, superconductivity
(SC) sets in near the quantum critical point (QCP) from a non-Fermi liquid (NFL). (b) Bare electronic bands (dashed lines) and hybridized heavy fermion bands
(HF) (solid lines) displaying a direct (2v) and an indirect (�h) hybridization gaps. (c) Tunneling spectra computed from the hybridized band structure in (b) for
a tunneling ratio tf=tc ¼ �0:025 showing sensitivity to the direct hybridization gap (2v). (d) Similar spectra computed with tf=tc ¼ �0:37 showing sensitivity
to the indirect gap (�h). Figure partially reproduced from Ref. 27.
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of CeCoIn5 show that upon cooling the sample, dramatic
changes develop in the spectra in an asymmetric fashion
about the Fermi energy. The redistribution of the spectra
observed on this surface is consistent with a tunneling
process that is dominated by coupling to the light conduction
electrons and displays signatures of the direct hybridization
gap (2v � 30{40meV) experienced by this component of the
heavy fermion excitations [e.g., see Figs. 1(b) and 1(c)]. In
contrast to these observations, similar measurements on the
corresponding surface of CeRhIn5 show spectra that are
featureless in the same temperature range [Fig. 3(a), dashed
line] and are consistent with the more localized nature of the
Ce f-orbitals in CeRhIn5 as compared to CeCoIn5.

The composite nature of the heavy fermion excitations
manifests itself by displaying different spectroscopic charac-
teristics for tunneling into the different atomic layers.
Figure 3(b) shows spectra measured on surface B (identified
as Co) of CeCoIn5 that looks remarkably different than those
measured on surface A [Fig. 3(a)]. In the same temperature
range where spectra on surface A [Fig. 3(a)] develop a
depletion of spectral weight near the Fermi energy, surface B
shows a sharp enhancement of spectral weight within
the same 30–40meV energy window [Fig. 3(b)]. With
further lowering of temperature, the enhanced tunneling on
surface B evolves into a double-peak structure. As a control
experiment, measurements on the corresponding surface in
CeRhIn5, once again, display no sharp features in the same
temperature and energy windows [Fig. 3(b), dashed line].
The spectroscopic features of CeCoIn5’s surface B display
the characteristic signatures of dominant tunneling to the

f-component of the heavy quasiparticles, which reside near
the Fermi energy and are expected to display the indirect
hybridization gap (�h) [see Figs. 1(b) and 1(d)].

A model calculation for tunneling to composite heavy
excitations can reproduce the different spectroscopic line-
shapes on the two different surfaces. Following recent
theoretical efforts,22,23) we compute the spectroscopic proper-
ties of a model band structure in which a single hole-like
itinerant band of spd-like electrons Ec

kðkx; kyÞ hybridizes with
a narrow band of f-like electrons Ef

k ðkx; kyÞ, with
Ec
k ¼ 2tðcos kx þ cos kyÞ � �;

Ef
k ¼ �2�0ðcos kx þ cos kyÞ � 4�1 cos kx cos ky þ "f0 :

Here, t and ® represent the nearest neighbor hopping of the
conduction electrons and the chemical potential, respectively,
and �0, �1, and "f0 represent the nearest and next-nearest site
spin correlations, and the position of the heavy band with
respect to the Fermi energy, respectively. The hybridization
of these two bands with a hybridization amplitude v yields
the generic heavy fermion band structure of Fig. 1(b). The
differential conductance dI=dV , which represents the tunnel-
ing to the hybridized band structure, can then be calculated
by

dIðk; !Þ
dV

/ � 2e

h�

X2

i;j¼1

½t̂ Im Ĝðk; !Þt̂ �ij:

Where the matrix t̂ðtc; tfÞ controls the ratio of tunneling to
the c- and f-bands and Ĝ defines the full Green’s function
describing the hybridization between the c- and f-electron
bands.22,23) The results of our calculations [Figs. 3(c) and

Fig. 3. (Color online) Composite nature of heavy fermion excitations in
CeCo(In0.9985Hg0.0015)5. (a) Averaged tunneling spectra (¹150mV, 200 pA)
measured on surface A of CeCo(In0.9985Hg0.0015)5 for different temperatures
(solid lines) and on the corresponding surface A of CeRhIn5 at 20K (dashed
line). Note that the CeCoIn5 sample was doped by 0.15% Hg, which does not
affect the electronic properties. (b) Averaged tunneling spectra (¹150mV,
200 pA) measured on surface B of CeCo(In0.9985Hg0.0015)5 for different
temperatures (solid lines) and on corresponding surface B of CeRhIn5 at
20K (dashed line). (c, d) Tunneling spectra computed for tf=tc ¼ �0:01 (c)
and tf=tc ¼ �0:20 (d) for selected values of the f-component lifetime
broadening �f. Figure reproduced from Ref. 27.

Fig. 2. (Color online) STM topographies on CeCoIn5. (a) Constant current
topographic image (+200mV, 200 pA) showing an atomically ordered
surface (termed surface A) with a lattice constant of ³4.6Å. (b) Topographic
image (¹200mV, 200 pA) showing two consecutive layers: a distinct
atomically ordered surface (termed surface B, lattice constant ³4.6Å) and a
reconstructed surface (termed surface C). (c) Constant current topographic
image (¹150mV, 365 pA) displaying all three surfaces (the derivative of the
topography is shown to enhance contrast). (d) A line cut through the different
surfaces (solid line in c) showing the relative step heights compared to the
bulk crystal structure. Insets in (a) and (b) show blow-ups (45� 45Å2) of the
three different surfaces. Figure reproduced from Ref. 27.
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3(d)] are strongly sensitive to the ratio of tunneling into the
heavy f-states versus the light conduction band (tf=tc)— a
behavior that explains the differences between the tunneling
processes on the different cleaved surfaces [Figs. 3(a) and
3(b)]. Our calculations also capture the temperature evolution
of the spectra in Fig. 3(b), by varying the inverse lifetime
(scattering rate) of the f-component of the heavy quasipar-
ticles in our model calculations [Fig. 3(d)]. These measure-
ments and their corresponding modeling demonstrate the
composite nature of heavy fermions excitations in CeCoIn5.

2.3 Heavy fermion formation in URu2Si2
To demonstrate the generic behavior of the tunneling

sensitivity to the composite nature of heavy fermion
excitations, we show in Fig. 4 similar measurements carried
out on another heavy fermion compound. URu2Si2 displays
heavy electron formation below T� � 80K, as probed by
transport measurements.35) However, this compound has long
puzzled scientists due to its enigmatic phase transition to a
hidden order state at THO ¼ 17:5K, whose order parameter
and connection to the heavy excitations has since remained a
mystery.10,36) In Figs. 4(a) and 4(b) we show STM topo-
graphs of the cleaved surfaces of URu2Si2, which similar to
CeCoIn5 expose multiple atomic layers within the unit cell.
(Here we show the two relevant surfaces, AA and BA. A third
surface, which undergoes surface reconstruction, is also
observed.26) The terminology here is different than that in
Ref. 26.) Spectroscopic measurements on the corresponding
multiple surfaces of URu2Si2 at temperatures above THO
[Figs. 4(c) and 4(d)] reveal different spectroscopic line-

shapes, yet with notable similarities to those observed in
CeCoIn5 [Figs. 3(a) and 3(b)]. The spectra on surface AA of
URu2Si2 display an asymmetric Fano lineshape, a signature
of quantum interference between tunneling to a discrete (tf)
and continuum (tc) electronic states.37,38) Similar measure-
ments on surface BA display a double peak structure,
indicating an enhanced co-tunneling to the discrete f-like
states on this surface. As in CeCoIn5, the double-peak
structure, extended over µ40meV, reflects the high density of
states originating from the flat dispersions of the two heavy
fermion bands [Figs. 1(b) and 1(d)], which are already
formed above THO. These similarities in the two, rather
different, material systems demonstrate the generic behavior
of the tunneling process to the composite nature of heavy
fermion excitations. Extending the measurements in URu2Si2
below THO further reveals that the hidden order occurs on the
lower heavy fermion band with an energy scale of µ4meV
around the Fermi energy— an order of magnitude smaller
than the hybridization energy scale of µ40meV.

2.4 Visualizing quasiparticle mass enhancement in
CeCoIn5

To directly probe the energy-momentum structure of heavy
quasiparticles we consider the Ce-115 material systems again.
Spectroscopic mapping with the STM enables us to visualize
scattering and interference of these quasiparticle excitations
from impurities or structural defects. Elastic scattering of
quasiparticles from these imperfections gives rise to standing
waves in the conductance maps at wavelengths correspond-
ing to 2�=q, where q ¼ kf � ki is the momentum transfer
between initial (ki) and final (kf ) states at the same energy.
We expect that q’s with the strongest intensity connect
regions of high density of states on the contours of constant
energy and hence provide energy-momentum information of
the quasiparticle excitations. We characterize the scattering
q’s using discrete Fourier transforms (DFTs) of STM
conductance maps measured at different energies. Figure 5(a)
shows examples of energy-resolved STM conductance maps
on surface A of CeCoIn5 measured at 20K displaying
signatures of scattering and interference of quasiparticles
from defects and step edges. These conductance maps show
clear changes of the wavelength of the modulations as a
function of energy. Perhaps the most noticeable are the
changes around each random defect (0.15% of Hg dopants,
which is doped intentionally to introduce quasiparticle
scattering centers. Their presence, however, at this low
concentration does not change the thermodynamic proper-
ties). Figure 5(b) shows DFTs of such maps that display
sharp non-dispersive Bragg peaks [at the corners, (�2�=a; 0),
(0;�2�=a)] corresponding to the atomic lattice, as well as
other features (concentric square-like shapes) that disperse
with energy, collapse [Fig. 5(b); 0meV], and disappear
[Fig. 5(b); 9meV] near the Fermi energy. We have carried
out such measurements both at low temperatures [20K,
Fig. 5(b)], where the spectrum shows signatures of hybrid-
ization between conduction electrons and f-orbitals, as well as
at high temperatures [70K, Fig. 5(c)] where such features are
considerably weakened [e.g., Fig. 5(c); 2meV, 10meV]. As
a control experiment, we have also carried out the same
measurements on the corresponding surface of CeRhIn5
[Fig. 5(d)], for which signatures of heavy electron behavior

Fig. 4. (Color online) Heavy fermion excitations in URu2Si2. (a) Constant
current topographic image (+200mV, 60 pA) showing an atomically ordered
surface (termed surface AA) with a lattice constant of µ4.1Å. (b) Topo-
graphic image (¹200mV, 200 pA) displayed in derivative mode showing a
different cleaved surface (with single unit cell atomic steps) with much
weaker atomic corrugations (termed surface BA). Note that this terminology is
different than Ref. 26. (c) Averaged tunneling spectra (¹200mV, 200 pA)
measured on surface A of URu2Si2 for different temperatures. (d) Similar
spectra (¹200mV, 200 pA) measured on surface B showing the double peak
structure at around 10 and 30meV. On both surfaces, below the hidden order
transition a gap opens near the Fermi energy. The spectra are offset for
clarity. Panels a and c reproduced from Ref. 26.
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Fig. 5. (Color online) Spectroscopic mapping of quasiparticle interference on surface A. Real space (a) and corresponding DFT (b) of conductance maps
(¹200mV, 1.6 nA) at selected energies measured on surface A of CeCo(In0.9985Hg0.0015)5 at 20K. The sample was doped with 0.15% Hg to enhance scattering.
This tiny impurity content does not change the thermodynamic behavior. Similar DFTs for CeCoIn5 at 70K (¹150mV, 1.5 nA) (c) and on the corresponding
surface A for CeRhIn5 at 20K (¹200mV, 3.0 nA) (d) at selected energies. The arrow indicates the position of the Bragg peaks at (2�=a; 0) and (0; 2�=a). All
DFTs were four-fold symmetrized (due to the four-fold crystal symmetry) to enhance the signal. The intensity is represented on a linear scale. Figure
reproduced from Ref. 27.

Fig. 6. (Color online) Spectroscopic mapping of quasiparticle interference on surface B. Real space conductance maps (a) and their DFTs (b) at selected
biases measured at T ¼ 245mK on surface B. Colorbar in (a) denotes deviation from the mean. Axes in (b) denote the Bragg orientation for all DFTs. The
corners of the DFTs in (b) are ð�0:71; 0Þ2�=a, ð0;�0:71Þ2�=a. Figure reproduced from Ref. 28.
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are absent [e.g., Fig. 3(a)] in the same temperature window
(20K). Whereas these measurements on surface A display
QPI patterns dominated by the lighter part of the composite
heavy fermion bands that weaken near EF at low temper-
atures, measurements on surface B of CeCoIn5 show a
strongly dispersing QPI signal that is present only near EF,
in unison with related signatures in the tunneling spectra
(Fig. 6).

Understanding details of the QPI in Figs. 5 and 6 requires
detailed modeling of the complex band structure of the 115
compounds, which from previous theoretical calculations,
quantum oscillation, and angle resolved photoemission spec-
troscopy measurements is known to consist of multiple
three-dimensional bands.39,40) These previous measurements
and calculations have also shown that the so called ¡ and
¢ bands are the most relevant near EF. Our QPI measure-
ments show features that are consistent with 2kF scattering
originating from the ¡ and ¢ bands. However, inferring a
unique Fermi surface from STM measurements in a three-
dimensional, multi-band material without making large
number of assumptions is not possible. Regardless, analyzing
the features of the energy-resolved DFT maps provide
direct evidence for mass enhancement of quasiparticles.
Figures 7(a) and 7(b) show line cuts of the DFT maps plotted
along two high symmetry directions as a function of energy
for surface A of CeCoIn5 at 20K. The square-like regions of
enhanced quasiparticle scattering in Fig. 5(b) appear in the
line cuts of Figs. 7(a) and 7(b) as energy-dependent bands of
scattering, which become strongly energy dependent near
the Fermi energy. Clearly the scattering of the quasiparticle
excitations in the energy window near the direct hybridization
gap have flatter energy-momentum structure as compared to
those at energies away from the gap. This is best seen on
surface B of CeCoIn5 at low temperatures, where tunneling is
more sensitive to the heavy excitations near the Fermi energy
[Figs. 7(c) and 7(d)]. This is the direct signature of the
quasiparticles acquiring heavy effective mass at low energies
near the Fermi energy. Detailed analysis of the QPI bands
estimates the mass enhancement near the Fermi energy to be
about 20{30m0 [Figs. 7(c) and 7(d)], a value which is close to
that seen in quantum oscillation studies of CeCoIn5.30,31)

Contrasting low temperature QPI patterns on CeCoIn5 to
measurements on the same compound at high temperatures
[70K, Figs. 7(e) and 7(f )], where the hybridization gap is
weak, or to measurements on CeRhIn5 [20K, Figs. 7(g) and
7(h)], where signatures of a hybridization gap are absent in
the tunneling spectra, confirms that the development of this
gap results in apparent splitting of the bands which are
responsible for both the scattering and the heavy effective
mass in the QPI measurements. Furthermore, these measure-
ments show that the underlying band structure responsible for
the scattering wavevectors away from the Fermi energy is
relatively similar between CeCoIn5 and CeRhIn5. Only when
f-electrons of the Kondo lattice begin to strongly hybridize
with conduction electrons and modify the band structure
within a relatively narrow energy window (µ30meV), we see
signatures of heavy fermion excitations in QPI measurements,
signaling a transition from small to large Fermi surface.

2.5 Heavy electron superconductivity in CeCoIn5
We now turn to low temperatures to address the emergence

of superconductivity in CeCoIn5. The results of our QPI
measurements in CeCoIn5 at low temperatures [Figs. 7(a)–
7(f )] together with spectroscopic measurements [Figs. 3(a)
and 3(b)] demonstrate that the superconducting instability
occurs within a correlated heavy quasiparticle band with a
large density of states at the Fermi energy. Lowering the
temperature below Tc shows that the spectrum on surface A,
which displays the indirect hybridization gap, is modified by
the onset of an energy gap associated with superconductivity
[Fig. 8(a)]. However, instead of focusing on measurements of
surface A, where the tunneling is dominated by the lighter
part of the composite band, we turn to measurements of
surface B, which probes the narrow bands of heavy
excitations resulting in the double peak structure near EF.
Lowering the temperature from 7.2 to 5.3K, above Tc, we
find that this peak is modified by the onset of a pseudogap-
like feature at a smaller energy scale [Fig. 8(b)]. Further
cooling shows the onset of a distinct superconducting gap
below Tc inside the pseudogap. Measurements in a magnetic

Fig. 7. (Color online) Visualizing quasiparticle mass enhancement. (a, b)
Energy-momentum structure of the QPI bands on Surface A of CeCo-
(In0.9985Hg0.0015)5 at 20K extracted from line cuts (solid white lines in Figs. 5
and 6) along the atomic direction (2�=a; 0) (a) and along the zone diagonal
(�=a, �=a) (b). (c, d) Energy-momentum structure of the QPI bands on
Surface B of CeCoIn5 at 245mK along the same two high symmetry
directions. The effective mass m� ¼ 34m0, 29m0, 23m0 for the three
different bands (Q1, Q2, Q3) respectively is extracted from the curvature
(1=4 h� 2½d2E=dq2��1) of a second order polynomial fits to the QPI bands.
Error bars are derived from the width of the peaks in the DFTs. (e, f ) Similar
measurements performed on surface A of CeCo(In0.9985Hg0.0015)5 at 70K.
(g, h) Similar measurements performed on surface A of CeRhIn5 at 20K.
PSD, power spectral density. The intensity is represented on a linear scale.
Figure reproduced from Refs. 27 and 28.
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field corroborate our finding that the lowest energy scale on
surface B [	�500µV, as shown in Fig. 8(c)] is indeed
associated with pairing, as it disappears above HC2, while the
intermediate energy scale pseudogap remains present at low
temperature in the absence of superconductivity at high
magnetic field [Fig. 8(c)]. This behavior is reminiscent of the
pseudogap found in underdoped cuprates, where the super-
conducting gap opens inside an energy scale describing
strong correlations that onset above Tc. However, unlike
cuprates, here we clearly distinguish between the two energy
scales by performing high-resolution spectroscopy in a
magnetic field large enough to fully suppress superconduc-
tivity. The spectroscopic measurements suggest that elec-
tronic or magnetic correlations alter the spectrum of heavy
excitations by producing a pseudogap within which pairing
takes place. These measurements also show the shape of the
spectra at the lowest temperature to be most consistent with
a d-wave superconducting gap, as they have a nearly linear
density of states near zero energy (Fig. 8). However,
measurements on all surfaces and on several samples reveal
that this d-wave gap (with a magnitude of 535� 35µV,
consistent with that extracted from point contact data18,19)) is
filled (40%) with low energy excitations— a feature that
cannot be explained by simple thermal broadening (deter-
mined to be 245mK). The complex multiband structure of
CeCoIn5 could involve different gaps on different Fermi
surface sheets, and there is the possibility that some remain
ungapped even at temperatures well below Tc.41) Another

contribution to the in-gap density of states could come from
surface impurities, since even non-magnetic impurities
perturb a nodal superconductor.

The first such signature can be found by examining the
response of low-energy excitations to extended potential
defects such as atomic step edges. Spectroscopic mapping
with the STM upon approaching such steps shows direct
evidence for the suppression of superconductivity in their
immediate vicinity [Figs. 9(a) and 9(b)]. This suppression is
consistent with the expected response of a nodal super-
conductor to non-magnetic scattering [Fig. 9(c)], analogous
to similar observations in the cuprates,42) and in marked
contrast with step-edge measurements of conventional
s-wave superconductors.28) The data in Fig. 9(d) provide
a direct measure of the Bardeen–Cooper–Schriefer (BCS)
coherence length43) �BCS ¼ 56� 10Å, in agreement with
�BCS 	 h�vF=�� 	 60Å using the gap observed in Fig. 8
(0.5meV) and the Fermi velocity extracted from Fig. 7
(1:5� 106 cm/s).

A more spectacular demonstration of the nodal pairing
character in CeCoIn5 can be obtained from examining the
spatial structure of in-gap states associated with defects on
the surface of cleaved samples. The spatial structure of
impurity quasi-bound states, which are mixtures of electron-
and hole-like states, can be a direct probe of the order
parameter symmetry. Figure 10 shows an extended defect
with a four-fold symmetric structure, which perturbs the low
energy excitations of CeCoIn5 by inducing an in-gap state.
Probing the spatial structure of these impurity states, we not
only find their expected electron–hole asymmetry, but also
find that their orientation is consistent with that predicted for
a dx2�y2 superconductor [Figs. 10(b)–10(e)].

32,44) The minima

Fig. 8. (Color online) Hybridization, pseudogap, and superconductivity in
CeCoIn5. (a) Tunneling density of states on surface A carried out at
temperatures above and below Tc. (b) Similar spectra on surface B of
CeCoIn5 showing the evolution of the different energy scales (�HG:
hybridization gap; �PG: pseudogap; �SC: superconducting gap) with
temperature. Spectra are offset for clarity. (c) Blow up of the super-
conducting gap energy scale on surface B showing the destruction of the
superconducting gap in a magnetic field of H ¼ 5:7T > Hc2 while the
pseudogap feature is preserved. (d) Comparison of the superconducting
energy scale on the two surfaces. The spectra GðVÞ in (a) and (d) are
normalized by their corresponding junction impedances GS. Figure
reproduced from Ref. 28.
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Fig. 9. (Color online) Evolution of in-gap quasiparticle states approaching
a step-edge. (a) Topographic image (V ¼ �100mV, I ¼ 100 pA) of
surface A in CeCoIn5 showing a single unit-cell step-edge oriented at
45° to the atomic lattice. The arrows in the figure indicate the in-plane
crystallographic a- and b-directions. (b) Evolution of the spectra near the
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reproduced from Ref. 28.
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(maxima) in the oscillations for hole-like (electron-like) states
identify the nodes of the d-wave order to occur at 45° to the
atomic axes [Fig. 10(h)]. In fact, these features in the STM
conductance maps are identical to those associated with Ni
impurities in high-Tc cuprates.43,45) However, in contrast to
measurements in the cuprates, we are able to determine the
spatial structure that such impurities induce on the normal
state by suppressing pairing at high magnetic fields. Such
measurements allow us to exclude the influences of the
normal state band structure of the impurity shape, or of the
tunneling matrix element43) on the spatial symmetries of the
impurity bound state in the superconducting state. Contrast-
ing such measurements for H > HC2 [in Figs. 10(f ) and
10(g)] with measurements on the same impurity for H ¼ 0

[Figs. 10(d) and 10(e)] we directly visualize how nodal
superconductivity in CeCoIn5 breaks the symmetry of the
normal electronic states in the vicinity of a single atomic
defect.

3. Conclusions

In summary, the experimental results and the model
calculations presented here provide a comprehensive picture
of how heavy fermion excitations in the 115 Ce-based Kondo
lattice systems emerge with lowering of temperature or as a
result of chemical tuning of the interaction between the Ce f-
electrons and the conduction electrons. The changes in the

scattering properties of the quasiparticles directly signal the
flattening of their energy-momentum structure and the
emergence of heavy quasiparticles near the Fermi energy.
Such changes are also consistent with the predicted evolution
from small to large Fermi surface as the localized f-electrons
hybridize with the conduction electrons. The sensitivity of
the tunneling to the surface termination and the successful
modeling of these data provide direct spectroscopic evidence
of the composite nature of heavy fermions and offer a unique
method to disentangle their components. Spectroscopic
signatures in CeCoIn5 and URu2Si2 above THO, reveal a
similar hybridization energy scale (30–40meV), which
mostly effects quasiparticles above the chemical potential.
Furthermore, contrasting measurements above and below
THO, show that the hidden order state in URu2Si2 opens a
narrow gap near EF with an energy scale much smaller than
the hybridization gap. Finally, extending the measurements in
CeCoIn5 to very low temperatures reveals the appearance of a
pseudogap and direct evidence for dx2�y2 superconductivity,
which ties the phenomenology of the Ce-115 system to that
of the high-temperature cuprate superconductors.
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