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Abstract

Essays on Energy and Environmental Economics

by

Karl W. Dunkle Werner

Doctor of Philosophy in Agricultural and Resource Economics

University of California, Berkeley

Associate Professor James Sallee, Chair

Over the past decades, two things have
become increasingly apparent: first, climate
change and associated environmental impacts
are pressing issues, and second, despite this
growing threat, existing policies still fall far
short. The goal of my research, and what I
hope for the field more broadly, is to achieve
effective, efficient, and equitable policy. My dis-
sertation research covers a wide range of top-
ics, focusing on three different areas of energy
and environmental economics: methane emis-
sions from oil and gas production; flooding on
agricultural land; and energy utility regulatory
rates of return. The common thread is using
applied economic tools and answering policy-
relevant questions with data and analysis. Of-
ten, the data that are available are far from the
ideal dataset, or the policies that are on the
table are far from the first best. Here, my coau-
thors and I adopt the “economist as plumber”
mindset, using the tools that are available to
address the challenges at hand (Duflo 2017).

In my first chapter, my coauthor Wenfeng
Qiu and I study emissions of methane, a
powerful greenhouse gas, from oil and gas
wells in the US. These emissions contribute

significantly to climate change—they are ap-
proximately as large as the emissions of all
fuel burned in the western US electricity
grid. Methane emissions are rarely priced and
lightly regulated—in part because they are hard
to measure—leading to a large climate exter-
nality. However, measurement technology is
improving, with remote sensing and other tech-
niques opening the door for policy innovation.
We present a theoretical model of emissions
abatement at the well level and a range of fea-
sible policy options, then use data constructed
from cross-sectional scientific studies to esti-
mate abatement costs. We simulate audit poli-
cies under realistic constraints, varying the in-
formation the regulator uses in choosing wells
to audit. These policies become more effective
when they can target on well covariates, de-
tect leaks remotely, and charge higher fees for
leaks. We estimate that a policy that audits
1% of wells with uniform probability achieves
less than 1% of the gains of the infeasible first
best. Using the same number of audits targeted
on remotely sensed emissions data achieves
gains of 30–60% of the first best. These re-
sults demonstrate that, because leaks are rare
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events, targeting is essential for achieving wel-
fare gains and emissions reductions. Auditing
a small fraction of wells can have a large im-
pact when properly targeted. Our approach
highlights the value of information in design-
ing policy, centering the regulatory innovation
that is possible when additional information
becomes available.

My second chapter is coauthored with
Oliver Browne, Alyssa Neidhart, and Dave
Sunding. We study high-frequency flood risk
on agricultural land. Floods destroy crops and
lower the value of agricultural land. Economic
theory implies that the hedonic discount on
the value of a parcel of flood-prone land should
scale with the expected probability flooding.
Most empirical studies of the impact of flood
risk on property values in the United States
focus on the relatively small risk posed by
the 100-year or 500-year floodplains, as re-
ported in maps produced by the Federal Emer-
gency Management Agency (FEMA). These
studies consequently find a relatively small
corresponding discount in property values.
However, a significant amount of agricultural
bottom-land lies in floodplains that flood more
frequently. We estimate the hedonic discounts
on with agricultural land that floods at these
higher frequencies along the Missouri River.
As flood risk increases, the value of flood-prone
land decreases, with a hedonic discount rang-
ing from close to zero in the 500-year flood-
plain to approximately 17% in the 10-year flood-
plain. To illustrate the importance of charac-
terizing these higher frequency flood risks,
we consider a climate change scenario, where
properties that already face some flood risk are
expected to flood more frequently.

My third chapter, coauthored with Stephen
Jarvis, examines the regulated rate of return on
equity utility companies are allowed to collect
from their customers. Utilities recover their
capital costs through regulator-approved rates
of return on debt and equity. The US costs of
risky and risk-free capital have fallen dramat-

ically in the past 40 years, but these utility
rates of return have not. We estimate the gap
between what utilities are paid now, and what
they would have been paid if their rate of re-
turn had followed capital markets, using a com-
prehensive database of utility rate cases dating
back to the 1980s. We estimate that the cur-
rent average return on equity is 0.5–4 percent-
age points higher than historical relationships
would suggest, and consumers pay an average
of $2–8 billion per year more than they would
otherwise. We then revisit the effect posited
by Averch and Johnson (1962), estimating the
consequences of this incentive to own more
capital: a 1 percentage point increase in the
return on equity increases new capital invest-
ment by about 5% in our preferred estimate.
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Chapter One

Hard to Measure Well: Can Feasible Policies
Reduce Methane Emissions?

Coauthor: Wenfeng Qiu

1 INTRODUCTION

Oil and gas wells emit large quantities of
methane, a powerful greenhouse gas with the
second largest impact after carbon dioxide.
Methane accounts for roughly one-tenth of to-
tal greenhouse gas (GHG) emissions, though its
contribution is measured much less precisely
than carbon dioxide’s. Fossil fuels, particularly
oil and natural gas, are the largest human-
driven sources of methane (US�ibnamedelimb EPA  2020a; Al-
varez et al. 2018). As fracking has dramatically
increased US oil and natural gas production,
methane emissions have followed, and these
emissions are now roughly the same magni-
tude as the emissions from all fuel used in the
western US electricity grid (US EPA 2020). Nat-
ural gas has been heralded as a cleaner substi-
tute for coal and a bridge fuel in the transition
to a low carbon economy. However, if these
methane emissions are large enough, natural
gas may emit more GHG than coal.1 Beyond
debates over coal and natural gas, these leaks
increase both the lifecycle GHG emissions of

1. The lifecycle GHG emissions of natural gas may be
lower than coal as long as the total leakage rate is below
5–10% (Hausfather 2015). We focus on upstream leakage
from wells, where 1–4% of gas leaks out. Emissions from
pipelines and end users also contribute significantly, and
further quantifying all of these remains an active field
of research.

gasoline and the relative value of renewable
energy.

Measuring methane is costly – it’s infeasi-
ble to put a continuous emissions monitor on
every well – so pricing emissions is challeng-
ing. The standard economic prescription in
this case would be to audit infrequently and
charge a high fine, so that the expected penalty
is equal to the social cost (plus enforcement
costs). This approach has theoretical appeal,
but is infeasible because of legal and logisti-
cal constraints. The constraints on fees range
from the backstop of bankruptcy, to legal doc-
trine limiting punitive damages, to political
pushback (Boomhower 2019; Exxon Shipping
Co. v. Baker 2008). Currently, no US jurisdic-
tion charges a price for methane emissions
(Rabe, Kaliban, and Englehart 2020).

This paper combines an economic model
with empirical estimates in order to quantify
the potential gains from feasible audit poli-
cies and to demonstrate the value of remotely
sensed data that could improve audit targeting.
We account for real-world constraints on poli-
cies that can be enacted and the information
available to the regulator. These constraints
take the form of limits on the fees that can be
charged, the regulator’s capacity to conduct
audits, and the fidelity and detection threshold
of the remotely sensed measurements. Policies
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under these constraints offer some improve-
ment over the benchmark of no policy, but the
gains vary dramatically, depending on the fee
the regulator can charge and the remote sens-
ing information available.

We note that imperfect measurement is not
isolated to methane, or even environmental
economics. Enforcing any policy requires mea-
surement. The quality and cost of these mea-
surements determine which policies are fea-
sible. In recent decades, remote sensing, ad-
ministrative data, and other indirect informa-
tion have improved dramatically, raising the
possibility that policy can be based on or in-
formed by these measures. At the same time,
and despite a great deal of excitement about
remote sensing, policies that make direct use
of these tools are rare. Our work highlights a
promising case where they could be applied,
while acknowledging the measurements’ lim-
its for enforcing policy. We integrate a the-
oretical model, tailored to our data setting,
with a newly constructed dataset and Bayesian
structural estimation to evaluate the gains a
constrained regulator could achieve with addi-
tional information.

To start our analysis, we develop a theoreti-
cal model of abatement and welfare. Using the
model, we consider how well operators would
change their behavior in response to a feasible
but imperfect audit policy – one where the ex-
pected fee for emitting differs from the social
cost, and may be zero for some wells because
of measurement or auditing limitations.

In our model, and consistent with the sci-
entific literature, large leaks are the result of
stochastic process failures (Lyon et al. 2016;
Zavala-Araiza et al. 2017). These leaks are rare
and hard to predict, but large sources of GHG.
Well operators can reduce the duration of leaks
by checking wells more frequently and the oc-
currence of new leaks by investing in routine
maintenance and better equipment.We assume
well operators abate expected emissions by
reducing the probability a well is leaking at

any given moment, rather than reducing the
size of leaks. Our stylized model yields closed-
form solutions for welfare and abatement as
functions of the leak size distribution and the
well operators’ cost parameters. We parame-
terize the model flexibly, using data on leaks at
the well pad level.2 To construct the distribu-
tion of emissions, we combine several datasets
from different scientific teams. We match these
leakage measures to specific well pads, and
we estimate the fraction that have detectable
emissions. Our main dataset uses emissions
estimates collected by airplanes flying over
approximately 15,000 well pads in California,
New Mexico, and Colorado. We use the vari-
ation in leak size and presence to infer the
distribution of sizes when leaks occur, as well
as the well operator’ costs of preventing those
leaks.

In addition to being a greenhouse gas,
methane is also the primary component of
natural gas. To leak methane into the atmo-
sphere is to lose the commodity value of the
gas, which provides a private incentive to abate.
However, because the commodity price is less
than one-tenth the value of social damages
from leaking, well operators don’t face a strong
enough incentive to abate to the socially opti-
mal level. We use this private incentive to learn
as much as possible in the absence of policy.
We build our model assuming well operators
are avoiding leaks optimally, given this weak
private incentive, then consider how behavior
would change if the well operator faced some
expected fee for emissions.

When we discuss audits, we consider on-
the-ground measurements. When a well is au-
dited, we assume the regulator has to drive to
the well and take downwind measurements
of the well’s emissions using standard meth-
ods approved by the Environmental Protection
Agency (EPA). These on-the-ground measure-

2. A well pad is a group of one or more closely spaced
wells, typically within a few yards of one another.
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ments may be necessary, even when leaks can
be measured remotely, because of noise in the
remote sensing or regulatory constraints.

To think about a range of audit policies, we
compare five cases:

(0) no audits, the status quo,
(1) audit every well with equal probability,
(2) target audits based on well covariates,
(3) measure leaks remotely and target audits,

and
(4) measure leaks remotely and assess fines

based on measurements.
Assessing fines on the basis of remote measure-
ments (policy 4) is infeasible in current legal
structures, but provides an interesting point of
comparison.

Comparing each of the audit policies (1–3)
with the status quo (policy 0) allows us to think
about the gains available from an audit-type
policy. Comparing policy 3, which uses remote
sensing, with policies 1 and 2, which don’t,
provides information about the scope for pol-
icy innovation with these new tools. Charging
fees based on remote sensing alone (policy 4)
provides an infeasible benchmark, and could
achieve the first-best under additional assump-
tions. Each of these policies implies some ex-
pected value of the fee a well operator would
pay. In our model, we will consider the dead-
weight loss that arises from the regulator not
being able to set the expected fee to the social
cost of emissions.

In the policies that use remotely sensed data,
and in any policy that depends on measure-
ment, the effectiveness of the policy depends
on the quality of the measurement. For our
context, the detection threshold is an impor-
tant concern – with a high threshold, only the
largest leaks will be detected remotely. In our
analysis, we assume these measurements are
available from methane-observing satellites,
using realistic values of their detection capac-
ity (Cusworth et al. 2019).

These are relatively simple policies. Al-
though they do not offer the theoretical

gains of dynamic enforcement or sophisticated
mechanism design, they do allow us to focus on
the gains that are possible under feasible poli-
cies, and how outcomes change as technologi-
cal innovation makes more information avail-
able (cf. Blundell, Gowrisankaran, and Langer
2020; Cicala, Hémous, and Olsen 2019; Oestre-
ich 2017).We use these policies as tools to think
about the space of potential pricing options,
and how that space is changed with the avail-
ability of remotely sensed measurements.

We estimate that audit policies yield gains
over the status quo of no fees. These gains
vary dramatically with the fee amount and the
specifics of the policy. The different policies we
consider translate into different expected fees
for emitting. For instance, the uniform audit
policy has the same expected fee for every well,
and that fee increases as the audit probability
or allowed penalty increases. For a mid-level
penalty and 1% audit budget, the average of
the expected fee for emitting is $0.147 per ton
of carbon dioxide equivalent (CO2e), which
leads to improving deadweight loss (DWL) by
3.39 percent of the difference between the no-
fee outcome and the Pigouvian first best.3 In
this scenario, average emissions would fall by
34.5 tons CO2e perwell per year.With the same
audit budget and penalty, we can also consider
a policy that targets on well covariates, rather
than auditing with uniform probability. In this
case, the average fee is $0.147 (mechanically

3. Throughout this paper, we use a CO2e conversion
factor of 34, the standard 100-year global warming po-
tential (GWP) from the Intergovernmental Panel on Cli-
mate Change (IPCC) (Myhre et al. 2013). There is a lively
debate, e.g. Allen et al. (2018), about the correct way of
comparing emissions of different greenhouse gases. The
most internally consistent approach would be to use a
social cost of carbon (SCC) and social cost of methane.
Using the existing SCC estimates, the implied conversion
between one ton of CH4 and one ton of CO2 ranges from
25.8 to 45. Alternatively, 100-year GWP is approximately
consistent with a 3% discount rate on climate damages
(Sarofim and Giordano 2018; Mallapragada andMignone
2019).
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the same as the uniform policy), but is now
heterogeneous across wells, with an interdecile
range of $0–0.527. Now the improvement in
DWL is 5.43 percent, and the average fall in
emissions is 55.5 tons.

We can also consider targeting on observed
leaks. We focus on the realistic case where
the remote measurement has a high detection
threshold, so only the largest leaks are detected.
As we mentioned, in this case the regulator
can prioritize wells that were observed leak-
ing, saving some audit effort of auditing wells
when they’re not leaking. For the same audit
budget and allowed penalty, there’s a much
higher expected fee: $8.34 per ton CO2e, with
an interdecile range of $0–14.7 across wells.

This stronger incentive leads the well oper-
ators to abate more, leading to a DWL improve-
ment of 62.3 percent, and average emissions
declines of 683 tons. We also consider other
policy options, including different penalties,
different fixed audit probabilities, audit prob-
abilities that depend on the cost of auditing,
and other policy benchmarks.

These results highlight the importance of
both measurement and regulatory constraints.
If there were no limits on the size of fees for
leaks, a sufficiently high fine could be em-
ployed to induce efficient abatement without
targeted audits. Given realistic constraints on
fee amounts and the rarity of leaks, untargeted
audits produce very small welfare gains com-
pared to audits that are targeted based on re-
motely sensed information. If the allowed fees
are severely constrained, even targeted audits
yield small gains.

Though the estimates in our paper focus
on methane emissions, we view our results as
a contribution to several broader literatures.
First, and most directly, we contribute to the
discussion of designing and evaluating policy
with imperfect measurement. Second, we con-
tribute to the innovation literature, consider-
ing how technological progress in measure-
ment allows for policy innovation. Third, we

compare our results with the small literature
on methane abatement.

The challenges of imperfect measurement
and imperfect targeting arise in many envi-
ronmental questions, such as regulating non-
point pollution, as well as other economic top-
ics such as tax evasion, teacher value-added
and principal–agent problems (Segerson 1988;
Allingham and Sandmo 1972; Chetty, Friedman,
and Rockoff 2014). In all of these areas, if regu-
lators could accurately observe individual ac-
tions, they would be able to achieve their goals
much more directly. However, lack of accurate,
individual measurement leads to more com-
plicated policies that draw inferences from in-
direct evidence. Our research highlights the
value of one type of indirect measurement:
remote sensing measures that guide on-the-
ground audits.4 We compare the policies that
are achievable with and without these addi-
tional data. These additional measurements
are a form of innovation, enabling policies
that were not previously feasible. Thus, we
contribute to a line of innovation literature
that includes Nagaraj (2020), which considers
a private-sector case where satellite imagery
enabled entry by small firms and changed the
structure of the market.

Finally, we’re contributing to a relatively
small literature on policies to address methane
emissions. Ravikumar et al. (2020) is the only
study we’re aware of that estimates the ob-
served change in methane emissions from a
change in policy. The authors performed re-
peated surveys of a small number of facilities
before and after a leak detection and repair
(LDAR) program began, and estimate a 44% re-
duction in emissions.

Two recent working papers by Levi Marks
provide a point of comparison for pricing
methane emissions. Marks (2018) estimates the

4. Alix-Garcia and Millimet (2020) provides a relevant
guide to real-world challenges of satellite data, particu-
larly for measuring binary outcomes.
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elasticity of methane emissions– reported in
the EPA’s greenhouse gas reporting program
(GHGRP) – with respect to the commodity price
of natural gas of methane emissions. That pa-
per, like ours, estimates abatement costs in
the absence of any direct price on emitting
methane. To get around the lack of existing
policy, that paper notes that the private in-
centive to sell natural gas into the commodity
market can proxy for a fee on methane emis-
sions. We rely on the same argument. Because
natural gas prices move in a limited range and
are always much lower than the social cost of
methane emissions, Marks (2018) considers a
$5 per ton CO2e tax on emissions to avoid ex-
trapolating too far from the data. The paper
estimates that this tax would result in an emis-
sions reduction of 56%. To estimate a compa-
rable policy, we will consider $5 per ton CO2e
as the low-end fee a regulator might charge.
We find sharply different results for our $5 fee,
largely because low audit probabilities lead to
an expected fee much lower than $5. When we
consider expected fees of approximately $5, we
find results in a similar range, as long as the reg-
ulator is able to detect leaks remotely. For in-
stance, an average fee of $8.34 per ton of CO2e
leads to emissions reductions of 683 tons CO2e
per well per year, from a baseline of 1500 tons
(a 45% reduction).

This similarity is notable as Marks (2018)
uses a different source of identifying variation
and a different measure of methane emissions.
That paper uses variation in the price of natural
gas to identify the change in reported quantity
emitted, while we use the variation in leak sizes
and occurrence (see details in section 5). That
paper uses reported emissions at the operator-
basin level from the EPA inventory, which un-
dercount the large, rare leaks that make up
our dataset (Robertson et al. 2020). Finally,
Marks (2018) estimates abatement of aggregate
operator-basin emissions, whereas we estimate
abatement in the probability of a leak at each
well pad.

Marks (2019) uses the same abatement fig-
ures as Marks (2018) to consider the welfare
gains from a sampling-based tax: some fraction
of a firm’s facilities are randomly sampled with
a ground-level measurement, and the firm is
assessed a tax based on the sample. That paper
takes a similar approach to our audit designs,
particularly our consideration of targeting on
covariates (policy 2). In contrast to our work,
that paper focuses on firm-level emissions, au-
diting a subset of the firm’s facilities and charg-
ing a fee based on the firm’s estimated total.
We consider each well pad individually and
focus on the challenge of using measurement
to target audits. In future research we hope to
consider a variety of more sophisticated au-
dit policies, including ones that integrate well
ownership.

2 BACKGROUND

2.1 institutional setting

We first provide background on the institu-
tional details of our setting, a discussion of
the more traditional economic approaches to
regulation, and a sampling of the relevant lit-
erature. These details motivate the approach
we take in our theoretical modeling, as well as
the constraints we consider for the regulator.

The upstream production of the US on-
shore oil and gas sector emits approximately
6–10 million tons of methane per year (as of
2015), which is approximately 25% of total US
methane emissions or 200–325 million tons of
CO2e (Alvarez et al. 2018 provides emissions es-
timates for 2015).5 Using a low-end $58.82/ton
social cost of carbon ($2/kg methane), these up-
stream emissions work out to $12–19 billion per
year in climate damages, before downstream

5. CO2 emissions from the western US electricity grid
were about 245 million tons in 2018 (US EPA 2020).
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leaks or emissions from burning the fuel.6 For
comparison, the contribution to gross domestic
product (GDP) for the entire oil and gas sector,
less wages and depreciation, averages $34 bil-
lion per year.

There is little policy addressing methane
emissions, either in the US or globally. The
most active current regulations are in Col-
orado, which requires well operators to visit
wells and look for leaks. Other states and the
US federal government have considered or be-
gun to implement similar regulations. In these
policies, the well operator is required to visit
the well at some frequency. In Colorado, this
ranges from once in the well’s lifetime to ev-
ery month, depending on the well’s size and
location. Well operators need to record, report,
and repair their leaks. There’s no penalty for
reporting leaks. In fact, the Colorado regula-
tor views a high number of found-and-fixed
leaks as a success. These LDAR policies, like
the audit policies we consider in this paper, re-
flect the policymaker’s limited resources and
measurement challenges.

This paper considers audit policies as a com-
pelling alternative.7 We focus on audit policies
because they’re a traditional tool of environ-
mental, health, and safety regulation. Audits
also set an expected price on emissions, which
can be helpful when the regulator doesn’t
know the optimal abatement technology or be-
havior for each well operator. However, these
audit policies face challenges. First, visiting
wells is expensive and time-consuming. The
EPA estimates that it costs $450–600 per visit

6. With a conversion factor of 34, $58.82 per ton CO2e
is $2 per kg CH4, or about $35 per 1000 cubic feet (mcf)
of natural gas. We describe $58.82 as “low end” because
the widely used EPA $42/ton number from 2013 is $55
in 2019 dollars. However, numerous studies have found
that the damage numbers are too low in the underlying
models used by US�ibnamedelimb EPA  (2016), so we feel it would be
undesirable to rely on them too heavily.
7. We do not consider the horse-race between audits
and a stringent LDAR program; we don’t have the data
to make that comparison.

(US�ibnamedelimb EPA  2020b). Other estimates are lower, but
easily over $100 perwell pad for on-the-ground
audits.8 Second, the fines that the regulator
charges are limited.

Remote sensing may provide valuable but
imperfect information. We consider the role
satellite measurements may play in an audit or
pricing policy. Our depiction of remote sens-
ing is somewhat stylized. We assume that the
remote measurement is perfectly accurate, ex-
cept for a detection threshold. Because we as-
sume well operators respond purely to the ex-
pected value of a fee, anymeasurement error in
assessing the fee doesn’t matter, as long as the
measurement is unbiased. Large enough errors
could, for instance, inefficiently force the well
to declare bankruptcy, but we put these con-
cerns aside. Appendix table 7 provides more
detail on satellite measurement error.

Figure 1: Scientific literature finds oil and
gas emissions 65% higher than EPA inventory

Agriculture

Oil and gas

Other fossil

Waste

Agriculture

Oil and gas

Other fossil

Waste

0

250

500

750

1000

EPA GHGI for 2015 Corrected O&G
(Alvarez et al. 2018)

M
M

T
 C

O
2
e

Emissions at oil and gas wells come from
a variety of sources. There are a large num-
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8. Personal correspondence with Arvind Ravikumar (As-
sistant Professor of Energy Engineering, Harrisburg Uni-
versity of Science and Technology), May 22, 2020.
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is the expected result of equipment operating
properly. Large intentional vents are rare, as
the operator would typically set up a flare to
burn the gas.9 There are a large number of
small, unintentional leaks from various pieces
of equipment.

Finally, there are a relatively small number
of large leaks. These large leaks are responsi-
ble for the majority of emissions. At any point
in time, a small fraction of wells are leaking –
in our dataset, it’s on the order of 1–3%. These
large leaks are often from separator tanks left
open or other valves that weren’t sealed (Lyon
et al. 2016). They also occur during the drilling
and fracking process (completions), and when
wells blow out. The small vents and leaks are
easier to measure and predict. As a result,
they’re better represented in the emissions in-
ventories. Rutherford et al. (2020) finds that
underestimated emissions from large vents and
malfunctions explains the difference between
the official inventory and the estimates in the
scientific literature. The difference highlighted
in figure 1 represents emissions that the US is
not measuring in official inventories, much less
charging for emissions. The US is not alone;
another recent study found a similar underes-
timate in the Canadian GHG inventory (Chan
et al. 2020).

Other research, such as Alvarez et al. (2018),
has estimated methane leakage at the basin,
state, or nation level. These estimates are essen-
tial to know the overall leakage rate. However,
to think about leakage abatement by individual
well operators, we need to focus on individual
well pads.

Mitigating these leaks depends on finding
them, as well as taking care in not creating
them. This care can include additional atten-
tion to closing tank hatches, or more frequent

9. Flares burn natural gas and produce CO2, dramati-
cally lowering the GHG output. They’re over 90% effec-
tive (98% when operating properly), though intentional
venting of unburnt gas may increase when flaring is
penalized (Calel and Mahdavi 2020).

visits to reduce the duration of a leak. When
we consider policies that increase the expected
cost of having a leak, we assume the well op-
erator will try to have fewer leaks, or to have
the leaks last shorter amounts of time. These
efforts could be anything from additional em-
ployee training to smarter tank hatches to ad-
ditional LDAR visits.

The report ICF�ibnamedelimb International  (2014), as
well as the academic literature Lyon et
al. (2016), Rutherford et al. (2020), Ravikumar
et al. (2020), and Robertson et al. (2020) pro-
vide more detail on the sources of emissions
and what well operators may do to reduce
them. These academic papers typically high-
light the distinction between separator tanks
and all other sources.10 Tanks may have large
leaks from flashing (where dissolved gas es-
capes as oil decompresses), and operators may
choose to vent the gas or collect it. Large tank
leaks can also come from abnormal conditions,
such as a stuck separator valve (which could
leak the well’s entire gas production), thief
hatches left open, or rusted-through holes. In
addition to emissions from tanks, large leaks
may come from diverse sources, ranging from
unlit flares to liquids unloadings. These sources
vary in their causes and appropriate abatement
method, ranging from LDAR effort to equip-
ment choices. Emissions from abnormal con-
ditions are expected to occur some fraction of
the time. For this project, we don’t differenti-
ate between normal and abnormal operations
– beyond noting that the large leaks we con-
sider are rare – since in both cases the well
operator can reduce their expected quantity of
emissions at some cost.

10. In contrast, the EPA’s greenhouse gas inventory
(GHGI) does not recognize tank emissions other than
flashing, which results in Rutherford et al. (2020) esti-
mating emissions from tanks more than 20-times larger
than GHGI does.
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2.2 traditional economics solutions

The traditional economics solutions to reach
the first best fall short in our constrained con-
text. The Pigouvian prescription would be to
charge well operators for the damages of their
emissions (Pigou 1932). Without accurate mea-
sures of those emissions, a Pigouvian tax can’t
be implemented. The Becker (1968) or Polin-
sky and Shavell (1979) approach would be to
audit a small fraction of wells and charge
them large fines if they are in violation. As
discussed above, the feasibility of imposing
fines is limited in this context. The mechanism
of Segerson (1988), originally developed for
non-point pollution, is a tax and dividend ap-
proach. Each source pays the full social cost
for all emissions in their area beyond the so-
cially optimal level, giving everyone the incen-
tive to fully internalize their emissions, even
when individual emissions can’t be measured.
Unfortunately, the payments are implausibly
large, and well heterogeneity makes partition-
ing responsibility a challenge. Beyond these
efficiency concerns, policies in the style of
Segerson (1988) are politically unpopular, even
relative to direct emissions pricing. We’ll in-
stead consider policies that make do with lim-
ited information and enforcement capacity.

In other information-constrained contexts,
the regulator often uses indirect information as
a guide, but can’t act on it directly. For instance,
the Occupational Safety and Health Adminis-
tration (OSHA) may decide to audit a workplace
when there are high rates of worker injury, but
the OSHA inspectors still need to conduct the
audit before they’re able to assess a penalty.
In pollution contexts, from particulate mat-
ter to NOx , satellite measures regularly detect
that regions are out of compliance with the
US Clean Air Act. However, satellite measure-
ments are noisier than ground-based measures,
and only the official, ground-based measure-
ment network is used for compliance status.

3 THEORY

We begin by developing a theory of well abate-
ment and the regulator’s response. In sec-
tion 3.1, we start with a model of the well op-
erator’s problem. Solving this model gives us
an expression for well operator behavior – in-
cluding DWL and change in emissions – as a
function of the expected fee the operator faces.
Using these results, we turn to the planner’s
problem in section 3.2. The planner or regu-
lator wishes to maximize welfare, subject to
constraints on the number of audits they can
do and the opportunities for targeting. We con-
sider the five policies discussed above, from
status quo to auditing plus remote sensing.

3.1 well operator’s problem: choosing
abatement

Well operators abate by reducing the proba-
bility that a well is leaking, rather than reduc-
ing leak size. We say each well 𝑖 has a fixed
potential leak size 𝑒𝑖. The probability of not
leaking, 𝑞𝑖, is chosen by the well operator at a
cost 𝐶𝑖(𝑞𝑖). We present results for a general 𝐶𝑖,
assuming that marginal costs are positive and
convex (𝐶′

𝑖 (𝑞) > 0, 𝐶″
𝑖 (𝑞) > 0). We assume 𝐶″

𝑖
is continuous and 𝐶′

𝑖 is invertible.
We consider counterfactual policies that

would weakly increase 𝑞𝑖. Without marginal
costs that increase sharply as 𝑞𝑖 → 1, we run
the risk of assuming that wells will choose
𝑞𝑖 = 1. We view this corner solution of perfect
abatement as unrealistic, so we further assume
lim𝑞→1 𝐶′

𝑖 (𝑞) = ∞.
The idea of continuous marginal cost may

seem strange, when we often think of abate-
ment as requiring costly one-time capital in-
vestments. Recall that 1−𝑞𝑖 is the probability of
leaking at any particular point in time (not the
probability of developing a leak). We’re think-
ing of abatement as largely about additional
effort and monitoring by the well operator:
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checking tanks and valves, training employees
to close hatches, and so on.

To apply the cost functions to the data, we
need a specific functional form. We assume a
cost function 𝐶, parameterized by well-specific
values𝐴𝑖 and 𝛼𝑖. Broadly,𝐴𝑖 scales the cost and
𝛼𝑖 determines the elasticity with respect to 1−𝑞.
We specifically assume:

Total cost: 𝐶𝑖(𝑞𝑖) = 𝐶(𝑞𝑖; 𝐴𝑖, 𝛼𝑖)

= −
𝐴𝑖

𝛼𝑖 + 1
(1 − 𝑞𝑖)𝛼𝑖+1

Marginal cost: 𝐶′(𝑞𝑖; 𝐴𝑖, 𝛼𝑖) = 𝐴𝑖(1 − 𝑞𝑖)𝛼𝑖

This cost function 𝐶(𝑞) has a constant elastic-
ity of 𝛼𝑖 + 1 with respect to the probability of
having a leak, 1 − 𝑞. (In turn, the marginal cost
function has an elasticity of 𝛼𝑖.) The parame-
ters 𝐴𝑖 > 0 and 𝛼𝑖 < −1 allow for well-level
heterogeneity, which we discuss further in the
estimation section (5). We choose this form
because it is relatively simple, allows for rich
heterogeneity, and satisfies our cost function
assumptions.

The assumptions of fixed 𝑒𝑖 and the specific
cost function are by far the strongest in this
section. While the fixed leak size assumption
may seem restrictive, the important feature for
our model is that the leak size is not a choice
variable. We present a static model here, but
the intuition can be extended to the case where
the leak size is periodically drawn from a dis-
tribution conditional on the well’s covariates,
rather than fixed for the well’s lifetime.

Even without any leak regulation, the oper-
ator has a private benefit of capturing leaks,
since the methane can be sold in the natu-
ral gas commodity market at price 𝑝𝑖. With-
out any policy, a firm chooses its abatement
effort level to maximize its expected profit,
𝔼[𝜋𝑖] = 𝑞𝑖 ⋅ 𝑝𝑖 ⋅ 𝑒𝑖 − 𝐶𝑖(𝑞𝑖). The first-order con-
dition (FOC) for an interior solution is given by
𝐶′
𝑖 (𝑞𝑖) = 𝑝𝑖 ⋅ 𝑒𝑖. As long as 𝑝𝑖 > 0, we can invert

the cost function to solve for 𝑞𝑖.

Now consider some expected fee, 𝑡𝑖, which
may vary across wells. 𝑡𝑖 is the expected value
of the fee the operator will pay when well 𝑖
has a leak. This expected value will typically be
lower than the fee the well pays when audited
and leaking, as the well is not guaranteed to be
audited. 𝑡𝑖 and 𝑝𝑖 are both costs of emitting gas
– from the regulator and from the opportunity
cost of selling the gas – and under expected
profit maximization, operators will treat them
equivalently. Therefore, the first order condi-
tion is 𝐶′

𝑖 (𝑞𝑖) = (𝑝𝑖+𝑡𝑖) ⋅𝑒𝑖. Let 𝛿 be the external
social cost of methane, so 𝑝𝑖 + 𝛿 is the total so-
cial loss from emitting one additional unit. For
all the reasons detailed above, we assume the
regulator is constrained, leading to the second-
best case with a fee lower than social marginal
cost (𝑡𝑖 < 𝛿).

We assume a utilitarian objective, where the
regulator tries to minimize the ex-ante DWL be-
fore leaks are realized. We can write the DWL
from setting 𝑡𝑖 < 𝛿 for well 𝑖 as the following
expression. The intuition here is the same as
the Harberger triangle in public finance – be-
cause of increasing marginal costs, the first
unit of abatement provides a lot of social value,
and the last unit of abatement provides almost
none. The general expression for the DWL from
well 𝑖 is:

DWL𝑖(𝑡𝑖) = ∫
𝐶′
𝑖
−1((𝑝𝑖+𝛿) 𝑒𝑖)

𝑞𝑖=𝐶′
𝑖
−1((𝑝𝑖+𝑡𝑖)𝑒𝑖)

(𝑝𝑖 + 𝛿) 𝑒𝑖 − 𝐶′
𝑖 (𝑞)𝑑𝑞

Substituting in the specific marginal cost and
evaluating the integral gives us:

DWL𝑖(𝑡𝑖) =

((𝑝𝑖 + 𝛿) 𝑒𝑖 −
(𝑝𝑖 + 𝑡𝑖) 𝑒𝑖
𝛼𝑖 + 1

)(
(𝑝𝑖 + 𝑡𝑖) 𝑒𝑖

𝐴𝑖
)

1
𝛼𝑖

−
𝛼𝑖

1 + 𝛼𝑖
(𝑝𝑖 + 𝛿) 𝑒𝑖(

(𝑝𝑖 + 𝛿) 𝑒𝑖
𝐴𝑖

)

1
𝛼𝑖

Mathematical details are in appendix sec-
tion 1.1.
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In considering this DWL, we make a number
of additional assumptions. We assume there
are no other market failures beyond these
methane leaks. We use methane and natural
gas interchangeably in the theory section, but
in the estimation we acknowledge that natural
gas is not entirely methane. Finally, we assume
the population of wells is fixed, and wouldn’t
change under different policies.

3.2 regulator’s problem: choosing
audits

In the well operator’s problem, we considered
how 𝑡, the expected fee, affects abatement ef-
fort. Here we consider how different policies
lead to different 𝑡.

Recall that we are considering five different
policies. (0) no auditing, the status quo; (1) au-
dit every well with equal probability; (2) tar-
get audits based on well covariates; (3a and
3b) measure leaks remotely to target audits;
and (4a and 4b) measure leaks remotely and
assess fines based on measurements. The a and
b variants consider the cases where all of our
large leaks can be detected, or only leaks above
some high detection threshold, as would be
the case for satellite measures. The game the-
ory of the regulator’s problem will be some-
what different when they can only observe the
largest leaks. We consider a range of allowed
fees, where the regulator may not be able to
charge for the full social cost, as is the case for
almost every GHG pricing policy.

In the audit cases, we consider a regulator
choosing how to allocate a fixed budget of
𝑀 audits, and then consider how the shadow
price on the audit budget compares to engineer-
ing estimates of the cost of conducting audits.
We focus on this audit-budget approach, rather
than directly choosing the number of audits
based on the cost of conducting audits. We’ve
never heard of a government agency where the
audit budget was set to equalize the marginal
cost of auditing with the marginal benefit. We

consider different levels of the audit budget
(changing 𝑀) within each audit policy.

It’s important to be clear about the timing
of events. First, the regulator commits to an
audit policy. Second, firms learn their 𝑒𝑖 and
choose their 𝑞𝑖. Third, emissions are realized:
each well 𝑖 has a leak of size 𝑒𝑖 with probability
1 − 𝑞𝑖. Fourth, the regulator measures emis-
sions (if applicable). Fifth and finally, the regu-
lator conducts audits and assesses fees. When
choosing which wells to audit, we assume the
regulator can observe well covariates and can
form expectations of leak size, but can’t ob-
serve abatement effort or actual leak size. We
also assume the regulator can’t keep a secret –
the well operator knows exactly what policy
they’re covered by and what is the probability
of an audit.

Define 𝜏 as the fee per kilogram of methane,
when a leak is detected, and 𝑟𝑖 as the prob-
ability well 𝑖 is leaking when it is audited.
Therefore, the expected fee when leaking is
𝑡𝑖 = 𝜏𝑟𝑖, with units of dollars per kilogram of
methane. We don’t know what level of 𝜏would
be feasible, so we consider a few different val-
ues to cover a range of possibilities. We test
𝜏 = {$5 per ton CO2e, 𝛿 , 2𝛿}. $5 per ton CO2e
is the low-end value we consider for compar-
ison with Marks (2018). 𝛿 is the social cost. If
every well could be targeted, 𝜏 = 𝛿 would be
the Pigouvian prescription. 𝜏 = 2𝛿 is loosely
motivated by the result of the Exxon Valdez US
Supreme Court ruling. In that case, the Court
limited punitive fees to a 1:1 ratio with eco-
nomic damages (for a total of twice the eco-
nomic damages; Exxon Shipping Co. v. Baker
2008).

We assume the regulator wants to choose
the probability each well is audited, 𝑟𝑖, to min-
imize the ex-ante DWL. The regulator won’t
fix leaks when they’re found. If the regulator’s
audit provides valuable ex-post information to
the well operator, then our estimates will be a
lower bound on the gains of the audit policy.
Note that the well operator’s choice variable,
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𝑞𝑖, has been integrated out so we can express
the DWL from the previous section directly in
terms of the regulator’s parameters. Substitut-
ing in 𝜏𝑟𝑖 for 𝑡𝑖, the regulator’s general problem
is:

min
𝑟𝑖

∑
𝑖

DWL𝑖(𝑟𝑖) s.t. ∑
𝑖
𝑟𝑖 ≤ 𝑀, 𝑟𝑖 ∈ [0, 1]

3.2.1 Policies 0 and 4: no auditing and
remotely assessed fees

In the business-as-usual case (0) of no auditing,
𝑟𝑖 = 0. In the case with fees assessed directly
from remote measurements (4), there are still
no audits, but wells face some fee 𝑡𝑖. Policy 4
provides an infeasible benchmark; feasible poli-
cies require on-the-ground audits. The DWL
goes to zero – and the first-best can be achieved
– if the remotely sensed fee can be set to the
social cost of emissions (𝛿) for every well. If
there’s a high detection threshold where wells
with small 𝑒𝑖 can’t be detected, 𝑡𝑖 = 0 for wells
with 𝑒𝑖 below the threshold. We assume they
know they’re below the threshold, and choose
their level of abatement accordingly.

3.2.2 Policy 1: uniform audit probabilities

The audit policies are somewhat more compli-
cated. The ideal audit probability, absent any
constraint or cost of auditing, would be 𝑟𝑖 = 𝛿/𝜏.
For instance, if the well operator must pay two
times the social cost when found leaking, then
it’s optimal to audit them with a 50% probabil-
ity. In general, a constraint of 𝑀 audits will be
binding when the fraction of audits, 𝑀/𝑁, is
less than 𝛿/𝜏.

For the uniform audit policy (1), the con-
strained maximization problem with shadow
price 𝜆 is:

min
𝑟 ∈[0,1]

ℒ = ∑
𝑖

DWL𝑖 (𝑟) + 𝜆(𝑀 −∑
𝑖
𝑟)

𝑟 = {

𝑀
𝑁

if the audit budget constraint binds
𝛿
𝜏

if not

𝜆 = {
1
𝑁
∑𝑖

∂DWL𝑖(𝑟)
∂𝑟

if the constraint binds

0 if not

3.2.3 Policy 2: targeting on covariates

Moving to the case where audits are targeted
on well covariates (policy 2), it’s helpful to
have an extensive form game tree. See figure 2
for the game each well faces under this policy.
Recall that the well operator knows 𝑒𝑖, the size
of their leak if a leak happens, their cost func-
tion 𝐶(𝑞𝑖; 𝐴𝑖, 𝛼𝑖) and the regulator’s audit rule
𝑟𝑖 = 𝑟(𝑋). Based on these inputs, they choose
their probability of not leaking, 𝑞𝑖. After that,
leaks are realized, and the well has a leak with
probability 1 − 𝑞𝑖. If the well is leaking and is
audited, the well operator pays 𝜏𝑒𝑖. If they’re
not audited, or audited but not leaking, they
pay no fee. We assume that the 𝑋 variables
the regulator uses to target audits cannot be
changed. In our empirical analysis, the vari-
ables we include would be difficult to change
without making the well significantly less prof-
itable.

In choosing the audit rule 𝑟(𝑋), the regula-
tor tries to set the optimal ex-ante incentives
for the choice of 𝑞. The natural question is what
functional form 𝑟(𝑋) should take. In the em-
pirical implementation, we choose 𝑟 based on
the predicted DWL𝑖, which is itself a function
of our 𝑋 variables. Therefore, we simply allow
the regulator to choose a vector of 𝑟𝑖, one for
every well. This vector is implicitly a function
of 𝑋. We discuss the implications further in the
estimation section 5, particularly the distinc-
tion between targeting 𝑟𝑖 and evaluating the
policy. The regulator’s problem is now:

min
{𝑟𝑖}𝑁𝑖=1

𝑁
∑
𝑖=1

DWL𝑖

𝑠.𝑡.
𝑁
∑
𝑖=1

𝑟𝑖 ≤ 𝑀 and ∀𝑖 ∶ 𝑟𝑖 ∈ [0, 1]
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Figure 2: Game tree: targeting on covariates (policy 3)

Choose 𝑞𝑖

Pay 𝜏𝑒𝑖

Yes (𝑟𝑖)

Pay 0

No (1 − 𝑟𝑖)

Leak (1 − 𝑞𝑖)

Pay 0

Yes (𝑟𝑖)

Pay 0

No (1 − 𝑟𝑖)

No leak (𝑞𝑖)

Audit?

In this figure, the well chooses its probability of not having a leak, 𝑞𝑖, with full
knowledge of the probability they will be audited, 𝑟𝑖. Then nature determines
whether a leak occurs or not. The regulator does not know whether a leak has
occurred – their information set is indicated in a dashed oval. If the well is
leaking and is audited, the well operator pays 𝜏𝑒𝑖. In all other cases, they pay
zero.

min
{𝑟𝑖}𝑁𝑖=1

ℒ = ∑
𝑖

DWL𝑖(𝑟𝑖) + 𝜆(𝑀 −∑
𝑖
𝑟𝑖)

+∑
𝑖
(𝑟𝑖 − 0) 𝑎𝑖 + (𝑟𝑖 − 1) 𝑏𝑖

As before, 𝜆 is the shadow price of having
an additional audit. 𝜆 < 0 because increasing
audits lowers DWL. 𝑎𝑖 and 𝑏𝑖 correspond to
the constraints 𝑟𝑖 ≥ 0 and 𝑟𝑖 ≤ 1. The feasi-
ble set under the constraint is a compact sub-
set of ℝ𝑁 so a solution exists. Because DWL𝑖
only depends on 𝑟𝑖 and DWL𝑖 is strictly increas-
ing, convex in 𝑟𝑖 and the constraints are linear
inequalities, we conclude a unique solution
exists and can be characterized by the stan-
dard Karush–Kuhn–Tucker (KKT) conditions.
We solve for {𝑟𝑖}𝑁𝑖=1 and 𝜆 numerically using
Ipopt. For notation simplicity, we don’t detail
the case where the audit budget isn’t bind-
ing (𝑀/𝑁 > 𝛿/𝜏). The solution for that case
is the same as in the non-binding uniform case,
𝑟𝑖 = 𝛿/𝜏.

3.2.4 Policy 3a: targeting on leak observations

We next consider a policy that targets au-
dits based on ex-post observed leaks (pol-
icy 3a). Here, the regulator is able to to ob-
serve whether wells are leaking – and the leak
size – before choosing whether to audit. Even
though the leak is measured remotely, on-the-
ground measurements may be required for le-
gal reasons or because the remote measure-
ment is noisy. Since leaks are rare, the regula-
tor can now use the audit budget much more
efficiently, as they waste less effort auditing
wells that aren’t leaking. Figure 3 details the
simple case with no detection threshold inmea-
suring leaks. In this case, the only reason not
to audit a well that was found leaking would
be if the audit budget was extremely small. The
regulator would never audit a well that was
measured not leaking.

Until now, in the uniform and target-on-
covariates policies (1 and 2), the probability a
given well was audited was the same whether
or not a leak actually occurred. That is, each
well’s audit probability is statistically indepen-
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Figure 3: Game tree: target leaks (policy 4) with no additional censoring

Choose 𝑞𝑖

Audit?

Pay 𝜏𝑒𝑖

Yes (𝑟𝑖)

Pay 0

No (1 − 𝑟𝑖)

Leak (1 − 𝑞𝑖)

Audit?

Pay 0

No

No leak (𝑞𝑖)

In this figure, the well chooses its probability of not having a leak, 𝑞𝑖, with full
knowledge of the probability they will be audited, 𝑟𝑖. Then nature determines
whether a leak occurs or not. The regulator knows when a leak has occurred,
and will never audit a well that isn’t leaking. If the well is leaking and is audited,
the well operator pays 𝜏𝑒𝑖. In all other cases, they pay zero.

dent of its leak probability. When we consider
targeting on realized emissions (3a), that’s no
longer true. The expected number of audits
is now the sum of: audits when the well is
leaking, times the probability it is leaking plus
audits when the well is not leaking, times the
probability it is not leaking. In the target-on-
covariates case, the probability of being au-
dited when leaking and when not leaking were
the same, since audit probabilities depended
only on the 𝑋, not on the realized leaks. Now,
with every leak observable, the probability of
being audited when not leaking falls to zero.
The budget constraint becomes:

∑
𝑖
𝑞𝑖 ⋅ 0 + (1 − 𝑞𝑖)𝑟𝑖 ≤ 𝑀

∑
𝑖
(
(𝑝𝑖 + 𝜏𝑟𝑖) 𝑒𝑖

𝐴𝑖
)

1
𝛼𝑖
𝑟𝑖 ≤ 𝑀

Note that the 𝑞𝑖 here is 𝑞𝑖(𝑟𝑖) after responding
to the audit policy, not the status-quo 𝑞̃𝑖. Using
the well operator’s FOC, we substitute in 𝑞𝑖(𝑟𝑖)
in the second line above.

The problem in choosing 𝑟𝑖 is:

min
{𝑟𝑖}𝑁𝑖=1

ℒ = ∑
𝑖

DWL𝑖

+ 𝜆(𝑀 −∑
𝑖
(
(𝑝𝑖 + 𝜏𝑟𝑖) 𝑒𝑖

𝐴𝑖
)

1
𝛼𝑖
𝑟𝑖)

+∑
𝑖
(𝑟𝑖 − 0) 𝑎𝑖 + (𝑟𝑖 − 1) 𝑏𝑖

∂ℒ
∂𝑟𝑖

=
𝐴− 1

𝛼 𝑒
𝛼+1
𝛼 𝜏(𝛿 − 𝜏𝑟)(𝑝 + 𝜏𝑟)

1−𝛼
𝛼

𝛼⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
∂DWL𝑖
∂𝑟𝑖

− 𝜆 ⋅ 𝐴− 1
𝛼 𝑒

1
𝛼 (𝑝 + 𝑟𝜏)

1
𝛼
−1(𝛼(𝑝 + 𝑟𝜏) + 𝑟𝜏)

1
𝛼⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

∂(1−𝑞𝑖)𝑟𝑖
∂𝑟𝑖

+ 𝑎𝑖 − 𝑏𝑖

As before, 𝜆 is the shadow price of having an
additional audit, and 𝑎𝑖 and 𝑏𝑖 correspond to
the constraints 𝑟𝑖 ≥ 0 and 𝑟𝑖 ≤ 1. The feasible
set under the constraint is a compact subset
of ℝ𝑁 so a solution exists. Unfortunately, the
problem is no longer monotonic or convex. We
are able to solve numerically, but without guar-
antees of a unique global maximum. In contrast
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to the previous cases, whether the audit budget
binds now depends endogenously on the well
operators’ abatement.

3.2.5 Policy 3b: targeting on leak observations,
only observing the largest leaks

The last audit scheme we consider is the case
where we’re targeting on observed leaks (pol-
icy 3b), but small values of 𝑒𝑖 aren’t detected. In
this case, failing to observe a leak might mean
that the well isn’t leaking, or it might mean
that the well has a leak below the detection
threshold. Figure 4 has a game tree for the reg-
ulator’s problem. Each well operator knows
whether they’re on the left branch (large 𝑒𝑖) or
right branch (small 𝑒𝑖), since 𝑒𝑖 is not a choice
variable. The dashed oval indicates the regula-
tor’s information set – they cannot tell whether
a well has a large 𝑒𝑖 and isn’t leaking, a small
𝑒𝑖 and isn’t leaking, or a small 𝑒𝑖 and is leaking.

The regulator sets audit probabilities based
on whether the leakage is detected, taking the
detection threshold into account. As the game
tree suggests, if a well is not detected with
leakage, there is no way to distinguish between
whether it is actually not leaking or the leakage
is small. As a result, the regulator can only
specify an audit probability 𝑟𝑖(𝑋𝑖) for a well 𝑖
with detected leakage and an audit probability
𝑠𝑖(𝑋𝑖) for a well with no detected leakage (the
covariates 𝑋 included in the brackets means
the 𝑟 , 𝑠 can depend on these covariates).

A well operator’s response to this policy will
depend on their 𝑒𝑖. For small-𝑒 wells, their re-
sponse is straightforward; because they know
they will always be audited with probability 𝑠𝑖,
the DWL will be DWL𝑖(𝑠𝑖). But for large wells,
the incentives are more complicated. A large
well 𝑖 will have 𝑞𝑖 probability of not leaking.
But even when it is not leaking, it will be au-
ditedwith probability 𝑠𝑖(𝑋𝑖). Since it is not leak-
ing, the audit will not lead to any penalty (the
auditing effort is wasted here). Large-𝑒 wells
will not care about 𝑠𝑖. 𝑞𝑖 and DWL𝑖 will be func-

tions that depend only on 𝑟𝑖. The ex ante DWL
for a large-𝑒 well will be DWL𝑖(𝑟𝑖).

The budget is similar to the case with no
detection threshold. As with the DWL, it’s the
probability of being audited when leaking that
matters to the well operator, so the large-𝑒
wells choose 𝑞𝑖(𝑟𝑖) (𝑠𝑖 does not enter). Unlike
the previous cases, large-𝑒 wells now have
some 𝑠𝑖 probability of being audited when
not leaking. Therefore, the audit costs are
(1 − 𝑞𝑖(𝑟𝑖))𝑟𝑖 + 𝑞𝑖(𝑟𝑖)𝑠𝑖 for each large-𝑒 well, and
𝑠𝑖 for each small-𝑒 well.

Given these DWL and budget components,
the regulator needs to pick 𝑟𝑖 and 𝑠𝑖. The regula-
tor still does not know which wells are large-𝑒
or small-𝑒, so optimizes a weighted average,
where theweights are the probability thewell’s
leak is above the threshold. For a detection
threshold 𝑒, define 𝑧𝑖 ≡ Pr(𝑒 > 𝑒 ∣ 𝑋𝑖). The
regulator then optimizes the problem:

min
{𝑟𝑖}𝑁𝑖=1,{𝑠𝑖}𝑁𝑖=1

∑
𝑖
𝑧𝑖DWL𝑖(𝑟𝑖) + (1 − 𝑧𝑖)DWL𝑖(𝑠𝑖)

s.t. ∑
𝑖
{𝑧𝑖[(1 − 𝑞𝑖(𝑟𝑖))𝑟𝑖 + 𝑞𝑖(𝑟𝑖)𝑠𝑖]

+ (1 − 𝑧𝑖)𝑠𝑖} ≤ 𝑀

∀𝑖 ∶ 𝑟𝑖 ∈ [0, 1], 𝑠𝑖 ∈ [0, 1]

We can compare this minimization problem
with the previous one, where 𝑒 = 0, to confirm
that the previous problem was a special case of
this one. In the previous problem, 𝑧𝑖 converges
to 1, so we do not need to worry about 𝑠𝑖 in
the objective function. Moreover, in the bud-
get constraint, it is then obvious why 𝑠𝑖 should
be set to zero to save audit effort. Lowering
the detection threshold leads to a lower DWL.
Intuitively, all the actions with a high detec-
tion threshold remain feasible under the lower
threshold, but the lower threshold provides ad-
ditional information to the regulator. Of course,
other audit strategies are possible, and may be
preferred if the regulator can easily distinguish
large-𝑒 wells without leaks from small-𝑒 wells.
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Figure 4: Game tree: target leaks (policy 4) with censoring

Audit?

Pay: 𝜏𝑒𝑖

Yes (𝑟𝑖)

0

No (1 − 𝑟𝑖)
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0
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0
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No leak (𝑞𝑖)

Large 𝑒𝑖

𝜏𝑒𝑖

Yes (𝑠𝑖)

0

No (1 − 𝑠𝑖)

Leak (1 − 𝑞𝑖)

0

Yes (𝑠𝑖)

0

No (1 − 𝑠𝑖)

No leak (𝑞𝑖)

Small 𝑒𝑖

Well leak size 𝑒 (exogenous)

Audit?

In this figure, nature determines the well’s potential leak size, 𝑒𝑖. It is not a choice variable. The
well operator knows 𝑒𝑖; the regulator can only form expectations. The well operator chooses
their probability of not having a leak, 𝑞𝑖. If a leak happens at a large well, it is detected. If a leak
happens at a small well, it is not. If a leaking well is audited, it pays 𝜏𝑒𝑖. The dashed oval indicates
the regulator’s information set.

Compared to the audit policies, the remote
fee policy is simple. In this scenario, the reg-
ulator is able to measure leaks remotely, and
to charge a fee for emissions without doing an
on-the-ground audit. The regulator can mea-
sure every well, with zero marginal cost. We
assume, as before, that this measurement is ac-
curate, at least in expectation. We do not think
this is a feasible policy, but it provides a useful
benchmark to think about the possible gains of
the audit policies. When the regulator is able to
measure all leaks with no detection limit (4a),
and is able to charge the full social cost for
detected leaks, this policy recreates Pigouvian
taxation. When the fee is lower than the social
cost, the policy implements second-best Pigou-
vian taxation, much like a standard carbon tax.
As in the measure-then-audit (3) case, we con-
sider the possibility that only the largest leaks
can be detected (4b). In that case, wells without

a detected leak will not be charged any fee.

3.3 adding time to the model

The model we present is static: a one-shot
game where the regulator sets incentives and
the wells respond. This static model captures
the essence of the problem we’re interested in,
and adding strategic dynamics would compli-
cate things without adding insight. However,
the real world is dynamic. To present welfare
results as dollars per year, we present a simple
extension of our static model into a world with
time.

There are 𝐻 (8760) hours in a year. We as-
sume, with minimal loss of generality, that the
well operator pays 𝐶(𝑞) once per year to have
an average no-leak probability of 𝑞 across all
hours of the year. The probability across hours
need not be independent and identically dis-
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tributed (i.i.d.). 𝑞 is the probability of not hav-
ing a leak, averaged across all hours. It is not
the probability of a leak starting or stopping.
This distinction is important, both for the way
we include time in the model, and because our
data provides very little information on leaks
beginning and ending.

We can think of the abatement in 𝐶(𝑞) as
any adjustment that reduces the probability
the well is leaking. These adjustments can be
capital investments that reduce the probability
of a leak beginning. Or there may be increased
operator monitoring that leaves the probability
of a leak beginning unchanged, but reduces
the length of leaks when they occur. Setting
𝐻 to be a year is a normalization that makes
it easier to discuss annualized figures, but has
little impact beyond that.

The expected quantity of leaks from well 𝑖
over the 𝐻-hour period is 𝐻(1 − 𝑞𝑖)𝑒𝑖. If the
regulator knew 𝑞𝑖 and observed a leak of size
𝑒𝑖, the first-best fee would be 𝛿𝐻(1 − 𝑞𝑖)𝑒𝑖. The
length of an individual leak is irrelevant to the
expected value – it could be one leak that lasts
𝐻(1 − 𝑞) hours or 𝐻(1 − 𝑞) separate leaks that
each last one hour.

However, the regulator is constrained be-
cause they don’t know 𝑞𝑖. Instead, they can
charge a fee on the expected emissions, even
though they took measurements at a snapshot
in time. Define 𝑇 hours as the regulator’s ex-
pectation of a well’s emissions – when detect-
ing a leak of size 𝑒𝑖 kilograms per hour, they
charge a fee for 𝑇𝑒𝑖 kilograms of emissions.
This expectation does not need to be correct.

The fee the regulator charges is 𝜏𝑇 𝑒𝑖. It’s
the product 𝜏𝑇 that determines the fine magni-
tude. (Indeed, our implementation uses a sin-
gle variable 𝜏𝑇, with units of dollar-hours per
kilogram). We don’t want to use an implausi-
bly large 𝑇 to back our way into a very high
penalty for leaking. Instead, we consider a few
different values 𝑇 = {1 day, 1 week, 1 month}.
We focus on 𝑇 = 1 week as our main case,
since 𝑇 /𝐻 ≈ ∑(1 − 𝑞𝑖)/𝑁. Recall that we al-

ready consider 𝜏 = {$5, 𝛿, 2𝛿}, so, for instance,
𝑇 = 2 weeks, 𝜏 = 𝛿 is already covered by
𝑇 = 1 week, 𝜏 = 2𝛿. Considering different val-
ues of 𝑇 would provide further variation in 𝜏𝑇,
but doesn’t add any other robustness to the
analysis.

With the addition of time, the mathematical
expressions we provided earlier are minimally
changed. Specifically, in the DWL expressions,
𝑝𝑖 is replacedwith𝐻𝑝𝑖, 𝛿 is replaced by𝐻𝛿, and
𝜏𝑟𝑖 is replaced with 𝑇𝜏𝑟𝑖. The full expressions
are provided in appendix section 1.3.

This theory section provides a set of expres-
sions that characterize the audit probabilities
and DWL for a set of second-best audit poli-
cies. If the regulator did not face constraints
on the number of audits they could conduct
and the fees they could charge, the regulator
could achieve the first best with high fees or
ubiquitous audits. The remote sensing element
relaxes the audit budget, allowing the regula-
tor to target audits more effectively, but faces
its own limitations in terms of which leaks can
be detected.

4 WELL AND LEAK DATA

To estimate the theory models we discussed
above, we need data on leaks. In particular, we
need to estimate the leak size when a well is
leaking, (𝑒𝑖), and the cost parameters of abate-
ment 𝐴𝑖 and 𝛼𝑖. These estimates are based on
the distribution of observed leak sizes and the
observations of whether wells leak or not. We
build this dataset using scientific studies of
large leaks, matched with a database of all US
wells and commodity natural gas prices. We
discuss each of these sources in turn.

4.1 methane measurements

There’s a robust, ongoing effort in the scien-
tific community to measure leakage from all
parts of the oil and gas supply chain. Alvarez
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et al. (2018) provide a thorough discussion of
leaks from different sources.

Our work relies on these scientific measure-
ments. We primarily use measurements taken
from airplanes using the “next generation air-
borne visible/infrared imaging spectrometer”
(AVIRIS-NG) sensor. These studies surveyed
wells in California and the Four Corners re-
gion of northern New Mexico and southern
Colorado (Duren et al. 2019; Frankenberg et
al. 2016). These flights primarily covered the
San Joaquin and San Juan basins, with some
flights in other California basins. These stud-
ies aimed to survey a representative sample of
wells in their respective areas, with the goal
of characterizing the distribution of leak sizes
and estimating total regional emissions. See
tables 1 and 2 for summary statistics and co-
variate comparisons. The airplanes used in
these studies are able to detect leaks of ap-
proximately 5–10 kg/hr, depending on wind
conditions. By having flights over tens of thou-
sands of wells, these studies are able to capture
the right tail of the leak distribution in a way
smaller studies cannot.

The methane measurements report mea-
sured methane plumes, including their time
and location, as well as a guess of the associ-
ated infrastructure. The scientists also report
the plane’s flight path, which will be impor-
tant for defining the sample of wells without
detected leaks. Both the California and Four
Corners studies include some leak measure-
ments from non-well sources, such as landfills,
coal mines, pipelines, and gas processing fa-
cilities. We include all plumes that are either
unidentified or identified as related to an oil or
gas well.

We also use evidence from Lyon et al. (2016).
That study surveyed a large number of wells
for leak presence, but did not quantify the leak
size. The detection threshold in that study was
roughly equivalent to the AVIRIS-NG studies.
These data corroborate the AVIRIS-NG studies,
finding that leaks of this size are rare. When

leaks are found, they’re often from separator
tanks. In these data, as well as the AVIRIS-NG
studies, leaks are hard to predict. Some vari-
ables, like well size, are statistically significant,
but overall prediction quality is poor when
considering cross-validated mean squared er-
ror (MSE) or logistic loss.

There are a number of studies that measured
well leaks on the ground; however, because
they decline to publish well identifiers or co-
variates beyond contemporaneous gas produc-
tion, we are not able to use their data for our
analysis. A comparison is plotted in appendix
figure 9. These ground studies often note that
large leaks are from valves left open, or, most
frequently, separator tanks with open hatches.

As mentioned above, the focus of this paper
is larger leaks – those detectable by the AVIRIS-NG
 airplane measurements. This definition is
convenient, in the sense that it means we can
sidestep the censoring in measurements and
model abatement as a reduction in leak proba-
bility rather than a change in the distributions
of sizes. This focus on larger leaks also main-
tains the focus on the more important abate-
ment opportunities. In the ground studies data,
more than three-quarters of the total leakage
is from leaks larger than 5 kg/hr.

We interpret the studies’ repeated notes
about leaking tanks to mean that these leaks
are often accidents or process failures, rather
than venting that occurs in the course of nor-
mal operations. Of course, additional monitor-
ing is not free; it requires additional person-
nel and training. Unlike some of the pollution
control literature, we’re not thinking of abate-
ment as a one-time capital expense, though
additional capital investments may play some
role.

A number of the wells in California are
flown over multiple times. These revisits do
not occur often enough or for enough wells
that we can use panel methods and consider
the evolution of leaks over time. At the same
time, we don’t want these multiple revisits to
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Figure 5: Distribution of detected methane leaks
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Sources: California and Four Corners distributions come from aircraft studies (Duren et al. 2019;
Frankenberg et al. 2016). Lyon et al. (2016) provides information about leak prevalence (with a
detection threshold roughly similar to the California and Four Corners studies), but not leak size.

affect our cross-sectional data analysis, so we
currently consider only the first time each well
was flown over. In future research, we will use
these repeat observations to providemore com-
plete information on leak occurrence and per-
sistence.

4.2 well data

Well data are from Enverus, formerly known
as DrillingInfo. These data cover all wells in
California, New Mexico, and Colorado, the pri-
mary states in our analysis. As mentioned in
the previous section, the methane measure-
ment flights have recorded flight paths (see an
example in figure 6). We use these paths to de-
termine which wells the plane flew over and
could have measured. We exclude wells that
did not have any gas production during the
month of the flight. While wells are designated
either oil or gas wells, a large majority pro-
duce both. In these states, 98.9% of well pads
report nonzero gas production. See table 1 for
summary statistics on wells in our analysis.

We match observed plumes to well pads
based on geospatial location. Before match-
ing with leaks, we aggregate individual wells
to well pads. We define well pads as groups
of wells that share an operator and geologic

basin, and are nearby one another. Following
Omara et al. (2018), we consider a 50 m radius
around each well’s surface location, and take
the union of any circles that intersect. In the
more densely packed San Joaquin basin, we
use a radius of 20 m. We match the detected
methane plumes towells, matching each plume
to the nearest well within 500 m – we assume
plumes farther away are from non-well sources
and we leave them unmatched. 31% of methane
measures are dropped in this matching.

4.3 price data

We use the private incentive generated by the
commodity price of natural gas to estimate our
cost coefficients. The ideal price data would tell
us what each well operator was paid for its gas
production. That information isn’t available,
so we instead use gas prices at trading hubs
near the wells. We use the average of the SNL
series “SoCal Gas” and “PG&E, South” for Cali-
fornia wells and “El Paso, San Juan Basin” and
“Transwestern, San Juan Basin” for the Four
Corners wells.11 These are midstream prices,

11. Details of index SNL’s construction are
available in https://www.spglobal.com/platts/
plattscontent/_assets/_files/en/our-methodology/
methodology-specifications/na_gas_methodology.pdf.
Accessed 2020-10-27.
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Table 1: Well summary data

Mean Std. dev. p10 p90

Panel A: Well pads included in flyover studies (N = 14,399)

Age (yr) 18.1 12.7 3.5 38.7
Gas (mcfd) 115.1 1039.5 0.7 243.5
Oil (bbld) 17.9 196.7 0.0 29.9
Detect leak (%) 2.7 16.1 0.0 0.0
Leak size (kg/hr) 197.1 242.5 26.3 418.3
Gas price ($/mcf) 2.8 0.2 2.6 3.0

Panel B: Well pads checked by Lyon et al. (2016) (N = 8220)

Age (yr) 9.4 9.3 1.8 22.2
Gas (mcfd) 385.4 1864.9 2.0 678.1
Oil (bbld) 47.9 253.7 0.0 70.5
Detect leak (%) 4.0 19.5 0.0 0.0
Gas price ($/mcf) 3.7 0.7 2.5 4.3

Panel C: All well pads active in June 2018 in CA, NM, and CO (N = 65,644)

Age (yr) 19.6 13.0 4.8 40.3
Gas (mcfd) 176.5 1240.1 1.6 261.8
Oil (bbld) 36.0 230.7 0.2 43.4

Notes: Only wells that report positive gas production are included. In all three
panels, wells are grouped into pads; see text for details. mcfd means thousands
of standard cubic feet per day. bbld means barrels of oil per day. Well data
from Enverus (2019). Flight data from Duren et al. (2019) and Frankenberg et
al. (2016), covering parts of California, New Mexico, and Colorado. In panel A,
leak size is for wells with non-zero leaks (N = 384). Prices are local to the
month and state of the study, adjusted to 2019 USD.
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Table 2: Balance comparison: well pads with and without detected leaks differ, but with
overlapping covariate support

California Four Corners Lyon et al. (2016)
Detect No detect Detect No detect Detect No detect

Age (yr) 19.3 17 18.4 20.1 4.12 9.66
[2.6,40] [2.8,40] [6.6,28] [7.3,37] [0.42,8.8] [1.9,23]

Gas (mcfd) 248 88.8 323 146 1510 339
[0.4,140] [0.35,130] [48,760] [22,330] [11,2800] [2,610]

Oil (bbld) 83.3 27.2 0.102 0.223 300 37.5
[0.88,70] [0.98,44] [0,0.13] [0,0.5] [0,880] [0,59]

Detect leak (%) 100 0 100 0 100 0
[100,100] [0,0] [100,100] [0,0] [100,100] [0,0]

Gas price ($/mcf) 2.91 2.93 2.56 2.56 3.94 3.72
[2.8,3] [2.9,3] [2.6,2.6] [2.6,2.6] [3.9,4.2] [2.5,4.3]

Note: Values are means, with the 10th to 90th percentile value in brackets.
California and Four Corners data are from the AVIRIS-NG sample (panel A of table 1). Lyon
et al. (2016) data cover basins throughout the US. All values are well-pad aggregates.

Figure 6: Measurements from Frankenberg et al. (2016)

Left: Flight lines from Frankenberg et al. (2016). Only AVIRIS-NG flights, in green, were able to
quantify emissions.
Right: Gas storage tank, emitting ∼146 kg CH4 per hr, using AVIRIS-NG instrument. Orange bar is
60 m wide.
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Figure 7: Natural gas prices

0

2

4

6

2014 2016 2018

P
ri
c
e
 (

$
2
0
1
9
/m

cf
)

CA

NM / CO

Source: SNL Financial (SNL) natural gas price indexes for deliveries near study wells. See text for
details.

and they will tend to be slightly higher than
the prices well operators actually receive. This
difference will lead to a small upward bias in
our estimated cost of abatement, and there-
fore a small downward bias in the estimates of
gains from policy.

If we had more data on methane leaks, par-
ticularly measures of the same wells or sub-
regions over time, we could use variation in
the price of natural gas to identify our coef-
ficients. We do not have this panel structure.
While there are a few repeat measurements,
the current data is more or less a cross section.
There is some variation in prices across states,
but we think it would be inappropriate to use
this variation to identify cost parameters – too
many other things change with geography. In
future work, and as more methane measure-
ment data become available, we plan to revisit
our analysis using price variation.

5 ESTIMATION

The studies mentioned above are primarily fo-
cused on total leakage or on the right tail of
emissions (termed “super-emitters”). Our goals
are closely related, but because we’re focused
on the effect of an achievable policy, we care
more about the distribution across all wells,
particularly the probability that a well pad
leaks.

We note two important features of the leak
distributions. First, the size of estimated leaks
has a long right tail, as discussed in original
papers that measured these leaks. Like those
papers, we find that a lognormal distribution
fits the measurements well. Second, we note
that in the airplane studies, well over 95% of
wells don’t have observable leaks. To fit these
additional zeros, we estimate a two-part model,
estimating a fairly standard logit for whether
a leak is detected, and a fairly standard lognor-
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mal for size in the sub-sample with detected
leaks. We estimate these two pieces, rather
than aHeckman-style selectionmodel, because
the selection model is a bad fit for our context.
Most importantly, we’re interested in the pre-
dicted values, not the coefficients on particu-
lar variables. We want to know the distribu-
tion of leaks and leak probabilities, but we’re
not interested in “undoing the selection” of
which wells leak. That is to say, we don’t care
much about the possible leak sizes for the leaks
that don’t occur. Manning, Duan, and Rogers
(1987) find that this two-part estimation per-
forms well, even when the true data generating
process is the selection model. In the absence
of valid instruments, the selection model per-
forms poorly, even when the analyst knows
the true specification.

In slight contrast to standard approaches, we
estimate this model in a bootstrapped Bayesian
framework (Huggins and Miller 2019). We
draw 100 bootstrap datasets with replacement,
and for each dataset we estimate 400 Markov
chain Monte Carlo (MCMC) draws from the
Bayesian posterior. We subset those 40,000
draws to 4000 draws by taking every 10th
draw. For each draw, we calculate outcomes
(audit probability, DWL, etc.). To report point es-
timates and confidence intervals (CIs), we use
the means and even-tailed 95% quantile ranges.
This approach, called “BayesBag,” has several
advantages. First, we can easily estimate some-
what unusual models, with measurement error
and the predicted leak size entering the leak
probability. Second, Bayesian models handle
uncertainty much more cleanly than standard
frequentist models. (Meager 2019 highlights
the benefits of this type of Bayesian model-
ing in an economics context.) Finally, the boot-
strap provides some robustness to model mis-
specification.

5.1 models

Our modeling approach follows closely from
our theory. We begin by estimating the dis-
tribution of leak sizes, then we use the well
operators’ FOC to estimate the cost parameters.

Wemodel the measured 𝑒𝑖 as lognormal. The
scientific literature that investigates the distri-
bution of leak sizes tends to land on lognormal.
The lognormal distribution expects positive
probability everywhere above zero. Our leak
measurements are censored at 5–10 kg/hr by
the AVIRIS-NG sensitivity, so we actually model
𝑒𝑖 − 𝑒 as the dependent variable, where 𝑒 = 5 is
the approximate censoring threshold. Define
𝑒𝑖 ∈ ( 𝑒, ∞) and 𝑋𝑖 as the observed leak size and
well covariates.12 𝛽 and 𝜎 are parameters to
estimate. We can model the leak distribution:

𝑒𝑖 ∼ LogNormal(𝑋𝑖𝛽, 𝜎) + 𝑒

̂𝑒𝑖 = exp(𝑋𝑖 ̂𝛽) ⋅
1
𝑁
∑
𝑖
exp( ̂𝜀𝑖) − 𝑒

The mean of the exponent of the residual 𝜀𝑖 is a
semi-parametric smearing estimator (Manning,
Duan, and Rogers 1987), designed to be more
robust to cases where the outcome distribution
is not lognormal.

For robustness, we consider that the AVIRIS-NG
 methane measurements have some noise.
The data from the Duren et al. (2019) study (in
California) report the estimated standard error
for each leak measurement. The other mea-
surements do not report measurement error.
We impute the measurement error by taking
the mean of the measurement error leak ra-
tio (measurement error divided by monthly
production), and apply this mean to the wells
in Colorado and New Mexico. Using these re-
ported and imputed measurement errors, we
estimate a measurement error model, assum-
ing that leak presence is measured accurately,

12. About notation: “∼” indicates “is distributed as” and
“=” indicates “is equal to.” We use logit−1 as the inverse
logit function, logit−1(𝑧) = exp(𝑧)/(exp(𝑧) + 1).
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but the size of the leak is measured with i.i.d.
noise. We then estimate the parameters 𝛽 that
explain the distribution of the (unobserved)
underlying leak sizes. The estimated param-
eters from the measurement error model are
qualitatively similar to our other models; see
table 9 for details.

After modeling the distribution of leak sizes
when they occur, we use the expected val-
ues to predict 𝐴𝑖 and 𝛼𝑖. This is a nonlin-
ear, likelihood-based model that uses the cost
function developed in section 3.1. Recall the
marginal cost function 𝐶′(𝑞𝑖; 𝐴𝑖, 𝛼𝑖) = 𝐴𝑖(1 −
𝑞𝑖)𝛼𝑖 , where 𝑞𝑖 is the probability well 𝑖 will not
leak. Define the observation of having a leak
𝑑𝑖 ∈ {0, 1}. In our data, we have no fee on emis-
sions, so wells set their marginal cost equal
to 𝑝𝑖𝑒𝑖𝐻. In the equations below, we use the
observed 𝑝𝑖 and 𝑑𝑖, along with ̂𝑒𝑖 from the leak
size estimation and the period length 𝐻. These
let us infer the cost parameters 𝐴 and 𝛼.

We want to allow for heterogeneity in 𝐴𝑖
and 𝛼𝑖 with our covariates, while enforcing the
acceptable ranges of these parameters, with
𝐴𝑖 ∈ (0, 𝑒𝑖𝑝𝑖𝐻) and 𝛼𝑖 < −1. There are many
ways this could be done; for parsimony, we
use linear expressions 𝑋𝜓 and 𝑋𝜙 with an in-
verse logit transformation to scale the values.
To be clear, we are not running a logistic re-
gression, just using the inverse logit function.
logit−1(𝑋𝑖𝜓) is in the range (0, 1). We want 𝐴𝑖
in the range (0, 𝑒𝑖𝑝𝑖𝐻) for every 𝑖, so we multi-
ply by 𝑒 𝑝𝑖𝐻.13

FOC: 𝑝𝑖𝑒𝑖𝐻 = 𝐴𝑖(1 − 𝑞̃𝑖)𝛼𝑖

Rearranged: 1 − ̃𝑞𝑖 = (
𝑝𝑖 ̂𝑒𝑖𝐻
𝐴𝑖

)
1/𝛼𝑖

Def. 𝐴𝑖 = logit−1(𝑋𝑖𝜓) ⋅ 𝑝 ⋅ 𝑒 ⋅ 𝐻

Def. 𝛼𝑖 = −1/logit−1(𝑋𝑖𝜙)
𝑑𝑖 ∼ Bernoulli(1 − ̃𝑞𝑖)

13. A more intuitive approach would be to multiply by
̂𝑒𝑖𝑝𝑖𝐻. We estimate 𝑒𝑖 and 𝐴𝑖 simultaneously; including

the predicted value ̂𝑒𝑖 in the product leads to poor joint
estimation.

The choice of 𝑋 variables matters in this
analysis, though for a different reason than
in many analyses. They have some role in
controlling for endogeneity (more below), but
their role is at least as important in allowing
for well heterogeneity. The variables we in-
clude are the inverse hyperbolic sine (IHS) of
gas production per month when the measure-
ment occurred, the IHS of oil production that
month, geologic basin indicators, drilling di-
rection indicators (to capture fracking), and
the fraction of production from oil (in barrel
of oil equivalents). We use IHS, rather than
logs, for oil production because somewells pro-
duce no oil and we do not want to drop them.
We use IHS for gas production only for sym-
metry with oil; we have dropped wells with
zero reported gas production. These oil-only
wells may still have methane emissions, but
our private-benefit abatement model would be
a poor fit for abatement behavior at these wells.
Summary statistics for these variables are in
table 1.

We employ a fully Bayesian model, includ-
ing priors on the variables. Our goal in choos-
ing priors is that they are very weakly infor-
mative on the outcome scale, following cur-
rent Bayesian standard practices (Gelman et
al. 2020). Specifically, we chose priors with
mean zero and a standard deviation large
enough that the predicted value of the out-
comes 𝑒𝑖 and 𝑞𝑖 could take any reasonable
value. For 𝑒𝑖, reasonable values are up to per-
haps 100 times larger than the largest leak we
see. For 𝑞𝑖, we aimed for a roughly uniform
prior distribution. The prior standard devia-
tions are much smaller here; because of the
logit transformation, making the prior stan-
dard deviations larger would put a lot of prior
weight on probabilities near zero or one (see
Gelman et al. 2020 for much more discussion).
We use a Student’s 𝑡 distribution with three de-
grees of freedom to allow for somewhat more
weight in the distributions’ tails than the Nor-
mal. Specifically, we de-mean all of the 𝑋 vari-
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ables and use priors of Student’s 𝑡(3, 0, 3) for
each of the leak size parameters 𝛽 and 𝜎. We
use Normal(0, 0.5) for the 𝐴𝑖 coefficients (𝜓)
and Normal(0, 0.75) for the 𝛼𝑖 coefficients (𝜙).
The prior covariance between coefficients are
all zero.

The identifying variation comes from a cou-
ple of different types of heterogeneity in the
covariates and outcomes. Let’s first imagine
we estimated homogeneous costs parameters,
with𝐴 and 𝛼 the same for all wells.We could do
this estimation with no covariates, finding the
values of 𝐴 and 𝛼 that fit the overall, uncondi-
tional leak probability given the unconditional
distribution of leak sizes. That estimate would
be unbiased if there were no other factors that
correlate with both the well’s leak probabil-
ity and leak size. We think it’s important to
allow for covariates – for example, wells with
low levels of production have smaller detected
leaks – so we define 𝐴𝑖 and 𝛼𝑖. These hetero-
geneous parameters vary with the covariates
𝑋. The identifying variation here is that wells
with different levels of the covariates have dif-
ferent leak probabilities, and different ̂𝑒.

5.2 selection bias

Our analysis makes causal claims about coun-
terfactual behavior: what would happen to leak
probabilities if the cost of leaking increased?
To identify these causal effects, we rely on a
selection-on-observables assumption. There
are two major ways selection bias could arise
in our setting. The first is if the set of wells that
were flown over are systematically different
from other wells in the same basin. The second
is if there are omitted variables that affect the
well operators’ cost of avoiding leaks and are
correlated with our estimated leak size.

We view the first case, sampling bias, as un-
likely. The scientific teams planned their flight
routes to sample a large fraction of the wells
in the relevant basin. In choosing their flights,
their goal was to have representative measure-

ments, not to measure specific wells or find
the largest leaks. Of course, there will be differ-
ences between geologic basins. We think these
measurements are representative of the sam-
pled basins, but more measurements would
be necessary to draw conclusions about the
national population of wells.

The second case, omitted variables bias, is
a larger concern. As we said above, the iden-
tifying variation is that wells with different
levels of the covariates have different leak prob-
abilities, and different ̂𝑒. We’re assuming that,
conditional on leak size and the heterogeneity
allowed in 𝐴𝑖 and 𝛼𝑖, leak probability is inde-
pendent of other factors affecting cost.

A counterexample, where omitted variable
bias could occur, would be if wells near Los
Angeles face higher labor costs, so have higher
costs of increasing 𝑞, but also tend to leak less
often because of their geology.14 This correla-
tion is not included in our model and would
generate biased estimates. We do include basin
indicators, but those are at a large geographic
scale.

There’s also potential for non-classical mea-
surement error. The accuracy of measurement
depends partly on the wind speed when the air-
plane is overhead. If this measurement error is
correlated with other factors, such as well oper-
ators’ costs or the commodity price of natural
gas, then our estimates of the operators’ abate-
ment costs will be biased. For densely spaced
wells, it’s unlikely but possible that the leak is
matched to the wrong well, which would be an-
other form of measurement error. We believe
these issues of selection and measurement er-
ror are small relative to the first-order effects
we estimate – particularly because we focus on
the relative gains of different policies instead
of the specific dollar-value gains.

14. To address this specific example, we could include
Bureau of Labor Statistics (BLS) estimates of county-
level labor costs, but omitted variables would remain a
concern.
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5.3 fitted values

To calculate the policy simulations, we need fit-
ted values for ̂𝑒, 𝐴̂𝑖, 𝛼̂𝑖, and 𝑞̂𝑖(𝑡𝑖). For the most
part, we directly plug in our estimated coeffi-
cients. For ̂𝑒, we use the smearing estimator
mentioned above, which is a minor change to
be more robust to violations of the assumed
lognormal distribution. Recall 𝐻 is the number
of hours in the well operator’s decision prob-
lem, 𝑇 is the number of hours the regulator
can assume a leak lasts, and 𝑡𝑖 is the expected
fee per hour per kilogram. Combining all of
these, in the fourth line we can predict how
a well’s probability of having no leak will in-
crease when it faces a fee 𝑡𝑖.

̂𝑒𝑖 = exp(𝑋𝑖𝛽) ⋅
1
𝑁
∑
𝑖
exp( ̂𝜀𝑖) + 𝑒

𝐴̂𝑖 = logit−1(𝑋𝑖 ̂𝜓 ) ⋅ 𝑝𝑖 ⋅ 𝑒 ⋅ 𝐻

𝛼̂𝑖 = −1/logit−1(𝑋𝑖 ̂𝜙)

̂𝑞𝑖(𝑡𝑖) = 1 − (
(𝐻𝑝𝑖 + 𝑇 𝑡𝑖) ̂𝑒𝑖

𝐴̂𝑖
)
1/𝛼̂𝑖

In some of our policies, such as targeting on
covariates (policy 2), we consider how choos-
ing heterogeneous audits can decrease DWL.
However, it would be an unfair comparison
to target on ̂𝑒𝑖, since this is an expected value,
with lower variance than the observed distri-
bution of 𝑒𝑖 from wells that leaked. Therefore,
we also calculate a random draw from the dis-
tribution of leak sizes. Call this draw 𝑒′𝑖 . (Note
that we do this even for wells with observed
leak sizes). The corresponding probability of
not having a leak is 𝑞′𝑖 .

𝑒′𝑖 ∼ LogNormal(𝑋𝑖 ̂𝛽 , 𝜎̂ ) + 𝑒

𝑞′𝑖 = 1 − (
(𝐻𝑝𝑖 + 𝑇 𝑡𝑖)𝑒′𝑖

𝐴̂𝑖
)
1/𝛼̂𝑖

When we consider targeting our policies, we
will target based on ̂𝑒𝑖 and ̂𝑞𝑖, but we will score
the outcomes using 𝑒′𝑖 and 𝑞′𝑖 .

6 POLICY SIMULATION

In this section, we consider how different poli-
cies translate into different expected fees, and
how those fees affect the DWL and emissions
outcomes. We begin in 6.1 by examining how
different policies and values of 𝑇 and 𝜏 trans-
late into the expected fee a well will pay. Then
in section 6.2 we translate these fees into DWL
and emissions outcomes.

6.1 audit probabilities and
expected fees

Recall the policies we consider are: (0) no au-
dits, the status quo; (1) audit every well with
equal probability; (2) target audits based on
well covariates; (3a and 3b) measure leaks re-
motely and target audits (with and without
a detection threshold); and (4a and 4b) mea-
sure leaks remotely and assess fines based on
measurements (with and without a detection
threshold).

Tables 3 and 4 provide the expected fee as
a fraction of the social cost 𝛿, assuming 1% of
wells are audited each year for the uniform,
target covariates, and measure-then-audit poli-
cies (1, 2, and 3). The tables differ in their as-
sumed value depending on 𝑇, the length of time
the regulator is able to charge for emissions.
In table 3, 𝑇 = 1 week. In table 4, 𝑇 = 3 months.
As we mentioned earlier, only the product 𝜏𝑇
matters, so these two tables can also be inter-
preted as keeping 𝑇 the same and increasing 𝜏
by a factor of 13. If all wells could be audited,
the first-best 𝜏𝑇 would be 𝛿𝐻, higher than the
cases we consider here.

The uniform results are unsurprising. For ex-
ample, in the first line of the table, if 1% of wells
are audited and the fee is 𝜏𝑇 = 2𝛿 ⋅ one week,
then the expected fee as a percentage of 𝛿𝐻 is
100 ⋅ 0.02 ⋅ one week/𝐻 = 0.384%. The mean,
median, 10th and 90th percentile will all be
equal. The confidence interval is a point, since
the uniform fee does not depend on anything
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Table 3: Expected fee, as a percentage of 𝛿 (1% annual audit budget and 𝑇 = 1 week)

Mean (%) Median (%) p10 (%) p90 (%)

Panel A: High fee (𝜏 = 2𝛿)

Uniform 0.0384 0.0384 0.0384 0.0384
[0.038,0.038] [0.038,0.038] [0.038,0.038] [0.038,0.038]

Target covariates 0.0384 0 0 0.00512
[0.038,0.038] [0,0] [0,0] [0,0.018]

Target leaks, low threshold 2.16 3.17 0 3.84
[2,2.4] [2.3,3.8] [0,0] [3.8,3.8]

Target leaks, high threshold 2.1 3.84 0 3.84
[2.1,2.2] [3.8,3.8] [0,0] [3.8,3.8]

Panel B: Medium fee (𝜏 = 𝛿)

Uniform 0.0192 0.0192 0.0192 0.0192
[0.019,0.019] [0.019,0.019] [0.019,0.019] [0.019,0.019]

Target covariates 0.0192 0 0 0
[0.019,0.019] [0,0] [0,0] [0,0]

Target leaks, low threshold 0.934 0.737 0 1.92
[0.85,1] [0,1.9] [0,0] [1.9,1.9]

Target leaks, high threshold 0.958 1.09 0 1.92
[0.87,1.1] [0,1.9] [0,0] [1.9,1.9]

Panel C: Low fee (𝜏 = $5 per ton CO2e)

Uniform 0.00163 0.00163 0.00163 0.00163
[0.0016,0.0016][0.0016,0.0016][0.0016,0.0016][0.0016,0.0016]

Target covariates 0.00163 0 0 0
[0.0016,0.0016] [0,0] [0,0] [0,0]

Target leaks, low threshold 0.0676 0 0 0.163
[0.062,0.074] [0,0] [0,0] [0.16,0.16]

Target leaks, high threshold 0.0686 0 0 0.163
[0.062,0.075] [0,0] [0,0] [0.16,0.16]

Note: Values are the expected fee per kg emitted, as a percentage of the social cost of
emissions (100 𝑇𝜏𝑟𝑖/𝛿𝐻). Panels A, B, and C set 𝑇 = 1 week and consider different values of 𝜏.
Each row considers different audit rules to optimally allocate 𝑟𝑖 according to the fixed audit
budget, which is set to 1% of all well pads. Columns provide distributional statistics across
well pads. 𝛿 = $2 per kg methane.
Wells in this table are the sample of wells included in the AVIRIS-NG sample (table 1 panel A).
Point estimates and square brackets indicate the mean and 95% CI. (See text for CI details.)
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Table 4: Expected fee, as a percentage of 𝛿, with a 1% annual audit budget and 𝑇 = 3 months

Mean (%) Median (%) p10 (%) p90 (%)

Panel A: High fee (𝜏 = 2𝛿)

Uniform 0.5 0.5 0.5 0.5
[0.5,0.5] [0.5,0.5] [0.5,0.5] [0.5,0.5]

Target covariates 0.5 0 0 1.61
[0.5,0.5] [0,0] [0,0] [1.5,1.8]

Target leaks, low threshold 50 50 50 50
[50,50] [50,50] [50,50] [50,50]

Target leaks, high threshold 28.4 50 0 50
[27,30] [50,50] [0,0] [50,50]

Panel B: Medium fee (𝜏 = 𝛿)

Uniform 0.25 0.25 0.25 0.25
[0.25,0.25] [0.25,0.25] [0.25,0.25] [0.25,0.25]

Target covariates 0.25 0 0 0.896
[0.25,0.25] [0,0] [0,0] [0.84,0.99]

Target leaks, low threshold 25 25 25 25
[25,25] [25,25] [25,25] [25,25]

Target leaks, high threshold 14.2 25 0 25
[13,15] [25,25] [0,0] [25,25]

Panel C: Low fee (𝜏 = $5 per ton CO2e)

Uniform 0.0213 0.0213 0.0213 0.0213
[0.021,0.021] [0.021,0.021] [0.021,0.021] [0.021,0.021]

Target covariates 0.0213 0 0 0
[0.021,0.021] [0,0] [0,0] [0,0]

Target leaks, low threshold 1.05 1.02 0 2.12
[0.96,1.2] [0.0000006,2.1] [0,0] [2.1,2.1]

Target leaks, high threshold 1.08 1.31 0 2.12
[0.99,1.2] [0,2.1] [0,0] [2.1,2.1]

Note: Values are the expected fee per kg emitted, as a percentage of the social cost of
emissions (100 𝑇𝜏𝑟𝑖/𝛿𝐻). Panels A, B, and C set 𝑇 = 1 week and consider different values of 𝜏.
Each row considers different audit rules to optimally allocate 𝑟𝑖 according to the fixed audit
budget, which is set to 1% of all well pads. Columns provide distributional statistics across
well pads. 𝛿 = $2 per kg methane.
Wells in this table are the sample of wells included in the AVIRIS-NG sample (table 1 panel A).
Point estimates and square brackets indicate the mean and 95% CI. (See text for CI details.)

27



about the wells. The policy that targets on co-
variates is more interesting. This policy has the
same mean because it has the same budget con-
straint, but the distribution of audit effort is no
longer uniform across wells. Indeed, in these
results, the 10th percentile of audit probability
is zero – the audit budget constrains the regu-
lator to focus effort on some wells and never
audit others. The skew is more pronounced for
when the allowed fee is more constrained (𝜏
is lower). In panel C, even the 90th percentile
of audit probability is zero. The regulator com-
pensates for the low allowed fee by focusing
all of the audit budget on a small fraction of
wells.

6.2 deadweight loss and emissions

With the fitted values in hand, we’re able to
calculate the DWL and emissions under each
policy. We solve each policy’s optimization
problem numerically, choosing audit proba-
bilities to minimize the DWL under the rele-
vant constraints. Recall that the optimization
problem is convex for the uniform and target-
on-covariates policies, so a local optimum is
guaranteed to be a global optimum. The opti-
mization problem is not convex for the target-
on-leaks policies, so we don’t have the same
guarantees. For each policy and each set of
parameter values, we repeat the optimization
process 4000 times, once for each draw.

In choosing the audit probabilities, we use
the expected value ̂𝑒𝑖. However, variance mat-
ters here, since we’re thinking about hetero-
geneous targeting, and there’s less variance in
the expected value ̂𝑒𝑖. Therefore to score the
policy in terms of DWL and emissions, we use
a draw from the conditional distribution of 𝑒𝑖
conditional on 𝑋𝑖. When relevant, we also use
the draw to determine if the leak is above the
high detection threshold.

Tables 5 and 6 present results for the same
policies, with the same annual audit budget,
at different levels of stringency. In table 5, the

allowed fee when a leak is detected is 𝜏×1 week
(with 𝜏 different values of 𝜏 in the columns).
Table 6 presents results of a fee that’s 13 times
larger, 𝜏×3 months, again considering different
values of 𝜏. Recall that wells are audited at
most once per year. In this setup, the first best
could be achieved by auditing every well and
charging a fee of 𝜏𝑇 = 𝛿𝐻 when a leak was
detected. Both table 5 and 6 are lower than this,
but we think they provide realistic values of
the range of fees that could be assessed.

In these results, it’s clear that the allowed
fee matters a great deal. In table 5, with 𝑇 =
1 week, none of the policies do particularly
well, even in the infeasible case where the reg-
ulator is able to measure all leaks remotely and
charge for those emissions – the fee is just too
low. In the very best feasible case, policy 3b,
these policies move 24.8 percent of the way
from the no-policy DWL to the first best. With
a higher fee, the same policy in table 6 is able
to move 71.5 percent of the way to first best.

Turning to emissions, we see a similar pat-
tern, with an average reduction of 256 tons
CO2e per well per year for policy 3b with
𝜏𝑇 = 2𝛿 ⋅ 1 week and 820 tons CO2e per well
per year for policy 3b with 𝜏𝑇 = 2𝛿 ⋅ 3 months.
In the tables, we present both emissions and
DWL outcomes on a scale from zero to 100 for
ease of comparison. On this scale, zero is the
no-policy result and 100 is the outcome under
first-best Pigouvian taxation.

In these results, the uniform policy does
worse than we expected, particularly in table 5.
Because leaks are difficult to predict, we ex-
pected the policies of uniform audits and tar-
geting on covariates to perform similarly, but
the targeting does substantially better in rela-
tive terms.

Targeting on observed leaks (policy 3a and
3b) does well relative to the other audit poli-
cies, which was expected from the fact that the
regulator is able to use the limited audit budget
more effectively. The high-threshold policies
– both the infeasible remote fee and the feasi-
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Table 5: Policy outcomes: Percent improvement from no-policy baseline
(Audit budget = 1% per year, 𝑇 = 1 week)

𝜏 = 2𝛿 𝜏 = 𝛿 𝜏 = $5

A: DWL improvement (%)

Uniform 0.526 0.259 0.0128
[0.517,0.57] [0.254,0.281] [0.0123,0.015]

Target covariates 1.06 0.566 0.0455
[0.866,1.46] [0.449,0.81] [0.033,0.0728]

Target leaks, low threshold 25.9 14 1.27
[23.3,31.1] [12.4,16.5] [1.12,1.47]

Target leaks, high threshold 24.8 13.9 1.29
[23.6,26.5] [12.8,15.7] [1.16,1.48]

Remote, low threshold 36.4 21.7 2.24
[35.9,38.7] [21.4,23.2] [2.21,2.43]

Remote, high threshold 25.6 15.2 1.56
[24.8,26.7] [14.7,15.9] [1.51,1.64]

B: 𝔼[emiss] improvement (%)

Uniform 0.442 0.221 0.0189
[0.432,0.487] [0.216,0.244] [0.0184,0.0208]

Target covariates 0.885 0.477 0.0458
[0.719,1.23] [0.377,0.684] [0.0351,0.0681]

Target leaks, low threshold 21.7 11.6 1.05
[19.4,26.6] [10.3,14] [0.926,1.24]

Target leaks, high threshold 20.8 11.5 1.07
[19.7,22.6] [10.5,13.3] [0.958,1.26]

Remote, low threshold 30.5 18 1.85
[29.9,33] [17.7,19.7] [1.81,2.04]

Remote, high threshold 21.4 12.6 1.29
[20.8,22.5] [12.2,13.4] [1.25,1.38]

Note: Panels A and B show results for DWL and emissions, both on a scale
from 0 to 100, where 0 is the no-policy baseline and 100 is the outcome of the
infeasible first-best Pigouvian tax (higher is better). Columns show different
policy stringency levels 𝜏 = {2𝛿, 𝛿, $5}. Rows are different constrained policy
options, listed previously. DWL numbers include the costs of auditing. Wells
in this table are the sample of wells included in the AVIRIS-NG sample.
Square brackets indicate 95% CI.

29



Table 6: Policy outcomes: Percent improvement from no-policy baseline
(Audit budget = 1% per year, 𝑇 = 3 months)

𝜏 = 2𝛿 𝜏 = 𝛿 𝜏 = $5

A: DWL improvement (%)

Uniform 6.6 3.39 0.288
[6.49,7.12] [3.34,3.67] [0.283,0.312]

Target covariates 9.69 5.43 0.621
[8.89,11.2] [4.87,6.61] [0.496,0.885]

Target leaks, low threshold 96.4 85.7 15.3
[96.2,97] [85.2,87.4] [13.6,18.2]

Target leaks, high threshold 71.5 62.3 15.2
[69.2,72.7] [60.8,63.7] [14,17.1]

Remote, low threshold 96.4 85.7 23.6
[96.3,97] [85.2,87.4] [23.2,25.2]

Remote, high threshold 69 61 16.5
[66.6,70.6] [59.2,62.8] [16,17.3]

B: 𝔼[emiss] improvement (%)

Uniform 5.46 2.81 0.245
[5.34,6] [2.75,3.09] [0.24,0.271]

Target covariates 8.07 4.52 0.523
[7.34,9.47] [4.02,5.56] [0.415,0.747]

Target leaks, low threshold 90 76.3 12.8
[89.5,91.5] [75.5,79.1] [11.3,15.4]

Target leaks, high threshold 66.6 55.5 12.7
[65.1,67.8] [54.2,57] [11.6,14.5]

Remote, low threshold 90 76.3 19.6
[89.5,91.5] [75.5,79.1] [19.2,21.4]

Remote, high threshold 64.5 54.4 13.7
[62.6,66.2] [52.8,56.2] [13.3,14.5]

Note: Panels A and B show results for DWL and emissions, both on a scale
from 0 to 100, where 0 is the no-policy baseline and 100 is the outcome of the
infeasible first-best Pigouvian tax (higher is better). Columns show different
policy stringency levels 𝜏 = {2𝛿, 𝛿, $5}. Rows are different constrained policy
options, listed previously. DWL numbers include the costs of auditing. Wells
in this table are the sample of wells included in the AVIRIS-NG sample.
Square brackets indicate 95% CI.
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ble target-on-observed leaks – capture a large
fraction of the gains that could be achieved by
the low-threshold policies. Because these are
only able to target the largest leaks, we had
expected them to do substantially worse, but
that seems not to be the case.

7 CONCLUSION

The five policies we consider, ranging from
no audits to fully remotely assessed fees, of-
fer a sampling of feasible policies. All of these
policies fall short of the first best, some dra-
matically so. However, we can also see the im-
portance of the fee level – a $5 per ton CO2e
fine is not very effective, particularly when
audit probabilities are low. Importantly, we
found that a policy that used remote sens-
ing to guide audits did quite well, almost as
well as the infeasible policy where fines are as-
sessed without a corroborating on-the-ground
audit. This remote-based policy does some-
what worse when measurements have a high
detection threshold, but overall the policy still
does quite well, because it still allows the reg-
ulator to target the auditing effort much more
effectively than targeting on covariates alone.

All of these policies are focused on the
large, infrequent leaks that are measured in
the AVIRIS-NG datasets. Smaller leaks are more
frequent, and while they make up a minority
of well emissions, it’s worth targeting policy at
these leaks as well. Such a policy could use au-
dits, like the ones we consider above, or might
use some other tool like a stringent leak detec-
tion and repair (LDAR) mandate or a technology
standard on components that can leak.

To generate our estimates, we use the ob-
served leaks to estimate the distribution of leak
sizes and the well operators’ costs of abate-
ment, using a Bayesian bagging model to si-
multaneously estimate the leak size and well
operators’ costs. We then consider how differ-
ent policies translate into incentives the wells

face, and how the operators would change their
abatement under each policy. We calculate the
expected DWL and changes in emissions for
policies implemented under a number of differ-
ent constraints, from limits on the fee that can
be charged, to the number of audits that can
be performed, to the size of leaks that can be
detected remotely. These limits matter a great
deal to how effective the policy can be.

Our findings highlight the importance of
thinking about measurement and policy to-
gether. We found that additional information
on leaks can dramatically improve social out-
comes. At the same time, the regulatory de-
tails matter a great deal – the policies that use
more information still perform poorly when
the regulator’s ability to charge fees is severely
constrained. Our work contributes to a broader
literature on the role of measurement in deter-
mining policy outcomes.
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A PROOFS

1.1 proofs for the well operator’s problem

Proposition 1 (Properties of DWL)
DWL𝑖 is decreasing and convex in 𝑡𝑖 for our assumed cost function and any other that satisfies

our basic assumptions (twice continuously differentiable on 𝑞 ∈ (0, 1), 𝐶′(𝑞) > 0, 𝐶″(𝑞) > 0, and
lim𝑞→1 𝐶′(𝑞) = ∞).

Proof. Because 𝐶′ is strictly increasing and convex, 𝐶′−1(𝑥) =∶ 𝑓 (𝑥) is strictly increasing and
concave.

∂DWL𝑖
∂𝑡𝑖

= −
∂𝐶′−1(𝑒𝑖 ⋅ (𝑝𝑖 + 𝑡𝑖))

∂𝑡𝑖
⋅ 𝑒𝑖(𝛿 − 𝑡𝑖) = −𝑓 ′ ⋅ 𝑒2𝑖 (𝛿 − 𝑡𝑖) < 0

∂2DWL𝑖
∂𝑡2𝑖

= −
∂𝑓 ′ ⋅ 𝑒2𝑖 (𝛿 − 𝑡𝑖)

∂𝑡𝑖
= −𝑒2𝑖 (𝑓 ″ ⋅ 𝑒𝑖(𝛿 − 𝑡𝑖)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

<0

−𝑓 ′) > 0

1.2 audit probability proofs

Define 𝐺𝑖(𝑟𝑖) as the budget consumption function.

𝐺𝑖(𝑟𝑖) = {
𝑟𝑖 for target-covariates
(1 − 𝑞𝑖(𝑟𝑖))𝑟𝑖 for target-leaks

Rewriting the Lagrangians for policies 3 and 4 with 𝐺𝑖(𝑟𝑖):

min
{𝑟𝑖}𝑁𝑖=1

ℒ = ∑
𝑖

DWL𝑖(𝑟𝑖) + 𝜆 (𝑀 −∑
𝑖
𝐺𝑖(𝑟𝑖)) +∑

𝑖
(𝑟𝑖 − 0) 𝑎𝑖 + (𝑟𝑖 − 1) 𝑏𝑖

1.2.1 Target Auditing on Well Covariates

Proposition 2 (Monotone Audit Rule)
If ∂2ℒ

∂𝑟𝑖∂𝑒𝑖
< 0, then the solution of is monotonically increasing in 𝑒𝑖.

Proof. Let 𝑟 ∗𝑖 s be the solution of the problem. Suppose there exists 𝑘, 𝑗 such that 𝑒𝑘 > 𝑒𝑗 but 𝑟 ∗𝑘 < 𝑟 ∗𝑗 .
Consider ̂𝑟𝑖s such that ̂𝑟𝑖 = 𝑟 ∗𝑖 for all 𝑖 ≠ 𝑘, 𝑗 and ̂𝑟𝑘 = 𝑟 ∗𝑗 , ̂𝑟𝑗 = 𝑟 ∗𝑘. Clearly, 𝑟

∗
𝑖 also satisfy all the

constraints. The difference in the total DWL for ̂𝑟𝑖s and 𝑟 ∗𝑖 s is equal to

DWL𝑘( ̂𝑟𝑘) + DWL𝑗( ̂𝑟𝑗) − (DWL𝑘(𝑟 ∗𝑘) + DWL𝑗(𝑟 ∗𝑗 ))
=DWL𝑘(𝑟 ∗𝑗 ) − DWL𝑘(𝑟 ∗𝑘) + DWL𝑗(𝑟 ∗𝑘) − DWL𝑗(𝑟 ∗𝑗 )

=∫
𝑟 ∗𝑗

𝑟 ∗𝑘

∂DWL𝑘
∂𝑟

𝑑𝑟 + ∫
𝑟 ∗𝑘

𝑟 ∗𝑗

∂DWL𝑗
∂𝑟

𝑑𝑟
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=∫
𝑟 ∗𝑗

𝑟 ∗𝑘

∂DWL𝑘
∂𝑟

−
∂DWL𝑗

∂𝑟
𝑑𝑟

Since ∂2ℒ
∂𝑟𝑖∂𝑒𝑖

< 0 and 𝑒𝑘 > 𝑒𝑗, the integrand is negative and hence the whole integral is negative,
which implies DWL under ̂𝑟𝑖s is small. This a contradiction to 𝑟 ∗𝑖 s being optimal.

Note that for the target-on-covariates policy, ∂2ℒ
∂𝑟𝑖∂𝑒𝑖

= ∂2DWL𝑖
∂𝑟𝑖∂𝑒𝑖

< 0. The inequality follows directly
from the specific choice function we chose and the expected fee 𝑡𝑖 being an increasing function of
𝑟𝑖,

∂2𝐷𝑊𝐿𝑖
∂𝑡𝑖∂𝑒𝑖

= (1 +
1
𝛼
)𝑒

1
𝛼
𝑖

(𝛿 − 𝑡𝑖)
𝛼(𝑝𝑖 + 𝑡𝑖)

(
(𝑝𝑖 + 𝑡𝑖)

𝐴
)

1
𝛼
< 0

Therefore, for this policy, the optimal values of 𝑟𝑖 are monotonic in 𝑒𝑖.

1.3 expressions with time

Here we present the DWL and audit problems with variables 𝑇 and 𝐻 included. See the main text
section 3.3 for details.

𝐶′
𝑖 (𝑞𝑖) = 𝐴𝑖(1 − 𝑞𝑖)𝛼𝑖 (cost function unchanged)

𝐶′(𝑞𝑖) = (𝑝𝑖𝐻 + 𝑡𝑖𝑇)𝑒𝑖 (FOC MB changed)

DWL𝑖 = ((𝑝𝑖 + 𝛿) 𝐻𝑒𝑖 −
(𝐻𝑝𝑖 + 𝑇𝜏𝑟𝑖) 𝑒𝑖

𝛼𝑖 + 1
)(

(𝐻𝑝𝑖 + 𝑇𝜏𝑟𝑖) 𝑒𝑖
𝐴𝑖

)

1
𝛼𝑖
−

𝛼𝑖
1 + 𝛼𝑖

(𝑝𝑖 + 𝛿) 𝐻𝑒𝑖(
(𝑝𝑖 + 𝛿) 𝐻𝑒𝑖

𝐴𝑖
)

1
𝛼𝑖

We turn to the audit policies with audit budget 𝑀. For uniform and targeting on covariates
(policies 1 and 2), the budget is binding if 𝑀

𝑁
< 𝛿𝐻

𝜏𝑇
. The budget constraint remains ∑𝑟𝑖 ≤ 𝑀.

The budget constraint for the measure-then-audit policy (3) with no detection threshold be-
comes:

𝑒 = 0 ∶ ∑
𝑖
(
(𝑝𝑖𝐻 + 𝜏𝑇𝑟𝑖) 𝑒𝑖

𝐴𝑖
)

1
𝛼𝑖
𝑟𝑖 ≤ 𝑀

𝑒 > 0 ∶ ∑
𝑖
𝑧𝑖[(

(𝑝𝑖𝐻 + 𝜏𝑇𝑟𝑖) 𝑒𝑖
𝐴𝑖

)

1
𝛼𝑖
𝑟𝑖 + (1 − (

(𝑝𝑖𝐻 + 𝜏𝑇𝑟𝑖) 𝑒𝑖
𝐴𝑖

)

1
𝛼𝑖
)𝑠𝑖] + (1 − 𝑧𝑖)𝑠𝑖 ≤ 𝑀
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B METHANE MEASUREMENT

Figure 8: Production segment is responsible for 58% of leaks from natural gas supply chain

Source: Marks (2018) figure 1, from estimates in Alvarez et al. (2018). Excludes end-use leaks.

35



Table 7: Estimated satellite detection varies by leak size and background

Surface type True emissions (kg/hr) Estimated emissions (kg/hr)

Grass 100 No detection

Grass 500 279
(101)

Grass 900 542
(38)

Bright 100 93.5
(18.3)

Bright 500 338
(83.1)

Bright 900 577
(115)

Note: Table is a subset of Cusworth et al. (2019) table 2 (CC BY 4.0).
Results simulate methane retrievals from the EnMAP satellite, expected
to launch in 2021. Values in parentheses are standard deviations from
five iterations. We exclude the paper’s results for images with “dark”
or “urban” backgrounds, as these include water and confuse the image
processing algorithm. In personal communication, the lead author notes
“one could dramatically improve the prediction if there were some sort
of decision tree that was based on the underlying surface.”
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Figure 9: Distribution of detected methane leaks, comparison with ground-based measurement
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Left: emissions conditional on detection. Right: fraction of well pads with detected emissions.
The “ground cens at” columns are the ground studies’ observations with artificial censoring
applied, at either 5 or 10 kg/hr, the approximate detection threshold of both the California and
Four Corners studies. Without artificial censoring, the ground-based measurements are non-zero
approximately 97% of the time. 5 kg/hr is noted with a dashed line in the left plot.
Sources: Ground studies include measurements primarily from Robertson et al. (2017) with
additional contributions from Rella et al. (2015), Omara et al. (2016), and Omara et al. (2018).
California and Four Corners distributions come from aircraft studies (Duren et al. 2019; Franken-
berg et al. 2016). Lyon et al. (2016) provides information about leak prevalence (with a detection
threshold roughly similar to the California and Four Corners studies), but not leak size.
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C DISTRIBUTION FITTING

Table 8: Parameters of methane leak size models

LogNormal LogNormal Cost param. Cost param.
meas. err. (common) (heterog.)

Intercept 4.4 4.03 6.15 4.7
[2.8,6.1] [3,5] [4.4,7.7] [3.1,6.3]

IHS of gas prod (mcfd) 0.112 0.152 −0.19 0.0469
[−0.065,0.28] [0.039,0.26] [−0.37,0.024] [−0.13,0.21]

IHS of oil prod (bbld) −0.0339 −0.0817 0.181 0.0148
[−0.22,0.16] [−0.21,0.047] [0.0042,0.37] [−0.17,0.23]

Basin: San Joaquin −0.196 −0.0975 −0.0821 −0.085
[−0.94,0.51] [−0.56,0.37] [−0.77,0.49] [−0.81,0.58]

Basin: San Juan −1.15 −1.27 −0.358 −0.994
[−2.1,−0.24] [−1.9,−0.64] [−1.2,0.39] [−1.9,−0.16]

Oil prod share 0.736 0.999 −1.35 0.263
[−0.49,1.9] [0.19,1.8] [−2.6,0.098] [−1,1.4]

IHS of age (yr) 0.0623 0.0678 0.00505 0.0749
[−0.12,0.25] [−0.051,0.19] [−0.15,0.16] [−0.095,0.25]

Drill: Horizontal 0.263 0.229 0.132 0.165
[−0.51,1.1] [−0.35,0.82] [−0.55,0.98] [−0.6,1]

Drill: Unknown −0.622 −0.714 −1.25 −0.742
[−1.2,−0.0013] [−1.1,−0.29] [−1.8,−0.76] [−1.4,−0.12]

Drill: Vertical −0.0847 −0.167 −0.0318 −0.149
[−0.48,0.31] [−0.45,0.12] [−0.37,0.28] [−0.53,0.23]

𝜎 0.955 0.797 1.05 0.959
[0.83,1.1] [0.72,0.88] [0.9,1.2] [0.84,1.1]

𝑁 14399 14399 14399 14399
𝑅2 0.21 0.13 0.14 0.21
Dep. var. mean 198 198 198 198

Note: LogNormal coefficients are on the log scale, so numbers are roughly comparable
across models. Square brackets are 95% CI. Omitted category for drilling is directional.
Omitted category for basin is all of California outside the San Joaquin basin.
Sources: See figure 1.
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Table 9: Parameters of methane leak occurrence models

LogNormal LogNormal Cost param.
meas. err. (heterog)

Intercept −5.83 −5.84 −0.785
[−7.4,−4.3] [−6.9,−4.8] [−5.1,3.6]

IHS of gas prod (mcfd) 0.327 0.329 −0.0538
[0.17,0.49] [0.21,0.45] [−1.1,1]

IHS of oil prod (bbld) −0.177 −0.172 0.428
[−0.37,0.011] [−0.31,−0.035] [−0.53,1.2]

Basin: San Joaquin −0.161 −0.154 0.384
[−0.77,0.58] [−0.6,0.33] [−0.57,1.4]

Basin: San Juan −0.327 −0.308 −0.575
[−1.1,0.48] [−0.89,0.31] [−1.6,0.41]

Oil prod share 2.16 2.19 0.475
[1.1,3.2] [1.4,3] [−0.51,1.5]

IHS of age (yr) 0.124 0.117 −0.207
[−0.072,0.35] [−0.019,0.25] [−1.2,0.64]

Drill: Horizontal 0.126 0.161 −0.0374
[−0.88,0.92] [−0.49,0.75] [−0.97,0.91]

Drill: Unknown 1.52 1.53 0.375
[0.91,2.1] [1.1,2] [−0.62,1.3]

Drill: Vertical −0.0692 −0.0632 −0.49
[−0.44,0.33] [−0.34,0.23] [−1.5,0.59]

𝑁 14399 14399 14399
𝑅2 0.015 0.014 0.019
Dep. var. mean 0.0267 0.0267 0.0267

Note: Coefficients are on the logit scale. Cost param. model coefficients
aren’t comparable. Square brackets are 95% CI. Omitted category for
drilling is directional. Omitted category for basin is all of California
outside the San Joaquin basin.
Sources: See figure 1.
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Transition

Now I turn from the challenge of creating methane policy to
flood risks on agricultural land. These topics share the broad
umbrella of applied environmental economics. Though the set-
ting and policy response are very different, they share the core
economic principal of economic agents making choices to max-
imize their outcomes. These papers also share data challenges:
the size and quality of the datasets is far from ideal. Conse-
quently, estimates are sometimes noisy, and my coauthors and
I need to frame our research questions carefully to ensure we
ask questions the data can answer.
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Chapter Two

Hedonic Valuation of High-Frequency Flood Risk
on Agricultural Land

Coauthors: Oliver Browne, Alyssa Neidhart, and David Sunding

1 INTRODUCTION

Natural hazards such as flood, drought, fire and
earthquake pose risks to both property and
agricultural production. These risks increase
the possibility that the property owner will
have to make costly repairs, or that a season’s
crops will be lost. These hazards lower the ex-
pected benefits of owning the land, as they im-
pose both monetary and personal costs. In eco-
nomic theory, with efficient markets for land,
these risks should be capitalized into property
values (Rosen 1974). Our work builds on this
theory, studying flooding on agricultural land,
including areas that have high risks of floods.

Using data from parcels sold between 1988
and 2019 in counties that border the Missouri
River, we find that parcels in the 10-year flood-
plain are 3% less valuable (95% CI: [−18.7, 15.8])
per acre than comparable properties that face
minimal risk of flooding. Our estimates for ar-
eas that flood less frequently are similar in
magnitude: all in the range between −10% and
zero, and not statistically insignificant at the
95% level.

This analysis is timely, as agricultural land
in and near our study area has seen substantial
flooding several times over the past decade. It’s
also novel, incorporating detailed data on flood
risks and finding that the additional granular-

ity substantially affects our understanding of
hedonic valuation. Finally, this analysis is im-
portant looking forward. Flood risk is expected
to increase in these agricultural lands and oth-
ers, as climate change increases the variance
of rainfall patterns. Valuing these changes pro-
vides a richer understanding of the costs of
climate change for agriculture, and the bene-
fits from additional flood protections.

Our analysis contributes to the large litera-
ture on the value of risks from natural hazards.
Often, papers in this literature find that these
risks are not properly capitalized into prop-
erty values, or that these risks only become
properly capitalized after the realization of a
disaster, when they become more salient. Most
of the papers in this literature have two limita-
tions: they focus on hazards that are realized
relatively infrequently, and they focus almost
exclusively on residential property sales.

There are a couple of reasons to think agri-
cultural land might respond more sharply to
flood risk. Unlike living at a residential prop-
erty, operating a farm is a business. The farm
operator might try to maximize profits, which
provides a strong incentive to properly capi-
talize risks into property values. Rational inat-
tention may explain some of the lack of re-
sponse in residential properties, while farm
owners have a stronger incentive to consider
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flooding risk. Additionally, we’re considering
flood probabilities much higher than the res-
idential flooding literature typically includes.
Farm owners (and other landowners) might
have more experience dealing with higher fre-
quency risks and therefore might be more
likely to value the discount in their decisions
to buy or sell land.

Feasible adaptation and appropriate policy
differ for residential and agricultural land. Res-
idential flooding risk can be mitigated through
both building design and relocating to a less
flood-prone area. Agricultural land cannot be
put on stilts. The feasible forms of abatement
on this land are changes in flood barriers
(e.g. levees), river flow management, chang-
ing crops, or ceasing to use the land for agri-
culture. This smaller set of private abatement
options makes government policy relatively
more important in the agricultural setting.

Our hedonic analysis compares parcels in
areas that face a risk of flooding with sim-
ilar, control parcels that face minimal flood
risk. We use data on property sales, as com-
piled by CoreLogic, using flood map contours
calculated from US Army Corps of Engineers
(USACE) flood stage modeling. These flood con-
tours are more detailed than the Federal Emer-
gency Management Agency (FEMA) flood maps
typically used in this literature. We control for
differences in the assessed value of improve-
ments (i.e. buildings) on the land, as well as
a rich set of covariates relevant to the land’s
agricultural value including soil quality and
drainage characteristics. We also include prox-
imity to urban areas, controlling for the land’s
potential development value, as well as county
fixed effects. These controls allow us to esti-
mate causal effect of flood risk, disentangling
it from correlated variables like soil quality.

We consider how these estimated hedonic
flooding discounts intersect with predicted
changes in river flows and flood risks as the
climate changes. These climate predictions are

drawn from a report U.S. Bureau of Reclama-
tion (2012).1

Using detailed flooding data, we estimate
the hedonic discount in the per-acre value
of agricultural properties along the Missouri
River. We estimate regressions for parcels that
are expected to flood at least every 500, 100,
50, 20, and 10 years, comparing each group
with similar parcels that face minimal risk of
flooding. Results are in table 2. We then ag-
gregate these results, estimating an average
slope of the hedonic discount across different
flood groups.We focus on elasticity of property
value with respect to flood frequency, finding
a slope of −0.5%, with a 95% confidence inter-
val of [−1.5%, 0.48%]. Taking the point estimate
literally, a doubling in flood period (e.g. the 50-
year group vs the 100-year) is expected to be
0.5% less valuable on a per-acre basis. We pro-
vide a more formal theoretical treatment in
section 2.

1.1 literature review

Our research is almost unique in this literature
in looking at the hedonic value of flooding
on agricultural land. Struyk (1971) and Wang
(2020) are the only papers we are aware of in
the literature that relies on agricultural prop-
erty values. Much of the existing residential
literature does not have sufficient gradation in
flood risk to consider the slope of the hedonic
valuation curve. Bin, Kruse, and Landry (2008)
is an exception; like our work, that paper finds
that the magnitude of the flood risk matters,
though they find a steeper slope than we do.

The literature on hedonic valuation of flood-
ing on residential properties is more densely
populated. That literature generally finds zero

1. That report uses bias corrected and spatially down-
scaled coupled model intercomparison project phase
3 (CMIP3) climate projections, using a range of future
greenhouse gas emissions (Intergovernmental Panel on
Climate Change (IPCC) low, medium, and high values:
B1, A1b, and A2 from Nakićenović et al. 2000).
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or small effects, but typically looks at much
smaller flood risks than our study. For instance,
Bialaszewski and Newsome (1990), Bin and
Kruse (2006), Bin and Landry (2013), Atreya
and Czajkowski (2019), and Hino and Burke
(2021) find little to no change in capitalization
due to flood risk. Some studies find a price
effect, but typically smaller than the future
cost of flood insurance premiums mandated by
government-backed mortgages. Speyrer and
Ragas (1991), Schwartz (2001), and Daniel, Flo-
rax, and Rietveld (2009) are examples here.
On the other hand, MacDonald, Murdoch, and
White (1987) finds that flood risks reflect fu-
ture discounted insurance premiums, for some
reasonable value of the homeowner’s discount
rate. Knowing the correct discount rate – and
incorporating uninsurable losses – are signifi-
cant challenges in this type of analysis.

Other papers consider the dynamic response
to realized flooding, finding that the hedo-
nic discount is larger or insurance takeup is
higher following a flood. Similarly, seeing a
flood nearby, without directly experiencing it,
tends to increase takeup. These effects often
fade over time. Bin and Polasky (2004), Atreya,
Ferreira, and Kriesel (2013), Atreya and Ferreira
(2015), Hallstrom and Smith (2005), Carbone,
Hallstrom, and Smith (2006), Morgan (2007),
Daniel, Florax, and Rietveld (2009), Kousky
(2010), Nyce et al. (2015), and Beltrán, Maddi-
son, and Elliott (2018) provide nice examples
of this result. Our work differs from this con-
text because we look at parcels in much higher
flood risk areas. (As well as the residential vs
agricultural difference mentioned above).

Some studies are inconclusive, such as Chao,
Floyd, and Holliday (1998), while a small num-
ber of studies find substantial capitalization
of flood risk: Fridgen and Shultz (1999), Troy
and Romm (2004), Pope (2008), and Posey and
Rogers (2010). Flood risk may also increase
search frictions, making transactions harder
(Turnbull, Zahirovic-Herbert, and Mothorpe
2013).

Another point the literature emphasizes is
that spatial amenities matter, may not be fully
observed, and may be highly correlated with
flood risk. This correlation canmake economet-
ric identification challenging (Bin et al. 2008).
While the parcels in our study may not have an
ocean view, they do have amenities in the form
of soil quality and other characteristics. Soil
quality is strongly affected by historical flood-
ing (floods brought nutrients and improved
the soil), and controlling for these characteris-
tics is an important piece of our identification
argument.

The literature makes a couple of other im-
portant points about flood maps and their
inexact relationship with flood risk. Gibson,
Mullins, and Hill (2019) finds re-drawn maps
produced larger belief changes than being di-
rectly hit by a hurricane or by insurance re-
form, and Shr and Zipp (2019) finds prices de-
crease when a property is reclassified into a
flood zone, but not when it’s reclassified out.
Wang (2020) considers the discontinuity be-
tween areas with different FEMA flood zones
– the map changes discontinuously, while the
risk of flooding may or may not change as
sharply – and finds substantial price effects.

In addition to the flooding literature, we
contribute to the literature on agriculture
and climate change. A large majority of
those works focus on changes in tempera-
ture, rather than flooding. A few prominent
examples of hedonic valuation in this climate–
temperature space are Mendelsohn, Nordhaus,
and Shaw (1994), Fisher et al. (2012), and Sev-
eren, Costello, and Deschênes (2018). As with
the flooding literature, casual identification re-
mains a challenge.

In addition to the hedonic valuation liter-
ature, we rely on studies of climate change
and associated shifts in flood risk. For instance,
van der Wiel et al. (2018) integrates a global cli-
mate model with models of surface water flow
to estimate the probabilities of anomalously
high river levels in the Mississippi basin. River
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levels are informative of flooding, but many
other factors determine whether a specific par-
cel away from the river will flood. We discuss
these challenges of estimating flood frequency
and projecting future climate change in greater
depth in sections 3 and 5.

2 HEDONIC FRAMEWORK

We consider a hedonic valuation model in the
Rosen–Roback framework (Rosen 1974; Roback
1982). In our setting, the hedonic variable of
interest is the probability of flooding. We con-
sider how the valuation of agricultural land,
on a per-acre basis, varies with flood risk.

The value of a parcel to a farm owner is
the discounted stream of future profits, {𝜋𝑡}∞𝑡=0.
For simplicity, we omit other, non-monetary
benefits or costs of owning a farm. If these
can be translated to dollars, they can be in-
cluded in 𝜋𝑡 without changing the expressions.
Let 𝑓𝑡 be the flood frequency in each year. For
instance, 𝑓𝑡 might be 500, with a flood prob-
ability of 1/500 in year 𝑡. Assume that farm
owners are maximizing the expected value of
the future profit stream. If a flood occurs, prof-
its for that year are 𝜃𝜋𝑡, otherwise they’re 𝜋𝑡.
Here, 𝜋𝑡 is an expectation over other factors
that may affect profits, such as crop prices or
farm policy changes. (For exposition, we as-
sume 𝜃 < 1. It can be negative.) We assume
these other factors are uncorrelated with flood
probability. Therefore, expected profits in year
𝑡 are (1 + (𝜃 − 1)/𝑓𝑡)𝜋𝑡. 𝑓𝑡 and 𝜋𝑡 do not need to
be constant over time, though in our hedonic
analysis we will assume they are. Let 𝜌 be the
owner’s discount rate.2

𝛱0 =
∞
∑
𝑡=0

𝜌𝑡𝜋𝑡 with minimal flood risk

2. This expression is somewhat simplified. We could, for
instance, include a more complicated Bellman equation
or consider the resale value of the farm. Doing so would
add mathematical complexity, but would not increase
economic insight nor guide our empirical specification.

𝛱 =
∞
∑
𝑡=0

𝜌𝑡(1 +
𝜃 − 1
𝑓𝑡

)𝜋𝑡 with 𝑓𝑡 ≥ 1 freq.

Where the properties of 𝛱 and 𝛱0 are assumed
to be identical except for their flood risk. De-
fine the hedonic discount for having more than
minimal risk of flooding as the difference in
logs between 𝛱 and 𝛱0.

log(𝛱0) − log(𝛱) = log
∑∞

𝑡=0 𝜌
𝑡𝜋𝑡

∑∞
𝑡=0 𝜌

𝑡(1 + 𝜃−1
𝑓𝑡
)𝜋𝑡

= log
∑∞

𝑡=0 𝜌
𝑡𝜋𝑡

(1 + 𝜃−1
𝑓𝑡
)∑∞

𝑡=0 𝜌
𝑡𝜋𝑡

if 𝑓𝑡 is constant

= log
𝑓𝑡

𝑓𝑡 + 𝜃 − 1
= log 𝑓𝑡 − log(𝑓𝑡 + 𝜃 − 1)

In the empirical section, we will first estimate
the hedonic discount for each flood frequency,
then fit an average slope. That is, we estimate
log(𝛱0) − log(𝛱) ∼ ̂𝛽 log 𝑓𝑡. (Since flood proba-
bility is the reciprocal of frequency, the coef-
ficient here will be the negative of the value
we would estimate if we were to use the log
of flood probability.) As in a standard Rosen–
Roback framework, this estimation leads to a
bid curve for flood frequency.

The Rosen–Roback model also includes a
supply side, which, combined with the demand
side, gives a hedonic price schedule. A hedonic
price schedule is the intersection of the buyers’
bid functions and the sellers’ supply functions.
Each parcel has a continuous supply curve for
the flood probability, even if it’s quite steeply
sloped, since reductions in flood risk (e.g. build-
ing additional levees around the property) are
available and cost different amounts at differ-
ent properties.

To take this theoretical model to the data,
we make additional assumptions. These are
strong, though fairly standard in the hedonic
valuation literature. Specifically, we assume
that the properties in our dataset are repre-
sentative of all properties – there’s no bias in
coming up for sale.
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Instead of using repeat sales to address omit-
ted variables bias, we rely on county fixed ef-
fects and controls for variables that are im-
portant for the properties’ current agricultural
output and future potential development value.
We discuss these controls further in section 3.

3 DATA

The setting for our analysis are counties ad-
jacent to the Missouri River between Gavin’s
Point Dam and Kansas City. This region cov-
ers 29 counties in five states: Kansas, Missouri,
Iowa, Nebraska and South Dakota. Our anal-
ysis relies primarily on three sources of data.
First, the outcome variable, the sale prices for
agricultural land, is constructed from county
recorder and assessor data. Second, our inde-
pendent variable of interest, the flood risk as-
sociated with the land in each property sale,
is based on combination of a US Bureau of
Reclamation (USBR) study of Missouri River
flood patterns that predicts quantifies of Flood
Stages and modeling of the predicted inunda-
tion associated with each flood stage based on
topological modeling. Third, as control vari-
ables, we use a variety of hydrologic and soil
characteristics, constructed from gridded soil
survey geographic (gSSURGO) database main-
tained by the US Geological Survey (USGS), as
well as county and year fixed effects.

The outcome variable in our analysis is the
per-acre sale price of agricultural land. We con-
struct this variable from a dataset that compiles
information from the assessors’ and recorders’
offices in each county adjacent to the Missouri
River. Starting with the universe of sales from
these counties’ recorders, we restrict our data
to arms-length sales of parcels that are clas-
sified by either the state or county as being
in agricultural land-use, and parcels are least
40 acres. We restrict our data to sales after
1988, because records of property sales are not
consistently digitized prior to this date. We re-

strict our data to sales for which we can iden-
tify the location and acreage of the transacted
plots of land and for which the land is outside
urban-areas. Sale price per acre is based on the
growing acreage reported in county records.
In order to ensure that the data in our analysis
reflects the sale of land that is primarily agricul-
tural, we excluded all transactions with a sale
price less than $200 or greater $15,000 per acre
(2018 dollars). The logic here is that properties
with very high prices per acre are likely deriv-
ing their value from improvements.3 Very low
prices per acre may not be arms-length trans-
actions (despite being recorded as arms-length
in the CoreLogic data).

We note that a number of the counties in ad-
jacent to the Missouri River are non-disclosure
counties, which do not require the disclosure
of sales price in real estate sales, which we ex-
clude from our analysis. However, we do also
include information supplied by assessors in
these counties on sales in these counties. Be-
cause our measure of flood risk is based on a
study of the Missouri River, we do not have
flood risks on key tributaries of the Missouri,
so we restrict our data to properties within
20 kilometers of the main-stem of the Missouri
River.

We measure flood risk using the 2004 Up-
per Mississippi River System Flow Frequency
Study, produced by the US Army Corps of En-
gineers (Upper Mississippi River System Flow
Frequency Study 2003). This study estimates
flood stages at every mile of the Mississippi
and Missouri Rivers above Themes, IL, using
gauge data from 1989 and 1998 to calibrate
a regional stream-flow model. This study es-
timates the flood stage, the elevation of the
river surface above sea level, for floods of fre-
quencies ranging between two-year floods and
five-hundred-year floods. In our analysis, we

3. We include an improvement-adjusted version of the
regressions in table 4, but do not make this our primary
specification because of concerns that assessed value
may differ systematically from true value.
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Figure 1: Map of study area, flood zones and the locations of property sales

calculate approximate flood zones by compar-
ing parcel elevations to the elevation of river
flood stages. This comparison is a first-order
approximation that neglects local topology
and the location of flood-control levees. Other
studies that consider the relationship between
flood risk and property value typically rely
on maps produced by the Federal Emergency
Management Agency. FEMA’s flood maps are
produced in a more ad-hoc manner by FEMA
field agents who visit each county and produce
maps that identify 100-year and 500-year flood
zones and areas protected by federal flood lev-
ees based on historical claims and a county-
specific study. Although they account for fed-
erally constructed levees, FEMA is prohibited
by law from accounting for the impact of lev-
ees constructed by private landowners or local
flood-control districts. FEMA’s flood maps may

also be prone to political influence due to their
primary role in determining flood insurance
rates paid by local landowners.

Figure 1 contains a map of the study area,
including inundation zones, shown in blue
shades and the locations of property sales in-
cluded in our statistical analysis, shown as
black dots.

Our analysis also controls for a variety of
characteristics that may confound estimation
the direct estimation of the impact of flood risk
on sale price. To account for the impact that
proximity to urban areas may have on property
values, we calculate the distance of each prop-
erty to the nearest urbanized area of more than
10,000 people.4 We calculate the elevation of
each property sold from topological maps.
4. In the context of our study area, the relevant urban
areas are Sioux City IA, Omaha, NE/Council Bluffs IA,
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We construct controls for soil characteris-
tics from gSSURGO database. Differences in soil
quality can potentially confound our estimates
since it is both a key determinant of agricul-
tural productivity and is highly correlated with
flood risks. When land floods, fertile alluvial
soils high in nutrients and organic matter are
deposited, resulting in bottomland that can
be more productive than lands that flood less
frequently. To account for this difference in
soil type and productivity, we control for the
land capability classification. Land capability
classes are a commonly used eight-point mea-
sure of soil productivity used by the USGS to
group soils primarily based on their capability
to produce commonly cultivated crops and pas-
ture plants without deteriorating over a long
period time. We also include soil quality con-
trols that describe the ability of soils to cope
with frequent flooding. We control for soil wa-
ter storage, a measure of the volume of water
soil can hold; we also control for permeabil-
ity, a measure of how quickly water moves
through the soil, and we control for erodabil-
ity, a measure of the susceptibility of soil to
erosion by runoff and flood impacts. The USGS
estimates these characteristics as a function of
the composition of soils and the distribution of
size and the density of soil particles. For each
of the soil characteristics that we control for,
we divide the soils into terciles of quality (the
top, middle, and bottom thirds of the distribu-
tion), and include in our regressions a dummy
variable for each tercile of each soil quality
variable.

We also include a dummy variable that de-
scribes whether the sale took place during the
growing season, defined as May to October,
and whether the property has improvements,
such as barns, homes, grain-silos or other build-
ings.

Like much of the climate literature, but un-

Lincoln NE, St Joseph MO, and Kansas City, MO/Kansas
City, KS

like the more recent hedonic valuation lit-
erature, we’re unable to use repeat sales at
the same property to identify causal effects.
The fundamental reason is that flood risk has
changed very little over our sample period, so
there’s no within-property valuation to iden-
tify the marginal price of flood risk. An addi-
tional logistical difficulty is that farm proper-
ties sell much less frequently than houses, so
we have very few repeat sales in our panel,
even if we had suitable variation in flood risk.

Table 1 shows the summary statistics by
flood zone. A couple features of the table are
worth highlighting. First, some of the flood
zones have very few properties. Second, there’s
substantial variation in price per acre, even
within this sample of agricultural properties
that have had the price limited to the range of
$200–15,000 per acre.

4 ESTIMATED RELATIONSHIP BETWEEN
FLOOD RISK AND PROPERTY VALUE

Using the datasets we’ve built, we now turn
to our hedonic regressions. In these analyses,
we consider how similar properties differ in
their per-acre sales prices when they face dif-
ferent flood frequencies. There are a number
of ways one could define both the price and
the flood frequency variables. We have a small
number of properties that match our criteria,
since agricultural properties tend to turn over
less frequently. For each flood zone 𝑓, we esti-
mate models of the form:

log price per acre𝑖 = 𝛽𝑓𝐷
𝑓
𝑖

+ 𝛾 𝑓distance to city𝑖 + 𝜙𝑓𝑖 + 𝜓 𝑓
𝑖 + 𝜀𝑖

Where the left-hand side is the sales price per
acre, in $2018. The estimate of interest is 𝛽𝑓
for flood category 𝑓. (Here, subscript 𝑖 indexes
observations within a regression, and super-
script 𝑓 indexes the separate regressions for
different flood zones.) 𝐷𝑓

𝑖 is an indicator for
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whether property 𝑖 is in category 𝑓. The 𝜙𝑖 and
𝜓𝑖 represent fixed effects for soil characteris-
tics as well as county and year fixed effects. We
include distance to the nearest city as a control
in all of our specifications. We estimate each
flood category separately, and the coefficients
𝛽𝑓, 𝛾 𝑓, 𝜙𝑓, and 𝜓 𝑓 are allowed to vary across
regressions.

Our preferred specification uses inclusive
flood categories. This definition means a par-
cel expected to flood once in a 100 years is
included in the indicator for properties that
are expected to flood at least every 500 years.
We estimate results in table 2. In the 500-year
column, we have an indicator variable that is
set to one if the property is in the 500-year
zone or above, and zero if the property faces a
lower risk of flooding. In the 100-year column,
we exclude the properties that are only in the
500-year bin, then have an indicator variable
that is set to one if the property is in the 100-
year zone or above, and zero if the property
faces a lower risk of flooding. The pattern re-
peats for the other flood frequencies, up to the
10-year group, which excludes properties that
are expected to flood once every 20–500 years,
and includes observations from properties that
are expected to flood every 10 years or more
frequently, or less than once every 500 years.
We also estimate regressions for the 5-year and
2-year flood frequencies. They are qualitatively
similar to the 10-year. For the sake of space, we
include those regressions in figure 2, but ex-
clude them from the table.

This inclusive definition of flood zones is
somewhat atypical for treatment effects regres-
sions, but closely mirrors the standard way of
doing this analysis in the flooding literature.
For comparison, we also include the exclusive
flood categories in appendix table 5. However,
some of the groups are quite small, making the
estimates noisy.

In table 2, we consider three sets of fixed ef-
fects. Specification A is our preferred specifica-
tion, and includes fixed effects for each county,

each year, and terciles of the soil variables, as
well as a linear control for distance to the near-
est city. (See our discussion in section 3 for
more on the soil measures, their construction,
and why they’re important controls.) Specifica-
tion B removes the soil fixed effects, but retains
the county and year. Specification C removes
all of the fixed effects. Comparing specification
A to B tells us a bit about the importance of the
soil controls, an important aspect of the hetero-
geneity in value in this context. The estimated
coefficients are not statistically different from
one another. While some of the differences in
point estimates are economically significant,
it’s hard to make strong claims from such noisy
estimates. Comparing specifications B and C
highlights the importance of our county and
year fixed effects.

Following standard practices, we estimate
our standard errors using two-way clustering
at the year and county level. We have 26 years
and 29 counties in our sample. Clustered stan-
dard errors only consistent as the number of
clusters approaches infinity. Because we have
a limited number of clusters, we expect the
errors we estimate to be somewhat too small.

We then take these estimated coefficients
and estimate the slope relative to log flood fre-
quency. The individual coefficients, and the
line fit through them, are shown in figure 2.
(The fit weights by the inverse of the vari-
ance of each estimate.) The slope of the line
is −0.5%, with a 95% confidence interval of
[−1.5%, 0.48%]. The interpretation of this elas-
ticity is that if the flood frequency years were
to double, e.g. from 10-years to 20-years, our
predicted valuation would decrease by −0.5%.
The sign of the coefficient is not consistent
with economic intuition, though the confi-
dence interval includes zero. The interval is
narrow enough that we’re able to rule out large
values of the slope. (For instance, moving from
the 5-year bin to above the 500-year bin re-
quires seven doublings. Taking our confidence
interval literally, seven doublings in flood fre-
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quency years leads to a predicted price change
of [−11%, 3.4%]).

Additionally, we consider robustness checks
in flood zone definition and outcome vari-
able. These results are presented in the ap-
pendix. Across specifications, our results are
fairly similar. We repeat our regressions using
a narrower range of acceptable prices per acre:
$645–12,000 instead of $200–15,000. These re-
sults are recorded in table 3.

We consider regressions that adjust for the
assessed value of improvements on the prop-
erty. (To calculate the dependent variable, we
multiply the observed sales price by the ratio of
assessed improvement value to total assessed
value.) These results are in table 4.

Tables 6 and 7 have the version of this re-
gression you would get if you only had FEMA
500- and 100-year flood information. (The two
tables are the wide and narrow price cap ver-
sions, respectively. Both use log price per acre
as the dependent variable, like the other re-
gressions.) The FEMA results are qualitatively
different (different sign), but also noisy and not
statistically distinct from the results that use
other flooding data.

Finally, we repeat our regressions using ex-
clusive flood zone definitions. Unlike the previ-
ous tables, where e.g. the 100-year flood indica-
tor includes properties in the 10-year bin, these
regressions consider mutually exclusive bins.
Table 5 estimate exclusive flood bin regressions.
Some of these bins have very few observations
– see counts in table 1) – so we don’t take their
wildly varying coefficient estimates too seri-
ously. (More formally, we are far from a point
where the asymptotic assumptions of clustered
standard errors are valid.)

5 PREDICTED IMPACT OF CLIMATE
CHANGE ON PROPERTY VALUE

Climate change will affect rainfall patterns,
and therefore how frequently these proper-

ties flood. A 2012 report estimated that mean
monthly flows on the Missouri river will in-
crease perhaps 60–80% in June, already the
peak month (U.S. Bureau of Reclamation 2012).
With higher peak monthly flows, we expect
flood frequency to increase at some proper-
ties. For example, a parcel that currently floods
once every 100 years may begin to flood once
every 10 years. For historical river flows, the
difference between a 1% event and a 10% event
is about a 49% increase in flows, leading to
about 6 feet of river elevation.5

Changes in flooding are an active area of
research in the climate literature – modeling
high-variance, spatially uneven events like
rain storms is much more challenging than
temperature changes. These challenges arise
on top of challenges of knowing what future
greenhouse gas (GHG) emissions will be and
precisely how sensitive the climate is GHG.

Taking the change in future flooding as
given, our hedonic analysis is informative for
valuing future adaptation. Specifically, our es-
timates tell us the value of climate damages if
no further adaptation occurs. The other side of
the same coin is that our estimates tell us the
gross benefits from adaptation. We don’t know
the costs of adaptation – though we note that
opportunities for adaptation are much more
limited than in residential flooding.

In future work, we plan to quantitatively es-
timate the value of these gross benefits. For the
current analysis, we note that properties that
flood with moderate to high frequency bear
the brunt of the hedonic discount. As flood
probabilities increase, they’re also the proper-
ties that will experience the highest additional
damages, absent further adaptation.

5. These numbers are for the flood gauge at St. Joseph,
Missouri. These probabilities relationships vary some-
what along the length of the river see Upper Mississippi
River System Flow Frequency Study 2003.
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Figure 2: Hedonic discounts across flood bins

Results correspond to table 2, specification A.

6 CONCLUSION

Agricultural land faces significant flooding risk,
but almost all economic studies of flooding
focus on residential property. In this study,
we bring novel, though noisy, evidence of the
value of hedonic discounts on agricultural land
near the Missouri River. We estimate regres-
sions of the land value of agricultural parcels
using flexible bins of flood zones. Our analysis
considers a much wider range of flood prob-
abilities than previous work. We then aggre-
gate those results to an overall hedonic slope.
Our point estimate is fairly small, at a −0.5% in-
crease for a doubling in flood risk. Our estimate
is not significantly different from zero, and our
confidence intervals exclude large changes in
value.

These estimates, and the topic more broadly,
are important to study empirically. Flood risk
to agricultural land is expected to increase with
climate change, and developing a deeper under-
standing of the relationship between flooding
and property valuation is an essential piece of
analysis to inform both flood risk mitigation
and the value of climate change mitigation. We
leave a more detailed climate projection for fu-
ture work.
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A ESTIMATION ROBUSTNESS

In the following tables, we consider alternative data samples and estimation strategies. Table 3
and is similar to 2 except they use a narrower range of prices per acre: [645, 12000]. Table 4 adjusts
the price per acre for the assessed value of improvements. Table 5 estimates exclusive flood bin
regressions. Some of these bins have very few observations see counts in tables 1, so we don’t
take their wildly varying coefficient estimates too seriously. (More formally, we are far from a
point where the asymptotic assumptions of clustered standard errors are valid.) Tables 6 and 7
have the version of this regression you would get if you only had FEMA 500- and 100-year flood
information. (The two tables are the wide and narrow pricecap versions, respectively. Both use
log price per acre as the dependent variable, like the other regressions.)
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Table 5: Specification comparison (exclusive USACE flood bins, wide-pricecap data).
Dep var is log price per acre.

Spec A Spec B Spec C

500 yr 2.45% 5.50% 15.90%

[−28.29%, 46.36%] [−27.74%, 54.03%] [−22.51%, 73.34%]

200 yr −27.63% −25.49% −10.17%

[−57.18%, 22.30%] [−57.81%, 31.58%] [−48.87%, 57.80%]

100 yr −29.93% −29.61% −20.30%

[−71.00%, 69.28%] [−70.61%, 68.57%] [−63.04%, 71.82%]

50 yr −7.38% −6.30% 6.61%

[−40.95%, 45.26%] [−41.34%, 49.69%] [−31.99%, 67.11%]

20-25 yr 13.25% 10.43% 11.18%

[−21.54%, 63.47%] [−21.91%, 56.15%] [−21.03%, 56.53%]

10 yr 10.99% 8.70% 29.77%

[−8.44%, 34.55%] [−8.45%, 29.06%] [11.61%, 50.89%]

5 yr −11.57% −13.18% −0.81%

[−30.49%, 12.49%] [−32.15%, 11.10%] [−17.85%, 19.76%]

2 yr −1.64% −0.89% 6.07%

[−14.78%, 13.53%] [−11.51%, 11.01%] [−8.55%, 23.04%]

R2 0.158 0.147 0.041

Within R2 0.021 0.023

N 2733 2733 2733

County + year FE: ✓ ✓ ✗

Soil FE: ✓ ✗ ✗

Note: Each column is one regression. The omitted category is flood risk below
500-yr. Sample includes agricultural properties with price per acre between $200
and $15,000.

63



Table 6: Specification comparison (inclusive FEMA flood
bins, wide-pricecap data). Dep var is log price per acre.

Flood bin: 500 yr 100 yr

Spec A
County + year FE:✓ 9.17% 11.91%
Soil FE:✓ [−18.8%, 46.7%] [−15.2%, 47.7%]

R2 0.164 0.152
Within R2 0.016 0.014

Spec B
County + year FE:✓ 5.10% 10.27%
Soil FE:✗ [−17.3%, 33.5%] [−13.9%, 41.3%]

R2 0.153 0.140
Within R2 0.018 0.016

Spec C
County + year FE:✗ 14.08% 13.79%
Soil FE:✗ [−12.3%, 48.4%] [−13.8%, 50.2%]

R2 0.037 0.036

N treat 71 533
N total 1880 2342

Note: Results for indicator regressions on inclusive flood
bins using FEMA flood data. Each estimate is from a sepa-
rate regression. Sample includes agricultural properties
with price per acre between $200 and $15,000. Bolded
estimates are statistically significantly different from zero.
Square brackets indicate 95% CI, two-way clustered by
county and year. Each column has the same number of
treated and total observations.
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Table 7: Specification comparison (inclusive FEMA flood
bins, narrow-pricecap data). Dep var is log price per acre.

Flood bin: 500 yr 100 yr

Spec A
County + year FE:✓ −1.72% −2.06%
Soil FE:✓ [−23.2%, 25.8%] [−22.1%, 23.2%]

R2 0.148 0.126
Within R2 0.002 0.003

Spec B
County + year FE:✓ −6.37% −3.36%
Soil FE:✗ [−26.2%, 18.7%] [−23.7%, 22.5%]

R2 0.139 0.115
Within R2 0.003 0.003

Spec C
County + year FE:✗ 2.17% 2.25%
Soil FE:✗ [−21.7%, 33.3%] [−21.5%, 33.2%]

R2 0.012 0.012

N treat 66 464
N total 1643 2041

Note: Results for indicator regressions on inclusive flood
bins using FEMA flood data. Each estimate is from a sepa-
rate regression. Sample includes agricultural properties
with price per acre between $645 and $12,000. Bolded
estimates are statistically significantly different from zero.
Square brackets indicate 95% CI, two-way clustered by
county and year. Each column has the same number of
treated and total observations.
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Transition

The next chapter focuses on state policies governing electricity
and natural gas utility companies. These state-level decisions
determine how utilities are paid for their investments, and how
much utility customers have to pay for their service. Capital in-
vestments, from pipelines to solar farms, play an enormous role
in shaping future US greenhouse gas emissions. While chapter 2
considered future changes in flood risk due to climate shifts,
chapter 3 considers these very important capital investments.
We focus on how much utilities are paid for their capital, the
incentives utilities have to own more, and the effect of these
incentives on capital ownership.
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Chapter Three

Rate of Return Regulation Revisited

Coauthor: Stephen Jarvis

1 INTRODUCTION

In the two decades from 1997 to 2017, real an-
nual capital spending on electricity distribu-
tion infrastructure by major utilities in the
United States has doubled (EIA 2018a). Over
the same time period annual capital spend-
ing on electricity transmission infrastructure
increased by a factor of seven (EIA 2018b).
The combined total is now more than $50 bil-
lion per year. This trend is expected to con-
tinue. Bloomberg NewEnergy Finance predicts
that between 2020 and 2050, North and Cen-
tral American investments in electricity trans-
mission and distribution will likely amount
to $1.6 trillion, with a further $1.7 trillion for
electricity generation and storage (Henbest et
al. 2020).1

These large capital investments could be
due to the prudent actions of utility compa-
nies modernizing an aging grid. However, it is
noteworthy that over this time period, utilities
have earned sizeable regulated rates of return
on their capital assets, particularly when set
against the unprecedented low interest rate
environment post-2008. As the economy-wide
cost of capital has fallen, utilities’ regulated

1. North and Central American generation/storage are
reported directly. Grid investments are only reported
globally, so we assume the ratio of North and Central
America to global is the same for generation/storage as
for grid investments.

rates of return have not fallen nearly as much.
The exact drivers for this divergence are un-
clear, though we rule out large changes in risk-
iness in section 3. Whatever the underlying
cause, the prospect of utilities earning excess
regulated returns raises an age-old concern in
the sector: the Averch–Johnson effect. When
utilities are allowed to earn excess returns on
capital, they will be incentivized to over-invest
in capital assets. The resulting costs from “gold
plating” are then passed on to consumers in
the form of higher bills. Capital markets and
the utility industry have undergone significant
changes over the past 50 years since the early
studies of utility capital ownership (Joskow
1972, 1974). In this paper we use new data to
revisit these issues. We do so by exploring two
main research questions. First, what can we
say about the return on equity utilities are al-
lowed by their regulators? Second, how has
this return on equity affected utilities’ capital
investment decisions?

To answer our research questions, we use
data on the utility rate cases of all major elec-
tricity and natural gas utilities in the United
States spanning the past four decades (Regu-
latory Research Associates 2021). We combine
this with a range of financial information on
credit ratings, corporate borrowing and mar-
ket returns. To examine possible sources of
over-investment in more detail we also incor-
porate data from annual regulatory filings on

70



individual utility capital spending.
We start our analysis by estimating the size

of the gap between the allowed rate of return
that utilities earn and the correct return on
equity. A central challenge here, both for the
regulator and for the econometrician, is esti-
mating the correct cost of equity. We proceed
by considering a range of approaches to simu-
lating the correct cost of equity based on the
observed rates of return and available mea-
sures of capital market returns. For the most
part, our simulations ask “if approved RoE
rates hadn’t changed relative to some bench-
mark index since some baseline year, what
would they be today?” We examine a num-
ber of benchmark indexes. None of these are
perfect comparisons; the world changes over
time, and different benchmarksmay bemore or
less appropriate. Taken together, our various
estimation approaches result in a consistent
trend of excess rates of return. We find that
the weighted median of the approved return
on equity is 0.5–4 percentage points too high.2
Applying these additional returns to the exist-
ing capital base we estimate excess costs to US
customers of $2–8 billion per year. The major-
ity of these excess costs are from the electricity
sector, though natural gas contributes as well.3

However, excess regulated returns on eq-
uity will also distort the incentives to invest in
capital. To consider the change in the capital
base, we turn to a regression analysis. Here
we aim to identify how a larger RoE gap trans-
lates into over investment in capital. Identifica-
tion is challenging in this setting, so we again

2. Here weweight by the utilities’ ratebase, so our results
are not over-represented by very small utilities.
3. For comparison, total 2019 electricity sales by investor
owned utilities were $204 billion, on 1.89 PWh of elec-
tricity (US Energy Information Administration 2020a).
Natural gas sales to consumers are $146 billion on 28.3
trillion cubic feet of gas (These gas figures include sales
to residential, commercial, industrial, and electric power,
but not vehicle fuel. They include including all sales, not
just those by investor owned utilities. US Energy Infor-
mation Administration 2020b.)

employ several different approaches, with dif-
ferent identifying assumptions. In addition to
a fixed effects approach, we examine an in-
strumental variables strategy. We draw on the
intuition that when a rate case is decided a
utility’s RoE is fixed at a particular nominal
percentage for several years. The cost of cap-
ital in the rest of the economy, and therefore
the true RoE, will shift over time. We use these
shifts in the timing and duration of rate cases
as an instrument for changes in the RoE gap.
We argue that the instrument is valid, after
controlling for an appropriate set of fixed ef-
fects. Across the range of specifications used,
we find a broadly consistent picture. In our pre-
ferred specification we find that an additional
percentage point increase in the RoE gap leads
to the allowed increase in capital rate base to
be about 5 percent higher.

2 BACKGROUND

Electricity and natural gas utility companies
are regulated by government utility commis-
sions, which allow the companies a geographic
monopoly and, in exchange, regulate the rates
the companies charge. These utility commis-
sions are state-level regulators in the US. They
set consumer rates and other policies to allow
investor owned utilitys (IOUs) a designated rate
of return on their capital investments, as well
as recovery of non-capital costs. This rate of
return on capital is almost always set as a nomi-
nal percentage of the installed capital base. For
instance, with an installed capital base worth
$10 billion and a rate of return of 8%, the util-
ity is allowed to collect $800 million per year
from customers for debt service and to provide
a return on equity to shareholders. State utility
commissions typically update these nominal
rates every 3–6 years.

Utilities own physical capital (power plants,
gas pipelines, repair trucks, office buildings,
etc.). The capital depreciates over time, and the
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set of all capital the utility owns is called the
ratebase (the base of capital that rates are calcu-
lated on). Properly accounting for depreciation
is far from straightforward, but we will not fo-
cus on that challenge in this paper. This capital
ratebase has an opportunity cost of ownership:
instead of buying capital, that money could
have been invested elsewhere. IOUs fund their
operations through issuing debt and equity,
typically about 50%/50%. (For this paper, we fo-
cus on common stocks. Utilities issue preferred
stocks as well, but those form a very small frac-
tion of utility financing.) The weighted average
cost of capital is the weighted average of the
cost of debt and the cost of equity.

Utilities are allowed to set rates to recover
all of their costs, including this cost of cap-
ital. For some expenses, like fuel purchases,
it’s easy to calculate the companies’ costs. For
others, like capital, the state public utilities
commissions are left trying to approximate the
capital allocation at a cost competitive capi-
tal markets would provide, if the utility was a
competitive company, rather than a regulated
monopoly. The types of capital utilities own,
and their opportunities to add capital to their
books, vary across states and time. Utilities in
vertically integrated states might own a large
majority of their own generation, the transmis-
sion lines, and the distribution infrastructure.
Other utilities are “wires only,” buying power
from independent power producers and trans-
porting it over their lines. Natural gas utilities
are typically pipeline only – the utility doesn’t
own the gas well or processing plant.

In the 1960s and 70s, state public utilities
commissions (PUCs) began adopting automatic
fuel price adjustment clauses. Rather than
opening a new rate case, utilities used an estab-
lished formula to change their customer rates
when fuel prices changed. The same automatic
adjustment has not happened for capital costs,
despite large swings in the nominal cost of
capital over the past 50 years. We’re aware
of one state (Vermont) that has an automatic

update rule; we’ll discuss that rule in more de-
tail in section 4.1, where we consider various
approaches of estimating the RoE gap.4

The cost of debt financing is by no means
simple, particularly for a forward-looking
decision-maker who isn’t allowed to index to
benchmark values, but is easier to estimate
than the cost of equity financing. The cost of
debt is the cost of servicing historical debt, and
expected costs of new debt that will be issued
before the next rate case. The historical cost is
known, and can serve a direct basis for future
expectations. In our data, we see both the util-
ities’ requested and approved return on debt.
It’s notable that the requested and approved
amounts are very close for debt, and much far-
ther apart for equity.

The cost of equity financing is more chal-
lenging. Theoretically, it’s the return share-
holders require on their investment in order
to invest in the first place. The Pennsylva-
nia Public Utility Commission’s ratemaking
guide notes this difficulty (Cawley and Ken-
nard 2018):

Regulators have always struggled
with the best and most accurate
method to use in applying the [Fed-
eral Power Commission v. Hope Nat-
ural Gas Company (1944)] criteria.
There are two main conceptual ap-
proaches to determine a proper rate
of return on common equity: “cost”
and “the return necessary to attract
capital.” It must be stressed, however,

4. At least one other state, California, had an automatic
adjustment mechanism that has since been abandoned.
Regulators at the California PUC feel that the rule, called
the cost of capital mechanism (CCM), performed poorly.
“The backward looking characteristic of CCM might have
contributed to failure of ROEs in California to adjust
to changes in financial environment after the financial
crisis. The stickiness of ROE in California during this
period, in the face of declining trend in nationwide aver-
age, calls for reassessment of CCM.” (Ghadessi and Zafar
2017)

72



that no single one can be considered
the only correct method and that a
proper return on equity can only be
determined by the exercise of regula-
tory judgment that takes all evidence
into consideration.

Unlike debt, where a large fraction of the cost is
observable and tied to past issuance, the cost of
equity is the ongoing, forward-looking cost of
holding shareholders’ money. Put differently,
the RoE is applied to the entire ratebase – un-
like debt, there’s typically no notion of paying
a specific RoE for specific stock issues.

Regulators employ a mixture of models and
subjective judgment. Typically, these formal
models, as well as the more subjective evalu-
ations, benchmark against other US utilities
(and often utilities in the same geographic re-
gion). There are advantages to narrow bench-
marking, but when market conditions change
and everyone is looking at their neighbors,
rates will update very slowly.

In figure 1 we plot the approved return on
equity over 40 years, with various risky and
risk-free rates for comparison. The two panels
show nominal and real rates. Consistent with a
story where regulators adjust slowly, approved
RoE has fallen slightly (in both real and nomi-
nal terms), but much less than other costs of
capital. This price stickiness by regulators also
manifests in peculiarities of the rates regula-
tors approve. Rode and Fischbeck (2019) notes
the fact that regulators seem reluctant to set
RoE below a nominal 10%.

That paper, Rode and Fischbeck (2019), is
the closest to ours in the existing literature.
The authors use the same rate case dataset we
do, and note a similar widening of the spread
between the approved return on equity and 10-
year Treasury rates. That paper, unlike ours,
dives into the financial modeling, using the
standard capital asset pricing model (CAPM) to
examine potential causes of the increase the
RoE spread. In contrast, we consider a wider

range of financial benchmarks (beyond 10-year
Treasuries) and ask more pointed questions
about “what should rates be today if past rela-
tionships held?” and “how much has this RoE
gap incentivized utilities to own more capital?”

Using CAPM, Rode and Fischbeck (2019) rule
out a number of financial reasons we might
see increasing RoE spreads. Possible reasons
include utilities’ debt/equity ratio, the asset-
specific risk (CAPM’s 𝛽), or the market’s overall
risk premium. None of these are supported
by the data. A pattern of steadily increasing
debt/equity could explain an increasing gap,
but debt/equity has fallen over time. Increasing
asset-specific risk could explain an increasing
gap, but asset risk has (largely) fallen over time.
(They use the Dow Jones Utility Average as a
measure of utility asset risk.) An increasing
market risk premium has could explain an in-
creased spread between RoE and riskless Trea-
suries, but the market risk premium has fallen
over time. Appendix figure 8, reproduced from
Rode and Fischbeck (2019), shows the evolu-
tion of asset risk and the market risk premium
over time.

Prior research has highlighted the impor-
tance of macroeconomic changes, and that
these often aren’t fully accounted for in utility
commission ratemaking (Salvino 1967; Strunk
2014). Because rates of return are typically set
in fixed nominal percentages, rapid changes in
inflation can dramatically shift a utility’s real
return. This pattern is visible in figure 1 in the
early 1980s. Inflation has lower and muchmore
stable in recent years,

Many authors have written a great deal
about modifying the current system of
investor-owned utilities. Those range from
questions of who pays for fixed grid costs to
the role of government ownership or securi-
tization (Borenstein, Fowlie, and Sallee 2021;
Farrell 2019). For this project, we assume the
current structure of investor-owned utilities,
leaving aside other questions of how to set
rates across different groups of customers or
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who owns the capital.
Finally, we note that a utility’s approved rate

of return or return on equity might differ from
the realized return. In this paper, we focus on
approved values. Other recent work, e.g. Haus-
man (2019), highlights important differences
between approved costs and realized prices
that customers face.

3 DATA

To answer our research questions, we use a
database of resolved utility rate cases from 1980
to 2021 for every electricity and natural gas
utility that either requested a nominal-dollar
ratebase change of $5 million or had a ratebase
change of $3 million authorized (Regulatory
Research Associates 2021). Summary statistics
on these rate cases can be seen in table 1.

We transform this panel of rate case events
into an unbalanced utility-by-month panel, fill-
ing in the rate base and rate of return vari-
ables in between each rate case. There are some
mergers and splits in our sample, but our SNL
Financial (SNL) data provider lists each com-
pany by its present-day (2021) company name,
or the company’s last operating name before
ceased to exist. With this limitation in mind,
we construct our panel by (1) not filling data
for a company before its first rate case in a
state, and (2) dropping companies five years
after their last rate case. In contexts where a
historical comparison is necessary, but the util-
ity didn’t exist in the benchmark year, we use
average of utilities that did exist in that state,
weighted by ratebase size.

We match with data on S&P credit ratings,
drawn from SNL’s Companies (Classic) Screener
(2021) and Wharton Research Data Services
(WRDS)’ Compustat S&P legacy credit ratings
(2019). Most investor-owned utilities are sub-
sidiaries of publicly traded firms. We use the
former data to match as specifically as possible,
first same-firm, then parent-firm, then same-

ticker. We match the latter data by ticker only.
Then, for a relatively small number of firms,
we fill forward.5 Between these two sources,
we have ratings data are available from De-
cember 1985 onward. Approximately 80% of
our utility–month observations are matched
to a rating. Match quality improves over time:
approximately 89% of observations after 2000
are matched.

These credit ratings have changed little over
35 years. In figure 2 we plot the median (in
black) and various percentile bands (in shades
of blue) of the credit rating for utilities active
in each month. We note that the median credit
rating has not changed much over time. The
distribution of ratings is somewhat more com-
pressed in 2021 than in the 1990s. While credit
ratings are imperfect, we would expect rating
agencies to be aware of large changes in risk-
iness.6 Instead, the median credit rating for
electricity utilities is A−, as it was for all of
the 1990s. The median credit rating for natural
gas utilities is also A−, down from a historical
value of A.

Beyond credit ratings, we also use various
market rates pulled from Federal Reserve Eco-
nomic Data (FRED). These include 1-, 10-, and
30-year treasury yields, the core CPI, bond yield
indexes for corporate bonds rated by Moody’s
as Aaa or Baa, as well as those rated by S&P as
AAA, AA, A, BBB, BB, B, and CCC or lower.7

Matching these two datasets – rate cases and
macroeconomic indicators – we construct the

5. When multiple different ratings are available, e.g. dif-
ferent ratings for subsidiaries trading under the same
ticker, we take the median rating. We round down in
the case of an even number of ratings, both here and in
figure 2.
6. For utility risk to drive up the firms’ cost of equity
but not affect credit ratings, one would need to tell a
very unusual story about information transmission or
the credit rating process.
7. Board of Governors of the Federal Reserve System
(2021a, 2021b, 2021c), US Bureau of Labor Statistics
(2021), Moody’s (2021a, 2021b), and Ice Data Indices,
LLC (2021b, 2021a, 2021f, 2021d, 2021c, 2021g, 2021e).
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Figure 1: Return on Equity and Financial Indicators: Nominal and Real

Notes: These figures show the approved return on equity for investor-owned US electric
and natural gas utilities. Each dot represents the resolution of one rate case. Real rates are
calculated by subtracting consumer price index (CPI). Between March 2002 and March 2006
30-year Treasury rates are interpolated from 1- and 10-year rates.
Sources: Regulatory Research Associates (2021), Moody’s (2021a, 2021b), Board of Governors
of the Federal Reserve System (2021a, 2021b, 2021c), and US Bureau of Labor Statistics (2021).
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Figure 2: Credit ratings have changed little in 35 years

Note: Black lines represent the median rating of the utilities active in a given month. We also show bands, in different
shades of blue, that cover the 40–60 percentile, 30–70 percentile, 20–80 percentile, 10–90 percentile, and 2.5–97.5
percentile ranges. (Unlike later plots, these are not weighted by ratebase.) Ratings from C to B− are collapsed to save
space.
Source: Companies (Classic) Screener (2021) and Compustat S&P legacy credit ratings (2019).
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Table 1: Summary Statistics

Characteristic N Electric Natural Gas

Rate of Return Proposed (%) 3,324 9.95 (1.98) 10.07 (2.07)
Rate of Return Approved (%) 2,813 9.59 (1.91) 9.53 (1.95)
Return on Equity Proposed (%) 3,350 13.22 (2.69) 13.06 (2.50)
Return on Equity Approved (%) 2,852 12.38 (2.40) 12.05 (2.24)
Return on Equity Proposed Spread (%) 3,350 6.72 (2.18) 6.95 (1.99)
Return on Equity Approved Spread (%) 2,852 5.62 (2.27) 5.68 (2.10)
Return on Debt Proposed (%) 3,247 7.48 (2.11) 7.47 (2.16)
Return on Debt Approved (%) 2,633 7.54 (2.06) 7.44 (2.16)
Equity Funding Proposed (%) 3,338 45 (7) 48 (7)
Equity Funding Approved (%) 2,726 44 (7) 47 (7)
Rate Case Duration (mo) 3,713 9.1 (5.1) 8.1 (4.3)
Rate Base Increase Proposed ($ mn) 3,686 84 (132) 24 (41)
Rate Base Increase Approved ($ mn) 3,672 40 (84) 12 (25)
Rate Base Proposed ($ mn) 2,366 2,239 (3,152) 602 (888)
Rate Base Approved ($ mn) 1,992 2,122 (2,991) 583 (843)

Notes: This table shows the rate case variables in our rate case dataset. Values in the Electric
and Natural Gas columns are means, with standard deviations in parenthesis.
Approved values are approved in the final determination, and are the values we use in our
analysis. Some variables are missing, particularly the approved rate base. The RoE spread in
this table is calculated relative to the 10-year Treasury rate.
Source: Regulatory Research Associates (2021) and author calculations.

timeseries shown in figure 1. A couple of fea-
tures jump out, as we mentioned in the intro-
duction. The gap between the approved return
on equity and other measures of the cost of
capital have increased substantially over time.
At the same time, the return on equity has de-
creased over time, but much more slowly than
other indicators. We quantify these observa-
tions in section 5.

We note that there are other distortions or
ad-hoc evaluations in the PUC process. Rode
and Fischbeck (2019) note a hesitancy for PUCs
to set RoE below a nominal 10% level. We repli-
cate this finding. In addition, we also note a
bias toward round numbers, where regulators
tend to approve RoE values at integers, halves,
quarters, and tenths of percentage points. This
finding is demonstrated in figure 3. We believe
the true, unknown, cost of equity is smoothly

distributed. If for instance, a PUC rounds in a
way that changes the allowed RoE by 10 basis
points (0.1%), the allowed revenue on the exist-
ing ratebase for the average electric utility in
2019 would change by $114 million. (The me-
dian is lower, at $52 million.) Small deviations
have large implications for utility revenues and
customer payments, though we don’t know if
rounding has a systematic bias toward higher
or lower RoE. Of course, RoE values that aren’t
set at round numbers might not be any closer
to the correct RoE. We leave this round num-
ber bias, as well as the above-10% stickiness,
for future research.
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Figure 3: Return on equity is often approved at round numbers

Colors highlight values of the nominal approved RoE that fall exactly on round numbers. More precisely, values in
red are integers. Values in dark orange are integers plus 50 basis points (bp). Lighter orange are integers plus 25 or
75 bp. Yellow are integers plus one of {10, 20, 30, 40, 60, 70, 70, 80, 90} bp. All other values are gray.
Histogram bin widths are 5 bp. Non-round values remain gray if they fall in the same histogram bin as a round value.
In that case, the bars are stacked.
Source: Regulatory Research Associates (2021).

4 EMPIRICAL STRATEGY

4.1 return on equity gap

Knowing the return on equity (RoE) gap size is
a challenge, and we take a couple of different
approaches. None are perfect, but collectively,
they shed light on the question. For each of the
strategies we outline below (in sections 4.1.1,
4.1.2, 4.1.3, and 4.1.4) we plot the timeseries of
the RoE gap. These are plotted in figures 4, 5, 6,
and 7. Many of these strategies pick a specific
time period as a benchmark. For all of these,
we use January 1995. For the most part, our
RoE gap results are flat over time (in the case
of CPI) or steadily upward sloping (in the case
of corporate bonds). The choice of baseline
date determines where zero is, so changing the

baseline date will shift the overall magnitude
of the gap. As long as the baseline date isn’t
in the middle of a recession, our qualitative
results don’t depend strongly on the choice.

In each plot, we present the median of our
RoE gap estimates, weighting by the utility’s
ratebase (in 2019 dollars). Our goal is to show
themedian of ratebase dollar value, rather than
the median of utility companies, as the former
is more relevant for understanding the impact
of the RoE gap. We also show bands, in dif-
ferent shades of blue, that cover the 40–60
percentile, 30–70 percentile, 20–80 percentile,
10–90 percentile, and 2.5–97.5 percentile (all
weighted by ratebase).
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Figure 4: Return on equity gap, benchmarking to Baa-rates corporate bonds

Base year is 1995. Line represents median; shading represents ranges that cover the central 20, 40,
60, 80, and 95% of total IOU ratebase. See calculation details in section 4.1.1.

4.1.1 Indexed to Corporate Bonds

We first consider a benchmark index of corpo-
rate bond yields, rated Baa by Moody’s.8 The
idea here is to ask if the average spread against
the Baa rating hadn’t changed since the base-
line, what would the RoE be today? The results
are plotted in figure 4. Moody’s Baa is approx-
imately equivalent to S&P’s BBB, which is at or
slightly below our most of the utilities in our
data. We use January 1995 as our baseline. Our
findings are qualitatively the same for other
dates, though the magnitude differs.

Making comparisons to debt instruments in
this way, rather than benchmarking to some

8. This index is one of two rating-specific corporate
bonds indexes that’s available for our entire study pe-
riod. The other is Moody’s Aaa.

economy-wide cost of equity, means the mea-
sure of the RoE gap likely understates the gap.
Rode and Fischbeck (2019) points out that (1)
the market-wide equity risk premium has de-
clined over the period and (2) the same is true
for the utility sector.9 Therefore, we would ex-
pect the mean spread against Baa bond yields
to have declined, but instead, the spread has
increased.

To calculate these results we first find the
spread between the approved return on eq-
uity and the Moody’s Baa rate for each util-
ity in each state in each month. We then take
the average at our baseline and simulate what
that spread would be if the overall average

9. To the extent that observed utility stock returns are
endogenous to the approved RoE, point #2 might be
biased (Werth 1980).
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Figure 5: Return on equity gap, using Vermont’s update rule

Line represents median; shading represents ranges that cover the central 20, 40, 60, 80, and 95%
of total IOU ratebase. See calculation details in section 4.1.2.

Figure 6: Return on equity gap, compared to UK utilities

Base year is 1995. Line represents median; shading represents ranges that cover the central 20, 40,
60, 80, and 95% of total IOU ratebase. See calculation details in section 4.1.3.
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Figure 7: Return on equity gap, benchmarking to CPI

Base year is 1995. Line represents median; shading represents ranges that cover the central 20, 40,
60, 80, and 95% of total IOU ratebase. See calculation details in section 4.1.4. Dates before 1990 are
omitted for better axis scaling.

spread hadn’t changed. One advantage of this
approach is that we can still allow utilities to
move around in their relative rankings and
RoE. For example if a particular utility gets
riskier and has correspondingly high RoE, our
measure allows for that change in individual
riskiness.

4.1.2 Indexed to Treasuries

Our next measure uses the RoE update rule re-
cently implemented by the Vermont PUC. This
rule is the only one we’re aware of, from any
PUC, that currently does automatic updating.
Define 𝑅′ as the baseline RoE, 𝐵′ as the base-
line 10-year Treasury bond yield, and 𝐵𝑡 as the
10-year Treasury bond yield in year 𝑡. The up-
date rule says the RoE in year 𝑡 is then:

𝑅𝑡 = 𝑅′ +
𝐵𝑡 − 𝐵′

2

In the graph, we set the baseline to January
1995. In reality the commission set the base-
line period as December 2018, for their plan
published in June 2019. (Green Mountain Power:
Multi-Year Regulation Plan 2020–2022 2020).
We simulate the gap between approved RoE
and what RoE would have been if every state’s
utilities commission followed this rule from
1995 onward. (Pre-1995 values are not partic-
ularly meaningful, but we can calculate them
with the same formula.) We plot results in fig-
ure 5.
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4.1.3 International Benchmark

We also consider an international benchmark.
Here we ask, “what if US utilities faced a return
on equity that was the same as return on equity
in the UK?” Unlike the previous cases, we’re
not considering some benchmark year. Instead,
we’re considering the contemporaneous gap
between the US and UK. Of course many things
are different between these countries, and it’s
not fair to say all US utilities should adopt UK
rate making, but we’ve think this benchmark
provides an interesting comparison. Our re-
sults are in figure 6.

4.1.4 Indexed to Inflation

We also consider a calculation where we bench-
mark against core CPI. The mechanics of this
calculation are identical to the Baa comparison
above, where we calculate the gap between ap-
proved RoE and what the RoE would be if the
mean spread against core CPI were unchanged.
In this analysis, we find a small negative gap:
real approved values RoE have declined, but
by less than other costs of capital.

4.2 rate base impacts

Next, we turn to the ratebase the utilities
own. A utility with a positive RoE gap will
have a too-strong incentive to have capital on
their books. In this section, we investigate the
change in ratebase utilities request and receive.
For our purposes, change in ratebase is more
relevant than the total ratebase, as the change
is a flow variable that changes from rate case
to rate case, while the total ratebase is the
partially-depreciated stock of all previous rate-
base changes. We consider both the requested
change and the approved change, though the
approved value is our preferred specification.
We estimate ̂𝛽 from the following:

log(RBI𝑖,𝑡) = 𝛽RoE gap
𝑖,𝑡 + 𝛾𝑋𝑖,𝑡𝜃𝑖 + 𝜆𝑡 + 𝜖𝑖,𝑡 (3.1)

where an observation is a utility rate case for
utility 𝑖 in year-of-sample 𝑡. The dependent

variable, RBI𝑖,𝑡, is the increase in the rate base,
and we take logs. (Cases where the ratebase
shrinks are rare, but do happen. We drop these
cases.) The independent variable of interest,
RoE gap

𝑖,𝑡 , is the gap between the allowed return
on equity and the true return on equity over
the length of the rate case, where each rate
case has a duration of 𝐷 years.

RoE gap
𝑖,𝑡 = RoE allowed

𝑖,𝑡 −
1
𝐷

𝑡+𝐷
∑
𝑡

RoE correct
𝑖,𝑡 (3.2)

Unlike section 4.1, for this analysis we care
about differences in the gap between utilities
or over time, but do not care about the overall
magnitude of the gap. For ease of implemen-
tation, we begin by considering the gap as the
spread between the approved rate of return
and the 10-year Treasury bond yield. We do
not expect the correct return on equity to be
equal to the 10-year Treasury yield, but our
fixed effects account for any constant differ-
ences. Future research will consider a richer
range of gap calculations.

4.2.1 Fixed Effects Specifications

Our goal is to make causal claims about ̂𝛽, so
we are concerned about omitted variables that
are correlated with both the estimated RoE gap
and the change in ratebase. We begin with a
fixed-effects version of the analysis. Our pre-
ferred version includes time fixed effects, 𝜆𝑡,
at the year-of-sample level and the unit fixed
effects, 𝜃𝑖, are at the utility company and state
level.10 Here, the identifying assumption is that
after controlling for state and year effects, there
are no omitted variables that would be corre-
lated with both our estimate of the RoE gap
and the utility’s change in ratebase. The iden-
tifying variation is the differences in the RoE
gap within the range of rate case decisions

10. Many utilities operate within only on state, but some
span multiple. These company and state fixed effects
are only partially nested.
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Table 2: RoE gap, by different benchmarks

A: Electric Baa yield VT rule UK CPI

Gap (%) 2000 0.796 0.21 3.17 0.531

2020 3.26 0.485 2.03 −1.06

Excess payment ($bn) 2000 0.581 0.23 4.54 0.142

2020 6.54 1.43 3.92 −2.61

B: Natural Gas

Gap (%) 2000 0.969 0.142 0.704

2020 3.9 1.15 1.89 −0.421

Excess payment ($bn) 2000 0.0896 0.0183 0.0212

2020 2.14 0.658 0.975 −0.361

Note: Gap percentage figures are an unweighted average across utilities. Excess
payments are totals for all IOUs in the US, in billions of 2019 dollars per year, for
the observed ratebase.
For cases where it’s relevant (Baa yield, VT rule, and CPI), the benchmark date
is January 1995. See text for details of each benchmark calculation.

for a given utility, relative to the annual av-
erage across all utilities. These fixed effects
handle some of the most critical threats to
identification, such as macroeconomic trends,
technology-driven shifts in electrical consump-
tion, or static differences in state PUC behav-
ior. In columns 1–3 of our results tables (3 and
4), we consider different specifications for our
fixed effects.

In this case the identification hinges on look-
ing at variation in the RoE gapwithin the range
of rate case decisions for a given utility, relative
to the annual average across all utilities. The
identifying assumption is that after controlling
for state, year, and company effects, there are
no omitted variables that would be correlated
with both our estimate of the RoE gap and the
utility’s change in ratebase. These fixed effects
handle many of the stories one could tell, such
as macroeconomic trends, technological shifts

in electrical consumption, or static differences
in state PUC behavior. However, there are cer-
tainly other avenues for omitted variables bias
to creep in, so next we turn to an instrumental
variables strategy.

4.2.2 Instrumenting with Rate Case
Timing and Duration

To try and further deal with concerns regard-
ing identification, we examine an instrumental
variables approach based on the timing and
duration of rate cases.

Our IV analysis takes the idea that rates
move around in ways that aren’t always easy
for the regulator to anticipate. So for instance
if the allowed return on equity is set in year
0 and financial conditions change in year 2
such that the real allowed return on equity in-
creases, then we would expect the utility to
increase their capital investments in ways that

83



Table 3: Relationship Between Proposed Rate of Return and
Proposed Rate Base

Fixed effects specs. IV
Model: (1) (2) (3) (4)

Variables
RoE gap (%) 0.0670∗∗∗ 0.0436∗ 0.0672∗∗∗ 0.0353

(0.0134) (0.0217) (0.0151) (0.0215)

Fixed-effects
State Yes Yes Yes Yes
Year Yes Yes Yes
Company Yes Yes

Fit statistics
Observations 3,210 3,210 3,210 3,210
R2 0.37 0.39 0.73 0.73
Within R2 0.24 0.23 0.29 0.29
Wald (1st stage) 50.9
Dep. var. mean 63.69 63.69 63.69 63.69

Two-way (Year & Company) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes: The dependent variable in the first panel is log of the utility’s pro-
posed rate base increase. Columns 1–3 show varying levels of fixed effects.
Column 4 is the IV discussed in section 4.2. Our preferred specification is
column 4 of table 4. First-stage F-statistic is Kleibergen–Paap robust Wald
test. All regressions control for an indicator of electricity or natural gas.

are unrelated to other aspects of the capital in-
vestment decision. For this instrument to work,
it needs to be the case that these movements
in bond markets or the like are conditionally
independent of decisions that the utility is mak-
ing, except via this return on equity channel.
We control for common year fixed effects, and
then the variation that drives our estimate is
that different utilities will come up for their
rate case at different points in time.

5 RESULTS

Beginning with the RoE gap analysis from sec-
tion 4.1, table 2 summarizes the graphs, using
2000 and 2020 as example points in time. The
table highlights the RoE gap and the excess
payment on the existing ratebase. Our results
on the RoE gap can largely be guessed from a
close inspection of figure 1. Approved RoE has
not changed much in real terms (i.e. relative to
core CPI), but the gap has increased between
RoE and various financial benchmarks. Of our
various imperfect estimates of the gap, we be-
lieve the Baa benchmark is the most credible.
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Table 4: Relationship Between Approved Rate of Return and
Approved Rate Base

Fixed effects specs. IV
Model: (1) (2) (3) (4)

Variables
RoE gap (%) 0.0551∗∗∗ 0.0752∗∗∗ 0.0867∗∗∗ 0.0523∗∗

(0.0200) (0.0240) (0.0225) (0.0252)

Fixed-effects
State Yes Yes Yes Yes
Year Yes Yes Yes
Company Yes Yes

Fit statistics
Observations 2,491 2,491 2,491 2,491
R2 0.33 0.36 0.69 0.69
Within R2 0.21 0.20 0.22 0.22
Wald (1st stage) 69.1
Dep. var. mean 38.63 38.63 38.63 38.63

Two-way (Year & Company) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes: The dependent variable in the first panel is log of the utility’s ap-
proved rate base increase. Columns 1–3 show varying levels of fixed effects.
Column 4 is the IV discussed in section 4.2. Our preferred specification is
column 4. First-stage F-statistic is Kleibergen–Paap robust Wald test. All
regressions control for an indicator of electricity or natural gas.

Totalling up the 2020 excess payments gives
us $8.7 billion in the Baa benchmark, or $2.1 bil-
lion in the Vermont benchmark. The UK bench-
mark falls between these, at $4.9 billion.

We also consider how the RoE gap affects
capital ownership. Tables 3 and 4 show our re-
gression results for proposed and approved val-
ues, respectively. Our preferred specification
is column 4, the IV specification, in table 4.
These results find that a 1 percentage point
increase in the approved RoE gap leads to a
5.2% increase in the increase in approved rate
base. These results have a strong first stage
(Kleibergen–Paap F-stat of 69).

As a caveat, we note that an IOU can in-
crease their capital holdings in two distinct
ways. One option is to reshuffle capital own-
ership, either between subsidiaries or across
firms, so that the IOU ends up with more capi-
tal on its books, but the total amount of capital
is unchanged. The second option is to actually
buy and own more capital, increasing the to-
tal amount of capital that exists in the state’s
utility sector. We do not differentiate between
these two cases. Because we don’t differenti-
ate, we consider excess payments by utility
customers, but we remain agnostic about the
socially optimal level of capital investment.
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6 CONCLUSION

Utilities invest a great deal in capital, and need
to be compensated for the opportunity cost
of their investments. Getting this rate of re-
turn, particularly the return on equity, correct
is challenging, but is a first-order important
task for state PUCs.

Our analysis shows that the RoE that utili-
ties are allowed to earn has changed dramati-
cally relative to various financial benchmarks
in the economy. Across relevant benchmarks,
we found that current rates are perhaps 0.5–4
percentage points too high, resulting in $2–8
billion in excess rate collected per year, given
the existing ratebase.

We then turned to the Averch–Johnson ef-
fect, and estimated the additional capital this
RoE gap generates. In our preferred specifica-
tion, we estimate that an additional percentage
point in the RoE gap leads to 5% higher rate
base increases.

We hope that policymakers and regulators
consider these changes and these benchmarks
in future rate making and the role that a
wider variety of metrics benchmarks and ad-
justments can play in utility rate cases. We
close by echoing Rode and Fischbeck (2019)
and the Vermont PUC. Just as PUCs adopted
fuel adjustment clauses in the 1960s and 1970s,
RoE adjustment clauses are a tool that would
allow rates to automatically adjust to chang-
ing market conditions. It would, of course, be
possible to change the formula from time to
time, but by default, the PUC wouldn’t need
to, even as the cost of raising capital changes.
If such a scheme was implemented, it would
be necessary to think hard about the baseline
rate. As we demonstrated, the approved RoE
has grown over time, so the choice of baseline
period is crucial.
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Figure 8: Figures 8 and 9 from Rode and Fischbeck (2019), showing CAPM 𝛽 and market risk
premium
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Conclusion

These three papers cover a variety of topics in applied environ-
mental economics. The first chapter addresses methane emis-
sions from oil and gas wells, and considers the potential gains
from policies that target these emissions. These gains could be
large, but depend a great deal on the information the regula-
tor has available and the details of the policy they enact. The
second chapter considers the loss in value caused by flooding
on agricultural land, examining losses over a wide range of
flood frequencies. We contextualize these results in a world
with changing climate, as properties that now flood occasion-
ally are expected to flood more frequently in the future. The
third chapter focuses on the rates of return utility companies
are allowed to earn. These rates determine the profitability of
investing in capital, the rates customers pay, and the amount of
capital the utilities end up owning. All three of these chapters
investigate policy-relevant economic topics, and all three use
applied econometric tools to bring data to the question.
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