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Abstract

Currently, there is a lack of software for detecting copy number variations and constructing copy number profile for the
whole genome from single-cell DNA sequencing data, which are often of low coverage and high technical noises. Here we
introduce a new toolkit, SCNV, which features an efficient bin-free segmentation approach and provides the highest reso-
lution possible for breakpoint detection and the subsequent copy number calling. SCNV can auto-tune parameters based on
a set of normal cells from the same batch to adjust for the technical noise level of the data, facilitating its application to
data gathered from different platforms and different studies.

Key words: change point detection; DNA copy number variation; single-cell sequencing; tumor heterogeneity

Introduction

Single-cell sequencing (SCS), characterization of the genome of
individual cells, has become a widely used tool in stem cell,
neuron and cancer studies [1–3]. In cancer studies, one question
of tremendous interest is the detection of DNA copy number ab-
errations (CNAs) or copy number variations (CNVs), which are
regions of the genome that undergo somatic mutations, such as
deletions and duplications of some DNA segments. The study of
CNV based on SCS provides new insights into cancer progres-
sion and evolution. For example, the recent large-scale analysis
of >4000 single cells from oligodendrogliomas [4] has success-
fully identified three developmental categories of cancer cells.
Tumor heterogeneity used to be a major hurdle for copy number
assessment for bulk sample sequencing. The complexity of cell
mixture is no longer an issue in the SCS-based analysis, as each
cell is sequenced separately. With single cells as units, SCS data
provide a new possibility to understand both intra-tumor and
inter-tumor heterogeneity. However, there are considerable
challenges for analyzing SCS data owing to the high technical
noises existing in all SCS platforms, especially for low-pass

sequencing. A typical SCS (DNA sequencing) workflow involves
the following steps: isolation of individual cells, DNA extraction,
whole-genome amplification (WGA), constructing sequencing
libraries, sequencing using a next-generation sequencer and
then bioinformatics data analysis. It is much more difficult to
perform SCS when compared with sequencing from bulk cell
population because of the extremely low amount of starting
DNA materials and low tolerance for sample contamination
and degeneration. There is currently no standardized method
for single-cell isolation and it is still hard to capture a cell with-
out including materials from other cells. The sequencing cover-
age bias is more prevalent in SCS studies owing to heavy
amplification during the sample preparation, often demon-
strating a nonlinear behavior. Also, each amplification plat-
forms (further discussed in the following sections) have
distinct patterns of uneven coverage and various dropout rates.
Owing to these difficulties, it is impossible to make a system-
atic bias correction or normalization based on a single numeric
model. In this study, we aim to develop a data-driven analysis
toolkit for copy number profiling with SCS data across different
platforms.
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Copy number assessment commonly starts with segmenta-
tion that separates the genome into non-overlapping regions
with the hope that each region is homogeneous in copy num-
ber, i.e. the CNA events happen at the boundaries of the seg-
ments, which are often referred to as breakpoints. There are
many segmentation algorithms for processing array-based
data, and some for bulk sequencing data, while there is a lack of
algorithms specifically designed for SCS data. Both bulk
sequencing and single-cell sequence produce read-depth (RD)
data, which is the number of reads mapped to the reference
genome at each location. In the ideal scenario, the RD is propor-
tional to the DNA copy number at the corresponding location.
However, in reality, many other factors influence the RD, such
as GC content and mappability. In SCS, as the amount of DNA in
one cell is small, an amplification step is typically done before
sequencing. This step further introduces biases to the RD. On
the other hand, even with the amplification step, the RD in cur-
rent SCS data is still much less than that from typical bulk
sequencing. In other words, the signal-to-noise ratio is much
lower in SCS data than that in bulk sequencing data. Moreover,
in bulk sequencing data analysis, it is widely used to control
noises using normal cells [5, 6]. In SCS experiments, when cells
are extracted from a tumor, it is often unclear on the cell status,
i.e. which cells are normal cells and which ones are cancer cells.
We follow the protocol in Baslan et al. [7] to determine the cell
status. These initial analysis procedures were embedded into
our toolkit SCNV.

In this article, we will focus our discussion on a fine-
resolution segmentation scheme provided in SCNV, based on a
window/bin-free algorithm. The bin-based segmentation algo-
rithm is a convenient method to handle the sparse and noisy
single-cell data as binning naturally and effectively smooth the
read counts. However, bin-based methods could fail in detecting
break points that are close to the middle of the bin and the reso-
lution is restricted by the bin size. More importantly, it is hard
to decide an optimal bin size that retains good sensitivity and
specificity across different scenarios of sequencing depth [8]
and different SCS platforms. It is, therefore, essential to appro-
priately gauge the more sophisticated but more accurate alter-
native, bin-free algorithm, to single-cell data.

Copy number profiling with bulk and SCS

The first step in DNA copy number analysis is usually the detec-
tion of locations in chromosomes where the copy number
changes, often referred to as segmentation in the field of gen-
omics. Various methods for segmentation have been developed
in the context of array data, with either comparative genomic
hybridization or single nucleotide polymorphism probes. In all
microarray studies, proper normalizations were done to remove
technical and experimental artifacts before segmentation. The
noisy intensity measurements are then translated into non-
overlapping segments of nucleotide positions that are likely
to share the same copy number in the segmentation step.
Segmentation algorithms were developed based on a rich body
of breakpoint detection or smoothing techniques such as
Circular Binary Segmentation (CBS) [9, 10] and Hidden Markov
Model (HMM) [11, 12].

Over the past few years, copy number profiling from next-
generation sequencing (NGS) data are emerging as a key tech-
nique for assessing genome aberrations, especially in cancer re-
search. The two most commonly used methods with NGS data
are RD method and paired-end mapping (PEM), each with their
strengths and weakness. The RD method is implemented by

counting and comparing reads mapped to each genomic region,
while the PEM method is based on mining discordantly mapped
paired-end reads with distances significantly different from the
average insert size. Compared with the PEM method, the RD
method provides better performance in capturing large CNV
events and is thus more suitable for the initial analyses in
tumor sample profiling. The core segmentation algorithms de-
veloped for array data were applied to NGS data analysis with
modifications that allow read counts or ratios as the measure-
ment. However, systematic biases inherent to the sequencing
data, such as mappability and GC content, need to be properly
adjusted. In several recent studies, a matched normal sample is
used to account for location-specific biases achieve satisfying
results [4, 5].

SCS technologies allow us to study cancer genomics at a
level previously impossible. As each cell is sequenced separ-
ately, SCS promises to bring unprecedented resolution and ac-
curacy to cancer CNA analysis. In addition, the copy number at
any location must be an integer, as the sample is pure now (ver-
sus a mixture in the bulk sequencing). Because extremely low-
coverage sequencing could still capture major CNA events, such
design allows population studies at affordable costs. Given that
the dynamics of many cancers such as prostate cancers are
dominated by copy number alterations, the genome-wide sin-
gle-cell CNA detection of large numbers of tumor cells could
serve as a valuable and feasible step to identify cancer driver
events and to understand cancer progression and evolution.

One fundamental challenge in SCS data processing is to cope
with the high noise in the data. Numerous technical errors
can be introduced during three major steps: cell isolation, gen-
ome amplification and sequencing. As illustrated in the
Supplementary Figure S3, loss of coverage and extremely non-
uniform RD across the genome are often observed in raw SCS
coverage data. Many platforms provide more coverage and thus
much higher RD around telomeric and centromeric regions. The
uneven coverage has a larger impact on CNV calling than SNV
calling because copy number inference with low-pass sequenc-
ing data is directly based on changes in RD. The noise model is
currently poorly explored, as to date no gold standard method
has been developed to benchmark or even simulate the single-
cell DNA data. Meanwhile, WGA and sequencing platforms and
protocols are rapidly evolving. WGA is a critical component of
SCS data because replicating DNA from a single cell introduces
a substantial amount of technical noise. Three most widely
used WGA methods are multiple-displacement amplification
(MDA), degenerate oligonucleotide primed polymerase chain re-
action amplification (DOP-PCR) and hybrid methods such as
looping-based amplification (MALBAC) [13, 14]. DOP-PCR and
MALBAC methods and their variants generate lower physical
coverage of the genome than MDA, but more uniform amplifica-
tion [13, 15]. A recent report found that DOP-PCR had more con-
sistent results than MALBAC for copy number profiling [16],
although it provides lower genome coverage among the two. All
these methods produce uneven coverage in certain genomic re-
gions, e.g. near-centromeric regions. The optimal method that
provides both good coverage and uniformity is yet to be de-
veloped. Therefore, parameters that affect sensitivity and speci-
ficity of the segmentation algorithm need to be carefully tuned
to specific types of amplifiers. To reduce the number of false
CNV calls, it was recently suggested to use the overlap results
from different segmentation methods such as CBS and HMM
[17] in single-cell CNV detection. However, the optimal algo-
rithm parameters need to be determined and validated
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experimentally, which makes it hard to be applied to other
studies directly.

In the following, we present a refined data processing and
analysis pipeline that allows for more efficient and accurate
tumor CNA profiling analysis for SCS data, enabling users to
better exploit the information contained in the current single-
cell DNA sequencing data.

New software SCNV and benchmark results

The proposed toolkit, SCNV, provides a complete spectrum of
functions for single-cell CNA analysis starting from BAM files,
where all raw single sequencing reads (FASTQ files) are properly
aligned to the reference genome. If the cell status is unknown,
which is the usual case, an initial copy number assessment
modified from the protocol proposed by Baslan et al. (2012) is
conducted. This initial calling step is bin-based and provides a
fast and approximate profiling on the CNA status of each cell.
Based on these preliminary results, we can identify normal cells
and potential tumor cells. This also provides an easy way to de-
tect poor-quality samples. A more detailed description of this
step is described in ‘Single-cell copy number profiling analysis
overview’ section.

With the normal cells and tumor cells from the same batch,
we then use a bin-free algorithm to do a refined CNV calling. We
adapt the algorithm, SeqCBS [5], which was designed for bulk
sequencing data, to SCS data. We made the following three main
adjustments. (1) We pool a certain number of normal cells, e.g. 20
normal cells, together as the control to the tumor cells. This is be-
cause the coverage for SCS data is low, usually of<0.1� with total
reads around 1–10 million, using a composite of normal cells, as
the control produces more reliable results than a single-sample
control. (2) An additional calibration step is introduced to reduce
falsely detected CNV events. We use a number of normal cells
from the same batch to tune a number of cutoffs we designed for
SCS data. This calibration step could adjust the method to the
right noise level and eliminate many false discoveries. (3) Copy
numbers estimated in each segment are discretized because they
are always integers in single cells. A schematic diagram of the
data analysis pipeline implemented in SCNV is shown in Figure 1.

We use spike-in experiments to study the achievable perform-
ance of the proposed approach on low-coverage SCS data. The de-
sign of the spike-in experiment is shown in Figure 2. To mimic the
noise level in real SCS experiments, we extract reads from ran-
domly selected cells from a true tumor sample. The average RD
(for the entire genome) is around 0.02�. The simulation set-up is as
follows: we selected 400 segments with no copy number change,
each with a length of 10 Mb. At the location of 5 Mb, we inserted a
loss segment (randomly selected from the known loss segments
pool) with length varying from 0.1 Mb to 2 Mb (the X-axis in Figure
3). Sensitivity is calculated as the proportion of segments with de-
tected copy number signals out of the 400 segments; specificity is
calculated as one minus the proportion of false calls out of all calls.
Figure 3 shows the performance of the algorithm with and without
having the calibration step. It is clear from the plots that the cali-
bration step improves the specificity a lot with little sacrifice in
sensitivity for short signals (<1 Mb) and almost no sacrifice in sen-
sitivity for signals slightly longer (>1.5 Mb).

This spike-in experiment also provides a clue to the best
resolution the SCS-based CNA assay could reach given the cur-
rent coverage. Our method provides acceptable performance for
detecting the CNV event as short as 0.3 Mb. Therefore, current
coverage is dense enough to detect most CNA events in cancer;
but deeper sequencing should be considered if finer resolution

is desirable. As the SCS technology is fast evolving and becomes
more accessible, the proposed algorithm provides a valuable
tool for users to investigate the coverage to power relationship
in the experiment preparation stage.

For illustration purpose, we applied the method to a brain
cell population [17] and the prostate cancer data we used for
simulation. Single cells are from the same individual in each
data set. The brain cell data were downloaded from the
National Center for Biotechnology Information Sequence Read
Archive using accession number SRP041670. In the prostate
data, we pooled 20 normal cells as control and calibrated the
model through an additional 11 normal cells. We then applied
the calibrated model to nine tumor cells from the same batch. A
histogram of raw estimates of the copy numbers is shown in
Supplementary Figure S4A. These raw estimates all peak
around integer values, which is expect for single cells, so we can
easily round them to their nearest integers to get absolute copy
number state. The full copy number profiles for these nine
tumor cells are shown in Supplementary Figure S1. Similarly, in
analyzing the brain cell data, we pooled 18 diploid cells provided
in the study (from the same individual) as a composite control.
We analyzed four brain cells with reported copy number events
and compared results with the findings in the original publica-
tion (Supplementary Figure S2). We obtained consistent results.
But note that our segmentation analysis (based on SCNV) was
performed on raw data, without removing any low-quality re-
gions or correcting for GC content and mappability bias. A limi-
tation of the current package is that the segmentation was
designed for profiling one cell at each time. More sophisticated
cross-sample models can be developed and implemented in the
future to enhance information usage, as cells from the same
tumor share similar CNV events.

Single-cell copy number profiling analysis
overview

In this section, we discuss in more details the method we imple-
mented in SCNV. Assuming that all raw SCS reads (FASTQ files)
are properly aligned to the reference genome (as BAM formatted
files), the analysis scheme starts from an initial copy number
assessment from a control-free segmentation procedure. Reads
are first binned in every 100 kb, and the initial segmentation
partitions the genome into segments based on the number of
reads in the bins using the CBS algorithm implemented in the
DNAcopy [9]. We choose CBS for the raw data segmentation be-
cause it is computationally efficient compared with many other
existing alternatives and it has been pilot tested and shown to
be promising in previous single-cell studies [7, 18]. Note that,
even with higher coverage sequencing data, we still recommend
the 100 kb windows size to start with because it preserves suffi-
cient resolution for an exploratory analysis of breakpoints while
remaining computationally efficiency. To control for mappabil-
ity, the genome was divided into small regions with an equal
number of mappable positions. A lowess regression based nor-
malization is further applied to adjust for GC content bias.
Detailed steps are described in a protocol described in [7]. This
initial segmentation step has a 2-fold purpose. First, it trans-
lates the noisy read intensity into smoothed region and pro-
vides a fast and approximate profiling on the CNA status of
each cell, which aids in identifying potential normal cells for
controls in later steps. Second, it provides an easy way to per-
form quality checks, where poor quality samples are indicated
by disorderly and unsystematic changes in segment values (RD
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ratio). To establish a quality control threshold, a total variation
score is calculated for each cell sample based on the L2 norm of the
‘error’ vector, i.e. the Euclidean distance of the vector of segment
values to the vector of the baseline values. Another useful visual
tool for checking the global CNA profile is through the smoothed
density plot of the segment values. Usually, a high-quality sample
exhibits a few (two or more) peaks in the density plot, with centers
around the true possible copy numbers in the genome, while poor
quality samples do not have these nice patterns.

After identifying normal cells from this initial step, we pool
a set of normal cells together to serve as the composite control.
We adapted the model proposed in Shen and Zhang (2013)

designed for bulk sequencing. In the model, the read counts are
modeled by a Poisson process along the genome with the loca-
tional mean reflecting the underlying true copy number and
location-specific biases. Making use of the relationship between
Poisson distribution and Binomial distribution—a Poisson dis-
tributed random variable (X�Poi(k)) conditioning on the sum of
itself and another independent Poisson random variable
(Y�Poi(l)) follows Binomial distribution (XjXþY � Bin(XþY,
k/(kþ l))—the read count from the tumor sample conditioning
on the sum of itself and the read count of the same genome lo-
cation from the matched normal sample follows Binomial dis-
tribution with the success probability the ratio of the true copy

Figure 1. SCS CNV profiling analysis overview (NHPP: non-homogeneous Poisson process; mBIC: modified BIC). A colour version of this figure is available at BIB online:

https://academic.oup.com/bib.

Figure 2. Schematic representation of the spike-in simulation. A colour version of this figure is available at BIB online: https://academic.oup.com/bib.
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number of the tumor sample at that specific location and that
number plus 2, where 2 is the true copy number of the normal
sample because the location-specific biases cancel out.
Therefore, the change in copy numbers in the tumor sample ex-
hibits as the change in the success probability of the Binomial
process. This whole idea works properly for whole-genome bulk
sequencing. However, owing to the high noise level, the Poisson
distribution assumption does not fit the data for SCS well. In
particular, the data exhibit over-dispersion, dropout and other
amplification biases, and directly applying the approach for
bulk sequencing result in an elevated rate of false discoveries.
To address this problem, we use a small set of normal samples
to calibrate the model first: we treat these normal cells as if
they were cancer cells and run the algorithm with the
composite control selected earlier—using the original stopping
rule. We then select thresholds for the test statistics so that 95%
of the detected CNV events could be removed. These thresholds
are then applied in analyzing the tumor samples. This approach
does not find the most suitable distribution to model the noise
in the SCS data, but it has two key advantages: (1) the approach
inherits the nice property of Binomial distribution that the
distributional parameters can be estimated analytically and
thus the approach scans the genome fast; and (2) the approach
can be adapted to incorporate data from different platforms
even though they may have different noise patterns.

We also used the spike-in experiments to examine the sensi-
tivity and specificity of the bin-free approach in SCNV when the
signal is not in the middle of the sequence. We place the signal
at the one-quarter position of the segment, i.e. the length of the
normal region is 2.5 Mb to the left of the signal region and
7.5 Mb to the right. The results are shown in Supplementary
Figure S5. Comparing with Figure 3, we see that the location of
the signal does not affect the sensitivity and specificity much.

Cell ploidy estimation

The estimation of the tumor’s purity and it overall ploidy is an
important component of bulk sequencing analysis in cancer, in
which the two parameters can be jointly estimated based on
observed copy number profiles using software such as
ABSOLUTE [19] or our previously developed tool CLOSE [20]. In
SCS, only the ploidy parameter needs to be inferred because the
purity parameter can be fixed at one unless the cell is contami-
nated. However, the equation is still unable to be solved directly
for the ploidy because only RD or relative ratio can be observed
while bulk sequencing has additional information such as loss

of heterozygosity. In some SCS experiments, the ploidy and
copy-number state can be determined experimentally by flow
cytometry assay comparing a cell’s fluorescence activity with a
reference cell. When such data are not available, SCNV provides
a function to infer ploidy based on a damped sine wave plot.
This function is a modified version of the numeric optimization
approach as implemented in Ginkgo [16]. The rationale behind
this method is that the copy-number state of all segments in a
single cell should be an integer value; thus, the ploidy can be
estimated by minimizing a cost function measuring the differ-
ence between the scaled copy number (multiplied by a grid
multiplier) and its integer rounded copy number. If a cell is
diploid, the expected plot of the empirical cost function
against grid multipliers shows a typical damped sine wave
(Supplementary Figure S4B). The magnitude of cost functions
can also be used as a side index to evaluate the sequencing
quality. An alternative approach is to interrogate the pairwise
copy number differences of all segmented mean values [7],
which is, however, sensitive to the smoothing or bandwidth
parameter selection in constructing the density plot of
differences.

Conclusion

In this article, we have presented a bioinformatics procedure for
DNA copy number profiling with SCS data. The proposed
method as implemented in SCNV provides the highest reso-
lution possible for breakpoint detection and subsequent copy
number calling with SCS. Importantly, it auto-tunes parameters
through normal cells to adjust for the technical noise level of
the data, facilitating its application to data gathered from differ-
ent labs or under different conditions. As far as we know, SCNV
is currently the first software that can perform bin-free segmen-
tation for SCS data. We hope to provide a more accurate way to
understand both intra- and inter-tumor heterogeneity. Still,
many challenges remain. It is technically difficult to normalize
noisy RDs generated from single-cell WGA. More research
should be done in the analysis at the global analysis, where a
hierarchical clustering can potentially be applied based on sys-
tematic change points that are detected across all samples. The
global analysis can be conducted based on the bin-based seg-
mentation for the preliminary profiling and quality control pur-
pose, and then based on the finer bin-free segmentation for
more accurate genome profiling that could serve as inputs for
downstream analysis, such as to infer the tumor clonal

Figure 3. Performance: (A) specificity and (B) sensitivity, of SCNV bin-free CNA calling method in in silico spike-in experiments with and without the calibration step

under different signal lengths.
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structure and the evolutionary trajectory through clustering
and constructing the phylogenetic tree.

A statistically more rigorous method may also be developed
to incorporate the over-dispersion issues in the Poison process
explicitly in the model. Perhaps the greatest challenge comes
from the fact that the SCS technology reinvents itself more rap-
idly than methods can be developed and thoroughly tested, or
even than a valid benchmark data set can be set up for simula-
tion or comparison purpose. Nevertheless, we hope this article

provides a useful framework and generic pipeline for imple-
menting single-cell CNV segmentation, making the SCS data
more accessible to analysis. It will also be an interesting topic to
extend our method to single-cell transcriptome sequencing.
The gene expression level and copy number estimation in
single-cell RNA sequencing are confounded because they are
both based on RD counting. However, large-segment CNA sig-
nals can be differentiated from gene expression levels based on
the assumption that the chance of all neighboring genes is up-
or down-regulated is small. When the sequencing cost further
reduces and deep sequencing becomes more accessible, both
RD and allelic imbalance (B-allele frequencies) can be incorpo-
rated into a unified model to further improve the segmentation
and copy number estimation [19, 20].

Key Points

• Single-cell DNA sequencing is promising for inferring
CNAs and tumor clonality and heterogeneity.

• The new software SCNV provides an accurate and
computational efficient tool for single-cell copy num-
ber profiling, which is the first tool that performs bin-
less segmentation with SCS.

• Further research is needed to differentiate technical
artifacts from true CNV signals and tumor heterogen-
eity under various WGA platforms and to perform glo-
bal copy number profiling of cancer genomes.

Supplementary Data

Supplementary data are available online at http://bib.oxford
journals.org/.
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