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You Take the High Road, and I’ll Take the Low Road:
Evaluating the Topographical Consistency of Cognitive Models

Sabina J. Sloman (SSLOMAN@Andrew.Cmu.Edu)
Department of Social and Decision Sciences, Carnegie Mellon University, 5000 Forbes Avenue

Pittsburgh, PA 15213 USA

Daniel Oppenheimer (DOPPENH1@Andrew.Cmu.Edu)
Department of Social and Decision Sciences and Department of Psychology, Carnegie Mellon University, 5000 Forbes Avenue

Pittsburgh, PA 15213 USA

Abstract

We present a novel framework for assessing the fit of cogni-
tive models. Using this framework, we highlight limitations
of existing methods of model evaluation, and derive new ap-
proaches to validating cognitive models. Tests of topographi-
cal consistency emphasize how a model’s structure constrains
behavior on pairs of coupled stimuli, even when point predic-
tions on individual stimuli depend on estimates of the model’s
free parameters. By carefully selecting these coupled stim-
uli such that they follow the distinct topography of the model,
researchers can overcome some limitations of existing meth-
ods. Finally, we provide a proof-of-concept example of how to
use our approach to assess a model of multi-alternative, multi-
attribute choice.
Keywords: model comparison; experimental design;
decision-making

Cognitive scientists are often faced with the task of select-
ing between two or more models, yet the field is still rife with
disagreement about the best way to evaluate candidate mod-
els (Busemeyer & Diederich, 2010; Lee et al., 2019; Myung
& Pitt, 2018). Existing methods are typically dichotomized
into two general classes: qualitative and quantitative model
comparison techniques (Busemeyer & Diederich, 2010).

Testing a model qualitatively requires specifying a pattern
of behavior that the model entails. As opposed to point pre-
dictions, qualitative predictions anticipate the direction of a
behavioral trend, such as a preference reversal, a difference in
performance on two tasks, or a decelerating perceptual curve.

Importantly, qualitative predictions are usually invariant to
the specific parameter settings of a model. While qualitative
tests are powerful tests of whether a model captures broad
regularities, they are limited to cases in which the model’s
predictions are invariant to the specific parameter settings.
Often, it’s difficult to abstract general predictions from the
space of all possible parameter combinations (Yechiam &
Busemeyer, 2008).

Quantitative model comparison techniques estimate pa-
rameter values and use these estimates to make specific point
predictions. Usually, models are selected on the basis of some
fit statistic: an educated guess about how well the model will
predict out-of-sample behavior. While quantitative methods
facilitate comparison between much more complex models,
this usually comes at the cost of interpretability: While quali-
tative tests demand specification of an anticipated behavioral
pattern, quantitative tests impose no such constraint on the re-
searcher. When relying on only quantitative techniques, it’s

often difficult to understand what the behavioral implications
and diagnostic predictions of a model are (Birnbaum, 1974;
Blaha, 2019; Navarro, Pitt, & Myung, 2004).

This paper establishes the theoretical grounding and
presents an example application of an approach to model
evaluation that leverages both the interpretability of qualita-
tive tests, and the dependency of predictions on specific pa-
rameter values that quantitative tests allow for. Topographical
consistency is the criterion that observed behavior falls along
a model’s specific topography in a pre-defined stimulus space.
To drive the intuition for this method, consider a classic ex-
perimental paradigm from the decision sciences, which has
been used to evaluate expected utility theory (EUT), a nor-
mative model of decision-making (Allais, 1953; Kahneman
& Tversky, 1979): A participant is presented with a choice
between two gambles. For any individual choice considered
in isolation, EUT imposes no constraints on which of the two
gambles the researcher can expect the participant to choose.
However, assuming EUT implies that once the participant’s
choice has been observed, aspects of their stable utility func-
tion have been elicited, which constrains the space of choices
the researcher can expect the participant to make next. The
test of EUT (which is usually failed) is whether the theory al-
lows the researcher to successfully predict patterns of choices
across the stimulus space—what we refer to as the topograph-
ical structure of EUT. The method we propose essentially
consists of generalizing this approach beyond utility func-
tions. We demonstrate how the constraints imposed by the
parameters of any model can be used to generate hypotheses
about observed patterns of behavior on coupled stimuli.

The next section presents a novel graphical framework for
representing the evaluation of a cognitive model. We use this
framework to articulate the theoretical commitments made by
existing methods, identify conditions that affect the diagnos-
tic power of these methods, and highlight how the proposed
method overcomes these limitations.

In 1979, George Box famously wrote “All models are
wrong but some are useful” (Box, 1979). Here, we will use
the term “useful” (in favor of “good” or “true”) to denote a
model that provides information about structural regularities
in data, allowing the researcher to better, if not completely,
anticipate patterns in their data.
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Figure 1: A graphical representation of the evaluation of
model M. Shaded nodes indicate observed elements of the
empirical world. See text for explanation of node labels. The
purple box denotes the relation tested by traditional tests of
out-of-sample generalization: the ability of θ̂1 to predict y2.
The red and blue boxes denote the two other relations dis-
cussed in this paper: the ability of y1 to predict y2, and the
ability of θ̂1 to predict θ̂2.

Model evaluation tests graphical relations
Researchers combine several observable elements of the em-
pirical world to assess model fit: their data, the structure of
the model, and the parameter values estimated by combining
the model with their data. Figure 1 represents the relation-
ships in this world as a graphical model. Each of these ele-
ments is represented as a node, while arrows, or edges, repre-
sent statistical dependencies between these elements. If there
is a path between node A and node B—meaning that some-
one tracing edges from one node to the next would be able to
reach node B after starting at node A—information from node
A can be used to predict the state of node B (Shalizi, 2019).1

M represents the hypothesized model. M represents the
unobservable cognitive processes of some group of partici-
pants. The researcher can collect one or more sets of obser-
vations of the behavior of these participants. Figure 1 shows
the case where they collect two sets of observations, y1 and
y2. The general framework does not restrict how y1 and y2
are collected. The researcher could randomly partition a set
of stimuli into two sets, and refer to responses on one of them
as y1 and to responses on the others as y2. In the follow-
ing section, we explain the constraints our proposed method
places on the environments in which to collect y1 and y2.

The researcher can estimate parameters of the hypothe-
sized model M separately on y1 and y2. We refer to these
parameterized versions of M as θ̂1 and θ̂2, respectively.

Using this framework, we consider evaluating M’s ability
to fit y1 and y2 as testing the strength of the edges between M
and y1 and between M and y2, shown in Figure 1 as dashed
lines. If there is an edge between M and y1 (y2), i.e. M is use-
ful, this implies that certain predictive relations hold. Model-
ers leverage this fact by testing these relations to assess model

1There are exceptions to this general rule. For example, the path
M→ θ̂1← y1 does not imply that M can be used to predict y1 with-
out taking θ̂1 into account. See Shalizi (2019) for further discussion.

fit. For example, qualitative approaches to model evaluation
test for the path M→ y1 (or M→ y2). If M is useful, the un-
parameterized M can be used to make predictions about the
patterns in y1.

Quantitative fit statistics generally try to approximate the
ability of a fitted model to generalize, or to predict unseen ob-
servations (Gelman, Hwang, & Vehtari, 2014; Myung, Tang,
& Pitt, 2009). In the context of Figure 1, these tests attempt
to approximate the ability of θ̂1 to predict y2. If M is useful,
there is a path between θ̂1 and y2, θ̂1← y1←M→ y2, and θ̂1
can be used to predict y2.

However, if M is not useful—it contributes no informa-
tion about y1—there is still a path between θ̂1 and y2: θ̂1 ←
y1←M → y2. If y1 and y2 were collected in similar environ-
ments, θ̂1 will contain information about y2 insofar as the par-
ticipants behave somewhat consistently. Broomell, Sloman,
Blaha, and Chelen (2019) discuss one example of when rely-
ing on out-of-sample generalization can fail to be diagnostic
of a path through a hypothesized model: Most parameterized
models of risky decision-making will do extremely well at
predicting participants’ choices between almost all possible
pairs of monetary gambles. This is not helpful in evaluat-
ing the relative usefulness of any of these models, but merely
reflects the fact that for two randomly-chosen objects, it is
usually the case that one is so much more valuable than the
other that all reasonable models will make the same predic-
tion. In general, selecting among models and among param-
eter values requires careful specification of the environments
in which y1 and y2 are collected (Birnbaum, 1974; Broomell
et al., 2019).

Qualitative and quantitative approaches to model evalua-
tion each test one of the predictive relations in Figure 1 im-
plied by M being useful. The graphical framework allows us
to identify other paths M being useful implies. In the follow-
ing sections, we unpack two other predictive relations model-
ers can test for to evaluate M.

As discussed just above, another contribution of the graph-
ical framework is to illustrate that predictive relations can ex-
ist between behavioral patterns and parameter estimates even
if the hypothesized model is not useful. Robust approaches
to evaluating M test graphical relations that hold if—but only
if —M is useful. We center discussion of our methods on ex-
planation of how cognitive psychologists can implement them
in a way that uniquely identifies paths through M. The cru-
cial step is to collect y1 and y2 in topographically distinct en-
vironments: environments between which the model predicts
systematically different behavior.

Relation #1: y1 predicts y2

Figure 1 shows that if M is useful, there is path from y1 to y2,
y1 ← M → y2, and the patterns in y1 can be used to predict
the patterns in y2. How can a researcher collect y1 and y2 in a
way that ensures that the information they gain about y2 from
y1 flows through M, rather than through unobserved aspects
of M ?
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Figure 2: Parameter contours of the sine model (see text for
details). The unparameterized sine model could take an infi-
nite number of different shapes, and therefore does not con-
strain observed responses across much of the domain. The
blue dots indicate observed responses that fall along a sin-
gle contour. Under the sine model, if a participant responds
-1 when presented with a stimulus value of -2, this implies
the same participant would respond 1 when presented with a
stimulus value of 2.

Consider a simple example: A researcher wants to test the
usefulness of a hypothesized sine model: y = θsin(x) + ε.
x represents manipulable aspects of possible experimental
stimuli (e.g. light intensity, dollar value or time delay). y
represents participants’ responses to these stimuli, and ε rep-
resents random noise in these responses. θ is a free model
parameter, unknown to the researcher. The sine model there-
fore makes a claim about the functional relationship between
experimental stimuli and a participant’s responses. Figure 2
shows possible relationships between x and y that would be
consistent with the researcher’s hypothesis. Because the re-
searcher does not know any participant’s θ a priori, they can-
not constrain the set of possible responses. For example, the
unparameterized sine model places no constraints on the par-
ticipant’s response when presented with a stimulus with value
-2.

However, the model constrains pairs of observed data
points. The researcher can exploit the structure of the sine
model to make predictions about how a participant’s re-
sponses to different stimuli will tend to “pivot” together.2 For
example, if the researcher observes a response of -1 when the
participant is presented with stimulus value -2, they know that
if the model is useful, the participant’s response on 2 will be
approximately 1. Similarly, if they observe that the partici-
pant’s response on -2 is -10, they know to look for a response
of approximately 10 when the participant encounters 2.

We call the topographical space created by iterating over

2Our method exploits the assumption pervasive in the literature
that parameter values are stable at the individual level (Glöckner &
Pachur, 2012; Yechiam & Busemeyer, 2008).

these combinations of possible responses, shown in Figure 2,
parameter contours. We think of these contours as a model’s
fingerprint. In effect, our approach consists of identifying ob-
servations that lie on the same contour. Tests of topographi-
cal consistency do not constrain which contour a participant is
on, but rather evaluate whether the model’s topography keeps
the observations from each individual participant at the same
“level.” While one participant may take the “high road” and
another the “low road,” a useful model can predict how both
of them will travel through the stimulus space.

Relation #2: θ̂1 predicts θ̂2

If M is useful, there are two paths from θ̂1 (the parameterized
version of M estimated using y1) to θ̂2 (the parameterized ver-
sion of M estimated using y2) through M: θ̂1 ← y1 ← M→
y2→ θ̂2 and θ̂1←M→ θ̂2. So if M is useful, the researcher
should gain information about θ̂2 from θ̂1. The predictive re-
lationship is simple: The criterion described in the previous
section tests whether the model generalizes the parameter es-
timate from a participant’s behavior in one part of the stim-
ulus space to their behavior in another. For the same reason
the model predicts a participant’s behavior will remain on the
same parameter contour, it expects θ̂2 to closely approximate
θ̂1.

Yechiam and Busemeyer (2008) refer to this implicative
relationship as individual parameter consistency. We add
to their criteria for model evaluation by highlighting the im-
portance of testing the generalization of parameter estimates
across data sets customized to the topographical structure of
the model under investigation.

Regardless of whether or not M is useful, there is a path
from θ̂1 to θ̂2: θ̂1 ← y1 ←M → y2 → θ̂2. As above, care-
ful stimulus selection is required to demonstrate that corre-
spondence between θ̂1 and θ̂2 reflect M. To illustrate this,
consider the researcher above, who wants to test the fit of the
sine model to a given participant. Figure 3 shows two pos-
sible ways they could partition data from this participant. In
the lefthand panel, the data set is partitioned randomly. As
parameter consistency would predict if this model were use-
ful, the two fitted sine curves are close together.

However, for comparison the researcher also tests the pa-
rameter consistency of a linear model. As shown in the left-
hand panel of Figure 3, the fitted linear models also closely
resemble each other. When y1 and y2 are collected in the
same environments, parameter consistency is not diagnostic
of either model.

Compare this to the partition shown in the righthand panel
of Figure 3. Here, the researcher has selected topographi-
cally distinct regions of the sine model: Figure 2 shows that
the sine model predicts that all participants will exhibit qual-
itatively different behavior when the stimulus value is greater
than 0 than when it is less than 0.

When the data is partitioned into these topographically dis-
tinct regions, parameter consistency becomes diagnostic of
the most useful model. While the estimated sine curves re-
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Figure 3: The sine and linear model fit to two different par-
titions of simulated data into y1 and y2 (the sine model is the
data-generating model): a random partition (lefthand panel)
and a partition based on the topographically distinct regions
of the sine model’s contours (righthand panel). Both panels
show the best-fitting parameterized versions of the sine and
linear models, fit separately to each partition.

main close together, demonstrating parameter consistency,
the estimated linear curves have been pulled apart. This anal-
ysis exhibits clear support for the sine model (which is, in
fact, the data-generating model).

In summary, tests of topographical consistency consist of
identifying the topographical structure of a given model in a
space of possible experimental stimuli, and testing whether
participants’ behavior follows the contours of this topogra-
phy.

Application
To illustrate how to apply our approach, we develop a test
of the Voting Agent Model of Preferences (VAMP) a one-
parameter model of multi-alternative, multi-attribute choice
(Bergner, Oppenheimer, & Detre, 2019). All data presented
in this section are simulated, and results are intended as a
proof of concept, rather than a true test of VAMP.

Multi-attribute choice refers to choice contexts where each
option is defined by its value on the same set of attributes. For
example, a decision-maker might be asked to imagine they
were choosing between shoes, and given a numerical repre-
sentation of each option’s level of style and comfort (Bergner
et al., 2019). Decision scientists have observed that partici-
pants make systematic yet anomalous choices when choosing
between three options that relate to each other in certain ways
(Roe, Busemeyer, & Townsend, 2001). There are dozens of
models that attempt to account for these phenomena, includ-
ing VAMP. For a review of other models, see Turner, Schley,
Muller, and Tsetsos (2018) or Evans, Holmes, and Trueblood
(2019).

VAMP has one parameter, typically referred to as k. For
details on the model formulation, interested readers can con-
sult Bergner et al. (2019).
Drawing contour plot. To generate the parameter contours
of VAMP, we

Figure 4: Parameter contours of VAMP. While in Figure 2 the
stimulus space is one-dimensional, here it is two-dimensional
(defined by both p and q, the attributes of option C). The two
colors (gray and orange) denote topographically distinct re-
gions of the stimulus space. The shading indicates the diver-
gent predictions of adjacent values of k (see text for details).
Dots denote selected stimuli.

1. Define constraints on our experimental stimuli. Here, we
constrained a choice set to consist of three choices: A =
[.2, .8], B = [.8, .2] and C = [p,q] where 0≤ p,q≤ 1. This
results in a two-dimensional stimulus space, with one di-
mension defined by the value of p, and the other defined
by the value of q.

2. Segment the parameter space into discretized regions, in
this case k = [.1, .15, .2, .25, .3, .35, .4, .45, .5]. This range
was theoretically motivated, as it approximates the range
of k for which VAMP exhibits common decision anomalies
(Bergner et al., 2019).

3. For each parameter value, compute the model’s predictions
on each element of the stimulus space. VAMP’s predic-
tions consist of a choice of one of the three options A, B or
C.3

4. For each pair of adjacent parameter values (e.g. .1 and .15,
.15 and .2, etc.), identify the sliver of the stimulus space on
which the two parameter values make different predictions.

5. Stack these slivers to create a contour plot. VAMP’s con-
tours are illustrated in Figure 4. The shading indicates the
divergent predictions of adjacent values of k. Darker col-
ors indicate the regions that distinguish smaller values of k
(e.g. the black/dark orange contour denotes the region that
distinguishes k = .1 from k = .15).

y1 predicts y2. Figure 4 shows that different values of k make
distinct predictions in the corner and center regions of the
stimulus space. These regions are colored gray and orange in

3The version of VAMP we used for this example is probabilistic.
These predictions refer to the maximizing choice.
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Figure 4, respectively. Importantly, these distinct choice pre-
dictions are not arbitrary: They correspond to shifts in choice
predictions. For all C defined by the corner (gray) regions of
the space, VAMP predicts that decision-makers with k = .1
will select B. However, VAMP predicts that decision-makers
with k = .15 will select A when the choice set includes a C
that falls in the darkest contour, and B for all other stimuli
in the region. Similarly, decision-makers with k = .2 are ex-
pected to select A when C falls in the bottom two contours,
and B otherwise. A similar shift occurs in the center (orange)
region of the space. For all C defined by this region, decision-
makers with k = .1 are expected to select either A or B with
equal probability. However, decision-makers with k = .15 are
expected to select C when it falls in the darkest orange con-
tour, and A or B otherwise. Decision-makers with k = .2 will
select C in the top two contours, and A or B otherwise.

To generate y1 and y2, we partition the stimulus space
across these topographically distinct regions. In exactly the
same way the trough and peak of the sine wave are charac-
teristic of the sine model, the gray and orange regions are
characteristic of VAMP. If a decision-maker’s behavior in the
gray region (y1) allows us to predict their behavior in the or-
ange region (y2), we consider this support for VAMP.

The dots in Figure 4 show the selected stimuli. These stim-
uli allow us to ground a test of VAMP in interpretable predic-
tions such as “If decision-makers are more likely to select
option B on stimulus [.09, .95], they should be more likely to
select either A or B on stimulus [.46, .46].”4

Figure 5 illustrates the predicted behavioral pattern for
.2 < k < .25. The coloring of the stimulus space denotes the
maximizing choice for decision-makers with .2 < k < .25.
The white strip denotes the corresponding contour, the region
of the stimulus space for which decision-makers with k = .2
and k = .25 will disagree on the maximizing choice.

We simulated the choices of decision-makers with k uni-
formly distributed between .1 and .5. These decision-makers
selected probabilistically between A, B and all C pictured in
Figures 4 and 5. We then estimated each simulated decision-
maker’s k only on the basis of their choices on stimuli in the
corner (gray) region.

The coloring of the dots indicates the choice share of the
eight agents whose k was estimated to be between .2 and
.25. In aggregate, there is a “switch point” exactly where the
model predicts. Moreover, this information allows the model
to predict where these decision-makers’ choices will “switch”
in a topographically distinct part of the stimulus space, the
center region.

Importantly, we do not expect the point at which agents’
choice switches to be the same for other values of k. Our pre-
dictions are not contingent on the exact location of the switch

4Note that the selected stimuli not only span regions of the con-
tour space, but span all contours. This was not strictly necessary
for interpretable evaluation of VAMP, but constitutes a more strin-
gent test of the model than selecting stimuli concentrated in fewer
contours. See also Somerville (2019) for application of a similar ap-
proach used to recover the parameters of decision-making models.

Figure 5: An illustration of the pattern of behavior expected
if VAMP is useful. The coloring of the stimulus space denotes
the maximizing choice for decision-makers with .2 < k < .25
(blue corresponds to A, green corresponds to B and red corre-
spond to C). The white strip denotes the region of the stimu-
lus space for which decision-makers with k = .2 and k = .25
will disagree on the maximizing choice. The color of the
dots denotes the choice shares of simulated decision-makers
whose k was estimated to be between .2 and .25 (the color
correspondences are the same as above).

point. Rather, this method makes a prediction about the direc-
tion of movement of the decision-makers’ choices: As choice
shares tend to shift in one region of the space (y1), this gives
us information about how they will shift in another region of
the space (y2).
θ̂1 predicts θ̂2. The red points in Figure 6 show the rela-
tion between parameter estimates using data from one region
(θ̂1) and using data from another, topographically distinct re-
gion (θ̂2). We compared these correspondences to those for a
competing model: a slightly modified version of the pairwise
normalization model (PN) proposed by Landry and Webb
(2019). PN also has a single parameter, σ.

Using the same simulation approach described in the pre-
vious section, where VAMP is the known data-generating
model, we used maximum likelihood to estimate a value of
k and σ for each simulated decision-maker. Correlations be-
tween k̂1 and k̂2 are generally higher, although it is worth not-
ing that as choice becomes less and less deterministic, the
difference between the correlations reduces.

The blue points in Figure 6 show the same analysis, but
with the stimuli shuffled, so they do not correspond to to-
pographically distinct regions of the stimulus space. In this
analysis, the correlations of VAMP’s parameter become con-
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Figure 6: Correlations between parameter estimates for
VAMP and PN, where VAMP is the generating model. x-axis:
The Pearson’s R between estimates of k on data generated
from two non-overlapping sets of stimuli. y-axis: The Pear-
son’s R between estimates of σ on the same data. Stimuli are
partitioned into four sets; the partition differs for each color.
Red: Stimuli are partitioned to fall in topographically distinct
regions of the stimulus space. Two of these regions (the gray
and orange regions shown in Figure 4) are discussed in the
text. Blue: Stimuli are randomly assigned to a set. Each dot
corresponds to a pair of stimulus sets and a value of noise, or
non-determinism, in the simulated data. Values are mean cor-
relations across 20 simulated datasets, each with an n = 100.

centrated around the center of the corresponding red points.
However, the correlations of PN’s parameter are reliably at
the upper bound of the correlations exhibited when the stim-
uli are partitioned across VAMP’s topographically distinct re-
gions. In other words, most of the topographically distinct
partitions succeed at better distinguishing VAMP from PN
than the randomly-assigned partitions. This result highlights
the importance of partitioning the stimulus set in a way that
diagnoses paths through M.

Discussion
In this paper we have suggested topographical consistency as
an evaluation criterion for cognitive models. To satisfy this
criterion, a modeler commits to a prediction about how a par-
ticipant’s behavior in one part of the stimulus space varies
with their behavior in a topographically distinct region of the
stimulus space. Individual parameter consistency (Yechiam
& Busemeyer, 2008) across these regions is an implication of
the modeler’s predictions being born out. We have not pro-
posed a formal hypothesis test, made any suggestions about
how dissimilar the modeler’s observations should be from
their predictions before the model is rejected, or discussed
how to quantify this similarity. Formalizing these practical
considerations is an area for future work; ultimately, though,
the answers will likely depend on, among other things, in
what way the modeler intends their model to be useful.

We applied the proposed approach to a one-parameter non-
linear model of multi-attribute decision-making. Extending
our approach to models with more than one parameter is
another avenue for future work. In general, it will require
well-informed assumptions about the joint distributions of
the parameters of the specific model being evaluated. These
could be informed by analytical results or by unsupervised
dimensionality reduction analyses of existing data sets (e.g.
Yechiam and Busemeyer (2008)).

Topographical consistency reflects whether or not the ob-
served patterns are possible under the hypothesized model.
However, it does not directly tell the researcher how likely
the hypothesized model considers the observed patterns to
be. Many models assign a higher likelihood to some parame-
ter values than others. As proposed, our approach imposes
no penalty on a model if the distribution of estimated pa-
rameters violates such expectations. There exist many meth-
ods of quantifying and incorporating this consideration into
the model evaluation process, e.g. parameter space parti-
tioning (Pitt, Kim, Navarro, & Myung, 2006), representative-
ness analysis (Navarro et al., 2004), and Bayesian approaches
(Farrell & Lewandowsky, 2018; Rouder & Lu, 2005; Shiffrin,
Lee, Kim, & Wagenmakers, 2008). Combining our proposal
to consider relationships between coupled pairs of stimuli that
straddle topographical regions with these methods could lead
to the development of even more robust approaches to model
evaluation.

Further, core elements of the proposed approach can be in-
corporated into existing analyses of model fit. For example,
we propose partitioning the stimulus space across topograph-
ically distinct regions as a principled method of stimulus se-
lection. Modelers who use this approach to generate stimuli
for their experiments could increase parameter identification
(Somerville, 2019), and use the method of their choice to an-
alyze the data from these experiments.

We motivated our approach with the graphical framework,
and we see the criterion of topographical consistency as one
instance of the approaches to model evaluation that can be
derived from this framework. The framework makes explicit
the convergent aims of existing model evaluation methods,
establishes intuition for why tests of generalization should
control for unmodeled sources of behavioral consistency, and
can hopefully serve as a conceptual tool for modelers seeking
to interrogate their hypotheses using a diverse set of meth-
ods. Tests of topographical consistency are not intended as
a replacement for existing methods, and aspects of our ap-
proach can be incorporated in and contribute to these meth-
ods. Ideally, testing multiple criteria will help modelers better
understand the characteristics of their models and the kinds of
patterns each is most useful for predicting.
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