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Semiclassical treatment of photon cascades in nuclei

Jørgen Randrup 1 and Thomas Døssing2

1Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
2Niels Bohr Institute, University of Copenhagen, Copenhagen DK-2100, Denmark

We present a simple semiclassical treatment of photon cascades, suitable for use in nuclear fission simulation 
codes. The approximation is here developed for E1 and  E2 transitions and its quality is illustrated for a variety 
of two-photon cascades. Implementation of the treatment into Monte Carlo simulations would make it possible 
to address photon correlation observables quantitatively.

I. INTRODUCTION

Low-energy fission leads to primary fragments that each
have about a dozen MeV of excitation and half a dozen
units of angular momentum, on average. The fragments, after
possible neutron evaporation, deexcite by sequential photon
emission. The associated emission patterns may reveal inter-
esting aspects of the fission process, such as the directions
of the fragment angular momenta and their mutual corre-
lations. In particular, seminal measurements of the angular
distribution from collective transitions have shown that the
angular momenta are preferentially perpendicular to the fis-
sion direction [1,2] and recent experiments, also involving
rotational transitions, suggest that their magnitudes are largely
uncorrelated [3].

The physical mechanisms responsible for the fission-
fragment angular momenta are currently a topic of active
research. Although many recent correlation experiments have
helped to illuminate the issue [3–10], a variety of mechanisms
are being advocated [3,11–20]. There is thus a need for careful
calculation of the observable consequences of the various
models proposed and photon correlation measurements may
be particularly revealing.

The relevant fission observables are most conveniently cal-
culated by means of event-by-event Monte Carlo simulations
which yield large samples of complete final states from which
any distribution and correlation can subsequently be extracted
(see, for example, Ref. [21]). Several treatments have been
developed for this purpose, most notably CGMF [22,23], FREYA

[24,25], FIFRELIN [26], and GEF [27]. These simulation codes
differ in various ways, including how the fragment deexci-
tation processes are treated. For example, CGMF invokes a
considerable degree of nuclear structure information within
the Hauser-Feshbach framework, but it does not keep track of
directional information through a cascade. By contrast, FREYA

treats the nuclear properties in a farily generic way but keeps
careful track of all conserved quantities throughout, including
the correlated directions of the fragment angular momenta.
FIFRELIN also uses the Hauser-Feshbach framework and its
treatment of the photon cascades has recently been augmented

with a statistical tensor formalism that makes it possible to
calculate correlation observables [28].

Directional correlations between the photons emitted dur-
ing a decay cascade arise because each emitted photon carries
some angular momentum and that affects the direction of the
angular momentum of the corresponding daughter nucleus,
thereby influencing the angular distribution of the next photon
emitted. The inclusion of such “spin-recoil” effects, while
highly interesting, is complicated to accomplish in an ex-
act quantal treatment. We have therefore developed a simple
semiclassical treatment that includes the successive changes
in the nuclear spin direction and makes it practical to simulate
the correlated photon emissions in a Monte Carlo approach.

Section II describes how the approximate treatment can be
carried out for E1 and E2 transitions and Sec. III subsequently
illustrates how well it works for a variety of two-photon cas-
cades. Our concluding remarks are presented in Sec. IV.

II. TREATMENT

In fission simulation models such as FREYA the primary
fission fragments have classical angular-momentum vectors
that have been sampled from specific correlated distributions
prescribed by the underlying physical model. These fragments
(may) then evaporate neutrons, leading to prompt product
nuclei that are typically excited by ≈5 MeV and their angular
momenta, although modified by evaporation, are still mutu-
ally correlated (both individually with respect to the fission
direction and mutually).

We assume that each such product nucleus can be rep-
resented quantally as a maximally aligned state, with the
initial alignment direction being that of the postevaporation
classical angular-momentum vector. It is described below how
the semiclassical treatment applies to a single step in the
subsequent photon deexcitation cascade. The approximation
procedure can then be applied for each emission throughout
the cascade.

Thus it is generally assumed that the nucleus, before emit-
ting the photon, has a definite spin magnitude J (as well as
a definite excitation energy E ) and that its spin is maximally
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aligned along some direction, i.e., its quantum state has the
form |N 〉 = |α; J, M = J〉 when that direction is used as the
quantization axis. Furthermore, the final nuclear state, after
the emission, |N ′〉, has also a definite spin magnitude J ′ (and a
definite excitation E ′) and it is maximally aligned along some
(generally different) direction depending on the emission di-
rection of the photon (and the multipolarity of the transition).

To describe the treatment in detail, we introduce the initial
reference system S (x̂, ŷ, ẑ) that is oriented such that ẑ points
along the alignment direction of the initial (mother) nucleus;
we may then write |N 〉 = |α; J, J〉ẑ. In the energy region of
interest, the level spacings are larger than the decay widths
and decays to different nuclear levels can then be considered
as being mutually incoherent. A decay of multipolarity λ

therefore leads to a nucleus-photon state having the following
form,

| f 〉J ′,h =
λ∑

μ=−λ

〈J ′, M ′; λ,μ|J, J〉|α′; J ′, M ′〉|λ; μ, h〉, (1)

where J ′ is the angular momentum of the daughter level and
h = ±1 is the helicity of the emitted photon. Furthermore,
|α′; J ′, M ′〉 is a nuclear angular-momentum eigenstate (with
respect to ẑ) and |λ,μh〉 denotes the state of a photon having
the total angular momentum λ, the projection μ on ẑ, and the
helicity h. In this state, the amplitude for the photon to be
moving in the direction ω̂ = p/ε = (θ, φ) is

〈ω̂|λ; μ, h〉 = 〈λ,μ|eiφĴz eiθ Ĵy |λ, h〉 = dλ
μ,h(θ )eiμφ, (2)

where the Wigner d functions relevant here are

d1
0,h(θ ) = h√

2
sin θ, d1

±1,h(θ ) = 1

2
(1 ± h cos θ ), (3)

d2
0,h(θ ) = −

√
3

2
h sin θ cos θ, (4)

d2
1,h(θ ) = 1

2
(cos θ + h cos 2θ ) sin θ, (5)

d2
2,h(θ ) = −1

2
(1 ± h cos θ ) sin θ. (6)

Thus, for each J ′ and h, the emitted photon and the daugh-
ter nucleus are generally in an entangled state 〈ω̂| f 〉, with the
nucleus being left in a different superposition of rotational
substates |α′; J ′, M ′〉 for each photon emission direction ω̂. It
follows that the expectation value of the angular momentum
in the nuclear daughter state, J′ = (J ′

x, J ′
y, J ′

z ), generally has
the following form:

J′(ω̂) = (J ′
⊥(θ ) cos φ, J ′

⊥(θ ) sin φ, J ′
z(θ )). (7)

This means that the (mean) angular-momentum vector of
the daughter nucleus, J′, is tilted relative to that of the mother
nucleus, J = J ẑ. The azimuthal direction of the tilted vector is
either opposite of φ (for h = +1) or equal to φ (for h = −1).
Thus the tilting angle χ (θ ), which is determined by tan χ =
J ′

⊥(θ )/J ′
z(θ ), can have either sign.

The principal approximation in the present semiclassical
treatment is to replace the actual nuclear daughter state, 〈ω̂| f 〉,
by a state that is maximally aligned along J′(ω̂), i.e., it has the

form |α′; J ′, J ′〉 in a reference system S ′(x̂′, ŷ′, ẑ′) that has its
polar axis ẑ′ directed along J′(ω̂), i.e., |N ′(ω̂)〉 = |α′; J ′, J ′〉ẑ′ .

III. ILLUSTRATIONS

The quality of the semiclassical approximation introduced
above can be illustrated by cascades of two successive Eλ

emissions. As stated above, for each two-photon cascade it is
assumed that the nucleus is initially in a maximally aligned
quantum state |N 〉 = |α; J, J〉. The correlation effects de-
crease as J is increased. Therefore, in order to better bring out
the differences, the illustrations are made for relatively small
values of J .

For each type of cascade, the exact expression for the
joint directional distribution of the two emitted photons,
P12(ω̂1, ω̂2) = d2N12/d2ω̂1d2ω̂2, can be derived in an elemen-
tary manner by successive use of Eq. (1).

The approximate joint angular distribution is obtained by
Monte Carlo simulation. The emission direction of the first
photon, ω̂1 = (θ1, φ1), is sampled from the appropriate angu-
lar distribution, P1(ω̂1). The associated tilting angle χ (θ1) is
then calculated (see below). That determines the alignment di-
rection ẑ′ of the nuclear daughter state for which the procedure
is then repeated, yielding the emission direction ω̂2 = (θ2, φ2)
of the second photon (as well as the alignment direction ẑ′′

of the nuclear granddaughter state which is not needed here).
For each particular type of cascade, a large sample of such
two-photon emissions is generated and the observables of
interest can then be extracted by suitable binning.

The individual angular distributions of the two photons are
related to the joint distribution by projection,

P1(ω̂1) =
∫

d2ω̂2P12(ω̂1, ω̂2), (8)

P2(ω̂2) =
∫

d2ω̂1P12(ω̂1, ω̂2). (9)

The exact expressions for P1(θ1) and P2(θ2) can readily be de-
rived from the exact joint distribution, while the approximate
distributions can be obtained by event-by-event binning of the
sampled directions θ1 and θ2.

The approximate treatment is obviously exact for the an-
gular distribution of the first photon, P1(ω̂1), provided that
the initial state is in fact maximally aligned, so only the
angular distribution of the second photon, P2(ω̂2), needs to be
examined.

It is of particular interest to determine how well the ap-
proximate treatment reproduces the correlations between two
subsequent emission directions. To illustrate this crucial fea-
ture, we consider the distribution of the opening angle ψ12

between the two emission directions ω̂1 and ω̂2, where

cos ψ12 = ω̂1 · ω̂2 = cos θ1 cos θ2 + sin θ1 sin θ2 cos φ12,

(10)

with φ12 ≡ |φ1 − φ2|. The exact distribution of ψ12 is
given by

Pψ (ψ ) =
∫

d2ω̂1d2ω̂2δ(ψ12 − ψ )P12(ω̂1, ω̂2), (11)



while the approximate distribution can be obtained by event-
by-event binning of ψ12.

A. Sequential E1 emission

We consider first two sequential E1 emissions during
which the magnitude of the nuclear spin evolves as J → J ′ →
J ′′. In each individual emission, the magnitude may change
by up to one unit, so there are a total of nine different cascade
types, each one characterized by the particular combination of
the spin changes, and they are considered in turn below.

1. E1-E1: J′ = J − 1

For these three cascade types, the first transition is
stretched and only μ = 1 contributes in Eq. (1). Thus the exact
nuclear daughter state is maximally aligned along the initial
alignment direction ẑ,

〈ω̂1|N ′〉E1
J−1,h1

= |α′; J − 1, J − 1〉ẑ, (12)

and the angular distribution of the first photon has a sim-
ple form, P1(θ1) ∼ d1

1,h1
(θ1)2. Furthermore, because J′ =

(0, 0, J ′) we have J ′
⊥ = 0, so the tilting angle vanishes, χ = 0.

The treatment is then exact also for the second emission, so
there is no need to check these cases.

2. E1-E1: J′ = J

For these cascades both μ = 0 and μ = 1 in Eq. (1) con-
tribute for the first emission, so the daughter state has the form

〈ω̂1|N ′〉E1
J,h1

= h1c0(θ1)|α′; J, J〉 − c1(θ1)eiφ1 |α′; J, J − 1〉,
(13)

with c2
0 + c2

1 = 1 and

c0 ∼
[

J

J + 1

] 1
2

h1d1
0,h1

(θ1), c1 ∼
[

1

J + 1

] 1
2

d1
1,h1

(θ1).

(14)

The angular distribution of the first photon is then a mix of
|α; J, J〉 → |α′; J, J〉 and |α; J, J〉 → |α′; J, J − 1〉,

P1(ω̂1) ∼ J

J + 1
d1

0,h1
(θ1)2 + 1

J + 1
d1

1,h1
(θ1)2. (15)

Furthermore,

J ′
⊥(θ1) = −h1

√
2Jc0c1, J ′

z(θ1) = Jc2
0 + (J − 1)c2

1, (16)

so the tilting is away from the azimuthal emission direction
when the photon has positive helicity and towards the az-
imuthal emission direction when it has negative helicity, as
might be intuitively expected.

The angular distribution of the second photon in E1
cascades where the first emission leaves the nuclear spin
unchanged, J ′ = J , is illustrated in Fig. 1 for J ′′ − J ′ =
−1, 0,+1. For each cascade type, the result of the semiclassi-
cal treatment is compared with the exact quantal polar profile.

Generally, the exact directional distribution is very well
reproduced by the semiclassical treatment. The largest differ-
ences amount to slight overshoots (by a few percent) in the
polar regions where the yield is suppressed by the geometric
factor sin θ2,
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FIG. 1. The angular distribution of the second E1 photon,
P2(ω̂2), for the three cascade types where the first E1 emission
does not change the nuclear-spin magnitude, J ′ = J , calculated for
h1, h2 = 1. Solid (green) curve: the exact quantal distribution; solid
(red) circles: the semiclassical simulation.

The corresponding distributions of the opening angle ψ12

between the two emission directions ω̂1 and ω̂2 are shown in
Fig. 2. The semiclassical approximation is seen to be generally
rather good. The largest deviations occur for ψ12 ≈ 0 and
ψ12 ≈ 180◦ where the yield is small due to the geometric
sin ψ12 weight.

Also shown is how the distribution of ψ12 would look
if the two emissions were mutually independent, i.e., if the
joint distribution factorizes, P12(ω̂1, ω̂2) = P1(ω̂1)P2(ω̂2). It is
noteworthy that the qualitative appearance of the uncorrelated
ψ12 distribution is opposite of the exact result when the sec-
ond emission is stretched or antistretched, so in these cases
the spin recoil has a particularly significant effect and it is
important to take account of the inherent correlations between
successive emission directions.

3. E1-E1: J′ = J + 1

For these three cases, the first transition is antistretched.
Then all three terms in Eq. (1) contribute and the nuclear
daughter state has the form

〈ω̂1|N ′〉E1
J+1,h1

= c−(θ1)e−iφ1 |α′; J + 1, J + 1〉
− h1c0(θ1)|α′; J + 1, J〉
+ c+(θ1)eiφ1 |α′; J + 1, J − 1〉, (17)
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FIG. 2. The distribution of the opening angle between the emis-
sion directions of two sequential E1 photons, Pψ (ψ12), for the three
cases where the first emission does not change the nuclear spin
magnitude, J ′ = J , calculated for h1, h2 = 1. Solid (green) squares:
sampling of the exact distribution; solid (red) circles: semiclassical
sampling; dashed (blue) curve: uncorrelated emission.

with c2
− + c2

0 + c2
+ = 1 and

c− ∼
[

2J + 1

2J + 3

] 1
2

d1
−1,h1

(θ1) � 0, (18)

c0 ∼
[

2J + 1

(2J + 3)(J + 1)

] 1
2

h1d1
0,h1

(θ1) � 0, (19)

c+ ∼
[

1

(2J + 3)(J + 1)

] 1
2

d1
+1,h1

(θ1) � 0. (20)

Thus the angular distribution of the first photon has three
components arising from 
M = +1, 0,−1,

P1(ω̂1) ∼ 2J + 1

2J + 3
d1

−1,h1
(θ1)2 + (2J + 1)d1

0,h1
(θ1)2

(J + 1)(2J + 3)

+ d1
1,h1

(θ1)2

(J + 1)(2J + 3)
. (21)

The expectation value of the daughter spin then follows,

J ′
⊥(θ1) = −h1c0[

√
2J + 2c− + √

4J + 2c+], (22)

J ′
z(θ1) = (J + 1)c2

− + Jc2
0 + (J − 1)c2

−. (23)

Figure 3 shows the angular distribution of the second pho-
ton for the three E1 cascade types in which the first emission
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FIG. 3. The angular distribution of the second E1 photon,
P2(ω̂2), for the three cases where the first E1 emission increases
the nuclear spin, J ′ = J + 1, calculated for h1, h2 = 1. Solid (green)
curve: exact distribution; solid (red) circles: semiclassical simulation.

is antistretched, J ′ = J + 1. As in the three cases consid-
ered above (see Fig. 1), the semiclassical treatment provides
an excellent approximation to the exact distribution of the
second photon, with the largest deviations occurring in the
(suppressed) polar regions and being hardly visible to the eye.

The corresponding distributions of the opening angle ψ12

are shown in Fig. 4. The accuracy of the semiclassical treat-
ment is even better for these cases, being practically perfect
for J ′′ = J ′ and J ′′ = J ′ + 1, while the undulation amplitude
is underestimated by about ten percent for J ′′ = J ′ − 1. As
for the cases shown in Fig. 2, the inclusion of the directional
correlations has a significant effect on Pψ (ψ12).

B. Sequential E2 emission

We consider here two sequential E2 emissions. In each
individual emission, the nuclear-spin magnitude may in prin-
ciple change by up to two units. However, only transitions
that lower the angular momentum are of practical interest,
J > J ′ > J ′′, so the spin may change only by −1 or −2 and
there are then a total of just four different cascade types to be
examined.

1. E2-E2: J′ = J − 2

When the first transition is stretched, only μ = 2
contributes in Eq. (1), so the daughter state remains
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FIG. 4. The distribution of the opening angle between the emis-
sion directions of two sequential E1 photons, Pψ (ψ ), for the three
cases where the first emission is antistretched, J ′ = J + 1, calculated
for h1, h2 = 1. Solid (green) squares: sampling of the exact distribu-
tion; solid (red) circles: semiclassical sampling; dashed blue curve:
uncorrelated emission.

aligned,

〈ω̂1|N ′〉E2
J−2,h1

= |α′; J − 2, J − 2〉, (24)

and the angular distribution of the first photon has a simple
form, P1(θ1) ∼ d2

2,h1
(θ1)2. Furthermore, because then J ′

⊥ = 0,
there is no tilting, χ = 0. The treatment is then exact also for
the second emission, so there is no need to check these two
cascade types.

2. E2-E2: J′ = J − 1

For the cascades with J ′ = J − 1 both μ = 1 and μ = 2
in Eq. (1) contribute for the first emission, so the state of the
daughter nucleus has the form

〈ω̂1|N ′〉E2
J−1,h1

= c1eiφ1 |α′; J − 1, J − 1〉
+ c2e2iφ1 |α′; J − 1, J − 2〉, (25)

with c2
1 + c2

2 = 1 and

c1 ∼
[

J − 1

J + 1

] 1
2

d2
1,h1

(θ1), (26)

c2 ∼ −
[

2

J + 1

] 1
2

d2
2,h1

(θ1) � 0. (27)
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FIG. 5. The angular distribution of the second E2 photon,
P2(ω̂2), for the two cases where the first E2 emission decreases
the nuclear-spin magnitude by one unit, J ′ = J − 1, calculated for
h1, h2 = 1. Solid (green) curve: exact distribution; solid (red) circles:
semiclassical simulation.

The angular distribution of the first photon is then a mix of

M = −1 and 
M = −2,

PE2:−
1 (ω̂1) ∼ J − 1

J + 1
d2

1,h1
(θ1)2 + 2

J + 1
d2

2,h1
(θ1)2, (28)

and the expectation value of the daughter spin follows,

J ′
⊥(θ1) = −√

2J − 2c1c2, (29)

J ′
z(θ1) = (J − 1)c2

1 + (J − 2)c2
2. (30)

The angular distribution of the second photon in E2 cas-
cades where the first emission decreases the nuclear spin by
one unit, J ′ = J − 1, is illustrated in Fig. 5. It is apparent from
the figure that the semiclassical treatment is far from perfect
with regard to the directional distribution of the second pho-
ton, especially when comparing with the practically perfect
results for E1 emissions.

However, it should be kept in mind that emission into
the polar regions is suppressed by the geometric factor sin θ2

and therefore plays a smaller role. (This comment applies to
the distributions shown in Fig. 5 as well as to those shown
earlier in Figs. 1 and 3.) This effect is illustrated in Fig. 6
for the two E2 cascade types considered here. When viewed
from this practical perspective, the discrepancies, although
significant, are not overwhelming and it may be expected that
the approximate treatment can be useful also for E2 cascades.

This expectation is supported by the results for the
opening-angle distribution, shown in Fig. 7 for the two E2
cascade types where J ′ = J − 1. As can be seen, the semiclas-
sical treatment yields a remarkably good (in fact practically
perfect) reproduction of the exact P12(ψ ) for the E2-E2
cascades.
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FIG. 6. The angular yield of the second E2 photon, dN2/dθ2 =
P2(θ2) sin θ2, for the two cases where the first E2 emission decreases
the nuclear spin by one unit, J ′ = J − 1, calculated for h1, h2 = 1.
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sical simulation.

Also here it should be noted that the correlated results
differ significantly from those corresponding to uncorrelated
emissions.

IV. CONCLUDING REMARKS

We have presented a novel semiclassical treatment of pho-
ton emission that is particularly well suited for Monte Carlo
simulations of decay cascades, such as those occurring in
fission fragments.

The key approximation is to represent each fragment by
a maximally aligned quantum state, using the direction of its
original classical angular momentum as the initial alignment
direction and then modifying the alignment direction after
each emission depending on the emission direction. The in-
clusion of this spin recoil effect at each stage of a cascade
ensures that the resulting many-photon emission pattern (ap-
proximately) retains its inherent correlations.

The quantitative utility of this approximate treatment was
illustrated by a variety of two-photon cascades. For E1 cas-
cades it was shown that the treatment works very well for both
the individual angular distributions and for the distribution of
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FIG. 7. The distribution of the opening angle between the emis-
sion directions of two sequential E2 photons, P12(ψ ), for the two
E2 cases where the first emission reduces the nuclear spin by one
unit, J ′ = J − 1, calculated for h1, h2 = 1. Solid (green) squares:
sampling of the exact correlated distribution P12(ω̂1, ω̂1); solid (red)
circles: semiclassical sampling; dashed (blue) curve: uncorrelated
emission.

the opening angle between the two photons. For E2 cascades
the reproduction of the individual distributions is less perfect
but still acceptable, while the opening-angle distributions are
practically perfectly reproduced.

The developed semiclassical treatment is straightforward
to implement into existing fission simulation codes such as
FREYA. Because the treatment keeps track of how the frag-
ment angular-momentum vector is affected by each photon
emission, the evolution of the correlated spin-spin distribution
can be followed through the cascade stage. In particular, the
results presented suggest that such an augmentation would
make it possible to address the photon correlations in a quanti-
tatively meaningful manner and develop more refined observ-
ables for probing the fission-fragment angular momenta.
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