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Abstract

Model Selection for Contextual Bandits and Reinforcement Learning

by

Aldo Pacchiano Camacho

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Peter Bartlett, Co-chair

Professor Michael Jordan, Co-chair

In many domains ranging from internet commerce, to robotics and computational
biology, many algorithms have been developed that make decisions with the objective
of maximizing a reward, while learning how to make better decisions in the future.
In hopes of realizing this objective a vast literature focused on the study of Bandits
and Reinforcement Learning algorithms has arisen. Although in most practical
applications, precise knowledge of the nature of the problem faced by the learner may
not be known in advance most of this work has chiefly focused on designing algorithms
with provable regret guarantees that work under specific modeling assumptions. Less
work has been spent on the problem of model selection where the objective is to
design algorithms that can select in an online fashion the best suitable algorithm
among a set of candidates to deal with a specific problem instance.

In this thesis we provide a comprehensive set of algorithmic approaches to the problem
of model selection in stochastic contextual bandits and reinforcement learning. We
propose and analyze two distinct approaches to the problem. First, we introduce
Stochastic CORRAL, an algorithm that successfully combines an adversarial EXP3 or
CORRAL master with multiple stochastic bandit algorithms. Second, we introduce
three distinct stochastic master algorithms: Explore-Commit-Eliminate (ECE), Regret
Balancing, and Regret Bound Balancing and Elimination (RBBE) that recover the
rates of Stochastic CORRAL under an EXP3 and a CORRAL master but with the
advantage the model selection guarantees of RBBE extend to the setting of contextual
linear bandits with adversarial contexts. We complement our algorithmic results with
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a variety of lower bounds designed to explore the theoretical limits of model selection
in Contextual Bandits and Reinforcement Learning.
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Chapter 1

Introduction

Recent advances in machine learning and compute have made the presence of learning
algorithms ubiquitous in many aspects of modern life. The vast majority of internet
powered services ranging from social networks, email providers, marketplaces and
search engines rely on online algorithms to produce engaging content to users while
allowing to further learn about their preferences. The use of these algorithmic tech-
niques is not limited to the internet domain. In applications where machine learning
is starting to have a profound impact, such as computational biology, economics, or
robotics, the use of methods that allow to simultaneously learn about the system’s
objective while at the same time produce near optimal solutions has also become of
paramount importance.

The need for developing algorithms than can simultaneously learn while taking near
optimal decisions has led to the formalism of online learning and more specifically to
the study of Bandits and Reinforcement Learning problems. There is a vast literature
revolving around the objective of designing algorithms with provable regret guarantees
for Bandits and Reinforcement learning problems. The vast majority of these works
have focused on settings with specific model assumptions. This has given rise to a
rich literature that includes among others algorithms such as UCB [9] for the Multi
Armed bandit problem, OFUL [1] for linear bandits and UCBVI [10] for tabular
Reinforcement Learning.

In many applications, the appropriate model may not be known in advance by
the learner. For example, when faced with a contextual bandit instance with multiple
arms and changing contexts, the learner may be unaware if there is a linear reward
structure underlying the rewards or if these rewards instead follow a simpler multi
armed bandit model. In this case, selecting the appropriate algorithm adapted to the
true structure of the problem is of paramount importance. For example if the learner
was facing a problem over T time-steps with K arms and contexts of dimension d,
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and the problem structure was truly linear, the learner would greatly benefit from
using a linear bandits algorithm instead of a multi armed bandit one. This is true
for two reasons, first because the reward achievable by an algorithm leveraging the
linear structure of the contexts could be much higher than that reachable by an
algorithm that ignores it, and second because if the problem is truly linear a linear
bandit algorithm such as OFUL will accrue regret (up to logarithmic factors) of order

Õ(d
√
T ) whereas UCB would instead collect a regret of order Õ(

√
KT ), a quantity

that could be substantially higher than the former in case d�
√
K. Conversely, if

the problem does not satisfy a linear model, it may be prejudicial for the learner
to use a linear bandit algorithm because if the problem is not truly linear, a linear
bandit algorithm such as OFUL may incur a linear regret1.

It is thus important to develop methods that can deal with model uncertainty
by allowing to select in an online fashion among multiple algorithms the one that is
best adapted to the problem instance at hand. The problem of model selection in
contextual bandits and reinforcement learning focuses on this task. In this thesis we
shall focus on the study of the problem of model selection for stochastic contextual
bandits and reinforcement learning.

The algorithms we develop in this work follow the template of [5] where a ‘master’
algorithm is placed on top of a couple of ‘base’ algorithms. At the beginning of each
round the master selects which base algorithm to ‘listen to’ during that time-step
effectively treating the base algorithms as arms to be pulled by the master. The
difficulty in using existing algorithms such as UCB or EXP3 [13] as a master lies in
the non-stationary nature of the rewards collected by a learning base algorithm. The
master needs to be sufficiently smart to recognize when a base algorithm is simply
performing poorly because it still in the early stages of learning from the case where
poor performance is the result of model misspecification.

The problem of model selection in online decision-making environments with
limited-information feedback (which includes both bandits and reinforcement learning),
has been an active area of recent research as witnessed by a proliferation of recent
works (e.g., [4, 5, 7, 12, 18, 26, 27, 28, 43]). Broadly speaking previous works on
model selection can be split into two types of methods,

1. Adversarial Master. Methods that make use of an adversarial algorithm
such as EXP3 to select the base algorithm to listen to.

2. Statistical Test. Methods that perform a statistical test to detect when a
base algorithm is misspecified.

1We henceforth refer to an algorithm that is not well adapted to the environment where it is
played to be misspecified.
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Adversarial Master. In the first group are the so-called corraling algorithms.
These algorithms satisfy regret guarantees of the form O(dα?T

β) for α ≥ 1, β < 1,
where d? depends on the complexity of the best model class or algorithm adapted to
the problem at hand. The original CORRAL Algorithm of [5] uses an adversarial
master algorithm that can be combined with many base algorithms (both stochastic
and adversarial) whenever these base algorithms satisfy a stability guarantee. Unfor-
tunately, in order to show that a base algorithm can be combined with the corraling
master to satisfy a valid model selection regret guarantee, it is necessary to verify
this stability condition is satisfied, something that has to be done on a case-by-case
basis. There exist other related approaches in the literature that use adversarial
corralling master algorithms to performing model selection. For example [7] make
use of a Tsallis-INF adversarial master in an algorithm they show is able to obtain
gap-dependent guarantees for stochastic bandit problems. Unfortunately the model
selection guarantees achievable by their approach depend not on the complexity of
the optimal model class, but on the size of the largest model class under consideration.
This means that whenever the rates of the input base algorithms are of the form
{diTα}Mi=1, where d1 ≤ · · · ≤ dM , their master algorithm satisfies a regret guarantee
scaling with dM instead of di? , a quantity that could be substantially smaller.

Statistical Test In the second group of approaches that use a statistical test to
detect misspecification, model selection regret guarantees have been shown under
strong eigenvalue conditions on the context distribution in the setting of stochastic
linear contextual bandits setting. When the contextual information is stochastic, [27]

obtain model selection guarantees of the form O(d
1/3
∗ T 2/3) under an action-averaged

eigenvalue condition, and [18] match the optimal guarantee when choosing between
multi-armed bandits and contextual bandits under a stronger universal eigenvalue
condition that ensures that contexts corresponding to all arms are sufficiently diverse.
The results of [27] leverage the fact that it is possible to estimate the optimal value
under the optimal model at a rate of

√
d/n finding the optimal policy under the

complex model (which has estimation error rate d/n). Both of these algorithms
work by keeping a collection of active base learners, and playing a low complexity
algorithm/model in the active set. When enough information is obtained to conclude
that a higher complexity model would be more adequate to describe the observed
data, they eliminate the low complexity model from the active set, and proceed to
play a more complex one.

Model selection in Reinforcement Learning. Though there has been some
work on offline feature selection and model selection for RL given a batch of data
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(see e.g. [24, 31, 35, 55]), there has been very little work specifically on online model
selection in reinforcement learning. Prior work provided PAC results for online feature
selection for factored tabular MDPs [30]. More recent work provides PAC bounds [48]
for model selection in online RL when the optimal value is known: however, unlike
contextual bandits [27, 40], there are no known algorithms for estimating the optimal
value faster than identifying the optimal policy in RL settings.

Main Results and Organization of the Thesis

The remainder of the thesis is organized into five chapters. The subject of the
first four is to introduce a variety of procedures for model selection that chart the
approach space outlined in the previous discussion. We propose and analyze four
model selection algorithmic techniques. The first of which, Stochastic CORRAL
allows to combine an adversarial master with multiple base algorithms satisfying high
probability regret guarantees. Two of the three remaining algorithmic approaches
proposed in this thesis, Explore-Commit-Eliminate and Regret Bound Balancing are
based on the principle of a statistical test to detect misspecification among the base
algorithms. The two of them use different exploration schedules. The remaining
approach, Simple Regret Balancing is an algorithmic technique that without the
need of an adversarial master nor an elimination procedure, yields model selection
guarantees among base algorithms with the same putative regret guarantee2. In the
last chapter we describe future directions of research. Below we provide an overview
of the results in each of the coming chapters.

Stochastic CORRAL In Chapter 2 we expand on the CORRAL algorithm from [5]
and introduce Stochastic CORRAL, an algorithmic approach that successfully com-
bines an adversarial EXP3 or CORRAL master with multiple stochastic bandit
algorithms. Our approach is flexible enough that it does not require the algorithm
designer to have any information about the inner workings of the base algorithms,
other than knowing they may satisfy (if not misspecified) a high probability regret
guarantee. In this chapter we also present two minimax lower bounds showing,

A) It is impossible to distinguish between logarithmic and square root base learners.

B) Knowledge of the target regret guarantee is necessary for perfect model selection.

Work in this chapter is joint with My Phan, Yasin Abbasi-Yadkori, Anup Rao, Julian
Zimmert, Tor Lattimore and Csaba Szepesvari. It is based on the paper [54].

2Just as in every other approach we propose, not all of these algorithms has to be well adapted
to the environment at hand.



CHAPTER 1. INTRODUCTION 5

Explore-Commit-Eliminate In Chapter 3 we introduce the Explore-Commit-
Eliminate Algorithm (ECE). This algorithm makes use of a simple misspecification
detection procedure that allows it to weed out base algorithms that are not well
adapted to the problem at hand. In contrast with Stochastic CORRAL, the set of
‘active’ base algorithms shrinks as time progresses. ECE uses an exploration schedule
reminiscent of ε−greedy approaches to the Multi Armed Bandit problem. The model
selection regret guarantees achievable by ECE recover the EXP3 rates of Stochastic
CORRAL. Additionally, ECE can be shown to achieve gap-dependent model selection
regret guarantees, a result that to our knowledge is not possible with Stochastic
CORRAL. Work on this chapter is joint with Jonathan Lee, Vidya Muthukumar,
Weihao Kong and Emma Brunskill. It is based on the paper [43].

Regret Balancing In Chapter 4 we describe an approach to model selection based
on the principle of regret balancing (equating the empirical regret guarantees of
multiple base algorithms). We show this idea can yield surprisingly simple algorithms
with meaninfgul model selection guarantees for stochastic contextual bandits and
reinforcement learning. We complement our results with a lower bound showing that
any ‘perfect’ model selection procedure must be doing a form of regret balancing.
Work on this chapter is joint with Yasin Abbasi-Yadkori and My Phan. It is based
on the paper [4].

Regret Bound Balancing and Elimination In Chapter 5 we expand on the
basic principle of regret balancing described in Chapter 4 and introduce Regret
Bound Balancing and Elimination (RBBE), an algorithmic procedure that makes use
of the same statistical test as ECE to eliminate misspecified base algorithms, but
that follows an exploration schedule dictated by a regret balancing condition. The
model selection regret guarantees achievable by RBBE recover the CORRAL master
rates of Stochastic CORRAL. Similar to ECE, RBBE achieves gap-dependent model
selection regret guarantees. We also show that when applied to the problem of model
selection for linear stochastic bandits RBBE is versatile enough to also cover cases
where the context information is generated by an adversarial environment. Work on
this chapter is joint with Christoph Dann, Claudio Gentile and Peter Bartlett. It is
based on the paper [53].

All of our algorithms recover meaningful model selection rates in several applica-
tions, including linear bandits and MDPs with nested function classes, linear bandits
with unknown misspecification, and OFUL applied to linear bandits with different
confidence parameters.
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Chapter 2

Stochastic CORRAL

2.1 Introduction

Bandit algorithms have been applied in a variety of decision making and personaliza-
tion problems in industry. There are many specialized algorithms each designed to
perform well in specific environments. For example, algorithms are designed to exploit
low variance [8], extra context information and linear reward structure [1, 20, 44],
sparsity [2, 15], etc. The exact properties of the current environment however might
not be known in advance, and we might not know which algorithm is going to perform
best.

Model selection in contextual bandits aims to solve this problem. More formally,
the learner is tasked to solve a bandit problem for which the appropriate bandit
algorithm to use is not known in advance. Despite this limitation, the learner does
have access to M different algorithms {Bi}Mi=1, one of which Bi? is promised to be
adequate for the problem the learner wishes to solve. We use regret to measure the
learner’s performance1. The problem’s objective is to design algorithms that would
minimize regret.

Adapted and misspecified algorithms We say that an algorithm is adapted
to the environment at hand if it satisfies a valid regret guarantee. Let’s illustrate
this with an example in the setting of linear bandits with finitely many arms. In
this problem the learner has access to K arms. Each arm i ∈ [K] is associated
with a feature vector zi ∈ Rd, and the reward of arm i ∈ [K] follows a linear
model of the form ri = 〈zi, θ?〉+ ξi where ξi is conditionally zero mean and θ? is an
unknown parameter. An algorithm such as LinUCB [19] achieves a regret guarantee

1We will define regret more formally in the following section.
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of order Õ(
√
d log3(K)T ) where Õ hides logarithmic factors in T . In contrast, the

UCB algorithm [9] yields a regret guarantee of order Õ(
√
KT ). In this case, both

algorithms are well adapted to the problem of linear bandits with finitely many
actions, but LinUCB’s regret guarantee may be substantially smaller than UCB’s
regret upper bound if d is much smaller than K. If an algorithm is not well adapted,
we say it is misspecified. For the sake of exposition let’s assume we are in a similar
setting as above, where the learner has access to K arms each of which is associated
with a feature vector zi ∈ Rd. Instead of assuming a linear model as before, let’s
instead assume that ri = (〈zi, θ?〉)2 + ξi is quadratic. In this case, there is no reason
to believe LinUCB can yield a valid regret guarantee since the underlying linearity
assumption of LinUCB is violated. We say that in this case LinUCB is misspecified.
Consider an instance of LinUCB that instead uses matrix features of the form ziz

>
i .

In this case the quadratic reward is again a linear function of the feature vectors
since (〈zi, θ?〉)2 = 〈ziz>i , θ?θ>? 〉. Thus this version of LinUCB with quadratic features
is adapted.

We will assume that all algorithms Bi for i ∈ [M ] are associated with a putative
regret guarantee Ui(t, δ) known by the learner and holding with probability 1− δ for
all t ∈ [N] if algorithm i is adapted to the environment at hand. If the learner knew
the identity of the best adapted algorithm i?, it would be able to incur regret of order
Ui?(T, δ) by playing Bi? . The learner’s objective in the model selection problem is to
design a procedure that would allow a learner to incur in regret that is competitive
with the regret upper bound Ui?(t, δ) of the best adapted algorithm among those in
{Bi}Mi=1, so that the regret incurred by the learner up to time T scales as a function
of T , the parameters defining Bi? and possibly M . From now on we will refer to each
of the M algorithms in Bi? as a base algorithm. We will alert the reader if we have a
specific set of M algorithms in mind. In any other case, when we talk about the set
of base algorithms we simply mean a set of M algorithms the learner is hoping to
model select from.

The authors of [49] were perhaps the first to address the bandit model-selection
problem, with a variant of EXP4 master algorithm that works with UCB or EXP3
base algorithms. These results are improved by [5] via the CORRAL algorithm. The
CORRAL algorithm follows the master-base template that we discussed in Chapter 1.
It makes use of a CORRAL master based on a Log-Barrier Online Mirror Descent
algorithm controlling which of the base algorithms to play at any given round. Let pt
be the probability distribution over the M base algorithms given by the CORRAL
master. The learner will then sample an algorithm index jt ∈ [M ] with jt ∼ pt. and
play the action prescribed by Bjt to collect a reward rt. All algorithms {Bi}Mi=1 are
then updated using an importance weighted version of rt regardless of whether they
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were selected by the master or not.
Unfortunately, this means that in order to use a base algorithm in CORRAL, this

needs to be compatible with this importance weighting modification of the rewards.
For example, to use UCB as a base, we would need to manually re-derive UCB’s
confidence intervals and modify its regret analysis to be compatible with importance
weighted feedback. The authors show that a base algorithm can be safely combined
with the CORRAL master to yield model selection guarantees provided it satisfies a
stability condition (see Definition 3 in [5]). Verifying that an algorithm satisfies such
stability condition is a cumbersome process that requires a detailed analysis of the
algorithm’s internal workings. In this work we instead focus on devising a black-box
procedure that can solve the model selection problem for a general class of stochastic
contextual bandit algorithms.

Contributions. We focus on the problem of bandit model-selection in stochastic
environments. Our contributions are as follows:

• We introduce Stochastic CORRAL, a two step per round algorithm and an accom-
panying base ”smoothing” wrapper that can be shown to satisfy model selection
guarantees when combined with any set of M stochastic contextual bandit algo-
rithms that satisfy a high probability regret guarantee when adapted. We also
show model selection regret guarantees for Stochastic CORRAL with two distinct
adversarial master algorithms, CORRAL [5] and EXP3.P [13]. Our approach is
more general than that of the original CORRAL algorithm [5] because instead
of requiring each base algorithm to be individually modified to satisfy a certain
stability condition, our version of the CORRAL algorithm provides the algorithm
designer with a generic black-box wrapper that allows to do model selection over
any set of M base algorithm with high probability regret guarantees. Stochastic
CORRAL has another important difference with respect to the original CORRAL
algorithm: instead of importance weighted feedback, the reward rt is sent to algo-
rithm Bjt , and only this algorithm is allowed to update its internal state at round
t. The main consequence of these properties of Stochastic CORRAL is that our
model selection strategy can be used with almost any base algorithm developed for
stochastic environments. When the optimal base regret is known, the CORRAL
master achieves optimal regret guarantees. Under certain conditions when the
optimal base regret is unknown EXP3.P can achieve better performance.

• We demonstrate the generality and effectiveness of our method by showing how
it seamlessly improves existing results or addresses open questions in a variety
of problems. We show applications in adapting to the misspecification level in
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contextual linear bandits [42], adapting to the unknown dimension in nested
linear bandit classes [27], tuning the data-dependent exploration rate of bandit
algorithms, and choosing feature maps in reinforcement learning. Moreover, our
master algorithm can simultaneously perform different types of model selection. For
example, we show how to choose both the unknown dimension and the unknown
mis-specification error at the same time. This is in contrast to algorithms that
specialize in a specific type of model selection such as detecting the unknown
dimension [27].

• In the stochastic domain, an important question is whether a model selection
procedure can inherit the O(log T ) regret of a fast stochastic base algorithm.
We show a lower bound for the model selection problem that scales as Ω(

√
T ),

which implies that our result is minimax optimal. Our master algorithm requires
knowledge of the best base’s regret to achieve the same regret. We show that this
condition is unavoidable in general: there are problems where regret of the best
base scales as O(T x) for an unknown x, and the regret of any master algorithm
scales as Ω(T y) for y > x.

2.2 Problem Statement

Let δa denotes the delta distribution at a. For an integer n, we use [n] to denote
the set {1, 2, . . . , n}. We consider the following formulation of contextual stochastic
bandits. At the beginning of each time-step t, the learner observes a context At
coming from a set of contexts. After this the learner will select an action at and
then collect a reward rt = f(At, at) + ξt, a noisy quantity that will depends on the
context At, and the learner’s action at, a reward function f and a 1−subGaussian
conditionally zero mean random noise random variable ξt. In this Chapter we will
restrict ourselves to the case where contexts sets At are all subsets of a context
generating set A. This is in fact a very general scenario that captures all types of
contextual bandit problems ranging from the case of changing linear contexts with
linear rewards, to more general contexts and reward sets studied in works such as [25].
For simplicity we will assume the contexts At ⊂ Rd are parametrized as a subset
of action features. Our formulation allows for the action set to vary in size from
round to round and even to be infinite. For example, the finite linear contextual
bandit setting (where At = A for all t) fits in this setting. Similarly it is easy to see
the linear contextual bandit problem with i.i.d. contexts and K actions can also be
written as an instance of our formulation. In the linear contextual bandit problem
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with K actions the learner is presented at time t with K action-vectors At = {ai}Ki=1

with ai ∈ Rd and the (random) return ra of any action a ∈ A satisfies ra = 〈a, θ?〉+ ξ.
In this work we focus on the setting of stochastic i.i.d. contexts. Let S be the

set of all subsets of A and let DS be a distribution over S. We assume all contexts

At
i.i.d.∼ DS and that f : S × A → R. Let X ⊂ A and denote by ∆X to the space

of distributions over X . For any policy π : X → ∆X . Let’s denote by Π as the
space of all policies with domain in Support(DS). We abuse notation and denote
f(X , π) = Ea∼π [f(X , a)]. Notice that in this case f(X , a) = f(X , δa) for all a ∈ A.

In a contextual bandit problem the learner chooses policy πt at time t, which takes
context set At ∈ S as an input and outputs a distribution over At. The learner then
selects an action at ∼ πt(At) and receives a reward rt such that rt = f(At, δat) + ξt.

We are interested in designing an algorithm with small regret, defined as

R(T ) = max
π∈Π

E

[
T∑
t=1

f(At, π)−
T∑
t=1

f(At, πt)

]
. (2.1)

If for example Ui(T, δ) = cdi
√
T log(1/δ) for all i ∈ [M ] we would like our

algorithm to satisfy a regret guarantee of the form R(T ) ≤ O(Mαdβi?
√
T log(1/δ))

for some α ≥ 0, β ≥ 1 and where i? is the index of the best performing adapted base
algorithm Bi? . Crucially, we want to avoid this guarantee to depend on other di > di?
(if any). From now on we will refer to the policy maximizing the right hand side of
the equation above as π∗. For simplicity we will also make the following assumption
regarding the range of f ,

Assumption 2.2.1 (Bounded Expected Rewards). The absolute value of f is bounded
by 1,

max
A′,π
|f(A′, π)| ≤ 1

Throughout this work we assume the base algorithms we want to model select
from satisfy a high probability regret bound whenever they are well adapted to their
environment. We make this more precise in definition 2.2.1,

Definition 2.2.1 ((U, δ, T )−Boundedness). Let U : R × [0, 1] → R+. We say
an adapted algorithm B is (U, δ, T )−bounded if with probability at least 1 − δ and
for all rounds t ∈ [1, T ], its cumulative pseudo-regret is bounded above by U(t, δ):∑t

l=1 f(Al, π∗)− f(Al, πl) ≤ U(t, δ).
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We assume that for all i ∈ [M ] the base algorithm Bi is (Ui, δ, T )-bounded for
a function Ui known to the learner2. For example in the Multi Armed Bandit
Problem with K arms the UCB algorithm is (c

√
KT log(T/δ), δ, T )−bounded for

some universal constant c > 0.

Original CORRAL

We start by reproducing the pesudo-code of CORRAL [5] (see Algorithm 1) as it will
prove helpful in our discussion of our main algorithm: Stochastic CORRAL. Recall
that CORRAL follows the master-base template that we discussed in Chapter 1.
As we have explained in the previous section we assume there are M candidate
base algorithms and a master algorithm which we denote as M. At time-step t
the CORRAL master M selects one of the base algorithms in {Bi}Mi=1 according
to a distribution pt ∈ ∆M by sampling an index jt ∼ pt. The learner plays action
at ∼ πt,jt(At) and receives reward rt = f(At, δat) + ξt. An importance weighted
version of rt is sent out to all base algorithms, after which all of them update their
internal state.

Algorithm 1: Original CORRAL

1 Input: Base Algorithms {Bj}Mj=1, learning rate η.

2 Initialize: γ = 1/T, β = e
1

lnT , η1,j = η, ρj1 = 2M, pj
1

= 1

ρj1
, pj1 = 1/M for all

j ∈ [M ].
3 Initialize all base algorithms.
4 for t = 1, · · · , T do
5 Receive context At ∼ DS.
6 Receive policy πt,j from Bj for all j ∈ [M ].
7 Sample jt ∼ pt.
8 Play action at ∼ πt,jt(At).
9 Receive feedback rt = f(At, δat) + ξt.

10 Send feedback rt
pt,jt

1{j = jt} to Bj for all j ∈ [M ].

11 Update pt, ηt, pt and ρt to pt+1, ηt+1, p
t+1

and ρt+1 via CORRAL− Update

2Recall that in this case the upper bound on the algorithm’s regret is satisfied only when Bi is
well adapted to the environment.
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Algorithm 2: Log-Barrier-OMD(pt, `t, ηt)

1 Input: learning rate vector ηt, previous distribution pt and current loss `t
2 Output: updated distribution pt+1

3 Find λ ∈ [minj `t,j,maxj `t,j] such that
∑M

j=1
1

1

pit
+ηt,j(`t,j−λ)

= 1

4 Return pt+1 such that 1

pjt+1

= 1

pjt
+ ηt,j(`t,j − λ)

Algorithm 3: CORRAL− Update

1 Input: learning rate vector ηt, distribution pt, lower bound p
t

and current
loss rt

2 Output: updated distribution pt+1, learning rate ηt+1 and loss range ρt+1

3 Update pt+1 = Log-Barrier-OMD(pt,
rt
pt,jt

ejt , ηt).

4 Set pt+1 = (1− γ)pt+1 + γ 1
M

.
5 for j = 1, · · · ,M do

6 if pj
t
> pjt+1 then

7 Set pj
t+1

=
pjt+1

2
, ηt+1,j = βηt,i,

8 else
9 Set pj

t+1
= pj

t
, ηt+1,j = ηt,i.

10 Set ρjt+1 = 1

pjt+1

.

11 Return pt+1, ηt+1, p
t+1

and ρjt+1.

2.3 The Stochastic CORRAL Algorithm

In order to better describe the feedback structure of Stochastic CORRAL we abstract
the master-base interaction template discussed in Chapter 1 into Algorithms 4 and 5.
As we have mentioned before, one crucial difference between Stochastic CORRAL
and CORRAL is that in Stochastic CORRAL only the state of the base algorithm
whose action was selected is modified. In contrast in the CORRAL algorithm all the
base algorithms’ states are updated at every step.

To make this description more precise we introduce some notation. Each base
algorithm Bi maintains a counter st,i that keeps track of the number of times it has
been updated up to time t. For any base algorithm Bj, πs,j is the policy Bj uses at
state s. Let st,j denote the state of base j at time t. If t1 < t2 are two consecutive
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times when base j is chosen by the master, then base j proposed policy πst1,j ,j at
time t1 and policy πst2,j ,j during all times t1 + 1, . . . , t2 where st2,j = st1,j + 1.

Algorithm 4: Master Algorithm

1 Input: Base Algorithms {Bj}Mj=1 for t = 1, · · · , T do
2 Sample jt ∼ pt.
3 Play jt.
4 Receive feedback rt = rt,jt from playing the action prescribed by Bjt
5 Update master using rt

Algorithm 5: Base Algorithm Bj
1 Initialize state counter s = 1 for t = 1, · · · , T do
2 Receive action set At ∼ DS
3 Choose action at,j ∼ πs,j(At)
4 if selected by master (i.e. jt = j) then
5 Play action at,j
6 Receive feedback rt,j = f(At, δat,j) + ξt
7 Send rt,j to the master
8 Compute πs+1,j using rt,j
9 s← s+ 1

Regret Decomposition. Let’s introduce the regret decomposition we will make use
of to prove our regret guarantees. This is a similar decomposition as the one appearing
in the proofs of Theorem 4,5 and 7 of [5]. We split the regret R(T ) of Equation 2.1
into two terms (I and II) by adding and subtracting terms {f(At, πst,i? ,i?)}

T
t=1 :

R(T ) = E

[
T∑
t=1

f(At, π∗)− f(At, πt)

]

= E

[
T∑
t=1

f(At, πst,i? ,i?)− f(At, πt)

]
︸ ︷︷ ︸

I

+E

[
T∑
t=1

f(At, π∗)− f(At, πst,i? ,i?)

]
︸ ︷︷ ︸

II

(2.2)
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Term I is the regret of the master with respect to the optimal base Bi? , and term II
is the regret of the optimal base with respect to the optimal policy π∗. Analysis of
term I is largely based on the adversarial regret guarantees of the Log-Barrier-OMD
in CORRAL and of the EXP3.P algorithm.

In order to bound term II we will have to further modify the feedback structure
of Algorithms 4 and 5. In Algorithm 8 from Section 2.4 we introduce a smoothing
procedure that allows any (U, δ, T )-bounded algorithm to be transformed into a
‘smoothed’ version of itself such that its conditional expected instantaneous regret
is bounded with high probability during every even step. We name this procedure
‘smoothing’ because it is based on playing uniformly from the set of previously played
policies during the smoothed algorithm’s odd steps. We provide more details in
section 2.4. For now, the main property we are to use from this discussion is that
by smoothing a (U, δ, T )-bounded algorithm it is possible to ensure the conditional

expected instantaneous regret of the smoothed algorithm is bounded above by U(`,δ)
`

during the `−th even step. The function U(`,δ)
`

can be shown to be decreasing (as a
function of `) when U(`, δ) is concave in `. In Stochastic CORRAL the smoothing of
base algorithms takes the place of the stability condition required by the CORRAL
algorithm in [5].

Let’s sketch some intuition behind why this decreasing instantaneous regret
condition can help us bound term II. For all i ∈ [M ] let {pi1, . . . , piT} be the (random)
probabilities used by the Stochastic CORRAL master M (an adversarial master
algorithm) to chose base i during round t and let p

i
= mint p

i
t. Let’s focus on the

optimal algorithm i? and assume U?(t, δ) is convex in t. Since U?(t,δ)
t

is decreasing,
term II is the largest when base i? is selected the least often. For the sake of the
argument let’s assume that pi?t = p

i?
∀t. In this case base i will be played roughly Tp

i

times, and will repeat its decisions in intervals of length 1
p
i

, resulting in the following

bound:

Lemma 2.3.1 (informal). If regret of the optimal base is (U∗, T, δ)-bounded, then we
have that

E [II] ≤ O

(
E

[
1

p
i

U∗(Tpi, δ) log T

]
+ δT (log T + 1)

)
.

We demonstrate the effectiveness of our smoothing transformation by deriving
regret bounds with two master algorithms: the Log-Barrier-OMD algorithm in
CORRAL (introduced by [5]) which we will henceforth refer to as the CORRAL master
and EXP3.P (Theorem 3.3 in [13]) with forced exploration, a simple algorithm that
ensures each base is picked with at least a (horizon dependent) constant probability
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p which we will henceforth refer to as an EXP3.P master. We now state an informal
version of our main result, Theorem 2.4.11.

Theorem 2.3.2 (informal version of Theorem 2.4.11). If U∗(T, δ) = O(c(δ)Tα) for
some function c : R→ R and constant α ∈ [1/2, 1) and B∗ is (U, T, δ)-bounded, the
regrets of Stochastic CORRAL with an EXP3.P and CORRAL masters are:

Master Known α and c(δ) Known α, Unknown c(δ)

EXP3.P Õ
(
T

1
2−α c(δ)

1
2−α

)
Õ
(
T

1
2−α c(δ)

)
CORRAL Õ (Tαc(δ)) Õ

(
Tαc(δ)

1
α

)
The CORRAL master achieves optimal regret when α and c(δ) are known. When

c(δ) is unknown and c(δ) > T
(1−α)α

2−α (which is T 1/6 if α = 1/2 or α = 1/3), then using

an EXP3.P master achievess better regret because Õ
(
T

1
2−α c(δ)

)
< Õ

(
Tαc(δ)

1
α

)
.

We complement this result with a couple of lower bounds.

Lower bounds. Theorem 2.5.3 in Section 2.5 shows that if the regret of the best
base is O(T x), in the worst case a master algorithm that does not know x can have
regret Ω(T y) with y > x. Theorem 2.5.2 shows that in general it is impossible for any
master algorithm to achieve a regret better than Ω(

√
T ) even when the best base has

regret O(log(T )). When the regret of the best base is O(
√
T ), CORRAL with our

smoothing achieves the optimal O(
√
T ) regret.

The detailed description of the aforementioned smoothing procedure, its properties
and the regret analysis are postponed to Section 2.4. We also show some applications
of our model selection results in Section 2.6.

Master Algorithms

We review the adversarial bandit algorithms used as a Master in Algorithm 4.
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CORRAL Master

We reproduce the CORRAL master algorithm below.

Algorithm 6: CORRAL Master

1 Input: Base Algorithms {Bj}Mj=1, learning rate η.

2 Initialize: γ = 1/T, β = e
1

lnT , η1,j = η, ρj1 = 2M, pj
1

= 1

ρj1
, pj1 = 1/M for all

j ∈ [M ]. for t = 1, · · · , T do
3 Sample it ∼ pt.
4 Receive feedback rt from base Bit .
5 Update pt, ηt, pt and ρt to pt+1, ηt+1, p

t+1
and ρt+1 using

CORRAL− Update Algorithm 3.

EXP3.P Master

We reproduce the EXP3.P algorithm (Figure 3.1 in [14]) below. In this formulation
we use η = 1, γ = 2βk and p = γ

k
.

Algorithm 7: EXP3.P Master

1 Input: Base Algorithms {Bj}Mj=1, exploration rate p.

2 Initialize: pj1 = 1/M for all j ∈ [M ].
3 for t = 1, · · · , T do
4 Sample it ∼ pt.
5 Receive feedback rt from base Bit .
6 Compute the estimated gain for each base j: r̃t,j =

rt,j1it=j+p/2

pj,t
and update

the estimated cumulative gain R̃j,t =
∑t

s=1 r̃s,j. for j = 1, · · · ,M do

7 pjt+1 = (1− p) exp R̃j,t∑M
n=1 exp R̃n,t

+ p

2.4 Smoothed Algorithm and Regret Analysis

Non-increasing Instantaneous Regret

We introduce a ”smoothing” procedure (Algorithm 8) which, given a (U, δ, T )−bounded

algorithm B constructs a smoothed algorithm B̃ with the property that for some
time-steps its conditional expected instantaneous regret is decreasing. For ease of
presentation and instead of making use of odd and even time-steps in the definition
of B̃ we assume each round t is split in two types of steps (Step 1 and Step 2). We
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will denote objects pertaining to the t−th round step i using a subscript t and a
superscript (i). The construction of B̃ is simple. The smoothed algorithm maintains

an internal copy of the original algorithm B. During step 1 of round t, B̃ will play
the action suggested by its internal copy of B. During step 2 of round t, B̃ will
instead sample uniformly from the set of policies previously played by the copy of B
maintained by B̃ during steps of type 1 from all rounds from the start to t.

Let’s define step 2 more formally. If algorithm B is at state s during round t,
at step 2 of the corresponding time-step the smoothed strategy will pick an index
q in [1, 2, .., s] uniformly at random, and will then re-play the policy B used during
step 1 of round q. Since B is (U, δ, T )-bounded we will show in Lemma 2.4.2 that the
expected instantaneous regret of step 2 at round s is at most U(s, δ)/s with high
probability.

Algorithm 8: Smoothed Algorithm

1 Input: Base Algorithm B;
2 Let πs be the policy of B in state s.

3 Let π̃
(1)
s , π̃

(2)
s be the policies of B̃ in state s during step 1 and 2 respectively.

4 Initialize state counter s = 1.
5 for t = 1, · · · , T do

6

Receive action set A(1)
t ∼ DS

Let π̃
(1)
s = πs from Bi.

Step 1 Play action a
(1)
t ∼ π̃

(1)
s (A(1)

t ).

Receive feedback r
(1)
t = f(A(1)

t , δ
a

(1)
t

) + ξ
(1)
t

Calculate πs+1 of B using r
(1)
t .

Receive action set A(2)
t ∼ DS.

Sample q ∼ Uniform(0, · · · , s); Let π̃
(2)
s = πq from B.

Step 2 Play action a
(2)
t ∼ π̃

(2)
s (A(2)

t ).

Receive feedback r
(2)
t = f(A(2)

t , δ
a

(2)
t

) + ξ
(2)
t .

7 Update B’s internal counter s← s+ 1

It is easy to see that if algorithm B̃ has been played ` times (including step 1 and 2
plays), the internal counter of B equals `/2. We will make use of this internal counter
when we connect a smoothed algorithm with the Stochastic CORRAL master. We
now introduce the definition of (U, δ, T (2))−Smoothness which in short corresponds
to algorithms that satisfy a high probability conditional expected regret upper bound
during steps of type 2.



CHAPTER 2. STOCHASTIC CORRAL 18

Definition 2.4.1 ((U, δ, T (2))−Smoothness). Let U : R × [0, 1] → R+. We say a

smoothed algorithm B̃ is (U, δ, T (2))−smooth if with probability 1−δ and for all rounds
t ∈ [T ], the conditional expected instantaneous regret of Step 2 is bounded above by
U(t, δ)/t:

EA′;∼DS ,π(2)
t =πq s.t. q∼Uniform(0,··· ,s)[f(A′, π∗)− f(A′, π(2)

t )|F̃t−1] ≤ U(t, δ)

t
, ∀t ∈ [T ].

(2.3)

Where F̃t−1 = σ
(
{A(i)

` , π̃
(i)
` , r

(i)
` , a

(i)
` }`∈[t−1],i∈{1,2},∪{A(1)

` , π̃
(1)
` , r

(i)
` , a

(1)
` }
)

is the sigma

algebra generated by all contexts, rewards, policies and actions up to time t step 1.

During all steps of type 2 algorithm B̃ replays the policies it played as a result
of encountering contexts A(1)

1 , ...,A(1)
s . In Lemma 2.4.2 we will use the fact that

all contexts are assumed to be generated as i.i.d. samples from the same context
generating distribution DS to show that B̃ is (U, δ, T (2))−smooth.

With this objective in mind let’s analyze a slightly more general setting. Let
B be a (U, δ, T )−bounded algorithm playing in an environment where the high
probability regret upper bound U holds. Let’s assume that B has been played for t
time-steps during which it has encountered i.i.d. generated contexts A1, · · · ,At and
has played actions sampled from policies π1, · · · , πt. Similar to the definition of F̃t−1

in Definition 2.4.1, let’s define Ft−1 = σ
(
{A`, π̃`, r`, a`}`∈[t−1]

)
, the sigma algebra

generated by all contexts, rewards, policies and actions up to time t− 1. We define
the “expected replay regret” Replay(t|Ft−1) as:

Replay(t|Ft−1) = EA′1,··· ,A′t

[
t∑
l=1

f(A′l, π∗)− f(A′l, πl)

]
(2.4)

Where A′1, · · · ,A′t are i.i.d. contexts from DS all of them conditionally independent
from Ft. It is easy to see that the conditional instantaneous regret of a smoothed
algorithm B̃ during round t step 2 equals the expected replay regret Replay(t|F̃t−1)

of the B copy inside B̃.
As a first step in proving that B̃ is (U, δ, T (2))−smooth in Lemma 2.4.2 we show

the replay regret of a (U, δ, T )-bounded algorithm satisfies a high probability upper
bound.

Lemma 2.4.2. If B is (U, δ, T )−bounded with U(t, δ) > 8
√
t log( t

2

δ
) and the rewards

satisfy Assumption 2.2.1, then with probability at least 1−δ for all t ∈ [T ] the expected
replay regret of B satisfies:

Replay(t|Ft−1) ≤ 4U(t, δ) + 2δt.
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Furthermore, if δ ≤ 1√
T

then Replay(t|Ft−1) ≤ 5U(t, δ).

Proof. Let’s condition on the event E1 that B’s plays satisfy the high probability
regret guarantee given by U :

t∑
l=1

f(Al, π∗)− f(Al, πl) ≤ U(t, δ). (2.5)

For all t ∈ [T ] and where A1, · · · ,At are the contexts algorithm B encountered up to
time t. Since B is (U, δ, T )−bounded it must be the case that P (E1) ≥ 1− δ.

Let A′1, · · · ,A′t be a collection of t fresh i.i.d. contexts from DS independent from
Ft. We now use martingale concentration arguments to show that

∑t
l=1 f(Al, π∗) ≈∑t

l=1 f(A′l, π∗) and
∑t

l=1 f(Al, πl) ≈
∑t

l=1 f(A′l, πl). Consider the following two
martingale difference sequences:{

M1
l := f(Al, π∗)− f(A′l, π∗)

}T
l=1{

M2
l := f(A′l, πl)− f(Al, πl)

}T
l=1

Since by assumption maxA′,π |f(A′, π)| ≤ 1 each term in {M1
l } and {M2

l } is bounded
and satisfies max (|M1

l |, |M2
l |) ≤ 2 for all t. A simple use of Azuma-Hoeffding yields:

P

(∣∣∣∣∣
t∑
l=1

M i
l

∣∣∣∣∣ ≥
√

8t log

(
8t2

δ

))
≤ 2 exp

(
−

8t log(8t2

δ
)

8t

)
=

δ

4t2
.

Summing over all t, and all i ∈ {1, 2}, using the fact that
∑T

t=1
1
t2
< 2 and the union

bound implies that for all t, with probability 1− δ,∣∣∣∣∣
t∑
l=1

f(Al, πl)− f(A′l, πl)

∣∣∣∣∣ ≤
√

8t log

(
8t2

δ

)
(2.6)∣∣∣∣∣

t∑
l=1

f(Al, π∗)− f(A′l, π∗)

∣∣∣∣∣ ≤
√

8t log

(
8t2

δ

)
(2.7)

(2.8)

Denote this event as E2. We shall proceed to upper bound the replay regret. Let’s
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condition on E1 ∩ E2. The following sequence of inequalities holds,

t∑
l=1

f(A′l, π∗)− f(A′l, πl)
(i)

≤
t∑
l=1

f(Al, π∗)− f(Al, πl) +

∣∣∣∣∣
t∑
l=1

f(Al, πl)− f(A′l, πl)

∣∣∣∣∣+∣∣∣∣∣
t∑
l=1

f(Al, π∗)− f(A′l, π∗)

∣∣∣∣∣
≤ U(t, δ) + 2

√
8t log

(
8t2

δ

)
For all t ∈ [T ]. Inequality (i) follows by the triangle inequality while (ii) is a

consequence of conditioning on E1 ∩ E2 and invoking inequalities 2.5, 2.6 and 2.6. We
conclude that with probability at least 1− 2δ and for all t ∈ [T ],

t∑
l=1

f(A′l, π∗)− f(A′l, πl) ≤ U(t, δ) + 2

√
8t log

(
8t2

δ

)

Since we have assumed that U(t, δ) > 8
√
t log( t

2

δ
), averaging out over the randomness

in {A′l}tl=1 yields that conditioned on E1,

Replay(t|Ft−1) ≤ 4(1− 2δ)U(t, δ) + 2δt < 4U(t, δ) + 2δt.

It is easy to see that in case δ ≤ 1√
T

then Replay(t|Ft−1) ≤ 5U(t, δ).

In Propositon 2.4.3 we show that if B is bounded, then B̃ is both bounded and
smooth. We will then show that several algorithms such as UCB, LinUCB, ε-greedy
and EXP3 are (U, δ, T )-bounded for appropriate functions U . By Proposition 2.4.3
we will then conclude the smoothed versions of these algorithms are smooth.

Proposition 2.4.3. If U(t, δ) > 8
√
t log( t

2

δ
), δ ≤ 1√

T
, the rewards satisfy Assump-

tion 2.2.1 and B is (U, δ, T )−bounded, then B̃ is (5U, δ, T (2))−smooth and with proba-
bility at least 1− 3δ,

t∑
l=1

∑
i∈{1,2}

f(A(i)
l , π

∗)− f(A(i)
l , π

(i)
l ) ≤ 7U(t, δ) log(t).

for all t ∈ [T ].
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Proof. Let E1 denote the event that B̃’s plays during steps of type 1 satisfy the high
probability regret guarantee given by U :

t∑
l=1

f(A(1)
l , π∗)− f(A(1)

l , π
(1)
l ) ≤ U(t, δ). (2.9)

for all t ∈ [T ]. Since the conditional instantaneous regret of Step 2 of round t
equals the average replay regret of the type 1 steps up to t, Lemma 2.4.2 implies
that whenever E2 holds (see definition for E2 in the proof of Lemma 2.4.2) which
occurs with probability at least 1− δ, the conditional expected instantaneous regret
satisfies: E[f(A′, π∗)− f(A′, π(2)

t )|F̃t−1] ≤ 5U(t,δ)
t

for all t ∈ [T ]. This shows that B̃ is
(5U, δ, T (2))−smooth.

It is easy to see that if we condition on E1 ∩ E2 the conditional expected instanta-
neous regret of steps of type 2 satisfy,

t∑
l=1

E[f(A′, π∗)− f(A′, π(2)
l )|F̃l−1] ≤

t∑
l=1

5U(l, δ)

l
≤ 5U(t, δ) log(t) (2.10)

For all t ∈ [T ]. We now show the regret incurred by B̃ satisfies a high probability
upper bound. To bound the regret accrued during time-steps of type 2, consider the
following Martingale difference sequences,{

M1
l := E[f(A′, π(2)

l )|F̃l−1]− f(A(2)
l , π

(2)
l )
}T
l=1{

M2
l := E[f(A′, π∗)|F̃l−1]− f(A(2)

l , π∗)
}T
l=1

As a result of Assumption 2.2.1, |M i
l | ≤ 2 for all i ∈ {1, 2} and therefore a simple use

of Azuma-Hoeffding’s inequality ,

P

(∣∣∣∣∣
t∑
l=1

M i
l

∣∣∣∣∣ ≥
√

8t log

(
8t2

δ

))
≤ 2 exp

(
−

8t log(8t2

δ
)

8t

)
=

δ

4t2
.

Summing over all t, applying the union bound, using the fact that
∑T

t=1
1
t2
< 2 implies

that for all t ∈ [T ], with probability 1− δ,∣∣∣∣∣
t∑
l=1

E[f(A′, π∗)− f(A′, π(2)
l )|F̃l−1]− f(A(2)

l , π∗)− f(A(2)
l , π

(2)
l )

∣∣∣∣∣ ≤
√

8t log

(
8t2

δ

)
≤ U(t, δ) (2.11)
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Let’s denote as E3 the event where Equation 2.11 holds. If E2 ∩ E3 occur, then
combining the upper bounds in 2.10 and 2.11 we conclude that,

t∑
l=1

f(A(2)
l , π∗)− f(A(2)

l , π
(2)
l ) ≤ 6U(t, δ) log(t)

combining this last observation with Equation 2.9, we conclude that for all t with
probability at least 1− 3δ,

t∑
l=1

∑
i∈{1,2}

f(A(i)
l , π

∗)− f(A(i)
l , π

(i)
l ) ≤ 7U(t, δ, ) log(t)

For all t ∈ [T ]. The result follows.

It remains to show how to adapt the feedback structure of the Stochastic CORRAL
master to deal with the two step nature of smoothed algorithms. We reproduce the
full pseudo-code of the Stochastic CORRAL master adapted to smoothed algorithms
below,

Algorithm 9: Smooth Stochastic CORRAL Master Algorithm

1 Input: Smoothed Base Algorithms {B̃j}Mj=1, bias functions {bj : N→ R}Mj=1

2 for t = 1, · · · , T do
3 Sample jt ∼ pt.
4 Play jt for Steps 1 and 2.

5 Receive feedback r
(1)
t and r

(2)
t from Steps 1 and 2 when executing B̃jt .

6 Let sjt be the internal step counter of algorithm B̃jt as defined in
Algorithm 8.

7 Update pt using 2r
(2)
t − bjt(sjt)

For reasons that have to do with the analysis, Algorithm 9 has a few extra features
not present in the master-base template of Algorithm 4. First, whenever the smooth
stochastic corral master selects an algorithm jt it plays it for two steps, thus coinciding
with B̃jt ’s two time step structure. Second, it updates its distribution pt using the

feedback 2r
(2)
t − bjt(sjt) instead of using the sum r

(1)
t + r

(2)
t . Most notably, the update

makes use of a bias adjustment to the reward signal that is not present in the original.
The reason behind this modification will become clearer in the regret analysis.

Applications of Proposition 2.4.3

We now show the smoothed versions of several algorithms satisfy Definition 2.4.1 by
showing they are (U, δ, T )−bounded for an appropriate upper bound function U . We
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focus on algorithms for the k−armed bandit setting and the contextual linear bandit
setting.

Lemma 2.4.4 (Theorem 3 in [1]). In the case of changing and potentially infinite
contexts of dimension d, LinUCB is (U, δ, T )-bounded with U(t, δ) = O(d

√
t log(1/δ)).

Lemma 2.4.5 (Theorem 1 in [19]). In the case of finite linear contexts of size k and
dimension d, LinUCB is (U, δ, T )-bounded with U(t, δ) = O(

√
dt log3(kT log(T )/δ)).

Lemma 2.4.6 (Theorem 1 in [58]). In the k−armed adversarial bandit setting Exp3
is (U, δ, T )−bounded where U(t, δ) = O(

√
tk log tk

δ
).

Lemma 2.4.7. In the stochastic k−armed bandit problem, if we assume the noise ξt is
conditionally 1-sub-Gaussian, UCB is (U, δ, T )-bounded with U(t, δ) = O(

√
tk log tk

δ
).

Proof. The regret of UCB is bounded as
∑

i:∆i>0

(
3∆i + 16

∆i
log 2k

∆iδ

)
(Theorem 7 of

[1]) where ∆i is the gap between arm i and the best arm. By substituting the
worst-case ∆i in the regret bound, U(T, δ) = O(

√
Tk log Tk

δ
).

For the remainder of this section we focus on showing that in the stochas-
tic k−armed bandit problem, the ε-greedy algorithm (Algorithm 1.2 of [60]) is
(U, T, δ)−bounded. At time t the ε-greedy algorithm selects with probability εt =
min(c/t, 1) an arm uniformly at random, and with probability 1− εt it selects the arm
whose empirical estimate of the mean is largest so far. Let’s introduce some notation:
we will denote by µ1, · · · , µk the unknown means of the K arms use the name µ̂

(t)
j to

denote the empirical estimate of the mean of arm j after using t samples.
Without loss of generality let µ1 be the optimal arm. We denote the sub-optimality

gaps as ∆j = µ1 − µj for all j ∈ [k]. Let ∆∗ be the smallest nonzero gap. We follow
the discussion in [9] and start by showing that under the right assumptions, and for
a horizon of size T , the algorithm satisfies a high probability regret bound for all
t ≤ T . The objective of this section is to prove the following Lemma:

Lemma 2.4.8. If c = 10K log(T 3/γ)
∆2
∗

3 for some γ ∈ (0, 1) satisfying γ ≤ ∆2
j

2
, then

ε−greedy with εt = c
t

is (U, δ, T )−bounded for δ ≤ ∆2
∗

T 3 where

U(t, δ) =
30k log(1

δ
)

∆2
∗

(
k∑
j=2

∆j

∆2
∗

+ ∆j

)
log(t+ 1).

3This choice of c is robust to multiplication by a constant.
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Proof. Let E(t) = 1
2k

∑t
l=1 εl and denote by Tj(t) the random variable denoting the

number of times arm j was selected up to time t. We start by analyzing the probability
that a suboptimal arm j > 1 is selected at time t:

P(j is selected at time t) ≤ εt
k

+
(

1− εt
k

)
P
(
µ̂

(Tj(t))
j ≥ µ̂

(T1(t))
1

)
(2.12)

Let’s bound the second term.

P
(
µ̂

(Tj(t))
j ≥ µ̂

(T1(t))
1

)
≤ P

(
µ̂

(Tj(t))
j ≥ µj +

∆j

2

)
+ P

(
µ̂

(T1(t))
1 ≤ µ1 −

∆j

2

)
The analysis of these two terms is the same. Denote by TRj (t) the number of times

arm j was played as a result of a random epsilon greedy move. We have:

P
(
µ̂

(Tj(t))
j ≥ µj +

∆j

2

)
=

t∑
l=1

P
(
Tj(t) = l and µ̂

(l)
j ≥ µj +

∆j

2

)

=
t∑
l=1

P
(
Tj(t) = l|µ̂(l)

j ≥ µj +
∆j

2

)
P
(
µ̂

(l)
j ≥ µj +

∆j

2

)
a
≤

t∑
l=1

P
(
Tj(t) = l

∣∣∣µ̂(l)
j ≥ µj +

∆j

2

)
exp(−∆2

j t/2)

b
≤
bE(t)c∑
l=1

P
(
Tj(t) = l

∣∣∣µ̂(l)
j ≥ µj +

∆j

2

)
+

2

∆2
j

exp(−∆2
jbE(t)c/2)

≤
bE(t)c∑
l=1

P
(
TRj (t) = l

∣∣∣µ̂(l)
j ≥ µj +

∆j

2

)
+

2

∆2
j

exp(−∆2
jbE(t)c/2)

≤ bE(t)cP
(
Tj(t)

R ≤ bE(t)c
)︸ ︷︷ ︸

(1)

+
2

∆2
j

exp(−∆2
jbE(t)c/2)︸ ︷︷ ︸

(2)

Inequality a is a consequence of the Azuma-Hoeffding inequality bound. Inequality
b follows because

∑∞
l=E+1 exp(−αl) ≤ 1

a
exp(−αE). Term (1) corresponds to the

probability that within the interval [1, · · · , t], the number of greedy pulls to arm j is
at most half its expectation. Term (2) is already ”small”. Lets proceed to bound (1).

Let εt = min(c/t, 1). with c = 10k log(T 3/γ)
∆2
∗

for some γ ∈ (0, 1) satisfying γ ≤ ∆2
j . We’ll
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show that under these assumptions we can lower bound E(t). If t ≥ 10k log(T 3/γ)
∆2
∗

:

E(t) :=
1

2k

t∑
l=1

εl =
5 log(T 3/γ)

∆2
∗

+
5 log(T 3/δ)

∆2
∗

t∑
l=log(T 3/γ)

1

l

≥ 5 log(T 3/γ)

∆2
∗

+
5 log(T 3/γ) log(t)

2∆2
∗

≥ 5 log(T 3/γ)

∆2
∗

By Bernstein’s inequality (see derivation of equation (13) in [9]) we can upper bound
TRj (t):

P
(
TRj (t) ≤ E(t)

)
≤ exp (−E(t)/5) (2.13)

Hence for t ≥ 10k log(T 3/γ)
∆2
∗

:

P
(
TRj (t) ≤ E(t)

)
≤
( γ
T 3

) 1

∆2∗

And therefore since E(t) ≤ T and 1
∆∗
≥ 1 we can upper bound (1) as:

bE(t)cP
(
TRj (t) ≤ bE(t)c

)
≤
( γ
T 2

) 1

∆2∗ ≤ γ

T 2

Now we proceed with term (2):

2

∆2
j

exp
(
−∆2

jbE(t)c/2
) (a)

≤ 2

∆2
j

exp

(
−5

2
log

(
T 3

γ

)
∆2
j

∆2
∗

)
≤ 2

∆2
j

exp

(
− log

(
T 3

γ

))
=

2

∆2
j

( γ
T 3

)5

(b)

≤ γ

T 3

The first inequality (a) follows because E(t) ≥ 5 log(T 3/γ)
∆2
∗

. Inequality (b) follows

because by the assumption γ ≤ ∆2
j

2
the last term is upper bounded by γ

T 3 .

By applying the union bound over all arms j 6= 1 and time-steps t ≥ 10k log(T 3/γ)
∆2
∗

,
we conclude that the probability of choosing a sub-optimal arm j ≥ 2 at any time
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time t for t ≥ 10k log(T 3/γ)
∆2
∗

as a greedy choice is upper bounded by kγ
T 2 ≤ kγ

T
. In other

words after t ≥ 10k log(T 3/γ)
∆2
∗

rounds, with probability 1− kγ
T

sub-optimal arms are only

chosen as a result of random epsilon greedy move (occurring with probability εt).
A similar argument as the one that gave us Equation 2.13 can be used to upper

bound the probability that TRj (t) be much larger than its mean:

P
(
TRj (t) ≥ 3E(j)

)
≤ exp(−E(t)/5)

Using this and the union bound we see that with probability more than 1− kγ
T

and for
all t ∈ [T ] and arms j ∈ [k], TRj (t) ≤ 3E(t). Combining this with the observation that

after t ≥ 10k log(T 3/γ)
∆2
∗

and with probability 1− kγ
T

over all t simultaneously regret is

only incurred by random exploration pulls (and not greedy actions), we can conclude

that with probability at least 1− 2kγ
T

simultaneously for all t ≥ 10k log(T 3/γ)
∆2
∗

the regret
incurred is upper bounded by:

10k log(T 3/γ)

∆2
∗

· 1

k

k∑
j=2

∆j︸ ︷︷ ︸
(i)

+ 3E(t)
k∑
j=2

∆j︸ ︷︷ ︸
(ii)

Term (i) is a crude upper bound on the regret incurred in the first 10k log(T 3/γ)
∆2
∗

rounds

and (ii) is an upper bound for the regret incurred in the subsequent rounds.

Since E(t) ≤ 20k log(T 3/γ)
∆2
∗

log(t) we conclude that with probability 1− 2kγ
T

for all
t ≤ T the cumulative regret of epsilon greedy is upper bounded by

30K log(T 3/γ)

(
k∑
j=2

∆j

∆2
∗

+ ∆j

)
max(log(t), 1),

the result follows by identifying δ = γ/T 3.

Lemma 2.4.8 gives us an instance dependent upper bound for the ε−greedy
algorithm. We now show the instance-independent high probability regret bound for
ε-greedy:

Lemma 2.4.9. If c =
10k log( 1

δ
)

∆2
∗

, then ε−greedy with εt = c
t

is (δ, U, T )−bounded for

δ ≤ ∆2
∗

T 3 and:

1. U(t, δ) = 16
√

log(1
δ
)t when k = 2.



CHAPTER 2. STOCHASTIC CORRAL 27

2. U(t, δ) = 20
(
k log(1

δ
)
(∑K

j=2 ∆j

))1/3

t2/3 when k > 2.

Proof. Let ∆ be some arbitrary gap value. Let R(t) denote the expected regret up
to round t. We recycle the notation from the proof of Lemma 2.4.8, recall δ = γ/T 3.

R(t) =
∑

∆j≤∆

∆jE [Tj(t)] +
∑

∆j≥∆

∆jE [Tj(t)]

≤ ∆t+
∑

∆j≥∆

∆jE [Tj(t)]

≤ ∆t+ 30k log(T 3/γ)

 k∑
∆j≥∆

∆j

∆2
∗

+ ∆j

 log(t)

≤ ∆t+ 30k log(T 3/γ)

 k∑
∆j≥∆

∆j

∆2
∗

+ 30k log(T 3/γ) log(t)

 k∑
∆j≥∆

∆j

 (2.14)

When k = 2, ∆2 = ∆∗ and therefore (assuming ∆ < ∆2):

R(t) ≤ ∆t+
30k log(T 3/γ)

∆2

+ 30k log(T 3/γ) log(t)∆2

≤ ∆t+
30k log(T 3/γ)

∆
+ 30k log(T 3/γ) log(t)∆2

A

≤
√

30k log(T 3/γ)t+ 30k log(T 3/γ) log(t)∆2

B

≤ 8
√
k log(T 3/γ)t

≤ 16
√

log(T 3/γ)t

Inequality A follows from setting ∆ to the optimizer, which equals ∆ =
√

30k log(T 3/γ)
t

.

The second inequality B is satisfied for T large enough. We choose this expression for
simplicity of exposition.

When k > 2 notice that we can arrive to a bound similar to 2.14:

R(t) ≤ ∆t+ 30k log(T 3/γ)

 k∑
∆j≥∆

∆j

∆2

+ 30k log(T 3/γ) log(t)

 k∑
∆j≥∆

∆j


Where ∆∗ is substituted by ∆. This can be obtained from Lemma 2.4.8 by simply

substituting ∆∗ with ∆ in the argument for arms j : ∆j ≥ ∆.
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We upper bound
∑

∆j≥∆ ∆j by
∑k

j=2 ∆j. Setting ∆ to the optimizer of the

expression yields ∆ =

(
30k log(T 3/γ)(

∑k
j=2 ∆j)

t

)1/3

, and plugging this back into the

equation we obtain:

R(t) ≤ 2

(
30k log(T 3/γ)

(
k∑
j=2

∆j

))1/3

t2/3 + 30k log(T 3/γ) log(t)

(
k∑
j=2

∆j

)
ξ

≤ 20

(
k log(T 3/γ)

(
k∑
j=2

∆j

))1/3

t2/3

The inequality ξ is true for T large enough. We choose this expression for simplicity
of exposition.

Regret Analysis

In this section we go back to sketch the proof of Theorem 2.3.2 by explaining how to
bound terms I and II in the regret decomposition of Equation 2.2.

Bounding Term I. Recall that Algorithm 9 only sends the smoothed reward of
Step 2 to the master while the base plays and incurs regrets from both Step 1 and Step
2. We show in Section 2.7 that this does not affect the regret of the master significantly.

For CORRAL with learning rate η, E [I] ≤ O
(√

MT + M lnT
η

+ Tη
)
−

E
[

1
p
i?

]
40η lnT

. For

EXP3.P with exploration rate p, E [I] < O(
√
MT + 1

p
+MTp).

Bounding Term II. This quantity represents the regret of the base i? when it only
updates its state when selected. We assume smoothed base algorithm B̃i? satisfies the
smoothness and boundedness in Definitions 2.2.1 and 2.4.1. For the purpose of the
analysis we declare that when a smoothed base repeats its policy while not played,
it repeats its subsequent Step 2 policy (Algorithm 8). This will become clearer in

Section 2.7. Since we select B̃i? with probability p
i?

it will be updated every 1/p
i

time-steps and the regret upper bound will be roughly 1
p
i?

Ui?(Tpi?
, δ).
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EXP3.P CORRAL

Õ
(√

MT +MTp+ Tαpα−1c(δ)
)

Õ
(√

MT + M
η

+ Tη + T c(δ)
1
αη

1−α
α

)
Õ
(√

MT +M
1−α
2−αT

1
2−α c(δ)

1
2−α

)
Õ
(√

MT +MαT 1−α +M1−αTαc(δ)
)

Õ
(√

MT +M
1−α
2−αT

1
2−α c(δ)

)
Õ
(√

MT +MαT 1−α +M1−αTαc(δ)
1
α

)
Table 2.1: Comparison of model selection guarantees for Stochastic CORRAL between
the EXP3.P and CORRAL master. The top row shows the general regret guarantees.
The middle row shows the regret guarantees when α and c(δ) are known. The bottom
row shows the regret guarantees when α is known and c(δ) is unknown.

Theorem 2.4.10. We have that E [II] ≤ O
(
E
[

1
p
i

Ui(Tpi, δ) log T
]

+ δT (log T + 1)
)

.

Here, the expectation is over the random variable p
i
. If U(t, δ) = tαc(δ) for some

α ∈ [1/2, 1) then, E [II] ≤ Õ
(
Tαc(δ)E

[
1

p1−α
i

]
+ δT (log T + 1)

)
.

Total Regret. Adding Term I and Term II gives us the following worst-case model
selection regret bound for the CORRAL master (maximized over p

i?
and with a

chosen η) and the EXP3.P master (with a chosen p):

Theorem 2.4.11. If a base algorithm is (U, δ, T )-bounded for U(T, δ) = Tαc(δ) and
some α ∈ [1/2, 1) and the choice of δ = 1/T , the regret of the Smooth Stochastic

CORRAL (Algorithm 9) where bj(s) =
Uj(s,δ)

s
is upper bounded by:

2.5 Lower Bound

In stochastic environments, algorithms such as UCB can achieve logarithmic regret
bounds. Our model selection procedure however has a O(

√
T ) overall regret. In

this section, we show that in general it is impossible to obtain a regret better than
Ω(
√
T ) even when the optimal base algorithm has 0 regret. In order to formalize this

statement, let’s define a model selection problem formally.

Definition 2.5.1 (Model Selection Problem). We call a tuple ({Bi}Mi=1,Env) a model
selection problem where {Bi}Mi=1 is a set of M base algorithms and Env is a bandit
environment4.

4For example if M = 2 ({UCB,LinUCB},MAB) is a valid Model Selection Problem
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Theorem 2.5.2. Let T ∈ N. For any model selection algorithm there exists a
corresponding model selection problem ({B1,B2},Env) such the regret of this model

selection algorithm is lower bounded by R(T ) = Ω
( √

T
log(T )

)
.

Proof. Consider a stochastic 2-arm bandit problem where the best arm has expected
reward 1/2 and the second best arm has expected reward 1/4. We construct base
algorithms B1,B2 as follows. B1 always chooses the optimal arm and its expected
instantaneous reward is 1/2. B2 chooses the second best arm at time step t with
probability 4c√

t+2 log(t+2)
(c will be specified later), and chooses the best arm otherwise.

The expected reward at time step t of B2 is 1
2
− c√

t+2 log(t+2)
.

Let A∗ be uniformly sampled from {1, 2}. Consider two environments ν1 and ν2

for the master, each made up of two base algorithms B̃1, B̃2. Under ν1, B̃1 and B̃2 are
both instantiations of B1. Under ν2, B̃A∗ , where A∗ is a uniformly sampled index in
{1, 2}, is a copy of B1 and B̃3−A∗ is a copy of B2.

Let P1,P2 denote the probability measures induced by interaction of the master
with ν1 and ν2 respectively. Let B̃At denote the base algorithm chosen by the master
at time t. We have P1(At 6= A∗) = 1

2
for all t, since the learner has no information

available to identify which algorithm is considered optimal. By Pinskers’ inequality
we have

P2(At 6= A∗) ≥ P1(At 6= A∗)−
√

1

2
KL(P1||P2)

By the divergence decomposition [see 41, proof of Lemma 15.1 for the decomposition
technique] and using that for ∆ < 1

4
: KL(1

2
, 1

2
−∆) ≤ 3∆2 (Lemma 2.8.3), we have

KL(P1||P2) =
∞∑
t=2

1

2
KL

(
1

2
,
1

2
− c√

t+ 1 log(t+ 1)

)
≤

∞∑
t=2

3c2

2t log(t)2
≤ 3c2 .

Picking c =
√

1
24

leads to P2(At 6= A∗) ≥ 1
4
, and the regret in environment ν2 is lower

bounded by

R(T ) ≥
T∑
t=1

P2(At 6= A∗)
c√

t+ 1 log(t+ 1)

≥ c

4 log(T + 1)

T∑
t=1

1√
t+ 1

= Ω(

√
T

log(T )
) .
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CORRAL needs knowledge of the best base’s regret to achieve the same regret.
The following lower bound shows that this requirement is unavoidable:

Theorem 2.5.3. Let Alg be a model selection algorithm. There exists a model
selection problem with two base algorithms where the best base has regret Õ(T x) for
some 0 < x < 1 such that if Alg has no knowledge of x nor of the reward of the best
arm, then there exists a potentially different model selection problem where the best
base also has regret Õ(T x) but the model selection regret guarantee of Alg is lower
bounded by Ω(T y) with y > x.

Proof. Let the set of arms be {a1, a2, a3}. Let x and y be such that 0 < x < y ≤ 1.
Let ∆ = T x−1+(y−x)/2. Define two environment E1 and E2 with reward vectors {1, 1, 0}
and {1 + ∆, 1, 0} for {a1, a2, a3}, respectively. Let B1 and B2 be two base algorithms
defined by the following fixed policies when running alone in E1 or E2:

π1 =

{
a2 w.p. 1− T x−1

a3 w.p. T x−1
, π2 =

{
a2 w.p. 1− T y−1

a3 w.p. T y−1
.

We also construct base B′2 defined as follows. Let c2 > 0 and ε2 = (y − x)/4 be two
constants. Base B′2 mimics base B2 when t ≤ c2T

x−y+1+ε2 , and picks arm a1 when
t > c2T

x−y+1+ε2 . The instantaneous rewards of B1 and B2 when running alone are
r1
t = 1− T x−1 and r2

t = 1− T y−1 for all 1 ≤ t ≤ T . Next, consider model selection
with base algorithms B1 and B2 in E1. Let T1 and T2 be the number of rounds that
B1 and B2 are chosen, respectively.

First, assume case (1): There exist constants c > 0, ε > 0, p ∈ (0, 1), and T0 > 0
such that with probability at least p, T2 ≥ cT x−y+1+ε for all T > T0.

The regret of base B1 when running alone for T rounds is T · T x−1 = T x. The
regret of the model selection method is at least

p · T2 · T y−1 ≥ p · cT x−y+1+ε · T y−1 = p · c · T x+ε .

Given that the inequality holds for any T > T0, it proves the statement of the lemma
in case (1).

Next, we assume the complement of case (1): For all constants c > 0, ε > 0,
p ∈ (0, 1), and T0 > 0, with probability at least p, T2 < cT x−y+1+ε for some T > T0.

Let T be any such time horizon. Consider model selection with base algorithms
B1 and B′2 in environment E2 for T rounds. Let T ′1 and T ′2 be the number of rounds
that B1 and B′2 are chosen. Note that B2 and B′2 behave the same for c2T

x−y+1+ε time
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steps, and that B1 and B2 never choose action a1. Therefore for the first c2T
x−y+1+ε2

time steps, the model selection strategy that selects between B1 and B′2 in E2 behaves
the same as when it runs B1 and B2 in E1. Therefore with probability p > 1/2,
T ′2 < c2T

x−y+1+ε2 , which implies T ′1 > T/2.
In environment E2, the regret of base B′2 when running alone for T rounds is

bounded as

(∆ + T y−1)c2T
x−y+1+ y−x

4 = c2T
5x−y

4 + c2T
3x+y

4 < 2c2T
3x+y

4

Given that with probability p > 1/2, T ′1 > T/2, the regret of the learner is lower
bounded as,

p(∆ + T x−1) · T
2
>

1

2
(T x−1+ y−x

2 + T x−1) · T
2
<

1

2
T
x+y

2 ,

which is larger than the regret of B′2 running alone because 3x+y
4

< x+y
2

. The statement
of the lemma follows given that for any T0 there exists T > T0 so that the model
selection fails.

2.6 Applications of Stochastic CORRAL

Misspecified Contextual Linear Bandit

We consider model selection in the misspecified linear bandit problem. The learner
selects an action at ∈ At and receives a reward rt such that |E[rt]− a>t θ| ≤ ε∗ where
θ ∈ Rd is an unknown parameter vector and ε∗ is the misspecification error. For this
problem, [69] and [42] present variants of LinUCB that achieve a high probability

Õ(d
√
T + ε∗

√
dT ) regret bound. Both algorithms require knowledge of ε∗, but [42]

show a regret bound of the same order without the knowledge of ε∗ for the version
of the problem with a fixed action set At = A. Their method relies on G-optimal
design, which does not work for contextual settings. It is an open question whether it
is possible to achieve the above regret without knowing ε∗ for problems with changing
action sets.

In this section, we show a Õ(d
√
T+ε∗

√
dT ) regret bound for linear bandit problems

with changing action sets without knowing ε∗. For problems with fixed action sets,
we show an improved regret that matches the lower bound of [41].

Given a constant E so that |ε∗| ≤ E, we divide the interval [1, E] into an
exponential grid G = [1, 2, 22, ..., 2log(E)]. We use log(E) modified LinUCB bases, from
either [69] or [42], with each base algorithm instantiated with a value of ε in the grid.
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Theorem 2.6.1. For the misspecified linear bandit problem described above, the regret
of Stochastic CORRAL with a CORRAL master using learning rate η = 1√

Td
and

LinUCB base algorithms with target misspecification level ε ∈ G, is upper bounded by
Õ(d
√
T + ε∗

√
dT ). In the case of a fixed action linear bandit problem with k arms and√

k > d, the regret of Stochastic CORRAL with a CORRAL master using learning
rate η = 1√

Td
applied to a set of base algorithms consisting of one UCB base and one

G-optimal base algorithm [42] is upper bounded by Õ
(

min
(
k
d

√
T , d
√
T + ε∗

√
dT
))

.

Proof. From Lemma 2.4.7, for UCB, U(T, δ) = O(
√
Tk log Tk

δ
). Therefore from

Theorem 2.4.11, running CORRAL with smooth UCB results in the following regret
bound:

Õ

(
√
MT +

M lnT

η
+ Tη + T

(√
k log

Tk

δ

)2

η

)
+ δT.

If we choose δ = 1/T and hide some log factors, we get Õ
(√

T + 1
η

+ Tkη
)

.

For the LinUCB bases in [42] or [69] or the G-optimal algorithm [42], U(t, δ) =

O(d
√
t log(1/δ) + ε

√
dt). Substituting δ = 1/T into Theorem 2.4.11 implies:

R(T ) ≤ O

(√
MT log(

4TM

δ
) +

M lnT

η
+ Tη

)
− E

[
ρ

40η lnT
− 2ρU(T/ρ, δ) log T

]
+ δT

≤ Õ
(√

MT +
M lnT

η
+ Tη

)
− E

[
ρ

40η lnT
− 2ρ (d

√
T

ρ
log(1/δ) + ε

√
d
T

ρ
) log T

]

≤ Õ
(√

MT +
M lnT

η
+ Tη

)
− E

[
ρ

40η lnT
− 2d

√
Tρ log(1/δ) log T

]
+ 2ε

√
dT log T

Maximizing over ρ results in a regret guarantee of the form Õ
(√

T + 1
η

+ Td2η + ε
√
dT
)

.

For the misspecified linear bandit problem we use M = O(log(T )) LinUCB bases
with ε defined in the grid, and choose η = 1√

Td
. The resulting regret for Stochastic

CORRAL is of the form Õ
(√

Td+ ε
√
dT
)

.

When the action sets are fixed, by the choice of η = 1√
Td

, the regret of Stochastic
CORRAL with a CORRAL master over one UCB and one G-optimal base equals:

Õ

(
min

{
√
T

(
d+

k

d

)
,
√
Td+ ε

√
dT

})
.

If
√
k > d, the above expression becomes Õ

(
min

(√
T k
d
,
√
Td+ ε

√
dT
))
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Observe that in the case of a fixed action linear bandit problem, the regret upper
bound we achieve for Stochastic CORRAL with a CORRAL master and a learning

rate of η = 1√
Td

is of the form Õ
(

min
(
k
d

√
T , d
√
T + ε∗

√
dT
))

. The product of the

terms inside the minimum is of order Õ(kT ). This result matches the following lower

bound that shows that it is impossible to achieve Õ(min(
√
kT , d

√
T + ε∗

√
dT )) regret:

Lemma 2.6.2 (Implied by Theorem 24.4 in [41]). Let Rν(T ) denote the cumulative
regret at time T on environment ν. For any algorithm, there exists a 1-dimensional
linear bandit environment ν1 and a k-armed bandit environment ν2 such that Rν1(T ) ·
Rν2(T ) ≥ T (k − 1)e−2.

Experiment (Figure 2.1). Let d = 2. Consider a contextual bandit problem with
k = 50 arms, where each arm j has an associated vector aj ∈ Rd sampled uniformly
at random from [0, 1]d. We consider two cases: (1) For a θ ∈ Rd sampled uniformly at
random from [0, 1]d, reward of arm j at time t is a>j θ+ ηt, where ηt ∼ N(0, 1), and (2)
There are k parameters µj for j ∈ [k] all sampled uniformly at random from [0, 10],
so that the reward of arm j at time t is sampled from N(µj, 1). We use CORRAL
with learning rate η = 2√

Td
and UCB and LinUCB as base algorithm. In case (1)

LinUCB performs better while in case (2) UCB performs better. Each experiment is
repeated 500 times.

Contextual Bandits with Unknown Dimension

We consider model selection in the nested contextual linear bandit problem studied
by [27]. In this problem the context space A ⊂ RD. Each action is a D−dimensional
vector and each context At is a subset of RD. The unknown parameter vector
θ∗ ∈ RD but only its first d∗ coordinates are nonzero. Here, d∗ is unknown and
possibly much smaller than D. We assume access to a family of LinUCB algorithms
{Bi}Mi=1 with increasing dimensionality di. Algorithm i is designed to ’believe’ the
unknown parameter vector θ∗ has only nonzero entries in the first di entries. In [27]
the authors consider the special case when |At| = k <∞ for all t. In order to obtain
their model selection guarantees they require a lower bound on the average eigenvalues
of the covariance matrices of all actions. In contrast, we do not require any such
structural assumptions on the context. We provide the first sublinear regret for this
problem when the action set is infinite. Further, we have no eigenvalue assumptions
and our regret does not scale with the number of actions k.
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Arms with linear rewards. Arms with non-linear rewards.

Figure 2.1: CORRAL with UCB and LinUCB bases. Shaded regions denote the
standard deviations.

We use LinUCB with each value of d ∈ [1, 2, 22, ..., 2log(D)] as a base algorithm for
CORRAL and EXP3.P. We also consider the case when both the optimal dimension
d∗ and the misspecification ε∗ are unknown: we use M = log(E) · log(D) modified
LinUCB bases (see the discussion on Misspecified Contextual Linear Bandits above)
for each value of (ε∗, d∗) in the grid [1, 2, 22, ..., 2log(E)]× [1, 2, 22, ..., 2log(D)].

From Lemma 2.4.4 and Lemma 2.4.5, for linear contextual bandit, LinUCB is
(U, δ, T )-bounded with U(t, δ) = O(d

√
t log(1/δ)) for infinite action sets and U(t, δ) =

O(
√
dt log3(kT log(T )/δ)) for finite action sets. Choose δ = 1/T and ignore the log

factor, U(t, δ) = Õ(d
√
t) for infinite action sets and U(t, δ) = Õ(

√
dt) for finite action

sets. Then U(t) = c(δ)tα with α = 1/2 and c(δ) = Õ(d) for infinite action sets, and

c(δ) = Õ(
√
d) for finite action sets.

Now consider the misspecified linear contextual bandit problem with unknown d∗
and ε∗. We use the smoothed LinUCB bases [42, 69]. Using the calculation in the
proof of Theorem 2.6.1 in Section 2.6, using CORRAL with a smooth LinUCB base

with parameters (d, ε) in the grids results in Õ
(

1
η

+ Td2η + ε
√
dT
)

regret. Since d is

unknown, choosing η = 1/
√
T yields the regret Õ

(√
Td2
∗ + ε
√
dT
)

. Using EXP3.P
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with a smooth LinUCB base with parameters (d, ε) in the grids results in:

R(T ) = Õ

(√
MT +MTp+

1

p
+

1

p
Ui(Tp, δ)

)
.

= Õ

(√
MT +MTp+

1

p
+

1

p

(
d
√
Tp+ ε

√
dTp

))
.

= Õ

(
√
MT +MTp+

d
√
T

p
+ ε
√
dT

)
.

Since d∗ is unknown, choosing p = T−1/3 yields a Õ(T
2
3d∗ + ε∗

√
dT ) regret bound.

We summarize our results in the following table:

Linear contextual bandit
Misspecified linear
contextual bandit

Unknown d∗ Unknown d∗ and ε∗Finite action sets Infinite action sets

[27]
Õ(T 2/3k1/3d

1/3
∗ ) or

Õ(k1/4T 3/4 +
√
kTd∗)

N/A N/A

EXP3.P Õ(d
1
2
∗ T

2
3 ) Õ(d∗T

2
3 ) Õ(T

2
3d∗ + ε∗

√
dT )

CORRAL Õ
(
d∗
√
T
)

Õ
(
d2
∗
√
T
)

Õ
(√

Td2
∗ + ε∗

√
dT
)

Non-parametric Contextual Bandit.

We study model selection in the setting of non-parametric contextual bandits.[29]
consider non-parametric stochastic contextual bandits. At time t and given a context
xt ∈ RD, the learner selects arm at ∈ [k] and observes the reward f(at, xt) + ξt, where
ξt is a 1-sub-Gaussian random variable and for all a ∈ [k], the reward function f(a, ·)
is L−lipschitz in the context x ∈ RD. It is assumed that the contexts arrive in an IID

fashion. [29] obtain a Õ
(
T

1+d
2+d

)
regret for this problem. Similar to [27], we assume

that only the first d∗ context features are relevant for an unknown d∗ < D. It is

important to find d∗ because T
1+d∗
2+d∗ � T

1+D
2+D . Stochastic CORRAL can successfully

adapt to this unknown quantity: we can initialize a smoothed copy of Algorithm 2 of
[29] for each value of d in the grid [b0, b1, b2, ..., blogb(D)] for some b > 1 and perform
model selection with CORRAL and EXP3.P with these base algorithms.

EXP3.P CORRAL

Nonparametric contextual
bandit with unknown d∗

Õ
(
T

1+bd∗
2+bd∗

+ 1
3(2+bd∗)

)
Õ
(
T

1+2bd∗
2+2bd∗

)
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Tuning the Exploration Rate of ε-greedy

We study the problem of selecting for the optimal scaling for the exploration probability
in the ε-greedy algorithm. Recall that for a given positive constant c, the ε-greedy
algorithm pulls the arm with the largest empirical average reward with probability
1 − c/t, and otherwise pulls an arm uniformly at random. Let εt = c/t. It can
be shown that the optimal value for εt is min{1, 5k

∆2
∗t
} where ∆∗ is the smallest gap

between the optimal arm and the sub-optimal arms [41]. With this exploration rate,

the regret scales as Õ(
√
T ) for k = 2. We would like to find the optimal value of c

without the knowledge of ∆∗. In this discussion we show it is possible to obtain such
result by applying CORRAL to a set of ε-greedy base algorithms each instantiated
with a c in [1, 2, 22, ..., 2log(kT )].

Theorem 2.6.3. The regret of CORRAL using smoothed ε-greedy base algorithms
defined on the grid is bounded by Õ(T 1/2) when k = 2.

Proof. From Lemma 2.4.9, we lower bound the smallest gap by 1/T (because the gaps
smaller than 1/T will cause constant regret in T time steps) and choose δ = 1/T 5.

From Theorem 2.4.11, the regret is Õ(T 2/3) when k > 2 and Õ(T 1/2) when k = 2
with the base running alone.

Next we show that the best value of c in the exponential grid gives a regret that
is within a constant factor of the regret above where we known the smallest non-zero
gap ∆∗. An exploration rates can be at most kT . Since 5K

∆2
∗
> 1, we need to search

only in the interval [1, KT ]. Let c1 be the element in the exponential grid such
that c1 ≤ c∗ ≤ 2c1. Then 2c1 = γc∗ where γ < 2 is a constant, and therefore using
2c1 = γc∗ will give a regret up to a constant factor of the optimal regret.

Experiment (Figure 2.2). Let there be two Bernoulli arms with means 0.5 and
0.45. We use 18 ε-greedy base algorithms differing in their choice of c in the exploration
rate εt = c/t. We take T = 50, 000, η = 20/

√
T and ε’s to lie on a geometric grid in

[1, 2T ]. Each experiments is repeated 50 times.

5The shaded areas around UCB and CORRAL are the std. The shaded areas around the ε-greedy
bases are 0.1 of std. For small ε, ε-greedy has a very high variance because it either commits to the
optimal arm or the sub-optimal arm at the beginning, so plotting the whole std would make the
plot unreadable.
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Figure 2.2: CORRAL with ε-Greedy bases with different exploration rates. 5

Reinforcement Learning

We can instantiate Stochastic CORRAL model selection regret guarantees to the
episodic linear MDP setting of [38], again with nested feature classes of doubling
dimension just as in the case of the Contextual Bandits with Unknown Dimension.
Let’s formally define a Linear MDP,

Definition 2.6.4 (Linear MDP ( Assumption A in [38])). An episodic MDP (Denoted
by the tuple (S, A,H,P, r)) is a linear MDP with a feature map Φ : S × A→ Rd, if

for any h ∈ [H] there exist d unknown (signed) measures µh = (µ
(1)
h , · · · , µ(d)

h ) over
S and an unknown vector θh ∈ Rd, such that for any (s, a) ∈ S × A, we have,

Ph(·|s, a) = 〈Φ(s, a),µh(·)〉, rh(s, a) = 〈Φ(s, a),θh〉.

The value function for a linear MDP also satisfies a linear parametrization,

Proposition 2.6.5 (Proposition 2.3 from [38]). For a linear MDP, and for any policy
π there exist d−dimensional weights {wπ

h}h∈[H] such that for any (s, a, h) ∈ S×A×[H]
we have that the value function of policy π satisfies Qπ

h(s, a) = 〈Φ(s, a),wπ
h〉.

For the purpose of studying model selection in the setting of linear MDPs we
assume access to D−dimensional feature maps Φ : S×A→ RD. For all policies π the
unknown parameters {wπ

h}h∈[H] are all assumed to have unknown coordinates only in
their first d∗ dimensions. We assume access to a family of LSVI-UCB (Algorithm 1
of [38]) algorithms {Bi}Mi=1 with increasing dimensionality di. Algorithm i is designed
to ‘believe’ the unknown parameter vectors {wπ

h}h∈[H] has only nonzero entries in the
first di entries for all policies π.
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Figure 2.3: ε-Greedy vs UCRL2 vs PSRL in the River Swim environment [61].

Theorem 2.6.6. Let M = (S, A,H,P, r) be a linear MDP parametrized by a feature
map {Φ : S × A→ RD}. Let {Φi(s, a)}Mi=1 be the family of nested feature maps such
that Φi(s, a) corresponds to the top di entries of Φ(s, a). Assume that for all policies
π the unknown parameters {wπ

h}h∈[H] have nonzero coordinates only in their first
d∗ dimensions and that there exists an index i∗ such that d∗ ≤ di ≤ 2d∗. Selecting
among different smoothed LSVI-UCB base algorithms corresponding to the feature
maps {Φi}Mi=1 using Stochastic CORRAL with a CORRAL master and η = M1/2

T 1/2d3/2H3/2

satisfies a regret guarantee: R(T ) ≤ Õ
(√

Md3H3T
)

.

Proof of Theorem 2.6.6. When well specified the LSVI-UCB algorithm [38] satisfies

the high probability bound Õ(
√
d3H3T ) where H is the length of each episode. The

result then follows from Theorem 2.4.11 by setting the CORRAL master learning
rate as η = M1/2

T 1/2d3/2H3/2 .

We also observe that in practice, smoothing RL algorithms such as UCRL and
PSRL and using a CORRAL master on top of them can lead to improved performance.
In Figure 2.3, we present results for the model selection problem among distinct RL
algorithms in the River Swim environment [61]. We use three different bases, ε−greedy
Q−learning with ε = .1, Posterior Sampling Reinforcement Learning (PSRL), as
described in [51] and UCRL2 as described in [34]. The implementation of these
algorithms and the environment is taken from TabulaRL (https://github.com/
iosband/TabulaRL), a popular benchmark suite for tabular reinforcement learning
problems. Smooth CORRAL uses a CORRAL master algorithm with a learning rate
η = 15√

T
, all base algorithms are smoothed using Algorithm 8. The curves for UCRL2,

https://github.com/iosband/TabulaRL
https://github.com/iosband/TabulaRL
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PSRL and ε−greedy are all of their un-smoothed versions. Each experiment was
repeated 10 times and we have reported the mean cumulative regret and shaded a
region around them corresponding to ±.3 the standard deviation across these 10 runs.

Generalized Linear Bandits with Unknown Link Function

[45] study the generalized linear bandit model for the stochastic k-armed contextual
bandit problem. In round t and given context xt ∈ Rd×k, the learner chooses arm
it and observes reward rt = µ(x>t,itθ

∗) + ξt where θ∗ ∈ Rd is an unknown parameter
vector, ξt is a conditionally zero-mean random variable and µ : R→ R is called the
link function. [45] obtain the high probability regret bound Õ(

√
dT ) where the link

function is known. Suppose we have a set of link functions L that contains the true
link function µ. Since the target regret Õ(

√
dT ) is known, we can run CORRAL with

the algorithm in [45] with each link function in the set as a base algorithm. From

Theorem 2.4.11, CORRAL will achieve regret Õ(
√
|L|dT ).

Bandits with Heavy Tail

[59] study the linear stochastic bandit problem with heavy tail. If the reward
distribution has finite moment of order 1 + ε∗, [59] obtain the high probability regret

bound Õ
(
T

1
1+ε∗

)
. We consider the problem when ε∗ ∈ (0, 1] is unknown with a

known lower bound L where L is a conservative estimate and ε∗ could be much larger
than L. To the best of our knowledge, we provide the first result when ε∗ is unknown.
We use the algorithms in [59] with value of ε∗ in the grid [blogb(L), ..., b1, b0] for some
0 < b < 1 as base algorithms with η = T−1/2 for CORRAL. A direct application
of Theorem 2.4.11 yields regret Õ

(
T 1−0.5bε∗

)
. When ε∗ = 1 (as in the case of finite

variance), Õ
(
T 1−0.5bε∗

)
is close to Õ (T 0.5) when b is close to 1.

2.7 Omitted proofs of Section 2.3

Bounding term I

When the base algorithms are not chosen, they repeat their step 2’s policy to ensure
that the conditional instantaneous regret is decreasing. To ensure the decreasing
conditional instantaneous regret serves its purpose, when the base algorithms are
chosen by the master, we only send step 2’s rewards to the master as feedback signals.
This is to ensure that the sequence of rewards the master is competing against satisfies
the decreasing instantaneous regret condition. However, since the bases play and
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incur regrets from both step 1 and step 2 when they are chosen, we must account to
the difference between the reward of step 1 and step 2 (that the bases incur when
they play the arms), and 2 times the reward of step 2 (what the bases send to the
master as feedback signals).

Since we assume all base algorithms to be smoothed and satisfy a two step feedback
structure, we also denote by π

(j)
t as the policy used by the master during round t,

step j. Term I, the regret of the master with respect to base i? can be written as:

E [I] = E

[
T∑
t=1

2∑
j=1

f(A(j)
t , π

(j)
t,i?

)− f(A(j)
t , π

(j)
t )

]
(2.15)

We cannot emphasize enough that the reader should keep in mind that the master
algorithm is updated only using the reward of Step 2 of base algorithms even though
the bases play both step 1 and 2. Let Ti is the random subset of rounds when M
choose base B̃i, (it = i) for all i ∈ [M ]. Adding and subtracting terms {f(A(1)

t , π
(2)
t }Tt=1

we see that:

I =
T∑
t=1

2∑
j=1

f(A(j)
t , π

(j)
t,i?

)− f(A(j)
t , π

(j)
t )

=
T∑

t∈Ti?

2∑
j=1

f(A(j)
t , π

(j)
t,i?

)− f(A(j)
t , π

(j)
t )

︸ ︷︷ ︸
I0

+
T∑

t∈Tci?

2∑
j=1

f(A(j)
t , π

(j)
t,i?

)− f(A(j)
t , π

(j)
t )

︸ ︷︷ ︸
I1

(i)
=

T∑
t∈Ti?

2∑
j=1

f(A(j)
t , π

(2)
t,i?

)− f(A(j)
t , π

(2)
t )

︸ ︷︷ ︸
I′0

+
T∑

t∈Tci?

2∑
j=1

f(A(j)
t , π

(2)
t,i?

)− f(A(j)
t , π

(j)
t )

︸ ︷︷ ︸
I′1

(ii)
=

T∑
t=1

2∑
j=1

f(A(j)
t , π

(2)
t,i?

)− f(A(j)
t , π

(2)
t )︸ ︷︷ ︸

IA

+
T∑

t∈Tci?

f(A(1)
t , π

(2)
t )− f(A(1)

t , π
(1)
t )

︸ ︷︷ ︸
IB

Equality (i) holds because term I0 equals zero and therefore I0 = I′0 and in all
steps t ∈ Tci , base i repeated a policy of step 2 so that I1 = I′1. Equality (ii) follows
from adding and subtracting term IB. Term E [IA] is the regret of the master with
respect to base i. Term E [IB] accounts for the difference between the rewards of step
1 and step 2 (that the bases incur) and 2 times the rewards of step 2 (that the bases
send to the master). We now focus on bounding E [IA] and E [IB].
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Biased step 2’s rewards. We introduce the following small modification to the
algorithm’s feedback by setting bj(s) = U(s,δ)

s
. This will become useful to control

E [IB]. Instead of sending the master the unadulterated 2r
(2)
t,j feedback, at all time

step t, all bases will send the following modified feedback:

r
(2)′

t,j = r
(2)
t,j −

Uj(st,j, δ)

st,j︸ ︷︷ ︸
bj(st,j)

(2.16)

This reward satisfies:

E
[
r

(2)′

t,j |Ft−1

]
= E

[
f(A(2)

t , π
(2)
t )|Ft−1

]
− Uj(st,j, δ)

st,j

In the coming discussion we’ll show that this modification allows us to control term
IB. Since this modification is performed internally by all bases, we note that term
IA corresponds to an adversarial master that is always fed biased rewards from all
bases and trying to compete against base i also with biased rewards. This means
that any worst case bound of term IA of an adversarial master will not be affected by
this modification of the reward sequence of all bases.

Term IB is the difference between the (modified) rewards of step 2 and step 1 which,
due to the introduced modification, should intuitively be small because the cumulative
(modified) rewards of step 2 are designed to be smaller than step 1. We will show

that E [IB] ≤ 8
√
MT log(4TM

δ
) and therefore that E [I] ≤ E [IA] + 8

√
MT log(4TM

δ
) .

Since any base j sends the biased reward to the master when it is chosen, when it
is not chosen and repeats its step 2’s policy, the reward also needs to be modified in
the same way as in Equation 2.16. This is to ensure that the rewards of the base at
time t do not depend on whether it is selected by the master at time t. We now discuss
how the bias modification affects term II. Note that this modification increases term
II (which only depends on base i) at each time step t by bj(st,j) =

Uj(st,j ,δ)

st,j
. Since the

original instantaneous regret of base i at step 2 is bounded by a term of the same
order, the modification increases term II by only a constant factor.

Bounding term E [IA]

As we explain above, since the modification of the bases’ rewards in Equation 2.16 is
internal within the bases, and the master is a k-armed bandit adversarial algorithm,
the worst-case performance of the master against any adversarial sequence of rewards
will not be affect when the sequence of rewards of the bases changes.
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CORRAL Master

Notice that:

E [IA] = E

[
T∑
t=1

2f(A(2)
t , π

(2)
t,i?

)− 2f(A(2)
t , π

(2)
t )

]
We can easily bound this term using Lemma 13 from [5]. Indeed, in term IA, the

policy choice for all base algorithms {B̃m}Mm=1 during any round t is chosen before

the value of it is revealed. This ensures the estimates
2r

(2)
t

p
it
t

and 0 for all i 6= it are

indeed unbiased estimators of the base algorithm’s rewards. We conclude:

E [IA] ≤ O
(
M lnT

η
+ Tη

)
−

E
[

1
p
i?

]
40η lnT

EXP3.P Master

Since E [IA] is the regret of base i with respect to the master, it can be upper bounded
by the k-armed bandit regret of the master with M arms. Choose η = 1, γ = 2kβ in
Theorem 3.3 in [14], we have that if p ≤ 1

2k
, the regret of EXP3.P:

E [IA] ≤ Õ
(
MTp+

log(kδ−1)

p

)
Bounding E [IB]

Notice that:

E [IB] = E

∑
t∈Tci?

f(A(1)
t , π

(2)
t )− f(A(1)

t , π
(1)
t )


= E

∑
t∈Tci?

f(A(2)
t , π

(2)
t )− f(A(1)

t , π
(1)
t )


= E

∑
t∈Tci?

f(A(2)
t , π

(2)
t )− f(A(2)

t , π∗) + f(A(2)
t , π∗)− f(A(1)

t , π
(1)
t )


= E

∑
t∈Tci?

f(A(2)
t , π

(2)
t )− f(A(2)

t , π∗) + f(A(1)
t , π∗)− f(A(1)

t , π
(1)
t )
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Substituting the biased Step 2 rewards in Equation 2.16 back into the expectation
for E [IB] becomes:

E[IB] = E
[ ∑
t∈Tci?

f(A(2)
t , π

(2)
t )− f(A(2)

t , π∗)− Ujt(st,jt(t), δ)

st,jt
+

f(A(1)
t , π∗)− f(A(1)

t , π
(1)
t )
]

=
∑
j 6=i?

E
[∑
t∈Tj

f(A(2)
t , π

(2)
t,j )− f(A(2)

t , π∗)− Uj(st,j, δ)

st,j
+

f(A(1)
t , π∗)− f(A(1)

t , π
(1)
t,j )
]

(1)

≤
∑
j 6=i

E
[∑
t∈Tj

f(A(2)
t , π

(2)
t,j )− f(A(2)

t , π∗) + f(A(1)
t , π∗)−

f(A(1)
t , π

(1)
t,j )
]
− Uj(sT,j, δ) (2.17)

Inequality (1) follows because by Lemma 2.8.1 applied to Uj(t, δ).
Observe that if the j−th algorithm was in its Uj-compatible environment (also

referred to as its ”natural environment”), then for any instantiation of Tj and with
high probability:∑

t∈Tj

f(A(2)
t , π

(2)
t,j )− f(A(2)

t , π∗) + f(A(1)
t , π∗)− f(A(1)

t , π
(1)
t,j )

− Uj(Tj(T ), δ) ≤

∑
t∈Tj

f(A(1)
t , π∗)− f(A(1)

t , π
(1)
t,j )

− Uj(Tj(T ), δ) ≤ 0 (2.18)

The first inequality follows because by definition f(A(2)
t , π∗) ≥ f(A(2)

t , π
(2)
t ) and the

last because of the high probability regret bound satisfied by B̃j.
When B̃j is not in its Uj-compatible environment, this condition may or may not

be violated. If this condition is violated, we need to make sure B̃j is dropped by the

master. Since it is impossible to compute the terms f(A(2)
t , π

(2)
t )− f(A(2)

t , π∗) and

f(A(1)
t , π∗)− f(A(1)

t , π
(1)
t ) directly, we instead rely on the following test:
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Base Test. Let Tj(l) be the set of time indices in [l] when the master chose to play

base j. We drop base B̃j if at any point during the history of the algorithm,

∑
t∈Tj(l)

r
(2)
t,j − r

(1)
t,j > Uj(Tj(T ), δ) + 2

√
2l log

(
4TM

δ

)
(2.19)

The logic of this step comes because as a simple consequence of the Azuma-
Hoeffding martingale bound and Assumption 2.2.1, with probability at least 1− δ/M
and for all l ∈ [T ]:

∣∣∣∣∣
l∑

`=1

f(A(2)
` , π∗)− f(A(1)

` , π∗)

∣∣∣∣∣ ≤
√

2l log

(
4TM

δ

)
(2.20)∣∣∣∣∣

l∑
`=1

r
(2)
`,j − r

(1)
`,j − f(A(2)

` , π
(2)
`,j )− f(A(1)

` , π
(1)
`,j )

∣∣∣∣∣ ≤
√

2l log

(
4TM

δ

)
(2.21)

This means that whenever B̃j is in its Uj-compatible environment, combining Equa-
tion 2.17, with Equation 2.20 and Equation 2.21 we get, with probability at least
1− δ for all l ∈ [T ]:∣∣∣∣∣∣
 ∑
t∈Tj(l)

r
(2)
t,j − r

(1)
t,j

−
 ∑
t∈Tj(l)

f(A(2)
t , π

(2)
t,j )− f(A(2)

t , π∗) + f(A(1)
t , π∗)− f(A(1)

t , π
(1)
t,j )

∣∣∣∣∣∣
≤ 2

√
2l log

(
4TM

δ

)

Plugging in inequality 2.18, we conclude that if B̃j is in its Uj-compatible environment
with probability at least 1− δ for all l ∈ [T ]:

∑
t∈Tj(l)

r
(2)
t,j − r

(1)
t,j ≤ Uj(sl,j, δ) + 2

√
2l log

(
4TM

δ

)

Therefore the violation of condition in Equation 2.19, means B̃j couldn’t have possibly
been in its Uj-compatible environment. Furthermore, notice that in case Equation 2.19

holds (even if B̃j is not in its Uj-compatible environment), then with probability at
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least 1− δ/M :∑
t∈Tj(l)

f(A(2)
t , π

(2)
t,j )− f(A(2)

t , π∗) + f(A(1)
t , π∗)− f(A(1)

t , π
(1)
t,j ) ≤ Uj(sl,j, δ)+

4
√

2|Tj(l)| log (4TM)

(2.22)

This test guarantees condition 2.22 is satisfied for all j ∈ [M ] and with probability at
least 1− δ, thus implying:

E [IB] ≤
∑
j 6=i?

4
√

2|Tj| log (4TM) ≤ 8

√
MT log

(
4TM

δ

)

The last inequality holds because
∑

j 6=i?

√
|Tj| ≤

√
TM .

Bounding term II

Recall term II equals:

E [II] = E

[
T∑
t=1

f(At, π∗)− f(At, πst,i,i)

]
(2.23)

We use nit to denote the number of rounds base i is chosen up to time t for all
i ∈ [M ]. Let tl,i be the round index of the l−th time the master chooses algorithm
Bi and let bl,i = tl,i − tl−1,i with t0,i = 0 and tniT+1,i = T + 1. Let Ti ⊂ [T ]
be the set of rounds where base i is chosen and Tci = [T ]\Ti. For S ⊂ [T ] and
j ∈ {1, 2}, we define the regret of the i−th base algorithm during Step j of rounds S

as R
(j)
i (S) =

∑
t∈S f(A(j)

t , π∗)− f(A(j)
t , π

(j)
t,i ). The following decomposition of E [II]

holds:

E [II] = E

R(1)
i?

(Ti?) +R
(2)
i?

(Ti?) +R
(1)
i?

(Tci?) +R
(2)
i?

(Tci?)︸ ︷︷ ︸
II0

 . (2.24)

R
(1)
i?

(Ti?) consists of the regret when base i? was updated in step 1 while the remaining
3 terms consists of the regret when the policies are reused by step 2.
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Biased step 2’s rewards

Note that we modified the rewards of step 2 as defined in Equation 2.16, both when
the base is chosen and not chosen. We now analyze the effect of this modification:

R(T )

= E

 T∑
t=1

2∑
j=1

f(A(j)
t , π∗)− f(A(j)

t , π
(j)
t )


= E

 T∑
t=1

2∑
j=1

f(A(j)
t , π

(j)
st,i? ,i?

)− f(A(j)
t , π

(j)
t )


︸ ︷︷ ︸

I

+E

 T∑
t=1

2∑
j=1

f(A(j)
t , π∗)− f(A(j)

t , π
(j)
st,i? ,i?

)


︸ ︷︷ ︸

II

= E

 T∑
t=1

2∑
j=1

(
f(A(j)

t , π
(j)
st,i? ,i?

)− 1(t ∈ Tci? or j = 2)
Ui(st,i? , δ)

st,i?

)
− f(A(j)

t , π
(j)
t )


+ E

 T∑
t=1

2∑
j=1

f(A(j)
t , π∗)−

(
f(A(j)

t , π
(j)
st,i? ,i?

)− 1(t ∈ Tci? or j = 2)
Ui?(st,i? , δ)

st,i?

)
≤ I−modified + II−modified

Where I−modified and II−modified are defined as,

I−modified = E
[ T∑
t=1

2∑
j=1

(
f(A(j)

t , π
(j)
st,i? ,i?

)− 1(t ∈ Tci? or j = 2)
Ui?(st,i? , δ)

st,i?

)
−(

f(A(j)
t , π

(j)
t )− Ujt(st,jt , δ)

st,jt

)]
II−modified = E

[ T∑
t=1

2∑
j=1

f(A(j)
t , π∗)−(

f(A(j)
t , π

(j)
st,i? ,i?

)− 1(t ∈ Tci? or j = 2)
Ui(st,i? , δ)

st,i?

)]
We provided a bound for term I-modified at the beginning of Section 2.7. In this

section we concern ourselves with II−modified. Notice its expectation can be written
as:

E [II−modified] = E [II] + E

[
T∑
t=1

2∑
j=1

1(t ∈ Tci? or j = 2)
Ui?(st,i? , δ)

st,i?

]
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Now the second part of this sum is easy to deal with as it can be incorporated
into the bound of E [II] by slightly modifying the bound given by Equation 2.25 below
and changing 2bl − 1 to 2bl + 1. The rest of the argument remains the same.

Bounding E [II] when p
i?

is fixed

From this section onward we drop the subscript i? whenever clear to simplify the
notations. In this section we show an upper bound for Term II when there is a
value p

i?
∈ (0, 1) that lower bounds pi1, · · · , pi?T with probability 1. We then use the

restarting trick to extend the proof to the case when p
i

is random in Theorem 2.4.10

Lemma 2.7.1 (Fixed p
i?

). Let p
i?
∈ (0, 1) be such that 1

ρi?
= p

i?
≤ pi?1 , · · · , pi?T with

probability one, then, E [II] ≤ 4ρi? Ui(T/ρi? , δ) log T + δT .

Proof of Lemma 2.7.1. Since E [II] ≤ E [1{E}II]+δT , we focus on bounding E [1{E}II].
since base i is (U, T, δ)−bounded, E

[
R

(1)
i?

(Ti)1(E)
]
≤ E

[
Ui?(δ, n

i?
T )1(E)

]
. We proceed

to bound the regret corresponding to the remaining terms in II0:

E [II01(E)] = E

ni?T +1∑
l=1

1{E}(2bl − 1)E
[
r

(2)
tl,i?
|Ftl−1

]
≤ E

ni?T +1∑
l=1

1{E}(2bl − 1)
Ui?(l, δ/2M)

l

 (2.25)

The multiplier 2bl − 1 arises because the policies proposed by the base algorithm
during the rounds it is not selected by M satisfy π

(1)
t,i?

= π
(2)
t,i?

= π
(2)
tl,i

for all l ≤
nTi? + 1 and t = tl−1 + 1, · · · , tl − 1. The factorization is a result of conditional

independence between E
[
r

(2)
tl,i?
|Ftl−1

]
and E

[
bl|Ftl−1

]
where Ftl−1

already includes

algorithm B̃i? update right after round tl−1. The inequality holds because B̃i? is
(Ui? ,

δ
2M
, T (2))−smooth and therefore satisfies Equation 2.3 on event E . Recall that

as a consequence of Equation 2.24 we have

E [II] ≤ E
[
R

(1)
i?

(Ti)1(E) + II01{E}
]

+ δT.

The first term is bounded by E
[
Ui?(n

i?
T , δ)1(E)

]
while the second term satisfies the

bound in (2.25). Let ul = Ui? (l,δ/2M)

l
. By Lemma 2.8.1,

∑t
l=1 ul ≥ Ui?(t, δ/M) for all
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t, and so,

E
[
1EUi?(ni?T , δ)

]
≤ E

ni?T +1∑
l=1

1Eul

 . (2.26)

By (2.25) and (2.26),

E
[
R

(1)
i?

(Ti?)1(E) + II01{E}
]
≤ E

ni?T +1∑
l=1

1{E}2blul

 .

Let al = E [bl] for all l. Consider a master algorithm that uses p
i?

instead of pi?t . In

this new process let t′l be the corresponding rounds when the base is selected, n̄i?T be
the total number of rounds the base is selected, and cl = E

[
t′l − t′l−1

]
. Since p

i?
≤ pi?t

for all t it holds that
∑j

l=1 al ≤
∑j

l=1 cl for all j. If we use the same coin flips used
to generate tl to generate t′l, we observe that t′l ⊂ tl and n̄i?T ≤ ni?T . Let f : R→ [0, 1]

be a decreasing function such that for integer i?, f(i?) = ui? . Then
∑ni?T +1

l=1 alul and∑n̄i?T +1

l=1 clul are two estimates of integral
∫ T

0
f(x)dx. Given that t′l ⊂ tl and ul is a

decreasing sequence in l,

ni?T +1∑
l=1

E [tl − tl−1]ul ≤
n̄i?T +1∑
l=1

E
[
t′l − t′l−1

]
ul ,

and thus

E
[
R

(1)
i?

(Ti?)1(E) + II01{E}
]
≤ E

n̄i?T +1∑
l=1

2E
[
t′l − t′l−1

]
ul .

We proceed to upper bound the right hand side of this inequality:

E

n̄i?T +1∑
l=1

ulE
[
t′l − t′l−1

] ≤ E

n̄i?T +1∑
l=1

ul
p
i


≤ 2ρi?Ui?(T/ρi? , δ) log(T ).

The first inequality holds because E
[
t′l − t′l−1

]
≤ 1

p
i?

and the second inequality follows

by concavity of Ui?(t, δ) as a function of t. The proof follows.
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Proof of Theorem 2.4.10

We use the restarting trick to extend Lemma 2.7.1 to the case when the lower bound
p
i?

is random (more specifically the algorithm (CORRAL) will maintain a lower

bound that in the end will satisfy p
i?
≈ mint p

i?
t ) in Theorem 2.4.10. We restate the

theorem statement here for convenience.

Theorem 2.7.2 (Theorem 2.4.10 ).

E [II] ≤ O(E [ρi? , Ui?(T/ρi? , δ) log T ] + δT (log T + 1)).

Here, the expectation is over the random variable ρi? = maxt
1

pi?t
. If U(t, δ) = tαc(δ)

for some α ∈ [1/2, 1) then, E [II] ≤ 4 21−α

21−α−1
Tαc(δ)E

[
ρ1−α
i

]
+ δT (log T + 1).

Restarting trick: Initialize p
i?

= 1
2M

. If pi?t < p
i?

, set p
i?

=
pi?t
2

and restart the

base.

Proof of Theorem 2.4.10. The proof follows that of Theorem 15 in [5]. Let `1, · · · , `di <
T be the rounds where Line 10 of the CORRAL is executed. Let `0 = 0 and `di?+1 = T
for notational convenience. Let el = [`l−1 + 1, · · · , `l]. Denote by p

i?,`l
the proba-

bility lower bound maintained by CORRAL during time-steps t ∈ [`l−1, · · · , `l] and
ρi?,`l = 1/p

i?,`l
. In the proof of Lemma 13 in [5], the authors prove di? ≤ log(T ) with

probability one. Therefore,

E [II] =

dlog(T )e∑
l=1

P(di? + 1 ≥ l︸ ︷︷ ︸
I(l)

)E
[
R

(1)
i?

(el) +R
(2)
i?

(el)|di? + 1 ≥ l
]

≤ log T

dlog(T )e∑
l=1

P(I(l))E [4ρi?,`lUi(T/ρi?,`l , δ)|I(l)] + δT (log T + 1)

= log TE

[
bi+1∑
l=1

4ρi?,`lUi?(T/ρi?,`l , δ)

]
+ δT (log T + 1).

The inequality is a consequence of Lemma 2.7.1 applied to the restarted segment
[`l−1, · · · , `l]. This step is valid because by assumption 1

ρi?,`l
≤ mint∈[`l−1,··· ,`l] pt.
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If Ui?(t, δ) = tαc(δ) for some function c : R → R+, then ρi?U(T/ρi? , δ) =
ρ1−α
i?

Tαc(δ). And therefore:

E

[
bi?+1∑
l=1

ρi?,`lUi?(T/ρi?,`l , δ)

]
≤ Tαg(δ)E

[
bi+1∑
l=1

ρ1−α
i?,`l

]

≤ 2ᾱ

2ᾱ − 1
Tαc(δ)E

[
ρ1−α
i?

]
Where ᾱ = 1− α. The last inequality follows from the same argument as in Theorem
15 in [5].

Proof of Theorem 2.4.11

Proof. For the CORRAL master,

E [I] ≤ E [IA] + E [IB] ≤ O

(
M lnT

η
+ Tη

)
− E [ρ]

40η lnT
+ 8

√
MT log(

4TM

δ
)

Using Theorem 2.4.10 to control term II, the total regret of CORRAL is:

R(T ) ≤ O
(
M lnT

η
+ Tη

)
− E

[
ρ

40η lnT
− 2ρU(T/ρ, δ) log T

]
+ δT+

8

√
MT log(

4TM

δ
)

≤ O
(
M lnT

η
+ Tη

)
− E

[
ρ

40η lnT
− 2ρ1−αTαc(δ) log T

]
+ δT+

8

√
MT log(

4TM

δ
)

≤ Õ
(√

MT +
M

η
+ Tη + Tc(δ)

1
αη

1−α
α

)
+ δT,

where the last step is by maximizing the function over ρ. Choose δ = 1/T . When
both α and c(δ) are known, choose η = Mα

c(δ)Tα
. When only α is known, choose η = Mα

Tα
.

For the EXP3.P master, if p ≤ 1
2k

:

E [I] ≤ E [IA] + E [IB] ≤ Õ

(
MTp+

log(kδ−1)

p
+

√
MT log(

4TM

δ
)

)
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EXP3.P CORRAL

Õ
(√

MT +MTp+ Tαpα−1c(δ)
)

Õ
(√

MT + M
η

+ Tη + T c(δ)
1
αη

1−α
α

)
Õ
(√

MT +M
1−α
2−αT

1
2−α c(δ)

1
2−α

)
Õ
(√

MT +MαT 1−α +M1−αTαc(δ)
)

Õ
(√

MT +M
1−α
2−αT

1
2−α c(δ)

)
Õ
(√

MT +MαT 1−α +M1−αTαc(δ)
1
α

)
Table 2.2: The top row shows the general regret guarantees. The middle row shows
the regret guarantees when α and c(δ) are known. The bottom row shows the regret
guarantees when α is known and c(δ) is unknown.

Using Lemma 2.7.1 to control term II, we have the total regret of EXP3.P when
δ = 1/T :

R(T ) = Õ(
√
MT +MTp+

1

p
+

1

p
Ui(Tp, δ)) .

= Õ(
√
MT +MTp+ Tαpα−1c(δ))

When both α and c(δ) are known, choose p = T−
1−α
2−αM− 1

2−α c(δ)
1

2−α . When only α is

known, choose p = T−
1−α
2−αM− 1

2−α . We then have the following regret:

2.8 Ancillary Technical Results

Lemma 2.8.1. If U(t, δ) = tβc(δ), for 0 ≤ β ≤ 1 then:

U(l, δ) ≤
l∑

t=1

U(t, δ)

t
≤ 1

β
U(l, δ)

Proof. The LHS follows immediately from observing U(t,δ)
t

is decreasing as a function of

t and therefore
∑l

t=1
U(t,δ)
t
≥ lU(l,δ)

l
= U(l, δ). The RHS is a consequence of bounding

the sum by the integral
∫ l

0
U(t,δ)
t
dt, substituting the definition U(t, δ) = tβc(δ) and

solving it.

Lemma 2.8.2. If f(x) is a concave and doubly differentiable function on x > 0 and
f(0) ≥ 0 then f(x)/x is decreasing on x > 0

Proof. In order to show that f(x)/x is decreasing when x > 0, we want to show that(
f(x)
x

)′
= xf ′(x)−f(x)

x2 < 0 when x > 0. Since 0f ′(0) − f(0) ≤ 0, we will show that
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g(x) = xf ′(x)−f(x) is a non-increasing function on x > 0. We have g′(x) = xf ′′(x) ≤
0 when x ≥ 0 because f(x) is concave. Therefore xf ′(x)− f(x) ≤ 0f ′(0)− f(0) ≤ 0
for all x ≥ 0, which completes the proof.

Lemma 2.8.3. For any ∆ ≤ 1
4

: KL(1
2
, 1

2
−∆) ≤ 3∆2.

Proof. By definition kl(p, q) = p log(p/q) + (1− p) log(1−p
1−q ), so

KL

(
1

2
,
1

2
−∆

)
=

1

2

(
log(

1

1− 2∆
) + log(

1

1 + 2∆
)

)
=

1

2
log

(
1

1− 4∆2

)
=

1

2
log

(
1 +

4∆2

1− 4∆2

)
≤ 2∆2

1− 4∆2
≤ 2∆2

3
4

≤ 3∆2
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Chapter 3

The Explore-Commit-Eliminate
Algorithm (ECE)

3.1 Introduction

Deep reinforcement learning has achieved impressive successes, yet often requires a
very large amount of interaction data. This result is perhaps unsurprising, as more
complicated function approximations often require more data to fit. Recent work on
theoretical reinforcement learning for some structured function approximation settings
has shown regret bounds that scale with a parameter characterizing the complexity
of a particular function class. For example, for a type of function approximation by
a d-dimensional linear model in Markov decision processes (MDPs), prior work has
provided bounds that scale as O(d3/2) regret [38], which have been improved to O(d)
even given small inherent Bellman error [69]. When the dynamics can be expressed
using a matrix, O(d3/2) regret bounds have also been provided [68]. The choice of
dimension d is important: on one hand, if d is too small, such regret bounds typically
either fail to hold or incur linear regret. On the other hand, if d is too large, the
above regret bounds are unnecessarily large. Thus, a natural goal is to use the most
compact representation suitable to encode the optimal policy for a domain (which we
denote as d∗). This optimal representation is typically unknown a priori.

In this chapter we frame this as a model selection question among a set of
algorithms with model classes, parameterized by dimensions {d ≥ 1}, that are nested
in their regret bound guarantees. We assume that at least one class can realize the
true underlying domain. We ask if there is an algorithm that can achieve regret
bounds that scale with the minimal realizable model class, given by d∗. Doing so seems
subtle: provably efficient reinforcement learning algorithms typically rely heavily on



CHAPTER 3. THE EXPLORE-COMMIT-ELIMINATE ALGORITHM (ECE) 55

strategic exploration, and using the wrong model class during learning may alias
states, resulting in performance that appears strong under the current (incorrect)
model class but is actually suboptimal. Conversely, forced exploration under more
complex classes mitigates this problem, but could introduce regret that scales with
the more complex model class dependence, even when a simpler model suffices.

Most prior work on model selection for online decision making has focused on
contextual bandit settings. Here, minimax-optimal guarantees were recently shown
under eigenvalue assumptions on the features by leveraging the special structure of
the stochastic linear contextual bandit setting [18, 27]. These results also assume
the knowledge of a good exploration policy, but such knowledge cannot be relied on
in the reinforcement learning setting, where some “high-reward” states may only
be observed under specific, initially unknown sequences of actions. Slightly weaker
model selection guarantees can also be obtained under far more general assumptions
by using a corralling framework that assumes access to a set of base algorithms, and
provides a meta-algorithm that aims to realize the best regret of the (unknown) best
algorithm [5, 7, 54] and Chapter 2.

Our contributions We tackle the challenge of model selection in RL under minimal
assumptions. Our main insight is to leverage the knowledge of expected regret that
is achievable under a particular model when it realizes the data. Thus, we propose an
algorithm in Section 3.3 that maintains a candidate set of model classes at every round,
and statistically tests whether each of them is well-specified, or not, by comparing
the observed returns under that model class to the regret we should expect from
a well-specified model. Model classes detected as misspecified at any round are
permanently eliminated there-after in a manner reminiscent of active-arm elimination
in the multi-armed bandit problem [23]; this is a significant simplification over previous
meta-algorithms for model selection that were based on adversarial bandit algorithms.
Our choice of action at every round carefully interleaves executing the candidate model
class of minimal complexity with executing algorithms using higher-order models.
This procedure is shown to automatically satisfy the needed exploration-exploitation
trade-off for model selection. In Section 3.4, we show the regret bounds exactly match
the model complexity of the unknown best model in d∗ (and the finite episode length
H in RL), and achieve a T 2/3 rate when the underlying algorithms have a T 1/2 rate
under minimal assumptions about the underlying dynamics process. This is similar
to recent model selection algorithms under general assumptions [54] which sacrifice
either a tight dependence on T or d∗. We also demonstrate how our approach is
compatible with multiple recently introduced RL results, and provide specific bounds
for model selection in such settings. In addition to our algorithm being simpler than a
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recent model-selection approach [54], we provide new, significantly improved bounds
for instances in which there is a constant gap in performance between model classes in
Section 3.5. These guarantees are in part instance-dependent, as they scale inversely
with this performance gap. From a practical perspective, our wrapper algorithm can
be used given any input algorithms with regret guarantees that are nested, which
will allow it to directly inherit future advances in provably efficient reinforcement
learning. Finally, the computational complexity of our meta-algorithm only adds an
extra factor on the order of the total number of model classes over and above the
computational complexity of a single base algorithm.

3.2 Problem Statement

We consider the setting of an episodic Markov decision process (MDP) M =
(S,U , H, r, P, ρ), where S and U are state and action spaces, H ∈ N is the length of
an episode, r = {rh(sh, uh)} is the per-step reward function with rh(sh, uh) ∈ [0, 1],
P = {Ph(sh+1|sh, uh)} is the transition dynamics, and ρ(s) is a fixed initial state
distribution. A policy maps times and states to actions, π : [H]× S → U .

For a given h ∈ [H] and s ∈ S, the value function is the expected cumulative
reward following policy π:

V π
h (s) := Eπ

[
H∑

h′=h

rh′(sh′ , uh′)|sh = s

]
where Eπ corresponds to the expectation over trajectories sampled according to policy
π. We suppress dependence on M from V π

h to avoid notational clutter. Similarly
the action-value function is defined as the expected return from first taking action u
and then following policy π: Qπ

h(s, u) = rh(s, u) + Es′∼Ph(·|s,u)V
π
h+1(s

′). The optimal
value function is denoted V ∗h (s) = supπ V

π
h (s). We write V π := Es∼ρV π

1 (s) and denote
the optimal value under ρ as V ∗ = supπ V

π. In this work we primarily evaluate the
quality of an algorithm A in an MDPM by its regret1 with respect to the (unknown)
optimal policy value V ∗ over T episodes:

RegT (A;M) :=
T∑
t=1

V ∗ − V πt . (3.1)

We are interested in settings where the size of the state space S and/or action
space U could be very large. Hence, we focus on function approximation methods

1Note that regret is here defined with respect to the optimal value. We will also consider
algorithms satisfying “best-in-class” regret guarantees in Section 3.5.
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for minimizing regret. A function approximation algorithm takes as input a model
class F to generalize across states and actions [6]. Several natural examples include
value-based classes where F : S ×U → R is used to predict action-value functions Qπ

and model-based classes where F : S × U × S → R is used to predict the transition
dynamics P and reward r. Concretely, linear MDPs [38, 68] model the transition
dynamics as 〈φ(s, a), µ(s′)〉, where φ ∈ Rd and µ is a d-dimensional vector of measures.

We let (A,F) denote the pair of algorithm A equipped with model class F . Recent
high probability regret (upper) bounds in this setting are sublinear in T and typically
depend polynomially on dF , H, and log(T/δ), where dF is a measure of statistical
complexity of F and δ ∈ (0, 1) is a failure probability. For example, if F is finite,
we often have dF = log |F| and if F is a class of linear functions of dimension d, we
have dF = d. However, provably sublinear regret bounds in T are generally only
known for algorithms under problem-specific assumptions for F—for example, there
exists f ∗ ∈ F such that the function approximation error is 0. If this condition holds,
we say that F realizes the MDP M. Conversely, if F does not realize M, then
it is misspecified. Since we consider settings where F may or may not realize M
and realizability is almost universally assumed among modern RL algorithms with
function approximation, we define a general notion of the regret of A using F under
realizability, following [54].

Definition 3.2.1. For an MDP M, let algorithm A be equipped with a model class
F . Let R be a known function that is poly(dF , H, log(T/δ)). The pair (A,F) is said
to be R-compatible if F realizes M and we have

Regt(A;M) ≤ R(dF , H, log(T/δ)) ·
√
t.

for all t with probability at least 1− δ. R is called a nominal regret coefficient2 for
(A,F).

The rationale behind R-compatible algorithms is the following. For any (A,F),
we may have a regret coefficient R in mind (from a provable guarantee) that holds if
F realizes M. The regret R ·

√
t reflects what we hope to achieve if F does actually

realize M, and (A,F) is only defined to be compatible if this happens. We remark
that realizability is not necessary for a sublinear regret guarantee to hold, but most
RL algorithms using function approximation assume it holds, so it is convenient to
view both conditions together.

Note that Definition 3.2.1 requires that A be anytime, meaning the bound holds
at any arbitrary round index t ∈ [T ] even though only the maximal number of rounds,

2It is not necessary that R depend only on these arguments; but these arguments are typically
of interest in RL regret bounds.
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T , may be specified. For algorithms without automatic anytime guarantees, this can
be remedied up to constant factors via the doubling trick [16]. We will later give
examples of how our model selection algorithm can be used with some recent single
task RL algorithms with formal bounds in the function approximation setting.

Problem Statement Here, our goal in model selection is to obtain a regret guar-
antee that adapts on-the-fly to the model class of minimal complexity that remains
competitive with the optimal value. That is, we wish to find the combination of
algorithm A and model class F , that is compatible in the sense of Definition 3.2.1,
with the smallest possible leading coefficient R(dF , ·, ·). We consider a setting where
we are choosing among a set of candidate algorithms A1,A2, . . .AL with model classes
{Fi}i∈[L], known nominal regret coefficients {Ri}i∈[L], and complexities {di}i∈[L] where
di := dFi and Fi is the model class of Ai. Without loss of generality, we assume the
algorithm-model class pairs can be ordered by their regret such that we have

Ri(di, H, log(T/δ)) ≤ Ri+1(di+1, H, log(T/δ)) (3.2)

for all i ∈ [L − 1], T,H ∈ N, and δ ∈ (0, 1). For example, if {Ai} are all instances
of the same algorithm that use as input nested model classes {Fi}, then (3.2) is
satisfied by ordering d1 ≤ . . . ≤ dL. This naturally captures, among other cases,
linear models with nested features [27]. We also assume3 that at least one algorithm
is Ri-compatible for its respective regret coefficient Ri. Define i∗ = min{i ∈ [L] :
(Ai,Fi) is Ri-compatible}.

We aim to design a meta-algorithm A that selects among {Ai}Li=1 without knowing
i∗ a priori and, for some α ≥ 0 and β ∈ [1/2, 1), achieves a guarantee of

RegT (A) = O
(
Ri∗(di∗ , H, log(T/δ)) · LαT β

)
.

3.3 The Explore-Commit-Eliminate Algorithm

In this section, we present our model selection meta-algorithm, Explore-Commit-
Eliminate (ECE) and detail the simple statistical test underlying our approach. Our
meta-algorithm for model selection is described in Algorithm 10. At a high level,
the algorithm proceeds in the following way. It takes as input the base algorithms
and model classes, their nominal regret coefficients, and their model complexities;

3Note that for all other misspecified algorithms, their nominal regret bounds will, in general,
not hold. As regret is being measured with respect to V ∗, it will include the misspecification error
terms.
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mathematically, the input is given by {Ai,Fi,Ri, di}i∈[L]. The number of algorithms
L, episodes T ∈ N and failure probability δ′ ∈ (0, 1/e) are also specified. First,
we set δ = δ′

10LT 2 log2 T
. The meta-algorithm tracks a candidate algorithm index ı̂t,

corresponding to pair (Aı̂t ,Fı̂t) that is believed to be Rı̂t-compatible at any given
time — as well as a set Bt of indices of algorithms with more complex models. At the
start of each episode, the meta-algorithm determines whether to use the algorithm
Aı̂t or explore using a randomly selected algorithm from the indices Bt, based on the
outcome of a Bernoulli variable Ut with success probability 1/tκ where κ ∈ (0, 1/2].
This random variable Ut represents an indicator that model exploration will occur.
After executing the policy from the chosen algorithm, the data is fed back to the
algorithm to update, and a test is run to determine whether the algorithm should
reject Aı̂t . The test checks the following condition for each j ∈ Bt:

Gt(̂ıt, j) >W(|T ı̂tt |,Rı̂t , dı̂t , δ)

where for all i < j ∈ [L], t ∈ [T ], T it is the set of times when Ai is chosen up to t,
and G is a scaled estimate of the excess gap between models i and j, given by

Gt(i, j) :=
|T it |
|T jt |

∑
t′∈T jt

gt′ −
∑
t′∈T it

gt′

and W is defined as

W(t,R, d, δ) := CW · R(d,H, log(T/δ)) ·
√
t

+ CW ·H
√
Lt1+κ · log(1/δ)

+ CW ·H
√
t · log(1/δ)

for a sufficiently large constant CW > 0. The test is only valid after a minimal burn-in

period, t ≥ τmin(δ) = Cmin · L
2

1−κ log
1

1−κ (1/δ) for a sufficiently large Cmin > 0, so this
condition is also checked. If these conditions are true for some j ∈ Bt, meaning that
the test fails, then ECE rejects Aı̂t and switches to Aı̂t+1. This process repeats until
episode T .

Note that although the algorithm uniformly explores among the algorithms in
Bt, it does not require any explicit uniform or directed exploration within episodes
that may be a tougher problem in RL settings than regret-minimization—one can
simply run the algorithms as they were prescribed. In fact, we can interpret our
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meta-algorithm as automatically leveraging the exploration already in-built in the
regret-minimizing base algorithms.

Algorithm 10: Explore-Commit-Eliminate (ECE)

1 Input: {Ai,Fi,Ri, di}i∈[L], L, T, δ
′, τmin(·), κ

2 δ ← δ′

10LT 2 log2 T
, ı̂t ← 1, T i0 = ∅ for all i ∈ [L], B1 = [2, L].

3 Ut =

{
0 w.p. 1− 1

tκ

1 w.p. 1
tκ

for all t ∈ [T ].

4 for t = 1, . . . , T do

5 Set j =

{
ı̂t Ut = 0

Jt ∼ Unif{Bt} Ut = 1

6 T jt ← T
j
t−1 ∪ {t} and T kt ← T kt−1 for all k 6= j.

7 Rollout policy πt from Aj
8 Observe zt := (st,1, ut,1, . . . , ut,H , st,H+1) and gt :=

∑
h∈[H] rt,h

9 Update Aj with t, zt, gt
10 if t ≥ τmin(δ) and there exists j ∈ Bt such that

Gt(̂ıt, j) >W(|T ı̂tt |,Rı̂t , dı̂t , δ) then
11 ı̂t+1 ← ı̂t + 1
12 Bt+1 ← Bt \ {̂ıt+1}
13 If ı̂t+1 = L, break and run AL to end of time

14 else
15 Bt+1 ← Bt

Statistical Test on Excess Gap

The ability of ECE to judiciously accept or reject base algorithms lies in the simple
statistical test at the end of each episode. The test can be viewed as a comparison
between the scaled expected return obtained by a “higher-order” algorithm, Aj,
corresponding to index j ∈ Bt during exploration rounds; and that of the active
candidate algorithm Aı̂t during all rounds of its usage. If we find that the return of Aj
is significantly higher than that of Aı̂t , it suggests that switching to the more complex
algorithm Aj would yield significantly higher return, despite the fact that Aj has a
larger nominal regret bound and might have received much less data than Aı̂t (as it
is also competing for data with the other algorithms in Bt). The requirement that
t ≥ τmin(δ) and our special choice of exploration schedule ensures that the algorithms
in Bt will have sufficient data to be useful in the test with high probability, while
still exploiting the candidate model Aı̂t whenever possible.
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While we want ECE to reject lower-order models when they perform poorly, the
test cannot be too sensitive. Otherwise, it could reject the optimal i∗ and choose some
unnecessarily large j > i∗, leading to highly suboptimal model complexity dependence
in the regret bound. Our statistical test is designed to avoid this situation, as we
prove in Section 3.4.

To give some additional intuition behind the test, it is useful to view the expected
returns 1

|T jt |

∑
s∈T jt

gs as a noisy lower bound of the optimal value V ∗; meanwhile

the expected returns of 1

|T i∗t |

∑
s∈T i∗t

gs plus the regret incurred, Reg(Ai∗), should be

an upper bound of the optimal value V ∗ up to some noise as well, if (Ai∗ ,Fi∗) is
Ri∗-compatible. Thus, as long as these intervals intersect, the test should succeed
and i∗ continues to be accepted. If the intervals separate, the current candidate is
rejected. This intuition is reflected in the three terms comprising the definition of W .
The first is the nominal regret one expects to see from Aı̂t if it is compatible. The
last two follow from concentration of the averaging over returns of the algorithms.

3.4 Regret Guarantees for ECE

Our main result shows that the meta-algorithm automatically adapts to the regret
of the optimal pair (Ai∗ ,Fi∗) that is Ri∗-compatible. One of the main mechanisms
behind this result is ensuring the validity of the test. The following lemma shows
that ECE will never reject (Ai∗ ,Fi∗) with high probability.

Lemma 3.4.1. We have Gt(i∗, j) ≤ W(|T i∗t |,Ri∗ , di∗ , δ) with probability at least 1−δ′
for all j ∈ [i∗ + 1, L] and t ≥ τmin(δ′/10LT 2 log2 T ).

Thus, since the meta-algorithm steps through the base-algorithms incrementally,
Lemma 3.4.1 shows that once it reaches (Ai∗ ,Fi∗), the first Ri∗-compatible pair, an
algorithm with a more complex model class will never be selected. Our main theorem
combines this result with the fact that, if the ECE has not rejected a misspecified
algorithm (Aj,Fj) with j < i∗, then the suboptimality of Aj must not be significant.

Theorem 3.4.2. Let the model exploration parameter κ = 1/3. Then, the model
selection algorithm ECE satisfies the regret bound

Õ
(
HLT 2/3 +Ri∗(di∗ , H, log(LT/δ′)) · i1/3∗ L1/2T 2/3

)
.

with probability at least 1− δ′, where Õ hides logs and terms independent of T and R.

The regret bound of the meta-algorithm matches that of the optimal algorithm
in dependence on the complexity of its model class di∗ and horizon H, i.e., the best
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Alg. Env. Regret

ModCB CB Õ
(
L2/3d

1/3
i∗
T 2/3

)
OSOM CB Õ

(
d

1/2
i∗
T 1/2

)
CORRAL RL Õ

(
L1/2R2

i∗T
1/2
)

Exp3.P RL Õ
(
L1/3Ri∗T 2/3

)
Ours RL

MM: Õ
(
L5/6Ri∗T 2/3

)
ID: Õ

(
L5/2R3

i∗
∆2

min
+Ri∗T 1/2 + LT 2/3

)

Table 3.1: We compare the theoretical guarantees of our algorithm to recent model
selection work: ModCB [27], OSOM [18], CORRAL [5, 54], and Exp3.P [54]. The
first two apply to the contextual bandit (CB) setting and leverage distribution
assumptions on the contexts to get nearly optimal regret. CORRAL and Exp3.P
apply generally, but are suboptimal and require modifying the base algorithms in
non-trivial ways. Our rate matches that of Exp3.P in the minimax (MM) setting
without significant assumptions or modifications to the algorithms. We also achieve
an improved instance-dependent (ID) rate when the gaps in performance between
base algorithms are constant with minimal gap ∆min.

dependence if the optimal algorithm were provided a priori. We do incur a worse
dependence on T , which is now T 2/3, compared to the nominal

√
T rate, and a

dependence of L1/2, the total number of algorithms, and i∗, the index of the optimal
algorithm. Note that this type of trade-off in the parameter optimality for model
selection is typical in recent results focused on contextual bandits, where methods
making less strong assumptions typically incur sub-optimality in either the dependence
on di∗ or T . In particular, Theorem 3.4.2 matches the rate of Exp3.P [54] and does
so without non-trivially modifying the base algorithms. In addition to the minimax
guarantee of Theorem 3.4.2, we show in Section 3.5 that this can be improved to
instance-dependent bounds, in contrast to Exp3.P and CORRAL.

Proofs

All proofs of Theorem 3.4.2, when not provided here, are available in Section 3.8. In
this section, we prove Lemma 3.4.1 and provide a proof sketch for Theorem 3.4.2 to
illustrate the main idea behind handling pairs (Aj,Fj) that are not Rj-compatible.
In both cases, we require that three events hold and will show that they do with high
probability. Define εt = gt − V πt and let τi denote the first episode in which Ai is
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chosen as the candidate ı̂t. If Ai is never chosen then default to τi = T . Recall that
δ = δ′

10LT 2 log2 T
.

1. Event E1: For all j ∈ [L] and all t ∈ [T ] such that t ≥ τmin(δ), if t ≤ τi, then
t1−κ

8L
≤ |T it | ≤ 4t1−κ. If t > τi, then |T it | ≤ t− τi + 4t1−κ

2. Event E2: For all t ∈ [T ],∑
t′∈T i∗t

V ∗ − V πt′ ≤ Ri∗(di∗ , H, log(T/δ))
√
|T i∗t |

3. Event E3: For all j ∈ [L] and all t ∈ [T ], |
∑

t′∈T jt
εt′| ≤ H

√
2|T jt | log(2/δ)

The first event ensures that the exploration schedule yields sufficient data to all
the algorithms before they are chosen. The second states that the nominal anytime
regret guarantee holds for (Ai∗ ,Fi∗). The third handles concentration of the noisy
returns that the algorithm observes from deploying policies. The following lemma
shows that all three events happen with high probability.

Lemma 3.4.3. The event E =
⋂
i∈{1,2,3}Ei holds with probability at least 1 −

10LT 2δ log2 T .

Lemma 3.4.3 is proved in Section 3.8. The proof for the first event uses a Freedman
inequality (details in Section 3.9) to bound the sizes of all sets given that enough
time has passed. The second event holds with high probability under the assumption
that (Ai∗ ,Fi∗) is Ri∗-compatible. The third event can be shown to hold with high
probability using the Azuma-Hoeffding inequality with appropriate union bounds.

Proof of Lemma 3.4.1

We now prove the statement of Lemma 3.4.1 under the event E. Adding and sub-
tracting the sum of appropriately scaled value functions

∑
t′∈T jt

V πt′ and
∑

t′∈T i∗t
V πt′ ,

we can write Gt(i∗, j) in terms of value functions and conditionally zero-mean errors:

Gt(i∗, j) =
|T i∗t |
|T jt |

∑
t′∈T jt

gt′ −
∑
t′∈T i∗t

gt′

=
|T i∗t |
|T jt |

∑
t′∈T jt

(V πt′ + εt′)−
∑
t′∈T i∗t

(V πt′ + εt′)

≤
∑
t′∈T i∗t

(V ∗ − V πt′ ) +
|T i∗t |
|T jt |

∑
t′∈T jt

εt′ −
∑
t′∈T i∗t

εt′
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The last inequality follows as V ∗ ≥ V πt′ for all t′ ∈ [T ]. If events E2 and E3 hold then

Gt(i∗, j) ≤ Ri∗ (di∗ , H, log(1/δ)) ·
√
|T i∗t |

+H

√
2|T i∗t | log(2/δ) +H

√
2|T i∗t |2

|T jt |
log(2/δ)

By event E1 and the fact that j > i∗ and t ≥ τmin(δ), |T jt | ≥ t1−κ

8L
≥ |T i∗t |1−κ

8L
. Therefore,

for the third term,

H

√
2|T i∗t |2

|T jt |
log(2/δ) ≤ H

√
16L|T i∗t |1+κ log(2/δ)

Applying this bound to the result in the previous display and given the definition
of W, it follows that Gt(i∗, j) ≤ W(|T i∗t |,Ri∗ , di∗ , δ) for a sufficiently large constant
CW > 0, independent of t, di∗ , H, and δ.

Proof Sketch of Theorem 3.4.2

In bounding the regret of the meta-algorithm, there are three cases to handle: (1)
before the test becomes valid, (2) once the test is valid but i∗ has not been chosen
yet, and finally (3) once i∗ is chosen. We address the first and third cases before
addressing the second, which is more involved. We define τ∗ = τi∗ for shorthand.

Case (1): When t < τmin(δ), the test to determine switching among any of
the model classes is not yet valid. Here we simply pay the burn-in period giving

Reg1:τmin(δ)−1 ≤ O(HL
2

1−κ log
1

1−κ (1/δ)).
Case (3): If t > τ∗, then the meta-algorithm has switched to Ai∗ . Under event

E, the condition in Lemma 3.4.1 is met and so the test no longer fails. Therefore
(Ai∗ ,Fi∗) which isRi∗-compatible is not rejected in the remaining episodes. The regret
during this phase scales as Ri∗(di∗ , H, log(T/δ)) ·

√
T plus additional O(HLT 1−κ)

regret due to exploration of the remaining base algorithms in Bt.
Case (2) is when τmin < t ≤ τ∗—the test is eligible but the meta-algorithm is either

switching among misspecified models or unable to detect that they are misspecified.
Since the misspecification is not detected for any of the algorithms in Bt, we know
Gt(̂ıt, i∗) ≤ W(|T ı̂tt |,Rı̂t , dı̂t , δ). That is, the average reward for Aı̂t is not significantly
different from that of Ai∗ . Since Ai∗ is only played during exploration and t ≥ τmin(δ),
its number of rounds played can be lower bounded by t1−κ/8L and thus its average
regret is at most roughly

Õ

(
L1/2Ri∗(di∗ , H, log(T/δ))

t
1−κ

2

)
.
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The success of the test suggests that the average reward of Aı̂t should be close to
this. Extrapolating over the rounds played by Aı̂t , the regret for ı̂t will be

Õ
(
Ri∗(di∗ , H, log(T/δ)) · L1/2|T ı̂tt |

1+κ
2

)
up to a constant shift by W(|T ı̂t |,Rı̂t , dı̂t , δ). The shift is dominated by the above
display because Rı̂t ≤ Ri∗ and κ ∈ (0, 1/2]. Finally, since we must account for the
cumulative effect for all i < i∗, Jensen’s inequality shows the sum of these terms is
bounded above by

Õ
(
Ri∗(di∗ , H, log(T/δ)) · i

1−κ
2
∗ L1/2T

1+κ
2

)
.

This becomes the dominant term in the regret. Additional regret of O(HLT 1−κ+Hi∗+

HT
1+κ

2 log1/2(1/δ)) is also paid for exploration, switching costs, and estimation error
of the averages. Summing these three cases and taking κ = 1/3 proves Theorem 3.4.2.

3.5 Instance Dependent Bounds

We now prove a stronger “instance-dependent” guarantee on online selection over
more specialized base algorithms which have provable regret guarantees that are
sublinear in T , but compared to the best policy within its respective policy class.
For example, for an algorithm and model class (A,F) using value-based function
approximation we might consider the greedy policy class:

ΠF =

{
(s, h) 7→ argmax

u∈U
f(s, u, h) : f ∈ F

}
.

The regret with respect to the best-in-class is

RegT (A,ΠF ;M) = maxπ∈ΠF

∑
t∈[T ] V

π − V πt

To consider algorithms that may obtain sublinear regret with respect to this weaker
benchmark but not with respect to V ∗, we give a refined definition of R-compatible
algorithms.

Definition 3.5.1. The pair (A,F) is said to be RΠF -compatible with respect to ΠF
on the MDP M if we have

RegT (A,ΠF ;M) ≤ RΠF (dF , H, log(T/δ)) ·
√
t

for all t with probability at least 1− δ.
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The value of maxπ∈ΠF V
π is typically unknown because of the complex dependence

between ΠF and M, and because ΠF is often determined by F . Given a set of
algorithms with different policy classes, we would like to select the one with the
smallest regret compared to the optimal best-in-class value. Formally, we assume
there are given algorithms {(Ai,Fi)} with policy classes {Πi} each having optimal
values V ∗i := maxπ∈Πi V

π and regret coefficients {RΠi
i } such that for all i the pair

(Ai,Fi) is RΠi
i -compatible and Ri(di, ·, ·) ≤ Ri+1(di+1, ·, ·). Our goal is to select

i∗ ∈ B∗ := argmaxj∈[L] V
∗
j that has the smallest complexity dependence i.e. i∗ =

argmini∈B∗R
Πi
i (di, ·, ·). We emphasize that even if no algorithm is compatible in the

sense of Definition 3.2.1, we want the optimal best-in-class guarantee4 in the sense of
Definition 3.5.1.

The difference between this setting and the last is that all algorithms are assumed
to be compatible with respect to their own policy classes now, but the differing Πi

mean that some can have lower V ∗i , which we want to eliminate. Note that although
the regret coefficients are ordered as in (3.2), the values {V ∗i } are unknown and not
necessarily ordered. Observe that i∗ = minB∗, so that V ∗i∗ > V ∗i for all i < i∗ and
V ∗i∗ ≥ V ∗i for all i > i∗. Thus i∗ has the lowest regret for the best policy class. We
would like an algorithm A that bounds RegT (A,Πi∗ ;M) with dependence on only
the complexity of Fi∗ . The following result shows that Algorithm 10, without any
modifications, can obtain an instance-dependent regret guarantee based on the size of
the gaps ∆j,i∗ := V ∗i∗ − V

∗
j for j < i∗.

Theorem 3.5.2. For a given M, let (Ai,Fi) be RΠi
i -compatible with respect to Πi

for all i ∈ [L]. Then, with probability at least 1− δ′, ECE with κ = 1/3 satisfies the
regret bound with respect to policy class Πi∗:

Õ
(
HLT 2/3 +RΠi∗

i∗

√
T + L3/2(RΠi∗

i∗ )3
∑

i<i∗
∆−2
i,i∗

)
If κ = 1/2, then it satisfies

Õ
(
HL
√
T +RΠi∗

i∗

√
T + L2(RΠi∗

i∗ )4
∑

i<i∗
∆−3
i,i∗

)
Comparing this result to Theorem 3.4.2, if ECE is run with the same κ = 1/3 and

the gaps are constant, a significantly better rate is possible since the third term has
no dependence on T . With a more aggressive exploration choice of κ = 1/2, an even

stronger instance-dependent guarantee is possible, matching the optimal RΠi∗
i∗

√
T

4In essence, the best-in-class guarantee needs to hold even under model misspecification. A
good example of a base algorithm satisfying this condition would be Exp4 in the contextual bandits
setting.
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rate of the best algorithm. However, this comes at the price of worse dependence
on the gaps and RΠi∗

i∗ factors, in the term that does not increase polynomially with
T . In either case, Theorem 3.5.2 shows that we can obtain optimal or near-optimal
dependence in T and only suboptimal RΠi∗

i∗ -dependence on terms that do not grow
with T , as long as the gaps are constant. In Section 3.6, we show that these rates
can be even further improved with only minimal modifications to ECE if given access
to fast estimators of the gaps or V ∗.

3.6 Implications of fast rates of estimating V ∗

and/or gap between policy classes

We previously discussed the recent results that prove PAC [48] and regret [54] results
for model selection in RL given knowledge of V ∗. We now show an analogous result
for our setting. We use the framework of Algorithm 10 but set the probability of
forced exploration to zero, i.e. set κ =∞. Then, the test is modified to check the
following condition for eliminating model ı̂t:∑

t′∈T ı̂tt

V ∗ − gt′ >WV ∗(|T ı̂tt |,Rı̂, dı̂t , δ)

where

WV ∗(∆,R, d, δ) = CW · R(d,H, log(1/δ)) ·
√

∆

+ CW ·H
√

∆ · log(1/δ)

for a sufficiently large constant CWV ∗ > 0. The test effectively measures the regret
of Aı̂t up to noise in gt and rejects when we are confident that the regret does not
match the nominal.

Proposition 3.6.1. Given side information of the optimal value V ∗ for MDP M,
the above model selection algorithm A guarantees regret

RegT (A) = Õ
(
Ri∗(di∗ , H, log(LT/δ′)) ·

√
LT
)

with probability at least 1− δ′.

Proof. The proof is identical to that of Theorem 3.4.2 except for the handling of
the misspecified case. For any model j < i∗ for which there is a time when the test
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succeeds, ∑
t∈Tjτj+1−1

V ∗ − V πt =
∑

t∈Tjτj+1−1

(V ∗ − gt) +
∑

t∈Tjτj+1−1

εt

≤ WV ∗(|T jt |,Rj, dj, δ) +
∑

t∈Tjτj+1−1

εt

= O

((
Ri∗ +H log1/2(1/δ)

)
·
√
|T jt |

)
Summing over all j < i∗ and using Jensen’s inequality again shows that the dominant
term remains O(Ri∗

√
T ) instead of O(Ri∗T

2/3).

This regret optimally matches the regret of the base algorithms in both Ri∗ and
T , but a dependence on L is still included.

Unfortunately, it is unclear whether such an assumption of knowing V ∗ is realistic
in practice. An immediate alternative solution is to try to estimate V ∗ without first
finding the optimal policy. The original test in Section 3.3 attempts this: the average
returns of the algorithms in Bt act as a noisy lower bound of V ∗. The test, however,
is sensitive to the amount of exploration allocated to the base algorithms, and, since
we are comparing to the nominal regret, the flat dependence on R is unlikely to
improve. We hypothesize that better estimates of V ∗ can significantly improve the
model selection guarantee.

In the following subsections, we consider the implications of having access to fast
estimators, either of the optimal value V ∗ := V ∗i∗ or gaps between optimal values
of different model orders, i.e. ∆i,j := V ∗i − V ∗j . We employ our instance-dependent
analysis to show that improved regret rates can be obtained in both cases when
the gap between the value of the optimal policy class and others is relatively large
(i.e. constant). These consequences are demonstrated for the special case of linear
contextual bandits, where such fast estimators are known to be available [21, 39, 40,
65].

Implications for access to a fast rate of estimating gaps in
policy class optimal values

We first consider the possibility of fast rates in estimating the gap in optimal policy
values, i.e. ∆i,j := V ∗j − V ∗i for all i < j. In this section, we show that a modification
of our ECE algorithm with a direct estimator of the gap in maximal values would
yield improved model selection rates if there is a constant gap between all lower-order
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Algorithm 11: Explore-Commit-Eliminate With Fast Gap Estimator And
Forced Exploration Routines(ECE-Gap)

1 Input: {Ai, Ãi,Fi,Vi, di}i∈[L], T, δ
′, τmin(·), κ

2 δ ← δ′

10LT 2 log2 T
, ı̂t ← 1, T i0 = ∅ for i ∈ [L], B1 = [2, L]

3 Ut =

{
0 w.p. 1− 1

tκ

1 w.p. 1
tκ

for all t ∈ [T ].

4 for t = 1, . . . , T do
5 if Ut = 0 then
6 Set j ← ı̂.

7 else
8 Sample Jt ∼ Unif{Bt}
9 Set j ← Jt

10 T jt ← T
j
t−1 ∪ {t} and T kt ← T kt−1 for all k 6= j.

11 IF Ut = 0: Rollout policy πt from Aj.
12 ELSE: Rollout policy πt from Ãj.
13 Observe zt := (st,1, ut,1, . . . , ut,H , st,H+1) and gt :=

∑
h∈[H] rt,h

14 Update Aj if Ut = 0, else update Ãj with t, zt, gt

15 if t ≥ τmin(δ) and there exists j ∈ Bt such that ∆̂ı̂t,j(T
j
t ) > Z(|T jt |,Vj)

then
16 ı̂t+1 ← ı̂t + 1 Bt+1 ← Bt \ {̂ıt+1} If ı̂t+1 = L, break and run AL to end

of time
17 else
18 Bt+1 = Bt

models and the true model, i.e. ∆i,i∗ > 0 for all i. Along with the replaced estimator,
the radius of the statistical test is also modified according to the faster estimation
error rate in the policy gap. For the special case of linear contextual bandits, these
modifications will correspond exactly to the ModCB algorithm proposed by [27].

Since our focus is on instance-dependent analysis, we carry over the assumptions
from Section 3.5, and further assume model nested-ness in the sense that V ∗j = V ∗ for
j ≥ i∗. Thus, we get ∆i∗,i = 0 for all i ≥ i∗, and ∆i,i∗ > 0 for all i < i∗. To estimate
the gap during exploration episodes, rather than running Ai directly, we allow an
exploration algorithm Ãi to be run. In the case of [27] for contextual bandits, this
would be an exploration policy that picks an arm uniformly at random from the set
of K arms. Finally, we make the following assumption on the estimation error rate of
the gaps.
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Assumption 3.6.1. For any i < j, we define ∆̂
(n)
i,j as an estimate of ∆i,j that is a

functional of the (context and reward) feedback obtained after running n exploration

episodes for Ãj. Then, we say that our estimate is Vj := V(dj, H, log(1/δ))-consistent
if, for some positive constant C > 1, we have

|∆̂(n)
i,j −∆i,j| ≤

∆i,j

C
+
Vj√
n

for all n ∈ [T ] and i < j (3.3)

with probability at least 1 − δ. As with the earlier definition5, Vj is poly and non-
decreasing in dj, H, |U|, and log(LT/δ)).

The original estimator used in the ECE algorithm satisfies the above assumption
with V := R. In what follows, we want to exploit situations in which we have
available an estimator ∆̂i,j with guarantee V � R; in particular, the dependence
of the function V on dimension d could be significantly improved over any regret
bound. While constructing such estimators is in general an open problem in RL, we
do have one example for the linear contextual bandit problem where this is known to
be possible.

Example 3.6.2. [Linear contextual bandits.] Consider the stochastic dth-order linear
contextual bandits model as in [19], parameterized by K context distributions {Σi}Ki=1,
reward parameter θ∗ ∈ Rd, and σ-sub-Gaussian noise in the rewards. Further,
we carry over the assumptions from [27] of τ -sub-Gaussianity of the contexts and
λmin(Σ) ≥ ν > 0 where Σ := 1

K

∑K
i=1 Σi is the action-averaged covariance matrix.

We assume that τ, ν are universal positive constants. Then, Assumption 3.6.1 holds
with the choice of forced exploration Ãi that chooses arms uniformly at random from
the set [K] (regardless of round index t and model index i), with the choices C = 2

and Vi(di, log(1/δ)) scaling as Õ(d
1/4
i ) for the estimator based on the square loss gap,

used in [27]. Meanwhile, the regret bound for the base algorithms (e.g. instances of

Exp4-IX) would give Ri scaling as Õ(d
1/2
i ). Further, note that Algorithm 2 exactly

becomes the ModCB algorithm for this case.

We now described the modified ECE algorithm, ECE-Gap, to work with a plugged-
in estimate of ∆i,j with the above guarantees. Note that the input now has extra

“exploration algorithms” Ãi, and what was earlier defined as regret bound leading
factors, i.e. Ri, is replaced by Vi, the leading factors in the gap estimation error.
Importantly, we are now using the fast estimator ∆̂i,j(t) in place of the earlier
estimator Gt(j, i)/|T jt |.

5Similar toR, the definition of Vj can be general and include other problem dependent parameters
as well.
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Moreover, the threshold is now defined as:

Z(n,V) :=
V√
n

Note that the threshold is always applied to the more complex model d := di for
i > j. The algorithm is stated formally in Algorithm 11. We derive the following
instance-dependent result for this algorithm.

Proposition 3.6.3. For a given M, let Assumption 3.6.1 hold and let {∆i,i∗}i<i∗ be
the gaps. Then, with probability at least 1− δ′, ECE-Gap in Algorithm 11 satisfies the
regret bound

Õ

(
HLT 1−κ +RΠi∗

i∗

√
LT +

i∗−1∑
i=1

min{L
1

1−κV
2

1−κ
i∗ ∆

− 1+κ
1−κ

i,i∗ ,∆i,i∗T}

)
,

where regret is measured with respect to the optimal value V ∗.

Before proving Proposition 3.6.3, let us consider its implication for the linear
contextual bandits setting, ignoring dependence on K = |U| for now. Here, the
modified ECE algorithm will essentially correspond to ModCB.

By choosing κ = 1/3 and using the gap estimator from [27], we can achieve an
instance-dependent result with lower di∗ dependence than that of Theorem 3.5.2 for
the same setting of κ under the assumption of constant gaps. Furthermore, in the
case the case of variable gaps, this result can immediately imply a minimax guarantee
that matches that of [27].

Corollary 3.6.1. For the linear contextual bandit problem, under the same setting
as Corollary 3.6.2, with probability at least 1 − δ′, Algorithm 11 with κ = 1/3 and
constant gaps satisfies the instance-dependent regret bound

Õ

(
LT 2/3 +

√
di∗LT + L3/2d

3/4
i∗

∑
i<i∗

∆−2
i,i∗

)
= Õ

(
LT 2/3 +

√
di∗LT

)
. (3.4)

Furthermore, for variable gaps, let RegT (A;M, {∆i,i∗}i) denote the regret as a function
of the gaps. Since min{L3/2V3

i∗∆
−2
i∗,i,∆i∗,iT} ≤ L1/2Vi∗T 2/3, ECE-Gap also satisfies the

minimax regret bound

sup
∆i,i∗>0 : i<i∗

RegT (ECE-Gap;M, {∆i,i∗}i) = Õ
(
Ld

1/4
i∗ T

2/3 +
√
di∗LT

)
.
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The equality in (3.4) uses di � T for all i ∈ [L] and the constant gap assumption.
If we knew a priori that the gaps are constant, the instance-dependent bound in (3.4)
can be improved by a more aggressive choice of κ = 1/2, as in Theorem 3.5.2. We can

then achieve the desired regret rate of Õ(
√
di∗T ) regret if and only if the gaps are

constant. Again there is only sub-optimal di∗-dependence on the term independent
of T .

Corollary 3.6.2. For the linear contextual bandit problem under Assumption 3.6.1
with constant gaps {∆j,i∗}j<i∗, let Vi∗ := Õ(d

1/4
i∗ ) and RΠi∗

i∗ := Õ(d
1/2
i∗ ). Then, with

probability at least 1− δ′, Algorithm 11 with κ = 1/2 satisfies the regret bound

Õ

(
L
√
T +

√
di∗LT + L2di∗

∑
i<i∗

∆−3
i,i∗

)
= Õ

(
L
√
T +

√
di∗LT

)
.

In summary, Proposition 3.6.3 not only recovers the minimax rate, but shows
an improved instance-dependent guarantee for more favorable cases when the gap
between optimal policy values is larger.

Let us now prove the proposition.

Proof. Let ∆̂t
i,j := ∆̂

(|T it |)
i,j . First, we show that under the intersection of the event of

Equation (3.3) and event E ′ of Theorem 3.5.2, we will never reach ı̂t > i∗. For every
i > i∗, and all t ≥ 1, Equation (3.3) gives us

∆̂t
i∗,i ≤

Vi√
|T it |

Thus, model order i∗ is never rejected under this event, and higher order models have
no contribution to the overall regret.

Next, we bound the regret arriving from the misspecified models i < i∗. We do
this by bounding the number of rounds during which model order i < i∗ is used, given
by |T iT |. From Equation (3.3), we get

∆i,i∗ ≤ ∆̂t
i,i∗ +

∆i,i∗

C
+
Vi∗√
|T i∗t |

=⇒ ∆i,i∗ ≤
C

C − 1

∆̂t
i∗,i +

Vi∗√
|T i∗t |


≤ CVi∗

(C − 1)
√
|T i∗t |
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where the last inequality follows because the condition in the test has not yet been
violated. More-over, since model i∗ has not been selected yet, we have |T i∗t | ≥ t1−κ

8L
≥

|T it |1−κ
8L

. This gives us

∆i,i∗ ≤
8(CL)1/2Vi∗√
C − 1|T it |

1−κ
2

=⇒ |T it | = O

L 1
1−κ (Vi∗)

2
1−κ

∆
2

1−κ
i,i∗


Thus, the total contribution to the regret from the misspecified model i is given

by

T 1−κ + |T it |∆i,i∗ +RΠi
i

√
|T it |

≤ T 1−κ + |T it |∆i,i∗ +RΠi∗
i∗

√
|T it |.

The first term comes from the forced exploration, and the last term is equivalent
to the regret we would pay anyway if we knew i∗ = 2 beforehand. Focusing on the
second term, the contribution to regret is upper bounded by

min

{
∆i,i∗T,

(
CZL

1/2Vi∗
∆i,i∗

) 2
1−κ

·∆i,i∗

}

Implications for a fast rate of estimating V ∗

An alternative setting is one where we have access to an estimator of V ∗ instead of an
estimator of the gap. Corollary 1 of [40] shows that an ε-close approximation of V ∗ is

possible in Õ
(√

d/ε2
)

interactions in the disjoint linear bandit setting (where there

is a different parameter vector for each arm) under Gaussian assumptions. Whether
or not such fast estimators exist or are practical for other general settings is still
open, but future work on this problem could be applied to the instance dependent
results here.

We will retain the same problem assumptions as the previous subsection. We also
assume there is V̂i for each i ∈ [L]. Each estimator offers a high-probability guarantee
on the estimation error as a function of the number of exploration episodes using
corresponding exploration algorithms {Ãi}.
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Assumption 3.6.2. For all i ∈ [L], we define the V̂
(n)
i where n ∈ [T ] as the estimator

of V ∗i given n exploration rounds with Ãi. We assume with probability at least 1− δ,

for all i ≥ i∗, the estimator V̂
(n)
i satisfies

|V ∗ − V̂ (n)
i | ≤

Vi
nα

+
V ′i
nβ

(3.5)

where Vi and V ′i are poly and increasing in d, H, |U|, and log(LT/δ)) and α, β ∈ (0, 1).

Let V̂ t
i := V̂

(|T it |)
i . The algorithm will be of the same form as Algorithm 11, but

instead we leverage the following alternative test:∑
t∈T ı̂tt

V̂ t
j − gt′ ≤ Zı̂(|T ı̂tt |,Vj,V ′j) (3.6)

where

Zi(t,V ,V ′) := CZ

(
VjLαt1−(1−κ)α + V ′jLβt1−(1−κ)β +H

√
t log(1/δ) +RΠi

i

√
t
)

for a sufficiently large constant CZ > 0. That is, if the above inequality holds, then
ECE continues to use ı̂t; otherwise, ECE switches to ı̂t + 1 for round t + 1. First,
we prove an analogous result to Lemma 3.4.1, showing that the test will not fail
under the good event E ′′. Here, we let E ′′ = E ′ ∩ E4 where E ′ is the event from
Theorem 3.5.2 and event E4 is the following.

Event E4: Let {V̂i} be the estimators from Assumption 3.6.2. For all i ≥ i∗ and
n ∈ [T ], equation (3.5) is satisfied.

Note that E4 holds with probability at least 1− δ by assumption. Therefore E ′′

still holds with probability at least 1− 10LT 2δ log2(T ).

Lemma 3.6.4. Given that event E ′ holds, then for all t ≥ τmin and j ∈ [i∗ + 1, L], it

holds that
∑

t′∈T i∗t
V̂ j
t − gt′ ≤ Zi∗(|T i∗t |,Vj,V ′j)

Proof. Since j > i∗, we use the assumption on the estimator V̂j to write the difference
in terms of regret, estimation error and noise:∑

t′∈T i∗t

V̂ t
j − gt′ ≤

∑
t′∈T i∗t

V̂ t
j − V πt′ − εt′

≤ Vj|T
i∗
t |

|T jt |α
+
V ′j|T i∗t |
|T jt |β

+
∑
t′∈T i∗t

V ∗ − V πt′ − εt′
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Then note that
∑

t′∈|T i∗t |
εt′ ≤ H

√
2|T i∗t | log(2/δ) and

∑
t′∈|T i∗t |

V ∗ − V πt′ ≤ RΠi∗
i∗

√
|T i∗t |

under event E ′. Furthermore, under E ′, we have |T jt | ≥ t1−κ

8L
≥ |T i∗t |1−κ

8L
, which implies

∑
t′∈T i∗t

V̂ t
j − gt′ ≤ CZ

(
VjLα|T i∗t |1−(1−κ)α + V ′jLβ|T i∗t |1−(1−κ)β +H

√
|T i∗t | log(2/δ)+

RΠi∗
i∗

√
|T i∗t |

)
for CZ large enough. Therefore, it holds that

∑
t′∈T i∗t

V̂ t
j − gt′ ≤ Zi∗(|T i∗t |,Vj,V ′j).

The main proposition states that a better instance-dependent rate is available
under less restrictive assumptions on “realizability” by utilizing the test based on the
V ∗ estimators.

Proposition 3.6.5. For a given M, let Assumption 3.6.2 hold some for α, β and
i ≥ i∗ and let κ ∈ (0, 1/2]. Then, with probability at least 1− δ′, ECE in Algorithm 10
with the modified test (Equation 3.6) satisfies the regret bound

Õ
(
HLT 1−κ +RΠi∗

i∗

√
LT+

∑
j<i∗

∆j,i∗ max

L
1

1−κV
1

(1−κ)α

i∗

∆
1

(1−κ)α

j,i∗

,
L

1
1−κV ′i∗

1
(1−κ)β

∆
1

(1−κ)β

j,i∗

,
(RΠi∗

i∗ +H log1/2(LT/δ′))2

∆2
j,i∗




Proof. As discussed previously, the sufficient events occur with probability at least
1− δ′. Similar to Theorem 3.5.2, we now show that the gaps ∆j,i∗ can be bounded by

using the estimation error of V̂ i∗ and the concentration bounds from E ′. Let t be
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such that ı̂t = j and the test succeeds. Then,

∆j,i∗ = V ∗ − V ∗j

≤ V̂ t
i∗ +

Vi∗
|T i∗t |α

+
V ′i∗
|T i∗t |β

− 1

|T jt |

∑
t′∈T jt

V πt′

≤ V̂ t
i∗ +

Vi∗
|T i∗t |α

+
V ′i∗
|T i∗t |β

− 1

|T jt |

∑
t′∈T jt

gt′ +
1

|T jt |

∑
t′∈T jt

εt′

≤ CZ

Vi∗Lα|T jt |−(1−κ)α + V ′i∗L
β|T jt |−(1−κ)β +H

√
log(1/δ)

|T jt |
+
RΠi∗
i∗√
|T jt |

+

Vi∗
|T i∗t |α

+
V ′i∗
|T i∗t |β

+H

√
log(1/δ)

|T jt |

Again noting that |T i∗t | ≥ t1−κ

8L
≥ |T jt |1−κ

8L
, the above can be simplified to

∆j,i∗ ≤ C ′Z ·

(
2Vi∗Lα|T

j
t |−(1−κ)α + 2V ′i∗L

β|T jt |−(1−κ)β +
2H log1/2(1/δ) +RΠi∗

i∗

|T jt |1/2

)

≤ 6C ′Z ·max

{
Vi∗Lα

|T jt |(1−κ)α
,
V ′i∗L

β

|T jt |(1−κ)β
,
H log1/2(1/δ) +RΠi∗

i∗

|T jt |1/2

}
where C ′Z = max{1, CZ}. Then, we can consider the three potential cases to upper
bound |T jt |. Depending on the maximal term, one of the three possible cases occurs:

|T jt | ≤
(

6C ′ZVi∗Lα

∆j,i∗

) 1
(1−κ)α

, |T jt | ≤
(

6C ′ZV ′i∗L
β

∆j,i∗

) 1
(1−κ)β

,

|T jt | ≤

(
6C ′Z(H log1/2(1/δ) +RΠi∗

i∗ )

∆j,i∗

)2

The regret during the misspecified phase becomes

Regτmin(δ):τ∗

= O
(
HLT 1−κ +Hi∗ +RΠi∗

i∗

√
LT+

∑
j<i∗

∆j,i∗ max

L
1

1−κV
1

(1−κ)α

i∗

∆
1

(1−κ)α

j,i∗

,
L

1
1−κV ′i∗

1
(1−κ)β

∆
1

(1−κ)β

j,i∗

,
(RΠi∗

i∗ +H log1/2(LT/δ′))2

∆2
j,i∗
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The total regret is

O
(
HL

2
1−κ log

1
1−κ (1/δ) +HLT 1−κ +Hi∗

)
+O

(
RΠi∗
i∗

√
LT+

∑
j<i∗

∆j,i∗ max

L
1

1−κV
1

(1−κ)α

i∗

∆
1

(1−κ)α

j,i∗

,
L

1
1−κV ′i∗

1
(1−κ)β

∆
1

(1−κ)β

j,i∗

,
(RΠi∗

i∗ +H log1/2(LT/δ′))2

∆2
j,i∗




Consider again the implications of this bound in the contextual bandit setting. It

is possible that to estimate an upper bound of V ∗ with rate Õ

(
d

1/4
j

n1/2 + 1
n1/4

)
, where

n is the number of samples and j ≥ i∗ [27, 39]. However, this would only give a
one-sided estimation error bound. If a two-sided guarantee of the same form were
possible, we would have α = 1/2, β = 1/4, and Vi∗ = Õ

(
d1/4

)
,V ′i∗ = Õ (1). We now

state the following immediate corollary in this setting with constant gaps under the
hypothesis that such an estimator for this problem exists and is given.

Corollary 3.6.3. For the linear contextual bandit problem under Assumption 3.6.2
with constant gaps {∆j,i∗}j<i∗, let α = 1/2, β = 1/4, Vi∗ = Õ(d

1/4
i∗ ) and V ′i∗ = Õ(1).

Let the exploration parameter κ = 1/2. Then with probability at least 1− δ′, ECE in
Algorithm 10 with the modified test (Equation 3.6) satisfies the regret bound

Õ

(
√
T +

√
di∗T +

∑
j<i∗

max
{
di∗∆

−3
j,i∗ , ∆−7

j,i∗ , di∗∆
−1
j,i∗

})
= Õ

(√
T +

√
di∗T + di∗

)
where Õ hides dependence on the number of models L, the number of actions K = |U|,
and log factors.

For constant gaps, the scalings in d and T are nearly same for this estimator
and the gap estimator of the previous section. The main difference arises in the
dependence on the gap, O(∆−5

min) in this case compared to O
(
∆−2

min

)
in the previous

case. In this case, it is clearly suboptimal.

3.7 Applications of ECE

Though Theorem 3.4.2 is stated generally for any RL algorithms with nominal
anytime regret bounds, we can easily specialize it to several important problem
settings without knowing the optimal model class a priori. In this section, we expand
on the applications of Theorem 3.4.2 to paradigms of function approximation in RL.
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Linear MDPs Consider the setting of [38] which we mentioned as an example in
Section 3.2. In this setting, we assume access to a set of nested features φi : S ×A →
Rdi for i ∈ [L] such that di ≤ di+1 and the first di components of φi+1 are the same
as φi. These features generate linear model classes of the form

Fi =
{

(s, a) 7→ 〈φi(s, a), θ〉 : θ ∈ Rdi
}

(3.7)

Nested-ness of the features ensures that Fi ⊆ Fi+1 for all i. In accordance with the
setting of [38], we assume that there exists some minimal i∗ such that for any Fi with
i ≥ i∗ there exist µ(·) and ωi,h ∈ Rdi that predict exactly the transition probabilities
P and reward r:

P (s′|s, u) = 〈φi(s, u), µi(s
′)〉

rh(s, u) = 〈φi(s, u), ωi,h〉
(3.8)

Here, µi(·) is a di-dimensional vector of measures on S. Let {Ai} be instances of
LSVI-UCB equipped with the doubling trick and model classes {Fi}. We further
assume that the features and parameters for each of the models with i ≥ i∗ satisfies
the regularity conditions of Assumption A of [38], i.e. bounded `2 norms, r ∈ [0, 1].

[38] guarantees that for i ≥ i∗ and t ∈ [T ] with probability at least 1 − δ0,

Regt(Ai) = O(
√
d3
iH

4t · log2(diTH/δ0)). Adapting this to the framework of ECE, we

let Ri = O

(√
d3
iH

4 · log2(diTH/δ)

)
, which ensures Ri ≤ Ri+1. A model selection

corollary immediately follows from Theorem 3.4.2.

Corollary 3.7.1. In the linear MDP setting of (3.8) with LSVI-UCB, ECE guarantees
with probability at least 1− δ′

RegT = Õ

(√
d3
i∗H

4 log2(di∗LTH/δ
′) · L5/6T 2/3

)
[68] consider a similar setting of linear MDPs where the transition dynamics P

are linear. We again assume access to nested linear models but of the form

Fi =
{

(s, u, s′) 7→ φi(s, u)>Mψi(s
′) : M ∈ Rdi×d′i

}
where {φi}i∈[L] and {ψi}i∈[L] are nested features of dimension di and d′i respectively.
[68] assume that there is some minimal i∗ such that for any i ≥ i∗, there is M ∈ Rdi×d′i

such that

P (s′|s, u) = φi(s, u)>Mψi(s
′) (3.9)
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for all s, s′ ∈ S, u ∈ U . We further adhere to the regularity conditions of As-
sumption 2 of [68], who guarantee the MatrixRL Ai with model Fi has regret

Regt(Ai) = Õ
(√

d3
iH

5t · log(diTH/δ0)
)

with probability at least 1 − δ0. Letting

Ri = Õ
(√

d3
iH

5 · log(diTH/δ)
)

, we have the following model selection guarantee.

Corollary 3.7.2. In the linear MDP setting of (3.9) with MatrixRL, ECE guarantees
with probability at least 1− δ′

RegT = Õ

(√
d3
i∗H

5 log2(di∗LTH/δ
′) · L5/6T 2/3

)
The final linear setting we consider is that of low inherent Bellman error studied

by [69]. We let Fi be defined as it is in (3.7) and let B = {θ ∈ Rdi : ‖θ‖ ≤ D}
for some D > 0. Then assume there is a minimal i∗ such that for any i ≥ i∗ and
θh+1 ∈ B, there is θh such that

〈φi(s, u), θh〉 −BhQh+1(θh+1)(s, u) = 0

for all s ∈ S and u ∈ U , where Qh(θ) is the linear action-value function parameterized
by θ (with features φi) and Bh is the Bellman operator with reward rh. In other
words, this condition asserts that Fi∗ has zero inherent Bellman error. Under
the same regularity conditions, for i ≥ i∗, [69] guarantees ELEANOR achieves

Regt(Ai) = Õ
(
di
√
H4t

)
with probability at least 1− δ0. Letting Ri = Õ

(
di
√
H4
)

,

we have the following model selection guarantee.

Corollary 3.7.3. In the inherent Bellman error setting with ELEANOR, ECE guar-
antees with probability at least 1− δ′

RegT = Õ
(
di∗
√
H4 · L5/6T 2/3

)
where Õ hides polylog dependencies.

Low Bellman Rank Another class of algorithms using more general function
approximation considers the setting of MDPs with low Bellman rank [36]. In this
setting, a finite model class F : S × U → R realizes M if there exists f ∗ ∈ F such
that Q∗h(s, a) = f ∗(s, a), where Q∗ is the optimal action-value function for all h ∈ [H].
For any f ∈ F , define πf as the greedy policy with respect to f , and the Bellman
error at h ∈ [H] as

E(f, π, h) := E [f(s, πf (s))− r(s, πf (s))− f(s′, πf (s
′))] ,
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where the expectation is over s from the state distribution of π at h and s′ ∼
P (·|s, πf(s)). In this setting, it is assumed that there is a Bellman rank M � |F|
such that for any f, g ∈ F , we have E(f, πg, h) = 〈νh(g), ξh(f)〉 for νh(g), ξh(f) ∈ RM

and ‖ν‖‖ξ‖ ≤ ζ. We assume access to a set of finite model classes {Fi}i∈[L] such
that there is at least one that realizes M, and the complexity of Fi is a function
of its cardinality |Fi| and induced Bellman rank Mi. We consider instances of
the AVE algorithm {Ai} of [22] with the doubling trick, which has nominal regret

Õ

(√
M2

i |U|H4t log3 |Fi|
)

. Choose RFi = Õ

(√
M2

i |U|H4 log3(|Fi|)
)

and let i∗ be

the smallest index that realizes M. This yields the following corollary.

Corollary 3.7.4. In the low Bellman rank setting with AVE, the model selection
algorithm guarantees with probability at least 1− δ′

RegT (A) = Õ

(√
M2

i∗|U|H4 log3(|Fi∗|) · L5/6T 2/3

)
.

3.8 Omitted Proofs of Section 3.4

In this section, we collect proofs for Theorem 3.4.2 that were omitted from the
previous sections of the chapter.

Proof of Lemma 3.4.3

Here, we restate and prove Lemma 3.4.3.

Lemma 3.4.3. The event E =
⋂
i∈{1,2,3}Ei holds with probability at least 1 −

10LT 2δ log2 T .

Proof. We will show that each of the three events holds with high probability and
the apply the union bound.

Corollary 3.9.1 of Section 3.9 shows event E1 holds with probability at least
1− 4LT 2δ log2 T .

For event E2, i∗ is the index of the algorithm that is Ri∗-compatible and anytime.
Let πi∗(k) denote the policy played by Ai∗ at the kth call to i∗. For K ∈ [T ], these
properties guarantee its regret bound holds, with probability at least 1− δ,∑

k∈[K]

V ∗ − V πi∗
(k) ≤ Ri∗(di∗ , H, log(T/δ)) ·

√
K
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Taking the union bound over all K ∈ [T ] shows that event E2 holds with probability
at least 1− Tδ.

As in the previous case, we can view the process εi(1), . . . , ε
i
(T ) as the pre-drawn

differences between the observed and expected returns for the 1 through (at most) T
times of playing model Ai. Applying the Azuma-Hoeffding inequality with |εi(k)| ≤ H

and taking the union bound over all K ∈ [T ],

|
∑
k∈[K]

εi(k)| ≤ H
√

2K log(2/δ)

with probability at least 1− Tδ. Taking the union bound over all models, event E3

occurs with probability at least 1− LTδ.
Taking these events together and δ′ = 10LT 2δ log2 T , event E holds with proba-

bility at least 1− δ′.

Full Proof of Theorem 3.4.2

Here, we restate and complete the proof of Theorem 3.4.2.

Theorem 3.4.2. Let the model exploration parameter κ = 1/3. Then, the model
selection algorithm ECE satisfies the regret bound

Õ
(
HLT 2/3 +Ri∗(di∗ , H, log(LT/δ′)) · i1/3∗ L1/2T 2/3

)
.

with probability at least 1− δ′, where Õ hides logs and terms independent of T and R.

Proof. Let τ∗ := τi∗ denote the time that Ai∗ is chosen as the candidate. Recall that
δ = δ′

10LT 2 log2 T
. The analysis can be divided into three phases when conditioned on

the event E.

1. t < τmin(δ): the test to determine switching to i∗ is not valid yet.

2. τmin(δ) < t ≤ τ∗: the test is eligible but ECE is still switching among incompati-
ble algorithms.

3. t > τ∗: ECE has switched to Ai∗ .

Note that it is possible that τ∗ ≥ T . That is, the algorithm only uses incompatible
algorithms; however, we will show that this case still guarantees regret that adapts
to the optimal algorithm i∗.
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Case 1: Invalid Test We require t ≥ τmin(δ) in order for the condition in
Lemma 3.4.1 to hold under E when ı̂t = i∗. Therefore, we can view this period
t < τmin(δ) as an unavoidable burn-in period. The regret during this interval can
then be upper bounded in the worst case as

Reg1:τmin(δ)−1 =

τmin−1∑
t=1

V ∗ − V πt ≤ Hτmin = O
(
HL

2
1−κ log

1
1−κ (1/δ)

)
Case 2: Misspecified Case In the second phase, the test is valid, but ECE is
either utilizing algorithms below i∗ or switching among them in the event the test
fails. The regret can be decomposed across each set T jτ∗ of times playing Aj up to
time τ∗:

Regτmin(δ):τ∗ =
∑
j∈[L]

∑
t∈T jτ∗

V ∗ − V πt

≤ 4H(L− i∗)τ 1−κ
∗ +

∑
j<i∗

∑
t∈T jτj+1

V ∗ − V πt

≤ 4H(L− i∗)τ 1−κ
∗ +Hi∗ +

∑
j<i∗

∑
t∈T jτj+1−1

V ∗ − V πt

The second line follows from the fact that for j > i∗, algorithm j is not selected yet
(if ever), so maximal regret is paid for those algorithms during exploration. Event E1

upper bounds the number of times that can be in T jτ∗ at time τ∗, since the regret due
to j is only due to exploration. Furthermore, for j < i∗, once j is rejected, it is never
used for exploration again, so we can replace T jτ∗ with T jτj+1

for j < i∗. The third line
is necessary as no guarantee is given during episodes when a test fails and there can
be at most i∗ failing tests since the condition in Lemma 3.4.1 is always true under
event E.

Then, we focus on bounding the right-hand term. Fix j < i∗. Observe that for
t ∈ Tjτj+1−1 the tests succeed for all comparisons including with i∗:

Gτj+1−1(j, i) ≤ W(|T jτj+1−1|,Rj, dj, δ)

for all i > j. Therefore, since i∗ > j, the definition of G can be used the bound the
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following:∑
t∈Tjτj+1−1

V ∗ − V πt =
∑

t∈Tjτj+1−1

(V ∗ − gt) +
∑

t∈Tjτj+1−1

εt

≤
|Tjτj+1−1|
|Ti∗τj+1−1|

∑
t∈Ti∗τj+1−1

(V ∗ − gt) +W(|Tjτj+1−1|,Rj, dj, δ) +
∑

t∈Tjτj+1−1

εt

≤
|Tjτj+1−1|
|Ti∗τj+1−1|

∑
t∈Ti∗τj+1−1

(V ∗ − V πt) +W(|Tjτj+1−1|,Rj, dj, δ)

+
∑

t∈Tjτj+1−1

εt +
|Tjτj+1−1|
|Ti∗τj+1−1|

∑
t∈Ti∗τj+1−1

εt

Now we can use the fact that E2 and E3 hold to bound the regret and estimation
errors:

∑
t∈Tjτj+1−1

V ∗ − V πt ≤ O

Ri∗(di∗ , H, log(T/δ)) ·

√√√√ |Tjτj+1−1|2

|Ti∗τj+1−1|

+W(|Tjτj+1−1|,Rj , dj , δ)

+O

(
H
√
|Tjτj+1−1| · log(1/δ)

)
+O

H
√√√√ |Tjτj+1−1|2

|Ti∗τj+1−1|
· log(1/δ)


(3.10)

Using E1 and the fact that τmin(δ) ≤ τj+1 − 1 ≤ τ∗, we have that

|T i∗τj+1−1| ≥
(τj+1 − 1)1−κ

8L
≥
|T i∗τj+1−1|1−κ

8L
.

Then the terms in (3.10) that contain |T i∗τj+1−1| in the denominator can be upper
bounded:

O

Ri∗(di∗ , H, log(T/δ)) ·

√√√√ |Tjτj+1−1|2

|Ti∗τj+1−1|

 ≤ O (L1/2Ri∗(di∗ , H, log(T/δ)) · |Tjτj+1−1|
1+κ

2

)

O

H
√√√√ |Tjτj+1−1|2

|Tjτj+1−1|
· log(1/δ)

 ≤ O (HL1/2|Tjτj+1−1|
1+κ

2 · log1/2(1/δ)
)
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The bound then becomes∑
t∈Tjτj+1−1

V ∗ − V πt ≤ O
(
L1/2Ri∗(di∗ , H, log(T/δ)) · |Tjτj+1−1|

1+κ
2

)
+

W(|Tjτj+1−1|,Rj, dj, δ) +O
(
H|Tjτj+1−1|1/2 · log1/2(1/δ)

)
+

O
(
HL1/2|Tjτj+1−1|

1+κ
2 · log1/2(1/δ)

)
Since Rj ≤ Ri∗ , the regret for j in this case is∑

t∈Tjτj+1−1

V ∗ − V πt ≤ O
(
L1/2Ri∗(di∗ , H, log(T/δ)) · |Tjτj+1−1|

1+κ
2 +

HL1/2|Tjτj+1−1|
1+κ

2 · log1/2(1/δ)
)

Observe that
∑

j<i∗
|T jτj+1−1| ≤ T and the right-hand side is a sum of concave functions

of each |T jτj+1−1|. Using Jensen’s inequality with the uniform distribution over |T jτj+1−1|
for j < i∗ and then upper bounding by T yields the bound:

Regτmin(δ):τ∗ ≤ O
(
HLT 1−κ +Hi∗+(
Ri∗(di∗ , H, log(T/δ)) +H log1/2(1/δ)

)
· i

1−κ
2
∗ L1/2 · T

1+κ
2

)
Case 3: Selecting Ai∗ Starting at τ∗ + 1, Ai∗ is selected. Note that the condition
in Lemma 3.4.1 holds under event E, so ECE will never reject i∗. Then

Regτ∗+1:T ≤
∑

j∈[i∗+1,L]

H|T jT |+
∑
t∈T i∗T

V ∗ − V πt

≤
∑

j∈[i∗+1,L]

H|T jT |+O
(
Ri∗(di∗ , H, log(T/δ) ·

√
T
)

≤ O
(
HLT 1−κ +Ri∗(di∗ , H, log(T/δ) ·

√
T
)

Adding the terms from these three phases gives the final bound:

RegT = O
(
HL

2
1−κ log

1
1−κ (1/δ) +HLT 1−κ +Hi∗+(

Ri∗(di∗ , H, log(T/δ)) +H log1/2(1/δ)
)
· i

1−κ
2
∗ L1/2 · T

1+κ
2

)
Then we choose κ = 1/3 to recover the statement in the theorem.
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Proof of Theorem 3.5.2

Here, we restate an prove Theorem 3.5.2.

Theorem 3.5.2. For a given M, let (Ai,Fi) be RΠi
i -compatible with respect to Πi

for all i ∈ [L]. Then, with probability at least 1− δ′, ECE with κ = 1/3 satisfies the
regret bound with respect to policy class Πi∗:

Õ
(
HLT 2/3 +RΠi∗

i∗

√
T + L3/2(RΠi∗

i∗ )3
∑

i<i∗
∆−2
i,i∗

)
If κ = 1/2, then it satisfies

Õ
(
HL
√
T +RΠi∗

i∗

√
T + L2(RΠi∗

i∗ )4
∑

i<i∗
∆−3
i,i∗

)
Proof. First we will show that the sufficient events to prove this result occur with
high probability. While the other events remain the same. we must modify event E2

from Lemma 3.4.3 slightly because we are interested in the case when all algorithms
are compatible with respect to their own policy classes. Let E ′2 denote the following
event: for all t ∈ [T ] and i ∈ [L],∑

t′∈T it
V ∗i − V πt′ ≤ RΠi

i (di, H, log(T/δ))
√
|T it |

As in Lemma 3.4.3, this almost follows from Definition 3.5.1; however, we also union
bound over all algorithms. Thus E ′2 occurs with probability at least 1− LTδ. Let
E ′1 = E1 and E ′3 = E3. Then E ′ =

⋂
i∈1,2,3E

′
i occurs with probability at least

1− 10LT 2δ log2 T , as before.
Recall that i∗ = minB∗ where B∗ is the set of indices that achieve maximal value,

argmaxi V
∗
i . For shorthand, we will let Rj := RΠj

j (dj, H, log(T/δ)). We now verify
that the statistical test will not fail once ECE reaches some i∗ ∈ B∗. This is nearly
identical to Lemma 3.4.1, but we must verify it with respect to values that are not
the optimal value.

Lemma 3.8.1. Let (Ai,Fi) be an RΠi
i -compatible algorithm with respect to Πi for

all i ∈ [L] and let i∗ = minB∗. Given that event E ′ holds and t ≥ τmin(δ), then, for
all j ∈ [i∗ + 1, L], it holds that Gt(i∗, j) ≤ W(|T i∗t |,Ri∗ , di∗ , δ).

Proof. From the definition of G,

Gt(i∗, j) =
|T i∗t |
|T jt |

∑
t′∈T jt

gt′ −
∑
t′∈T i∗t

gt′ =
|T i∗t |
|T jt |

∑
t′∈T jt

(V πt′ + εt′)−
∑
t′∈T i∗t

(V πt′ + εt′)

≤
∑
t′∈T i∗t

(
V ∗i∗ − V

πt′
)

+
|T i∗t |
|T jt |

∑
t′∈T jt

εt′ −
∑
t′∈T i∗t

εt′
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where the last step uses the fact that V ∗i∗ = maxi V
∗
i . Since (Ai∗ ,Fi∗) is RΠi∗

i∗

compatible, the remainder of the proof is identical to that of Lemma 3.4.1 by applying
the conditions in E ′.

As before, in the full proof we handle three cases: (1) before the test is valid,
(2) while i < i∗ is chosen, (3) after i∗ is chosen. In the first case, we again pay the
burn-in period regret of Reg1:τmin(δ)−1 = O(Hτmin(δ)). In the third, we showed that

the test will never fail once ı̂t = i∗. Therefore, Regτ∗:T = O
(
HLT 1−κ +Ri∗ ·

√
T
)

.

To bound the regret during the misspecified phase, we construct an upper bound
on the number of times Aj can be played for j < i∗. Let t be a time such that
ı̂t = j < i∗ and the test succeeds. First, we bound the size of the gaps.

Note that by definition V ∗j ≥ 1

|T jt |

∑
t′∈T jt

V πt′ and event E ′ ensures that V ∗i∗ ≤
Ri∗
|T i∗t |1/2

+ 1

|T i∗t |

∑
t′∈T i∗t

V πt′ . Then,

∆j,i∗ = V ∗i∗ − V
∗
j

≤ 1

|T i∗t |

∑
t′∈T i∗t

V πt′ +
Ri∗

|T i∗t |1/2
− 1

|T jt |

∑
t′∈T jt

V πt′

=
Ri∗

|T i∗t |1/2
+

1

|T i∗t |

∑
t′∈T i∗t

(gt′ − εt′)−
1

|T jt |

∑
t′∈T jt

(gt′ − εt′)

≤ W(|T jt |,Rj, dj, δ)

|T jt |
+
Ri∗

|T i∗t |1/2
− 1

|T i∗t |

∑
t′∈T i∗t

εt′ +
1

|T jt |

∑
t′∈T jt

εt′

And therefore,

∆j,i∗ ≤ CW ·

(
Rj

|T jt |1/2
+H

√
16L log(2/δ)

|T jt |1−κ
+H

√
2 log(2/δ)

|T jt |

)

+
Ri∗

|T i∗t |1/2
+H

√
2 log(2/δ)

|T i∗t |
+H

√
2 log(2/δ)

|T jt |

where we have applied the definition of W and event E3 to bound the noise of the
returns. Let C ′W = max{1, CW}. Since i∗ has not been selected yet |T i∗t | ≥ t1−κ

8L
≥
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|T jt |1−κ
8L

. Then, since Rj ≤ Ri∗ ,

∆j,i∗ ≤ C ′W ·

(
2
√

8LRi∗

|T jt |
1−κ

2

+H
2
√

16L log(2/δ)

|T jt |
1−κ

2

)
Rearranging gives

|T jt | = O

L 1
1−κ

(
Ri∗ +H log1/2(1/δ)

) 2
1−κ

∆
2

1−κ
j,i∗


Now this bound can be used to bounding the regret with dependence on the gap.
The regret during this phase is again

Regτmin(δ):τ∗ ≤ H(L− i∗)τ 1−κ
∗ +

∑
j<i∗

∑
t∈T jτj+1

V ∗i∗ − V
πt

≤ H(L− i∗)τ 1−κ
∗ +Hi∗ +

∑
j<i∗

∑
t∈T jτj+1−1

V ∗i∗ − V
πt

As in the proof of Theorem 3.4.2, we focus on bounding the right-hand term. For
a fixed j < i∗, at time τj+1 − 1 we have that the test succeeds so Gτj+1−1(j, i∗) ≤
W(|T jτj+1−1|,Ri∗ , di∗ , δ). Then, applying the bound on the number of times j can be
played, ∑

t∈T jτj+1−1

V ∗i∗ − V
πt ≤ ∆j,i∗|T

j
τj+1−1|+Rj ·

√
|T jτj+1−1|

≤ O

L 1
1−κ

(
Ri∗ +H log1/2(1/δ)

) 2
1−κ

∆
1+κ
1−κ
j,i∗

+

Ri∗L
1

2(1−κ)

(
Ri∗ +H log1/2(1/δ)

) 1
1−κ

∆
1

1−κ
j,i∗


= O

L 1
1−κ

(
Ri∗ +H log1/2(1/δ)

) 2
1−κ

∆
1+κ
1−κ
j,i∗
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Therefore, the regret in this phase can be upper bounded by

Regτmin(δ):τ∗ ≤ O

H(L− i∗)T 1−κ +Hi∗ + L
1

1−κ
(
Ri∗ +H log1/2(1/δ)

) 2
1−κ

∑
j<i∗

1

∆
1+κ
1−κ
j,i∗


Combining these three phases, the total regret is

O
(
HL

2
1−κ log

1
1−κ (1/δ) +HLT 1−κ +Hi∗+

L
1

1−κ

(
Ri∗ +H log1/2(1/δ)

) 2
1−κ ∑

j<i∗

1

∆
1+κ
1−κ
j,i∗

+Ri∗

√
T


Choosing either κ = 1/3 or κ = 1/2 gives us the statements of Theorem 3.5.2. This
completes the proof.

3.9 Anciliary Technical Results

In this section, we use a Freedman inequality to lower and upper bound with high
probability the number of times a particular algorithm is played both during explo-
ration and while it is chosen by the meta-algorithm (Lemma 3.4.3). First, we state a
variant of the Freedman inequality from [11].

Lemma 3.9.1 (Lemma 2, [11]). Suppose X1, · · · , XT is a martingale difference
sequence with |Xs| ≤ b. We define

VarsXs = Var(Xs|X1, · · · , Xs−1)

Further, let VT =
∑T

s=1 VarsXs be the sum of conditional variances of X ′ss, and
σT =

√
VT . Then we have, for any choice of δ < 1/e and T ≥ 4:

P

(
T∑
s=1

Xs > 2 max(2σT , b
√

ln(1/δ))
√

ln(1/δ)

)
≤ log2(T )δ (3.11)

Recall that Bs denotes the indices of algorithms that have not been selected by
time s. Note that |Bs| ≤ L. For all i ∈ [L] and t ∈ [T ], define the event

Ei,t :=

||T
i
t | −

∑
s∈[t]

1
|Bs|sκ | ≤ 4

√∑
s∈[t]

1
sκ

log(1/δ) τi ≥ t

||T it | −
∑

s∈[τi]
1

|Bs|sκ −
∑

s∈[τi+1,t]

(
1− 1

sκ

)
| ≤ 4

√∑
s∈[t]

1
sκ

log(1/δ) τi < t
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Lemma 3.9.2. The event E = ∩i∈[L],t∈[T ]Ei,t holds with probability at least 1 −
4LT 2δ log2 T

Proof. Define

Si(t, t
′) =

∑
s∈[t′]

Ys,i +
∑

s∈[t′+1,t]

Y s,i

where Ys,i ∼ Ber
(

1
sκ|Bs|

)
and Y s,i ∼ Ber

(
1− 1

sκ

)
. Then define

Zi(t, t
′) :=

∑
s∈[t]

1s≤t′ ·
(
Ys,i −

1

|Bs|sκ

)
+ 1s>t′

(
Y s,i −

(
1− 1

sκ

))

Vi(t, t
′) :=

∑
s∈[t]

Vars

(
1t≤t′ ·

(
Ys,i −

1

|Bs|sκ

)
+ 1t>t′ ·

(
Y s,i −

(
1− 1

sκ

)))
where Vars denotes the conditional variance up to time s. By definition, {Zi(t, t′)}t≥1

is a martingale sequence and Vi(t, t
′) ≤

∑
s∈[t]

1
sκ

. By the Freedman inequality from
Lemma 3.9.1,

Pr

|Zi(t, t′)| ≥ 4

√∑
s∈[t]

1

sκ
· log(1/δ) + 4 log(1/δ)

 ≤ 2δ log2 T

Let this event be denoted by E i(t, t′) for each i ∈ [L] and t, t′ ∈ [T ]. Then, by the
union bound, the event

⋃
i,t,t′ E i(t, t′) holds with probability at most 4LT 2δ log2 T .

Therefore,
⋂
t,t′≥1 Ei(t, t′) holds with probability at least 1− 4LT 2δ log2 T , and this

event implies for all i ∈ [L] and t ∈ [T ], if t > τi, then

||T it | −
∑
s∈[τi]

1

|Bs|sκ
−

∑
s∈[τi+1,t]

(
1− 1

sκ

)
| ≤ 4

√∑
s∈[t]

1

sκ
log(1/δ) + 4 log(1/δ)

and if τ ≤ τi, then

||T it | −
∑
s∈[t]

1

|Bs|sκ
| ≤ 4

√∑
s∈[t]

1

sκ
log(1/δ) + 4 log(1/δ)

Corollary 3.9.1. With probability at least 1 − 4LT 2δ log2 T , for all i ∈ [L] and
t ∈ [T ] such that t ≥ τmin(δ), the following is true:
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1. If t ≤ τi, then t1−κ

8L
≤ |T it | ≤ 4t1−κ.

2. If t > τi, then |T it | ≤ t− τi + 4t1−κ.

Proof. Note that when t ≤ τi, it is also the case that |Bs| ≥ 1 for all s ≤ t.
We condition on the event E from above, which occurs with probability at least
1− 4LT 2δ log2 T . Given this event, it follows that if t ≤ τi, then

|T it | ≥
∑
s∈[t]

1

sκ|Bs|
− 4

√∑
s∈[t]

1

sκ
log(1/δ)− 4 log(1/δ)

≥ 1

2L

∑
s∈[t]

1

sκ
− 32L log(1/δ)

≥ 1

2L

(
t1−κ − 2

)
− 32L log(1/δ)

≥ t1−κ

4L
− 32L log(1/δ)

≥ t1−κ

8L

The second inequality uses the AM-GM inequality and that |Bs| ≤ L, which implies√∑
s∈[t]

1

Lsκ
· 16L log(1/δ) ≤ 1

2L

∑
s∈[t]

1

sκ
+ 8L log(1/δ)

The third applies the integral approximation of the sum. The last two follow from

the condition that t ≥ τmin(δ) = Cmin · L
2

1−κ log
1

1−κ (1/δ) for a large enough constant
Cmin > 0. The other side follows similarly with

|T it | ≤ 3t1−κ + 32 log(1/δ) ≤ 4t1−κ

when t ≥ (32 log(1/δ))
1

1−κ . Similarly, for t > τi, event E guarantees

|T it | ≤
∑
s∈[τi]

1

sκ|Bs|
+

∑
s∈[τi+1,t]

(
1− 1

sκ

)
+ 4

√∑
s∈[t]

1

sκ
log(1/δ) + 4 log(1/δ)

≤ t− τi + 32 log(1/δ) +
3

2

∑
s∈[τi]

1

sκ

≤ t− τi + 32 log(1/δ) + 3t1−κ

≤ t− τi + 4t1−κ

when t ≥ τmin(δ).
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Chapter 4

Simple Regret Balancing

4.1 Introduction

We study the problem of choosing among a set of learning algorithms in sequential
decision-making problems with partial feedback. Learning algorithms are designed to
perform well when certain favorable conditions are satisfied. However, the learning
agent might not know in advance which algorithm is more appropriate for the current
problem that the agent is facing.

As an example, consider the application of stochastic bandit algorithms in person-
alization problems, where in each round a user visits the website and the learning
algorithm should present the item that is most likely to receive a click or be purchased.
When contextual information (such as location, browser type, etc) is available, we
might decide to learn a click model given the user context. If the context is not
predictive of the user behavior, using a simpler non-contextual bandit algorithm
might lead to a better performance. As another example, consider the problem of
tuning the exploration rate of bandit algorithms. Typically, the exploration rate in
an ε-greedy algorithm has the form of c/t, where t is time and the optimal value of
constant c depends on unknown quantities related to reward vector. The decision rule
of the UCB algorithm also involves an exploration bonus [9]. Choosing values smaller
than the theoretically suggested value can lead to better performance in practice if
the theoretical value is too conservative. However, if the exploration bonus is too
small, the regret can be linear. It is desirable to have a model selection strategy that
finds a near-optimal parameter value in an online fashion.

A model selection strategy can also be useful in finding effective reinforcement
learning methods. There has been a great number of reinforcement learning algorithms
proposed and studied in the literature [62, 63]. In some specialized domains, we
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might have a reasonable idea of the type of solution that can perform well. In
general, however, designing a reinforcement learning solution can be a daunting task
as the solution often involves many components. In fact, in some problems it is not
even clear if we should use a reinforcement learning solution or a simpler contextual
bandit solution. For example, bandit algorithms are used in many personalization
and recommendation problems, although the decisions of the learning system can
potentially change the future traffic and inherently we face a Markov decision process.
In such problems, the available data might not be enough to solve the problem using
an RL algorithm and a simpler bandit solution might be preferable. The complexity
of the RL problem is often not known in advance and we would like to adapt to the
complexity of the problem in an online fashion.

While model selection is a well-studied topic in supervised learning, results in
the bandit and RL setting are scarce. [49] propose a method for the model selection
problem based on EXP4 with additional uniform exploration. [5] obtain improved
results by an online mirror descent method with a carefully selected mirror map. The
algorithm is called CORRAL, and under a stability condition, it is shown to enjoy
strong regret guarantees. Many bandit algorithms that are designed for stochastic
environments (such as UCB, Thompson sampling, etc) do not satisfy the stability
condition and thus cannot be directly used as base algorithms for CORRAL. Although
it might be possible to make these algorithm stable by proper modifications, the
process can be tedious. To overcome this issue, [54] propose a generic smoothing
procedure that transforms nearly any stochastic algorithm into one that is stable.
Results of [5] and [54] require the knowledge of the optimal base regret. [27] study
bandit model selection among linear bandit algorithms when the dimensionality of
the underlying linear reward model, and thus the optimal base regret, is not known.
A related problem is studied by [18].

In this chapter, we propose a model selection method for bandit and RL problems in
stochastic environments. We call our method “regret balancing” because it maintains
regret estimates of base algorithms and tries to keep the empirical regret of all
algorithms roughly the same. All algorithms maintain an empirical estimator of their
regret computed as the difference of an optimistic estimator of the optimal policy’s
reward and the algorithm’s collected reward. The method achieves regret balancing
by playing the base algorithm with the smallest empirical regret. An algorithm can
have small empirical regret for two reasons: either it chooses good actions, or it has
not been played enough. By playing the algorithm with the smallest empirical regret,
the model selection procedure finds an effective trade-off between exploration and
exploitation.

The proposed approach has several notable properties. First, no stability condition
is needed and any base algorithm without any modifications can be used. Note that
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when applied to stochastic bandit algorithms, [5] and [54] modify the base algorithms
to ensure certain stability conditions. Second, our approach is intuitive and almost as
simple as a UCB rule. By contrast, many existing model selection approaches have
a complicated form. Finally, the approach can be readily applied to reinforcement
learning problems.

The proposed approach, similar to a number of existing solutions, requires the
knowledge of the regret of the optimal base algorithm. We show that, in general,
any model selection strategy that achieves a near-optimal regret requires either the
optimal base regret or direct sampling from the arms. We show that by adding a
forced exploration scheme, and hence direct access to the arms, the regret balancing
strategy can achieve near-optimal regret in a class of problems without the knowledge
of the optimal base regret. Further, we show a class of problems where any near-
optimal model selection procedure is indeed implementing a regret balancing method,
possibly implicitly.

As we will show, the regret of our model selection strategy is Ω(T ), where T is
time horizon. This regret is minimax optimal, given the existing lower bound for the
model selection problem that scales as Ω(

√
T ) [54]; Even if it is known that a base

algorithm has logarithmic regret, the fast logarithmic regret cannot be preserved in
general.

We show a number of applications of the proposed approach for model selection.
We show how a near-optimal regret can be achieved in the class of ε-greedy algorithms
without any prior knowledge of the reward function. We also show how the proposed
approach can be used for representation learning in bandit problems. Further, we
show a model selection strategy to choose among reinforcement learning algorithms.
As a consequence for reinforcement learning, if a set of feature maps are given and
the value functions are known to be linear in a feature map belonging to this set, we
can use the regret balancing strategy to achieve a regret that is near-optimal up to a
constant factor. Finally, the proposed regret balancing strategy can also be used as a
bandit algorithm. We show how the approach is implemented as an algorithm for
linear stochastic bandits.

4.2 Problem Statement

For an integer A, we use [A] to denote the set {1, 2, . . . , A}. A contextual bandit
problem is a sequential game between a learner and an environment. We consider a
set of learners [M ]. The game is specified by a context space S, an action set [K] of
size K, a reward function r : S× [K]→ [0, 1], and a time horizon T . In round t ∈ [T ],
the learner i ∈ [M ] observes the context st ∈ S and chooses an action at ∈ [K] from
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the action set. Then the learner observes a reward rt = r(st, at) + ηt, where for a
positive constant σ, ηt is a σ-sub-Gaussian random variable, meaning that for any
λ ∈ R, E[eληt ] ≤ eλ

2σ2/2. In the special case of linear contextual bandits [41], we are
given a feature map φ : S × [K]→ Rd such that r(s, a) = φ(s, a)>θ∗ for an unknown
vector θ∗ ∈ Rd. Let µ∗,t = E(maxa r(st, a)) be the expected reward of the optimal
action at time t, where expectation is taken with respect to the randomization in st
and ηt. The goal is to have small regret, defined as Ci,T =

∑T
t=1(µ∗,t − rt). If {st}Tt=1

is an IID sequence, then µ∗,t is the same constant for all rounds and we use µ∗ to
denote this value. The game is challenging as the reward function is not known in
advance. If S contains only one element, then the problem reduces to the multi-armed
bandit problem. If an action influences the distribution of the next context, then
the problem is a Markov decision process (MDP) and it is more suitable to define
regret with respect to the policy that has the highest total (or stationary) reward
(See Section 4.4 for more details).

A bandit model selection problem is specified by a class of bandit problems and
a set of bandit algorithms. Let M be the number of bandit algorithms (called base
algorithms in what follows). As defined above, Ci,T is the regret of the ith base in the
underlying bandit problem if the base algorithm is executed alone. In a bandit model
selection problem, the decision making is a two step process. In round t, the learner
chooses base it from the set of M bandit algorithms, the base observes the context st
and selects an action at from the set of K actions, and the reward rt of the action is
revealed to the learner. Then the internal state of the base it is updated using reward
rt. The regret of the overall model selection strategy is defined with respect to µ∗,t:

RegretT =
T∑
t=1

(µ∗,t − rt) .

Let i∗ be the optimal base with the smallest regret if it is played in all rounds,
i∗ = arg miniCi,T . We would like to ensure that RegretT = O(Ci∗,T ). A reinforcement
learning model selection problem is defined similarly (See Section 4.4 for more details).

4.3 Regret Balancing

At a high level, the main idea is to estimate the empirical regret of the base algorithms
during the rounds that the algorithms are played, and ensure that all base algorithms
suffer roughly the same empirical regret. This simple idea ensures a good trade-off
between exploration and exploitation: if a base algorithm is played only for a small
number of rounds, or if it plays good actions, then its empirical regret will be small
and will be chosen by the model selection procedure.



CHAPTER 4. SIMPLE REGRET BALANCING 95

Bandit Model Selection

In this section, we present the regret balancing model selection method. Consider a
bandit model selection problem in a stochastic environment. Let Ni,t be the number
of rounds that base i is played up to but not including round t, and let Ri,t be
the total reward of this base during these Ni,t rounds. With an abuse of notation
we also use Ni,t to denote the set of rounds that base i is selected. Let Si,t be all
data in the rounds that base i is played, Si,t = {(st, at, rt) : t ∈ Ni,t}. Let H be
the space of all such histories for all i and t. We use R∗,t, N∗,t, and S∗,t to denote
the quantities related to the optimal base, which was defined earlier in the problem
definition. Regret of base i during the Ni,t rounds is Gi,t =

∑
τ∈Ni,t µ∗,τ − Ri,t. We

assume that a high probability (possibly data-dependent) upper bound on the regret
of the optimal base algorithm is known: a function U : R×H→ R is given so that
for any δ ∈ (0, 1), with probability at least 1 − δ, Gi∗,t ≤ U(δ, S∗,t) for any t.1 For

example, for the UCB algorithm we have U(δ, S∗,t) = Õ(
√
Kt log(1/δ)),2 and for the

OFUL algorithm we have U(δ, S∗,t) = Õ(log(det(Vt)/δ)
√
t), where Vt is an empirical

covariance matrix [1]. Given that Gi∗,t is defined with respect to the realized rewards
Ri∗,t, the regret upper bound U should be at least of order Ω(

√
t).

Next, we describe the model selection strategy. In round t, let jt be the optimistic
base and bt be the optimistic value,

jt = arg max
i∈[M ]

Ri,t

Ni,t

+
U(δ, Si,t)

Ni,t

, bt =
Rjt,t

Njt,t

+
U(δ, Sjt,t)

Njt,t

. (4.1)

Variable bt estimates the value of the best action. Define the empirical regret of base
i by

Ĝi,t = Ni,tbt −Ri,t .

Recall the true regret defined by Gi,t =
∑

τ∈Ni,t µ∗,τ − Ri,t. Notice that we have

Njt,tbt − Rjt,t = U(δ, Sjt,t), i.e. bt is chosen so that the empirical regret of the
optimistic base scales as the target regret of the optimal base. Throughout the game,
we play bases to ensure that the empirical regrets of all bases are roughly the same.
To be more precise, in time t, we choose the base with the smallest empirical regret:

it = arg min
i∈[M ]

Ĝi,t . (4.2)

This choice will most likely increase the empirical regret of base it. Next theorem
shows the model selection guarantee of the regret balancing strategy.

1We can use different probabilistic guarantees here, and any form used here will also appear in
Theorem 4.3.1.

2We use Õ notation to hide polylogarithmic terms.
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Theorem 4.3.1. If µ∗,t = µ∗ for a constant µ∗ regardless of time t, and if with
probability at least 1−δ, Gi∗,t ≤ U(δ, Si∗,t) for any t, then RegretT ≤M maxi U(δ, Si,T )
with probability at least 1− δ.

Proof. First, we show that bt is an optimistic estimate of the average optimal reward.
By (4.1) and the regret guarantee of the optimal base,

bt =
Rjt,t

Njt,t

+
U(δ, Sjt,t)

Njt,t

≥ R∗,t
N∗,t

+
U(δ, S∗,t)

N∗,t
≥
∑

τ∈N∗,t µ∗,τ

N∗,t
= µ∗ . (4.3)

Let it be the base chosen at time t and jt be the optimistic base. The cumulative
regret of base it at time t can be bounded as

Git,t = Nit,tµ∗ −Rit,t

≤ Nit,tbt −Rit,t By (4.3)

≤ Njt,tbt −Rjt,t By definition of it

= U(δ, Sjt,t) . By definition of jt and bt (4.4)

Let Ti be the last time step that base i is played. Given that the instantaneous regret
is upper bounded by 1, by (4.4) the regret can be bounded as

M∑
i=1

Gi,T =
M∑
i=1

Gi,Ti ≤
M∑
i=1

U(δ, SjTi ,Ti) ≤M max
i
U(δ, Si,T ) .

The condition that µ∗,t = µ∗ for a constant µ∗ regardless of time t is needed
to ensure that bt ≥

∑
τ∈Ni,t µ∗,τ/Ni,t for any base i. The condition holds in the

following model selection problems: choosing a feature mapping in a stochastic bandit
problem, and choosing the optimal exploration rate among a number of ε-greedy
algorithms. The condition is also satisfied for choosing between multi-armed bandits
and stochastic linear contextual bandits, where µ∗,t = E

[
maxi∈[K] φ(st, i)

>θ∗
]

is a
time-independent constant value for IID context st.

As we mentioned earlier, the regret upper bound U should be of order Ω(
√
T ).

Thus, our approach can achieve the regret of the optimal base as long as the optimal
regret is at least Ω(

√
T ). This observation is consistent with the lower bound argument

of [54] who show that, in general, O(
√
T ) is the best rate that can be achieved by any

model selection strategy. Unfortunately, this lower bound implies that in a model
selection setting, we can no longer hope to achieve the logarithmic regret bounds that
can be usually obtained in stochastic bandit problems. Notice that such logarithmic
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bounds are shown for the pseudo-regret and not for the regret as defined above. The
pseudo-regret is the difference of the expected rewards of the optimal arm and the
arm played, and is not directly observed by the learner, and it can be estimated only
up to an error of order Ω(

√
T ).

In fact we can show that a simple modification to the base selection strategy of
Theorem 4.3.1 yields a model selection guarantee with a sublinear dependence in the
number of models M .

Let ρ ∈ (0, 1] and let it the base’s index defined in Equation 4.2. Define jt as in
Equation 4.1. Instead of always playing it as above, we analyze a strategy that plays
algorithm it if Ĝit,t ≤ ρĜjt,t, and jt if the opposite is true. The next theorem shows
the model selection guarantee of this strategy.

Theorem 4.3.2. If µ∗,t = µ∗ for a constant µ∗ regardless of time t, and if with
probability at least 1− δ, Gi∗,t ≤ U(δ, Si∗,t) for any t, then if ρ = 1√

M
and U(δ, Si,t) =

c
√
|Si,t| log(|Si,t|/δ) for all i ∈ [M ], the refined regret balancing model selection

strategy described above satisfies RegretT ≤ 2c
√
MT log(T/δ) with probability at least

1− δ.

Proof. Let lt be the base chosen at time t. Observe that whenever lt = it the following
inequalities hold:

Glt,t = Git,t ≤ Ĝit,t ≤ ρĜjt,t = ρU(δ, Sjt,t) ≤ ρU(δ, t)

Similarly, when lt = jt the following inequalities hold:

Glt,t = Gjt,t ≤ Ĝjt,t = U(δ, Sjt,t)

For any u ∈ [M ] let Tu be the last time step that base u has been played before and
including time T . Let Mi be the set of arms such that u ∈ Mi satisfy lTu = iTu .
Similarly let Mj be the set of arms such that u ∈Mj satisfy lTu = jTu . Notice that
Mi ∪Mj = [M ]. The sum of regrets of u ∈Mi:∑

u∈Mi

Gu,T ≤ |Mi|ρU(δ, T ) ≤MρU(δ, T ).

The sum of regrets of u ∈Mj:∑
u∈Mj

Gu,T ≤
∑
u∈Mj

U(δ, SjTu ,T )

Notice that
∑

u∈Mj
SjTu ,T ≤ T . Therefore if U(δ, t) = c

√
t log(t/δ), we get:
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Figure 4.1: Regret Balancing vs UCB and OFUL. Mean and standard deviation of
2000 and 20 runs.

∑
u∈Mj

U(δ, SjTu ,T ) ≤ c
√
MT log(T/δ).

Setting ρ = 1√
M

the result follows.

4.4 Applications of Regret Balancing

In this Section, we show some applications of the regret balancing strategy.

Regret Balancing for Bandits

The regret balancing strategy can be used as a bandit algorithm. To use as a
multi-armed bandit algorithm, we treat each arm as a base algorithm and we choose
U(δ, t) =

√
(t/2) log(1/δ) as the regret of the optimal arm a∗. To see this, notice

that by the sub-Gaussianity of the noise, with probability at least 1 − δ, Ga∗,t =∑
τ∈Na∗,t

µ∗ − Ra∗,t =
∑

τ∈Na∗,t
(µ∗ − µ∗ + ηt) =

√
(t/2) log(1/δ). In Figure 4.1-Left,

we compare regret balancing with the UCB algorithm [9] on a 4-armed Bernoulli
bandit with means {0.1, 0.2, 0.3, 0.4}. In regret balancing, we treat each arm as a base
algorithm and so we use U(t) =

√
(t/2) log(1/δ) with δ = 0.1 as the target regret.

Next, we show the implementation of the strategy as an algorithm for the linear
stochastic bandits. Consider the following problem. In round t, the learner chooses
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action xt from a (possibly time varying) decision space that is a subset of the unit
sphere Dt ⊂ Sd and observes a reward yt = x>t θ∗ + ηt, where θ∗ ∈ Rd is an unknown
parameter vector and ηt is a σ-sub-Gaussian noise term.3 Let xt,∗ be the optimal
action at time t defined as xt,∗ = arg maxx∈Dt x

>θ∗. The objective is to have small

regret defined as RegretT =
∑T

t=1(x>t,∗θ∗ − x>t θ∗).
We state some notation before defining the bandit method. For a regularization

parameter λ > 0, let Vt = λI +
∑t−1

k=1 xkx
>
k be the empirical covariance matrix, and

let ‖z‖V =
√
z>V z be the weighted `2-norm of vector z. Let θ̂t = V −1

t

∑t−1
k=1 xkyk

be the regularized least-squares estimate. Let βt(δ) = O(
√
d log(t)) be as defined in

Section 4.7. Let yt = arg maxx∈Dt x
>θ̂t + βt(δ)‖x‖V −1

t
be the “optimistic” choice in

round t. A UCB approach would take action yt next. Regret balancing, however,
uses the optimistic choice to estimate the empirical regrets of different choices. Let
bt = y>t θ̂t + βt(δ)‖yt‖V −1

t
, which will be shown to be an upper bound on the value of

the best action. In time t, we choose the action with the smallest empirical regret,

xt = arg min
x∈Dt

Ĝx,t , Ĝx,t =
bt − x>θ̂t
‖x‖2

V −1
t

.

Intuitively, bt − x>θ̂t is an estimate of the instantaneous regret of action x and
1/‖x‖2

V −1
t

is roughly the number of times that x is played.4 Next theorem bounds the

regret of the regret balancing strategy.

Theorem 4.4.1. For any δ ∈ (0, 1), with probability at least 1 − δ, RegretT =

Õ(d3/2
√
T ). Here Õ hides polylogarithmic terms in T , d, λ, and 1/δ.

Proof. By Theorem 4.7.1, for all t, x>t,∗θ̂t + βt(δ)‖xt,∗‖V −1
t
≥ x>t,∗θ∗ with probability at

least 1− δ. In what follows, we condition on the high probability event that these
inequalities hold.

First, we show that bt is an optimistic estimate of x>t,∗θ∗. By definition of yt,

bt = y>t θ̂t + βt(δ)‖yt‖V −1
t
≥ x>t,∗θ̂t + βt(δ)‖xt,∗‖V −1

t
≥ x>t,∗θ∗ . (4.5)

3This formulation includes the special case of linear contextual bandits with Dt = {φ(st, a) :
a ∈ [K]}.

4In multi-armed bandits, where actions are fixed axis aligned unit vectors, 1/‖x‖2
V −1
t

counts the

number of times an action is played.
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We upper bound the instantaneous regret,

rt = x>t,∗θ∗ − x>t θ∗
≤ bt − x>t θ∗ By (4.5)

≤ bt − x>t θ̂t + βt(δ)‖xt‖V −1
t

By (4.10)

≤ βt(δ)‖xt‖V −1
t

+ ‖xt‖2
V −1
t

(
bt − y>t θ̂t
‖yt‖2

V −1
t

)
By definition of xt

= βt(δ)‖xt‖V −1
t

+ ‖xt‖2
V −1
t
· βt(δ)

‖yt‖V −1
t

By (4.5) .

Using the fact that λmax(Vt) ≤ trace(Vt) = λd +
∑t−1

k=1 ‖xt‖2 ≤ λd + t, and hence
λmin(V −1

t ) = 1
λmax(Vt)

≥ 1/(λd+ t), we get that ‖y‖2
V −1
t
≥ 1/(λd+ t) for any y ∈ Dt.

Thus,
rt ≤ βt(δ)‖xt‖V −1

t
+ βt(δ)‖xt‖2

V −1
t

√
λd+ t .

Thus, by Cauchy–Schwarz inequality and Lemma 4.7.2,

RegretT =
T∑
t=1

(
βt(δ)‖xt‖V −1

t
+ βt(δ)‖xt‖2

V −1
t

√
λd+ t

)

≤ βT (δ)


√√√√T

T∑
t=1

‖xt‖2
V −1
t

+ 2d log(1 + T/(λd))
√
λd+ T )


≤ βT (δ)

(√
2dT log(1 + T/(λd)) + 2d log(1 + T/(λd))

√
λd+ T )

)
.

The regret bound in the theorem is slightly worse than the minimax optimal
rate of Õ(d

√
T ), however and as we show next, regret balancing strategy can be a

competitive linear bandit algorithm in practice. In Figure 4.1-Right, we compare
regret balancing, as described above, with the OFUL algorithm [1] on a contextual
linear bandit problem with two arms: for i ∈ {1, 2}, let θi ∈ R3 drawn uniformly at
random from [0, 1]3 at the beginning of the experiment. In round t, the reward of
arm i ∈ {1, 2} is θ>i st + ξ where ξ ∼ N(0, 1) and context st ∈ R3 is drawn uniformly
at random from [0, 1]3 with st[0] = 1.
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Optimizing the Exploration Rate

Next, we consider the performance of regret balancing as a bandit model selection
strategy. First, consider optimizing the exploration rate in an ε-greedy algorithm.
The ε-greedy is a simple and popular bandit method. In round t, the algorithm plays
an action chosen uniformly at random with a small probability εt, and plays the
empirically best, or greedy, choice otherwise. For a well-chosen εt, this simple strategy
can be very competitive. The optimal value of εt however depends on the unknown
reward function: It is known that the optimal value of εt is min{1, 5K

∆2t
} where ∆ is

the smallest gap between the optimal reward and the sub-optimal rewards [41]. By

this choice of exploration rate, the regret scales as Õ(
√
T ) for K = 2 and Õ(T 2/3) for

K > 2.
We apply the regret balancing strategy to find a near-optimal exploration rate.

The result directly follows from Theorem 4.3.1. A similar result, but for a different
algorithm, is shown by [54].

Corollary 4.4.1. Let T be the time horizon. Let B = {1, 2, . . . , blog(T )c}. For
i ∈ B, let Bi be the ε-greedy algorithm with exploration rate εt = 2i/t in round t. By
the choice of U(t) = t1/2 for K = 2 (or U(t) = t2/3 for K > 2), the regret balancing

model selection with the set of base algorithms B achieves Õ(
√
T ) regret for K = 2

(or Õ(T 2/3) for K > 2).

Next, we evaluate the performance of regret balancing in finding a near optimal
exploration rate. Consider a bandit problem with two Bernoulli arms with means
{0.5, 0.45}. Consider 18 ε-greedy base algorithms with exploration εt = c/t, where
values of c are on a geometric grid in [1, 2T ]. Apply regret balancing with the target
regret bound U(t) =

√
t, and the set of ε-greedy base algorithms. The experiment

is repeated 20 times. Figure 4.2-Left shows the performance of regret balancing
strategy.

Representation Learning

The sublinear regret bounds of linear bandit algorithms are valid as long as the reward
function is truly a linear function of the input feature representation. Assume it is
known that the reward function is linear in one of the M feature maps {φi : Dt →
Rd : i ∈ [M ]}, but the identity of the true feature map is unknown. By applying

5The shaded areas around UCB and CORRAL are the std. The shaded areas around the ε-greedy
bases are 0.1 of std . For small ε, ε-greedy has a very high variance because it either commits to the
optimal arm or the sub-optimal arm at the beginning, so plotting the whole std would make the
plot unreadable.
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Figure 4.2: Left: Optimising the exploration rate with regret balancing (Mean and
standard deviation of 20 runs5), Middle and Right: Regret balancing to choose
between UCB and LinUCB (Mean and standard deviation of 500 and 200 runs).

Theorem 4.3.1 to M OFUL algorithms, each using one of the feature maps, we obtain
a regret that scales as Õ(Md

√
T ).

As an application, we consider the problem of choosing between UCB and OFUL.
Contexts are drawn from the standard normal distribution, but the first element in
the context vector is always 1. The noise is ξ ∼ N(0, σ2 = 0.1). First, consider a
problem with K = 2 arms, each having a reward vector in R10 drawn uniformly at
random from [0, 1/3]10 at the beginning. We use regret balancing with target function
U(t) =

√
2t to perform model selection between UCB and OFUL. Results are shown

in Figure 4.2-Middle. In this experiment, OFUL performs better than UCB, and
performance of regret balancing is in between. Next we consider a problem with
K = 5 arms. Mean reward of arm i ∈ [K], denoted by µi, is generated uniformly at
random from [0, 1] at the beginning. In each round, we observe a context st ∈ R10, but
the expected reward of arm i in each round is µi. We use target regret U(t) =

√
5t.

Figure 4.2-Right shows that in this setting UCB performs better than OFUL, and
performance of regret balancing is again in between.

Choosing Among Reinforcement Learning Algorithms

We consider the model selection problem in finite-horizon reinforcement learning
problems. The ideas can be easily extended to average-reward setting as well, but we
choose a finite-horizon setting to simplify the presentation.

A finite-horizon reinforcement learning problem is specified by a horizon H, a
state space S that is partitioned into H disjoint sets, an action space A, a transition
dynamics P that maps a state-action pair to a distribution over the states in the next
stage, and a reward function r that assigns a scalar value to each state-action pair.
The objective is to find a policy π, that is a mapping from states to distributions on
actions, that maximizes the total reward.
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Figure 4.3: Regret balancing for model selection among ε-greedy, UCRL, and PSRL.
Mean and 0.2 of standard deviation of 10 runs.

The model selection problem is defined next. In episode t, the learner chooses
base it from a set of M RL algorithms, the base is executed for H rounds, and the
rewards of the actions are revealed to the learner. Let V∗,t be the total reward of the
optimal policy in the underlying reinforcement learning problem. Quantities Ni,t, Ri,t,
Si,t, i∗, U , etc are defined similar to the bandit case. For example, Ni,t is the number
of episodes that base i is played up to episode t. The regret balancing strategy is
defined next. In episode t, let jt = arg maxi∈[M ]

Ri,t
Ni,t

+
U(δ,Si,t)

Ni,t
be the optimistic base.

Let bt such that Njt,tbt − Rjt,t = U(δ, Sjt,t). Define the empirical regret of base i

by Ĝi,t = Ni,tbt −Ri,t. In episode t, we choose the base with the smallest empirical

regret: it = arg mini Ĝi,t. The next theorem shows the model selection guarantee for
the regret balancing strategy. The analysis is almost identical to the analysis of the
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bandit model selection in the previous section.

Theorem 4.4.2. If V∗,t = V∗ for a constant V∗ regardless of round t, and if for
any δ ∈ (0, 1) with probability at least 1 − δ, Gi∗,t ≤ U(δ, Si∗,t) for any t, then
RegretT ≤M maxi U(δ, Si,T ) with probability at least 1− δ.

In Figure 4.3, we perform model selection with base algorithms UCRL2 [34], a
Q-learning method with ε-greedy exploration and ε = 0.1, and PSRL [52] in the River
Swim domain [61]. Regret balancing adapts to the best performing strategy (PSRL
in this case).

As another application, consider the problem of choosing state representation in
reinforcement learning. Many existing theoretical results hold under the assumption
that a correct state representation (or feature map) is given. As examples, [3] show
sublinear regret bounds under the assumption that the value function of any policy
is linear in a given feature vector, while [38] show sublinear regret bounds for linear
MDPs, i.e. when the transition dynamics and the reward function are known to be
linear in a given feature vector. Given M candidate feature maps, one of which is
fully aligned with the true dynamics of the MDP, we can apply the regret balancing
strategy and by Theorem 4.4.2, the performance will be optimal up to a factor of M .

Corollary 4.4.2. Let M = (S,A,H, P, r) be a linear MDP parametrized by an
unknown feature map {Φ∗ : S×A→ Rd}. Let F = {Φi(s, a)}Mi=1 be a family of feature
maps with Φi(s, a) ∈ Rd and satisfying Φ∗ ∈ F . For regret balancing with target U(t) =
d3/2H3/2T 1/2 and with a class of LSVI-UCB base algorithms [38], each instantiated

with a feature map in F , the regret is bounded as RegretT ≤ Õ
(
M
√
d3H3T

)
.

[46, 47, 50] study a closely related but different problem where M state represen-
tation functions are given and with at least one such function, the resulting state
evolution is Markovian.

4.5 Lower Bound

In this section we show that for any model selection algorithm there are problem
instances where the algorithm must do regret balancing. For simplicity we restrict
ourselves to the case M = 2, and to a simple class of problem instances, although it
is possible to extend the argument to richer families and beyond two base algorithms.

Let M be a model selection algorithm with expected regret R(t) up to time t.
We say an algorithm “model selects” w.r.t. a class of algorithms B if for any two base
algorithms A,B ∈ B with expected regret RA and RB, there exists T0 > 0 such that
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for all T ≥ T0, R(T ) ≤ O(min(RA(T ),RB(T ))). We say that algorithm M is regret
balancing for base algorithms (A,B) if for all δ ∈ (0, 1) there exists T (δ) such that
for all T ≥ T (δ), with probability at least 1− δ,

log

(
max

(
R̃A(T )

R̃B(T )
,
R̃B(T )

R̃A(T )

))
≤ o(log(T )) , (4.6)

where R̃A(T ) and R̃B(T ) are the empirical regrets of algorithms A and B, respectively.
The main result of this section is to show there exist problem and algorithm classes
such that any model selection strategy must be regret balancing.

Theorem 4.5.1. There exists two algorithm classes B1,B2 with B1 ⊆ B2 such that
any model selection strategy M for class B2 must satisfy the condition in (4.6) for
all A, B ∈ B1 whose regrets are distinct.

Proof. Let B1,B2 be two classes of algorithms defined as follows: if B ∈ B1 then there
exists a value b such that B has a deterministic instantaneous regret of b during all
time steps. If B ∈ B2, then there is a time index t0 and two values b1 and b2 such
that B has a deterministic instantaneous regret of b1 for all t ≤ t0 and a deterministic
instantaneous regret of b2 for all t > t0.

Let A ∈ B1 be an algorithm that for all time-steps t ∈ [T ] plays a policy achieving
(deterministically) an instantaneous regret of 1

T 1−a for some a ∈ [0, 1]. Similarly
let B ∈ B1 be an algorithm that for all time-steps t ∈ [T ] plays a policy with a
deterministic instantaneous regret of 1

T 1−b for some b ∈ [0, 1].
We proceed by contradiction. If M is not regret balancing for (A,B), then, there

exists an ε > 0 such that with probability at least ε,

max

(
R̃A(T )

R̃B(T )
,
R̃B(T )

R̃A(T )

)
≥ CT c (4.7)

for some positive constants C, c > 0, and for infinitely many T > T (ε). Wlog the
condition in (4.7) implies that for infinitely many T ≥ T (ε) with probability at least
ε/2,

R̃A(T ) ≥ CR̃B(T )T c . (4.8)

Call this event ET for any such T . Let TA and TB be the random number of times
that algorithm A (respectively algorithm B) was called by M. In this case, by (4.8),
with probability at least ε

2
,

CTb
1

T 1−bT
c ≤ Ta

1

T 1−a . (4.9)
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This, in turn, implies Ta ≥ CT cTbT
b−a. Additionally, since Ta ≤ T , with probability

at least ε/2 we have Tb ≤ 1
C
T 1+a−b−c. We now proceed to show a lower bound for the

regret in each of two cases, a > b and b > a.

Case a > b: Let ET = E1
T ∪ E1

T where E1
T = {Ta ≥ T

2
} ∩ ET and E1

T = {Ta < T
2
} ∩ ET .

Notice that max(P(E1
T ),P(E2

T )) ≥ ε
4
. In E1

T we have R̃a(T ) ≥ Ta

2
. In E2

T we have
Tb ≥ T

2
which in turn by (4.9) implies that Ta ≥ CT 1+c+b−a, and therefore in E2

T

it holds that R̃a(T ) ≥ C T c+b

2
. Since R(T ) = E[R̃a(T ) + R̃b(T )], we conclude that

R(T ) ≥ ε
4

min
(
C T c+b

2
, T

a

2

)
.

Case b > a: Assume M has model selection guarantees (in expectation) w.r.t.
algorithm A. Therefore R(T ) ≤ C ′′T a. As a consequence of (4.9), with probability
at least ε

2
, it holds that Tb ≤ 1

C
T 1+a−b−c = o(T ).

This analysis shows that in caseM does not satisfy regret balancing, then it must
be the case that:

1. If a > b, then M must incur an expected regret of at least ε
2

min
(
C T c+b

2
, T

a

2

)
for some C > 0, and thus precluding any model selection guarantees for M.

2. If b > a, then with probability at least ε
2

it follows that Tb ≤ 1
C
T 1+a−b−c for

some constants C, c. Furthermore, if M is assumed to satisfy model selection
guarantees, it must be the case that for T large enough, with probability at
least ε

2
, Ta ≥ T/2. We focus on this case to find a contradiction.

Two alternative worlds: Having analyzed what happens if a model selection
strategy does not do regret balancing with algorithms A and B, we proceed to show
our lower bound. Let (A,B) two base algorithms defined as above and let (A′, B′) be
two base algorithms defined as:

1. A′ acts exactly as A does.

2. B′ acts as B does only up to time t′ = min( 1
C
T 1+a−b−c + 1, T ), and afterwards

it pulls the optimal arm deterministically.

Let Ta′ and Tb′ be the random number of times A′ and B′ are played byM. Suppose
the model selection strategy M is presented with (A′′, B′′) sampled uniformly at
random between (A,B) and (A′, B′). Let b > a. Note that environment (A′, B′) is
indistinguishable from environment (A,B) in the probability at least ε/2 event that
Tb < t′. This implies that in environment (A′, B′), and with probability at least ε

2
,
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Tb′ < t′ = o(T ). In this same event and for T large enough since Ta′ +Tb′ = T it must
be the case that Ta′ ≥ T/2 and Tb′ ≤ 1

C
T 1+a−b−c, and therefore,

E(A′′,B′′)[R(T )|(A′′, B′′) = (A′, B′)] ≥ ε

8
T a .

Since for T large enough the optimal regret for (A′, B′) is 1
C
T 1+a−b−c · 1

T 1−b = 1
C
T a−c,

and for T large enough, 1
C
T a−c = o(T a), we conclude that M couldn’t have possibly

satisfied the model selection condition.

4.6 Regret balancing without knowledge of the

optimal regret

In this section, we show that by adding forced exploration, and hence direct access to
the arms, the regret balancing strategy can achieve near-optimal regret in a class of
problems without the knowledge of the optimal base regret.

Let M denote the number of base algorithms, k∗ denote the best base, and Mk,t

denote the number of times base k is selected up to time t. We use K, i∗, and Ni,t to
denote the number of arms, the best arm, and the number of times arm i is selected.
Let µi and µ̂i,t denote the true mean and the empirical mean of arm i at time t. Let
Rk,t and Gk,t be the reward and regret of base k up to time t. The model selection

algorithm is as follows: in the first phase, pull each arm
(
TM
K

)2/3
times. In the second

phase, for each time step t ∈ {(TM)2/3K1/3 + 1, . . . , T}, play base kt = argmink Ĝk,t,

where Ĝk,t = Mk,tbt − Rk,t, bt = µ̂jt,t + 1√
Njt ,t

, and jt = argmaxi µ̂i,t + 1√
Ni,t

. The

regret from the initial exploration phase is (TM)2/3K1/3. Next we analyze the regret
from the second phase. The cumulative regret of base kt at time t when it is selected
can be bounded as,

Gkt,t = Mkt,t · µi∗ −Rkt,t
(i)

≤ Mkt,t ·

(
µ̂i∗,t +

1√
Ni∗,t

)
−Rkt,t

(ii)

≤ Mkt,tbt −Rkt,t
(iii)

≤ Mk∗,tbt −Rk∗,t
(iv)
= Mk∗,t ·

(
µ̂jt,t +

1√
Njt,t

)
−Rk∗,t

(v)

≤ Mk∗,t ·

(
µjt +

2√
Njt,t

)
−Rk∗,t

(vi)

≤ Mk∗,t ·

(
µi∗ +

2√
Njt,t

)
−Rk∗,t ≤Mk∗,t · µi∗ −Rk∗,t +

Mk∗,t√
Njt,t

= Gk∗,t +
Mk∗,t√
Njt,t

(vii)

≤ Gk∗,t + T 2/3K1/3M−1/3 ,
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where inequality (i) holds because µi∗ ≤ µ̂i∗,t + 1√
Ni∗,t

w.h.p by Hoeffding, inequality

(ii) is a result of the definition of bt, (iii) follows by definition of kt, (iv) follows again
by definition of bt, (v) holds because µ̂jt,t − 1√

Njt,t
≤ µjt w.h.p by Hoeffding, (vi) is

satisfied because µjt ≤ µi∗ , and the last inequality (viii) holds because Mk∗,t ≤ t ≤ T

and Njt,t ≥
(
TM
K

)2/3
given the initial exploration phase. Let Tk be the last time step

that base k is picked. The regret from the second phase can be bounded as,∑
k

Gk,T =
∑
k

Gk,Tk

≤
∑
k

(Gk∗,Tk + T 2/3K1/3M−1/3)

≤
∑
k

(Gk∗,T + T 2/3K1/3M−1/3)

= M(Gk∗,T + T 2/3K1/3M−1/3) .

The total regret is at most

RegretT ≤ 2T 2/3M2/3K1/3 +MGk∗,T .

If Gk∗,T = Ω(T 2/3K1/3M−1/3) then the total regret is the same as the regret of the
best base.

4.7 Ancillary Technical Results

We state a result on the error of the least-squares estimate.

Theorem 4.7.1 (Theorem 2 of [1]). Assume ‖θ∗‖ ≤ S. Let

βt(δ) = R

√
log

(
det(Vt)1/2 det(λI)−1/2

δ

)
+ λ1/2S .

For any δ > 0, with probability at least 1− δ, for all t ≥ 0 and any x ∈ Rd,

|x>(θ̂t − θ∗)| ≤ βt(δ)‖x‖V −1
t

. (4.10)

Lemma 4.7.2 (Lemma 11 of [1]). Let {Xt}∞t=1 be a sequence in Rd and define
Vt = λI +

∑t
k=1XkX

>
k for a regularizer λ ≥ 1. If ‖Xt‖ ≤ 1 for all t, then

t∑
k=1

‖Xk‖2
V −1
k−1
≤ 2 log

det(Vt)

det(λI)
≤ 2d log(1 + t/(λd)) .
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Chapter 5

Regret Bound Balancing and
Elimination

5.1 Introduction

Multi-armed bandits are a general framework of sequential decision making that
has in the last two decades received a lot of attention. The main aspect of this
framework is a sequence of T rounds of interaction between a learning agent and
an unknown environment. During each round, the learner picks an action from a
set of available actions on that round, and the environment consequently generates
a feedback (e.g., in the form of a reward value) associated with the chosen action.
Given a class of benchmark policies, the goal of the learning agent is to accumulate
during the course of the T rounds a total reward which is not much smaller than
that of the best policy in hindsight within the benchmark class. Multi-armed bandits
have found applications in a wide variety of domains, like clinical trials (e.g., [66]),
online advertising (e.g., [57]), recommendation systems (e.g., [44]), and beyond.

Since many bandit methods are often deployed at scale in industrial applications,
the complexity and diversity of the involved learning solutions typically require being
able to select among several alternatives, like selecting the best within a pool of
algorithms, or even alternative configurations of the same algorithm (as in, e.g.,
hyper-parameter optimization). Hence, the problem of model selection in bandit
algorithms has become chiefly important in order to simplify the development of
data processing pipelines at scale while simultaneously achieving improved statistical
performance.

In this chapter, we study the problem of online model selection among a set of
alternative learning algorithms, these algorithms being themselves bandit algorithms.
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Each such algorithm is designed to work well only when favorable conditions are
satisfied. Yet, the algorithm designer may not know in advance which one of them is
more appropriate for the problem at hand.

As a simple example, many known multi-armed bandit algorithms, such as UCB
(e.g., [41, Ch. 7]), rely on a confidence interval width as prescribed by a theoretical
recipe. However, it has been observed multiple times in practice that setting this width
smaller than theoretically suggested can lead to substantial performance improvements.
On the other hand, picking too small a width can lead to a dramatic degradation
in performance that may translate into a linear regret. It is therefore desirable to
design theoretically sound model selection procedures that can help us find an optimal
parameter setting in an online fashion.

Another simple example comes from trying to distinguish between a contextual
and a non-contextual environment. In e-commerce problems, even if contextual
information is available about users and the transaction at hand, it may prove more
beneficial to use a simple UCB style algorithm that ignores the context or that only
uses part of the context information. A model selection strategy that selects when or
to what extent making use of contextual information can lead to better performance
for contextual bandit algorithms.

Related Work and our Contribution

In this chapter we aim to develop a general purpose model selection master algorithm
(that is, aggregation approach) that can be combined with multiple base bandit
algorithms, and is able to obtain regret guarantees competitive with respect to the
best base algorithm.

The problem of online model selection for bandit algorithms has received a lot of
recent attention, as witnessed by a flurry of recent works (e.g., [4, 5, 7, 12, 18, 26, 27,
28, 43, 54]).

These previous works on model selection can be broadly split into two approaches:
(i) Approaches that make use of an adversarial master algorithm, and (ii) approaches
that rely on a statistical test which is able to detect when a base algorithm is
misspecified. Our approach, called Regret Balancing and Elimination, falls squarely
in the second camp.

Within the first category are the so-called corraling algorithms. These yield
statistical guarantees of the form O(dα?T

β) for some α ≥ 1, β < 1, where d? depends
generally on the complexity of the best model class or algorithm and other problem
parameters. The original Corraling Algorithm of [5] relies on an adversarial master
algorithm based on mirror descent that can be combined with many base algorithms
(both stochastic and adversarial), provided these base algorithms satisfy a stability



CHAPTER 5. REGRET BOUND BALANCING AND ELIMINATION 111

guarantee. In this case, the base algorithms are fed with an importance-weighted
estimator of the reward, hence they have to be robust to potentially wide fluctuations
in the reward scaling, due to the evolving nature of the master algorithm’s distribution
over base algorithms. Unfortunately, in order to show that a base algorithm can be
combined with the corralling master to satisfy a valid model selection regret guarantee,
it is necessary to verify that the above-mentioned stability condition holds, something
that has to be done on a case-by-case basis. The model selection guarantee is of the

form O
(√

MT +MRi?(T )
)

, where M is the number of base algorithms and Ri?(T )

is the regret guarantee of any of the base algorithms. Yet, this is achieved only if
the master’s learning rate is set as a function of Ri?(T ), a quantity which is typically
unknown.

Some of the shortcomings of the original Corralling Algorithm have been addressed
by the more recent work of [54] (see Chapter 2). The authors propose a generic model
selection procedure to combine stochastic bandit algorithms with an adversarial master.
As opposed to the corralling algorithm of [5], the Stochastic CORRAL method in [54]
allows the use of any stochastic bandit algorithm in stochastic contextual environments
(the contexts are i.i.d.), provided it satisfies a high probability regret guarantee, thus
relaxing the stability condition in [5]. [54] obtain the following model selection
guarantees: When the base algorithms have a regret bound of the form {diTα}Mi=1,

Stochastic CORRAL achieves a regret guarantee of Õ(
√
MT+MαT 1−α+M1−αTαd

1/α
i?

)

when using a Corralling Algorithm as master, and a rate of Õ(
√
MT +M

1−α
2−αT

1
2−αdi?)

under a forced exploration EXP3 (e.g., [41, Ch. 11]) master. Despite these advances,
it remains unclear how to avoid the

√
MT cost of a corralling approach. Our

approach recovers and improves on the guarantees obtained by [5] and [54] in two
ways. First, we propose a general purpose stochastic master algorithm that can be
used in combination with any set of stochastic bandit algorithms. As opposed to the
adversarial master algorithms of [5] and [54], ours is much more interpretable and
transparent. Second, due to the stochastic nature of our master algorithm, we are
able to prove gap-dependent bounds, thereby departing from the inherent

√
T limit

of adversarial master approaches. Furthermore, the memory requirements of [54] are
very onerous, since their algorithm requires to store all the policies played by the
base algorithms. Our algorithm’s memory requirements are minimal in comparison.

There exist other related approaches in the literature that make use of an ad-
versarial corralling master algorithm as a means of performing model selection. [7]
propose an approach based on a Tsallis-INF adversarial master, which is able to
recover gap-dependent regret guarantees for stochastic bandit problems. Nevertheless,
their approach suffers from the drawback that whenever the rates of the input base
algorithms are of the form {diTα}Mi=1, where d1 ≤ · · · ≤ dM , they obtain a regret
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guarantee for their master algorithm of the form dMT
α, a quantity that could be

substantially worse than the regret achievable by the optimal base algorithm di?T
α,

since di? might be much smaller than dM . In contrast, our approach achieves a
rate of d2

i?T
α. Other related approaches that make use of a Tsallis-INF adversarial

master have also been proposed, e.g., [26] achieve optimal rates for selecting the
the misspecification level in the setting of contextual linear bandits. In the setting
of stochastic linear bandits with adversarial contexts, our approach can be seen to
achieve the same model selection rates as [26] for the problem of selecting the best
level of misspecification.

As for the approaches that rely on a statistical test to perform model selection,
minimax-optimal guarantees have been shown under strong eigenvalue assumptions
on the context distribution by leveraging the special structure of the stochastic linear
contextual bandit setting [18, 27]. These algorithms work by maintaining a set of
active base learners, and playing a low complexity algorithm/model within the set. If
enough information is gathered to conclude that a higher complexity model better
describes the observed data, they eliminate the low complexity model from the active
set, and proceed to play a more complex one. Unlike those papers, we are able to
get results for the nested linear class problem (initially studied by [27]), but without
resorting to eigenvalue assumptions on the context distribution, and without relying
on the finiteness of the action space.

In the more general task of selecting among different stochastic bandit algorithms
operating in a stochastic environment (with i.i.d. contexts), the recent work [4] has
taken some steps towards proposing a stochastic master algorithm that can combine
multiple stochastic base bandit algorithms, and obtain regret guarantees of the same
nature or better than Stochastic CORRAL. [4] introduce an intriguing new technique
for model selection referred to as Regret Balancing. At a high level, the main idea is
to estimate the empirical regret of the base algorithms during the rounds that the
algorithms are played, and ensure that all base algorithms suffer roughly the same
empirical regret. As opposed to [18, 27] the Regret Balancing approach of [4] does
not eliminate any base algorithm.1 Unfortunately, in order for this approach to work,
the exact scaling of the target optimal regret guarantee is required, which is again
typically unknown. Our approach to model selection expands on the fundamental
insights of regret balancing but, in contrast to [4], we are able to obtain results when
model selecting among multiple base algorithms with different regret guarantees.

In [43] the authors propose ECE (Explore Commit Exploit), a model selection
algorithm on stochastic contextual bandit algorithms. ECE can be thought of as

1Technically speaking the methods in [18, 27] do not eliminate base algorithms, but reject a
statistical hypothesis on the base algorithms’ model complexity.
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an epsilon-greedy approach to the problem of model selection. Correspondingly,
the regret guarantees of ECE have a dependence on T of the order of T 2/3, in
contrast to our typical T 1/2 dependence. A regret of the form T 2/3 is the same as
the one achievable by a forced exploration EXP3 master in [54]. [43] also present
gap-dependent guarantees under the same assumptions as in [7] (see also [12]): each
algorithm satisfies a valid regret guarantee w.r.t. its own policy class. Our work
does not rely on this restrictive assumption, in that we only require the optimal
algorithm to be well behaved and satisfy its theoretical regret guarantee. This is
because we admit the presence of regret-misspecified base algorithms in the pool,
and compete against the best among the well-specified ones. When the rates of the
base algorithms are of the form {diTα}Mi=1 and in the regime where T is much larger
than di, our approach strictly dominates ECE’s rates. Other works provide model
selection results for specific bandit models, most notably, [28] consider the problem
of selecting over nested feature structures and an unknown parameter norm in the
case of contextual linear bandits over a sphere. Our results recover model selection
rates for these problems without requiring restrictive assumptions on the nature of
the contexts.

Content of the Chapter

Building on Chapter 4, we study a general regret bound balancing and elimination
algorithm (Section 5.3) for selection among a pool of base bandit algorithms, each
coming with a presumed regret bound that may or may not hold. The master algorithm
does not know a priori the identity of the base algorithms whose regret bounds hold.
Under these general assumptions, we show that this master algorithm enjoys general
regret guarantee (Section 5.4) that can be specialized to either the gap-independent
or the gap-dependent case. Then, we specialize to relevant application examples with
nested model classes (Section 5.5) that consider linear contextual bandits or linear
Markov decision processes as base learners). We also consider therein the unknown
misspecification case, as well as the practically relevant problem of optimally tuning
linear contextual bandit algorithms like OFUL. Finally, we specifically focus on the
nested linear contextual bandit setting, and extend our balancing and elimination
technique to the case where the context information is generated adversarially (Section
5.6). Despite we do not show this explicitly, similar extensions can be exhibited for
Linear Markov Decision Processes with Nested Model Classes, Linear Bandits and
MDPs with Unknown Approximation Error and tuning the confidence parameter in
OFUL.

In the next section, we introduce our basic setup and notation for stochastic
contexts. For the adversarial context case, further elements of the setup will be given
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in Section 5.6. Most of our proofs are provided Sections 5.7 and 5.8.

5.2 Problem Statement

We consider contextual sequential decision making problems described by a context
space X , an action space A, and a policy space Π = {π : X → A}. At each round t,
a context xt ∈ X is drawn2 i.i.d. from some distribution, the learner observes this
context, picks a policy πt ∈ Π, thereby playing action at = πt(xt) ∈ A, and receives
an associated reward rt ∈ [0, 1] drawn from some fixed distribution Dat,xt that may
depend on the current action and context.

Base learners. Our learning policy in fact relies on base learner which are in turn
learning algorithms operating in the same problem 〈X ,A,Π〉. Specifically, there are
M base learners which we index by i ∈ [M ] = {1, . . . ,M}. In each round t, we select
one of the base learners to play, and receive the reward associated with the action
played by the policy deployed by that base learner in that round. Let us denote by
Ti(t) ⊆ N the set of rounds in which learner i was selected up to time t ∈ N. Then
the pseudo-regret Regi our algorithm incurs over rounds k ∈ Ti(t) due to the selection
of base learner i is

Regi(t) =
∑
k∈Ti(t)

(
max
π′∈Π

E [rk|π′(xk), xk]− E [rk|πk(xk), xk]
)
, (5.1)

and the total pseudo-regret Reg of our algorithm is then Reg(t) =
∑M

i=1 Regi(t).

Candidate regret bounds. Each base learner i comes with a candidate regret
(upper) bound Ri : N→ R+, which is a function of the number of rounds this base
learner has been played. This bound is typically known a-priori to us, and can also
be random as long as the current value of the bound is observable, that is, we assume
Ri(ni(t)) is observable for all i ∈ [M ] and t ∈ N, being ni(t) = |Ti(t)| the number of
rounds learner i was played after t total rounds. Without loss of generality, we shall
assume each candidate regret bound is non-decreasing, and increases by at most 1
from one play to the next, i.e.,

0 ≤ Ri(n)−Ri(n− 1) ≤ 1 , (5.2)

for all number of rounds n ∈ N and base learner i ∈ [M ], with Ri(0) = 0.

2This assumption will actually be relaxed in Section 5.6.
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Well- and misspecified learners. We call learner i well-specified if Regi(t) ≤
Ri(ni(t)) for all t ∈ [T ], with high probability over the involved random variables (see
later sections for more details and examples), and otherwise misspecified (or bad). A
well-specified base learning i is then one for which the candidate regret bound Ri(·)
is a reliable upper bound on the actual regret of that learner.

For a given set of base learners and corresponding regret upper bounds, we denote
the set bad learners by B ⊆ [M ], and the set of well-specified ones by

W = {i ∈ [M ] : ∀t ∈ [T ] Regi(t) ≤ Ri(ni(t))} = [M ] \ B .

Notice that sets W and B are random sets. As a matter of fact, these sets do also
depend on the time horizon T , but we leave this implicit in our notation. We assume
in our regret-analysis that there is always a well-specified learner, that is W 6= ∅. We
will show that in the applications we consider, this happens with high probability.
The index i? ∈ W (or just ? in superscripts) will be used for any well-specified learner.

Consistent with the previous notation, we denote the total reward accumulated
by base learner i after a total of t rounds as

Ui(t) =
∑
k∈Ti(t)

rk ,

and the total sum of rewards as U(t) =
∑

i∈[M ]

∑
k∈Ti(t) rk. The expected reward of

the optimal policy at the context xt at round t will be denoted by

µ?t = max
π′∈Π

E [r|π′(xt), xt]

and, when contexts are stochastic, the expectation of µ?t over contexts simply as
µ? = Ex [µ?t ] which is a fixed quantity and independent of the round t.

Problem statement. Our goal is to perform model selection in this setting: We
devise sequential decision making algorithms that have access to base learners as
subroutines and are guaranteed to have regret that is comparable to the smallest
regret bound among all well-specified base learners despite not knowing a-priori which
base learners that are.

5.3 Regret Bound Balancing and Elimination

Our main algorithm follows the basic principle of regret bound balancing. The
algorithm chooses the base learner in each round so as to make all presumed regret
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bounds evaluated at the number of rounds that the respective base learner was played
to be roughly equal. To see why this achieves good total regret, assume for now all
base learners are well-specified, so that they all satisfy their presumed regret bounds.
Then, because the regret accrued by each base learner is bounded by its presumed
regret bound, and these regret bounds are approximately equal, the total regret our
algorithm incurs is at most M times worse than had we only played the algorithm
with the best presumed regret bound:

Reg(T ) =
M∑
i=1

Regi(T ) ≤
M∑
i=1

Ri(ni(T )) ≈M min
i∈[M ]

Ri(ni(T )) ≤M min
i∈[M ]

Ri(T ) .

Yet, the above only works if all base learners are well specified, which may not be the
case. Besides, if we know all such learners are well specified, we could simply single
out at the beginning of the game the learner whose regret bound is lowest at time T ,
and select that learner from beginning to end. Our task becomes more interesting in
the presence of learners that may violate their presumed regret bound, when we do
not know the identity of such learners. In this case, a reasonable goal for our policy
would be to compete in the regret sense against the best well-specified base learner.

In order to handle this more involved situation, we pair the above regret bound
balancing principle with a misspecification test to identify and eliminate misspecified
base learners. This test compares the time-average rewards Ui(t)/ni(t) and Uj(t)/nj(t)
achieved by two base learners i and j, and relies on the following concentration
argument. While Ui(t) is random and observable, the optimal average reward µ? is
deterministic and unknown. We consider the event where, for each base learner i and
each round t, the difference between Ui(t)/ni(t) and µ∗ is close to the corresponding
regret:

G =

{
∀i ∈ [M ], ∀t ∈ N : |ni(t)µ? − Ui(t)− Regi(t)| ≤ c

√
ni(t) ln

M lnni(t)

δ

}
.

We show in Lemma 5.7.1 in the appendix that for an appropriate absolute constant c,
this event has probability 1−δ. This holds because, for each fixed t, Ui(t) concentrates
around

∑
k∈Ti(t) E [rk|πk(xk), xk], while

∑
k∈Ti(t) maxπ′∈Π E [rk|π′(xk), xk] concentrates

around ni(t)µ
?, since contexts xk are generated in an i.i.d. fashion. Now, since the

pseudo-regret Regi cannot be negative by definition, the conditions defining G yield a
lower-bound on µ? based on the rewards of each learner i :

µ? ≥ Ui(t)

ni(t)
− c

√
ln(M lnni(t)/δ)

ni(t)
. (5.3)
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When the provided regret bound Regi(t) ≤ Ri(ni(t)) for learner i holds (that is, when
i is well specified), then G also yields an upper-bound for µ?:

µ? ≤ Ui(t)

ni(t)
+ c

√
ln(M lnni(t)/δ)

ni(t)
+
Ri(ni(t))

ni(t)
. (5.4)

Thus, if at any round t the upper bound for µ? from learner i contradicts the
lower-bound from any other learner j,

Ui(t)

ni(t)
+ c

√
ln(M lnni(t)/δ)

ni(t)
+
Ri(ni(t))

ni(t)
<
Uj(t)

nj(t)
− c

√
ln(M lnnj(t)/δ)

nj(t)
,

then we conclude that the upper bound on µ∗ provided by learner i is false, thereby
showing that i is misspecified, and can safely be eliminated. Conversely, this also shows
that no well-specified learner i ∈ W can be eliminated. Combining the elimination
criterion with regret bound balancing yields our main algorithm, whose pseudocode
is presented as Algorithm 12. The algorithm is an action elimination scheme that
maintains over time a set It of active learners/actions at time t, and undergoes an
elimination procedure as described above. The way base learner it is selected at each
round guarantees the regret bound equalization we alluded to at the beginning of
this section.

5.4 Regret Analysis

We first derive a general upper-bound on the regret of Algorithm 12 that depends
on the ratios ni(ti)

n?(ti)
of how often a learner i has been played compared to the best

base learner. We will later bound this quantity for specific forms of candidate regret
bounds Ri and provide simpler and more interpretable regret bounds.

Theorem 5.4.1. With probability at least 1− δ, the total regret of Algorithm 12 is
bounded for all rounds T as follows:

Reg(T ) ≤
M∑
i=1

R?(n?(ti)) +
∑
i∈B

ni(ti)

n?(ti)
R?(n?(ti)) + 2M

+ 2c
∑
i∈B

(
1 +

√
ni(ti)

n?(ti)

)√
ni(ti) ln

M lnT

δ
, (5.5)

where ti is the last round where learner i passed the elimination test, ? ∈ W is any
well-specified learner, and c is a universal positive constant.
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Algorithm 12: Regret Bound Balancing and Elimination Algorithm (RBBE)

1 I1 ← [M ]; // set of active learners

2 Ui(0) = ni(0) = 0 for all i ∈ [M ]
3 for round t = 1, 2, . . . , T do
4 Pick the base learner as it ∈ argmini∈It Ri(ni(t− 1))
5 Play learner it and receive reward rt
6 Update base learner i with rt
7 Update ni(·) and Ui(·) :
8 - Uit(t)← Uit(t− 1) + rt
9 - nit(t)← nit(t− 1) + 1

10 It+1 ← It
11 foreach active base learner i ∈ It do
12 Test for misspecification by checking

13
Ui(t)
ni(t)

+ Ri(ni(t))
ni(t)

+ c
√

ln(M lnni(t)/δ)
ni(t)

< maxj∈It
Uj(t)

nj(t)
− c
√

ln(M lnnj(t)/δ)

nj(t)

14 if above condition is triggered then
15 It+1 ← It+1 \ {i}

In order to prove this statement, we first show that Algorithm 12 indeed keeps all
candidate regret bounds approximately equal (Lemma 5.4.2) and that the regret of
any learner that has not been eliminated can be upper-bounded in terms of R?(·),
the smallest regret upper bound among the well-specified learners (Lemma 5.4.3).

Lemma 5.4.2 (Regret Bound Balancing). In Algorithm 12, the regret bounds of all
active learners are balanced at all times, i.e.,

Ri(ni(t)) ≤ Rj(nj(t)) + 1

for all i, j ∈ It and t ∈ N ∪ {0}.

Proof. At t = 0, the regret bound for all learners is 0 and the statement holds. For
the sake of contradiction, assume now the claim is violated for the first time in round
t, i.e., there is a i, j ∈ It such that Ri(ni(t)) > Rj(nj(t)) + 1. Then i, j ∈ It−1 and i
must have been played in round t. Further, by assumption on the candidate regret
bounds

Ri(ni(t− 1)) ≥ Ri(ni(t))− 1 > Rj(nj(t)) = Rj(nj(t− 1)) ,

where the strict inequality follows from the violated claim and the equality holds
because j was not played at time t. The resulting inequality Ri(ni(t−1)) > Rj(nj(t−
1)) contradicts the claim that i was played at round t.
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Lemma 5.4.3. In Algorithm 12 For any active learner i ∈ It+1 and well-specified
learner ? ∈ W, the regret of i is bounded in event G as

Regi(t) ≤ 1 +

(
ni(t)

n?(t)
+ 1

)
R?(n?(t)) + 2c

(
1 +

√
ni(t)

n?(t)

)√
ni(t) ln

M ln t

δ
, (5.6)

where c is a universal constant.

Proof. If i ∈ It+1 remains active, then it must have passed the misspecification test
in round t and satisfy, for all3 ? ∈ W ,

Ui(t)

ni(t)
+ c

√
ln(M lnni(t)/δ)

ni(t)
+
Ri(ni(t))

ni(t)
≥ U?(t)

n?(t)
− c

√
ln(M lnn?(t)/δ)

n?(t)
.

Subtracting µ? from both sides and rearranging terms gives

µ? − Ui(t)

ni(t)
− c

√
ln(M lnni(t)/δ)

ni(t)
− Ri(ni(t))

ni(t)
≤ µ? − U?(t)

n?(t)
+ c

√
ln(M lnn?(t)/δ)

n?(t)
.

Applying the definition of G, we obtain an inequality in terms of pseudo-regrets:

Regi(t)

ni(t)
− 2c

√
ln(M lnni(t)/δ)

ni(t)
− Ri(ni(t))

ni(t)
≤ Reg?(t)

n?(t)
+ 2c

√
ln(M lnn?(t)/δ)

n?(t)
.

Multiplying both terms by ni(t) and rearranging terms gives

Regi(t) ≤ 2c

√
ln
M lnni(t)

δ
ni(t) +Ri(ni(t)) +

ni(t)

n?(t)
Reg?(t) + 2c

√
ln
M lnn?(t)

δ

√
ni(t)

n?(t)
.

We now upper-bound the RHS by (i) replacing lnn?(t) ≤ ln t in the log-terms, (ii)
using the fact that ? ∈ W is well-specified to replace the pseudo-regret Reg?(·) by
R?(·), and (iii) use the balancing condition from Lemma 5.4.2 to replace Ri(ni(t)) by
R?(n?(t)) + 1. This yields

Regi(t) ≤ 1 +

(
1 +

ni(t)

n?(t)

)
R?(n?(t)) + 2c

√
ni(t) ln

M ln t

δ

(
1 +

√
ni(t)

n?(t)

)
,

which is the claimed bound.

3Recall that, under G, any ? ∈ W will remain active.
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We are now ready to prove Theorem 5.4.1.

Proof of Theorem 5.4.1. Let ti be the last round where learner i passed the elimina-
tion test. Then the total regret can be bounded as

Reg(T ) =
M∑
i=1

Regi(T ) ≤
∑
i∈W

Ri(ni(T )) +
∑
i∈B

Regi(ti).

Applying Lemma 5.4.3 on Regi(ti) for all i ∈ B and the balancing condition from
Lemma 5.4.2 on the regret-bound for i ∈ W gives the desired bound. Finally,
Lemma 5.7.1 in Section 5.7 shows that event G has probability at least 1− δ.

The general regret bound contained in Theorem 5.4.1 will be instantiated to
more concrete cases for certain classes of candidate regret bounds. This will lead
us to explicitly control the ratios ni(ti)/n?(ti). We do so in turn in the subsequent
discussion.

Gap-Independent Regret Bounds

The regret guarantees in this section hold whenever there is a well-specified learner.
These guarantees are independent of how much misspecified learners violate their
presumed regret bounds (“gap” of the learner). In the next section, we will show
that tighter guarantees can be achieved in cases where the gap is large, that is, when
misspecified learners exceed their presumed bounds by a significant amount.

The first class of candidate regret bounds we consider is T β with β ∈ (0, 1]. More
concretely, each learner comes with a candidate regret bound of the form

Ri(n) = diCn
β ∧ n , (5.7)

where di ≥ 1 is some parameter and C ≥ 1 is some term that does not depend on
n or i. Note that the minimum with n is without loss of generality as any learner
satisfies the regret bound n by our assumption on rewards being in [0, 1]. Consistent
with our assumptions from Section 5.2, this minimum ensures that the regret bound
can increase by at most 1 in each round. For candidate regret bounds of this form,
we can show the following regret bound:

Theorem 5.4.4. If Algorithm 12 is used with candidate regret bounds in Equa-
tion (5.7), then its total regret is bounded with probability at least 1 − δ for all T
as

Reg(T ) ≤
(
M + 2B1−βd

1
β
−1

?

)
d?CT

β + 5d
1

2β
? c

√
BT ln

M lnT

δ
+ 2M,
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Presumed Bounds Ri Regret Guarantee of Algorithm 12 Proof

diCn
1/3 (M +B2/3d2

?)d?CT
1/3 + d

3/2
?

√
BT Theorem 5.4.4

diCn
2/3 (M +B1/3

√
d?)d?CT

2/3 + d
3/4
?

√
BT Theorem 5.4.4

diC
√
n (M +

√
Bd?)d?C

√
T Theorem 5.4.4

diC
√
n ln n

δ
(M +

√
Bd?)d?C

√
T ln T

δ
Theorem 5.7.6

εin+ C
√
n M(ε∗T + C

√
T ) +MC2 Theorem 5.4.5

Table 5.1: Summary of our gap-independent regret guarantees In all bounds but the
one in the 4th line, log factors are omitted for readability. In green is the regret
guarantee of the best well-specified learner.

where ? ∈ W is any well-specified learner and B = |B| is the number of misspecified
learners.

The first three entries in Table 5.1 summarize this result in the relevant cases
where β = 1

3
, 1

2
and 2

3
. When β ≥ 1/2, our regret bound can recover the best T β rate.

In particular, the bound of Theorem 5.4.4 recovers the regret bound guarantee of the

best well-specified learner up to a multiplicative factor of the form M +B1−βd
1
β
−1

? .
On the other hand, when β < 1/2 our bound scales sub-optimally as

√
T . This is not

surprising since the lower bound by [54] indicates a Ω(
√
T ) barrier for model-selection

based on observed rewards without additional assumptions.
We further show in the appendix that this result can be generalized to the case

where the candidate regret bounds scale with additional logarithmic factors in the
number of rounds, e.g.

√
n lnn as opposed to just

√
n – see Theorem 5.7.6 in Section

5.7.
We defer the full proof of Theorem 5.4.4 to Section 5.7, but provide a brief

sketch of the main argument for the special case of β = 1
2
. The general case follows

analogously.

Proof sketch of Theorem 5.4.4. The first term of the general regret bound from The-
orem 5.4.1 can be written as

∑M
i=1 R?(n?(ti)) ≤ MR?(T ) ≤ MCd?

√
T , the first

inequality using the monotonicity of the candidate regret bound. This yields the
first term in Theorem 5.4.4. The second term in Theorem 5.4.1 can be controlled as
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follows:

∑
i∈B

ni(ti)

n?(ti)
R?(n?(ti))

(i)

≤
∑
i∈B

ni(ti)

n?(ti)
Cd?

√
n?(ti) = Cd?

∑
i∈B

√
ni(ti)

n?(ti)

√
ni(ti)

(ii)

≤ Cd?

√∑
i∈B

ni(ti)

n?(ti)

√∑
i∈B

ni(ti)
(iii)

≤ Cd?
√

2Bd2
?

√
ti ≤ Cd2

?

√
2BT ,

where step (i) applies the definition of the candidate regret bound, step (ii) uses
Cauchy-Schwarz inequality and step (iii) follows from the fact that the total number

of plays at round ti is ti and a bound on the sum of play ratios
∑

i∈B
ni(ti)
n?(ti)

≤ 2Bd2
?,

which we will show below. This yields the second term in the desired regret bound.
The remaining terms can handled in a similar manner.

To derive the bound on the play ratios, consider first the case where ni(ti) is so
large that Ri(ni(ti)) < ni(ti). Then, by the balancing condition from Lemma 5.4.2,

diC
√
ni(ti) = Ri(ni(ti)) ≤ R?(n?(ti)) + 1

(iv)

≤ 2R?(n?(ti)) ≤ 2d?C
√
n?(ti),

where (iv) holds because no learner can be eliminated before each learner has
been played at least once and thus R?(n?(ti)) ≥ 1. Rearranging this inequality
yields ni(ti)/n?(ti) ≤ 2d2

?/d
2
i . Analogously, we can show that if ni(ti) satisfies

ni(ti) = Ri(ni(ti)), then ni(ti)/n?(ti) ≤ 2. This follows from ni(ti) = Ri(ni(ti)) ≤
2R?(n?(ti)) ≤ 2n?(ti). Thus, the sum of play ratios is bounded as∑

i∈B

ni(ti)

n?(ti)
≤
∑
i∈B

2 ∨ 2
d2
?

d2
i

≤ 2Bd2
? .

Linear regret base learners. When we instantiate Theorem 5.4.4 to the case
where candidate regret bounds are linear in n (β = 1), then the total regret of

Algorithm 12 is of order Õ(MCd?T ), which is only a factor M worse than the regret
bound for the best well-specified learner. The follow result shows that this is still
the case when candidate regret bounds come with an additional

√
n term common

to all learners under the additional assumption that no misspecified algorithm has a
larger candidate regret bound than the best well-specified learner. This will be useful
when Algorithm 12 is used with contextual bandits or linear MDP algorithms with
misspecified function classes (see Section 5.5).
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Theorem 5.4.5. Let the candidate regret bounds for all M base learners be of the
form

Ri(n) = C1

√
n+ εiC2n ∧ n, (5.8)

where εi ∈ (0, 1] and C1, C2 > 1 are quantities that do not depend on εi or n. Then,
probability at least 1− δ, the total regret of Algorithm 12 is bounded for all rounds T
as

Reg(T ) = O

(
MC1

√
T

√
ln
M lnT

δ
+MC2ε∗T

√
ln
M lnT

δ
+BC2

1

)
,

where ∗ ∈ W is any well-specified base learner such that εi ≤ ε∗ for all misspecified
learners i ∈ B.

Proof. This statement is proven analogously to the generic bound in Theorem 5.4.4,
but it makes heavy use of a case-by-case analysis of the different regimes of candidate
regret bounds provided in Lemma 5.7.9 in Section 5.7.

Gap-Dependent Regret Bounds

The regret guarantees in the previous section only depend on which learners are well-
or misspecified and their presumed regret bounds. In particular, a misspecified learner
may violate their presumed regret bound at any time by any amount. However, in
many relevant practical cases, a base learner is either well-specified or violates their
presumed regret bound by a significant amount. For example in contextual bandits
where each base learner has access to a restricted policy class, a learner achieves
good

√
T regret when the optimal policy is contained in its policy class, but has

otherwise to suffer linear regret. We now provide tighter guarantees for Algorithm 12
in such cases. Specifically, we assume that if a learner j is misspecified, its regret is
lower-bounded by

Regj(t) ≥ ∆jnj(t)
α

for all t, where ∆j > 0 and α is strictly larger than both 1
2

and the presumed regret
rate β in Eq. (5.7). Since the regret of j grows significantly faster than its presumed
regret bound and the regret of the best well-specified learner (that is, Regj has a
large gap), we can show that the elimination test in Algorithm 12 is triggered after
playing learner i for a certain number of times. This allows us to prove the following
gap-dependent regret-guarantee:
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Theorem 5.4.6. Assume Algorithm 12 is used with candidate regret bounds in
Equation (5.7) and that the pseudo-regret of all misspcified learners j ∈ B is bounded
for all t from below as Regj(t) ≥ ∆jnj(t)

α, for some constants ∆j > 0 and α > 1
2
∨ β.

If 0 < β < 1
2

then total regret is bounded with probability at least 1− δ for all T as

Reg(T ) = O

(
Md?CT

β +
∑
i∈B

C

(
(2d?)

1
β

+ 1
β(2α−1) + d?d

1
2α−1

i

)[
20C

∆i

ln
M lnT

δ

] 1
2α−1

)
,

where ? ∈ W is any well-specified learner. If instead β ≥ 1
2
, then the total regret is

bounded with probability at least 1− δ for all T as

Reg(T ) = O

(
Md?CT

β +
∑
i∈B

C

√
ln
M lnT

δ

(
d

1
β

+ 1
α−β

? + d?d
β

α−β
i

)[
20C

∆i

] β
α−β
)
.

Although the argument of eventually eliminating base learners with a large gap is
similar to a gap-dependent analysis is multi-armed bandits, it is important to note
that the notion of gap here is a property of the base learner and not (necessarily) of
the action space at hand.

Table 5.2 contains a summary of the guarantees in Theorem 5.4.6 for the special
case where α = 1 and β = 1

3
, 1

2
and 2

3
. Comparing Theorem 5.4.6 to Theorem 5.4.4

(or Table 5.2 to Table 5.1), we see that the multiplicative factor in front of the best
well-specified regret bound is only M , as compared to the presence of extra d? factors
without a gap-assumption. Further, while the additive term in Table 5.2 may have a
dependency on a potentially large di, this term only scales with T as ln lnT , and is
thus virtually constant. Importantly, this yields the optimal scaling in T even when
β < 1

2
(see the first line of Table 5.2) so that the additional

√
T -term occurring in

Table 5.1 can be avoided. This result is in contrast with existing approaches such
as [54], where the

√
T dependence cannot be avoided.

5.5 Applications of RBBE

Let’s start by reviewing the OFUL Algorithm.

Brief Review of Contextual Linear Bandits and the OFUL
Algorithm

One important application of the methods we presented in Section 5.3 and Section 5.4
is the setting of contextual linear bandits, which we now briefly review. To keep
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Bounds Ri Gap-Dependent Regret Guarantee of Algorithm 12 Theorem

diCn
1/3 Md?CT

1/3 +
∑

i∈B
C2(d6

?+d?di)
∆i

ln M lnT
δ

5.4.6

diCn
2/3 Md?CT

2/3 +
∑

i∈B
C3(d4.5

? +d?d2
i )

∆2
i

√
ln lnT

δ
5.4.6

diC
√
n Md?C

√
T +

∑
i∈B

C2(d4
?+d?di)
∆i

√
ln lnT

δ
5.4.6

diC
√
n ln n

δ
Md?C

√
T ln T

δ
+
∑

i∈B
C2(d4

?+d?di)
∆i

ln3/4 MT
δ

ln3/2 lnT
δ

5.7.8

Table 5.2: Summary of our gap-dependent regret bounds when each misspecified
learner has linear pseudo-regret (α = 1). Some constant factors are omitted for
readability. In green is the regret guarantee of the best well-specified learner.

consistency with previous sections, we shall assume here that contexts are drawn
i.i.d. from some distribution over context space X . Yet, the algorithmic solutions
we present (specifically, the OFUL algorithm) actually work unchanged even in
the more general fixed design or adaptive design scenarios. This will be useful in
Section 5.6, when dealing with the adversarial contextual bandit setting.

In the contextual bandit setting, context xt determines the set of actions At ⊆ A
that can be played at time t. When the bandit setting is linear the policies we consider
are of the form πθ(xt) = arg maxa∈At〈at, θ〉, for some θ ∈ Rd, and the class of policies
Π can then be thought of as a class of d-dimensional vectors Π ⊆ Rd. Moreover,
rewards are generated according to a noisy linear function, that is, rt = 〈at, θ∗〉+ ξt,
where θ∗ ∈ Π is unknown, and ξt is a conditionally zero mean σ−subgaussian random
variable. We denote the time-t optimal action as a?t = argmaxa∈At〈a, θ?〉. The
learner’s objective is to control its pseudo-regret:

Reg(T ) =
T∑
t=1

〈a?t , θ?〉 − 〈at, θ?〉 .

OFUL Algorithm. We now recall the relevant components of the OFUL algo-
rithm [1] shown in Algorithm 13. Instances of this algorithm will play the role of
base learners in subsequent sections. The OFUL algorithm proceeds by computing a
regularized least-squares (RLS) estimator θ̂t of the true parameter θ? using the data
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Algorithm 13: OFUL [1]

1 Input: regularization parameter λ > 0, confidence scaling β1, β2, . . .
2 for round t = 1, 2, . . . do

3 Update regularized least-squares estimator θ̂t and covariance matrix Σt

4 Receive context xt/action space At
5 Play optimistic action:

at ∈ argmax
a∈At

max
θ∈Ct
〈a, θ〉 = argmax

a∈At
〈θ̂t, a〉+ βt‖a‖Σ−1

t

Receive reward rt = 〈at, θ?〉+ ξt .

collected so far:

θ̂t := Σ−1
t

(
t−1∑
`=1

a` r`

)
where Σt = λI +

t−1∑
`=1

a`a
>
` . (5.9)

Here, Σt is the regularized covariance matrix of the played actions up to the beginning
of round t with regularization parameter λ, and I denotes the d× d identity matrix.
Using θ̂t and Σt, OFUL proceeds by computing a confidence ellipsoid

Ct := {θ : ‖θ − θ̂t‖Σt ≤ βt} (5.10)

that should contain the optimal parameter θ?. We will discuss a choice of the (possibly
data-dependent) scaling factor βt ∈ R+ below that ensures that this happens in
all rounds with high probability. Algorithm 13 now plays any action that achieves
highest expected return in what we refer to as the optimistic model

θ̃t = argmax
θ∈Ct

max
a∈At
〈a, θ〉 . (5.11)

This choice of action is equivalent to picking at ∈ argmaxa∈At 〈θ̂t, a〉+ βt‖a‖Σ−1
t

.
We define the event that the above-mentioned ellipsoidal confidence set Ct contains

θ∗ at all times t ∈ N as
E = {θ∗ ∈ Ct, ∀t ∈ N} . (5.12)

In this event E , the optimistic model θ̃t indeed gives rise to an optimistic estimate of
the expected reward in each round

〈at, θ̃t〉 ≥ max
a∈At
〈a, θ?〉 = 〈a?t , θ?〉 . (5.13)
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[1] show that the following choice for βt is sufficient to make E happen with high
probability:

Lemma 5.5.1 (Theorem 1 in [1]). For any δ ∈ (0, 1), let the confidence scaling be

βt :=

√
2σ2 ln

(
det(Σt)1/2 det(λI)−1/2

δ

)
+
√
λS ≤

√
σ2d ln

(
1 + tL2/λ

δ

)
+
√
λS

(5.14)

where S is a known bound on the parameter norm maxθ∈Π ‖θ‖2 and L is a known
bound on the action norm in all rounds, i.e., maxa∈At ‖a‖2 ≤ L for all t. Then θ? is
contained in the confidence ellipsoid with high probability, i.e., P (E) ≥ 1− δ.

In event E , one can show that the regret of Algorithm 13 is bounded for all t ∈ [T ]
as

Reg(t) ≤ 2βmax

√
dt

(
1 +

L2

λ

)
ln
dλ+ tL

dλ
,

where βmax = maxk∈[t] βk. We reproduce a slightly more general version of the
standard proof for this regret bound in Lemma 5.9.1 in the appendix. The right side
of the above inequality will play the role of our presumed regret bound R(ni(t)) when
OFUL is used as a base learner.

In the rest of this section, we present a number of applications of our balancing
and elimination machinery to the case where the base learners are instances of the
OFUL algorithm.

Linear Bandits with Nested Model Classes

We can apply our regret bound balancing algorithm to linear bandits where the true
dimensionality d? of the model θ? is unknown a-priori. In this standard scenario,
considered by many recent papers in the model selection literature for bandit algo-
rithms [e.g. 27, 54], the learner chooses among actions At ⊆ Rdmax of dimension dmax

but only the first d? dimensions are relevant (that is, (θ?)i = 0 for i > d?).
One can learn in this setting as follows: We use log2 dmax instances of OFUL as

base learners4. Each instance i first truncates the actions to dimension di = 2i and
then only computes the least-squares estimate and confidence ellipsoid in Rdi . Based

4We here assume that d? and dmax are powers of 2 for convenience but our results also hold
generally up to a constant factor of 2.
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on the OFUL regret guarantees in the previous section, we use Ri(n) = diC
√
n ∧ n

as putative regret bounds, with constant C set to

C = 2
(
σ +
√
λS
)√(

1 +
L2

λ

)
ln

(
1 + TL2/λ

δ

)
ln
λ+ TL

λ
.

For convenience, we here assume the time horizon T is known and lnT terms can
therefore be absorbed into the constant C common to all base learners, but any-time
versions are also possible by setting n = T above at which the regret bound scales as√
n lnn (see Theorem 5.7.6 in appendix). By the regret guarantee of OFUL discussed

in the previous section, with probability 1−Mδ, any base learner i such that di < d?
will be misspecified, while all remaining i are well specified.

More specifically, we have M = O(ln dmax)-many base learners, out of which
B = O(ln d?) are misspecified. Then a direct application of Theorem 5.4.4 with
β = 1/2 gives

Reg(T ) = O
((

ln dmax + d?
√

ln d?

)
d?C
√
T
)
≈ O

((
ln dmax + d?

√
ln d?

)
d?
√
T lnT

)
,

where the second expression only retains dependencies on T , d? and dmax.
If further all misspecified learners suffer linear regret Regi(t) ≥ ∆ni(t) for some

∆ > 0 (e.g. since they cannot represent the observed rewards, they may converge to
playing a strictly suboptimal action for most contexts), then applying Theorem 5.4.6
yields

Reg(T ) = O

(
ln(dmax)d?C

√
T + ln(d?)

C2d4
?

∆

√
ln

lnT

δ

)

≈ O

(
ln(dmax)d?

√
T lnT +

d4
? ln d?

∆
(lnT )2

√
ln lnT

)
,

where the second expression again only shows dependencies on T , d?, dmax and ∆.
Notice that, as T grows large, the main term of the above bound becomes d?

√
T , up

to log factors. This is precisely the bound we would achieve had we known in advance
dimension d?, and just played the associated base OFUL from beginning to end.

Remark 5.5.2. A standard goal in model selection is to obtain sub-linear regret
bounds even in the case where the model complexity of the target class is allowed to
grow sub-linearly with T – see, e.g., the discussion in [27]. In our case, this would
be obtained by regret bounds of the form dα? T

1−α, for some α ∈ (0, 1), for example a
bound of the form

√
d? T . It is worth observing that in the setting considered in this

chapter this is an impossible goal to achieve since, unlike [27], we are dealing with
infinite action spaces, and the best one can hope for in this case is indeed d?

√
T (see

Section 2 in [56]).
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Linear Markov Decision Processes with Nested Model
Classes

We can instantiate the regret bound in Theorem 5.4.4 (β = 1/2) to the episodic
linear MDP setting of [38], again with nested feature classes of doubling dimension.
Here, each round t of Algorithm 12 corresponds to one episode of H time steps in the
MDP, and contexts xt are the initial state of the episode in the MDP. [38] prove that
their LSVI-UCB algorithm achieves regret O(H2

√
d3K ln(dK/δ)) after K episodes

when used with a realizable function class of dimension d. We deploy M = O(ln dmax)
instances of LSVI-UCB as base learners with presumed regret bounds

Ri(n) = Hn ∧H2
√
d3
in ln(dmaxT/δ).

Since the total reward per episode (= round) is in [0, H] instead of [0, 1] in this
setting, we scale the regret bound as well as the constant c in Algorithm 12 by H.
By Theorem 5.4.4 the total regret of Algorithm 12 after T episodes is bounded as

Reg(T ) = O
((√

d3
? ln d? + ln dmax

)
H2
√
d3
?T ln(dmaxT/δ)

)
with probability 1 −Mδ. Similar to the contextual bandit setting above, we can
achieve a tighter bound if all misspecified learners suffer linear regret Regi(t) ≥ ∆ni(t)
for some ∆ > 0. Then applying Theorem 5.4.6 yields

Reg(T ) = O

(
H2
√
d3
?T ln(dmax) ln(dmaxT/δ) +

H4d6
?

∆
ln(dmaxT/δ)

2

√
ln

lnT

δ

)

which, up to log factors and lower order terms, again coincides with the regret bound
of the best base learner in hindsight.

Linear Bandits and MDPs with Unknown Approximation
Error

[69] presents an algorithm for learning a good policy in episodic MDPs where the
value functions are all close to a linear feature space of dimension d. Their algorithm
admits a high-probability regret bound of order5 Õ(Hd

√
T +H

√
dεT ) for all T when

a bound ε on the inherent Bellman error is known a-priori. For details of the setting
and the exact definition of inherent Bellman error see [69]. Unfortunately, in most

5The Õ notation is similar to the O-notation but hides poly-logarithmic dependencies.
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practical applications, one does not know ε ahead of time and picking a conservative
value (large ε) makes the algorithm over-explore and suffer large regret.

We can address this limitation by applying Algorithm 12 with several instances
of their algorithm as base-learners, each associated with a certain value of the
inherent Bellman error εi = 21−i

√
d

and the putative regret bound Ri(n) = (CHd
√
n+

CH
√
dεin) ∧Hn for an appropriate value C that depends at most logarithmically

on d, T or H. It is sufficient to use M = d1 + 1
2

log2(T/d
2)e base learners since the

putative regret bound of learner 1 (with ε1 = 1/
√
d and R1(n) ≥ Hn) always holds,

while the putative regret bound of learner M is at most RM(T ) ≤ 2CHd
√
T , which

is a constant factor worse than the regret when ε = 0.
By Theorem 5.4.5, the total regret of Algorithm 12 with these base learners is

Reg(T ) = O

(
MCH(d

√
T +
√
dε?T )

√
ln
M lnT

δ
+BC2H2d2

)
= Õ

(
Hd
√
T +H

√
dε?T +H2d2

)
with probability 1−Mδ. Hence, up to at most logarithmic factors and a lower-order
additive term, our model-selection framework can recover the best regret bound
without requiring knowing the inherent Bellman error ahead of time. Notice also that
the special case H = 1 recovers the standard linear bandit setting and the algorithm
by [69] reduces to OFUL with a confidence ellipsoid that accounts for εi. In this
bandit case ε? is the absolute approximation error of expected rewards.

Recently, [26] have shown that an adaptation to unknown approximation errors
ε? is possible in contextual bandits, but their model-selection approach requires base
learners that work with importance weights, and whose importance-weighted regret
admits a favorable dependency on εi. Here we have shown that a similar result
(up to logarithmic factors) can be achieved with standard optimistic base learners
such as OFUL. Our result also matches the regret-guarantee by [54] but does not
require their smoothing procedure for base-learners. Importantly, our result proves
that an adaptation to unknown approximation errors ε? is also possible without any
modification to base learners in the MDP setting where base-learners that achieve
the importance-weighted regret guarantee required by [26] are (still) unavailable.
Note also that our framework is not specific to instances of the algorithm by [69] as
base learners. Our model selection algorithm can, for example, also be used with
approximate versions of LSVI-UCB by [38] and achieve similar regret guarantees in
their setting and for their notion of approximation error.
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Confidence parameter tuning in OFUL

A standard problem that arises in the practical deployment of contextual bandit
algorithms like OFUL is that they are extremely sensitive to the tuning of their
upper-confidence parameter ruling the actual trade-off between exploration and
exploitation. The choice of confidence parameter from Lemma 5.5.1 ensures high-
probability regret guarantee but is often too conservative. This can for example be
the case when the actual noise variance is smaller than the assumed σ2 variance.
While there are concentration results (empirical Bernstein bounds) that can adapt
to such fortunate low-variance noise for scalar parameters (e.g., in unstructured
multi-armed bandits), such adaptive bounds are still unavailable for least-squares
estimators. Empirically, choosing smaller values for β1, . . . , βT can often achieve
significantly better performance but comes at the cost of losing any theoretical
performance guarantee. Our model-selection framework can be used to tune the
confidence parameter online and simultaneously achieve a regret guarantee.

We will now look at ways to compete against the instance of the OFUL algorithm
which is equipped with the optimal scaling of its upper-confidence value, in the sense
of the following definition:

Definition 5.5.3. Denote by β̄t the confidence-parameter choice from Lemma 5.5.1
and let κ ∈ R+ be a scaling factor. Further, let θ̂S(κ) and ΣS(κ) be the iterates of
least squares estimator and covariance matrix obtained by running OFUL with scaled
confidence parameters (κβ̄t)t∈N on a subset of rounds S ⊆ [T ]. Then, for a given
range [κmin, 1], the optimal confidence parameter scaling for OFUL is defined as

κ? = min
κ∈[κmin,1]

max
S⊆[T ]

‖θ̂S(κ)− θ?‖ΣS(κ)−1

β̄|S|
.

In words, the optimal κ? is the smallest scaling factor of confidence parameters
that ensures that no matter to what subset of rounds we would apply OFUL to, the
optimal parameter θ? is always contained in the confidence ellipsoid. Observe that κ?
is a random quantity, i.e., κ? is the best scaling factor for the given realizations in
hindsight. Lemma 5.5.1 ensures that P(κ? ≤ 1) ≥ 1− δ and empirical observations
suggest that κ? is much smaller in many events and bandit instances.

Now, Lemma 5.9.1 in Section 5.9 ensures that OFUL with confidence parameters
κβ̄t admits a regret bound of the form6 Reg(n) . κd

√
n ln(n) ∧ n if κ ≥ κ?. Since

κ? is unknown, we run Algorithm 12 with M instances of OFUL as base learners,

6For simplicity of presentation, we set here λ = 1 and disregarded the dependence on other
parameters like L, S, and σ.
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each with a scaling factor κi = 21−i, i = 1, . . . ,M , and putative regret bound
Ri(n) ≈ κid ln(T )

√
n ∧ n. Note that it is sufficient to use M = 1 + log2

1
κmin

.
Then, by Theorem 5.4.4 (with β = 1/2 therein), the regret of Algorithm 12 is

bounded with probability at least 1− δ as

Reg(T ) .

(
M +

√
B

κi
κmin

)
R?(T )

= O

((
κ?
κmin

√
ln

κ?
κmin

+ ln
1

κmin

)
κ?d ln(T )

√
T

)
.

Note that this is a random and problem-dependent bound because so is κ?. In cases

where κ? .
√

κmin

ln(1/κmin)
, this bound strictly improves on the standard OFUL bound

relying on confidence scaling κ = 1, which is often way too conservative in practice.

5.6 Extension to Adversarial Contexts

In this section, we show that the regret balancing and elimination principle can also
be used for model selection when the contexts xt are generated in an adversarial
manner. This requires slightly stronger assumptions on the base learners, which
hold in many settings when we select between a hierarchy of optimistic learners
such as OFUL or LSVI-UCB. For the sake of concreteness, we present our extension
of the regret balancing and elimination algorithm to adversarial contexts for the
setting, but our technique for adversarial contexts can be easily adapted to all other
bandit applications discussed in Section 5.5 and likely to episodic MDP settings with
adversarial start states as well.

Let us briefly recall the setting of Linear Bandits with Nested Model Classes.
We consider the problem of linear bandits and are given M instances of OFUL as
base learners. Each instance i considers only on the first di = 2i dimensions of the
actions, with d1 < d2 < · · · < dM . Since the entries of the true parameter θ? are
0 for all dimensions above di? , where i? ∈ [M ] is an unknown index, all learners
i?, i? + 1, . . .M are well-specified with high probability. We focus our analysis on
the event E where this is the case. Unlike in the preceding discussion on Linear
Bandits with Nested Model Classes where contexts are assumed to be drawn i.i.d.,
we here consider the setting where contexts xt (corresponding to the action set At
at round t) are generated adversarially. Since each base learner operates only in a
lower-dimensional subspace, we allow the bounds on the action norm Li, the bound
on the parameter norm Si and the range of expected return Rmax

i to vary per base
learner i (potentially depend on the number of dimension di) but for the sake of
simplicity, we assume that all learners use regularization parameter λ = 1.
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Algorithm 14: EpochBalancing

1 Input: set of learners I
2 for round t = 1, 2, . . . do
3 Receive context xt
4 foreach learner i ∈ I do
5 Ask learner i for a lower bound Bt,i on the value of its proposed action

6 Sample it ∼ p ∝ 1
zi

for i ∈ I (see Equation (5.15))

7 Play learner it and receive reward rt
8 Update base learner it with rt
9 Test for misspecification by checking∑

i∈I

[Ui(t) +Ri(ni(t))] + c

√
t ln

ln(t)

δ
< max

i∈I

t∑
k=1

Bk,i

10 if above condition is triggered then
11 Return ; // At least one learner must be misspecified

Algorithm 12, which assumes stochastic contexts, compares upper- and lower
confidence bounds on the optimal return value µ? obtained from learners that were
executed on two disjoint subsets of rounds to determine misspecification. This strategy
does not work with adversarial contexts since the optimal policy that an algorithm
could have achieved depends on the contexts in the rounds that it was played.
One algorithm may only have seen ”bad” contexts with low µ?t , while another may
only encountered favorable contexts with high µ?t . A direct comparison is therefore
meaningless.

To be able to handle adversarial contexts and address this challenge, we modify
our regret balancing and elimination algorithm in two ways: (1) we randomize the
learner choice for regret balancing and (2) we change the misspecfication test to
compare upper and lower confidence bounds on the optimal policy value of all rounds
played to far. The resulting algorithm is presented in Algorithm 15 which operates in
epochs where the subroutine in Algorithm 14 is executed. We start by discussing the
regret balancing subroutine in the next section before presenting the main algorithm
and its regret guarantee afterwards.

The Epoch Balancing Subroutine

This subroutine in Algorithm 14 takes in input a set of active base learners I =
{s, s+ 1, . . . ,M} and ensures by randomized regret bound balancing that its total
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regret is controlled for all rounds until it terminates.
In addition to the putative bound Ri on its regret, Algorithm 14 requires that

each learner i can also provide a lower-confidence bound on E [rt|at,i, xt], the expected
reward of the action it would play in the current context xt. Since each base learner
i is an instance of OFUL, we can choose these bounds at round t as

Ri(ni(t)) = 2
∑
k∈Ti(t)

(
βk,i‖ak,i‖Σ−1

k,i
∧Rmax

i

)
and

Bt,i =
(
〈θ̂t,i, at,i〉 − βt,i‖at,i‖Σ−1

t,i

)
∨ −Rmax

i

where Rmax
i ∈ [1, LiSi] is the range of expected returns7 and Li ≥ maxt ‖at,i‖ and

Si ≥ ‖θ?‖ are the norm bounds used by the OFUL base learners. Further, θ̂t,i, Σt,i

and βt,i are the parameter estimate (Eq. 5.9), the covariance matrix (Eq. 5.9) and the
ellipsoid radius (Eq. 5.11) of base learner i at time t, respectively. In similar spirit,

at,i ∈ argmax
a∈At

〈θ̂t,i, a〉+ βt,i‖at,i‖Σ−1
t,i

denotes the action that base learner i would take at time t. Note that we mean here
the truncated actions and covariance matrix in Rdi and Rdi×di .

At each round t, Algorithm 14 first requests these bounds from each base learner
to be later used in the misspecification test. The algorithm then selects one of the base
learners in I by sampling an index it ∼ Categorical(p) from a categorical distribution
with probabilities

pi =
1/zi∑
j∈I 1/zj

, where zi = (d2
i + diS

2
i )
(
Rmax
i ∧ L2

i

)
for i ∈ I . (5.15)

Since the regret of OFUL scales roughly at a rate of
√
ziT , this learner selection

rule approximately equalizes the regret of all learners in expectation. The algorithm
proceeds by playing the action proposed by it, gathering the associated reward rt,
and updating it’s internal state.8 Finally, Algorithm 14 performs a misspecification
test and terminates if this test triggers. We refer to the execution of Algorithm 14 as
an epoch.

Unlike the misspecification test in Algorithm 12 which considers the hypothesis
that a specific learner i is well specified, the misspecification test in Algorithm 14

7We specifically assume that E [rt|at, xt] ∈ [−Rmax
? ,+Rmax

? ] where ? is the smallest base learner
whose model class contains the optimal parameter θ?.

8We may also pass on the observation all base learners when base learners can accept off-policy
samples (which do not necessarily come from the proposed action), as is the case for OFUL.



CHAPTER 5. REGRET BOUND BALANCING AND ELIMINATION 135

tests the hypothesis that all active learners are well-specified. If all OFUL learners
i ∈ I are well-specified, in the sense that their ellipsoid confidence sets contain θ? for
all rounds t so far, then each Bt,i is also a lower-bound on the optimal value in round
t, since

Bt,i ≤ E [rt|at,i, xt] ≤ max
a∈At

E [rt|a, xt] = µ?t .

Hence, the right-hand side of the misspecification test in Algorithm 14 is a lower-bound
on the optimal value of all rounds to far, that is, it satisfies maxj∈I

∑t
k=1 Bk,j ≤∑t

k=1 µ
?
t . Similarly, when all learners are well-specified and satisfy their putative

regret bounds, then the left-hand side of the misspecification test is an upper-bound
on
∑t

k=1 µ
?
k. We can see this as follows. First, by basic concentration arguments, the

realized rewards cannot be much smaller than their conditional expectations with

high probability, that is,
∑

i∈I Ui(t) ≥
∑t

k=1 E [rt|at, xt] − c
√
t ln ln(t)

δ
. This implies

that ∑
i∈I

[Ui(t) +Ri(ni(t))] + c

√
t ln

ln(t)

δ

≥
t∑

k=1

E [rt|at, xt] +
∑
i∈I

Ri(ni(t)) =
∑
i∈I

 ∑
k∈Ti(t)

E [rt|at, xt] +Ri(ni(t))


≥
∑
i∈I

 ∑
k∈Ti(t)

E [rt|at, xt] + Regi(t)

 =
∑
i∈I

∑
k∈Ti(t)

µ?k =
k∑
k=1

µ?k,

where the last inequality holds because Ri(ni(t)) ≥ Regi(t) when i is well-specified.
Thus, if all learners are well-specified, the misspecification test cannot trigger (with
high probability). The following theorem formalizes this argument:

Theorem 5.6.1. With probability at least 1− δ, Algorithm 14 does not terminate if
all base learners are well-specified and their elliptical confidence sets contain θ? at all
times.

Therefore, if the test does trigger, at least one learner in I has to be misspecified,
that is, either their putative regret bound Ri or a lower bound Bk,i does not hold.
However, until the test triggers, the condition in the test is sufficient to control the
regret as the following theorem formalizes.

In this result, we assume that the base learner regret bounds zi (see Eq. (5.15)) are
sufficiently apart, i.e., 2zi ≤ zi+1 holds for all i ∈ I \ {M}. Note that this assumption
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can always be ensured by first filtering the base learners. This filtering can increase
the regret by at most a factor of 2.

Theorem 5.6.2. Assume that Algorithm 14 is run with instances of OFUL as base
learners that use different dimensions di and norm bounds Li, Si with 2zi ≤ zi+1 (see
Eq. (5.15)). All base learners use expected reward range Rmax

i = 1 and λ = 1. Denote
by ? the smallest index of the base learner so that all base learners j ∈ I with dj ≥ d?
are well-specified and their elliptical confidence sets always contain the true parameter.
Then, with probability at least 1 − 2δ, the regret is bounded for all rounds t until
termination as

Reg(t) ≤ Õ
((
d? +

√
d?S? + |I|

)
(d? +

√
d?S?)

√
t
)

Here, we highlighted the regret bound of the single best well-specified learner ?
in green. We here assumed that the range of expected rewards is known and 1. If
this is not the case and we have to rely on the expected reward range induced by the
vector norms Li and Si, then we have an additional lower-order term:

Theorem 5.6.3. Assume that Algorithm 14 is run with instances of OFUL as base
learners that use different dimensions di and norm bounds Li, Si and Rmax

i = LiSi
with 2zi ≤ zi+1 (see Eq. (5.15)). Denote by ? the smallest index of the base learner
so that all base learners j ∈ I with dj ≥ d? are well-specified and their elliptical
confidence sets always contain the true parameter. Then, with probability at least
1− 2δ, the regret is bounded for all rounds t until termination as

Reg(t) ≤ Õ

((
d?L? +

√
d?S?L? + |I|

)
(d? +

√
d?S?)L?

√
t+
∑
i∈I

LiSi

)
.

The proofs of Theorem 5.6.3 and Theorem 5.6.2 are similar to the proof of
Theorem 5.4.1 but requires a randomized version of the standard elliptical potential
lemma that we prove in Lemma 5.9.4.

Main Algorithm

We now show how to obtain a robust model selection algorithm for adversarial
contexts with the help of the Epoch Balancing subroutine from the previous section.
Since Theorem 5.6.2 guarantees that the regret of Epoch Balancing is controlled in
each epoch, all that is left it to ensure that the number of epochs is small. When
Algorithm 14 terminates, we know that one of the base learners must have been
misspecified but we do not know which one. We here use the hierarchy of base
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Algorithm 15: Regret Bound Balancing and Elimination with Adversarial
Contexts
1 for s = 1, . . . ,M do
2 EpochBalancing ({s, s+ 1. . . . ,M}) in Algorithm 14

learners: It is safe to remove the learner imin = mini∈I di with the smallest dimension
as its model class is a subset of the model classes of other base learners. Thus, if there
is a model class that fails to contain θ?, this must also be the case for imin. Therefore,
our main algorithm shown in Algorithm 15 calls Epoch Balancing (Algorithm 14)
repeatedly and removes the smallest index from the active learner set each time.

Note that once di ≥ d? for all i ∈ I = {s, s + 1, . . . ,M}, Epoch balancing will
not terminate with high probability because all remaining learners are well-specified
and their bounds hold (see Theorem 5.6.1). Therefore, there can only be i? ≤ M
epochs where di? = d? and the total regret Reg(T ) of Algorithm 15 is just the sum
of the regret in each epoch up to the total number of T rounds. We denote by
t(s)(T ) the total number of rounds in the first s epochs after a total of T rounds.
Note that t(s)(T ) are stopping times. The regret in the s-th epoch is referred to as
Reg(s)(t(s)(T )− t(s−1)(T )) where t(s)(T )− t(s−1)(T ) is the number of rounds in episode
s. Therefore, we can write the total regret as

Reg(T ) =
M∑
s=1

Reg(s)(t(s)(T )− t(s−1)(T )) . (5.16)

The regret incurred within each epoch can be bound using Theorem 5.6.2, which
yields the main result of this section:

Theorem 5.6.4 (Model Selection for Adversarial Contexts in Stochastic Linear Ban-
dits). Assume that Algorithm 15 is run with instances of OFUL as base learners that
use different dimensions di and norm bounds Li, Si with 2zi ≤ zi+1 (see Eq. (5.15)).
All base learners use regularizer λ = 1. With probability at least 1− 3(M + 1)δ the
total regret of Algorithm 15 is bounded for all rounds T ∈ N as

Reg(T ) = Õ
((√

Bd? +
√
Bd?S? +

√
BM

)
(d? +

√
d?S?)

√
T
)
,

if base learners use a common expected reward range Rmax
i = 1. Here, B are the

number of base learners that use a misspecified model that cannot represent θ?, If base
learners use instead Rmax

i = LiSi, then the regret bound is

Reg(T ) = Õ

((√
Bd?L? +

√
Bd?S?L? +

√
BM

)
(d? +

√
d?S?)L?

√
T +B

∑
i∈I

LiSi

)
.
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Proof. First, we consider the event where all learners with di ≥ d? are well-specified
in the sense that their elliptical confidence intervals contain θ? at all times. This
happens with probability at least 1−Mδ by Lemma 5.5.1. Further, only consider
outcomes where Theorem 5.6.2 and Theorem 5.6.1 hold in all epochs.9 By a union
bound, all these assumptions hold with probability at least 1− 4M . We now consider
the decomposition in Eq. (5.16) and bound

Reg(T ) =
M∑
s=1

Reg(s)(t(s)(T )− t(s−1)(T ))
(i)
=

i?∑
s=1

Reg(s)(t(s)(T )− t(s−1)(T ))

(ii)

≤
i?∑
s=1

C(s)
√
t(s)(T )− t(s−1)(T ) + 8.12

∑
i∈I(s)

Rmax
i ln

5.2M ln(2T )

δ


≤ max

s∈[i?]
C(s)

√√√√i?

i?∑
s=1

(t(s)(T )− t(s−1)(T )) + 8.12i?
∑
i∈I(s)

Rmax
i ln

5.2M ln(2T )

δ

= max
s∈[i?]

C(s)
√
i?T + 8.12i?

∑
i∈I(s)

Rmax
i ln

5.2M ln(2T )

δ

where (i) follows from Theorem 5.6.1 and (ii) from Theorem 5.6.2 with epoch-

dependent factor C(s) ≤ Õ
((
d? +

√
d?S? +M

)
(d? +

√
d?S?)

)
or Theorem 5.6.3 with

epoch-dependent factor C(s) ≤ Õ
((
d?L? +

√
d?S?L? +M

)
(d? +

√
d?S?)

)
L?

5.7 Omitted Proofs of Section 5.4

Lemma 5.7.1. There is an absolute constant c such that the event

G =

{
∀i ∈ [M ], ∀t ∈ N : |ni(t)µ? − Ui(t)− Regi(t)| ≤ c

√
ln
M lnni(t)

δ
ni(t)

}
(5.17)

has probability at least 1− δ
9We note that both theorems hold for arbitrary sequences of contexts and therefore also when

the s-th instance of Epoch Balancing is started after a random number of rounds t(s−1)(T ).
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Proof. Consider a fixed i ∈ [M ] and write the LHS in the event definition as

ni(t)µ
? − Ui(t)− Regi(t) (5.18)

=
∑
k∈Ti(t)

(
µ? − rk −max

π′∈Π
E [rk|π′, xk] + E [rk|πk, xk]

)

=
∑
k∈Ti(t)

(
µ? −max

π′∈Π
E [rk|π′, xk]

)
+
∑
k∈Ti(t)

(E [rk|πk, xk]− rk) . (5.19)

Consider the first sum and let Ft be the sigma-field induced by all variables up
to round t, i.e., (Ik, xk, ik, ak, rk)k≤t. Note that it+1, the learner chosen at t + 1 is
Ft-measurable. Hence, Xk = 1{ik = i}(µ? − maxπ′∈Π E [rk|π′, xk]) ∈ [−1,+1] is a
martingale-difference sequence w.r.t. Fk. We will now apply a Hoeffding-style uniform
concentration bound from [33]. Using the terminology and definition in this article,
by case Hoeffding I in Table 4, the process Sk =

∑k
j=1Xk is sub-ψN with variance

process Vk =
∑k

j=1 1{ij = i}/4. Thus by using the boundary choice in Equation (11)
of [33], we get

Sk ≤ 1.7
√
Vk (ln ln(2Vk) + 0.72 ln(5.2/δ))

= 0.85
√
ni(k) (ln ln(ni(k)/2) + 0.72 ln(5.2/δ))

for all k where Vk ≥ 1 with probability at least 1− δ. Applying the same argument
to −Sk gives that∣∣∣∣∣∣
∑
k∈Ti(t)

(
µ? −max

π′∈Π
E [rk|π′, xk]

)∣∣∣∣∣∣ ≤ 3 ∨ 0.85
√
ni(k) (ln ln(ni(k)/2) + 0.72 ln(10.4/δ))

holds with probability at least 1− δ for all t.
Consider now the second term in (5.19) and let Ft now be the sigma-field generated

by σ((Ik, xk, ik, ak, rk)k≤t, It+1, xt+1, it+1, at+1), i.e. all variables up to the reward at
round t + 1. Then Xk = 1{ik = i}(E [rk|πk, xk] − rk) ∈ [−1,+1] is a martingale-
difference sequence w.r.t. Fk and we can apply the same concentration argument as
for the first term to get with probability at least 1− δ for all t∣∣∣∣∣∣

∑
k∈Ti(t)

(E [rk|πk, xk]− rk)

∣∣∣∣∣∣ ≤ 3 ∨ 0.85
√
ni(k) (ln ln(ni(k)/2) + 0.72 ln(10.4/δ)) .

We now take a union bound over both concentration results and i ∈ [M ] and rebind
δ → δ/M . Then picking the absolute constant c sufficiently large gives the desired
statement.
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Lemma 5.7.2 (Sufficient Condition for Elimination). If the psuedo-regret of learner
i exceeds for any ? ∈ W the following bound in round t,

Regi(t) > Ri(ni(t)) +
ni(t)

n?(t)
R?(n?(t)) + 2c

(
1 +

√
ni(t)

n?(t)

)√
ni(t) ln

M ln t

δ
(5.20)

then learner i fails the misspecification test of Algorithm 12 in event G and is elimi-
nated.

Proof. After dividing Equation 5.20 by ni(t), this condition implies in event G?

Regi(t)

ni(t)
>
Ri(ni(t))

ni(t)
+

Reg?(t)

n?(t)
+ 2c

√
ln(M ln t/δ)

ni(t)
+ 2c

√
ln(M ln t/δ)

n?(t)

and by G, this implies

µ? −
Ui(t)

ni(t)
>

Ri(ni(t))

ni(t)
+ µ? −

U?(t)

n?(t)
+ c

√
ln(M ln t/δ)

ni(t)
+ c

√
ln(M ln t/δ)

n?(t)
.

Rearranging terms yields

Ui(t)

ni(t)
+
Ri(ni(t))

ni(t)
+ c

√
ln(M ln t/δ)

ni(t)
<
U?(t)

n?(t)
− c

√
ln(M ln t/δ)

n?(t)
.

Hence, since t > ni(t) and t > n?(t), the misspecification test in Algorithm 12
fails.

Special Case with T β Candidate Regret Bounds

We here provide the proof of our gap-independent result which we restate here for
convenience:

Theorem 5.4.4. If Algorithm 12 is used with candidate regret bounds in Equa-
tion (5.7), then its total regret is bounded with probability at least 1 − δ for all T
as

Reg(T ) ≤
(
M + 2B1−βd

1
β
−1

?

)
d?CT

β + 5d
1

2β
? c

√
BT ln

M lnT

δ
+ 2M,

where ? ∈ W is any well-specified learner and B = |B| is the number of misspecified
learners.
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Proof. We start with the general regret bound from Theorem 5.4.1 given by

M∑
i=1

R?(n?(ti)) +
∑
i∈B

ni(ti)

n?(ti)
R?(n?(ti)) + 2M + 2c

∑
i∈B

(
1 +

√
ni(ti)

n?(ti)

)√
ni(ti) ln

M lnT

δ
,

(5.21)

and bound the terms individually. We begin with

M∑
i=1

R?(n?(ti)) + 2M ≤MR?(T ) + 2M ≤Md?CT
β + 2M,

where we only used the monotonicity of regret bounds and the definition of R?. We
continue with the first part of the last term which we control as follows

2c
∑
i∈B

√
ni(ti) ln

M lnT

δ
≤ 2c

√
B ln

M lnT

δ

∑
i∈B

ni(ti) ≤ 2c

√
BT ln

M lnT

δ

where we first applied Cauchy-Schwarz inequality and then used the fact that the
total number of rounds played by all base learners is at most T . Similarly, we can
bound the other part of the final term in (5.21) as

2c
∑
i∈B

√
ni(ti)

n?(ti)

√
ni(ti) ln

M lnT

δ
≤ 2c

√∑
i∈B

ni(ti)

n?(ti)

√
T ln

M lnT

δ

≤ 2
√

2cd
1

2β
?

√
BT ln

M lnT

δ
,

where the final step follows from Lemma 5.7.3 with∑
i∈B

ni(ti)

n?(ti)
≤ 2

∑
i∈B

(
1 ∨ d

1/β
?

d
1/β
i

)
≤ 2Bd1/β

? . (5.22)

It only remains to bound the second term (5.21). Here again we make use of the
pull-ratio bound from (5.22) to bound∑

i∈B

ni(ti)

n?(ti)
R?(n?(ti)) = Cd?

∑
i∈B

(
ni(ti)

n?(ti)

)1−β

ni(ti)
β

≤ Cd?

(∑
i∈B

ni(ti)

n?(ti)

)1−β (∑
i∈B

ni(ti)

)β

≤ Cd?
(
2Bd1/β

?

)1−β
T β ≤ 2CB1−βd1/β

? T β,
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where the first inequality follows from Hölder’s inequality. Combining all bounds for
the individual terms yields the desired statement.

Below, we prove technical results for the slightly more general candidate regret
bounds that can have different exponents β. Specifically, we consider candidate regret
bounds of the form

Ri(n) = n ∧ Cdinβi , (5.23)

where βi ∈ (0, 1], di ≥ 1 and C is a term that does not depend on i or n.

Lemma 5.7.3 (Play ratio bound). If Algorithm 12 is used with candidate regret
bounds of the form in Equation (5.23), then

ni(t)

nj(t)
≤


(

2
dj
di

) 1
βi nj(t)

βj
βi
−1

if ni(t) ≥ (diC)
1

1−β

2 if ni(t) ≤ (diC)
1

1−β

holds for all t and active learners i, j ∈ It that have been played at least once.

Proof. By Lemma 5.4.2, the regret bound of i and j are balanced at t, which means
that

Ri(ni(t)) ≤ Rj(nj(t)) + 1 ≤ 2Rj(nj(t)) .

When ni(t) ≤ (diC)
1

1−β the regret bound Ri is still in the linear regime. The balancing

condition gives in this case ni(t) ≤ 2Rj(nj(t)) ≤ 2nj(t) and hence ni(t)
nj(t)
≤ 2. Consider

now the case where Ri is in the ni(t)
βi regime. Then the balancing condition implies

diCni(t)
βi ≤ 2djCnj(t)

βj .

Reordering terms yields (
ni(t)

nj(t)

)βi
≤ 2

dj
di
nj(t)

βj−βi .
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Gap-dependent guarantee: We now provide the full proof for our main gap-
dependent guarantee which we restate her for convenience:

Theorem 5.4.6. Assume Algorithm 12 is used with candidate regret bounds in
Equation (5.7) and that the pseudo-regret of all misspcified learners j ∈ B is bounded
for all t from below as Regj(t) ≥ ∆jnj(t)

α, for some constants ∆j > 0 and α > 1
2
∨ β.

If 0 < β < 1
2

then total regret is bounded with probability at least 1− δ for all T as

Reg(T ) = O

(
Md?CT

β +
∑
i∈B

C

(
(2d?)

1
β

+ 1
β(2α−1) + d?d

1
2α−1

i

)[
20C

∆i

ln
M lnT

δ

] 1
2α−1

)
,

where ? ∈ W is any well-specified learner. If instead β ≥ 1
2
, then the total regret is

bounded with probability at least 1− δ for all T as

Reg(T ) = O

(
Md?CT

β +
∑
i∈B

C

√
ln
M lnT

δ

(
d

1
β

+ 1
α−β

? + d?d
β

α−β
i

)[
20C

∆i

] β
α−β
)
.

Proof. Just as for the gap-independent guarantee in Theorem 5.4.4, we start with
the general regret bound from Theorem 5.4.1 given by

M∑
i=1

R?(n?(ti)) +
∑
i∈B

ni(ti)

n?(ti)
R?(n?(ti)) + 2M + 2c

∑
i∈B

(
1 +

√
ni(ti)

n?(ti)

)√
ni(ti) ln

M lnT

δ
,

(5.24)

and bound the terms individually. We begin with

M∑
i=1

R?(n?(ti)) + 2M ≤MR?(T ) + 2M ≤Md?CT
β + 2M,

where we only used the monotonicity of regret bounds and the definition of R?. All
remaining terms only consider misspcified learners i ∈ B. In the following, we bound
the contribution from each such learner individually. We have

ni(ti)

n?(ti)
R?(n?(ti)) +

(
1 +

√
ni(ti)

n?(ti)

)√
ni(ti) ln

M lnT

δ

≤ Cd?

(
ni(ti)

n?(ti)

)1−β

ni(ti)
β +

(
1 +

√
ni(ti)

n?(ti)

)√
ni(ti) ln

M lnT

δ

≤ Cd?Z
1−βni(ti)

β +
(

1 +
√
Z
)√

ni(ti) ln
M lnT

δ

≤ Cd?Z
1−βni(ti)

β + 2

√
Zni(ti) ln

M lnT

δ
, (5.25)



CHAPTER 5. REGRET BOUND BALANCING AND ELIMINATION 144

where Z = 2 ∨
(

2d?
di

) 1
β
. Further, using the gap-assumption, Lemma 5.7.4, which

is proved below, yields an upper-bound on the number of times the learner can be
played

ni(T ) ≤
[

2Cdi
∆i

(1 + 2Z)

] 1
α−β

∨

[
4c

∆i

(
1 +
√
Z
)√

ln
M lnT

δ

] 1
α−1/2

≤
[

5Cdi
∆i

Z

] 1
α−β

∨

[
8c

∆i

√
Z

√
ln
M lnT

δ

] 1
α−1/2

.

We consider now two cases.

Case I: β ≥ 1/2. Then ni(T ) ≤
[

5Cdi
∆i

Z
] 1
α−β

and (5.25) can be bounded as

Cd?Z
1−βni(ti)

β + 2

√
Zni(ti) ln

M lnT

δ
≤ 3C

√
ln
M lnT

δ
d?Z

1−βni(ti)
β

≤ 3C

√
ln
M lnT

δ
d?Z

1−β
[

5Cdi
∆i

Z

] β
α−β

.

When Z = 2, this expression is bounded from above as 6C
√

ln M lnT
δ

d?

[
10Cdi

∆i

] β
α−β

.

When Z > 2, then we bound this quantity instead as

3C

√
ln
M lnT

δ
d?(2d?)

1−β
β

[
5Cdi
∆i

(
2d?
di

)1/β
] β
α−β

≤ 6C

√
ln
M lnT

δ
d

1
β

+ 1
α−β

?

[
20C

∆i

] β
α−β

.

Hence, the total regret is bounded is case as

Reg(T ) = O

(
Md?CT

β +
∑
i∈B

C

√
ln
M lnT

δ

(
d

1
β

+ 1
α−β

? + d?d
β

α−β
i

)[
20C

∆i

] β
α−β
)
.

Case II: β < 1/2. To simplify the final bound, we here use the somewhat crude
bound on ni(T ):

ni(T ) ≤

[
5Cdi
∆i

Z

√
ln
M lnT

δ

] 1
α−1/2
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This allows us to upper-bound (5.25) by

3Cd?Z
1−β

√
ni(ti) ln

M lnT

δ
≤ 3Cd?Z

1−β

√
ln
M lnT

δ

[
5Cdi
∆i

Z

√
ln
M lnT

δ

] 1/2
α−1/2

.

When Z = 2, this expression is bounded from above by 6Cd?

[
10Cdi

∆i
ln M lnT

δ

] 1/2
α−1/2

.

When Z > 2, then we bound this quantity instead as

3Cd?(2d?)
1−β
β

√
ln
M lnT

δ

[
5Cdi
∆i

(
2d?
di

)1/β
√

ln
M lnT

δ

] 1/2
α−1/2

≤ 2C(2d?)
1
β

[
5C

∆i

(2d?)
1/β ln

M lnT

δ

] 1/2
α−1/2

Hence, the total regret is bounded is case as

Reg(T ) = O

(
Md?CT

β +
∑
i∈B

C

(
(2d?)

1
β

+ 1
β(2α−1) + d?d

1
2α−1

i

)[
20C

∆i

ln
M lnT

δ

] 1
2α−1

)
.

Lemma 5.7.4 (Gap-dependent elimination bound). Assume Algorithm 12 is used
with candidate regret bound of the form in Equation (5.23). If the pseudo-regret of
base-learner i satisfies Regi(t) ≥ ∆ini(t)

αi for all t for a fixed ∆i > 0 and αi >
1
2
∨ βi,

then, in event G, learner i is played at most

ni(T ) ≤
[

2Cdi
∆i

(1 + 2Z)

] 1
αi−βi

∨

[
4c

∆i

(
1 +
√
Z
)√

ln
M lnT

δ

] 1
αi−1/2

,

times where Z = 2 ∨
(

2d?
di

) 1
βi n?(ti)

β?
βi
−1

and ? ∈ W is any well-specified learner.

Proof. Lemma 5.7.2 yields the following sufficient condition that learner i is eliminated
at round t:

Regi(t) > Ri(ni(t)) +
ni(t)

n?(t)
R?(n?(t)) + 2c

(
1 +

√
ni(t)

n?(t)

)√
ni(t) ln

M ln t

δ
. (5.26)
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We now upper-bound the RHS of this sufficient condition using Lemma 5.7.3 as

Ri(ni(t)) +
ni(t)

n?(t)
R?(n?(t)) + 2c

(
1 +

√
ni(t)

n?(t)

)√
ni(t) ln

M ln t

δ

≤Ri(ni(t)) + 2
ni(t)

n?(t)
Ri(ni(t)) + 2c

(
1 +

√
ni(t)

n?(t)

)√
ni(t) ln

M ln t

δ

≤ (1 + 2Z)Ri(ni(t)) + 2c
(

1 +
√
Z
)√

ni(t) ln
M ln t

δ

≤ (1 + 2Z)Cdini(t)
βi + 2c

(
1 +
√
Z
)√

ni(t) ln
M ln t

δ
.

Using this upper-bound on the RHS of (5.26) and ∆ini(t)
αi as a lower-bound on the

LHS of (5.26), we can conclude that learner i gets eliminated if the following two
conditions are met:

∆i

2
ni(t)

αi > 2c
(

1 +
√
Z
)√

ni(t) ln
M ln t

δ
∆i

2
ni(t)

αi > (1 + 2Z)Cdini(t)
βi

Rearranging each condition yields

ni(t) >

[
4c

∆i

(
1 +
√
Z
)√

ln
M ln t

δ

] 1
αi−1/2

and ni(t) >

[
2Cdi
∆i

(1 + 2Z)

] 1
αi−βi

.

Special Case with
√
T lnT Candidate Regret Bounds

Consider the regret bound for all M base learners to be of the form

Ri(n) = diC
√
n ln+(n/δ)) ∧ n (5.27)

where ln+(x) = ln(x ∨ e) and di ≥ 1 is some parameter (not necessarily an integer
dimension) and C ≥ 1 is some term that does not depend on n or i. To prepare for
proving the main regret guarantee, we first show a bound on the play ratio between
two active learners:
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Lemma 5.7.5. For the choice of candidate regret bounds in Equation (5.27), the
following bound

ni(t)

nj(t)
≤ 7

(
1 ∨

d2
j

d2
i

)
ln+

(
4e ln

t

δ

)
holds for all t and active learners i, j ∈ It+1 that have been played at least once.

Proof. By Lemma 5.4.2, the regret bound of i and j are balanced at t, which means
that

Ri(ni(t)) ≤ Rj(nj(t)) + 1 ≤ 2Rj(nj(t)) .

When Ri is still in the linear regime, this implies that ni(t) ≤ Rj(nj(t))+1 ≤ nj(ti)+1

and hence ni(t)
nj(t)
≤ 2. Consider now the case where Ri is in the

√
· -regime. Then the

balancing condition implies

diC

√
ni(t) ln+

ni(t)

δ
) ≤ 2djC

√
nj(t) ln+

nj(t)

δ

and thus √
ni(t) ln+(ni(t)/δ)

nj(t) ln+(nj(t)/δ)
≤ 2

dj
di
.

Reordering this inequality gives:

ni(t)

nj(t)
≤ 4

d2
j

d2
i

ln+(nj(t)/δ)

ln+(ni(t)/δ)
≤ 4

d2
j

d2
i

ln+(nj(t)/δ) ≤ 4
d2
j

d2
i

ln(t/δ) . (5.28)

We now refine this crude bound by considering two cases:

Case I: If
√
nj(t) ≤ Cdj

√
ln+(nj(t)/δ), then Rj(nj(t)=nj(t) and the balancing

condition gives nj(t) ≤ 2ni(t) Plugging this in (5.28) yields

ni(t)

nj(t)
≤ 4

d2
j

d2
i

ln+(2ni(t)/δ)

ln+(ni(t)/δ)
≤ 4

d2
j

d2
i

ln(2e) ≤ 7
d2
j

d2
i

.
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Case II: In this case, Rj(nj(t)) = Cdj
√
nj(t) and we use (5.28) with reversed roles

of i, j to get nj(t) ≤ 4
d2
i

d2
j

ln(t/δ)ni(t). Plugging this back into the middle term of

(5.28) yields

ni(t)

nj(t)
≤ 4

d2
j

d2
i

ln+(e4d2
i /d

2
j ln(t/δ)).

When d2
j/d

2
i ≥ 1, then ni(t)

nj(t)
≤ 4

d2
j

d2
i

ln+(e4 ln(t/δ)) follows immediately. Otherwise,

ni(t)

nj(t)
≤ 4

d2
j

d2
i

ln+(e4d2
i /d

2
j ln(t/δ)) ≤ 4

d2
j

d2
i

ln(d2
i /d

2
j) + 4

d2
j

d2
i

ln(e4 ln(t/δ))

≤ 4

e
+ 4 ln(e4 ln(t/δ)) ≤ 4 ln(4 ln(t/δ))

Theorem 5.7.6. If Algorithm 12 is used with candidate regret bounds in Equa-
tion (5.27), then its total regret is bounded with probability at least 1 − δ for all T
as

Reg(T ) ≤

(
M + d?

√
B ln+

(
11 ln

T

δ

))
d?C

√
T ln+(T/δ) + 2M

+ 8cd? ln

(
11M lnT

δ

)√
BT

where ? ∈ W is any well-specified learner and B = |B| is the number of misspecified
learners.

Proof. We start with the general regret bound from Theorem 5.4.1 given by

M∑
i=1

R?(n?(ti)) +
∑
i∈B

ni(ti)

n?(ti)
R?(n?(ti)) + 2M + 2c

∑
i∈B

(
1 +

√
ni(ti)

n?(ti)

)√
ni(ti) ln

M lnT

δ
,

(5.29)

and bound the terms individually. We begin with

M∑
i=1

R?(n?(ti)) + 2M ≤MR?(T ) + 2M ≤Md?C
√
T ln+(T/δ) + 2M,
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where we only used the monotonicity of regret bounds and the definition of R?. We
continue with the first part of the last term which we control as follows

2c
∑
i∈B

√
ni(ti) ln

M lnT

δ
≤ 2c

√
B ln

M lnT

δ

∑
i∈B

ni(ti) ≤ 2c

√
BT ln

M lnT

δ

where we first applied Cauchy-Schwarz inequality and then used the fact that the
total number of rounds played by all base learners is at most T . Similarly, we can
bound the other part of the final term in (5.29) as

2c
∑
i∈B

√
ni(ti)

n?(ti)

√
ni(ti) ln

M lnT

δ
≤ 2c

√∑
i∈B

ni(ti)

n?(ti)

√
T ln

M lnT

δ

≤ 6c

√
B ln+

(
4e ln

T

δ

)
d?

√
T ln

M lnT

δ
,

where the final step follows from Lemma 5.7.5 with∑
i∈B

ni(ti)

n?(ti)
≤ 7

∑
i∈B

(
1 ∨ d

2
?

d2
i

)
ln+

(
4e ln

ti
δ

)
≤ 7d2

?B ln+

(
4e ln

T

δ

)
(5.30)

It only remains to bound the second term (5.29). Here again we make use of the
pull-ratio bound from (5.30) to bound

∑
i∈B

ni(ti)

n?(ti)
R?(n?(ti)) = Cd?

∑
i∈B

(
ni(ti)

n?(ti)

)1/2

ni(ti)
1/2
√

ln+(n?(ti)/δ)

≤ Cd?
√

ln+(T/δ)

√∑
i∈B

ni(ti)

n?(ti)

√∑
i∈B

ni(ti) ≤ 3Cd2
?

√
BT ln+(T/δ) ln+

(
4e ln

T

δ

)
,

where the first inequality follows from the Cauchy-Schwarz inequality. Combining all
bounds for the individual terms yields the desired statement.

Gap-dependent Regret Guarantee: We now prove a gap-dependent regret
bound for Algorithm 12 when used with candidate regret bounds in Equation (5.27).

Lemma 5.7.7 (Gap-dependent elimination bound). Assume Algorithm 12 is used
with candidate regret bound of the form in Equation (5.27). If the pseudo-regret of
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base-learner i satisfies Regi(t) ≥ ∆ini(t)
αi for all t for a fixed ∆i > 0 and αi >

1
2
,

then, in event G, learner i is played at most

ni(T ) ≤
[

2Cdi
∆i

(1 + 2Z)
√

ln+(MT/δ)

] 1
αi−1/2

,

times where Z = 7
(

1 ∨ d2
j

d2
i

)
ln+

(
4e ln t

δ

)
and ? ∈ W is any well-specified learner.

Proof. This statement can be proved in full analogy to Lemma 5.7.4.

Theorem 5.7.8. Assume Algorithm 12 is used with candidate regret bounds in
Equation (5.27) and that the pseudo-regret of all misspcified learners j ∈ B is bounded
for all t from below as Regj(t) ≥ ∆jnj(t)

α for some α > 1
2
∨ β and ∆j > 0. Then

total regret is bounded with probability at least 1− δ for all T as

Reg(T ) ≤Md?C
√
T ln+(T/δ) + 2M (5.31)

+ 9Cd?
∑
i∈B

ln+

(
4e ln

T

δ

)ρ(
ln+

MT

δ

)ρ [
42diC

∆i

] 1
2α−1

(
1 ∨ d?

di

)2ρ

.

for ? ∈ W is any well-specified learner and ρ = 1
2

+ 1
2α−1

.

Proof. Just as for the gap-independent guarantee in Theorem 5.7.6, we start with
the general regret bound from Theorem 5.4.1 given by

M∑
i=1

R?(n?(ti)) +
∑
i∈B

ni(ti)

n?(ti)
R?(n?(ti)) + 2M + 2c

∑
i∈B

(
1 +

√
ni(ti)

n?(ti)

)√
ni(ti) ln

M lnT

δ
,

and bound the terms individually. We begin with

M∑
i=1

R?(n?(ti)) + 2M ≤MR?(T ) + 2M ≤Md?C
√
T ln+(T/δ) + 2M,

where we only used the monotonicity of regret bounds and the definition of R?. All
remaining terms only consider misspcified learners i ∈ B. In the following, we bound
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the contribution from each such learner individually. We have

ni(ti)

n?(ti)
R?(n?(ti)) +

(
1 +

√
ni(ti)

n?(ti)

)√
ni(ti) ln

M lnT

δ

≤ Cd?

√
ni(ti)

n?(ti)

√
ni(ti) ln+(n?(ti)/δ) +

(
1 +

√
ni(ti)

n?(ti)

)√
ni(ti) ln

M lnT

δ

≤ Cd?
√
Zni(ti) ln+(T/δ) +

(
1 +
√
Z
)√

ni(ti) ln
M lnT

δ

≤ Cd?

√
Zni(ti) ln+

T

δ
+ 2
√
Z

√
ni(ti) ln

M lnT

δ

≤ 3Cd?

√
Zni(ti) ln+

MT

δ

where Z = 7
(

1 ∨ d2
?

d2
i

)
ln+

(
4e ln T

δ

)
. Further, using the gap-assumption, Lemma 5.7.7

yields an upper-bound on the number of times the learner can be played

ni(T ) ≤
[

2Cdi
∆i

(1 + 2Z)
√

ln+(MT/δ)

] 1
α−1/2

≤
[

6ZCdi
∆i

√
ln+(MT/δ)

] 1
α−1/2

≤
[

42C

∆i

(
di ∨

d2
?

di

)
ln+

(
4e ln

T

δ

)√
ln+(MT/δ)

] 1
α−1/2

We use this upper-bound to control the term

3Cd?

√
Zni(ti) ln+

MT

δ

≤ 9Cd?

(
1 ∨ d?

di

)
ln+

(
4e ln

T

δ

) 1
2

+ 1
2α−1

(
ln+

MT

δ

) 1
2

+
1/2

2α−1
[

42C

∆i

(
di ∨

d2
?

di

)] 1
2α−1

.

Combining all bounds of individual terms yields the desired bound

Reg(T ) ≤Md?C
√
T ln+(T/δ) + 2M+

9Cd?
∑
i∈B

ln+

(
4e ln

T

δ

) 1
2

+ 1
2α−1

(
ln+

MT

δ

) 1
2

+
1/2

2α−1
[

42diC

∆i

] 1
2α−1

(
1 ∨ d?

di

)1+ 2
2α−1
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Special Case with εiC2T + C1

√
T Candidate Regret Bounds

Lemma 5.7.9. Assume all base algorithms use regret bounds of the form (5.8) in
Theorem 5.4.5. Let i ∈ It+1 be an active learner and ∗ ∈ W be a well-specified learner
with ε∗ ≥ εi. Then in event G

Regi(t) ≤ 1 + 10R∗(n∗(t)) + 2ε∗C2

(
1 +

c

C1

√
ln
M ln t

δ

)
ni(t)

+ 8c

√
ni(t) ln

M ln t

δ
+ 8C2

1 + 2C1

√
ni(t) + 8cC1

√
ln
M ln t

δ
.

Proof. First, we can assume without loss of generality that C2ε∗ ≤ 1 because the
regret bound is vacuous otherwise. Since i is in the active set and ∗ is well-specified,
we can apply Lemma 5.4.3 which gives

Regi(t) ≤ 1 +R∗(n∗(t)) + 2c

√
ni(t) ln

M ln t

δ
+
ni(t)

n∗(t)
R∗(n∗(t)) + 2c

√
ni(t)2

n∗(t)
ln
M ln t

δ
.

(5.32)

We now simplify the expression on the right hand side using the specific form of the
regret bounds Rj. This form can be split into three phases:

Rj(n) = n for
√
n ≤ C1

1− C2εj
Phase I

Rj(n) ∈ [C1

√
n, 2C1

√
n] for

C1

1− C2εj
<
√
n ≤ C1

C2εj
Phase II

Rj(n) ∈ [C2εjn, 2C2εjn] for
C1

C2εj
<
√
n Phase III

We now give a regret bound for learner i based on which phase its regret bound is in.

Regret bound of i in Phase I: We first consider the case where ∗ is in Phase I.
Then the balancing condition from Lemma 5.4.2 Ri(ni(t)) ≤ 2R∗(n∗(t)) implies that
ni(t)/n∗(t) ≤ 2 and thus

Regi(t) ≤ 1 + 3R∗(n∗(t)) + 2(1 +
√

2)c

√
ni(t) ln

M ln t

δ
.
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If ∗ is in Phase II, then by the balancing condition ni(t) ≤ 4C1

√
n∗(t) which implies

that ni(t)√
n∗(t)
≤ 4C1. Plugging this into (5.32) yields

Regi(t) ≤ 1 +R∗(n∗(t)) + 2c

√
ni(t) ln

M ln t

δ
+

ni(t)√
n∗(t)

2C1 + 8cC1

√
ln

ln t

δ

≤ 1 +R∗(n∗(t)) + 2c

√
ni(t) ln

M ln t

δ
+ 8C2

1 + 8cC1

√
ln
M ln t

δ
.

If ∗ is in Phase III, then by the balancing condition ni(t) ≤ 4C2ε∗n∗(t) and, hence,
ni(t)
n∗(t)
≤ 4C2ε∗ ≤ 4. Here, we have used that C2ε∗ ≤ 1 as otherwise the regret bounds

hold trivially. Plugging this into (5.32) yields

Regi(t) ≤ 1 + 5R∗(n∗(t)) + 6c

√
ni(t) ln

M ln t

δ
.

Regret bound of i in Phase II: We here distinguish between two cases. If√
n∗(t) ≤ C1

C2ε∗
, then R∗(n∗(t)) ≤ 2C1

√
n∗(t). Then by the balancing condition

ni(t)
n∗(t)
≤ 9. Plugging this into (5.32) yields

Regi(t) ≤ 1 + 10R∗(n∗(t)) + 8c

√
ni(t) ln

M ln t

δ
.

Consider now the case where
√
n∗(t) >

C1

C2ε∗
and R∗(n∗(t)) ≤ 2ε∗C2n∗(t). Here, we

bound (5.32) directly as

Regi(t) ≤ 1 + 2ε∗C2(n∗(t) + ni(t)) + 2c

√
ni(t) ln

M ln t

δ
+ 2c

C2ε∗
C1

ni(t)

√
ln

ln t

δ

≤ 1 + 2ε∗C2

n∗(t) + ni(t) +
c
√

ln M ln t
δ

C1

ni(t)

+ 2c

√
ni(t) ln

M ln t

δ
.

Regret bound of i in Phase III: First, consider the case where
√
n∗(t) >

C1

C2ε∗
.

Then we can directly write ni(t)
n∗(t)

R∗(n∗(t)) = ε∗C2ni(t) and bound 1/
√
n∗(t) ≤ C2ε∗

C1
.

Plugging this into (5.32) yields

Regi(t) ≤ 1 +R∗(n∗(t)) + ε∗C2ni(t) + 2c

√
ni(t) ln

M ln t

δ
+
C2ε∗
C1

2c

√
ln
M ln t

δ
ni(t).
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It remains to bound the regret when
√
n∗(t) ≤ C1

C2ε∗
. Since i is in Phase III, we also

have
√
ni(t) >

C1

C2εi
≥ C1

C2ε∗
. The balancing condition yields εiC2ni(t) ≤ 4C1

√
n∗(t)

and thus

ni(t)√
n∗(t)

≤ 4C1

C2εi
≤
√
ni(t).

Plugging this into (5.32) yields

Regi(t) ≤ 1 +R∗(n∗(t)) + 4c

√
ni(t) ln

M ln t

δ
+
ni(t)

n∗(t)
2C1

√
n∗(t)

≤ 1 +R∗(n∗(t)) + 4c

√
ni(t) ln

M ln t

δ
+ 2C1

√
ni(t).

5.8 Omitted Proofs of Section 5.6

Epoch Balancing Termination (Proof of Theorem 5.6.1)

Theorem 5.6.1. With probability at least 1− δ, Algorithm 14 does not terminate if
all base learners are well-specified and their elliptical confidence sets contain θ? at all
times.

Proof. Since all learners are well-specified and their lower-confidence bounds Lt,i
satisfy Lt,i ≤ E [rt|at,i, xt] ≤ µ?k, the right-hand side of the misspecification test
satisfies

max
j∈I

t∑
k=1

Bk,j ≤
t∑

k=1

µ?k.

for all t ∈ N Further, with probability at least 1− δ, by Lemma 5.8.2, the left-hand
side of the misspecification test satisfies for all t ∈ N

∑
i∈I

[Ui(t) +Ri(ni(t))] + c

√
t ln

ln(t)

δ
≥

t∑
k=1

µ?k.

Thus, the misspecification test never triggers and Algorithm 14 does not terminate.
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Lemma 5.8.1. Let δ ∈ (0, 1) and consider the event

G =

{
∀t ∈ N :

∣∣∣∣∣∑
i∈I

Ui(t)−
t∑

k=1

E [rk|ak, xk]

∣∣∣∣∣ ≤ c

√
t ln

ln(t)

δ

}
.

where c > 0 is an absolute constant. Then P(G) ≥ 1− δ.

Proof. Let Ft = σ(x1, i1, a1, r1, . . . , xt−1, it−1, at−1, rt−1, xt−1, it−1, at−1) be the sigma-
field induced by all variables up to the reward at round t. Hence, Xk = rk−E [rk|ak, xk]
is a martingale-difference sequence w.r.t. Fk. We will now apply a Hoeffding-style
uniform concentration bound from [33]. Using the terminology and definition in this
article, by case Hoeffding I in Table 4, the process Sk =

∑k
j=1 Xk is sub-ψN with

variance process Vk = k/4. Thus by using the boundary choice in Equation (11) of
[33], we get

Sk ≤ 1.7
√
Vk (ln ln(8Vk) + 0.72 ln(5.2/δ))

= 0.85
√
k (ln ln(4k) + 0.72 ln(5.2/δ))

for all k with probability at least 1− δ. Applying the same argument to −Sk gives
that ∣∣∣∣∣

t∑
k=1

(rk − E [rk|ak, xk])

∣∣∣∣∣ ≤ 0.85
√
t (ln ln(4t) + 0.72 ln(10.4/δ))

holds with probability at least 1 − δ for all t. Since
∑

i∈I Ui(t) =
∑t

k=1 rk, the
statement follows. Note that this concentration argument holds for all t uniformly
and therefore also when t is random.

Lemma 5.8.2 (Upper-confidence bound on optimal reward). In event G from
Lemma 5.8.1, the following holds. If at time t all learners i ∈ I are well-specified,
then the left-hand side in the misspecification test of Algorithm 14 is a lower-bound
on the optimal rewards, i.e.,

∑
i∈I

[Ui(t) +Ri(ni(t))] + c

√
t ln

ln(t)

δ
≥

t∑
k=1

µ?k.
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Proof. By Lemma 5.8.1, in the considered event, we have

∑
i∈I

[Ui(t) +Ri(ni(t))] + c

√
t ln

ln(t)

δ

≥
∑
i∈I

Ri(ni(t)) +
t∑

k=1

E [rk|ak, xk] (by Lemma 5.8.1)

≥
∑
i∈I

Regi(t) +
t∑

k=1

E [rk|ak, xk] (each learner is well-specified)

=
∑
i∈I

Regi(t) +
∑
k∈Ti(t)

E [rk|ak, xk]


=
∑
i∈I

∑
k∈Ti(t)

µ?k =
t∑

k=1

µ?k. (by definition of regret)

Regret Bound for Epoch Balancing (Proof of Theorem 5.6.2)

Theorem 5.6.2. Assume that Algorithm 14 is run with instances of OFUL as base
learners that use different dimensions di and norm bounds Li, Si with 2zi ≤ zi+1 (see
Eq. (5.15)). All base learners use expected reward range Rmax

i = 1 and λ = 1. Denote
by ? the smallest index of the base learner so that all base learners j ∈ I with dj ≥ d?
are well-specified and their elliptical confidence sets always contain the true parameter.
Then, with probability at least 1 − 2δ, the regret is bounded for all rounds t until
termination as

Reg(t) ≤ Õ
((
d? +

√
d?S? + |I|

)
(d? +

√
d?S?)

√
t
)

Proof. We apply Theorem 5.8.3 which immediately yields the desired bound

Reg(t) ≤ Õ
((
d? +

√
d?S? + |I|

)
(d? +

√
d?S?)

√
t
)
.

Theorem 5.6.3. Assume that Algorithm 14 is run with instances of OFUL as base
learners that use different dimensions di and norm bounds Li, Si and Rmax

i = LiSi
with 2zi ≤ zi+1 (see Eq. (5.15)). Denote by ? the smallest index of the base learner
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so that all base learners j ∈ I with dj ≥ d? are well-specified and their elliptical
confidence sets always contain the true parameter. Then, with probability at least
1− 2δ, the regret is bounded for all rounds t until termination as

Reg(t) ≤ Õ

((
d?L? +

√
d?S?L? + |I|

)
(d? +

√
d?S?)L?

√
t+
∑
i∈I

LiSi

)
.

Proof. We apply Theorem 5.8.3 which yields

Reg(t) ≤ Õ

((
d?L? +

√
d?S?L? + |I|

)
(d? +

√
d?S?)L?

√
t+
∑
i∈I

LiSi ln ln(t)

)
.

Theorem 5.8.3 (General Regret Bound of Epoch Balancing). Assume that Algo-
rithm 14 is run with instances of OFUL as base learners which use different dimensions
di, Si, Li, R

max
i and regularization parameter λ = 1. Denote by ? the index of the

base learner so that all base learners j ∈ I with dj ≥ d? are well-specified and their
elliptical confidence sets always contain the true parameter. Then, with probability at
least 1− 2δ, the regret is bounded for all rounds t as

Reg(t) ≤ (|I|
√
z? + z?

√
M̄)x(t)

√
t+ 8.12

∑
i∈I

Rmax
i ln

5.2|I| ln (2t)

δ
+ 2c

√
t ln

ln(t)

δ

≤
√

(d2
? + d?S2

?)|I| (Rmax
? ∧ L?)

√
t(2 + 2c)x(t)

+ (d2
? + d?S

2
?) (Rmax

? ∧ L?)2
√
M̄t(2 + 2c)x(t)

+ 8.12
∑
i∈I

Rmax
i ln

5.2|I| ln (2t)

δ
,

where M̄ = |I| for general zi and M̄ = 2 when zi are exponentially increasing (i.e.,
2zi ≤ zi+1 for all i ∈ I). Here x(t) = O(ln tLmax

δ
+ ln ln(Rmax

maxt ∧ Lmaxt)

Proof. Since learner i? is well-specified and its elliptical confidence set contains θ?, it
holds that

t∑
k=1

µ?k ≤
t∑

k=1

max
a∈Ak

[
〈θ̂k,?, a〉+ βk,?‖a‖Σ−1

k,?

]
=

t∑
k=1

〈θ̂k,?, ak,?〉+ βk,?‖ak,?‖Σ−1
k,?
.
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Thus, we can write the total regret up to round t as

Reg(t) =
t∑

k=1

[µ?k − E [rk|ak, xk]] =
t∑

k=1

µ?k −
t∑

k=1

E [rk|ak, xk]

≤
t∑

k=1

µ?k −
∑
i∈I

Ui(ni(t)) + c

√
t ln

ln(t)

δ
,

where the inequality holds in event G of Lemma 5.8.1. If Algorithm 14 does not stop
in iteration t, then the misspecification test does not trigger for any learner, and in
particular for learner i?. This implies that

∑
i∈I

[Ui(t) +Ri(ni(t))] + c

√
t ln

ln(t)

δ
≥

t∑
k=1

Bk,?

Rearranging terms and plugging this inequality back into the regret bound from
above yields

Reg(t) ≤
t∑

k=1

[µ?k −Bk,?] +
∑
i∈I

Ri(ni(t)) + 2c

√
t ln

ln(t)

δ
(5.33)

We bound the first term in Equation 5.33 as

t∑
k=1

[µ?k −Bk,?]

(i)

≤
t∑

k=1

[
Rmax
? ∧ (〈θ̂k,?, ak,?〉+ βk,?‖ak,?‖Σ−1

k,?
)− (−Rmax

? ∨ (〈θ̂k,?, ak,?〉 − βk,?‖ak,?‖Σ−1
k,?

))
]

≤
t∑

k=1

[
2Rmax

? ∧ 2βk,?‖ak,?‖Σ−1
k,?

]
≤ 2βt,?

t∑
k=1

[
Rmax
?

βt,?
∧ ‖ak,?‖Σ−1

k,?

]
(ii)

≤ 2βt,?

√√√√t

t∑
k=1

[(
Rmax
?

βt,?

)2

∧ L
2

λi
∧ ‖ak,?‖2

Σ−1
k,?

]

where (i) follows from the definition of Bk,i and the fact that the ellipsoid confidence
set of ? contain the true parameter and (ii) applies the Cauchy-Schwarz inequality.
We now apply a randomized version of the elliptical potential lemma which we prove
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in Lemma 5.9.4. This yields

t∑
k=1

[µ?k −B?,k] ≤ 4βt,?

√
t

p?
(1 + b2

?) ln
5.2 ln(2b2

?t ∨ 2) det Σt,?

δ det Σ0,?

≤ 4βt,?

√
td?
p?

(1 + b2
?) ln

5.2 ln(2b2
?t ∨ 2)(d?λ? + tL2

?)

δd?λ?

where b? = Rmax
?

βt,?
∧ L?√

λ?
. For the second term in Equation 5.33, we apply Lemma 5.8.4

with α = δ as

∑
i∈I

Ri(ni(t)) ≤ 8.12
∑
i∈I

Rmax
i ln

5.2|I| ln (2t)

δ
+ 2

∑
i∈I

βt,i

√
3dipit

(
1 + b2i

)
ln
diλi + tpiL2

i

diλi
.

Combining the terms for both bounds, we arrive at the regret bound

Reg(t) ≤ 4βt,?

√
td?
p?

(1 + b2?) ln
5.2 ln(2b2?t ∨ 2)(d?λ? + tL2

?)

δd?λ?

+ 2
∑
i∈I

βt,i

√
3dipit

(
1 + b2i

)
ln
diλi + tpiL2

i

diλi

+ 8.12
∑
i∈I

Rmax
i ln

5.2|I| ln (2t)

δ
+ 2c

√
t ln

ln(t)

δ

≤ x(t)

√
z?t

p?
+ x

∑
i∈I

√
zipit+ 8.12

∑
i∈I

Rmax
i ln

5.2|I| ln (2t)

δ
+ 2c

√
t ln

ln(t)

δ

where

zi = (σ2di + λiS
2
i )di(1 + b2

i ) ≤ 2(d2
i + diS

2
i ) (Rmax

i ∧ Li)2 and

x(t) = 12 max
i∈I

√
ln

(
1 + tL2

i /λi
δ

)
ln

5.2 ln(2b2
i t ∨ 2)(diλi + tL2

i )

δdiλi

≤ 12 max
i∈I

√
ln

(
1 + tL2

i

δ

)
ln

10.4 ln(2 (Rmax
i ∧ Li) t)(1 + tL2

i )

δ

≤ 12 ln
10.4(1 + tL2

max) ln(2 (Rmax
max ∧ Lmax) t)

δ
.
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We now use the definition of pi ∝ 1
zi

and bound

∑
i∈I

√
zipi =

∑
i∈I

√
1∑

i∈I z
−1
i

=
|I|√∑
i∈I z

−1
i

≤ |I|√
z−1
?

= |I|
√
z?

where the inequality uses the fact that ? ∈ I. Further√
z?
p?

= z?

√∑
i∈I

1

zi
≤ z?

√
|I|

holds for any zi but if we know that z1 ≤ 2z2 ≤ 4z4 . . .MzM , then√
z?
p?

= z?

√∑
i∈I

1

zi
≤ 2z?.

Thus, we can bound the total regret as

Reg(t) ≤ (|I|
√
z? + z?

√
M̄)x(t)

√
t+ 8.12

∑
i∈I

Rmax
i ln

5.2|I| ln (2t)

δ
+ 2c

√
t ln

ln(t)

δ

≤
√

(d2
? + d?S2

?)|I| (Rmax
? ∧ L?)

√
t(2 + 2c)x(t)

+ (d2
? + d?S

2
?) (Rmax

? ∧ L?)2
√
M̄t(2 + 2c)x(t)

+ 8.12
∑
i∈I

Rmax
i ln

5.2|I| ln (2t)

δ
,

where M̄ = |I| for general zi and M̄ = 2 when zi are exponentially increasing. Note
that since this bound holds in the penultimate round of Algorithm 14 and the regret
in the final round can be at most 1, this bound holds for all rounds t played by
Algorithm 14, including the last.

Lemma 5.8.4 (Regret bounds are balanced). Let α ∈ (0, 1) be arbitrary but fixed.
With probability at least 1− α, the sum of regret bounds satisfy in all iterations t of
Algorithm 14 the following upper-bound

∑
i∈I

Ri(ni(t)) ≤ 8.12
∑
i∈I

Rmax
i ln

5.2|I| ln (2t)

α
+ 2

∑
i∈I

βt,i

√
3dipit

(
1 + b2i

)
ln
λidi + 3tpiL2

i

λidi

where bi =
Rmax
i

2βt,i
∧ Li√

λi
.
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Proof. By the choice of regret bounds we have

Ri(ni(t)) =
∑
k∈Ti(t)

[
2βk,i‖ak,i‖Σ−1

k,i
∧Rmax

i

]
≤ Rmax

i ni(t) ∧ 2βt,i
∑
k∈Ti(t)

(
‖ak,i‖Σ−1

k,i
∧ R

max
i

2βt,i

)

≤ Rmax
i ni(t) ∧ 2βt,i

√√√√ni(t)
∑
k∈Ti(t)

(
‖ak,i‖2

Σ−1
k,i

∧
(
Rmax
i

2βt,i

)2

∧ L
2
i

λi

)

≤ Rmax
i ni(t) ∨ 2βt,i

√
dini(t) (1 + b2

i ) ln
λi + ni(t)L2

i /di
λi

where bi =
Rmax
i

2βt,i
∧ Li√

λi
and the last inequality follows from of Lemma 5.9.3. To

control the the number of times each learner was chosen, we use Lemma 5.8.5.
This gives with probability at least 1− α for all iterations t simultaneously ni(t) ≤
3tpi ∨ 8.12 ln 5.2|I| ln(2t)

α
. This yields a regret bound of

Ri(ni(t)) ≤ 8.12Rmax
i ln

5.2|I| ln (2t)

α
∨ 2βt,i

√
3dipit (1 + b2

i ) ln
λi + 3tpiL2

i /di
λi

.

Summing over Ri and plugging in βt,i yields

∑
i∈I

Ri(ni(t)) ≤ 8.12
∑
i∈I

Rmax
i ln

5.2|I| ln (2t)

α
+ 2

∑
i∈I

βt,i

√
3dipit

(
1 + b2i

)
ln
λi + 3tpiL2

i /di
λi

Lemma 5.8.5. The number of times each a learner i ∈ I has been played in Algo-
rithm 14 after t iterations is bounded with probability at least 1− δ for all t ∈ N and
i ∈ I as

ni(t) ≤
3

2
tpi + 4.06 ln

5.2|I| ln (2t)

δ
≤ 3tpi ∨ 8.12 ln

5.2|I| ln (2t)

δ

Proof. Fix an i ∈ I and consider the martingale difference sequenceXt = 1{it = i}−pi
with variance. The process St =

∑t
k=1Xk with variance process Wt = tpi(1 − pi)
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satisfies the sub-ψP condition of [33] with constant c = 1 (see Bennett case in Table 3
of [33]). By Lemma 5.9.5, the bound

St ≤ 1.44

√
(Wt ∨m)

(
1.4 ln ln (2(Wt/m ∨ 1)) + ln

5.2

δ

)
+ 0.41

L2

λ

(
1.4 ln ln (2(Wt/m ∨ 1)) + ln

5.2

δ

)
holds for all t ∈ N with probability at least 1− δ. We set m = tpi and upper-bound
the RHS further as

St ≤ 1.44

√
tpi

(
1.4 ln ln (2t) + ln

5.2

δ

)
+ 0.41

(
1.4 ln ln (2t) + ln

5.2

δ

)
≤ tpi

2
+ 1.45

(
1.4 ln ln (2t) + ln

5.2

δ

)
,

where used the AM-GM inequality in the final step. We therefore get that with
probability at least 1− δ, the following upper-bound in the number of times learner i
was selected by time t holds for all i ∈ I and t ∈ N:

ni(t) ≤
3

2
tpi + 2.9

(
1.4 ln ln (2t) + ln

5.2|I|
δ

)
≤ 3

2
tpi + 4.06 ln

5.2|I| ln (2t)

δ
.

We can now distinguish between two cases: When 3
2
tpi ≤ 4.06 ln 5.2|I| ln(2t)

δ
, then

ni(t) ≤ 8.12 ln
5.2|I| ln (2t)

δ

and otherwise ni(t) ≤ 3tpi.

5.9 Ancillary Technical Lemmas

Lemma 5.9.1 (Regret Bound for OFUL). Assume OFUL(Algorithm 13) uses
regularization parameter λ > 0 chooses the each action as

at ∈ argmax
a∈At

〈θ̂t, a〉+ βt‖a‖V −1
t
,

where θt is a parameter estimate, βt ∈ R is a confidence width and Vt < λI+
∑t−1

l=1 ala
>
l

is a covariance matrix. In the event that the true parameter θ? was contained at



CHAPTER 5. REGRET BOUND BALANCING AND ELIMINATION 163

all times in the confidence ellipsoid, that is, ‖θ? − θ̂t‖Vt ≤ βt for all t ∈ [T ], the
(pseudo-)regret is bounded as

Reg(T ) ≤ 2βmax

√
dT

(
1 +

L2

λ

)
ln
dλ+ TL2

dλ
,

where βmax = maxt∈[T ] βt is the largest confidence width during all rounds and L =
maxa∈⋃tAt ‖a‖2 be a bound on the action norms.

Remark 5.9.2. This regret bound for OFUL holds for any, possibly random, sequence
of confidence widths as long as the true parameter is contained in the confidence
ellipsoid. It does not assume any specific form or monotonicity or βt ≥ 1. It also does
not prescribe that the covariance matrix exactly matches λI +

∑t−1
l=1 ala

>
l . This makes

this regret bounds applicable to the case where θ̂t includes additional observations
besides the ones from previous rounds played by the algorithm.

Proof. The immediate regret at time t (defined as the difference of the expected
reward of the optimal action choice a?t ∈ argmaxaAt〈θ?, a〉 and the action at taken by
the algorithm) is bounded as

〈θ?, a?t − at〉
(i)

≤ 〈θ̂t, a?t 〉+ βt‖a?t‖V −1
t
− 〈θ?, at〉

(ii)

≤ 〈θ̂t, at〉+ βt‖at‖V −1
t
− 〈θ?, at〉

(iii)

≤ 2βt‖at‖V −1
t

(iv)

≤ 2βt‖at‖Σ−1
t
,

where Σt = λI +
∑t−1

l=1 ala
>
l . Step (i) follows from ‖θ? − θ̂t‖Vt ≤ βt, step (ii) from the

algorithm’s action choice and step (iii) again from the confidence ellipsoid ‖θ?−θ̂t‖Vt ≤
βt. Finally, step (iv) follows from the assumption that Vt < λI +

∑t−1
l=1 ala

>
l = Σt.

Since L is a bound of the action norm and Σt < λI, we have ‖at‖Σ−1
t

=

‖Σ−1/2
t at‖2 ≤ L√

λ
. Thus, we can bound the regret as

Reg(T ) ≤ 2
T∑
t=1

βt‖at‖Σ−1
t

≤ 2

√√√√ T∑
t=1

β2
t

√√√√ T∑
t=1

‖at‖2
Σ−1
t

(Cauchy-Schwarz)

≤ 2βmax

√√√√T
T∑
i=1

L2

λ
∧ ‖at‖2

Σ−1
t

.
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And therefore,

Reg(T ) ≤ 2βmax

√
T

(
1 +

L2

λ

)
ln

det ΣT+1

det Σ1

(Lemma 5.9.3 below)

≤ 2βmax

√
dT

(
1 +

L2

λ

)
ln
dλ+ TL2

dλ
.

Lemma 5.9.3 (Elliptical potential). Let x1, . . . , xn ∈ Rd and Vt = V0 +
∑t

i=1 xix
>
i

and b > 0 then

n∑
t=1

b ∧ ‖xt‖2
V −1
t−1
≤ b

ln(b+ 1)
ln

detVn
detV0

≤ (1 + b) ln
detVn
detV0

.

Proof Sketch. The proof is identical to the usual elliptical potential lemma [41,
Lemma 19.4] where b = 1 except that we need to argue that for any b > 0

b ∧ u ≤ c ln(u+ 1)

holds whenever c ≥ b
ln(1+b)

. Since ln(1+·) is strictly concave and strictly monotonically
increasing, it is sufficient for us to check that this inequality holds at the critical point
u = b which is the case.

Lemma 5.9.4 (Randomized elliptical potential). Let x1, x2, · · · ∈ Rd and I1, I2, · · · ∈
{0, 1} and V0 ∈ Rd×d be random variables so that E [Ik|x1, I1, . . . , xk−1, Ik−1, xk, V0] =
p for all k ∈ N. Further, let Vt = V0 +

∑t
i=1 Iixix

>
i . Then

n∑
t=1

b ∧ ‖xt‖2
V −1
t−1
≤ 1 ∨ 2.9

b

p

(
1.4 ln ln (2bn ∨ 2) + ln

5.2

δ

)
+

2

p
(1 + b) ln

detVn
detV0

=
4

p
(1 + b) ln

ln(2bn ∨ 2)5.2 detVn
δ detV0

holds with probability at least 1− δ for all n simultaneously.

Proof. We decompose the sum of squares as

n∑
t=1

b ∧ ‖xt‖2
V −1
t−1

=
1

p

n∑
t=1

(bIt ∧ ‖Itxt‖2
V −1
t−1

) +
1

p

n∑
t=1

(p− It)(b ∧ ‖xt‖2
V −1
t−1

) (5.34)
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The first term can be controlled using the standard elliptical potential lemma in
Lemma 5.9.3 as

1

p

n∑
t=1

(bIt ∧ ‖Itxt‖2
V −1
t−1

) ≤ 1

p

n∑
t=1

(b ∧ ‖Itxt‖2
V −1
t−1

) ≤ 1

p
(1 + b) ln

detVn
detV0

.

For the second term, we apply an empirical variance uniform concentration bound.
Let Fi−1 = σ(V0, x1, I1, . . . , xi−1, Ii−1, xi) be the sigma-field up to before the i-th

indicator. Let Yi = 1
p
(p− Ii)

(
‖xi‖2

V −1
i−1

∧ b
)

which is a martingale difference sequence

because E [Yi|Fi−1] = 0 and consider the process St =
∑t

i=1 Yi with variance process

Wt =
t∑
i=1

E
[
Y 2
i |Fi−1

]
=

t∑
i=1

1

p2

(
‖xi‖2

V −1
i−1
∧ b
)2

E
[
(p− Ii)2|Fi−1

]
=

1− p
p

t∑
i=1

(
‖xi‖2

V −1
i−1
∧ b
)2

≤ b

p

t∑
i=1

(
‖xi‖2

V −1
i−1
∧ b
)
≤ tb2

p
.

Note that Yt ≤ b and therefore, St satisfies with variance process Wt the sub-ψP
condition of [33] with constant c = b (see Bennett case in Table 3 of [33]). By
Lemma 5.9.5 below, the bound

St ≤ 1.44

√
(Wt ∨m)

(
1.4 ln ln (2(Wt/m ∨ 1)) + ln

5.2

δ

)
+ 0.41b

(
1.4 ln ln (2(Wt/m ∨ 1)) + ln

5.2

δ

)
holds for all t ∈ N with probability at least 1− δ. We set m = b

p
and upper-bound

the RHS further as

1.44

√√√√ b

p

(
1 ∨

t∑
i=1

(
b ∧ ‖xi‖2

V −1
i−1

))(
1.4 ln ln (2bt ∨ 2) + ln

5.2

δ

)
+ 0.41b

(
1.4 ln ln (2bt ∨ 2) + ln

5.2

δ

)
≤ 1

2

(
1 ∨

t∑
i=1

(
b ∧ ‖xi‖2

V −1
i−1

))
+ 1.45

b

p

(
1.4 ln ln (2bt ∨ 2) + ln

5.2

δ

)
,
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where the inequality is an application of the AM-GM inequality. Thus, we have shown
that with probability at least 1− δ, for all n, the second term in (5.34) is bounded as

1

p

n∑
t=1

(p− It)(b ∧ ‖xt‖2
V −1
t−1

) ≤ 1

2

(
1 ∨

n∑
i=1

(
‖xi‖2

V −1
i−1
∧ b
))

+ Z.

where Z = 1.45 b
p

(
1.4 ln ln (2bn ∨ 2) + ln 5.2

δ

)
. And when combining all bounds on the

sum of squares term in (5.34), we get that either
∑n

i=1

(
‖xi‖2

V −1
i−1

∧ b
)
≤ 1 or

n∑
i=1

(
‖xi‖2

V −1
i−1
∧ b
)
≤ 2Z +

2

p
(1 + b) ln

detVn
detV0

≤ 4

p
(1 + b) ln

ln(2bn ∨ 2)5.2 detVn
δ detV0

which gives the desired statement.

Lemma 5.9.5 (Uniform empirical Bernstein bound). In the terminology of [33], let
St =

∑t
i=1 Yi be a sub-ψP process with parameter c > 0 and variance process Wt.

Then with probability at least 1− δ for all t ∈ N

St ≤ 1.44

√
(Wt ∨m)

(
1.4 ln ln

(
2

(
Wt

m
∨ 1

))
+ ln

5.2

δ

)
+ 0.41c

(
1.4 ln ln

(
2

(
Wt

m
∨ 1

))
+ ln

5.2

δ

)
where m > 0 is arbitrary but fixed.

Proof. Setting s = 1.4 and η = 2 in the polynomial stitched boundary in Equation (10)
of [33] shows that uc,δ(v) is a sub-ψG boundary for constant c and level δ where

uc,δ(v) = 1.44

√
(v ∨ 1)

(
1.4 ln ln (2(v ∨ 1)) + ln

5.2

δ

)
+ 1.21c

(
1.4 ln ln (2(v ∨ 1)) + ln

5.2

δ

)
.

By the boundary conversions in Table 1 in [33] uc/3,δ is also a sub-ψP boundary for
constant c and level δ. The desired bound then follows from Theorem 1 by [33].
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Chapter 6

Discussion and Future Directions

In this thesis we have introduced a variety of algorithmic approaches to the problem
of model selection in stochastic contextual bandits and reinforcement learning. All
of our approaches allow for the combination of multiple base algorithms satisfying
the condition that if they were to be deployed in their natural environments, they
would satisfy a high probability regret guarantee with respect to their putative regret
bounds.

In Chapter 2 we introduced the Stochastic CORRAL algorithm that successfully
combines an EXP3 or CORRAL adversarial master with a wide variety of stochastic
base algorithms for contextual bandits and reinforcement learning. We improve the
results of the original CORRAL approach [5] that requires the base algorithms to
satisfy a stability condition not often fulfilled by even the simplest stochastic bandit
algorithms such as UCB and OFUL.

In Chapter 4 we devise a simple model selection strategy based on the principle of
equating empirical regret bounds which we call regret balancing. In Chapters 3 and 5
we introduce two distinct stochastic master algorithms Explore-Commit-Eliminate
(ECE) and Regret Bound Balancing and Elimination (RBBE) based on the principle
of a statistical test to detect misspecification. ECE and RBBE recover the rates of
Stochastic CORRAL under an EXP3 and a CORRAL master respectively. All of our
algorithms recover meaningful model selection rates in several applications, including
linear bandits and MDPs with nested function classes, linear bandits with unknown
misspecification, and LinUCB applied to linear bandits with different confidence
parameters. Moreover, unlike Stochastic Corral we show that when applied to the
problem of model selection for linear stochastic bandits, ECE and RBBE are versatile
enough to also cover cases where the context information is generated by an adversarial
environment. We also present three lower bounds showing A) it is impossible to
distinguish between logarithmic and square root base learners, B) knowledge of the
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target regret guarantee is necessary for perfect model selection and C) all algorithms
achieving ‘perfect’ model selection regret guarantees must be performing a version
of regret balancing. Several questions pertaining to the potential refinement of the
aforementioned approaches remain open. We detail them below.

Leveraging shared structure in meaningful ways. Perhaps due to their general
purpose nature, all the algorithms we propose in this thesis do not make use of the
fine grained structure of the problem at hand. For example, Stochastic CORRAL
with a CORRAL master and RBBE can recover a rate of the form Õ(d2

?

√
T ) for the

nested linear class problem1, where an oracle rate of O(d?
√
T ) is possible when the

learner has knowledge of the optimal model class. It remains an open question to
show if these model selection rates are not improvable for this problem or if there
exists an algorithm that successfully leverages the linearity of the contexts to achieve
a model selection guarantee with the same order as the oracle rate. The same question
applies to all other settings where there may exist a structural relationship between
the different models to select from.

Extension to adversarial bandits. The results of this thesis apply only to the
setting of stochastic contextual bandit problems and reinforcement learning. In
contrast the original CORRAL algorithm [5] can be deployed in an adversarial bandit
environment provided one of the base algorithms has a valid regret guarantee and
can be shown to satisfy CORRAL’s stability condition. Although this condition is
often satisfied for adversarial base algorithms, it remains open to show if a simpler
and more interpretable approach to model selection such as the ones used in ECE,
Simple Regret Balancing and RBBE can be sucessfully combined with these types of
algorithms and yield valid model selection regret guarantees. Additionally, it may be
possible to show that a version of the empirical regret balancing strategy introduced
in Chapter 4 can be used as an approach to adversarial bandits distinct and more
interpretable than existing techniques based on mirror descent.

1Stochastic CORRAL with an EXP3 master and ECE achieve a rate of the form Õ(d?T
2/3)
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[13] Sébastien Bubeck and Nicolò Cesa-Bianchi. Regret Analysis of Stochastic and
Nonstochastic Multi-Armed Bandit Problems. CoRR, abs/1204.5721, 2012.
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