
UC Berkeley
UC Berkeley Previously Published Works

Title
Handling Big Data in Medical Imaging: Iterative Reconstruction with Large-Scale Automated 
Parallel Computation

Permalink
https://escholarship.org/uc/item/8qv5f6b3

Authors
Lee, Jae H
Yao, Yushu
Shrestha, Uttam
et al.

Publication Date
2014-11-01

DOI
10.1109/nssmic.2014.7430758
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8qv5f6b3
https://escholarship.org/uc/item/8qv5f6b3#author
https://escholarship.org
http://www.cdlib.org/


Handling Big Data in Medical Imaging: Iterative Reconstruction 
with Large-Scale Automated Parallel Computation

Jae H. Lee, Ph.D. [student],
University of North Carolina, Chapel Hill, NC 27599 USA

Yushu Yao,
National Energy Research Scientific Computing (NERSC) Center, Berkeley, CA 94704 USA

Uttam Shrestha,
Physics Research Laboratory, Department of Radiology and Biomedical Imaging, University of 
California, San Francisco, CA 94143 USA

Grant T. Gullberg [Fellow IEEE], and
Structural Biology and Imaging Department, Life Sciences Division, Lawrence Berkeley National 
Laboratory, Berkeley, CA 94704 USA

Youngho Seo [Senior member IEEE]
Physics Research Laboratory, Department of Radiology and Biomedical Imaging, University of 
California, San Francisco, CA 94143 USA

Abstract

The primary goal of this project is to implement the iterative statistical image reconstruction 

algorithm, in this case maximum likelihood expectation maximum (MLEM) used for dynamic 

cardiac single photon emission computed tomography, on Spark/GraphX. This involves porting 

the algorithm to run on large-scale parallel computing systems. Spark is an easy-to- program 

software platform that can handle large amounts of data in parallel. GraphX is a graph analytic 

system running on top of Spark to handle graph and sparse linear algebra operations in parallel. 

The main advantage of implementing MLEM algorithm in Spark/GraphX is that it allows users to 

parallelize such computation without any expertise in parallel computing or prior knowledge in 

computer science. In this paper we demonstrate a successful implementation of MLEM in Spark/

GraphX and present the performance gains with the goal to eventually make it useable in clinical 

setting.

I. INTRODUCTION

CURRENTLY Big Data refers to datasets that are so large and complex that it is too difficult 

to store, manage, analyze or visualize within commonly available computational 

architecture. For example, data produced by sequencing, mapping, and analyzing genomes 

may fall into this category. Similarly, processing and analyzing large volumes of medical 

telephone: 818-590-7823, jaeholee@live.unc.edu. telephone: 510-486-4690, yyao@lbl.gov. uttam.shrestha@ucsf.edu. 
gtgullberg@lbl.gov. youngho.seo@ucsf.edu. 

HHS Public Access
Author manuscript
IEEE Nucl Sci Symp Conf Rec (1997). Author manuscript; available in PMC 2016 April 12.

Published in final edited form as:
IEEE Nucl Sci Symp Conf Rec (1997). 2014 November ; 2014: .

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



imaging data may challenge expeditious diagnosis. In biomedical image processing using 

transmission or emission tomography, a significant amount of computational time is required 

in order to reconstruct a diagnostic quality image. In myocardial imaging using radiolabeled 

tracers as in positron emission tomography (PET) or single photon emitted computed 

tomography (SPECT), patient motion and cardiac motion due to cardiac beating and 

respiration create unwanted artifacts in the reconstructed image. Solutions such as cardiac 

and respiratory gating, dynamic acquisition techniques, list-mode data acquisition, and 

reconstruction in higher dimensions have been proposed and show significant improvements 

over methods that ignore these types of motion. However, these techniques demand 

unprecedented computational time [3].

In this work, we implemented the standard MLEM algorithm for SPECT myocardial 

perfusion imaging in a largescale parallel computing software system at the National Energy 

Research Scientific Computing (NERSC) Center. This is a high performance 

supercomputing facility at Lawrence Berkeley Laboratory (LBNL), for the Department of 

Energy.

II. METHOD: DATA ACQUISITION

The simulated SPECT dynamic myocardial perfusion imaging involved the camera head 

continuously rotating around a cardiac torso consisted of 1283 voxels. In conventional 3D 

imaging (ignoring any motion), as shown in Fig. 3 projected images of 128×128 are 

acquired in 360 different views (or angles) over 360°.

The system matrix of the projections was represented by a large sparse matrix with 

dimension 1282×360 by 1283 that is used to perform the 3D spatial reconstruction. 4D 

reconstruction includes the reconstruction of spatial and temporal changes of the radiotracer 

in the organ tissues as a function of time. 5D reconstruction includes the additional 

reconstruction of cardiac deformation over the cardiac cycle and 6D includes the 

reconstruction of the additional organ motion such as the heart due to respiration. Due to 

these additional dimensions of motion throughout time, it takes a single core machine about 

13 days for the full 6D reconstruction, thus the need for parallel computing and better 

computing power. In this work, we not only parallelize the reconstruction process, but also 

use an easier alternative to the Message Passage Interface (MPI) Standard, thus not requiring 

users to have expertise in computer science.

III. METHOD: SPARK/GRAPHX

GraphX that runs on Spark was chosen as the large-scale parallel software system to be used 

in this simulation. Spark and GraphX were both developed by the UC Berkeley AMPLab 

and use Resilient Distributed Datasets (RDDs) as a distributed memory abstraction instead 

of Distributed Shared Memory (DSM). RDD is a fault-tolerant distributed inmemory 

abstraction, and that allows intermediate results to be reused more efficiently by allowing 

users to have control over storing intermediate results in memory to optimize data 

placement. Spark first “transforms” data into RDDs (e.g., using a map or filter) and uses 

“actions” (e.g., count, collect, and save) on RDDs. This model accelerates the computation 

Lee et al. Page 2

IEEE Nucl Sci Symp Conf Rec (1997). Author manuscript; available in PMC 2016 April 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



speed because once any slow nodes are detected RDDs can create backup copies of slow 

tasks, which do not have to access the same memory as they do with DSM [6]. With such 

abstraction, Spark distributes the data over different working nodes that run computations in 

a parallel fashion by communicating with each other with intermediate results and 

combining them to get the final result.

GraphX is a large-scale graph-parallel system built on top of Spark. Graph is a 

representation of a set of objects, called vertices, where some pairs of objects are connected 

by links, called edges [4]. There is natural relation between a graph and a matrix, such as 

adjacency matrix of a graph. An adjacency matrix is a representation of which vertices are 

adjacent to which vertices to each by assigning the (i, j) entry of the adjacency matrix a 

value 1 if the vertices i and j are linked by and edge or a value 0 otherwise as shown in Fig. 4 

[2].

GraphX also uses RDDs as a distributed memory abstraction, where vertices, edges, and 

graphs are transformed into RDDs. GraphX adopted and improved previously existing 

graph-parallel abstractions such as Pregel (which was modified in this project and made to 

compute matrix multiplications) using RDD abstraction [5].

There are different ways to parallelize computation, such as using MPI, but the biggest 

advantage of using Spark/GraphX is its usability, as only about 35 lines of code were needed 

to reproduce the MLEM algorithm. Due to the usability of Spark/GraphX, users with no 

expertise in computer science can easily implement different methods or algorithms that 

need to be parallelized.

In order to implement the iterative MLEM algorithm in GraphX, the reconstruction problem 

is represented as a sparse matrix equation: Af = g. Then the forward projection operator A, 

also called the system matrix, can be further represented in terms of graphs in GraphX, as 

there is a natural relation between matrices and graphs. In this case the system matrix A is a 

large sparse matrix, and it can be represented as a bipartite graph, where f and g are the two 

vertex sets and the values of A at corresponding indices are the edges (Fig. 5). A sparse 

matrix specifically has an advantage in using matrix operations represented in terms of 

graph-parallel operations because the zeroes of the matrix means that there is no edge 

between the vertices defined by the index of the matrix. Because a sparse matrix does not 

have these edges, the number of graph computations decreases with respect to the sparsity of 

the matrix.

Then sparse matrix operations are represented in terms of graph-parallel operations 

described in [5]. For example, each element of g can be represented as the weighted (by the 

corresponding edge value) sum of the value of each of its neighbor:

(1)

Spark/GraphX was used to test the computation time for reconstructing the 3D 

reconstruction problem. The test was performed by reconstructing a 128×128×128 spatially 

distributed image from 360 simulated 128×128 projections of the MCAT phantom acquired 

Lee et al. Page 3

IEEE Nucl Sci Symp Conf Rec (1997). Author manuscript; available in PMC 2016 April 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



over 360°. The system matrix A for this problem was a large sparse matrix with a dimension 

of 1282×360×1283. A program of 35 lines of code was implemented to determine the time 

per iteration for running on 4, 8, and 16 nodes of the computer Carver at NERSC Center. 

Carver has a CPU rate of 2.0 GHz. The results using Carver were compared with running the 

same problem on a desktop computer with a CPU rate of 2.8 GHz.

As shown in Fig. 6, Spark/GraphX improved the iteration time for the 3D reconstruction 

problem from 1 minute to 35 seconds by going from single processor desk-top computer to 

Spark/GraphX. From this result, we can expect the total reconstruction time for the 6D case 

to be reduced from about 13 days to approximately 8 days by using Spark/GraphX with just 

16 nodes. Also, Spark/GraphX can be scaled depending on the need and the amount of data 

by simply changing the number of nodes and the amount of memory (Fig. 7). Whether the 

scalability is linear or not needs to be verified in further studies. This means that it is 

necessary to verify if the iteration time will decrease linearly respect to the increase in the 

number of nodes. Once it is proven that the reconstruction process can be linearly scaled, we 

can expect to reduce the total reconstruction time for the 6D reconstruction problem to the 

order of seconds using the computing power of a supercomputer.

V. DISCUSSION

The results shown in this paper are still preliminary and require further improvement. 

Finding the optimal partition number and having a better understanding of the performance 

of Spark can better delineate the applicability of Spark/GraphX, and validation of the 

method with a model of real-data is also necessary. Spark is an easy-to-use framework to 

perform iterative algorithms in memory. UC Berkeley AMPLab is in the process of further 

developing the linear algebra library that will work more effectively for such iterative 

methods involving large matrix computations.

Carver, a liquid-cooled IBM iDataPlex system with 1202 compute nodes (9,984 cores), was 

chosen as the computational systems to test the experiments for this project. At the present 

the NERSC Center is pushing forward to support Spark/GraphX on Edison, which is the 

NERSC Center’s newest supercomputer. Edison is a Cray XC30, with a peak performance 

of 2.57 petaflops per second, 133,824 compute cords, 257 terabytes of memory, and 7.56 

petabytes of disk.

Big data analytics and parallel computing have been proven to bring advancements to the 

field of scientific research including medical imaging. Current methods of solving problems 

on supercomputers are very complicated and limited to people with expertise in computer 

science. However, with the usability of Spark/GraphX and the computing power of 

supercomputers at the NERSC Center, many challenging Big Data problems can be solved. 

A number of other science projects are already exploring Spark on the Edison 

supercomputer.

Acknowledgment

This work was supported in part by the U.S. Department of Energy, under the Science Undergraduate Laboratory 
Internship (SULI) program. We would like to thank Rostyslav Boutchko (LBNL), for giving valuable suggestion, 

Lee et al. Page 4

IEEE Nucl Sci Symp Conf Rec (1997). Author manuscript; available in PMC 2016 April 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and to Joey Gonzalez and Ankur Dave from UC Berkeley EECS/AMPLab for helping with GraphX. This research 
used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of 
Science of the U.S. Department of Energy under Contract No. DE-AC02-05-CH11231.

This work is supported in part by National Heart, Lung, and Blood Institute under grant #R01 HL050663 and by 
National Institute of Biomedical Imaging and Bioengineering under grant #R01 EB012965.

REFERENCES

[1]. Bruyant PP. Analytic and iterative reconstruction algorithms in SPECT. J. Nucl. Med. 2002; 
43:1343–1358. [PubMed: 12368373] 

[2]. Godsil, C.; Royle, G. Algebraic Graph Theory. Springer; 2001. 

[3]. Shepp LA, Vardi Y. Maximum likelihood reconstruction for emission tomography. IEEE Trans. 
Med. Imag. 1982; 1:113–122.

[4]. Trudeau, RJ. Introduction to Graph Theory. Dover Pub; New York: 1993. p. 19Corrected, enlarged 
republication. ed.ISBN 978-0-486-67870-2. Retrieved 8 August 2012. "A graph is an object 
consisting of two sets called its vertex set and its edge set

[5]. Xin, RS.; Crankshaw, D.; Dave, A.; Gonzalez, JE.; Franklin, MJ.; Stoica, I. GraphX: Unifying 
data-parallel and graph-parallel analytics. 2014. arXiv preprint arXiv:1402.2394

[6]. Zaharia, M.; Chowdhury, M.; Das, T.; Dave, A.; Ma, J.; McCauley, M.; Franklin, M.; Shenker, S.; 
Stoca, I. Electrical Engineering and Computer Sciences, University of California; Jul 19. 2011 
Resilient Distributed Datasets: A Fault- Tolerant Abstraction for In-Memory Cluster Computing. 
Technical Report No. UCB/EECS-2011-82

[7]. Shrestha U, Seo Y, Botvinick EH, Gullberg GT. Image reconstruction in higher dimension: 
Myocardial perfusion imaging of tracer dynamics, cardiac and respiratory motion. IEEE Trans 
Med Imag. Submitted to. 

Lee et al. Page 5

IEEE Nucl Sci Symp Conf Rec (1997). Author manuscript; available in PMC 2016 April 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Example of the reconstruction at UCSF of simulated MCAT phantom dynamic data. (Top 

Row) The original anatomical phantom. (Second Row) The coronal view of the 

reconstruction of dynamic data 30 sec after the injection of 99mTc-tetrofosmin. The 

reconstruction of the gated cardiac data was performed using a 5D spatiotemporal 

reconstruction algorithm described in [7]. In this simulation, 6 B-spline basis functions were 

used for the temporal changes in the tracer concentration and 8 Gaussian basis functions 

were used for the cardiac deformation due to the heart beating. The number of unknowns 

estimated were 128×128×128×6×8 for the torso volume of dimensions 128×128×128. There 

were 120 views per camera rotation and 8 cardiac gates and the period of rotation was 15 sec 

corresponding to 15 cardiac cycles (15 views for each cardiac gate). (Third Row) The 

coronal view of the reconstruction of the dynamic data 1 min, 1.5 min, and 2.0 min after 

injection. (Bottom Row) Same as previous 2.5 min, 3.0 min, and 3.5 min after injection 

of 99mTc-tetrofosmin.

Lee et al. Page 6

IEEE Nucl Sci Symp Conf Rec (1997). Author manuscript; available in PMC 2016 April 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
(a) Simple schematic diagram of the iterative MLEM algorithm (b) The update formula for 

the iterative MLEM algorithm.

Lee et al. Page 7

IEEE Nucl Sci Symp Conf Rec (1997). Author manuscript; available in PMC 2016 April 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Depiction of the tomographic reconstruction process.

Lee et al. Page 8

IEEE Nucl Sci Symp Conf Rec (1997). Author manuscript; available in PMC 2016 April 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
The adjacency matrix representing an undirected graph.

Lee et al. Page 9

IEEE Nucl Sci Symp Conf Rec (1997). Author manuscript; available in PMC 2016 April 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
The system matrix, A, represented as a bipartite graph.

Lee et al. Page 10

IEEE Nucl Sci Symp Conf Rec (1997). Author manuscript; available in PMC 2016 April 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
Comparing the iteration time of MLEM algorithm for typical 3D reconstruction with 

GraphX (16 nodes).

Lee et al. Page 11

IEEE Nucl Sci Symp Conf Rec (1997). Author manuscript; available in PMC 2016 April 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
Iteration time of the MLEM algorithm with GraphX for different number of nodes.

Lee et al. Page 12

IEEE Nucl Sci Symp Conf Rec (1997). Author manuscript; available in PMC 2016 April 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	I. Introduction
	II. Method: Data Acquisition
	III. Method: Spark/GraphX
	V. Discussion
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6
	Fig. 7



