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ABSTRACT OF THE THESIS

Evaluating the Diagnostic Potential of Large Language Models in

Fetal Alcohol Spectrum Disorder

by

Faith Tsyr-Huey Yuan

Master of Science in Bioinformatics

University of California, Los Angeles, 2024

Professor Shantanu H. Joshi, Chair

Large language models enjoy wide spread applications in both general and more personalized

use cases. These models can be dynamically trained on well defined clinical data. However,

several pre-existing models that have not been trained to provide diagnostic information

for disorders with clinical heterogeneity. Specifically, our preliminary analysis showed that

existing models such as BioMistral are generalized on publicly available PubMed data but are

unable to accurately take in clinical symptoms for accurate characterization of fetal alcohol

spectrum disorder (FASD). To overcome this challenge, we propose to retrain the pre-existing

BioMistral model on a synthetic FASD-specific training set to correctly categorize symptoms

into diagnostic codes. By changing the learning rates and epochs, we are able to evaluate

the performance of both overfitted or poorly trained models and a highly trained model on

a test set containing synthetic clinical notes. We demonstrate evaluation performance using

confusion matrices and the Kullback-leibler divergence (on the log-odds probabilities) and

show that retraining BioMistral model has the capability to correctly diagnose individuals

with fetal alcohol spectrum disorder over a poorly trained model.
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CHAPTER 1

Introduction

The wide-spread public introduction of large language models with Chat-GPT in 2022 [4]

brought about controversy and excitement. The general public was skeptical of AI and

machine-learning methods, but the scientists were excited to see the possibilities of advance-

ment using these models. A large-area of need for scientific research and improvement has

long been clinical diagnostics. Large language models can be tailored and trained to improve

the diagnostic space, aiming to aid physicians with more structure and e�ciency. Diagnos-

ing neurodevelopmental disorders has long posed a variety of challenges due to the complex

etiology and behavior heterogeneity witnessed in patients. There is a crucial need for a

standardized diagnostic criteria to be prioritized.

In this study, we focused on fetal alcohol spectrum disorder, which is a leading cause of

developmental disabilities worldwide. The prevalence of fetal alcohol spectrum disorder is

di�cult to estimate because of the variability and lack-there-of routine screening procedures

[5]. A recent study that took place in the US suggested that there is a missed diagnosis rate

of 80.1% as well as a misdiagnosis rate of 6.4%. This study suggests that the extremely high

rates of missed diagnosis can have significant implications for intervention and therapeutic

services [6].

Our study aims to tackle the high missed diagnosis rates seen across the United States.

By training pre-existing large language models, we hope to see an increase in e�ciency for
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diagnosing individuals with fetal alcohol spectrum disorder. For diagnostic terminology, we

utilize the International Classification of Diseases (ICD) codes, which is part of a globally

used system for medical classification. Included within ICD codes are diseases, symptoms,

and procedures. The purpose of ICD codes are to standardize and integrate classifications

of medical-related terminologies globally and systematically [7]. For the purposes of our

study, we leverage the utility of ICD-10 [8] codes to train our model to be equipped with a

standardized way of approaching diagnostics.

We utilize, BioMistral an open-source large language model that is tailored specifically for

the medical domain and is pre-trained on PubMed Central [9]. By leveraging BioMistral

in our study, we further fine-tuned and trained the model to become more specialized in

fetal alcohol spectrum disorder. Previous literature has shown clinical diagnostic testing on

GPT-4, a generalized model that has not been pre-trained on clinical data, being extremely

unstable and sensitive to prompts [10]. These limitations demonstrate that a generalized

model does not have the current capabilities to deliver meaningful diagnoses.

Overall, we provide a pipeline that trains BioMistral on standardized fetal alcohol spectrum

disorder and related developmental disorder International Classification of Disease codes to

test among mock clinician notes. By varying hyperparameters in our test stages, we demon-

strate that there are optimal improvements to the model when specific hyperparameters are

selected. These results are encouraging and reveal the capabilities of fine-tuning a model to

aid in standardized diagnostics in fetal alcohol spectrum disorder.

Our long term goal is to achieve accurate and e�cient categorization of FASD symptoms

into ICD codes. This will not only aid physicians in speedier diagnoses, but will also help to

ensure that diagnosis and potentially interventions will be available to children with FASD,

especially in cases where physician care is not readily accessible.
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CHAPTER 2

Background & Motivation

Fetal Alcohol Spectrum Disorder (FASD) is a lifelong disorder that a↵ects both physiological

functions of the body and the psycho-physiological processes of brain [11]. The diagnosis of

fetal alcohol syndrome (FAS) was formally suggested in a 1973 publication in The Lancet

[12] [13]. A second article was published in The Lancet [12] in which David W. Smith and

Kenneth L. Jones presented an anecdotal association between prenatal alcohol abuse and

the e↵ects of FAS [14]. Over the years, a group of pediatricians and psychiatrists helped

to define the morphological defects and developmental delays that can a↵ect children whose

mother had consumed alcohol during the pregnancy [15].

FASD is an “umbrella term” for the spectrum of disorders due to prenatal alcohol exposure.

Impacts from this disorder on social, behavioral, physical, and cognitive aspects of develop-

ment vary greatly as there is no singular presentation [16]. The constellation of symptoms

include pre- and/or postnatal growth retardation, central nervous system disorders that

include developmental delay, intellectual impairment, and characteristic craniofacial abnor-

malities [15].

Beyond the mental and physical challenges in a person on the FASD spectrum, there are so-

cial complexities to individuals living with FASD. Individuals living with FASD often benefit

from early diagnosis, the support from stable caregivers, and the provision of educational,

physical, and mental systems put in place in order to successfully conduct personal and
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professional activities [16]. FASD is a socially-rooted disability, wherein it is theoretically

preventable. However this is a simplistic understanding of the disorder as there are many

factors that may lead to the consumption of alcohol by pregnant women [17]. For example

traumatic life events, stressful life events, intimate partner abuse, mental health challenges,

and overall limited awareness of the harms associated with drinking while pregnant [17].

Additionally, FASD may be viewed as an inter-generational disability as a person having

FASD may themselves experience an increased likelihood of substance abuse and other risky

behavior [17]. These social determinants are an important consideration when evaluating

the “preventability” of FASD. The occurrence of FASD can be seen in all socioeconomic

and ethnic groups. The manifestations of FASD are complex and a↵ect the family dynamic

because individuals with FASD typically require long-term healthcare and social and voca-

tional support [18]. The hope is that by increasing the knowledge of the experiences of people

living with FASD it can reduce the stigmatization that comes with this neurodevelopmental

disorder and increase accessibility and access to them receiving the proper care. Overall, the

emphasis should be placed on creating accessibility for individuals with FASD or a family

history of FASD to address both a missed diagnosis and misdiagnosis of patients.
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CHAPTER 3

Related Work in Language Processing

Artificial intelligence (AI) has the capability to improve access and standard of care to

patients all around the world. This application both in and outside of hospitals has provided

solutions to predict and subsequently prevent harm. AI has been shown to provide decision

support in identifying patients of high risk and o↵er preventative solutions [19].

Before we discuss, latest advances in AI for textual and language processing, we provide

a brief history of language processing starting with linguistic modeling. Natural Language

Processing (NLP) is a field of artificial intelligence that focuses on the interaction between

computers and human language. In 1950, Alan Turing introduced the Turing Test, which

asked the question “Can machines think?” [20]. He then formulated the principles of a

three-person game, the Imitation Game, where an interrogator asks questions to a man and

woman to determine the sex of the player in another room. Turing then reformulated the

question to ask if imaginary computers that would do well at the Imitation Game, in which

he believed would be true [20]. This paper by Turing set up the stage for exploring computer

intelligence as it relates to human intelligence.

These developments were also soon applied to language processing. Early simplistic ap-

proaches for NLP included word-for-word Russian-to-English translations as demonstrated

by the Georgetown-IBM system in 1954 [21]. Knowledge-based approaches to natural lan-

guage processing began dominating the field in the 1960s until the 1970s. Noam Chomsky’s

5



1956 theoretical analysis of formal English grammar provided an approximation of ”n-order

statistical approximations” [22]. This directly influenced the creation of Backus-Naur Form

(BNF), which is used to specify ”context-free-grammar”. The usage of BNF, allows for one

to define the sequences of symbols that make up a syntactically valid program in a particular

programming language [23]. A language’s BNF specification make up the set of rules that

are used to correctly describe the structure of the code in the language, such as the rules

and how each of the elements are combined to form syntactically correct programs [23]. In

the 1970s, lexical analyzers (also known as lexers) became prominent. Lexical analysis is

deployed when two tasks occur repeatedly to divide the structured input from programs into

meaningful units and and discovers the relationship among units [24]. This division resulting

into units also known as tokens, is a process of lexical analysis or lexing. These developments

led to the creation of the Lex computer program, which can take in a set of descriptions of

possible tokens and produce a C routine which are called a lexical analyzer, lexer, or scanner,

that can identify tokens [24]. These lexer generators simplify the programming-language im-

plementation by taking in Backus-Naur Form as input and generate code and lookup tables

[25]. However, the rise of the symbolic, knowledge-based rules failed to extract the mean-

ing, the exact semantics, from text. The specific relationship between textual units was not

successfully captured by this method. Thus, there was a need to shift towards statistical

processing in NLP.

In the 1980s, the reorientation of Natural Language Processing resulted in the beginning of

statistical NLP methods. The fundamental acknowledgement of the complexity of language

brought about novel implementations of NLPs. The simplest kind of language model is the

“n-gram” language model. An n-gram takes in sequence of n words and and estimates the

probability of a word based on its preceding context [26]. Building o↵ of “n-gram” model is

the Hidden Markov Models (HMM), which is a statistical technique that involves temporal

sequence prediction, recognition, or processing [27]. HMM’s ingest an entire sequence of

past events into account in prediction [27]. In these models, the system can exist in multiple
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hidden states, which cannot be observed directly. Instead, the hidden states are inferred

from the observable outputs generated by the system. These statistical approaches give

good results by learning from the pre-existing data [25].

As NLP has advanced and been brought into the clinical diagnostic space, there have been

several challenges. Generally the problem of clinical text inference is split into low-level and

high-level NLP tasks. Low-level tasks include sentence boundary detection with abbreviation

and titles, identifying individual tokens within a sentence since often times in biomedical texts

there are hyphens and forward slashes, morphological decomposition of compound words,

shallow parsing, and problem-specific segmentation [25]. NLP’s fall short of high-level tasks

in spelling/grammatical errors such as correct words being flagged as errors and named entity

recognition (NER) in failure to identify specific words and entities and categorizing them

[25].

Recently, with the abundance of text data, the problem of textual inference has transitioned

from rule and model-based techniques to large-data intensive large language models (LLMs)

[28] [29] [30] [31]. However, there are significant limitations to the personalized diagnosis from

the direct use of large language models such as GPT-4. ChatGPT, which is built on GPT-4

can o↵er solutions in regards to patient enquires, note-taking, decision making, and research

support. However, it falls short of originality, privacy, correctness, bias, and legality [32].

The ChatGPT tool is shown to provide enhanced productivity and expedite as a clinical

assistant but the information provided must continually be vetted by humans before it can

provide accurate and reliable information [32]. Beyond generalized tools like ChatGPT, there

are other models that are trained in the generalized biomedical domain. Pre-existing models

such as BioMistral, PubMedBERT, SciBERT, BioMegatron, and ClinicalBERT all appear

to be fine-tuned to a certain degree on biomedical information and in some cases rare disease

models [9] [33] [34] [35] [36].

Web platforms such as DxGPT exist to assist healthcare professionals in the diagnostic pro-
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cess for rare diseases [37]. DxGPT is tested with both real-world data from RAMEDIS and

Peking Union Medical College Hospital (PUMCH) and synthetic datasets from Chat-GPT

prompts. It is found that current LLMs can often e↵ectively leverage symptom descrip-

tions found in synthetic prompts and generate accurate diagnostic suggestions for diseases

[37]. When assessing the performance of LLMs on real-world datasets, the accuracy no-

tably dropped [37]. Both closed and open models were used to test between synthetic and

real-world datasets, with closed models performing more accurately on a scale of the rate

of which the top diagnostic suggestion matched the actual diagnosis [37]. The fundamental

understanding and takeaway is that the lack of direct clinical validation means that the

utility of AI models in the real-world diagnostic space remains untested.
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CHAPTER 4

Methods

4.1 BioMistral

BioMistral [9] is an open-source Mistral-based model [38] that is tailored for the biomedical

domain. It is a large language model that has been pre-trained on PubMed Central [9]. The

choice to select PMC Open Access Subset as the training set is due to its comprehensive

and freely accessible medical research papers [9]. The model architecture is inherited from

the standard transformer architecture [39] from Mistral. These include features such as

Grouped-Query Attention, Sliding Window Attention, and Rolling Bu↵er Cache [9] [40] [41].

Specific optimization parameters were selected as well as e↵orts to improve pre-training

e�ciency. Quantization techniques were also implemented that would enable the execution

of these LLMs on smaller devices due to the minimization of the memory requirements [9].

By pre-training Mistral (7.3 Billion parameters) on high quality PuBMed data and applying

e�cient quantization and merged model variants, BioMistral demonstrates its e�ciency and

strength in evaluating medical benchmarks.

4.2 Model Selection

For the purposes of this study, we selected BioMistral, a pre-trained, open-source model in

the biomedical domain. This selection is based o↵ of the superior performance BioMistral has
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in comparison to other large language model’s that are trained in the medical domain. When

comparing BioMistral’s performance on biomedical baseline task performances, it shows a

significant improvement over MedAlpaca 7B, MediTron-7B, and PMC-LLaMA 7B [9] [42]

[43] [44]. BioMistral takes an unique approach by incorporating quantized and merged model

variants. Quantization is a technique that is used to reduce the size of models and make

them more e�cient by lowering the precision of weights [9]. Merging techniques are also

used to combine di↵erent models to enhance the overall performance by isolating strengths

of individual models [9]. We opted out of not training an entire model from scratch because

BioMistral had been already pre-trained on a large corpus of data with promising results

[45] [46].

4.3 Fine-Tuning the Model

In order to train BioMistral on our ICD-10 [8] codes dataset, we first needed to fine-tune

the model. Several methods exist to fine-tune models and tailor to fit specific needs. Full-

parameter fine-tuning is a commonly chosen method that involves updating all of the pa-

rameters on a pre-trained model on a new dataset [47]. It can achieve high performance in a

given task however it is extremely computationally expensive. Feature-based fine-tuning is

an approach that transforms the original features to create a new feature representation [48].

It is less computationally intensive, however, it also fails to capture full complexity of the

target task. Many applications of natural language processing will rely on the adaptation

of one large-scale, pre-trained language model to multiple downstream applications [1]. The

downside of this common approach is that the new models contains the same amount of

parameters as the original model and often become critical deployment challenges [49]. For

example, GPT-3 required 175 billion trainable parameters [50].
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Figure 1: LoRA Architecture: Reparametrization diagram displays only A and B being

Trained instead of all Pretrained Weights. Image taken from [1].

We forego the above methods of full-parameter fine-tuning and feature-based fine-tuning

and instead select the Low-Rank Adaptation (LoRA) technique to fine-tune our generalized

BioMistral LLM. LoRA is a method that keeps pre-trained model weights fixed and adds

trainable rank decomposition matrices to each layer of the Transformer architecture. This

approach significantly decreases the number of trainable parameters needed for downstream

tasks [1]. By adapting only some parameters for new tasks, only a small number of task-

specific parameters is needed in addition to the pre-trained model for each task [1]. LoRA

is also selected over other pre-existing fine-tuning methods due to it’s e�ciency, scalability,

ability to avoid over-fitting, and flexibility. This idea is illustrated in Figure 1, in which we

can see that e�ciency is achieved by only training A and B layers. To execute the fine-tuning

and training, we imported specific modules as shown in Figure 2.
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Figure 2: Modules Imported to Fine-Tune and Train Model.

Following the importing of these modules, we also defined the training arguments as shown

in Figure 3.

Figure 3: Training Arguments used for the Model.

In Figure 3, the per device train batch size = 8 defines the number of training samples

processed in parallel on each device per training step. This batch size of 8 indicates that

each device will process 8 samples before it will update the model weights. The next argu-

ment gradient accumulation steps = 8 controls how many steps are accumulated before

performing a weight update. This will essentially increase the batch size without needing

12



more GPU memory. gradient checkpointing = True is also set to enable gradient check-

pointing which allows for saving memory by not storing intermediate activation during the

forward pass but recomputes them instead during the backward pass. learning rate =

2.0e�6 is a hyperparameter that is adjusted throughout this process to obtain the most op-

timal model to train the model. We will explore learning rates ranging from 2.0e�2 to 2.0e�7

throughout this study. logging steps = 5 will log metrics like loss and learning rate every

5 steps, allowing us to monitor the training process. The parameter num train epochs =

3 indicates the number of times the entire training dataset will be passed through the model.

This is another hyperparameter that will be adjusted throughout the process ranging from

1 to 3. The parameter max steps = �1 will set the maximum number of training steps

and a value of �1 means there is no limit and training will run for the ’num train epochs’

steps. save steps = 1000 defines that the model will save every 1000 steps to have inter-

mediate checkpoints. The parameter save total limit = 10 will limit the total number of

saved checkpoints to 10, ensuring that there is no excessive storage use and it only keeps

the most recent checkpoints. bf16 = True will enable the use of bfloat16 precision, which

can speed up the training and reduce memory usage while maintaining numerical stability.

The parameter lr scheduler type = “cosine” specifies the type of learning rate schedule

to use. In this case, a cosine scheduler gradually decreases the learning rate by following a

cosine function and it can help achieve better convergence by reducing the learning rate as

training will progress. The parameter warmup ratio = 0.1 sets the ratio of warm up steps

relative to the total number of steps. This warm up value will help increase the learning

rate at the beginning of training to avoid large updates that could derail and destabilize

the rest of the training process. The parameter evaluation strategy = ”epoch” ensures

the model evaluates at the end of each epoch. The parameter logging first step = True

denotes that logging metrics will be set up for the first training step, and so that it is set up

properly from the start. neftune noise alpha = 5 refers to the hyperparamter related to

the NEFTune (Neural Evolution of Sparse Networks) [51] methods where noise alpha con-
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trols the amount of noise during optimization. Collectively these arguments control various

aspects of the training process, including resource management, e�ciency, monitoring, and

checkpointing.

In addition to setting these argument we also implemented fine-tuning in LoRA as shown in

Figure 4.

Figure 4: LoRA Configuration Settings.

Parameter-E�cient Fine-Tuning (PEFT) methods like LoRA is designed to fine-tune large

language models with fewer parameters, making this process more streamlined and e�cient.

r = 16 is a parameters that specifies the rank of the low-rank adaption matrices used in

LoRA. In LoRA the weight matrices in the neural networks are factorized into two smaller

matrices, where r determines the dimensionality of these smaller matrices [1]. A high r would

mean more parameters are added, allowing the model to capture more complexity during

fine-tuning, a setting of 16 is a choice that captures both expressiveness and e�ciency.

lora alpha = 32 is a parameter that is a scaling factor that is applied to the output of

the low-rank matrices before they are added back to the original weights. This scaling will

help control the influence of the low-rank adaptation on the original model [1]. A value of

32 means that this adaptation will have moderate influence and will allow the fine-tuned

model to adjust its behavior without drastically altering the original pre-trained weights.
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lora dropout = 0.05 is a regularization technique that will be used to prevent overfitting

by randomly setting a fraction of the units to zero during training. A rate of 0.05 means that

5% of the units will be dropped out in the LoRA adaptation layer and will ensure that this

fine-tuning process will not rely too heavily on any single feature [1]. bias = none means

that no biases will be modified during the LoRA adaptation and this is done to simplfiy

the fine-tuning process because biases generally have less impact on the model performance

than weights [1]. The parameter task type = CAUSAL LM parameter specifies the type

of task the model is being fine-tuned for ”causal language modeling”, where the task is the

model predicts the next token in a sequence given the previous tokens. This will generate

coherent text sequences in a left-to-right fashion [1]. This configuration that is used to fine-

tune BioMistral is set up in a way that does not require a large number of parameters to be

updated, thus leading to a more e�cient but e↵ective model.

4.4 Training Data

The training set included a total of 103 fetal alcohol spectrum disorder or related develop-

mental disorder International Classification of Disease, Tenth Revision (ICD-10) codes [8].

ICD is a standardized system that is used to code diseases and medical conditions. It is

common practice for medical providers to provide ICD codes when diagnosing patients [7].

The exposure to a larger array of ICD codes related to FASD would allow BioMistral to get

a robust sense of relevant ICD diagnostic codes.
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Figure 5: Mapping between 20 diagnostic terms to ICD codes.

Figure 5 displays a sample of 20 ICD-10 codes that were used to as part of the overall training

set.

4.5 Training the Model

Using the ICD training set (Appendix Figure 30, 31, we allow BioMistral to get a robust

sense of ICD codes that are relevant to FASD. Then, With LoRA, we focused on varying two

specific hyperparameters, learning rate and epoch. This is a global optimization problem

where during each iteration a loss function is employed that measures the model’s deviation

from the ground truth and updates the parameter ✓, to minimize the loss function L✓ [52]. A

learning rate is dynamically changed in response to the estimated error. A learning rate that
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is too large can cause the model to be overfitted and the loss function to get stuck at a local

minimum or diverge. A learning rate that is too small may lead to a time-heavy convergence.

It is imperative that an optimal learning rate is chosen to produce stable results with each

model update and provides smooth convergence. An epoch is defined as the complete pass

through all of the datasets in one cycle. By varying between epoch one, two, and three,

we were able to successfully demonstrate how with a consistent epoch the model generalizes

well to novel data.

4.6 Queries

The queries are inputs to the testing script. These queries are examples of mock clinical

symptoms and or notes. We generated synthetic datasets based o↵ of example MedQA

Questions (Figure 6).

Figure 6: Example of MedQA Questions. Reproduced from [2].

Using these example questions as inputs into ChatGPT with the prompt “Diagnostic rea-

soning prompt for fetal alcohol spectrum disorder, frame it like this”, we compiled a list of

synthetic questions regarding fetal alcohol spectrum disorder. Figure 7 shows examples of
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several queries that were used to test the model that have been generated from ChatGPT

with the above input (See Appendix Figures 24, 25, 26 for all queries). The last prompt

shown is a “human-made” prompt based o↵ of common symptoms associated with FASD. It

was important for these queries to include both synthetic, wordier prompts as well as more

succinct prompts to compare how the model reacts to both styles of prompts.

Figure 7: Example of Queries given to the model.
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4.7 Testing the Model

In order to properly test the model, there was an instantiation for the model as shown in

Figure 8.

Figure 8: Example of the user prompt given to the model.

Allowing the model to receive context of it’s role was the appropriate way to approach testing

the model. The model takes in the appropriate trained model with a specific learning rate

and epoch and tests it using PyTorch and Hugging Face’s ’transformers’ for loading models

and tokenizers. The queries are processed and responses are then generated into a separate

text file. In addition to qualitative results we also generate logits, the raw and unnormalized

scores. Logits represent the model’s confidence in predicting each possible token in the

vocabulary in the given position in the sequence. Building o↵ of this, we used the softmax

function to softmax our logits to compute probabilities referring to Figure 4.1.

f(xi) =
exp(xi)P
j exp(xj)

(4.1)

The softmax function is an activation function that is used in neural computing [53]. It is

used to compute the probability distribution vector of real numbers and it produces an output

of a range of values between 0 and 1 with the sum of these probabilities totaling to 1 [53].

Previous literature has suggested that by softmaxxing the logits, we receive probabilities that

predict large language model correctness on multiple-choice Q&As [54]. While our study does

not use multiple-choice Q&As this paper su�ciently justifies the usage of softmaxxing logits
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to receive probabilities. Here, we explored the extrapolation of this method in softmaxxing

logits from the model generated ICD code response to a fetal alcohol spectrum disorder

diagnosis.
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CHAPTER 5

Results

This chapter describes the experimental results from the retrained model on a synthetic

dataset that was a mix of manually generated queries and those that were generated using

a LLM such as ChatGPT. The initial results from fine-tuning the model using Low-Rank

Adaptation of Large Language Models (LoRA) confirm the properties expected from LoRA

tuning. We expect that the newly trained models will not deviate too much from the initial

set of training [1].

5.1 Evaluation Loss Curves and Visualization

We started with a training set that included a total of 103 fetal alcohol spectrum disorder

or related neurodevelopmental disorder International Classification of Disease (ICD) codes

(Figure 5). It was important to include disorders whose symptoms were similar to that

of FASD to properly train the model to avoid misclassification or misdiagnosis. We first

examined the di↵erences in loss curves from varying learning rates and epochs to determine

which model, if any, would be over-fitted from this modification. Initially, the evaluation loss

curves that were generated from LoRA fine-tuning provided an intuitive idea as to whether

the learning rates promoted over-fitting or were optimally chosen.

We observed that there was an empirical threshold for the model, after which it went from
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performing extremely well to extremely poorly, and particularly over-fitted. While this was

an important discovery, it was an expected result as higher learning rates and greater number

of epochs appear to be associated with more poorly performing and over-fitted models. With

a learning rate of 2.0e�2 and an epoch of two and three, we can see a significant jump in the

poor performance in comparison to an epoch of one (Figure 9). This large increase in the

evaluation loss is attributed to a high learning rate and an epoch that is greater than one.

In contrast, if we choose a much smaller learning rate of 2e-6, we can see that the evaluation

loss remains constant throughout the increase of epochs (Figure 10).

Figure 9: Demonstrating the evaluation loss for a learning rate of 2.0e�2 across epochs at

1, 2, and 3.
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Figure 10: Demonstrating the evaluation loss at a learning rate of 2.0e�6 across epochs at

1, 2, and 3.
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Figure 11: Demonstrating the evaluation loss associated with di↵erent learning rates across

epochs at 1, 2, and 3.

We also plotted the evaluation losses for di↵erent learning rates across epochs used to fine-

tune the model as shown in Figure 11. We observed that as the learning rate begins to

decrease, we see a stabilization in the evaluation loss obtained from increasing the epochs.

These results demonstrate that the performance becomes more stable and the model is more

appropriately fitted for lower learning rates. This implies that a higher learning rate is asso-

ciated with a greater evaluation loss and that as learning rates decrease we see stabilization

in the evaluation losses.

By varying across epochs one, two, and three, we were able to empirically demonstrate

abrupt changes in the evaluation losses. Particularly, we see that the model performs well

with a consistent evaluation loss as learning rate decreases.
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5.2 Probability Distribution Models

We also visualized the probability distribution of the models trained on each various learning

rates and epochs. Visualization of probability distributions helped to identify if the model

underwent appropriate learning from the training data based on the distribution. To obtain

the probabilities, we first calculated the logits (log-odds) from the raw and un-normalized

scores. We applied a softmax function to the logits to obtain the probabilities. The visual-

ization of these probabilities clarified the likelihood of the model predicting the next token

and the level of confidence of the model. We can see that with the trained model of 2.0e�2

and epoch two (Figure 12) and epoch three have a nearly uniform logged distribution. This

uniformity implies that model has less certainty about which token should come next and

that it may see tokens as having equal probabilities of being the next correct token. The

model is repeating itself over and over again. The patterned distribution ultimately sug-

gested that the model was overfitted. Beyond certainty, a uniform probability distribution

model also revealed higher entropy in the predictions for what is an indication of a lack of

preference for a particular token. Further, in the logged, softmax, logits (probabilities) of

2.0e�2, 2.0e�3, 2.0e�4, 2.0e�5, 2.0e�6, and 2.0e�7, we saw a less uniform distribution

which implies more certainty in which token should come next. The model assigned higher

probabilities to a smaller number of tokens. This non-pattern suggested that the model was

preferential towards certain tokens (Figure 13).
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Figure 12: Learning Rate 2.0e�2 Epoch 2 Probability Distribution.
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Figure 13: Learning Rate 2.0e�6 Epoch 1 Probability Distribution.

By visualizing all the probability distributions on a single plot, we observed that there were

very minimal di↵erences in the probability distribution among all the learning rates except for

2.0e�2 with an epoch of two in Figure 14. These empirical results demonstrated that models

with lower learning rates have learned and predicted the next token more appropriately than

a model of a higher learning rate across larger epochs.
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Figure 14: Probability Distribution Among All Learning Rates.

The softmax function was applied to the raw logit values to yield the probability distributions

in Figure 14. We observed a cyclical nature of a large learning rate with an epoch greater than

one. This emphasizes the importance of an appropriate learning rate and epoch selection

when fine-tuning a large language model.

5.3 Kullback-Leibler Divergence Matrix

Kullback-Leibler (KL) divergence is a statistical measure that quantifies in bits how close

a probability distribution is to a model distribution [55]. Here, we also utilized the KL

divergence to demonstrate the perturbations between models.
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DKL(P k Q) =
X

i

P (i) log
P (i)

Q(i)
(5.1)

KL divergence is also referred to as relative entropy and plays a key role in machine learn-

ing, information theory, and statistics [56]. KL divergence is essentially the expectation of

the log di↵erence between the probability of the data from the original distribution and

the approximated distribution. In our case, we calculated the KL divergence between the

di↵erent epoch selections in all of the learning rates we chose. If the mutual information is

zero, it means that the variables are statistically independent. [55]. From comparing the KL

divergence graphs between a learning rate of 2.0e�2 to 2.0e�6, we saw large di↵erences in

magnitude of the KL values (Figures 15, 16).

Figure 15: KL Divergence 2.0e�2. Comparing between all combinations of epoch’s to

determine statistical independence.
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Figure 16: KL Divergence 2.0e�6. Comparing between all combinations of epoch’s to

determine statistical significance.

We observed slight perturbations in the distributions. We also observed that for large per-

turbations at a higher learning rate of 2.0e�2, the results were less meaningful, and higher

learning rates were associated with larger perturbations. Further experimental results that

showed larger perturbations with increased learning rates for di↵erent epochs are included

in the Appendix.

5.4 Qualitative Analysis

In addition to evaluating the model performance using KL divergence, we also performed

qualitative evaluations. The textual results from the various large language models that have

been trained on varying learning rates revealed interesting characteristics on how the models

performed with di↵erent prompts. The same models that showed less meaningful empirical
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results also showed less promising qualitative results. The model that was trained with

2.0e�2 learning rate with epoch two and epoch three produced indistinguishable, meaningless

repetitive text (Figure 17). The higher learning rate in combination with more than one

epochs cause the optimization process to become unstable, thus making the model less

likely to converge to an optimal solution. This process is what produces the repeated string

“INSTINST”, indicating that the model is stuck in a loop (Figure 17). These qualitative

results also reveal the importance of an optimal learning rate. A learning rate that is too

large will result in a model that cannot converge and thus will produce meaningless results.

Figure 17: Learning Rate 2.0e�2 with Epoch 2. Qualitative results from query number

one Appendix Figure 24.
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After lowering the learning rate to 2.0e�6 and selecting an appropriate number of epochs,

we qualitatively observed more appropriate ICD codes generated by the model (Figure 18).

Figure 18: Learning Rate 2.0e�6 with Epoch 1. Qualitative result from query number one

Appendix Figure 24.

5.5 Confusion Matrix Analysis

We also demonstrate qualitative results through the generation of confusion matrices that

evaluate model performance. A confusion matrix (Figure 19) is used to evaluate the quality

of a classifier via true positives and false negatives and the cross-classification performance

between the predicted and actual decisions in a tabular form [3].
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Figure 19: 2-Class Confusion Matrix [3].

A confusion matrix does not assume distributional parameters and will instead directly

use observed counts of predictions and actual outcomes to summarize how well a model

performs. It will only include knowledge up to a certain level of granularity, the level of

detail or precision in the data used to make predictions, a�rming that the counts of True

Positives, False Positives, True Negatives, and False Negatives is based on the available set

of data [3].

When we tested each individual query, we noticed that the model’s response of the number

of ICD code outputs varied depending on the query. This is shown in Figure 23, where

the summation of the columns for each row is the number of ICD-10 codes returned by the

model.

As an example, we show results from a single query by displaying a confusion matrix result

from a learning rate of 2.0e�6 in Figure 20.
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Figure 20: Confusion Matrix with True and Predicted Labels for 2.0e�6, Epoch 1. The

results that match positive and positive, and negative and negative are considered to be a

match between the actual and predicted model.

The confusion matrix in Figure 20 shows that out of the 16 ICD-10 code responses, 10 match

the true predicted labels. There are 6 false positives. This is an interesting result because it

demonstrates that the trained model will tend towards over-fitting. It attempts to predict an

ICD-10 diagnostic code even if it isn’t entirely fighting. However, we do not see any results

in the false negative realm.
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Figure 21: Confusion Matrix with True and Predicted Labels for 2.0e�2, Epoch 2. The

results that match positive and positive, and negative and negative are considered to be a

match between the actual and predicted model.

For a higher learning rate of 2.0e�2, the confusion matrix in Figure 21 does not show any

correct or predicted labels. This is expected with such a higher learning rate that causes

model overfitting and results in the failure to produce coherent diagnostic ICD-10 codes.
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Figure 22: Confusion Matrix for All 50 Queries. The results that match positive and

positive, and negative and negative are considered to be a match between the actual and

predicted model.

Finally, we evaluated the model for 50 generated queries. From the confusion matrix shown

in Figure 22, we observed that overall the model performed quite well. We suggest that the

false-positive results may occur due slight over-fitting of the model. However, a key takeaway

of this large-set confusion matrix is that this model often predicts the correct ICD code with

room for over-fitting (Figure 23).
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Figure 23: Confusion Matrix Table.
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CHAPTER 6

Discussion

In this study we investigated the use of large language models for prediction of ICD-10 codes

for fetal alcohol spectrum disorder. We leveraged online resources of ICD-10 codes to create

a robust dataset to train and fine-tune BioMistral [9]. The parent model of BioMistral is

Mistral 7B [38], a pre-existing large language model that has been tailored for the medical

domain. By training BioMistral with our curated set of ICD-10 codes and testing on both

synthetic clinician notes and generalized symptoms, we are able to demonstrate the impor-

tance of choosing an optimal learning rate and epoch selection when using LoRA to fine-tune

a model. Our study goal was to use both statistical frameworks and qualitative analysis to

emphasize the important of the hyperparameter selection behind using LoRA to fine-tune a

large language model in the neuroscience diagnostic space. A model that has been optimally

trained will have a better success at identifying ICD codes and that has been demonstrated

both quantitatively and qualitatively.

The current study is limited by our training set, relying on already fixed ICD-10 codes. They

are binary, i.e. either a patient displays symptoms or they do not. Fetal alcohol spectrum

disorder’s symptoms and behaviors are incredibly heterogeneous and exhibit greater range,

so ICD codes may fail to capture the significance of each symptom. ICD codes are also not

weighted, in the case of individuals with FASD, there are certain markers and symptoms

that are incredibly indicative of FASD. Our test set is also composed of synthetic diagnostics

and human-made generalizable symptoms. Previous literature has shown that open-sourced
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large language models tend to do a better job at deciphering diagnostics from a synthetic

dataset in comparison to a real-world dataset [16]. Because our training set was limited by

the characteristics of ICD codes, we note that our synthetic datasets may not have fully

exploited the large language model’s capabilities.

In the future, access to real clinician notes for patients with fetal alcohol spectrum disorder

will greatly improve the testing of the model. The limitations of synthetic and human-made

datasets need to be considered to accurately and e�ciently determine whether or not the

fine-tuned BiomMistral large language model is capable of robust diagnostics. This work

presented preliminary results showing the importance of the hyperparameters related to

LoRA fine-tuning of these models as it relates to synthetic data.

Overall, we suggest for more large language models to be trained on ICD codes and physi-

cian notes related to the disease of interest to further push for a standardized and e�cient

diagnosing process for physicians. The high miss-diagnosed rate of fetal alcohol spectrum

disorder can be tackled through actively leveraging the use of large language models to aid

in diagnostics as well as being used as an AI-powered healthcare platform for parents with

children suspected of having fetal alcohol spectrum disorder.
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Figure 24: Queries Part 1.
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Figure 25: Queries Part 2.
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Figure 26: Queries Part 3.
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Figure 27: KL Divergence 2e-3.

Figure 28: KL Divergence 2e-4.
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Figure 29: KL Divergence 2e-5.
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Figure 30: 51 ICD Codes.
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Figure 31: 52 Additional ICD Codes.
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