
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Methods for Inference and Prediction in Nonlinear Dynamical Systems

Permalink
https://escholarship.org/uc/item/8qw5w0bh

Author
Fang, Zheng

Publication Date
2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8qw5w0bh
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Methods for Inference and Prediction in Nonlinear Dynamical Systems

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Physics

by

Zheng Fang

Committee in charge:

Professor Henry D. I. Abarbanel, Chair
Professor Gert Cauwenberghs
Professor Kenneth A. Intriligator
Professor Gabriel A. Silva
Professor Congjun Wu

2021

Copyright

Zheng Fang, 2021

All rights reserved.

The dissertation of Zheng Fang is approved, and it is acceptable in

quality and form for publication on microfilm and electronically.

University of California San Diego

2021

iii

DEDICATION

To my family.

iv

EPIGRAPH

All models are wrong,

but some are useful.

—George E. P. Box

To unify knowing and acting.

—Wang Yangming (1472-1529)

v

TABLE OF CONTENTS

Dissertation Approval Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . viii

List of Tables . x

Acknowledgements . xi

Vita . xii

Abstract of the Dissertation . xiii

Chapter 1 Introduction . 1
1.1 The Information Transfer Problem 2
1.2 Example Physical Systems . 6

1.2.1 Hodgkin-Huxley Model 6
1.2.2 Shallow-Water Equations 9

1.3 Outline of the Dissertation . 10

Chapter 2 A Method for Estimating States and Parameters in Dynamical Models 12
2.1 State-Space Representation . 13
2.2 The Action and Expected-Value Integrals 18

2.2.1 Derivation of the Action 18
2.2.2 First Partial Derivatives for Numerical Calculations . . . 23
2.2.3 The Goal Revisited . 25

2.3 Hamiltonian Monte Carlo . 26
2.3.1 General Idea of HMC-Like Sampling 27
2.3.2 HMC Itself . 30
2.3.3 HMC in Practice . 33

2.4 Precision Annealing . 36
2.4.1 Initialization in Path Space 37
2.4.2 Procedure for Gradually Enforcing the Model 39

vi

Chapter 3 Numerical Results on Physical Systems 42
3.1 The Lorenz96 Chaotic Dynamical System 43

3.1.1 Data Preparation . 46
3.1.2 Results from PAHMC; L = 7 47
3.1.3 Results from PAHMC; L = 8 49
3.1.4 Results from PAHMC; L = 10 54
3.1.5 Results from PAHMC; L = 12 54
3.1.6 Random-Proposal Monte Carlo Compared to PAHMC . . 59

3.2 The Hodgkin–Huxley Neuron Model 65
3.2.1 Data Preparation . 68
3.2.2 Results from PAHMC . 72

3.3 Python Implementations . 77

Chapter 4 Discussion . 78
4.1 Why State Space? . 78

4.1.1 The Necessity of Estimating Every Degree of Freedom . . 80
4.1.2 The Harsh Geometry of the Initial-Condition Space . . . 81

4.2 Computational Complexity of PAHMC 85
4.3 Summary . 87

Chapter 5 A Novel Approach for Training Artificial Neural Networks 92
5.1 Motivation and Proposal . 93

5.1.1 Notation . 94
5.1.2 Action . 95
5.1.3 Example Activation Functions 99

5.2 Numerical Results . 100
5.2.1 Precision Annealing with HMC 101
5.2.2 Precision Annealing with Laplace’s Method 102

5.3 Future Work . 106

Bibliography . 107

vii

LIST OF FIGURES

Figure 1.1: Display of the attractor of the Lorenz63 system and the evolution of the
three dynamical variables of that system. Two of the three variables are
designated as “unobserved.” . 5

Figure 1.2: The simulated transmembrane voltage in response to a stimulating
current. (a) The noisy voltage. (b) The applied stimulating current as
an external signal. 7

Figure 2.1: A visual representation of the time window t0 ≤ t ≤ tfinal during which
L-dimensional observations y(τk) are made at times τk = t0 + nk ·∆t
for k = 0, . . . , F . 16

Figure 2.2: A two-dimensional example that compares two different methods for
integrating the Hamilton’s equations. In both cases, the Hamiltonian is
H(x, p) = x2

2
+ p2

2
. 32

Figure 2.3: A comparison between Hamiltonian Monte Carlo and random-walk
Monte Carlo. The overall acceptance rate for HMC is 0.998. The overall
acceptance rate for random-walk Monte Carlo is 0.56. 35

Figure 3.1: A three-dimensional projection of a D = 20 Lorenz96 time series with a
forcing parameter ν = 8.17. The integration interval is ∆t = 0.025, and
the length of the time series presented is 1000. 45

Figure 3.2: Action, measurement error, and model error for PAHMC on the Lorenz96
model with D = 20 and L = 7. Each step in the Precision Annealing
procedure is associated with one value of Rf 48

Figure 3.3: Predictions by PAHMC on the Lorenz96 model with D = 20 and L = 7.
(a) Display of results for an observed state variable, x7(t). (b) Display
of results for an unobserved state variable, x14(t). 50

Figure 3.4: Action, measurement error, and model error for PAHMC on the Lorenz96
model with D = 20 and L = 8. Each step in the Precision Annealing
procedure is associated with one value of Rf 51

Figure 3.5: Predictions by PAHMC on the Lorenz96 model with D = 20 and L = 8.
(a) Display of results for an observed state variable, x9(t). (b) Display
of results for an unobserved state variable, x12(t). 53

Figure 3.6: Action, measurement error, and model error for PAHMC on the Lorenz96
model with D = 20 and L = 10. Each step in the Precision Annealing
procedure is associated with one value of Rf 55

Figure 3.7: Predictions by PAHMC on the Lorenz96 model with D = 20 and L = 10.
(a) Display of results for an observed state variable, x17(t). (b) Display
of results for an unobserved state variable, x14(t). 56

Figure 3.8: Action, measurement error, and model error for PAHMC on the Lorenz96
model with D = 20 and L = 12. Each step in the Precision Annealing
procedure is associated with one value of Rf 57

viii

Figure 3.9: Predictions by PAHMC on the Lorenz96 model with D = 20 and L = 12.
(a) Display of results for an observed state variable, x14(t). (b) Display
of results for an unobserved state variable, x11(t). 58

Figure 3.10: Action, measurement error, and model error for Random-proposal Monte
Carlo on the Lorenz96 model with D = 20 and L = 5. Each step in the
Precision Annealing procedure is associated with one value of Rf 61

Figure 3.11: Action, measurement error, and model error for Random-proposal Monte
Carlo on the Lorenz96 model with D = 20 and L = 12. Each step in
the Precision Annealing procedure is associated with one value of Rf . . 62

Figure 3.12: Prediction results using Random-proposal Monte Carlo for the Lorenz96
model with D = 20 and L = 12. (a) Results for an observed dynamical
variable x2(t). (b) Results for an unobserved dynamical variable x20(t). 64

Figure 3.13: The external stimulus current, Iinj(t), applied on the Hodgkin–Huxley
model. The time series is the first dimension x(t) of the solution to the
Lorenz63 dynamical system. 70

Figure 3.14: The generated data for the Hodgkin–Huxley neuron model. V (t) is
observed and has noise. The three gating variables, m(t), h(t), and n(t)
are unobserved and need to be estimated. 71

Figure 3.15: Action level and model error for PAHMC on the Hodgkin-Huxley model
with D = 4, L = 1, and M = 5000. Each step in the Precision Annealing
Procedure is associated with one value of β. 74

Figure 3.16: Predictions by PAHMC on the Hodgkin-Huxley model with D = 4,
L = 1, and M = 5000. The estimated and predicted values for the four
state variables are displayed. 76

Figure 4.1: Two attempts to forward-integrate a fully observed Lorenz96 system
without first completing the transfer of information. These results have
no predictive power. 82

Figure 4.2: A two-dimensional projection of the Rf = ∞ action manifold of a
D = 20 Lorenz96 system. The horizontal axes represent perturbations
on x1(0) and x15(0), respectively. 84

Figure 5.1: A schematic of the structure of a feed-forward network in the presence
of model error. The layer index increases from left to right. Each layer
is a combination of a blue region and a red region. 97

Figure 5.2: Action, loss, and classification accuracy regarding the randomly gener-
ated data set. The horizontal axis represents both steps within each Rf

and different Rf values. 104
Figure 5.3: Action, loss, and classification accuracy regarding the MNIST database

of handwritten digits. The horizontal axis represents both steps within
each Rf and different Rf values. 105

ix

LIST OF TABLES

Table 3.1: The true parameters of the Hodgkin–Huxley model. 68
Table 3.2: The estimated parameters of the Hodgkin–Huxley model. 73

Table 5.1: Classification accuracy for three values of Rf 102

x

ACKNOWLEDGEMENTS

It is hard to believe that a pleasant journey through which I am indebted to many

is about to conclude.

My first thanks go to my advisor, Professor Henry Abarbanel, who is in many

aspects a role model to me. His dedication to physics has always been an inspiration; his

guidance and support made me a scientist, and his knowledge and kindness showed me

what it is like to be an amazing mentor.

I would like to thank Professors Gert Cauwenberghs, Kenneth Intriligator, Gabriel

Silva, and Congjun Wu of my dissertation committee for their valuable time and suggestions.

I would also like to thank Zhe An, Kangbo Hao, Nirag Kadakia, Anna Miller, Jason

Platt, Paul Rozdeba, Sasha Shirman, Adrian Wong, and other colleagues in the research

group for upholding a stimulating environment for doing science.

I want to thank all my friends at UCSD for making graduate school more colorful.

I thank Sharmila Poddar and Catherine McConney for all their help.

Finally, I owe countless thanks to my grandparents, parents, and Nan for their

unwavering support.

This dissertation contains material as it appears in Zheng Fang, Adrian S. Wong,

Kangbo Hao, Alexander J. A. Ty, and Henry D. I. Abarbanel: Precision annealing Monte

Carlo methods for statistical data assimilation and machine learning, Physical Review

Research, 2(1), 2020. The dissertation author was the primary investigator and author of

this paper.

xi

VITA

2014 Bachelor of Science,
University of Science and Technology of China

2014 Visiting Researcher,
Brown University

2021 Doctor of Philosophy,
University of California San Diego

PUBLICATIONS

Zheng Fang, Adrian S. Wong, Kangbo Hao, Alexander J. A. Ty, and Henry D. I. Abarbanel.
Precision annealing Monte Carlo methods for statistical data assimilation and machine
learning. Physical Review Research, 2(1):013050, 2020.

Alexander J. A. Ty, Zheng Fang, Rivver A. Gonzalez, Paul. J. Rozdeba, and Henry D.
I. Abarbanel. Machine learning of time series using time-delay embedding and precision
annealing. Neural Computation, 31(10):2004–2024, 2019.

xii

ABSTRACT OF THE DISSERTATION

Methods for Inference and Prediction in Nonlinear Dynamical Systems

by

Zheng Fang

Doctor of Philosophy in Physics

University of California San Diego, 2021

Professor Henry D. I. Abarbanel, Chair

Transferring information from data to models is crucial to many scientific disciplines.

Typically, the data collected are noisy, and the total number of degrees of freedom of the

model far exceeds that of the data. For data assimilation in which a physical dynamical

system is of interest, one could usually observe only a subset of the vector state of the

system at any given time. For an artificial neural network that may be formulated as a

dynamical model, observations are limited to only the input and output layers; the network

topology of the hidden layers remains flexible. As a result, to train such dynamical models,

it is necessary to simultaneously estimate both the observed and unobserved degrees of

freedom in the models, along with all the time-independent parameters. These requirements

xiii

bring significant challenges to the task.

This dissertation develops methods for systematically transferring information from

noisy, partial data into nonlinear dynamical models. A theoretical basis for all these methods

is first formulated. Specifically, a high-dimensional probability distribution containing the

structure of the dynamics and the data is derived. The task can then be formally cast

as the evaluation of an expected-value integral under that probability distribution. A

well-studied sampling procedure called Hamiltonian Monte Carlo is then introduced as

a functioning part to be combined with Precision Annealing, a framework for gradually

enforcing the model constraints into the probability distribution.

Numerical applications are then demonstrated on two physical dynamical systems.

In each case, inferences are made for both the model states within the observation window

and the time-independent parameters. Once complete, the predictive power of the model

is then validated by additional data. Following these is a discussion of the role of the

state-space representation.

The dissertation concludes with an exploration of new methods for training artificial

neural networks without using the well-known backpropagation procedure. Given the

equivalence between the structure of an artificial neural network and that of a dynamical

system, the aforementioned theoretical basis is applicable in this arena. The computational

results presented indicate promising potentials of the proposed methods.

xiv

Chapter 1

Introduction

An important question that remains central to many scientific disciplines is how

to transfer information from data to models effectively. In a broad sense, data are a

collection of observations that are not only noisy but also almost certainly incapable of

representing all the causal factors that produced them. A model can be constructed with

physical or statistical principles, or a combination thereof. To physicists, a model often

refers to a dynamical system that describes the evolution of certain state variables. When

the evolution mechanism itself is time-independent, the model usually takes the form of a

set of autonomous differential equations. Instead, when the system is open to or driven

by external signals, the differential-equation representation is still valid, but the model

equations are no longer autonomous. On the other hand, to statisticians, a model is usually

a data-trained function that can produce an informed response when given input from the

same distribution as the training data. Balancing the trade-off between the bias and the

variance of a model is an eternal task when the model is non-physical so that its flexibility

needs to be adjusted for optimal performance.

Regardless of how the model is constructed, a common goal of all forms of data

analysis involves completing the model using information extracted from observations.

1

Upon a successful transfer of information, the completed model then serves as an inferential

or predictive device that can be put into production when needed.

This dissertation proposes methods that can accomplish the goal of information

transfer for a wide range of data sets and models. We first discuss the theory behind all

these methods as well as why they are well suited for tackling the typical challenges that

could arise. We then study the applications of the proposed methods in both physical

dynamical systems and artificial neural networks that can be formulated as dynamical

systems.

1.1 The Information Transfer Problem

As noted above, bridging observations with a physical or statistical model is a highly

nontrivial task. For data, they are noisy and incomplete. For models, we can never be sure

of them being precise descriptions of the data-generating dynamics, and sometimes we do

not even know how flexible they should be.

For example, in numerical weather prediction, one has recordings of meteorological

variables such as air pressure and temperature at several locations for some time. The

model consists of a set of fluid-dynamics equations with the number of degrees of freedom

far exceeding the size of the observations. The reason for the difference between the size of

the model and that of the observations is that the model needs to include variables that

cannot be directly observed, such as winds and temperatures aloft at specific altitudes.

The task, then, is to estimate all the observed and unobserved degrees of freedom of the

model along with all the time-independent model parameters. Once done, the completed

model may be used for weather forecasting.

Another example is machine learning. Most models that belong to this category do

not rely on physical laws, but they allow greater flexibility in the formulation and often

2

require a procedure called model selection. In linear regression, one is free to introduce

as many feature variables as needed to interpret the data. However, either too few or too

many features will lead to poor model performance. In training artificial neural networks

for classification, one can only “observe” the training samples at the input and output

layers. For hidden layers, the network topology remains flexible, and the states and the

inter-layer weights are to be determined by the data.

Generally, the type of information transfer that involves physical dynamical models

is called data assimilation [1, 2, 3, 4, 5, 6], as described in the first example above. In the

second example, artificial neural networks do not represent physical processes; nonetheless,

they too demand information be transferred from data [7, 8, 9, 10, 11, 12, 13, 14].

These two seemingly distinct challenges, namely data assimilation and deep learning,

have been shown to be equivalent in their underlying structure [15]. In artificial neural

networks, the activation functions that direct the states of nodes from layer to layer are

equivalent to the rules that govern the temporal evolution of dynamical variables in physical

systems. This crucial equivalence enables us to study the theory of information transfer that

covers both data assimilation and deep learning. Moreover, we could propose numerical

approaches for both fields that share the same theoretical basis.

In this dissertation, we formulate the information transfer problem as the evaluation

of an expected-value integral in high-dimensional space. This formulation applies in both

data assimilation and deep learning [16, 17]. We also derive numerical approaches from

such formulation and apply them in a variety of computational problems.

For the dynamical systems to be discussed in this dissertation, the most general

form reads

dxa(t)

dt
= Fa (x(t), t,θ) , a = 1, . . . , D, (1.1)

where x(t) = (x1(t), . . . , xD(t)) is the D-dimensional vector state of the system at time t,

Fa (·) is the rule for advancing in time for the a-th component, and θ is the collection of

3

time-independent parameters. Eq. (1.1) can represent both physical systems and artificial

neural networks, as we will see in later chapters.

Let us now consider a motivating example. In 1963, Edward Lorenz proposed

a dynamical system (hereinafter referred to as Lorenz63) of three ordinary differential

equations [18], which is among the simplest representations of a deterministic chaotic

flow and has been widely used for testing methods in nonlinear dynamics. The system

is an abstraction from the partial differential equations of thermal convection in lower

atmosphere derived by Saltzman [19, 20]. The equations for Lorenz63 are

dx(t)

dt
= σ · [y(t)− x(t)] ,

dy(t)

dt
= x(t) · [ρ− z(t)]− y(t),

dz(t)

dt
= x(t) · y(t)− βz(t),

(1.2)

where x(t), y(t), and z(t) are dynamical variables that are the components of the vector

state of the system, and σ, ρ, and β are constant parameters. We choose σ = 10, ρ = 28,

and β = 8/3 for this example. At these or nearby values, the system exhibits chaotic

behavior, resulting in localized, non-periodic motion in the space spanned by x, y, and z.

In general, chaos is irregular in time, and it has structure in phase space [20].

Fig. 1.1(a) shows the trajectory (or “attractor”) of the vector state of Lorenz63

as a result of the chosen parameters. Assuming we are standing on the x-axis and can

only record a noisy version of x(t) as shown in Fig. 1.1(b), and we do not know anything

about the parameters or the other two components as shown in Fig. 1.1(c) or (d), can we

reconstruct the attractor by simultaneously estimating all three components of the vector

state within the observation window 0 ≤ t ≤ 30 as well as the parameters σ, ρ, and β?

This question is so important that it clearly represents the goal for all the methods and

applications to be presented in this dissertation.

4

x

30 20 10 0 10 20 30

y

30
20

10
0

10
20

30

z

0
10
20
30
40
50(a)

-15
-5
5

15

x(
t)

(b)

-15
-5
5

15

y(
t)

(c)

0 5 10 15 20 25 30
Time (a.u.)

10
20
30
40

z(
t)

(d)

Figure 1.1: Display of the attractor of the Lorenz63 system and the evolution of
the three dynamical variables of that system. (a) A plot of the numerical solution to
Eq. (1.2) with σ = 10, ρ = 28, and β = 8/3. The discretization interval is ∆t = 0.01,
and the number of steps shown is 5000. (b) Dynamical variable x(t) for the first 3000
steps. A Gaussian noise was added. (c) Dynamical variable y(t), which is designated as
“unobserved.” (d) Dynamical variable z(t), which is designated as “unobserved.”

5

1.2 Example Physical Systems

In this section, we exhibit two physical dynamical systems that are representative

of what is generally of interest. One is a biophysical model, and the other is a geophysical

model. Although deep learning is another focus of this dissertation, the corresponding

discussion is deferred to Chapter 5.

1.2.1 Hodgkin-Huxley Model

We show here a model that is useful for determining the electrophysiological proper-

ties of isolated neurons from the HVC nucleus of an avian birdsong system.

The biophysical equations describing the dynamics of neurons were established by

work done before and after World War II. Alan Hodgkin and Andrew Huxley [21, 22, 23]

are two of the researchers whose names are prominent in understanding that (1) equations

imposing current conservation on the ions flowing into and departing from the neuron

body and (2) equations capturing the voltage-dependent permeability of the cell membrane

to these ions would collectively provide a quantitative framework for describing neuronal

dynamics. Fig. 1.2 shows a simulated time series of the transmembrane voltage in response

to a stimulating current, Iinj(t). The voltage and the current are the only two pieces of

information that can be experimentally observed.

Hodgkin and Huxley considered two ion channels for sodium and potassium ions

flowing through the cell membrane. They also introduced a “leak” channel describing other

aspects of neuron behavior. The model they proposed have the form

C
dV (t)

dt
= gNa m(t)3 h(t) (ENa − V (t))

+ gK n(t)4 (EK − V (t)) + gL (EL − V (t))

+ IDC + Iinj(t) .

(1.3)

6

0 100 200 300 400 500 600 700 800 900 1000
Time (ms)

-125

-75

-25

25

75

V(
t)

(a)

0 100 200 300 400 500 600 700 800 900 1000
Time (ms)

40

20

0

20

40

St
im

ul
us

(b)

Figure 1.2: The simulated transmembrane voltage in response to a stimulating current.
(a) The noisy voltage within the window of 0 ≤ t ≤ 1000ms. There any many spikes in
the time series. (b) The applied stimulating current, Iinj(t), as an external signal for
the Hodgkin-Huxley neuron model.

7

The three voltage-dependent “gating” variables, i.e., Aj(t) = m(t), h(t), n(t), 0 ≤

Aj(t) ≤ 1 are taken to satisfy the first-order kinetics

dAj(t)

dt
=
Aj0(V (t))− Aj(t)

τj(V (t))
. (1.4)

The parameters gNa, gK, and gL in the voltage equation, Eq. (1.3), are constants while

the gating variables are state variables of the model. Aj0(V (t)) and τj(V (t)) are voltage-

dependent functions. The first is dimensionless and sets the scale for the gating variables,

and the second is a voltage-dependent timescale for the activity of the gating variables.

The Hodgkin-Huxley model is a dynamical system with rich behavior. In laboratory

experiments one can directly measure the transmembrane voltage V (t), but no instruments

are available to measure the gating variables. In the general language used throughout this

dissertation, this means that the three state variables Aj(t) are unobserved.

An experiment consists of selecting a stimulating current Iinj(t), which is typically

known. With only V (t) observed, the challenge is to estimate all the Aj(t)’s in Eq. (1.4)

over an observation window [t0, tfinal] as well as all the fixed parameters in the two equations

above. We also estimate V (t) over this interval as it is always noisy.

Once this is done, the model for the neuron is complete, and with a set of initial

conditions {V (tfinal), Aj(tfinal)} at t = tfinal, we may solve this initial value problem for t ≥

tfinal. Assessing the quality of the information transfer comes from solving Eqs. (1.3) and (1.4)

for t ≥ tfinal, and comparing the model output V (t) with observed values in a prediction

window. An earlier result that used this model can be found in Ref. [24].

Why should we expect the transfer of information will work? Because the model is

nonlinear in the state variables that are generically coupled together through the model.

Information is passed from the data through the observed degrees of freedom, and the

unobserved ones can be determined with the help of the coupling in the model.

8

1.2.2 Shallow-Water Equations

Here we briefly discuss estimating the number of required observations in the

shallow-water equations, a core component of many numerical weather models.

As the depth of the atmosphere or the ocean fluid layer is markedly less than

the earth’s radius, the shallow-water equations for two-dimensional flow are an excellent

approximation to the fluid dynamics in such a geometry [25, 26]. Three fields on a mid-

latitude plane describe the fluid flow: the east-west velocity u(r, t), the north-south velocity

v(r, t), and the height of the fluid h(r, t), with r = {x, y}. The fluid is taken as a single,

constant density layer and is driven by wind stress τ(r, t) at the z = 0 surface through

an Ekman layer. These physical processes satisfy the following dynamical equations with

u(r, t) ≡ {u(r, t), v(r, t)}:

∂u(r, t)

∂t
=− u(r, t) · ∇u(r, t)− g∇h(r, t)

+ u(r, t)× f(y)ẑ + A∇2u(r, t)− εu(r, t),

∂h(r, t)

∂t
=−∇ · [h(r, t) u(r, t)]− ẑ · curl

[
τ(r, t)

f(y)

]
.

(1.5)

The Coriolis force is linearized about the equator with f(y) = f0 + βy and the wind-stress

profile is selected to be τ(r) = {F cos(2πy)/ρ , 0}. The parameter A represents the viscosity

in the shallow-water layer, ε is the Rayleigh friction, and ẑ is the unit vector in the z

direction. With some chosen parameters, the shallow-water flow is chaotic, and the largest

Lyapunov exponent for this flow is λmax = 0.0325 h−1 ≈ 1/31 h−1.

An earlier work [27] analyzed this flow, using the enstrophy-conserving discretization

scheme from Ref. [28], on a periodic grid of size N2 for N = 16, 32, 64 with periodic boundary

conditions. In that work, given a grid on which to solve the fluid-dynamical equations, 3N2

values of {u(x, y, t), v(x, y, t), h(x, y, t)} on the (x, y) grid were generated, and ∆t = 36 s

was taken to be the time step for the solution.

9

In Ref. [27], Whartenby et al. performed a “twin experiment” where they solved

Eq. (1.5) on a grid and added noise to each of the D = 3N2 output time series. These

were stored away as the data. A subset of these data, an L-dimensional time series, was

presented to the model using a “nudging” data assimilation method [29]. They estimated

that approximately 70% of the D = 3N2 degrees of freedom must be observed in order

to synchronize the model output with the data. Specifically, they looked at N = 16 and

L = 524. In the twin experiments, they knew all D = 768 time series on the grid, so they

could compare the solutions to Eq. (1.5) to the estimations from the data assimilation

procedure. They concluded that for L < 524 the estimations differed significantly in the

observation window as well as in the prediction window. When L ≥ 524, this did not

happen.

1.3 Outline of the Dissertation

In this chapter, we set the scope of this dissertation. First, we discussed the

importance of transferring information from noisy, partial data into dynamical system-like

nonlinear models, including physical dynamical systems and artificial neural networks. We

previewed the typical challenges and gave a motivating example. We followed up with two

physical dynamical systems that exemplify the the data assimilation procedure.

Chapter 2 formulates the theoretical basis of the methods proposed in this disserta-

tion. It begins with introducing a general framework of expressing discretized dynamical

models in the state space; a diagram is given in Fig. 2.1. Then, in Sec. 2.2, a high-

dimensional probability distribution, denoted by π(X |Y), that contains the data and

the structure of the dynamics of interest is derived. The action, A(X), which satisfies

π(X |Y) ∝ exp[−A(X)], has a convenient form that separates the data with the nonlinear

dynamical structure. The problem of information transfer is then cast as the evaluation

10

of an expected-value integral regarding A(X). After that, Secs. 2.3 and 2.4 assemble the

pieces and formally presents the Precision Annealing Hamiltonian Monte Carlo (PAHMC)

method that can accomplish the goal of transferring information.

In Chapter 3, we present a series of numerical results that validate the efficacy of the

PAHMC method. In Sec. 3.1, the first set of results are obtained on a nonlinear dynamical

model widely used in geophysics called Lorenz96. It exhibit chaotic solutions at our choice

of the parameter value. Specifically, the model we use has 4001 degrees of freedoms, and

we use PAHMC to estimate all of them. We explore several situations in which only a

subset of the 4001 degrees of freedom can be observed. The estimation results are then

tested by comparing the predictions with data outside the observation window. The second

model we study in Sec. 3.2 is the Hodgkin-Huxley model that describes the voltage and

other dynamics of a neuron driven by an external current. The model has 20018 degrees of

freedom, and about a quarter of that number is observable. Nonetheless, PAHMC gives

accurate estimation and prediction results.

Chapter 4 addresses several points related to the theoretical and computational

aspects of the proposed methods. In Sec. 4.1, we show that one cannot expect to work only

in the initial-condition space and still have a meaningful transfer of information. This point

is illustrated in Fig. 4.2. We also show that one also needs to estimate the observed degrees

of freedom, despite knowing a noisy version of them. Sec. 4.2 discusses computational

efficiency and parallelization of PAHMC. Sec. 4.3 is a summary of the previous chapters.

Chapter 5 proposes an approach for training deep learning models, i.e., artificial

neural networks, without involving the widely used backpropagation technique. In Sec. 5.1,

we first explain the need for an alternative to backpropagation and then formally describe

the proposed approach. Sec. 5.2 demonstrates the advantages of the novel approach through

a series of numerical results. The chapter concludes with a discussion of future work.

11

Chapter 2

A Method for Estimating States and

Parameters in Dynamical Models

The focus of this dissertation is how to accurately and efficiently transfer information

from noisy, incomplete data into a proprietary dynamical model. As we have seen in

Chapter 1, this problem is often referred to as data assimilation [1, 2, 3, 4, 5, 6, 30].

It shares the same goal with many statistical learning procedures: learning from data

and making inferences and predictions once the learning is complete. Nonetheless, data

assimilation differs from pure statistical learning [31, 32] in many significant ways.

Most importantly, data assimilation assumes an underlying physical dynamical model

that explains the time evolution of data. The model can have errors, but it still needs to

describe how to drive the dynamics forward in time given information on the past states. In

fact, we will see in Sec. 2.2.1 that the Markov property is usually a reasonable assumption

and can lead to a nice form of the objective function. As a comparison, statistical learning

models, be it parametric or non-parametric, do not make such assumptions. Also, for data

assimilation tasks, the data at hand is quite often incomplete, which means we can only

observe an L-vector at a given time, out of the total D dimensions (L < D) prescribed by

12

the model.

As a side note, we will use the words “dynamical model” and “dynamical system”

interchangeably throughout this dissertation.

This chapter starts with a description of the state-space representation of a dynamical

system (in Sec. 2.1) that serves as a stepping stone of all subsequent discussions.

In Sec. 2.2, after observing some mild assumptions, a general form of the objective

function for the information transfer task is derived. Specifically, we first derive a quantity

called the “action” from a joint probability distribution that contains all the information.

We then present the first derivatives of the action, which are very useful in numerical

calculations. Following that, we formally state the goal of data assimilation.

Then, in Sec. 2.3, we review the Hamiltonian Monte Carlo (HMC) method, which

is an important component of the method proposed in this dissertation. The theoretical

foundation of HMC is described, and it is followed by a description of the algorithm itself.

This section concludes with a two-dimensional example illustrating the advantages of HMC.

Finally, in Sec. 2.4, we will formally describe the other component of the proposed

method, i.e., the Precision Annealing (PA) procedure. Both the motivation and the

quantitative formulation will be discussed.

2.1 State-Space Representation

Let us begin with a description of the framework within which the information

transfer problem is defined. This section also serves as a survey of notations.

Within an observation window [t0, tfinal], we make a set of measurements at times

t = {τ0, . . . , τF}, where t0 ≤ τ0 < τF ≤ tfinal. At each of these measurement times, i.e.,

k = 0, . . . , F , we observe an L-dimensional vector y(τk) = (y1(τk), . . . , yL(τk)). The number

of observations L at each measurement time t = τk is typically less, sometimes much

13

less, than the number of degrees of freedom D in the dynamical system. That is to say,

L ≤ D. These observations (data) are stored in a library and otherwise unaltered during

the remainder of the discussion. We designate the collection of observations made from

time t = τ0 up to t = τF as Y ≡ {y(τ0), . . . ,y(τF)} .

The quantitative characterization of the dynamical system that produced these data

is based on our knowledge of the physical dynamics assumed to be descriptive of the data

source. If we are performing a task in machine learning, the model may be divorced from

knowledge of physics, and it may be instead constructed through statistical principles.

The model describes the interactions among as well as the evolution of the states

of the target system. From the data, Y, we want to estimate both the observed and the

unobserved states of the model as a function of time. We also need to estimate any time

independent parameters in the model. After the information transfer procedure is complete,

we will use all the estimated values of model states and parameters to predict the behavior

of the dynamical system for t ≥ tfinal. Much like in a standard machine learning task,

we can use a validation data set to evaluate the result of the transfer of information by

comparing our predictions with what we have in the validation data set.

We now turn to the states of the dynamical system, i.e., variables that fully

characterize the system at any given time. At time t, we call the D-dimensional state of

the model x(t) = (x1(t), . . . , xD(t)). The model is constructed to describe the dynamical

behavior of the observations through a set of differential equations in continuous time and

is generically written as

dxa(t)

dt
= Fa(x(t),θ), a = 1, . . . , D. (2.1)

Since all numerical calculations happen in discrete time, we must as well structure

the model in a discrete fashion. Let us first divide the observation window [t0, tfinal] into

14

M discrete intervals. That is, in discrete time with an equal interval of ∆t, we have

tm = t0 +m∆t and tM = tfinal, where m = 0, . . . ,M . Under such condition, Eq. (2.1) takes

the form xa(tm+1) = fa(x(tm),θ), or simply

xa(m+ 1) = fa(x(m),θ), a = 1, . . . , D, (2.2)

if we define shorthand notation x(m) ≡ x(tm). In Eq. (2.2), θ ≡ {θ1, . . . , θNp} denotes

the Np time-independent parameters intrinsic to the dynamical system. The discrete-

time model fa(x(m),θ) is related to its continuous counterpart Fa(x(t),θ) via the choice

for solving the continuous time flow for x(t) through a discrete time numerical solution

method [33].

We work henceforth in discrete time. For convenience, and without loss of generality,

we choose the observation times τk, k = 0, . . . , F , to be integer multiples of ∆t as well.

This gives us

τk = t0 + nk ·∆t, k = 0, . . . , F, (2.3)

where {n0, . . . , nF} is a set of integers denoting the observation times, and nk ≤ M for

k = 0, . . . , F .

Starting from the inception of the observation window at t0, we must use our

model equations to move the state variables x(0) from t0 to τ1 = t0 + n1 ·∆t, where the

first measurement is made. Then we use the model dynamics again to move along to

τ2 = t0 + n2 ·∆t, where the second measurement is made, and so forth until we reach the

time of the last measurement τF = t0 + nF ·∆t and finally move the model from x(τF) to

x(tfinal) = x(M).

We collect all the D-vectors x(m) for m = 0, . . . ,M along with all of the Np

15

· · ·
model
time

t0 τ0 τ1 τF∆t tfinal

x(0) x(n0) x(n1) · · · x(nF) x(M)

· · ·

observe
y(τ0)

observe
y(τ1)

observe
y(τF)

Figure 2.1: A visual representation of the time window t0 ≤ t ≤ tfinal during which
L-dimensional (L ≤ D) observations y(τk) are made at times τk = t0 + nk · ∆t for
k = 0, . . . , F . The figure also exemplifies time stamps at which the D-dimensional
nonlinear model x(m+ 1) = f (x(m),θ) is used to move forward from time tm to tm+1

where tm = t0 + m∆t, m = 0, 1, . . . ,M , and tfinal = tM . In particular, state vectors
x(n0), x(n1), and x(nF) have corresponding observations.

parameters into what we call the path X, i.e.,

X ≡
{
x(0), . . . ,x(M); θ1, . . . , θNp

}
. (2.4)

Thus, the dimension of the path X is (M + 1)D +Np.

Fig. 2.1 gives a visualization of the above discussion.

We need three ingredients to accomplish the transfer of information from the

collection of all measurements Y to the model x(m+ 1) = f (x(m),θ), along the path X

and through the observation window [t0, tfinal].

(1) The collection of noisy data Y.

(2) A dynamical model describing the generation of Y. This model can be built with

physical or other principles.

(3) Methods to achieve the transfer of information from Y to the model. Note, that the

goal is to estimate all the components within X.

Item (3) on the list will be our focus from here on.

In Chapter 3, we will present numerical results using the methods proposed in this

16

chapter, which then rely on methods of Markov chain Monte Carlo (MCMC) search. Below

are the two MCMC methods that are at play.

(1) The original method [34, 35]—this starts at some location Xi in path space, makes

proposals to move to a candidate location Xc by sampling a modification to Xi drawn

from a symmetric distribution. It then accepts or rejects Xc using the Metropolis-

Hastings rule. This procedure is also briefly mentioned in Sec. 2.3. Under some

conditions [33, 36], this will explore the target distribution π(X |Y) well and allow the

approximate evaluation of expected values of functions 〈G(X)〉 =
∫
dXG(X) π(X |Y).

We label this very well explored construction as the “random proposal” (RP) Monte

Carlo method.

(2) The Hamiltonian Monte Carlo method [37, 38, 39]. HMC takes off in another direction.

It proposes moves from Xi in an enlarged space reached by adding canonical momenta

P to X. The proposals are made using Hamilton’s equations of classical mechanics.

HMC will be discussed in Sec. 2.3. A numerical example is given in Sec. 2.3.3. The

computational complexity of HMC is discussed in Chapter 4.

Although we discuss the results based on both methods, the plan is to focus more on item

(2), i.e., the HMC method.

If the transfer of information is successful and, according to some metric of success,

we arrange matters so that at the measurement times τk, the L model variables x(t = τk)

associated with y(τk) are approximately equal to each other, we are not finished yet.

At this point, we have only demonstrated that the model is consistent with the

known data Y. We must further use the model, completed by the estimates of θ and the

full state of the model at the final time x(M), to predict forward for t > tM , and we should

succeed in comparison with measurements for y(τ) for τ > tM . As a measure of success,

we may use the same metric as used in the observation window. No further information

from the observations is passed to the model in the prediction window.

17

As noted before, the same overall setup also applies to artificial neural networks in

supervised machine learning [8, 9], where the training set is used to transfer information

into the model (by adjusting the weights), the test set is used to make predictions and

validate the model. The process of prediction is called generalization.

2.2 The Action and Expected-Value Integrals

It is inevitable that the data at hand are noisy, and the model we construct may

not be fully reflective of the “true” dynamics that produced the data. As a result, the

transfer of information must be done in a probabilistic manner. In other words, we must

study the conditional probability distribution π(X |Y) as a pivotal quantity for transferring

information from Y to the model x(m+ 1) = f (x(m),θ).

This section first handles the derivation of the negative log-likelihood of π(X |Y)

given mild assumptions. We will then present several equations that are handy for large-

scale numerical calculations. The section concludes with identifying the goals and challenges

of performing the information transfer task.

2.2.1 Derivation of the Action

We call the negative log-likelihood of π(X |Y) action, and it is denoted by A(X).

Quantitatively speaking, we have

A(X) = − log [π(X |Y)]− logC, (2.5)

where C is the unimportant normalizing constant of the conditional distribution. In other

words, all we need is the relation π(X |Y) ∝ exp[−A(X)].

The derivation now begins with a detailed analysis of the structure of π(X |Y).

18

Assume for the moment that we have an equal number of observation and model time steps,

so nk = k in Eq. (2.3) for k = 0, . . . ,M . Let us first introduce the shorthand notation:

Yk
0 ≡ {y(0), . . . ,y(k)} and Xk

0 ≡ {x(0), . . . ,x(k);θ} for k ≤M .

From t = τk to t = τk+1 we have a recursion relation relating π(Xk+1
0 |Yk+1

0) to

π(Xk
0 |Yk

0):

π
(
Xk+1

0

∣∣Yk+1
0

)
=

π
(
x(k + 1), y(k + 1), Xk

0, Yk
0

)
π
(
y(k + 1), Yk

0

)
· π
(
x(k + 1), Xk

0, Yk
0

)
· π (x(k + 1) |x(k)) · π

(
Xk

0, Yk
0

)
=

π
(
y(k + 1), Xk+1

0

∣∣Yk
0

)
π
(
y(k + 1)

∣∣Yk
0

)
· π
(
Xk+1

0

∣∣Yk
0

)
· π (x(k + 1) |x(k)) · π

(
Xk

0

∣∣Yk
0

)
=
π
(
y(k + 1)

∣∣x(k + 1), Xk
0,Y

k
0

)
π
(
y(k + 1)

∣∣Yk
0

)
· π (x(k + 1) |x(k)) · π

(
Xk

0

∣∣Yk
0

)
.

(2.6)

In establishing the first equal sign in Eq. (2.6), we have made a mild but critical assumption,

which is the Markov property of the dynamics x(m+ 1) = f (x(m),θ). It can be formally

written as

π
(
x(k + 1)

∣∣Xk
0,Y

k
0

)
= π (x(k + 1) |x(k)) . (2.7)

It is implied that Eq. (2.7) holds throughout the discussion. The second and third equal

signs in Eq. (2.6) have made use of the basic relation p(A,B |C) = p(A |B,C) · p(B |C).

Before we proceed, it is worth noting that if we start from the right-hand side of

19

the second equal sign of Eq. (2.6), the equation can also be written as

π
(
Xk+1

0

∣∣Yk+1
0

)
= exp

[
CMI

(
y(k + 1),

{
x(k + 1), Xk

0

} ∣∣Yk
0

)]
· π (x(k + 1) |x(k)) · π

(
Xk

0

∣∣Yk
0

)
,

(2.8)

where CMI is Shannon’s conditional mutual information [40], formally defined as

CMI (A,B |C) = log

[
π (A,B |C)

π (A |C) π (B |C)

]
. (2.9)

Essentially, Eq. (2.9) tells us how many bits (when using log2) we know about A when

observing B conditioned on C. For us, A = y(k + 1), B = {x(k + 1),Xk
0}, and C = Yk

0.

The appearance of the CMI is an explicit indication that information is being transferred

from the observations to the model at each measurement time.

Now set aside the condition nk = k, and use Eq. (2.6) to move backwards from the

end of the observation window at tfinal = t0 +M∆t, through the observations at times τk,

to the start of the window at t0. Up to factors independent of X, we arrive at

π (X |Y) ∝
[

F∏
k=0

π
(
y(τk)

∣∣x(τk),Y
k−1
0

)]

×
[

M∏
m=1

π (x(m) |x(m− 1))

]
· π (x(0)) ,

(2.10)

where Y−1
0 denotes the empty set.

As mentioned in the beginning of this subsection, π(X |Y) ∝ exp[−A(X)] defines

the action, A(X). It contains all the information about the observations and the evolution

of the dynamical system, and is thus a complete and sufficient characterization of the

information transfer process. To make use of the information contained in the action, it is

best that we have at least some ideas about the geometry of A(X). The more we know,

20

the better the result of the information transfer will be. We will see next that one way to

probe into the geometry of the action is to perform certain expected-value integrals.

In practice, when we have an action, a typical quantity of interest is then the

expected value of some function of the path X. In other words, we are interested in the

expected value of some G(X) given the action. The problem can be formally written as

〈G(X)〉 = E [G(X) |Y]

=

∫
dXG(X) e−A(X)∫

dX e−A(X)
,

(2.11)

where dX =
∏M

m=0 d
Dx(m)

∏Np
j=1 dθj. All factors in the action that are independent of X

are not included. Eq. (2.11) sets the goal for all information transfer problems discussed

in this dissertation, but it is often impossible to be evaluated analytically. As a result,

we need numerical methods to evaluate it accurately and efficiently. Proposing numerical

methods to achieve such a goal is an important topic of this dissertation.

What kinds of G(X) are of interest? A natural choice is the path itself: G(X) = X.

Another could be the covariance matrix of X, if one is interested in the “shape” of A(X)

and wants to know the interactions among components of X. Note, that the process of

making predictions of the dynamical system for t > tfinal also falls under the category of

evaluating Eq. (2.11)—all we need is to set G(X) = f (x(M),θ) ≡ f (x(tfinal),θ), and then

do the forward calculation starting at t = tfinal and using a time interval of ∆t.

Let us proceed with the derivation of the action. Starting from Eq. (2.10) and

noting the definition, Eq. (2.5), we immediately have

A(X) =−
F∑
k=0

log
[
π
(
y(τk)

∣∣x(τk),Y
k−1
0

)]
−

M∑
m=1

log [π (x(m) |x(m− 1))]− log [π (x(0))] .

(2.12)

21

Eq. (2.12) is intuitive. The first sum represents the information added to π(X |Y) each

time an observation y(τk) is made. The second sum represents the stochastic transitions of

the state variables at each discrete model time.

The last term of Eq. (2.12) comes from the distribution of the initial condition of

the model. We often have no knowledge about π(x(0)), just as we may have no knowledge

about the distribution of the parameters θ. In this situation, we take them to be uniform

over the dynamical range of the model variables (or the parameters). They then cancel

between the numerator and the denominator in Eq. (2.11). The fact that we do not need

to specify a full prior for X—we only need to do it for x(0)—is an important distinction

between what we are discussing in this dissertation and classical Bayesian inference [41].

Eq. (2.12) is not final. Recall that we have previously made one assumption about

the dynamics f (x(m),θ), we now make two additional assumptions that will collectively

pin down a more specific and workable form of the action. Below lists all three assumptions.

(1) The dynamics is Markovian, as denoted by Eq. (2.7).

(2) The observation at time t = τk, i.e., y(τk), is uncorrelated with all previous observa-

tions y(τ0), . . . ,y(τk−1), ∀k >= 1.

(3) The difference between the model state x(τk) and the observation y(τk) is a Gaussian

random vector with zero mean and a diagonal precision matrix Rm = Rm I, ∀k >= 0;

and the difference between two successive model states, x(m − 1) and x(m), is a

Gaussian random vector with zero mean and a diagonal precision matrix Rf = Rf I,

∀m >= 1.

We have already discussed the first assumption. Assumption (2) is mild in the sense that it

is a valid approximation for most non-quantum mechanical systems. Assumption (3) is

also rather generic and can be replace by other specifications on the observational noise

and the errors in the model. The two scalars, Rm and Rf , defined in assumption (3), are

important hyper-parameters for numerical calculations (more on them in Chapter 3).

22

With the three assumptions, Eq. (2.12) further simplifies to what we call the

“standard form” of the action, which reads

A(X) =
F∑
k=0

L∑
`=1

Rm

2(F + 1)
[x`(τk)− y`(τk)]2

+
M−1∑
m=0

D∑
a=1

Rf

2M
[xa(m+ 1)− fa(x(m),θ)]2 .

(2.13)

We call the first term in Eq. (2.13) measurement error and the second term model error.

Eq. (2.13) is pivotal to all subsequent discussions, and it is the starting point of all numerical

calculations regarding the information transfer problem.

One way to explicitly see the balance condition between the measurement error and

the model error is to examine the resulting Euler-Lagrange equation when the model time

becomes continuous when ∆t→ 0. This is discussed in Ref. [15].

2.2.2 First Partial Derivatives for Numerical Calculations

To probe the geometry of A(X), we should know at least its first partial derivatives.

This knowledge is especially important when conducting numerical calculations since the

derivatives are required by a broad spectrum of algorithms [33, 38]. This is a standalone

subsection aiming at providing the first partial derivatives of A(X) without the dynamics

f (x(m),θ) specified. For convenience, and without loss of generality, we assume there is

an observation at each model time, i.e., nk = k in Eq. (2.3) for k = 0, . . . ,M .

One good choice for discretizing the original dynamics Fa is the trapezoidal rule,

which reads

fa (x(m),θ) = xa(m) +
∆t

2
· [Fa(x(m+ 1),θ) + Fa(x(m),θ)] , (2.14)

for m = 0, . . . ,M − 1.

23

We define two sets of auxiliary variables as

Jij(m,θ) =
∂Fi(x(m),θ)

∂xj(m)
,

Gib(m,θ) =
∂Fi(x(m),θ)

∂θb
,

(2.15)

for i, j = 1, . . . , D, b = 1, . . . , Np, and m = 0, . . . ,M .

Now we can write down the first partial derivatives of A(X) given Eqs. (2.14) and

(2.15). Since A(X) is the addition of measurement error and model error terms and the

derivatives of the measurement error is trivial, we only give the first partial derivatives of

the model error.

For the derivatives with respect to x(0), . . . ,x(M), we have, for a = 1, . . . , D,

∂ModErr(X)

∂xa(m)
=



− Rf (a)

M + 1
· [xa(1)− fa(x(0),θ)]

−∆t

2

D∑
i=1

Rf (i)

M + 1
· [xi(1)− fi(x(0),θ)] · Jia(0,θ), m = 0 ;

Rf (a)

M + 1
·
{

[xa(m)− fa(x(m− 1),θ)]− [xa(m+ 1)− fa(x(m),θ)]
}

−∆t

2

D∑
i=1

Rf (i)

M + 1
· Jia(m,θ) ·

{
[xi(m)− fi(x(m− 1),θ)]

+ [xi(m+ 1)− fi(x(m),θ)]
}
, m = 1, . . . ,M − 1 ;

Rf (a)

M + 1
· [xa(M)− fa(x(M − 1),θ)]

−∆t

2

D∑
i=1

Rf (i)

M + 1
· [xi(M)− fi(x(M − 1),θ)]

·Jia(M,θ), m = M .

(2.16)

Note that in Eq. (2.16), we have generalized the original definition of Rf , allowing it to

24

take on different values for different a. This will be useful in numerical calculations.

For the derivatives with respect to θ1, . . . , θNp , we have, for b = 1, . . . , Np,

∂ModErr(X)

∂θb
= −

D∑
i=1

Rf (i)

M + 1

M−1∑
m=0

[xi(m+ 1)− fi(x(m),θ)]

× ∆t

2
· [Gib(m,θ) + Gib(m+ 1,θ)] .

(2.17)

2.2.3 The Goal Revisited

Let us now resume our previous discussion. Our challenge is to perform expected-

value integrals such as Eq. (2.11). One should anticipate that the dominant contribution

comes from the maxima of π(X |Y), or, equivalently, the minima of A(X). Near such

minima, the two contributions to the action, the measurement error and the model error,

balance each other to accomplish the explicit transfer of information from the data to the

model.

As in all practically interesting cases, when f (x(m),θ) is nonlinear in X, the

expected-value integral Eq. (2.11) is non-Gaussian, and we need to approximately evaluate

integrals of this form in order to complete the task of transferring information.

Two generally useful approaches for evaluating this kind of high dimensional integral

are Laplace’s method [42] and the collection of techniques using Monte Carlo sampling [33,

34, 35, 37, 43].

The Laplace-method evaluations of expected-value integrals is discussed in Refs. [44,

45, 46, 47, 48]. They do not sample from π(X |Y) away from its maximum. Evaluating

corrections to the leading Laplace contributions is familiar as perturbation theory in

statistical physics [49]. The convergence of such perturbation methods can depend sensitively

on the landscape of the action in the X space. In addition, the need for repeatedly using

the Hessian matrix of A(X) in many methods may further hinder their use in practice.

In Sec. 2.3.1 and Sec. 2.3.2, we briefly review the Hamiltonian Monte Carlo method.

25

We then give a two-dimensional example comparing the original and the Hamiltonian

Monte Carlo methods in Sec. 2.3.3. Then, in Sec. 2.4, we quantitatively formulate the

proposed method to evaluate Eq. (2.11).

2.3 Hamiltonian Monte Carlo

Performing integrals such as Eq. (2.11) via Monte Carlo searches requires a method

to sample from π(X |Y) in order to identify the regions in the path space X yielding

the dominant contribution to the integral. In this section, we give an overview of the

Hamiltonian Monte Carlo (HMC) method that is a functioning part of the proposed method

of this dissertation. We also provide one basic example that illustrates the advantages of

Hamiltonian Monte Carlo.

Before we begin, let us first briefly discuss why the original implementation of

Markov chain Monte Carlo (MCMC), which we call the random-proposal (RP) Monte

Carlo, is not a good choice.

The original Monte Carlo procedure devised by Metropolis and Hastings [34, 35, 50]

has been extensively explored. It samples from a probability distribution such as π(X |Y)

by proposing candidate states from the so-called proposal distributions. Interested readers

could easily find relevant literature such as the papers and books cited here. In particular,

proposals on how to move about path space are made by perturbing the present location

at random. This random-proposal (RP) procedure is in theory ergodic, meaning that the

proposals can reach any region in the path space with nonzero probability given a sufficient

number of proposed steps [51]. The ergodicity makes random-proposal Monte Carlo an

unbiased method for performing expected-value integrals. However, in practice, the RP

procedure often suffers from slow mixing in high dimensional distributions [36, 52, 53].

As mentioned above, the random-proposal Monte Carlo proposes a new state from

26

a present path space position Xi to a new, candidate position Xc via a (usually symmetric)

proposal distribution. Then, according to RP’s acceptance rule assuring the detailed

balance condition, accept Xc as the new sample Xi+1 with probability

αc | i = min

{
1,
π (Xc |Y)

π (Xi |Y)

}
. (2.18)

If the proposed Xc is rejected, then Xi+1 = Xi; if accepted, then Xi+1 = Xc. Regardless of

the outcome, Xi+1 serves as the starting point for a subsequent proposal procedure. All

accepted paths are subsequently used in the evaluation of 〈G(X)〉.

The convergence of this procedure to the desired distribution π(X|Y) is often be

slow. This is especially when X is high-dimensional. One reason is that when making

proposal states, it treats the movements in the X space as random walks, often resulting in

low acceptance rates and rather limited movements in the path space. This fact is tightly

related to the phenomenon called “curse of dimensionality” in statistics and computer

science [31, 32, 54, 55]. As a result, the asymptotic distribution π(X |Y) may, in practice,

be unreachable.

As a side note, enforcing detailed balance, i.e., “reversibility,” on a Monte Carlo

proposal is a sufficient but not a necessary condition for convergence [56, 57, 58].

2.3.1 General Idea of HMC-Like Sampling

Hamiltonian Monte Carlo (HMC) [37, 38, 39] strikes out in a new direction. It adds

to the path X an additional set of variables, which we call P, and identifies a search in the

(X,P) space that preserves some invariants as a result of some rules for moving about that

space. This is explained quantitatively below. If, for example, the motion in the extended

space preserved P ·P + X ·X, then moving about the space by performing rotations would

allow us to move interesting distances in (X,P) space by simply rotating the variables in

27

the high dimensional extended space while staying on the P ·P + X ·X = constant surface.

Making this motion in the extended space may allow large moves in X space with large

probabilities of acceptance. If this were the case, one might be sampling exp[−A(X)] much

more efficiently than detailed balance-preserved random walking as in the random-proposal

Monte Carlo procedures.

As introduced in Ref. [37], the added conjugate variables P are selected from the

well explored examples of the canonical momenta familiar to physicists and thoroughly

analyzed for two centuries. Note also that P has the same dimensions as X, which is

D(M + 1) +Np as shown clearly in Eq. (2.4). By choosing the additional variables P to be

canonical conjugates of X, one can use the rules of classical mechanics to move around in

(X,P) space and preserve the underlying symplectic structure.

If the movement is labeled by a scalar s which we call “time,” then the rule

d

ds

X(s)

P(s)

 =

 0 I

−I 0


∇XH(X(s),P(s))

∇PH(X(s),P(s))

 (2.19)

preserves the value of the scalar function H(X,P) as well as volumes in the (X,P) space

and a collection of other quantities known as the Poincaré invariants [59, 60]. It is worth

noting that the antisymmetric matrix on the right-hand side of Eq. (2.19) can also be

modified to construct new HMC-like proposals [61].

For HMC, in addition to the original target distribution π(X |Y) ∝ exp[−A(X)],

one needs to choose an arbitrary distribution π(P |X,Y) for the canonical momenta P in

order to fully specify the joint HMC target π(X,P |Y). The Hamiltonian can be written

as

H(X,P) = − log [π (X,P |Y)]

= A(X) + h(P,X),

(2.20)

where h(P,X) is − log[π(P |X,Y)] up to an additive constant. Under the augmented

28

target distribution, i.e.,

π (X,P |Y) ∝ e−H(X,P), (2.21)

the expected value of G(X) is now

〈G(X)〉π(X,P |Y) =

∫
dX dPG(X) π(P |X,Y) π(X |Y)

=

[∫
dX e−A(X)

]−1

·
∫
dX dP

G(X) e−H(X,P)∫
dP e−h(P,X)

= 〈G(X)〉π(X |Y) ,

(2.22)

where 〈G(X)〉π(X |Y) has been defined in Eq. (2.11).

Eq. (2.22) tells us that the expected-value integrals, i.e., 〈G(X)〉, are unchanged

under HMC for an arbitrary choice of h(P,X). This tells us that once we have joint samples

in the (X,P) space, we can easily recover the X samples that follow our original target

distribution π(X |Y) by simply discarding the P parts.

The combination of symmetry-preserving movements in the (X,P) space and the

invariance in the expected values is appealing. These properties make possible higher

acceptance rates and faster mixing for sampling from π(X |Y). Other symmetries in (X,P)

requiring different rules for generating motions might work equally well. HMC should be

viewed as one of a class of approaches within this overall idea [62, 63]. It should also be

noted that a high acceptance rate itself does not guarantee efficiency: combining high

acceptance with fast exploration of phase space is a goal of all Markov chain Monte Carlo

methods.

One must distinguish the use of the scalar label s in HMC from the time labels t

and τ as described in Sec. 2.1: s is just a label to track movements in the enlarged space.

Actual times t and τ are labels used in identifying the path of model dynamical variables

x(t) and the data y(τ) through an observation window.

29

2.3.2 HMC Itself

As discussed above, the HMC procedure [37, 38, 39] doubles the dimensionality of

the path space, introducing physics-motivated but arbitrarily chosen canonical momenta P

associated with path-space position X.

While certainly not required, the choice for the “kinetic energy,” h(P,X) = P·P
2

,

is convenient and the resulting distribution exp[−h(P,X)] is Gaussian. As studied in

Ref. [64], small modifications of this standard choice to include higher order polynomials of

P can introduce chaotic behavior and substantial mixing in motions generated by H(X,P)

and thus may avoid some potential problems in the implementation of a quadratic choice for

h(P,X). There are other interesting choices of h(P,X) that may improve the performance

of HMC sampling [65, 66, 67].

We proceed with the quadratic choice of h(P,X). The Hamiltonian becomes

H(X,P) = A(X) +
P ·P

2
. (2.23)

Why does one want to work with the even larger (X,P) space given that X is

already high-dimensional? The answer lies in the invariance properties of Hamiltonian

dynamics. If HMC proposals are made using integration of Eq. (2.19) from “time” 0 to s

with the choice of H as in Eq. (2.23), namely,

d

ds

X(s)

P(s)

 =

 P(s)

−∇A(X(s))

 , (2.24)

then H(X,P) is conserved along the canonical phase-space orbit labeled by s. As discussed,

many other quantities are preserved. Among them, HMC makes use of the conservation of

phase-space volume, which means dX(s) dP(s) = dX(0) dP(0).

The core of HMC is to propose (X(s),−P(s)) by forward-integrating the Hamiltonian

30

dynamics, starting from (X(0),P(0)). This process is precise when the integration is

performed with s taken as a continuous variable, so a Hamiltonian flow is realized and

H(X,P) is conserved. A complete HMC proposal includes a negative sign before P(s),

meaning that we need to flip the momentum after the Hamiltonian integration is finished.

This flipping is to make the proposal reversible in s and symmetric in (X,P), thus ensuring

detailed balance [38].

In practice, the form of A(X) precludes analytical evaluations, and one must work

with a discrete s in order to integrate Eq. (2.24). A non-symplectic integrator is obviously

not a choice because it does not produce any invariance. Still, when we use a symplectic

integrator to perform the integration of Hamilton’s equations in discrete s [62], a result of

Ge and Marsden [68] tells us that we cannot precisely preserve both the symplectic form and

H(X,P) at the same time. This result is intuitive—after all, only the exact Hamiltonian

flow itself would preserve both the symplectic form and H(X,P). Consequently, one needs

to decide in practice whether to preserve H(X,P) or to preserve the symplectic form.

The latter turns out to be a more sensible choice. The main reason is that if one

chooses to preserve H(X,P) but gives up the symplectic form, then a non-Hamiltonian

dynamics must be simulated, therefore it is hard to find a deterministic and time-reversible

mapping needed to construct the detailed balance condition [62, 69, 70, 71].

Fig. 2.2 shows the results of using the second-order Runge-Kutta method [33] and

the leapfrog method [38, 62], respectively, to integrate a simple Hamiltonian dynamics

with H(x, p) = x2

2
+ p2

2
. One can easily see that even with a much smaller step size, the

Runge-Kutta method still results in a diverging trajectory and thus is not a good choice

for HMC. On the contrary, the leapfrog method never strays far from the ground truth,

preserving phase-space volume.

Overall, we expect that by using a symplectic integrator in discrete s, we will find

H(X(s),P(s)) ≈ H(X(0),P(0)), but not exactly equal, as shown clearly in Fig. 2.2(b). As

31

2 1 0 1 2
x

-2

-1

0

1

2

p

(a)

2 1 0 1 2
x

-2

-1

0

1

2

p

(b)

Figure 2.2: A two-dimensional example that compares two different methods for

integrating Eq. (2.24). In both cases, the Hamiltonian is H(x, p) = x2

2 + p2

2 , as indicated
by the red circles. (a) Using the second-order Runge-Kutta method [33]. The initial
condition is (0, 1) and the step size is 0.4. There are 160 total steps shown. (b) Using
the leapfrog method [38, 62]. The initial condition is (0, 1) and the step size is 1.2.
There are 40 total steps shown.

32

a consequence, when determining the acceptance or rejection of the joint proposal state

(X(s),P(s)), the acceptance probability can usually be near unity, but not precisely one,

i.e.,

α(X(s),−P(s) |X(0),P(0)) = min

{
1,

exp [−H(X(s),−P(s))]

exp [−H(X(0),P(0))]

}
≈ 1.

(2.25)

Comparing Eq. (2.25) with Eq. (2.18), we see that the overall acceptance rate of HMC is

much higher than that of the random-proposal Monte Carlo method, especially when X is

high-dimensional.

It is necessary to emphasize that as the parameters θ are taken to be components of

the path X, they also have conjugate variables η included in P. Therefore, HMC provides

a principled manner of exploring π(X |Y) for both state variables and time-independent

parameters.

2.3.3 HMC in Practice

We have just seen that when implementing HMC, one should select a symplectic

integrator in order to preserve the symplectic invariants [38, 62, 63], and many choices are

available. We discuss here a fairly common one, the leapfrog symplectic integrator [62, 72],

which is known for its simplicity and accuracy. Under this choice, one selects a small step

size ε in “time” s as the discretization interval.

Suppose that the most recent accepted path is X(0) and that P(0) is a new sample

such that P(0) ∼ π(P |X,Y), then (X(0),P(0)) is the starting point for proposing a new

candidate proposal (Xc,Pc) from the distribution π(X,P |Y) ∝ exp[−H(X,P)].

The procedure to go from (X(0),P(0)) to (Xc,Pc) is as follows. We first move from

33

(X(0),P(0)) to (X(ε),P(ε)) using the leapfrog symplectic stepping rule,

P(ε/2) = P(0)− ε

2
∇A(X(0)),

X(ε) = X(0) + εP(ε/2),

P(ε) = P(ε/2)− ε

2
∇A(X(ε)).

(2.26)

Then, starting from (X(ε),P(ε)), we move to the next point at (X(2ε),P(2ε)) using the

same rule as in Eq. (2.26). After proceeding for S steps, we arrive at the joint state

(X(Sε),P(Sε)). The candidate proposal,

(Xc,Pc) = (X(Sε),−P(Sε)) , (2.27)

is then accepted or rejected according to Eq. (2.25). The negative sign in front of P(Sε) in

Eq. (2.27) has been explained in Sec. 2.3.2.

As a preview, when performing Precision Annealing Hamiltonian Monte Carlo (or

PAHMC, which will be formally proposed in Sec. 2.4), the HMC procedure is repeated for

each value of Rf in Eq. (2.13). In addition, we choose to perform NI independent PAHMC

calculations in parallel starting from NI independent initializations.

Let us now look at a two-dimensional example that illustrates the advantages of

HMC over the standard random-proposal Monte Carlo method. In our example, we applied

both methods to sample from the distribution π(x, y) ∝ exp[−(8x2 + 6y2− 5)2− 3y2)]. We

started both methods at (x, y) = (0, 0.8). Each of these two methods then generates 500

samples, and the last 301 of these samples are retained and displayed in Fig. 2.3. We can

see that the random-walk Monte Carlo method explores only a small percentage of the

distribution while HMC explores most of the distribution. The advantages of HMC over

random-walk Monte Carlo is clear from this elementary example.

The example in Fig. 2.3 also reminds us of an important fact: HMC typically achieves

34

-1.0 -0.6 -0.2 0.2 0.6 1.0

-1.0

-0.6

-0.2

0.2

0.6

1.0

-1.0 -0.6 -0.2 0.2 0.6 1.0

-1.0

-0.6

-0.2

0.2

0.6

1.0

x

y

(a)

 HMC
 RPy

x

(b)

Figure 2.3: A comparison between Hamiltonian Monte Carlo and random-walk Monte
Carlo. (a) A plot of the target distribution π(x, y) ∝ exp[−(8x2 + 6y2 − 5)2 − 3y2)]
within range −1 ≤ x, y ≤ 1. (b) The samples generated by random-proposal Monte
Carlo are shown as blue, down-pointing triangles, and the samples generated by HMC
are shown as red, up-pointing triangles. For HMC, to arrive at one proposal, the discrete
Hamiltonian dynamics is simulated using the leapfrog method for S = 50 steps, with step
size ε = 0.01. The overall acceptance rate for HMC is 0.998. For random-walk Monte
Carlo, to arrive at one proposal, the x and y directions are perturbed simultaneously by
drawing each perturbation from N (0, 0.01). The overall acceptance rate for random-walk
Monte Carlo is 0.56.

35

better mixing than the random-proposal Monte Carlo method. Furthermore, it is important

to compare the scaling properties of both methods as the dimensionality of the target

distribution increases. With the potential applications to real-world problems in mind, it is

critical that the sampling process we choose remains efficient in high dimensions. It has

been shown that HMC scales better than random-walk Monte Carlo under many metrics.

For example, after the equilibrium (of the Markov chain) is reached, for a d-dimensional

target distribution, the computational complexity for a given level of acceptance rate

typically grows as d1.25 for HMC [73, 74, 75] and d2 for RP [76]. This difference is one of

the reasons why HMC is advantageous in many applications.

2.4 Precision Annealing

Although HMC is a powerful method, we will need much more to build a method

that can achieve effective transfer of information when our negative log-likelihood is like

Eq. (2.13).

In this section, we present the Precision Annealing (PA) framework, which is to be

combined with HMC to achieve our goal of transferring information. We call the combined

method Precision Annealing Hamiltonian Monte Carlo (PAHMC) [16]. We have discussed

HMC in detail in Sec. 2.3, and we will discuss here the remaining part of the method, i.e.,

Precision Annealing. It is worth noting that both PA and HMC serve as functioning parts

of the PAHMC method, but only when these two are combined together can we successfully

transfer information from noisy data to a high-dimensional, nonlinear dynamical system

that describes the underlying evolution of states.

The reason is straightforward. Because we only have a partial observation of the

model state x(τk) at each observation time τk, the unobserved degrees of freedom in the

path X are completely uninformed upon initialization. If we impose x(m+ 1) = f (x(m),θ)

36

to a high precision at the outset, the convoluted nonlinearities in the model may prevent

any method from finding the desired global minimum in A(X). Consequently, the dominant

contribution to the integral in Eq. (2.11) cannot be identified and the information cannot

be fully transferred.

It should be mentioned that ideas of a similar spirit have been proposed in earlier

works [44, 48]. Nonetheless, in this dissertation, the Precision Annealing framework is

proposed to serve two purposes as listed below.

(1) To guide the search for the global minimum of A(X) by gradually recovering the

“shape” (without changing the locations of the global and local minima!) of the A(X)

manifold in the path space.

(2) To refine the sampling behavior near the global minimum of A(X) once the minimum

is located. This is as important as (1) because the refinement is what drives down

the model errors, as we will see in Chapter 3.

2.4.1 Initialization in Path Space

The strategy proposed in this dissertation is to vary the precision parameter Rf

that enforces the model error term in A(X), i.e., Eq. (2.13). When Rf = 0, the model is

completely unresolved and the path space is highly degenerate for the unobserved degrees

of freedom. In the opposite limit for the hyperparameter Rf where Rf →∞, the model

f (x(m),θ) becomes deterministic, and it enforces all nonlinear constraints prescribed by

the model. Moving Rf from very small to quite large by small increments permits us to

locate the maximum of π(X |Y) with high success rate and then perform HMC sampling

in the vicinity.

Before we can start increasing Rf , we need to fully specify how X is initialized. We

37

now turn to this matter. At Rf = 0, Eq. (2.13) becomes a convex, quadratic form as

A(Xinit) =
F∑
k=0

L∑
`=1

Rm

2(F + 1)
[x`(k)− y`(k)]2 , (2.28)

which apparently has its (degenerate) global minimum at x`(k) = y`(k) for k = 0, . . . , F

and ` = 1, . . . , L. Recall that a path X includes the set of D-dimensional state variables

{x(0), . . . ,x(M)} and the time-independent model parameters θ. Eq. (2.28) only specifies

the initial values for L out of D dimensions at each time stamp and leaves the other

components undetermined.

To fully specify our choice for the initial path, we now integrate the model forward

for M discrete time increments. The first state x(0) is initialized such that xa(0) = ya(0)

for a = 1, . . . , L; and for a = L + 1, . . . , D, xa(0) is drawn from a uniform distribution

that covers the dynamical range of the model. The parameters θ are also drawn from an

appropriate uniform distribution. The model is then integrated forward in time, with the

observed dimensions in x(m) replaced by y` at each time where we have a measurement,

that is, when t = τk for k = 0, . . . , F .

For the ease of notation, without loss of generality, we again let nk = k in Eq. (2.3)

for k = 0, . . . ,M . Then, after x(0) is specified as above, we have, for k = 0, . . . ,M − 1,

xa(k + 1) =


ya(k + 1), for a = 1, . . . , L,

fa(x(k),θ), for a = L+ 1, . . . , D.

(2.29)

This completes our construction of the initial path Xinit. The freedom in choosing

x(0) and θ at Rf = 0 gives us the flexibility to generate multiple such initial paths X
(q)
init for

q = 1, . . . , NI . These NI initial paths are retained, and they serve as the starting points of

NI independent calculations.

38

2.4.2 Procedure for Gradually Enforcing the Model

We have stated at the beginning of this section that Precision Annealing is a

framework to (1) guide the search for the global minimum of A(X) and (2) refine sampling

in the vicinity of the global minimum. This subsection formally describes the procedure

through which these two goals can be accomplished.

The core of the idea is as follows. We first begin with an Xinit as described in

Sec. 2.4.1. Then, we impose the model constraint x(m+ 1) = f (x(m),θ) slow enough by

incrementally increasing Rf in Eq. (2.13). By doing so, there is a good chance that we can

move to the “neighborhood” of the global minimum of A(X) upon reaching certain Rf

value. After that, as Rf continues to increase, the sampler keeps being at the vicinity of

the global minimum of A(X) and the model error term in Eq. (2.13) keeps decreasing. At

the end of this procedure, the dominant contribution to Eq. (2.11) is identified with a high

rate of success.

We now elaborate on the above by formulating the idea quantitatively. We adopt

the following “schedule” for Rf :

Rf = Rf0 α
β (2.30)

with α > 1 and β = 0, 1, . . . , βmax. Note that (1) α and βmax are hyper-parameters, and

(2) Rf0 should be small. A choice of α near unity leads to the slow increase in Rf as β

increases, which in turn brings in the nonlinearity of the model in an adiabatic manner.

At each Rf value, NI independent PAHMC calculations are to be performed, and each

of these NI calculations begins with the solution generated by the procedure under the

previous Rf value.

Having discussed the “schedule” for Rf , we now take a close look at the first value

at β = 0. First recall that at Rf = 0, for each of the NI independent PAHMC calculations,

we start from the corresponding initial path X
(q)
init. Following that, at Rf = Rf0 , we sample

39

from our target distribution π(X |Y) ∝ exp[−A(X)] using HMC, with Rf = Rf0 in A(X).

We collect N{β=0} sampled paths, each denoted by X
(q)
{β=0}, j, with j = 1, . . . , N{β=0} and

q = 1, . . . , NI . These N{β=0} paths are generated by HMC. As well known in Monte Carlo

calculations, we then take the sample mean of each of the NI Markov chains developed so

far, and we have

X
(q)

{β=0} =
1

N{β=0}

N{β=0}∑
j=1

X
(q)
{β=0}, j , (2.31)

for q = 1, . . . , NI .

Next, for each of the NI independent calculations, we take X
(q)

{β=0} as the initialization

point at move to the next β, i.e., β = 1. This time, we collect N{β=1} sampled paths

generated by HMC. Then, similarly, we have

X
(q)

{β=1} =
1

N{β=1}

N{β=1}∑
j=1

X
(q)
{β=1}, j , (2.32)

for q = 1, . . . , NI .

We continue this procedure until we reach the pre-determined βmax and have

X
(q)

{β=βmax} ready for all q = 1, . . . , NI .

By plotting two quantities versus Rf or β = logα(Rf/Rf0), we will have insight on

how to select βmax. This is explained below.

First, we should make a plot of the action, as determined by each of the NI paths at

each Rf , as a function of β. We find that the action becomes independent of β (plateaus)

as the precision of the model increases. The origin of this plateauing phenomenon can be

seen in a second graph when plotting the model error term in the action, i.e.,

ModErr(X) =
M−1∑
m=0

D∑
a=1

Rf

2M
[xa(m+ 1)− fa(x(m),θ)]2 , (2.33)

as a function of β.

40

If the model faithfully describes the evolution of data in time, the model error will

rapidly decrease to a small value as β increases. The action is the sum of the model error

and the measurement error. As the model error tends numerically to a small number,

the action levels out to the measurement error, which is independent of Rf . Indeed,

the measurement error both provides a lower bound to the action and indicates whether

the constructed model, f (x(m),θ), is “correct.” Note that this independence between

the action and β can certainty change when we change L, i.e., the number of observed

dimensions out of a total of D dimensions at each time.

As a result of these PAHMC calculations, the dominant contribution to the expected

value of G(X), as defined in Eq. (2.11), will be given by

〈G(X)〉 ≈ 1

NI

NI∑
q=1

G(X)
(q)

{β=βmax}, (2.34)

where, for q = 1, . . . , NI , we have

G(X)
(q)

{β=βmax} =
1

N{β=βmax}

N{β=βmax}∑
j=1

G(X)
(q)
{β=βmax}, j . (2.35)

The reason why Eq. (2.34) is true and useful is that PAHMC can identify the

dominant probability mass of π(X |Y) ∝ exp[−A(X)] with a high rate of success. In

Chapter 3, we will show numerical results that support this statement. These numerical

calculations typically have NI ≈ 30.

41

Chapter 3

Numerical Results on Physical

Systems

In Chapter 2, we discussed in great detail the proposed method for solving the

problem of transferring information from noisy data into a physical dynamical system. Under

the state-space representation, we derived a negative log-likelihood function A(X), which

we called the action, that contains all the information about the data and the dynamics.

We then identified the goal to be evaluating the expected-value integral, i.e., Eq. (2.11),

given the conditional distribution π(X |Y). The Precision Annealing Hamiltonian Monte

Carlo (PAHMC) method itself was introduced in Sec. 2.3 and Sec. 2.4.

Our focus in this chapter is the applications of the PAHMC method. In particular,

we present two sets of numerical result that collectively demonstrate the efficacy of the

PAHMC method. The first set of result is related to a partially observed chaotic dynamical

system while the second is related to a sparsely observed biophysical dynamical model of a

neuron cell.

In the results to be discussed, and in almost all real-world information transfer

problems, the challenges arise from the following facts.

42

(1) The data Y are noisy and incomplete.

(2) The path X is very high-dimensional.

(3) The action A(X) is non-convex due to the nonlinearities in the dynamics f (x(m),θ).

The first on the list has been mentioned at the beginning of Sec. 2.2. The rest are inherent

computational difficulties that we need to overcome. These challenges make the results in

this chapter meaningful as they are good test beds for the PAHMC method.

Before we begin, it is worth stating again what quantities are to be estimated

along the evaluation of the expected-value integral. As we have seen in Sec. 2.1, all of the

components within the path X need to be estimated. These include all the observed and

unobserved state variables at all discrete time stamps within t0 ≤ t ≤ tfinal as well as all

the time-independent parameters in θ.

3.1 The Lorenz96 Chaotic Dynamical System

We present in this section a series of numerical results on transferring information

from simulated data into a chaotic dynamical system using PAHMC. The dynamical system

is commonly referred to as Lorenz96 [77, 78], and it is widely discussed in the geophysical

literature and is an ideal test bed for vetting new statistical physics approaches. As we

will see in a moment, the dynamical equations of Lorenz96 are simple and elegant, yet the

chaotic nature makes it hard to achieve good estimation and prediction results.

Edward N. Lorenz proposed and subsequently studied a collection of ordinary differ-

ential equations in 1996 [77], and these famous ODEs are now known as Lorenz96. The state

variables of Lorenz96 are set out on a ring, presumably representing equatorial locations [1].

This ODE system is meant to mimic the forced westward flow in the state variables

transported by a quadratic “advection.” Lorenz and Emanuel [78] subsequently used it to

discuss strategies in selecting additional locations for dynamical weather measurements

43

that are the most meaningful.

The Lorenz96 system has a D-dimensional state variable x(t) = (x1(t), . . . , xD(t))

on a ring and a fixed forcing parameter ν. The dynamical equations are

dxa(t)

dt
= xa−1(t) (xa+1(t)− xa−2(t))− xa(t) + ν, a = 1, . . . , D, (3.1)

where x−1(t) ≡ xD−1(t), x0(t) ≡ xD(t), and x1(t) ≡ xD+1(t).

An obvious solution to Eq. (3.1) is xa(t) = ν for a = 1, . . . , D, which is a fixed-point

solution. If we add a small perturbation, i.e., xa(t) = ν + δxa(t), Eq. (3.1) yields

d δxa(t)

dt
= ν · (δxa+1(t)− δxa−2(t))− δxa(t) + second-order terms, (3.2)

for a = 1, . . . , D. If we subsequently write

δxa(t) = Ak(t) e
ika, (3.3)

then the amplitude Ak(t) satisfy

dAk(t)

dt
= Ak(t)

[
ν ·
(
eik − e−2ik

)
− 1
]
. (3.4)

By examining the real part of Eq. (3.4), we know that the fixed-point solution xa(t) = ν

becomes unstable when ν > 8/9. Furthermore, chaotic solution begins to appear when

ν ≈ 6.5.

Fig. 3.1 shows a three-dimensional projection of a D = 20 Lorenz96 time series

with a forcing parameter ν = 8.17, generated by integrating Eq. (3.1) with a discretization

interval of ∆t = 0.025. From the figure, we can see that the system is chaotic, but it is

localized and has structure in the phase space.

44

x1(t)

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

x 3(t
)

7.5
5.0

2.5
0.0

2.5
5.0

7.5
10.0

12.5

x 5
(t)

10.0
7.5
5.0
2.5

0.0
2.5
5.0
7.5
10.0

Figure 3.1: A three-dimensional projection of a D = 20 Lorenz96 time series with a
forcing parameter ν = 8.17. The integration interval is ∆t = 0.025, and the length of
the time series presented is 1000. Among the 20 dimensions, x1(t), x3(t), and x5(t) are
shown.

45

3.1.1 Data Preparation

The numerical results that we will see in Sec. 3.1.2 through Sec. 3.1.6 are based on

simulated data of Lorenz96. When performing the transfer of information, the PAHMC

method is presented with a partially observed, noisy time series (whose collection is called

Y as seen in Chapter 2). The true forcing parameter νtrue is not given to the method

either and has to be “guessed” by the method. This way of validating a statistical physics

approach is conveniently called a “twin experiment” in the literature [1].

We now turn to the description of the Lorenz96 data set. We choose D = 20,

νtrue = 8.17, and ∆t = 0.025 for integrating Eq. (3.1). The observation window runs from

t0 = 0 to tfinal = 5. The prediction window runs from 5 ≤ t ≤ 11.

To each of the D time series generated, we add Gaussian noise with standard

deviation σ = 0.4 throughout the observation and prediction windows.

We select L < D components in the simulated Lorenz96 time series as the observa-

tions within the observation window. This L-time series will be our data, i.e., Y. For each

time within the observation window, we seek to estimate all D state variables. We also

need to estimate the forcing parameter ν.

Assuming at each model time step t = tk we have an observation y(k), i.e., nk = k

in Eq. (2.3) for k = 1, . . . ,M , then, the corresponding action is

A(X) =
F∑
k=0

L∑
`=1

Rm

2(F + 1)
[x`(τk)− y`(τk)]2

+
M−1∑
m=0

D∑
a=1

Rf

2M
[xa(m+ 1)− fa(x(m), ν)]2 .

(3.5)

As usual, the first term in Eq. (3.5) represents the measurement error, and the second, the

model error.

46

The trapezoidal rule is used to discretize Eq. (3.1), which means

fa(x(m), ν) = xa(m) +
∆t

2
[Fa(x(m+ 1), ν) + Fa(x(m), ν)] , (3.6)

for a = 1, . . . , D, where Fa(x, ν) is the model vector field.

It is worth restating that we do not simply fit a single parameter ν in the series

of numerical examples. Instead, for each case, we need to estimate all the D(M + 1) + 1

degrees of freedom in the path X. A detailed discussion on why this is necessary will be

given in Chapter 4. As a matter of fact, the present problem is very high-dimensional

albeit having only one parameter, ν.

We will present results for L = 7, 8, 10, and 12, respectively.

3.1.2 Results from PAHMC; L = 7

We first begin with L = 7 observed noisy time series out of D = 20. Specifically,

we used the seven data series y`(m) with ` ∈ {1, 4, 7, 10, 13, 16, 19} as our observations. In

Fig. 3.2(a), we display the action levels as a function of Rf for L = 7. In this figure, many

action levels are present, which correspond to many peaks in the probability distribution

π(X |Y) ∝ exp[−A(X)] being identified. At large Rf values, the NI = 30 action levels

start to plateau. However, they are all well above the expected action value, which is

equal to the measurement error component of the action. This is easy to prove given the

Gaussian nature of the added noise and properties of the χ2 distribution.

This result is an indication that although PAHMC has located some paths that agree

with the Lorenz96 system, it fails to transfer information from the observations Y to the

system due to an insufficient number of observations at each observation time τk. We expect

that as the number of observations L increases, more information will become available to

the PAHMC method, and the behavior of the action levels will change accordingly.

47

100 101 102 103 104 105
10-1

100

101

102

100 101 102 103 104 105
10-1

100

101

102

100 101 102 103 104 105

6

7

8

9

10

11

A
(q

) (
X

);
 q

 =
 1

,
...

,
30

Rf /Rm

(a)

M
od

el
 e

rr
or

(q
) ;
q

=
 1

,
...

,
30

Rf /Rm

(b)

(q
) ;
q

=
 1

,
...

,
30

Rf /Rm

(c)

100 101 102 103 104 105
10-1

100

101

102

100 101 102 103 104 105
10-1

100

101

102

100 101 102 103 104 105

6

7

8

9

10

11

A
(q

) (
X

);
 q

 =
 1

,
...

,
30

Rf /Rm

(a)

M
od

el
 e

rr
or

(q
) ;
q

=
 1

,
...

,
30

Rf /Rm

(b)

(q
) ;
q

=
 1

,
...

,
30

Rf /Rm

(c)

Figure 3.2: Action, measurement error, and model error for PAHMC on the Lorenz96
model with D = 20 and L = 7. Each step in the Precision Annealing procedure is
associated with one value of Rf . We perform NI = 30 independent calculations starting
at NI different (X(0),P(0)). (a) Action levels versus Rf . Because NI calculations are
performed at each Rf , many action curves are displayed. All the action levels are above
the expected value (solid black line), which is the value of the measurement error term of
the total action. (b) The model errors in Eq. (3.5) as a function of Rf . The model errors
for the seven observed state variables remain large for all Rf . (c) The estimations of the
Lorenz96 model forcing parameter ν as a function of Rf . The true forcing parameter is
νtrue = 8.17 (solid black line). At L = 7, the estimates of the forcing parameter are not
accurate.

48

The inadequacy of using only 7 observations at each measurement time is also shown

in the model error failing to significantly decrease as Rf is increasing. This is seen in

Fig. 3.2(b). Similarly, in the estimation of the model forcing parameter shown in Fig. 3.2(c),

we see substantial inaccuracies.

Furthermore, in the prediction results for an observed state variable x7(t), shown in

Fig. 3.3(a), and for an unobserved state variable x14(t), shown in Fig. 3.3(b), we see many

errors in both the estimation window 0 ≤ t ≤ 5 and the prediction window 5 < t ≤ 11.

We will see next that as the number of observed dimensions increases, the overall

results as well as the predictability also increases. This should be expected because more

observations will become available as L increases.

3.1.3 Results from PAHMC; L = 8

In Fig. 3.4(a), we present the L = 8 action levels. Here, 7 out of 30 action levels

split from the rest at an early stage in the Precision Annealing procedure, and these seven

levels coincide with the anticipated action level for the measurement error term. For these

agreed action levels, it implies that the transfer of information has been successful. Indeed,

as we will see in the figures that follow, the estimations in the model parameter ν as well

as the predictions beyond the observation window show that the paths with lowest action

levels yield consistent results. In addition, Fig. 3.4(b) shows the model error calculations

for L = 8. It is clear from there that the 7 lowest action levels are numerically dominated

by their respective measurement errors instead of by model errors.

Fig. 3.4(c) shows the NI estimations of the Lorenz96 forcing parameter, ν. The

true value is νtrue = 8.17. If we compare this plot with Fig. 3.4(a), we can conclude that

although the PAHMC method has located some paths with high model precision (low

model error), some of the paths (23 out of 30) still differ from the observations. The

“wrong” models have been identified primarily because there are not enough measurements,

49

0 1 2 3 4 5 6 7 8 9 10 11
Time (a.u.)

5

0

5

10

15

x 7
(t)

, O
bs

er
ve

d

(a) Data Estimation Prediction + Error

0 1 2 3 4 5 6 7 8 9 10 11
Time (a.u.)

5

0

5

10

x 1
4(

t),
 U

no
bs

er
ve

d

(b) Data Estimation Prediction + Error

Figure 3.3: Predictions by PAHMC on the Lorenz96 model with D = 20 and L = 7.
(a) Display of results for an observed state variable, x7(t). The noisy data are within in
the time interval 0 ≤ t ≤ 11. The estimated values in the observation window 0 ≤ t < 5
are shown in red. The predicted values are shown in blue, and the prediction errors
are shown in magenta within 5 < t ≤ 11. (b) Display of results for an unobserved state
variable, x14(t). The true data, with noise added, span the full 0 ≤ t ≤ 11 interval. The
estimated values in the observation window 0 ≤ t < 5 are shown in red. The predicted
values, with errors (in magenta), are shown in blue within the interval of 5 < t ≤ 11.
For the unobserved variables, the data within 0 ≤ t ≤ 11 are unavailable to the method.

50

100 101 102 103 104 105
10-1

100

101

102

100 101 102 103 104 105
10-3

10-2

10-1

100

101

102

100 101 102 103 104 105

6

7

8

9

10

11

A
(q

) (
X

);
 q

 =
 1

,
...

,
30

Rf /Rm

(a)

M
od

el
 e

rr
or

(q
) ;
q

=
 1

,
...

,
30

Rf /Rm

(b)

(q
) ;
q

=
 1

,
...

,
30

Rf /Rm

(c)

100 101 102 103 104 105
10-1

100

101

102

100 101 102 103 104 105
10-3

10-2

10-1

100

101

102

100 101 102 103 104 105

6

7

8

9

10

11

A
(q

) (
X

);
 q

 =
 1

,
...

,
30

Rf /Rm

(a)

M
od

el
 e

rr
or

(q
) ;
q

=
 1

,
...

,
30

Rf /Rm

(b)

(q
) ;
q

=
 1

,
...

,
30

Rf /Rm

(c)

Figure 3.4: Action, measurement error, and model error for PAHMC on the Lorenz96
model with D = 20 and L = 8. Each step in the Precision Annealing procedure is
associated with one value of Rf . We perform NI = 30 independent calculations starting
at NI different (X(0),P(0)). (a) Action levels versus Rf . 23 of 30 action levels are
above the anticipated value, shown as the solid black line. (b) The model errors in
Eq. (3.5) as a function of Rf . At smaller Rf values, the model error dominates the
action, indicating that the HMC calculations have not yet found a path that agrees with
the model described by Eq. (3.6). At the final stage, the model error starts to decrease
exponentially and the paths proposed by HMC start to agree with the model. (c) The
estimations of the Lorenz96 model forcing parameter ν as a function of Rf . The true
forcing parameter is νtrue = 8.17 (solid black line).

51

in terms of L, at each time an observation is made. This leads to errors in the estimated

forcing parameter.

Until this point, we have examined the indicators, i.e., action level, model error,

and forcing parameter, representing the quality of the transfer of information. All of these

are inferred from the calculations happening in the observation window 0 ≤ t ≤ 5 and from

the data Y available to the PAHMC method. To validate our information transfer method,

we need to take advantage of the “twin experiment” setting introduced in Sec. 3.1.1. We

will compare the estimation results for the observed and unobserved state variables with

the ground-truth data generated in the twin experiment. We will also predict forward in

time beyond the observation window (based on the estimation results) and compare the

predictions with the ground truth.

Fig. 3.5(a) shows the estimate of an observed variable x9(t) within the estimation

window 0 ≤ t ≤ 5 as well as its prediction within the window 5 < t ≤ 11, for Lorenz96 with

L = 8. We can see that the estimation agrees quite well with the data. The prediction,

with the HMC calculation of errors shown, agrees with the data in the prediction window

for some time (about 4 inverse Lyapunov times) and eventually diverges due to the chaotic

nature of the Lorenz96 system at ν = 8.17. It is worth noticing that the errors in the

prediction are quite small in earlier stages. This is because the PAHMC procedure has

accurately estimated all of the observed and unobserved state variables as well as the

forcing parameter, ν.

Fig. 3.5(b) presents the same information, but for an unobserved variable x12(t). In

this case, the data for x12(t) is not presented to the PAHMC method in the observation

window, yet PAHMC still achieves high accuracy in terms of both estimation and prediction.

This is a strong indication that the transfer of information from the data, Y, to the Lorenz96

system has been successful for L = 8 observations. The nonlinearity of the model is at

work here transferring information from observed to unobserved state variables.

52

0 1 2 3 4 5 6 7 8 9 10 11
Time (a.u.)

5

0

5

10

15

x 9
(t)

, O
bs

er
ve

d

(a) Data Estimation Prediction + Error

0 1 2 3 4 5 6 7 8 9 10 11
Time (a.u.)

5

0

5

10

x 1
2(

t),
 U

no
bs

er
ve

d

(b) Data Estimation Prediction + Error

Figure 3.5: Predictions by PAHMC on the Lorenz96 model with D = 20 and L = 8.
(a) Display of results for an observed state variable, x9(t). The noisy data are within in
the time interval 0 ≤ t ≤ 11. The estimated values in the observation window 0 ≤ t < 5
are shown in red. The predicted values are shown in blue, and the prediction errors
are shown in magenta within 5 < t ≤ 11. (b) Display of results for an unobserved state
variable, x12(t). The true data, with noise added, span the full 0 ≤ t ≤ 11 interval. The
estimated values in the observation window 0 ≤ t < 5 are shown in red. The predicted
values, with errors (in magenta), are shown in blue within the interval of 5 < t ≤ 11.
For the unobserved variables, the data within 0 ≤ t ≤ 11 are unavailable to the method.

53

3.1.4 Results from PAHMC; L = 10

If we further increase the number of observations to L = 10, we shall see that all the

action levels plateau almost at the expected value, as shown in Fig. 3.6(a). This indicates

that the information is sufficient for the PAHMC method to locate the global minimum of

the action. Also, in Fig. 3.6(b), the rapidly decaying model errors show that the dynamics,

x(m+ 1) = f (x(m), ν), is enforced strictly in the large-Rf regime. Fig. 3.6(c) shows the

estimated forcing parameter for L = 10 as a function of Rf . The 30 estimated forcing

parameters quickly converge to the true value of 8.17, which indicates that the correct

model has been found by all the NI = 30 PAHMC calculations. Conclusions similar to

the L = 8 case can be drawn from the prediction results in Figs. 3.7(a) for the observed

variable x17(t) and 3.7(b) for the unobserved state variable x14(t).

3.1.5 Results from PAHMC; L = 12

We have seen that L = 10 is sufficient for the number of observed dimensions for

the D = 20 Lorenz96 system. As a result, increasing L to 12 brings almost no additional

information about the properties of the source of the data or the structure of the action.

In Fig. 3.8 we can see the results for the action, model errors, and the forcing

parameter for the NI = 30 initial paths used in the calculations. Similar to the L = 10

case in Fig. 3.6, all 30 action levels rapidly converge to the expected value, and all model

errors quickly become negligible. Although initialized at different values, the estimations

for the forcing parameter converge to the true value 8.17 in the first few β values.

Fig. 3.9 shows the data, estimation and prediction results for one observed dimension,

x14(t), and one unobserved dimension, x11(t). Within both the observation window and

the prediction window, the results are good (note that for x11(t) there was no data). It is

clear that the information transfer is successful.

54

100 101 102 103 104 105
0.1

0.5

1

2

100 101 102 103 104 105
10-4

10-3

10-2

10-1

100 101 102 103 104 105
6.5

7.0

7.5

8.0

8.5

9.0
A

(q
) (
X

);
 q

 =
 1

,
...

,
30

Rf /Rm

(a)

M
od

el
 e

rr
or

(q
) ;
q

=
 1

,
...

,
30

Rf /Rm

(b)

(q
) ;
q

=
 1

,
...

,
30

Rf /Rm

(c)

100 101 102 103 104 105
0.1

0.5

1

2

100 101 102 103 104 105
10-4

10-3

10-2

10-1

100 101 102 103 104 105
6.5

7.0

7.5

8.0

8.5

9.0

A
(q

) (
X

);
 q

 =
 1

,
...

,
30

Rf /Rm

(a)

M
od

el
 e

rr
or

(q
) ;
q

=
 1

,
...

,
30

Rf /Rm

(b)

(q
) ;
q

=
 1

,
...

,
30

Rf /Rm

(c)

Figure 3.6: Action, measurement error, and model error for PAHMC on the Lorenz96
model with D = 20 and L = 10. Each step in the Precision Annealing procedure is
associated with one value of Rf . We perform NI = 30 independent calculations starting
at NI different (X(0),P(0)). (a) Action levels versus Rf . All these levels agree with
the expected value, shown as the solid black line. (b) The model errors in Eq. (3.5) as
a function of Rf . At smaller Rf values, the model error dominates the action. After
that, the model error rapidly decreases as Rf grows, and the measurement error term
dominates the action and becomes essentially independent of Rf . (c) The estimations of
the Lorenz96 model forcing parameter ν as a function of Rf . The true forcing parameter
is νtrue = 8.17 (solid black line). The correct forcing parameter quickly emerges from
the random initialization.

55

0 1 2 3 4 5 6 7 8 9 10 11
Time (a.u.)

5

0

5

10

15

x 1
7(

t),
 O

bs
er

ve
d

(a) Data Estimation Prediction + Error

0 1 2 3 4 5 6 7 8 9 10 11
Time (a.u.)

5

0

5

10

x 1
4(

t),
 U

no
bs

er
ve

d

(b) Data Estimation Prediction + Error

Figure 3.7: Predictions by PAHMC on the Lorenz96 model with D = 20 and L = 10.
(a) Display of results for an observed state variable, x17(t). The data, with noise added,
span the full 0 ≤ t ≤ 11 interval. The estimated values in the observation window
0 ≤ t < 5 are shown in red. The predicted values, with errors (in magenta), are shown
in blue within the interval of 5 < t ≤ 11. (b) Display of results for an unobserved state
variable, x14(t). The true data, with noise added, span the full 0 ≤ t ≤ 11 interval. The
estimated values in the observation window 0 ≤ t < 5 are shown in red. The predicted
values, with errors (in magenta), are shown in blue within the interval of 5 < t ≤ 11.
For the unobserved variables, the data within 0 ≤ t ≤ 11 are unavailable to the method.

56

100 101 102 103 104 105
0.1

0.5

1

2

100 101 102 103 104 105
10-4

10-3

10-2

10-1

100 101 102 103 104 105

7.6

7.8

8.0

8.2

8.4
A

(q
) (
X

);
 q

 =
 1

,
...

,
30

Rf /Rm

(a)

M
od

el
 e

rr
or

(q
) ;
q

=
 1

,
...

,
30

Rf /Rm

(b)

(q
) ;
q

=
 1

,
...

,
30

Rf /Rm

(c)

100 101 102 103 104 105
0.1

0.5

1

2

100 101 102 103 104 105
10-4

10-3

10-2

10-1

100 101 102 103 104 105

7.6

7.8

8.0

8.2

8.4

A
(q

) (
X

);
 q

 =
 1

,
...

,
30

Rf /Rm

(a)

M
od

el
 e

rr
or

(q
) ;
q

=
 1

,
...

,
30

Rf /Rm

(b)

(q
) ;
q

=
 1

,
...

,
30

Rf /Rm

(c)

Figure 3.8: Action, measurement error, and model error for PAHMC on the Lorenz96
model with D = 20 and L = 12. Each step in the Precision Annealing procedure is
associated with one value of Rf . We perform NI = 30 independent calculations starting
at NI different (X(0),P(0)). (a) Action values at each Rf . All the action levels quickly
plateau at the anticipated level as Rf grows. (b) The model errors in Eq. (3.5) as a
function of Rf . At smaller Rf values, the model error dominates the action. After
that, the model error rapidly decreases as Rf grows, and the measurement error term
dominates the action and becomes essentially independent of Rf . This indicates that the
Precision Annealing procedure has successfully located the path that agrees well with
the measurements and the model. (c) The estimations of the Lorenz96 model forcing
parameter ν as a function of Rf . The true forcing parameter is νtrue = 8.17 (solid black
line). The correct forcing parameter quickly emerges from the random initialization.

57

0 1 2 3 4 5 6 7 8 9 10 11
Time (a.u.)

5

0

5

10

x 1
4(

t),
 O

bs
er

ve
d

(a) Data Estimation Prediction + Error

0 1 2 3 4 5 6 7 8 9 10 11
Time (a.u.)

5

0

5

10

x 1
1(

t),
 U

no
bs

er
ve

d

(b) Data Estimation Prediction + Error

Figure 3.9: Predictions by PAHMC on the Lorenz96 model with D = 20 and L = 12.
(a) Display of results for an observed state variable, x14(t). The data, with noise added,
span the full 0 ≤ t ≤ 11 interval. The estimated values in the observation window
0 ≤ t < 5 are shown in red. The predicted values, with errors (in magenta), are shown
in blue within the interval of 5 < t ≤ 11. (b) Display of results for an unobserved state
variable, x11(t). The true data, with noise added, span the full 0 ≤ t ≤ 11 interval. The
estimated values in the observation window 0 ≤ t < 5 are shown in red. The predicted
values, with errors (in magenta), are shown in blue within the interval of 5 < t ≤ 11.
For the unobserved variables, the data within 0 ≤ t ≤ 11 are unavailable to the method.

58

3.1.6 Random-Proposal Monte Carlo Compared to PAHMC

Although the focus of this chapter is the applications of the Precision Annealing

Hamiltonian Monte Carlo method, it is still useful to list some results from the Precision

Annealing Random-proposal Monte Carlo method as a comparison. We have mentioned at

the beginning of Sec. 2.3 that the Random-proposal Monte Carlo method (1) converges to

the target distribution π(X |Y) slower than the HMC method and (2) scales poorly when

the dimensionality of the problem grows. The examples in this subsection support these

claims.

As usual, our numerical calculations are “twin experiments” in which for a selected

D we choose x(t0) ≡ x(0). We use a time step ∆t = 0.025 to generate solutions x(t) over

an observation window [t0, tfinal] in which t0 ≤ t ≤ t0 +M∆t = tfinal. To each xa(t), we add

Gaussian noise with mean zero and variance σ2 = 0.25; these now comprise our library of

observed data. We then select L ≤ D of these noisy data, and the action reads

A(X) =
F∑
k=0

L∑
`=1

Rm

2
[x`(τk)− y`(τk)]2

+
M−1∑
m=0

D∑
a=1

Rf

2
[xa(m+ 1)− fa(x(m), ν)]2 .

(3.7)

The calculations are performed with the following choices: D = 20, α = 1.4, Rf0 = 4.0,

Rm = 4.0, NI = 50, ∆t = 0.025, and L = 5, 12.

In Fig. 3.10 we display the action levels as a function of Rf at L = 5. We can

see that the Random-proposal Monte Carlo identifies many action levels, corresponding

to many peaks in the conditional probability distribution π(X |Y) ∝ exp[−A(X)] with

the action given in Eq. (3.7). From Rf = 2 × 104, we see one level moving away from

the collection of larger action levels as β increases. However, no action level has become

essentially independent of Rf suggesting that the accuracy with which the model is enforced

59

remains too small. We expect that as the number of measurements at each τk is increased

more information about the phase space instabilities will be passed from the data to the

model and that the structure of the action level plot will change.

In Fig. 3.11, we now display the action levels and its components, the measurement

errors and the model errors, at L = 12. Here the behavior of the action levels is quite

different. The model error decreases over a large range of Rf until the numerical stability of

the evaluation of this term is reduced as small errors in x(m+1)− f (x(m), ν) are magnified

by large values of Rf . As this result appears, the action for each of the NI paths at each

β levels off, becoming essentially independent of Rf . However, the plateaued action level

is significantly higher than the expected value calculated from the χ2 distribution. This

indicates that the quality of the transfer of information is sub-optimal compared to that of

the PAHMC method.

Until this point, we have examined outcomes of the Precision Annealing Random-

proposal Monte Carlo procedure. All of the state variables (observed and unobserved) as

well as the forcing parameter were reported over the observation window 0 ≤ t ≤ 5. In a

“twin experiment” as in here, we have generated the data by solving a known dynamical

equation and adding noise to the output of the D = 20 times series with a known value of

ν. The point of a twin experiment is to test the method of transfer of information. As we

have D−L unobserved state variables at each L, and an unobserved parameter ν, the only

tool to determine how well the estimation procedure has done in its task is to predict for

t > 5 into a prediction window where no information from observations is passed back from

the model. We now examine how well the estimation has been performed by predicting

both an observed and an unobserved time series among the D available. The points in this

paragraph have already been demonstrated extensively in the PAHMC results in Sec. 3.1.2

through Sec. 3.1.5.

We already see from Fig. 3.11(c) that the input value of ν = 8.17 has not been

60

101 102 103 104 105 106 107
102

103

104

105

101 102 103 104 105 106 107
102

103

104

105

101 102 103 104 105 106 107
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5

10.0

A
(q

) (
X

);
 q

 =
 1

,
...

,
50

Rf /Rm

(a)

M
od

el
 e

rr
or

(q
) ;
q

=
 1

,
...

,
50

Rf /Rm

(b)

(q
) ;
q

=
 1

,
...

,
50

Rf /Rm

(c)

101 102 103 104 105 106 107
102

103

104

105

101 102 103 104 105 106 107
102

103

104

105

101 102 103 104 105 106 107
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5

10.0

A
(q

) (
X

);
 q

 =
 1

,
...

,
50

Rf /Rm

(a)

M
od

el
 e

rr
or

(q
) ;
q

=
 1

,
...

,
50

Rf /Rm

(b)

(q
) ;
q

=
 1

,
...

,
50

Rf /Rm

(c)

Figure 3.10: Action, measurement error, and model error for Random-proposal Monte
Carlo on the Lorenz96 model with D = 20 and L = 5. Each step in the Precision
Annealing procedure is associated with one value of Rf . We perform NI = 50 indepen-
dent calculations starting at NI different (X(0),P(0)). (a) The values of the actions
as in Eq. (3.7). The actions are evaluated at β = logα(Rf/Rm) where α = 1.4 and
Rm = 4.0. Displayed here are the NI = 50 action values at each Rf . These actions are
evaluated along the expected path resulting from the sampled paths generated during
the Random-proposal procedures from each of the NI initial paths. (b) The values of
the model errors. (c) The values of the forcing parameter.

61

101 102 103 104 105 106 107
800

1200

1600

2000

101 102 103 104 105 106 107

102

101 102 103 104 105 106 107
7.70
7.75
7.80
7.85
7.90
7.95
8.00
8.05
8.10
8.15
8.20
8.25
8.30

A
(q

) (
X

);
 q

 =
 1

,
...

,
50

Rf /Rm

(a)

M
od

el
 e

rr
or

(q
) ;
q

=
 1

,
...

,
50

Rf /Rm

(b)

(q
) ;
q

=
 1

,
...

,
50

Rf /Rm

(c)

101 102 103 104 105 106 107
800

1200

1600

2000

101 102 103 104 105 106 107

102

101 102 103 104 105 106 107
7.70
7.75
7.80
7.85
7.90
7.95
8.00
8.05
8.10
8.15
8.20
8.25
8.30

A
(q

) (
X

);
 q

 =
 1

,
...

,
50

Rf /Rm

(a)

M
od

el
 e

rr
or

(q
) ;
q

=
 1

,
...

,
50

Rf /Rm

(b)

(q
) ;
q

=
 1

,
...

,
50

Rf /Rm

(c)

Figure 3.11: Action, measurement error, and model error for Random-proposal Monte
Carlo on the Lorenz96 model with D = 20 and L = 12. Each step in the Precision
Annealing procedure is associated with one value of Rf . We perform NI = 50 indepen-
dent calculations starting at NI different (X(0),P(0)). (a) The values of the actions
as in Eq. (3.7). The actions are evaluated at β = logα(Rf/Rm) where α = 1.4 and
Rm = 4.0. Displayed here are the NI = 50 action values at each Rf . These actions are
evaluated along the expected path resulting from the sampled paths generated during
the Random-proposal procedures from each of the NI initial paths. (b) The values of
the model errors. (c) The values of the forcing parameter.

62

estimated accurately. The apparent bias in this parameter estimation has also been seen in

an earlier Monte Carlo twin experiment [43, 79]. However, note that the PAHMC method

can accurately estimate the parameter ν without an apparent bias as shown in Fig. 3.11.

Fig. 3.12(a) shows the results for an observed model variable x2(t). The observed

dimensions are ` ∈ {1, 2, 4, 6, 7, 9, 11, 12, 14, 16, 17, 19}. The estimation of x2(t) during the

observation window using the Random-proposal Monte Carlo is shown in red, and the

prediction using all the estimated states of the model at x(t = 5) and the estimated model

parameter is shown in blue. Our knowledge of this dynamical system indicates that the

largest global Lyapunov exponent is approximately 1.2 in the time units indicated by ∆t.

The deviation of the predicted trajectory x2(t) from the data near t ≈ 6.0 is acceptable

given this Lyapunov exponent. However, this prediction result is significantly worse than

that of the PAHMC method (also at L = 12).

Fig. 3.12(b) shows an unobserved model variable x20(t) from the same set of

calculations. The estimation of x20(t) during the observation window using the Random-

proposal Monte Carlo is shown in red, and the prediction using all the estimated states of the

model at x(t = 5) and the estimated model parameter is shown in blue. Our knowledge of

this dynamical system indicates that the largest global Lyapunov exponent is approximately

1.2 in the time units indicated by ∆t. The deviation of the predicted trajectory x20(t)

from the data near t ≈ 6.0 is acceptable given this Lyapunov exponent. However, as in the

observed-variable case mentioned above, this prediction result is significantly worse than

that of the PAHMC method (also at L = 12).

All the results in this subsection shows that the Random-proposal Monte Carlo

method is a good candidate for the information transfer problem. But PAHMC is a

noticeably superior method, especially when the problem is complicated enough.

In the next section, we will again focus on the performance of the PAHMC method,

this time exclusively.

63

0 1 2 3 4 5 6 7 8 9 10
Time (a.u.)

5

0

5

10

15

x 2
(t)

, O
bs

er
ve

d

(a) Data RP Estimation RP Prediction + Error

0 1 2 3 4 5 6 7 8 9 10
Time (a.u.)

10

5

0

5

10

15

x 2
0(

t),
 U

no
bs

er
ve

d

(b) Data RP Estimation RP Prediction + Error

Figure 3.12: Prediction results using Random-proposal Monte Carlo for the Lorenz96
model with D = 20 and L = 12. The predictions use the values of x(t = 5) for the
full estimated state at the end of the observation window as well as the parameter ν
estimated in the Precision Annealing procedure. (a) Results for an observed dynamical
variable x2(t). In black is the full length of the noisy data. In red is the estimated
x2(t) over the observation window 0 ≤ t ≤ 5, and in blue is the predicted x2(t) over the
prediction window 5 < t ≤ 10. The prediction error band are in magenta. (b) Results
for an unobserved dynamical variable x20(t). In black is the full length of the noisy
data. In red is the estimated x20(t) over the observation window (in which the variable
is still unobserved), and in blue is the predicted x20(t) over the prediction window. The
prediction error band are in magenta.

64

3.2 The Hodgkin–Huxley Neuron Model

Biophysics is another field where the information transfer problem is ubiquitous

and also important. In a biophysical problem, an experimenter is often interested in

understanding the properties of a single or a network of cellular or intracellular particles.

However, a satisfactory set of measurements to unveil these properties is almost always

out of reach due to the limitations of measuring devices, or simply, the inaccessibility of

the objects themselves that are being measured [80]. In addition, biophysical experiments

usually yield very noisy results.

Nonetheless, a lot of biophysical systems can be appropriately formulated as (non-

linear) dynamical equations, which means we can study them using tools familiar to a

statistical physicist. With this in mind, it is therefore possible to extract more information

from the measurements than it is possible from solely analyzing the experimental data.

This section gives an example.

In this section, we study the application of PAHMC on a well-known model with

a fair amount of complexity: the Hodgkin-Huxley model. In 1952, Alan Hodgkin and

Andrew Huxley proposed a model in a seminal work that describes the ionic dynamics of

transmembrane action potentials in the squid giant axon [21].

Networks of neurons exhibit complex biological and dynamical behaviors, most

noticeably, rhythmic bursting and patterned sequence generation [81, 82, 83, 84]. From the

perspective of the discussion here, neurons are nonlinear oscillators with competing feedback

mechanisms among the flow of ions across the cell membrane. A neuron’s cross-membrane

voltage depends on currents that flow across various ion channels. In particular, Na+ has a

higher concentration outside the cell and therefore has an inflow tendency. In contrast, K+

has a higher concentration inside the cell and therefore has an outflow tendency. When

there is no outside stimulating signal (which is required for a neuron to “fire”), a neuron

maintains a resting potential that is −65mV relative to its exterior, which is a result of the

65

balance between ion diffusion due to differing concentration and the electrostatic forces on

the charged ions [1].

When the neuron is being driven by an external current (i.e., a signal), as the

potential passes a threshold, the neuron produces a spike in voltage called the action

potential. The existence of the external current implies that we are dealing with a driven

dynamical system, which means the dynamical equations will be time-dependent. We will

turn to this shortly.

We now turn to the equations under study. The Hodgkin-Huxley (HH) model is

the first to quantitatively describe the above process. Following its introduction, the HH

model has been studied extensively by physicists and applied mathematicians as a test bed

for their new approaches [43, 81, 85, 86, 82, 83, 84].

The HH model consists of dynamical equations for four state variables: the action

potential (voltage) V (t) across the cell membrane and the three gating variables m(t),

h(t), and n(t). The model describes the dynamics of the voltage and voltage-dependent

conductivities. The time evolution of the states are governed by the following first-order

differential equations:

C
dV (t)

dt
= gNa m(t)3 h(t) (ENa − V (t))

+ gK n(t)4 (EK − V (t))

+ gL (EL − V (t))

+ Iinj(t),

dm(t)

dt
=
ηm(V (t))−m(t)

τm(V (t))
,

dh(t)

dt
=
ηh(V (t))− h(t)

τh(V (t))
,

dn(t)

dt
=
ηn(V (t))− n(t)

τn(V (t))
.

(3.8)

66

In Eq. (3.8), Iinj(t) is the external current applied to the neuron, and the η’s and τ ’s are

expressed as

ηm(V (t)) =
1

2
+

1

2
tanh

(
V (t)− Vm

∆Vm

)
,

τm(V (t)) = τm0 + τm1

[
1− tanh2

(
V (t)− Vm

∆Vm

)]
,

ηh(V (t)) =
1

2
+

1

2
tanh

(
V (t)− Vh

∆Vh

)
,

τh(V (t)) = τh0 + τh1

[
1− tanh2

(
V (t)− Vh

∆Vh

)]
,

ηn(V (t)) =
1

2
+

1

2
tanh

(
V (t)− Vn

∆Vn

)
,

τn(V (t)) = τn0 + τn1

[
1− tanh2

(
V (t)− Vn

∆Vn

)]
.

(3.9)

Eqs. (3.8) and (3.9) collectively specify a dynamical system with four state variables

V (t), m(t), h(t), and n(t), and a set of nineteen parameters θ = {C, gNa, ENa, gK, EK, gL, EL,

Vm,∆Vm, τm0, τm1, Vh,∆Vh, τh0, τh1, Vn,∆Vn, τn0, τn1}.

The task of information transfer is to estimate the voltage V (t), all three gating

variables m(t), h(t), and n(t), as well as the parameter set θ. Among all these, the most

realistic assumption is that only a noisy version of the cross-membrane voltage V (t) is

known to us. Of course, the applied current Iinj(t) is known as well. All other state variables

and the parameters are all unobserved and need to be estimated.

Once we have transferred information from the V (t) measurements to the HH

model specified in Eqs. (3.8) and (3.9), we can use the completed model to predict the

response of the neuron for t > tfinal. If the predictions are accurate for a broad range of

biologically plausible Iinj(t), then we know that the PAHMC method is a reliable tool for

interpreting and predicting the behavior of the neuron. To assess the quality of the transfer

of information, we can always use a validation common in statistical learning.

67

3.2.1 Data Preparation

Here, we present the details on how the twin experiment data (and the validation

set) are generated. These include the true parameters θtrue, the external current Iinj(t), the

generated data, and more.

As discussed above, the HH model has D = 4. Since only V (t) is observable, we

have L = 1. We choose ∆t = 0.02ms as the discretization interval for integrating the HH

model. The discretization rule is Eq. (3.6), same as what is used in the previous Lorenz96

example. The observation window runs from t0 = 0 to tfinal = 100ms. Therefore, M = 5000.

The prediction window is 100ms < t < 1000ms. For the observed dimension V (t), for each

of the M data points, we add a Gaussian noise with mean zero and σ2 = 1.0.

Table 3.1 records the true values of the parameters used to generate data. The

membrane capacitance is held fixed as C = 1.0µF/cm2 and is not subject to estimation.

Table 3.1: The true parameters of the Hodgkin–Huxley model.

Parameter True Value Unit

gNa 120.0 mS/cm2

ENa 50.0 mV

gK 20.0 mS/cm2

EK −77.0 mV

gL 0.3 mS/cm2

EL −54.4 mV
Vm −40.0 mV

∆Vm 15.0 mV
τm0 0.1 ms
τm1 0.4 ms
Vh −60.0 mV

∆Vh −15.0 mV
τh0 1.0 ms
τh1 7.0 ms
Vn −55.0 mV

∆Vn 30.0 mV
τn0 1.0 ms
τn1 5.0 ms

68

Fig. 3.13 shows the simulated applied current, Iinj(t), on the HH model. The

univariate time series shown is the first dimension x(t) of the solution to the Lorenz63

dynamical system [18] with ρ = 28, σ = 10, and β = 8/3. When solving the system,

the time is “diluted” by a factor of 20, and the data are re-mapped onto a discretization

interval of ∆t = 0.02ms.

We now use f (x(k),θ) to denote the model in discrete time, in which x(t) =

(V (t),m(t), h(t), n(t)), and θ is the collection of model parameters. Given that we can only

measure V (t) and that we have observation at each time step, i.e., nk = k, the action can

be written as

A(X) =
Rm

2M

M∑
k=1

[V (k)− y(k)]2 +
4∑

a=1

M−1∑
k=1

R
(xa)
f

2M
[xa(k + 1)− fa(x(k),θ)]2 , (3.10)

where a ∈ {V (t),m(t), h(t), n(t)} is the generic notation for the state variables.

Fig. 3.14 shows the data generated using all the specifications discussed here. The

only observed dimension is V (t), and it is noisy. The three gating variables, m(t), h(t),

and n(t), are unobserved and need to be estimated by PAHMC.

Besides the three gating variables, we also need to estimate the observed V (t) within

the observation window 0 < t < 100ms, plus the eighteen parameters, in order to complete

the HH model specified by Eqs. (3.8) and (3.9). Once the process is finished, we can

validate the PAHMC model by (1) comparing the estimations with the ground truth in

Fig. 3.14 within the observation window (2) predicting forward for 100ms < t < 1000ms

and comparing the predictions with the ground truth. If the results are satisfactory, we say

that the transfer of information is successful.

The total dimensionality of the problem is therefore D×M +18 = 20018. This num-

ber poses a serious challenge to PAHMC. In addition, the nonlinearities in Eqs. (3.8) and (3.9)

makes the action manifold specified by Eq. (3.10) highly nonconvex.

69

0 100 200 300 400 500 600 700 800 900 1000
Time (ms)

40

20

0

20

40

St
im

ul
us

Figure 3.13: The external stimulus current, Iinj(t), applied on the Hodgkin–Huxley
model. The time series is the first dimension x(t) of the solution to the Lorenz63
dynamical system. When solving the Lorenz63 system, the discretization interval (in
a.u.) used is 0.001. The data are then re-mapped onto a ∆t = 0.02ms interval.

70

-125
-75
-25
25
75

V(
t)

(a) Data (Observed)

0
0.2
0.4
0.6
0.8
1.0

m
(t)

(b) Data (Unobserved)

0
0.2
0.4
0.6
0.8
1.0

h(
t)

(c) Data (Unobserved)

0 100 200 300 400 500 600 700 800 900 1000
Time (ms)

0
0.2
0.4
0.6
0.8

n(
t)

(d) Data (Unobserved)

Figure 3.14: The generated data for the Hodgkin–Huxley neuron model. V (t) is
observed and has noise. The three gating variables, m(t), h(t), and n(t) are unobserved
and need to be estimated.

71

3.2.2 Results from PAHMC

We present here the results of the transfer of information from the V (t) data into

the HH model described in Eqs. (3.8) and (3.9). The external current Iinj(t) is provided

throughout the observation and prediction window.

Essentially, PAHMC performs sampling from the high-dimensional distribution

π(X |Y) ∝ exp[−A(X)], identifies the dominant contribution to the expected-value integral

in Eq. (2.11), and gives an accurate estimation of 〈X〉 and higher moments. The final

product of this process contains all the information needed to estimate V (t), the unobserved

gating variables m(t), h(t), and n(t), and the eighteen parameters. One can then make

predictions based on these estimations.

Before showing the numerical results, we first report how Precision Annealing (PA)

is performed in the calculations for the Hodgkin-Huxley model. PA was discussed in great

detail in Chapter 2 as a step-wise procedure to guide HMC to the region in the X space

where the majority of the probability mass is located.

In Eq. (3.10), the for of the action differs slightly from the original definition in

Eq. (2.13) such that we allow each of the D state variables to have a unique Rf0 value.

This treatment brings no conceptual difference but is beneficial for numerical calculations

when different state variables have different dynamical ranges, as is the case for the

Hodgkin-Huxley model. In other words, we have

R
(xa)
f = R

(xa)
f0
× αβ, (3.11)

where a ∈ {V (t),m(t), h(t), n(t)} is the generic notation for the state variables. For the

calculations in this section, we choose α = 2.0 and β = 0, . . . , 19.

As a rule of thumb, the value of Rf0 for a state variable should be inversely

proportional to the square of its corresponding dynamical range. This is because we want

72

the shape of the A(X) manifold in the X space to be as “regular” as possible. Specifically,

the dynamical range for V (t) is roughly (−125, 50) and dynamical range for the three gating

variables m(t), h(t), and n(t) is (0, 1). Our choices for the Rf0 ’s are therefore R
(V)
f0

= 0.1,

R
(m)
f0

= 1200, R
(h)
f0

= 1600, and R
(n)
f0

= 2100. The smallest value, 0.1, ensures that we

impose a weak enough model constraint on the action at the beginning.

Fig. 3.15 plots the action and the model error resulted from PAHMC calculations.

We can see from the two panels that the transfer of information is quite successful because

the action quickly plateaus to the asymptotic value calculated from the expectation of the

χ2 distribution associated with the noise in V (t).

Table 3.2 records the estimated values of the eighteen model parameters by PAHMC.

These accurate estimations of parameters, along with ideal action level and model error,

constitute a good basis for making predictions.

Table 3.2: The estimated parameters of the Hodgkin–Huxley model.

Parameter True Value Estimated Unit

gNa 120.0 116.19 mS/cm2

ENa 50.0 49.72 mV

gK 20.0 21.63 mS/cm2

EK −77.0 −77.05 mV

gL 0.3 0.30 mS/cm2

EL −54.4 −54.27 mV
Vm −40.0 −40.18 mV

∆Vm 15.0 14.80 mV
τm0 0.1 0.10 ms
τm1 0.4 0.40 ms
Vh −60.0 −59.34 mV

∆Vh −15.0 −14.09 mV
τh0 1.0 0.99 ms
τh1 7.0 8.78 ms
Vn −55.0 −53.92 mV

∆Vn 30.0 31.76 mV
τn0 1.0 1.03 ms
τn1 5.0 4.94 ms

73

0 2 4 6 8 10 12 14 16 18
= log (R(V)

f /R(V)
f0)

0.1

0.2

0.3

0.4
0.5
0.6

Ac
tio

n

(a)

Action
Asymptote

0 2 4 6 8 10 12 14 16 18
= log (R(V)

f /R(V)
f0)

0.001

0.01

0.1

M
od

el
 E

rro
r

(b)

Figure 3.15: Action level and model error for PAHMC on the Hodgkin-Huxley model
with D = 4, L = 1, and M = 5000. Each step in the Precision Annealing Procedure is
associated with one value of β. Each of the four state variables has a different Rf0 value.
With only one initial condition, i.e., NI = 1, we can still conclude that the information
transfer is successful. (a) Action values at each β. The action quickly plateaus as β
grows. (b) The model error in Eq. (3.10) as a function of β.

74

Following the action and parameter-estimation results, we are now ready to discuss

the estimation and prediction of states. Fig. 3.16 shows the estimation and prediction

results on the observed state variable, V (t), as well as on the three unobserved gating

variables, m(t), h(t), and n(t). Within the observation window 0 < t < 100ms, all four

estimations are accurate despite V (t) being noisy and m(t), h(t), and n(t) being “hidden”

to PAHMC. This, combined with the fact that the parameter estimations are accurate

as shown in Table 3.2, indicate that the principal mode of the probability distribution

π(X |Y) ∝ exp[−A(X)] has been found and that the information has been successfully

transferred into the Hodgkin-Huxley model.

To further solidify the claim of success, we can look at the predictions of the four

state variables within 100ms < t < 1000ms in Fig. 3.16. We see that all of the predictions

for V (t) and for m(t), h(t), and n(t) align perfectly with the data in the validation set. In

addition, the error bands are plotted, but they are barely visible since PAHMC is confident

about its predictions. This phenomenon of narrow error bands is a result of both the

variance-reduction capability of HMC and the fact that most of the probability mass of

π(X |Y) is located around the proximity of the global minimum of A(X).

At this point, we have presented comprehensive evidence of the efficacy of PAHMC as

a method to transfer information from partial, noisy data to a dynamical system. In Sec. 3.1

we discussed PAHMC results on the D = 20 Lorenz96 chaotic system with L = 7, 8, 10, 12.

We saw that about 40% of the state variables need to be observed in order to achieve a

satisfactory transfer of information. In this section, we reported PAHMC results on the

non-chaotic but much more complicated Hodgkin-Huxley model. Among the four state

variables, only V (t) needs to be observed. We validated the PAHMC results by comparing

the estimations and predictions with the ground truth.

We conclude that the PAHMC method proposed in this dissertation is effective, and

it can be applied to a broad range of problems.

75

-125
-75
-25
25
75

V(
t),

 O
bs

er
ve

d

(a) Data Estimation Prediction + Error

0
0.2
0.4
0.6
0.8
1.0

m
(t)

(b) Data Estimation Prediction + Error

0
0.2
0.4
0.6
0.8
1.0

h(
t)

(c) Data Estimation Prediction + Error

0 100 200 300 400 500 600 700 800 900 1000
Time (ms)

0
0.2
0.4
0.6
0.8

n(
t)

(d) Data Estimation Prediction + Error

Figure 3.16: Predictions by PAHMC on the Hodgkin-Huxley model with D = 4, L = 1,
and M = 5000. (a) Display of results for the observed state variable V (t). The noisy
data span the full 0 < t < 1000ms interval. The estimated values in the observation
window 0 < t < 100ms are shown in red. The predicted values, with errors (in magenta),
are shown in blue within the interval of 100ms < t < 1000ms. (b) Display of results for
the unobserved gating variable, m(t). (c) Display of results for the unobserved gating
variable, h(t). (d) Display of results for the unobserved gating variable, n(t).

76

3.3 Python Implementations

The Python implementations of the PAHMC method are available on the author’s

GitHub web page.

The CPU version is available at

https://github.com/zfang92/pahmc-ode-cpu .

The GPU version is available at

https://github.com/zfang92/pahmc-ode-gpu .

77

Chapter 4

Discussion

We formulated the theory of the Precision Annealing Hamiltonian Monte Carlo

(PAHMC) method in Chapter 2 and presented numerical examples regarding its applications

in Chapter 3. The current chapter serves to address some important questions and to

summarize the key contributions.

In Sec. 4.1 we discuss the necessity of dealing with the path X, which is by definition

a high-dimensional quantity. In other words, why we must use the state-space representation

to complete the task of information transfer.

Then, in Sec. 4.2, we cover the computational complexity of the PAHMC method

as a guide to its scaling properties in complicated problems.

We conclude the chapter with a brief summary.

4.1 Why State Space?

Recall that the path X is defined in Eq. (2.4) as X =
{
x(0), . . . ,x(M); θ1, . . . , θNp

}
.

The number of degrees of freedom of X is therefore D(M + 1) + Np. For the Lorenz96

system discussed in Sec. 3.1, this number exceeds 4000. For the Hodgkin-Huxley model

subsequently discussed in Sec. 3.2, this number exceeds 20000.

78

At this point, two important questions on the necessity to have a “heavy” object X

may be raised.

(1) Why do we need to estimate both the observed and unobserved degrees of freedom

in X? Taken to an extreme, if all of X can be observed, can we only estimate the

parameter set θ and then use this and the available Y to make predictions?

(2) Can we manage to work with the space spanned by {x(0),θ}, i.e., the space that

only contains the initial conditions and the parameter set θ? If so, the total degrees

of freedom that we need to deal with would drop dramatically from D(M + 1) +Np

to D +Np. In other words, this idea is equivalent to not having model errors in the

action.

We answer these questions in the following subsections, respectively. Before doing so, let

us first review the notation and define a couple of new ones.

The state-space representation is widely adopted by many fields such as numerical

weather prediction and control theory [2, 87, 88]. In Sec. 2.2, Eq. (2.1) establishes the

dynamical model in continuous time. Since we always work in discrete time for any model

that is not exactly solvable, we arrive at Eq. (2.2), which states xa(m+ 1) = fa(x(m),θ),

where x(m) = (x1(m), . . . , xD(m)) is the state vector at discrete time mark m. The index

a ranges from 1 to D and time m ranges from 0 to M .

Assuming we have in total Np parameters in θ, the collection of all the state variables,

or simply, the path X, has

T ≡ D(M + 1) +Np (4.1)

total degrees of freedom.

Now, given that we can only observe L out of D dimensions of the dynamics,

and, without loss of generality, assuming that we can observe the system at each time

m = 0, . . . ,M , our (noisy) data can then be denoted as Y = {y(0), . . . ,y(M)}, where each

y is an L-dimensional vector. There are thus L(M + 1) degrees of freedom in Y.

79

As a result, there are clearly

K ≡ (D − L)(M + 1) +Np (4.2)

degrees of freedom “missing.” And these K degrees of freedom make up the unobserved

portion of X and need to be estimated.

4.1.1 The Necessity of Estimating Every Degree of Freedom

Here, we address the first question raised above. We show that not only the

unobserved K but also all T degrees of freedom must be estimated in all cases in order to

achieve a meaningful transfer of information from data to model. Again, taking things to

an extreme, even if we had only one parameter θ in our model (such as in the Lorenz96

system) and we had a full set of observations such that L = D, we may still have thousands

of, if not more, variables left to be estimated. This makes the information transfer task far

more challenging than fitting only the set of parameters θ.

The first reason is that the data set Y contains only partial and noisy information

on X. Even though the dynamical evolution f (x(m),θ) is deterministic, the data obtained

from observing the dynamics are noisy. In many cases, this means ya(m) = xa(m) + ηa for

a = 1, . . . , L, where ηa ∼ N (0, σa). This suggests that every component of X needs to be

estimated.

Even if we could somehow observe all D out of D dimensions at each discrete time

mark, i.e., K = Np in Eq. (4.2), we still cannot avoid estimating the D(M + 1) degrees of

freedom in X. This is because the inherent noise in Y would produce a large model error

in the action given by Eq. (2.13), thus preventing any method from locating the optimal

parameter set θ∗.

Suppose in an even more unrealistic scenario we are given the true values of θ and

80

a full observation (L = D) of X, can we avoid estimating the full degrees of freedom in X

and use only {Y,θtrue} to make predictions beyond the observation window? The answer

is still No.

Fig. 4.1(b) gives an example through the Lorenz96 system where the D = 20

dimensions are fully observed and the true forcing parameter used to generate the data

θtrue = 8.17 is known. Nevertheless, starting from the end of the observation window at

t = 5.0, the prediction for x3(t) quickly diverges from the noisy ground truth. Comparing

this with the results in Sec. 3.1, which always had L < D and θtrue unknown, we can

conclude that all the D(M + 1) +Np degrees of freedom in X should be estimated before

making predictions. This is equivalent to saying that in any circumstance, we cannot bypass

the process of transferring information from data to model in order to make meaningful

predictions.

4.1.2 The Harsh Geometry of the Initial-Condition Space

Now let us turn to the second question raised at the beginning of this section. We

have just discussed the necessity of using the state-space representation for our information

transfer task. However, since we work with non-stochastic models for which x(m) could be

obtained by forward integration using information on x(0) and θ, can we avoid working

with the T -dimensional space spanned by X? In other words, can we only work with the

(D +Np)-dimensional space spanned by {x(0),θ}? We would hope this to be possible, but

the answer is, again, No.

Specifically, we illustrate that imposing the equality in Eq. (2.2) at the outset and

working only with x(0) and θ would make it impossible to achieve the goal of transferring

information. Consequently, we need to deal with all T degrees of freedom in X, not only

the D +Np that corresponds to x(0) and θ.

We know the action consists of a measurement error term and a model error term,

81

0 1 2 3 4 5 6 7 8 9 10 11
Time (a.u.)

10

5

0

5

10

15

x 2
(t)

, O
bs

er
ve

d

(a) Original Perturbed

0 1 2 3 4 5 6 7 8 9 10 11
Time (a.u.)

5

0

5

10

x 3
(t)

, O
bs

er
ve

d

(b) Data Prediction

Figure 4.1: Two attempts to forward-integrate a fully observed Lorenz96 system
without first completing the transfer of information. These results have no predictive
power. (a) Perturbation of the x2(t) variable of a fully observed, D = 20 system with no
noise added to the data. Even with an infinitesimal change in the initial condition x(0),
the resulting time series quickly diverges from the ground truth. (b) An attempt to
predict a fully observed, D = 20 system (with noise in the data) by directly integrating
from the end of the observation window. The x3(t) variable is shown.

82

as described by Eq. (2.13). However, if we do work in the {x(0),θ} space, we are forced to

impose the equality on the dynamics xa(m+ 1) = fa(x(m),θ) from the outset. This results

in a zero model error in the action, and the whole process of estimating x(0) and θ resembles

“solving a nonlinear two-point boundary value problem by searching for the right initial

condition at the left boundary and comparing the integration results with data to see if

they match.” This could not work, as illustrated in Fig. 4.1(a) and Fig. 4.2. Geometrically,

working in the {x(0),θ} space means moving about on a (D +Np)-dimensional nonconvex

action manifold, hoping to locate the abrupt decline in the action that corresponds to the

optimal set of x(0) and θ. There is no means to achieve this.

Let us return to Fig. 4.1(a). The plot shows the hyper-sensitivity with respect to

perturbations on the initial condition x(0) of the Lorenz96 system. This speaks for the

fact that there must be many local minima around the global minimum of the action if we

force Rf to be infinity.

Indeed, if we turn to Fig. 4.2, which is a two-dimensional projection of the twenty-

dimensional Rf =∞ action manifold, we can see that the global minimum is located at

(0, 0) in the unit of perturbation to x1(0) or x15(0). There are many local minima near (0, 0).

And the surface is rather bumpy at coordinates away from the global minimum. We can see

it is infeasible to conduct either sampling or optimization on such a rough, two-dimensional

surface, and things could only get much worse in the original twenty-dimensional space.

Any sampling or optimization method would get “trapped” at where it starts off, and no

information could be transferred.

Overall, we have shown in this section that one needs to work with all the T =

D(M+1)+Np degrees of freedom in X in order to achieve the goal of transferring information

from Y to the dynamical model. Therefore, the task is naturally high-dimensional and

is more challenging than either parameter fitting or dealing with a linear system in its

initial-condition space.

83

x1(0
)

0.75
0.25

0.25
0.75

x15(0) -1-0.75-0.5-0.2500.250.50.751

Ac
tio

n
(R

f=
)

50

100

150

200

250

Figure 4.2: A two-dimensional projection of the Rf =∞ action manifold of a D = 20
Lorenz96 system. The horizontal axes represent perturbations on x1(0) and x15(0),
respectively.

84

4.2 Computational Complexity of PAHMC

Having clarified the necessity of working with the high-dimensional object X, we

now discuss in this section how computationally efficient the proposed PAHMC method

could be.

It is important to consider computational complexity because this is an important

factor in real-world practical applications. Equivalently, it is vital that the method achieves

good scaling properties when applied to large systems. Here, we give an estimate on the

scaling as the system size increases. We first consider the complexity of an elementary

step of HMC, which is that of a one-iteration leapfrog simulation. This requires evaluating

∇A(X) once and therefore has dominant time complexity of O(DM), where, as usual, D

is the dimension of the underlying dynamical system and M is the number of discrete

time steps in the observation window. As the dimensionality of the path X grows, the

number of leapfrog steps in one HMC proposal needs to be adjusted accordingly to reach

a nearly independent point. In fact, it has been noted [74, 38, 73] that the computation

typically grows as the 5/4 power of the dimensions of the model, assuming a near-constant

acceptance rate.

As a result, the time complexity of the PAHMC method proposed in this dissertation

is O((DM)5/4). Apparently, there exists a multiplicative constant—independent of D and

M—that is determined by the choices of the number of samples Nβ and the number of

Precision Annealing steps βmax.

The mixing time itself is hard to estimate, yet it has been empirically shown in

many cases that HMC achieves faster mixing than other well known Markov chain Monte

Carlo methods. In addition, a modification of the term h(P,X) in the Hamiltonian has

been made by Kadakia [64], and it may improve the mixing rate.

It is also useful to provide a benchmark as to the actual computation time for an

example system. To this end, we report the time for the Lorenz96 system considered

85

in this dissertation. In the Lorenz96 example, we are dealing with a 4000-dimensional

system for which D = 20 and M = 200 (ignoring the additional dimension introduced by

the model parameter ν). To obtain one HMC proposal, Xprop, we simulate the discrete

Hamiltonian dynamics given in Eq. (2.26) for S = 50 steps with step size ε = 10−3. In an

implementation in Python, the computation time is around 0.02 second. We then make

Nβ = 103 proposals for every β up to βmax = 30. As a result, the entire calculation takes

about 10 minutes to finish.

To provide a direct comparison with the Precision Annealing Random-proposal

Monte Carlo method, we have run in Sec. 3.1.6 a subset of the twin experiments for the

Lorenz96 system with D = 20 and M = 200. For every β up to βmax = 50, we make

6000 perturbations on X within each β value. This means we make 2.4× 107 proposals

for each β, given the fact that we only perturb one component of X. Implemented in

the C language, the calculation took about four hours to complete. The computation

time is much longer than that of the PAHMC method since the Random-proposal method

requires far more proposal steps due to inefficient sampling and slow exploration of the

π(X |Y) ∝ exp[−A(X)] distribution. We have seen in Sec. 3.1.6 that the actual performance

of the Random-proposal method lagged that of the PAHMC method in terms of estimation

and prediction. Combined with what is discussed here, we say that the PAHMC method is

superior in terms of both accuracy and efficiency.

Aside from the above analyses of the O((DM)5/4) rule and the actual computation

time, we also point out that the PAHMC method could gain a significant speedup if run

in parallel, provided that the action is constructed as in Eq. (2.13). We will again use

Lorenz96 to make the point, but it should be noted that the discussion is quite general

in the sense that one only needs to substitute the vector field fa(x(m),θ) for the system

under examination. We focus on the evaluation of ∇A(X) since this is the only calculation

that scales directly with D and M .

86

First, for the D vector field Fa(x(m), ν) defined in Eq. (3.1) and a discretization

rule in time given by Eq. (3.6), the Jacobian for the vector field at t = tm in the observation

window can be written as

Jij(m) =
∂Fi(x(m), ν)

∂xj(m)

= δi−1,j (xi+1(m)− xi−2(m))

+ (δi+1,j − δi−2,j)xi−1(m)− δij ,

(4.3)

where i, j = 1, . . . , D. The time-consuming part in calculating the D components in ∇A(X)

corresponding to t = tm is to multiply the Jacobian J (m) with a D vector. This can be

fully parallelized, and a D times speedup can be expected.

Second, to complete the calculation of ∇A(X), we need to repeat the above process

of evaluating the Jacobian for each discrete time mark m from 1 to M . These repetitions

are independent of each other and can therefore be fully parallelized. Thus, an M times

speedup can be expected.

The massive potential of parallelization discussed above makes PAHMC especially

suitable for very large dynamical systems in terms of both the dimensionality of the vector

field and the length of the observation window.

4.3 Summary

In this section, we briefly review the key points in Chapters 2 and 3 as well as so

far in this chapter.

We have proposed a systematic method to transfer information from observations

on a nonlinear dynamical system to a model that describes the time-evolution of the

states of that system. The observations are noisy, and the model has errors, so we must

use the conditional probability distribution π(X |Y) ∝ exp[−A(X)], conditioned on the

87

observations, as the principal quantity of interest. With this probability, we are then

interested in the expected value of any function of X. Generically denoted by 〈G(X)〉, the

expected-value integral is then

〈G(X)〉 =

∫
dXG(X) e−A(X)∫

dX e−A(X)
. (4.4)

The path, denoted by X = {x(0), . . .x(M),θ}, is the collection of all the state

variables in discrete time within the observation window, along with the time-independent

model parameters. The approximate numerical evaluation of the expected-value integrals

in the form of Eq. (4.4) is one of focuses of this dissertation. Others have also pointed out

that the evaluations of expected-value integrals are essential in both data assimilation and

deep learning [15, 17].

The hallmark of success in this information transfer process is that one can accurately

predict the future evolution of the dynamical system for some time window, called a

prediction or generalization interval, beyond the observation window, once given the final

estimated state x(M) and the parameters θ at the termination of the observation window.

Before being able to predict, one must first complete the model f (x(m),θ) by estimating

all the degrees of freedom in X. Furthermore, we must work with the full X instead of the

initial-condition space spanned by {x(0),θ}.

Specifically, the observed degrees of freedom in X must also be estimated. The

reason is that when analyzing physical or biophysical systems using the proposed PAHMC

method, the estimation of the observed degrees of freedom in X may turn out to be as

important as the estimation of the unobserved degrees of freedom. In numerical weather

prediction [87], for example, good estimates of the full model states of the earth system

provides information not necessarily available in the observations themselves. It is the

connection of observed and unobserved state variables within the dynamical system that

88

permits this feature.

On the next level, the work presented in this dissertation develops a systematic

way of locating the area around the global minimum of the action A(X) in the path space

spanned by X. More importantly, the PAHMC method performs efficiently sampling of the

distribution π(X |Y) ∝ exp[−A(X)] in order to evaluate the path integral. This accurate

sampling of π(X |Y) enables the estimation of higher moments of X that can be used in

assessing the errors in the prediction.

We used the Hamiltonian Monte Carlo method [37, 38, 39] as the sampling device,

and we also make a comparison to the classic, Random-proposal Monte Carlo method based

on the Metropolis-Hastings procedure. Both the two-dimensional pedagogical example in

Fig. 2.3 and the full results from Sec. 3.1 clearly demonstrated that the HMC method was

a far more preferable choice.

HMC was introduced as an innovative version of Monte Carlo sampling for high-

dimensional probability distributions. The core idea is to achieve high efficiency by

introducing additional degrees of freedom into the target distribution to avoid the random

walk-like behavior of the Metropolis-Hastings (MH) procedure. The MH procedure brings

lower acceptance rates of proposed moves in the path space as well a markedly slower

exploration of the target distribution π(X |Y).

HMC proceeds by making proposals according to Hamilton’s equations for the

collection of model state variables X and their canonical conjugates, P. The HMC

samplings occur in the enlarged canonical phase space (X,P), and the target distribution

becomes π(X,P) ∝ exp[−H(X,P)] with H(X,P) = A(X) + h(P,X). A collection of

conserved quantities are associated with this method of making proposals. Among them

are the phase space volume and H(X,P) itself. As a result, the overall acceptance rate is

close, but not equal, to one.

For a high-dimensional X and a nonconvex action A(X), HMC itself does not

89

guarantee that we will capture the set of maxima of the target distribution without

additional guidance to find the minima in the action. In fact, from a random initialization

point in X, it is unlikely for an HMC sampler to travel for a long distance in the X space.

However, accurate approximation of the path integral in Eq. (4.4) also hinges on locating

the global minimum in the action of the form

A(X) =
F∑
k=0

L∑
`=1

Rm

2(F + 1)
[x`(τk)− y`(τk)]2

+
M−1∑
m=0

D∑
a=1

Rf

2M
[xa(m+ 1)− fa(x(m),θ)]2 .

(4.5)

To fill this gap, we have presented the Precision Annealing (PA) procedure, which

is a development of the early ideas used in the context of variational, optimization-based

calculations [44, 45, 47, 48]. The combination of PA and HMC is able to perform the

desired expected-value integral with high accuracy.

In the Precision Annealing procedure, Rf in Eq. 4.5 is varied gradually from Rf ≈ 0

to very large values that strictly enforces the equality in x(m+ 1) = f (x(m),θ). At Rf = 0,

the dynamical model is completely unresolved, and the global minimum of the action is

therefore easily identified. As one increases Rf , HMC sampling begins at a position in the

path space that is well informed by the samples obtained under the previous Rf value. This

step-wise procedure enables the search for the area near the global minimum in A(X) to

be more and more precise as Rf becomes larger. Eventually, at Rf →∞, the deterministic

version of the model is imposed, and the sampling results become final.

For numerical results, we first tested the PAHMC method on the Lorenz96 model

with dimension D = 20. We reported on results where the number of observations ranges

from L = 7 to L = 12. We have shown that, at the smallest value of L considered, the

sampling of X provided by PAHMC do not necessarily agree with the observations, though

they can be in accordance with the dynamical model. As the number of observations

90

increases, the method took advantage of the additional information available and successfully

located the area near the global minimum of the action. The prediction results also showed

that the successful transfer of information from data to the model had enabled predictability

of the model system. This success is based on (1) improvements in the estimation of the full

state of the model at the termination of the observation window and (2) the stabilization

of intrinsic instabilities in the chaotic nonlinear model [79]. A direct comparison between

PAHMC and the Random-proposal implementation of Precision Annealing on Lorenz96

showed that PAHMC is approximately 25 times faster in achieving a similar level of mixing.

For the second class of numerical results, we presented the application of PAHMC

on a biophysical problem involving the Hodgkin-Huxley model of neuron. This model has

D = 4, and only the cross-membrane voltage representing L = 1 can be observed. Another

difference from the Lorenz96 system is that the Hodgkin-Huxley model is a representative

example of a driven system. This poses an additional challenge. We showed that PAHMC

is still perfectly capable of handling the transfer of information in this case. The success

was, again, measured by the quality of the prediction and parameter estimation.

Aside from the speed race mentioned above, the core of PAHMC can be performed

in parallel using GPUs [44, 89, 90]. Contemporary GPU capability could allow for a

significant speed-up in HMC calculations. Using PAHMC on very high dimensional tasks

of information transfer seems quite promising.

The next chapter explores applying Precision Annealing-like ideas in training classical

artificial neural networks.

This dissertation contains material as it appears in Zheng Fang, Adrian S. Wong,

Kangbo Hao, Alexander J. A. Ty, and Henry D. I. Abarbanel: Precision annealing Monte

Carlo methods for statistical data assimilation and machine learning, Physical Review

Research, 2(1), 2020. The dissertation author was the primary investigator and author of

this paper.

91

Chapter 5

A Novel Approach for Training

Artificial Neural Networks

In the previous chapters, we formulated the data assimilation problem as evaluating

an expected-value integral in the form of Eq. (2.11) with the action defined by Eq. (2.13).

We also presented extensive examples in which the desired transfer of information from

data to physical systems was accomplished.

This chapter explores an entirely new territory: training artificial neural networks

(or “deep learning” models) using novel, non-backpropagation approaches that involve

Precision Annealing. This idea is inspired by the strong equivalence between an artificial

neural network and a dynamical system described by a set of ODEs [15], as we have seen

in Chapter 1.

Under the above-mentioned equivalence, we first give a general form of the action

in the context of artificial neural networks. Just like the actions for physical models, the

structure of the proposed action for deep learning clearly has the model errors incorporated,

and it is therefore conceptually different from traditional loss functions [8, 12] which requires

backpropagation [91] to evaluate its gradients.

92

Once the action is presented, one can immediately recognize that training artificial

neural networks essentially becomes the familiar task of evaluating certain expected-value

integrals as in Eq. (2.11). Indeed, the novel approach proposed in this chapter is exactly

about evaluating 〈G(X)〉 using Precision Annealing combined with HMC or the Laplace’s

(gradient-descent) method, given the action to be discussed in Sec. 5.1.

One way to demonstrate the efficacy of this novel approach is to use it to train

artificial neural networks that cannot be trained by backpropagation. In this spirit, we

focus on training in Sec. 5.2. The numerical results clearly indicate that the novel approach

is capable of training deep artificial neural networks in the absence of all the “engineering

patches” needed by backpropagation.

As a side note, this chapter focuses exclusively on the novel approach and its

applications, and we do not review the state-of-the-art models or methods of deep learning.

Nonetheless, some working knowledge on contemporary machine learning is expected;

interested readers could consult Refs. [7, 8, 9, 10, 11, 12] as needed.

The chapter concludes with a discussion of future works.

5.1 Motivation and Proposal

Recent years have witnessed a surge in both computational capacity and the amount

of data produced, which are the two key factors behind the success of deep learning [14].

Artificial neural network, the basic building block of deep learning, is believed to perform

better in complicated, real-world tasks when the depth is large [92, 93]. For example,

modern natural language processing models usually exceed ten layers in depth and have

millions of free parameters [94].

However, training deep artificial neural networks poses significant challenges pri-

marily due to the following two factors.

93

(1) The landscape of the loss function of a typical deep network is nonconvex and lacks

smoothness [95].

(2) The intrinsic instabilities of backpropagation can often cause the so-called vanishing

and exploding gradient problems [96, 97].

Recipes such as long short-term memory [13] and ResNet [98] have been proposed to

circumvent the above problems. Although working well in some cases, such attempts do

not solve the fundamental problems in the construction of loss functions and the use of

backpropagation to train deep networks [99], as described in the above list.

In this dissertation, we propose an approach for training artificial neural networks

that is conceptually different from the state-of-the-art methods. The approach is inspired by

the layer-time correspondence first discussed in Ref. [15], and it shares the same theoretical

formulation with PAHMC.

5.1.1 Notation

We begin with a survey of notations that largely resemble those established for data

assimilation tasks. Within an M -layer, feed-forward artificial neural network, m denotes

the layer index ranging from 1 to M ; for a particular layer m, the number of nodes is

denoted by Dm.

We use S to denote the number of samples (input-output pairs) for training the

network. For the s-th sample in the training data set, ys(1) ∈ RD1 is the teaching signal

for the input layer, and ys(M) ∈ RDM is the teaching signal for the output layer.

The state variables of the m-th layer for the s-th sample are denoted by xs(m)

where we have xs(m) ∈ RDm . The inter-layer parameters (weights) between layers m and

m+ 1 are denoted by W (m) where we have W (m) ∈ RDm+1×(Dm+1). We call the set that

concatenates all these variables together a path and use X to denote it. As a result, the

94

path has the form

X = {xs(m) | 1 ≤ m ≤M, 1 ≤ s ≤ S} ∪ {W (m) | 1 ≤ m ≤M − 1} . (5.1)

In addition, fi(x
s(m),W (m);m) ∈ R is the activation function that takes layer m

as the input and outputs on the i-th node of layer m + 1. Note that we do not require

fi(x
s(m),W (m);m) to be equal to xsi (m + 1) as they are in backprop-based machine

learning.

The objective function, which we call the action, is denoted by A(X). Its form will

be given in the following section.

Context-specific notations will be introduced where they first appear.

5.1.2 Action

Here, we present the action as a key equation in our approach. For brevity, we shall

write fi(x
s(m),W (m);m) as f si (m) except in Eq. (5.3). This notation should not cause

ambiguity within the scope of our discussion.

To provide context for a general discussion, and without loss of generality, we focus

on feed-forward networks with three or more layers (M ≥ 3) for classification tasks. The

most general form of the action then reads

A(X) =
Rm

2S

S∑
s=1

D1∑
a=1

Hs
a(1)

+
Rm

2S

S∑
s=1

DM∑
a=1

Hs
a(M)

+
Rf

2S

S∑
s=1

M−1∑
m=1

Dm+1∑
a=1

Lsa(m+ 1 |m) .

(5.2)

In Eq. (5.2), Hs
a(m) is the measurement error at the a-th node of layer m for the s-th

95

sample, Lsa(m+ 1 |m) is the model error at the a-th node of layer m+ 1 for the s-th sample,

and Rm and Rf are scalars. Note that Hs
a(m) = 0 holds for 2 ≤ m ≤M − 1 in the above

equation, reflecting the fact that there is no observation on the hidden layers.

Fig. 5.1 provides a visualization of the core ideas behind the formulation of our

approach. In a traditional loss function, there is no model error, which means that the

activation of layer m, i.e., f s(m), is always equal to the state of the next layer, xs(m+ 1).

However, as shown clearly in the figure and in Eq. (5.2), our interpretation of a network

allows room for finite model errors.

Once the general form of the action is established, there are several ways one can

specify H and L depending on the nature of the training data set. In this dissertation, we

work with three mild assumptions that will collectively yield a specific form of the action.

They are as follows.

(1) The noise is Gaussian for the input teaching signals.

(2) The teaching signals for the output layer (i.e., the teaching labels) are all correct,

which implies xsa(M) = ysa(M) and Hs
a(M) = 0.

(3) The model error is Gaussian between each pair of adjacent layers.

Consequently, the action now becomes

A(X) =
Rm

2S

S∑
s=1

D1∑
a=1

(xsa(1)− ysa(1))2

+
Rf

2S

S∑
s=1

M−1∑
m=1

Dm+1∑
a=1

[xsa(m+ 1)− fa(xs(m),W (m);m)]2 .

(5.3)

Before we proceed, recall that xsa(M) in Eq. (5.3) is a constant under the second assumption

above.

We now write down the derivatives of the action as a contrast to what is in the

backpropagation procedure.

96

··
·

ys(1)

··
·

Hs(1)

··
·

xs(1)

··
·

f s(1)

W
(1)

··
·

Ls(2 |1)

··
·

xs(2)

··
·

f s(2)

W
(2) · · · ··

·

xs(m)
∈ RDm

··
·

f s(m)

W
(m

)

··
·

Ls(m+ 1 |m)

··
·

xs(m+ 1)

··
·

f s(m+ 1)

W
(m

+
1)

· · ·

··
·

xs(M)

0

0

1

0

··
·

ys(M)

··
·

Hs(M)

Figure 5.1: A schematic of the structure of a feed-forward network in the presence of
model error. The layer index increases from left to right. Each layer is a combination of
a blue region and a red region. At the input layer, ys(1) denotes a single input sample,
and Hs(1) denotes the corresponding measurement error. For each layer, an activation
function parameterized by W takes in state variable xs(m) and produces f s(m), which
is then paired with the state of the next layer, xs(m + 1), to produce a finite model
error. At the output layer, xs(M) is paired with data ys(M) to produce a measurement
error Hs(M).

97

If we define ηsj (m) as

ηsj (m) =

Dm+1∑
i=1

(xsi (m+ 1)− f si (m)) · ∂f
s
i (m)

∂xsj(m)
, (5.4)

for 1 ≤ s ≤ S, 1 ≤ m ≤ M − 1, and 1 ≤ j ≤ Dm, the derivative with respect to xsj(m)

then takes a convenient form

∂A(X)

∂xsj(m)
=


Rm

S

(
xsj(1)− ysj (1)

)
− Rf

S
ηsj (1), if m = 1,

Rf

S

(
xsj(m)− f sj (m− 1)− ηsj (m)

)
, if 2 ≤ m ≤M − 1.

(5.5)

Similarly, we define ϕlj(m) as

ϕlj(m) =
S∑
s=1

Dm+1∑
i=1

(xsi (m+ 1)− f si (m)) · ∂f
s
i (m)

∂Wlj(m)
, (5.6)

for 1 ≤ m ≤ M − 1, 1 ≤ l ≤ Dm+1, and 1 ≤ j ≤ Dm + 1. Then, the derivatives with

respect to the inter-layer parameters, Wlj(m), have the form

∂A(X)

∂Wlj(m)
= −Rf

S
ϕlj(m). (5.7)

As we have mentioned, Eqs. (5.4)–(5.7) differ from backpropagation in a fundamental

manner.

Next, we will look at some example activation functions that give rise to specific

forms of η and ϕ.

One remark on the action is that, often in classification tasks, one can choose

cross-entropy (a shifted Kullback–Leibler divergence) as the model error for the output

layer. Under this choice, there is Lsa(M |M − 1) = −xsa(M) · log f sa(M − 1), which is a

slight deviation from the third assumption above.

98

5.1.3 Example Activation Functions

Before presenting numerical results, we examine the local dynamics of a network,

i.e., activation functions. In particular, we discuss two common activation functions and

present their derivatives with respect to x and W . For further brevity, we do not explicitly

write the dependence on m for x, W , and f .

The first example is rectified linear unit (ReLU). The activation function reads

zsi =
Dm∑
j=1

Wij x
s
j +Wi,Dm+1,

f si = max {0, zsi } ,
(5.8)

for 1 ≤ s ≤ S and 1 ≤ i ≤ Dm+1.

Under the above, Eq. (5.4) becomes

ηsj (m) =

Dm+1∑
i=1

(xsi (m+ 1)− f si) · 1 {f si > 0} ·Wij , (5.9)

for 1 ≤ s ≤ S and 1 ≤ j ≤ Dm.

Eq. (5.6) becomes, for 1 ≤ l ≤ Dm+1,

ϕlj(m) =



S∑
s=1

(xsl (m+ 1)− f sl) · 1 {f sl > 0} · xsj , if 1 ≤ j ≤ Dm,

S∑
s=1

(xsl (m+ 1)− f sl) · 1 {f sl > 0} , if j = Dm + 1.

(5.10)

The second example is Softmax. The activation function reads

zsi =
Dm∑
j=1

Wij x
s
j +Wi,Dm+1,

f si =
exp (zsi − ξs)∑
i′ exp (zsi′ − ξs)

,

(5.11)

99

for 1 ≤ s ≤ S and 1 ≤ i ≤ Dm+1. In Eq. (5.11), ξs is a constant for overflow protection,

which can be set to ξs = max {0, maxi {zsi } − 100} or something similar.

Before we proceed, observe that

∂f si
∂zsk

= f si · (δik − f sk) (5.12)

holds for 1 ≤ i, k ≤ Dm+1.

Under the above, Eq. (5.4) becomes

ηsj (m) =

Dm+1∑
i=1

(xsi (m+ 1)− f si) · f si ·
(
Wij −

Dm+1∑
k=1

f skWkj

)
, (5.13)

for 1 ≤ s ≤ S and 1 ≤ j ≤ Dm.

Eq. (5.6) becomes, for 1 ≤ l ≤ Dm+1,

ϕlj(m) =



S∑
s=1

[
xsl (m+ 1)− f sl +

Dm+1∑
i=1

f si · (f si − xsi (m+ 1))

]
· f sl xsj , if 1 ≤ j ≤ Dm,

S∑
s=1

[
xsl (m+ 1)− f sl +

Dm+1∑
i=1

f si · (f si − xsi (m+ 1))

]
· f sl , if j = Dm + 1.

(5.14)

5.2 Numerical Results

To illustrate the point that the new approach is effective and promising, we present in

this section numerical results on training multi-layer, feed-forward networks with Precision

Annealing combined with both HMC and the Laplace’s method (i.e., pure optimization).

Our focus here is training instead of model design or generalization (prediction). In

particular, we train deep networks that have enough parameters to memorize the data sets

so that we have a clear idea how well the approach performs.

100

5.2.1 Precision Annealing with HMC

Let us first look at the results obtained by using the combination of Precision

Annealing and HMC.

The model used is a fully-connected, feed-forward artificial neural network with

Softmax connections for the output layer and leaky ReLU connections for all other layers.

Specifically, the network has M = 10 layers. The input layer has dimension D1 = 10,

the output layer has dimension DM = 10, and all the eight hidden layers have dimension

D2 = · · · = D9 = 5.

The training data set is prepared as follows. We generate S = 10 input samples

y1(1), · · · ,yS(1), each being a D1-dimensional random vector, from a joint uniform distri-

bution with range (−
√

3,
√

3). Then, we generate S = 10 output samples (i.e., training

labels) y1(M), · · · ,yS(M), each being a DM -dimensional vector with one randomly selected

component being 1 and all others being 0.

Before training begins, we need to initialize the path X, which consists of the state

variables and the inter-layer parameters (weights). For the results presented here, the

state variables {xs(m)} are initialized to be the training data for the input and output

layers; for the hidden layers, they are drawn from a normal distribution with µ = 0 and

σ2 = 0.75. The parameters {W (m)} are drawn from a uniform distribution with range

(−1/
√
Dm, 1/

√
Dm).

Although the data are generated randomly, the task is still to “classify” the input

data so that the results match the training labels. Note that the network is big enough to

be able to memorize these random samples, so any failure will be due to the method used

instead of the choice of the model.

Backpropagation failed to train the network on the data set described above. The

classification accuracy remained at 10%, which is a result of random guessing.

In contrast, Precision Annealing (combined with HMC) succeeded in the task.

101

Upon initialization, the action, as described in Eq. (5.3), was at the order of 10 and the

classification accuracy was 10%. Then, the action rapidly decreased and the accuracy

increased to 100%, as shown in Table 5.1.

Table 5.1: Classification accuracy for three values of Rf .

β Rf Number of HMC Samples A(X) Classification Accuracy (%)
0 1.0 500 2.48× 10−1 20
1 3.0 500 8.66× 10−3 70
2 9.0 500 1.99× 10−3 100

Here are two remarks on the above result. First, recall that the training data are

just pure noise, and the model is very flexible and non-physical, we should not expect

the approach to extract the “true dynamics” (we know there is none) from the data.

Consequently, all action levels reported in Table 5.1 are almost entirely made of model

error, which means there is no dynamics to be learned. Nevertheless, the accuracy levels

show that we have achieved our goal, which is to let the model memorize the data. Second,

the accuracy levels are measured on the training data. We do not expect the model trained

on pure noise to predict well on some new noise.

5.2.2 Precision Annealing with Laplace’s Method

We now turn to the results from combining Precision Annealing with pure opti-

mization of the action (i.e., Laplace’s method). We use two data sets here, one is the

random data set introduced in Sec. 5.2.1, and the other is the popular MNIST database of

handwritten digits [100].

We first report results on the random data. The model is, again, a fully-connected,

feed-forward artificial neural network. The activation function for all the layers except

the last is leaky ReLU, and the activation for the last layer is Softmax. There are S = 10

input-output pairs used in the training. The initialization of the state variables and the

inter-layer parameters are the same as in the previous example.

102

However, the network now has M = 30 layers, and the dimension of the input signal

is 200. Specifically, the input layer has dimension D1 = 200, the output layer has dimension

DM = 10, and all the 28 hidden layers have dimension D2 = . . . = D29 = 5. The depth of

this model rules out entirely the possibility of a successful training using backpropagation.

Therefore, if we can train this network using the combination of Precision Annealing and

Laplace’s method, it would be a strong indication that our approach is effective in cases

that cannot be handled by backpropagation.

Fig. 5.2 shows the results of the training. On the top panel is the value of the action

as the model constraints are gradually enforced. At the beginning, the hyperparameter

Rf (defined in Sec. 2.4) is set to be Rf0 = 1.0. Then, following the Precision Annealing

procedure, we have Rf = Rf0 × αβ where α = 2.0 and β ∈ {0, . . . , 7}. For the first stage

in which β = 0, we perform gradient descent on the action for 1000 steps. For all the

subsequent stages, we perform 2000 steps for each β. The action clearly follows a decreasing

pattern, with expected small jumps at each transitioning point for β. This indicate that

information has been transferred from the data set to our model. The bottom panel shows

the classification accuracy as a function of step, which is a more direct measure of success.

Next, we report results on the MNIST database of handwritten digits, which is

widely used as a test bed for many deep learning methods. Each sample on the input side

is a grey-scale image of 28× 28 pixels. Each output label is a 10-dimensional vector.

The training set consists of S = 100 such input-output pairs. The model used is

still a feed-forward network, this time with M = 20 layers. The dimension of the input

layer is D1 = 784. The first three hidden layers have dimension D2 = D3 = D4 = 100, the

rest of the hidden layers have dimension D5 = . . . = D19 = 20, and the output layer has

dimension DM = 10. The activation functions for all layers except the last is leaky ReLU,

and the activation for the output layer is Softmax.

Fig. 5.3 shows the action, loss, and classification accuracy as we gradually enforce

103

10 5

10 3

10 1

101

Ac
tio

n

= 1 2 3 4 5 6 7(a)

10 4

10 3

10 2

10 1

100

Lo
ss

(b)

0 2000 4000 6000 8000 10000 12000 14000
Step

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

(c)

Figure 5.2: Action, loss, and classification accuracy regarding the randomly generated
data set. The horizontal axis represents both steps within each Rf and different Rf
values. (a) Action as a function of optimization step. The small but sudden changes
in the action are due to the increase of β and thus Rf . The error band is shown. (b)
Value of the loss function as a function of optimization step. The error band is shown.
(c) Classification accuracy on the training set as a function of optimization step. The
error band is shown.

104

10 3

10 1

101

103

Ac
tio

n

= 1 2 3 4 5 6 7(a)

10 4

10 2

100

Lo
ss

(b)

0 2000 4000 6000 8000 10000 12000 14000
Step

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

(c)

Figure 5.3: Action, loss, and classification accuracy regarding the MNIST database
of handwritten digits. The horizontal axis represents both steps within each Rf and
different Rf values. The boundaries of the error bands represent the maximum and
minimum values among the ten calculations, respectively. (a) Action as a function of
optimization step. The small but sudden changes in the action are due to the increase
of β and thus Rf . (b) Value of the loss function as a function of optimization step. (c)
Classification accuracy on the 100 training images as a function of optimization step.

105

the model constraints using Precision Annealing. The schedule for the hyperparameter

Rf and the number of gradient-descent steps are the same as the ones presented above.

The action, as shown in the top panel, decreases from greater than 102 to around 10−3.

The value of the MSE loss decreases from the order of 1 to below 10−3. The classification

accuracy increases from a level of random guessing (around 10%) to 100%.

The above results strongly indicate that our approach is capable of training a broad

spectrum of artificial neural networks without a need for backpropagation.

5.3 Future Work

The formulation presented in Sec. 5.1 is novel and theoretically appealing, and the

numerical results demonstrated in Sec. 5.2 are promising. Nevertheless, much needs to be

done to turn the proposed approach into a full-fledged method capable of training massive

deep learning models for data-intensive tasks.

For example, one can use the proposed approach to train an even deeper and wider

model on larger data sets (there are many available). Achieving this would better showcase

the advantages of the novel approach over backpropagation.

It is also important to obtain results on a variety of other tasks including im-

age classification and time-series analysis. These would involve popular models such as

convolutional neural networks and recurrent neural networks.

Moreover, the topic of prediction needs to be thoroughly studied. Do models

trained by the proposed approach generalize better on test data than those trained by

backpropagation? Which activation functions are preferred? Is regularization as effective

as it is in low-dimensional models? There are many questions to be addressed.

And there is much work to do.

106

Bibliography

[1] Henry D. I. Abarbanel. Predicting the future: completing models of observed complex
systems. Understanding Complex Systems. Springer-Verlag New York, 2013.

[2] Geir Evensen. Data assimilation: the ensemble Kalman filter. Earth Sciences &
Geography. Springer-Verlag Berlin Heidelberg, 2009.

[3] Henning U. Voss, Jens Timmer, and Jürgen Kurths. Nonlinear dynamical system
identification from uncertain and indirect measurements. International Journal of
Bifurcation and Chaos, 14(6):1905–1933, 2004.

[4] Ulrich Parlitz. Estimating model parameters from time series by autosynchronization.
Physical Review Letters, 76(8):1232, 1996.

[5] Paul So, Edward Ott, and W. P. Dayawansa. Observing chaos: deducing and tracking
the state of a chaotic system from limited observation. Physical Review E, 49(4):2650,
1994.

[6] T. N. Krishnamurti. Numerical weather prediction. Annual Review of Fluid Mechanics,
27:195–225, 1995.

[7] Li Deng and Dong Yu. Deep learning: Methods and applications. Foundations and
Trends in Signal Processing, 7(3-4):197–387, 2014.

[8] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. Adaptive
Computation and Machine Learning. The MIT Press, 2016.

[9] Jürgen Schmidhuber. Deep learning in neural networks: an overview. Neural Networks,
61:85–117, 2015.

[10] Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization methods for large-
scale machine learning. SIAM Review, 60(2):223–311, 2018.

[11] M. I. Jordan and T. M. Mitchell. Machine learning: trends, perspectives, and
prospects. Science, 349(6245):255–260, 2015.

107

[12] Pankaj Mehta, Marin Bukov, Ching-Hao Wang, Alexandre G. R. Day, Clint Richard-
son, Charles K. Fisher, and David J.Schwab. A high-bias, low-variance introduction
to machine learning for physicists. Physics Reports, 810:1–124, 2019.

[13] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Compu-
tation, 9(8):1735–1780, 1997.

[14] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,
521:436–444, 2015.

[15] Henry D. I. Abarbanel, Paul J. Rozdeba, and Sasha Shirman. Machine learning:
deepest learning as statistical data assimilation problems. Neural Computation,
30(8):2025–2055, 2018.

[16] Zheng Fang, Adrian S. Wong, Kangbo Hao, Alexander J. A. Ty, and Henry D. I.
Abarbanel. Precision annealing Monte Carlo methods for statistical data assimilation
and machine learning. Physical Review Research, 2(1):013050, 2020.

[17] Alexander J. A. Ty, Zheng Fang, Rivver A. Gonzalez, Paul. J. Rozdeba, and Henry
D. I. Abarbanel. Machine learning of time series using time-delay embedding and
precision annealing. Neural Computation, 31(10):2004–2024, 2019.

[18] Edward N. Lorenz. Deterministic nonperiodic flow. Journal of the Atmospheric
Sciences, 20(2):130–141, 1963.

[19] Barry Saltzman. Finite amplitude free convection as an initial value problem—I.
Journal of the Atmospheric Sciences, 19(4):329–341, 1962.

[20] Henry D. I. Abarbanel. Analysis of observed chaotic data. Institute for Nonlinear
Science. Springer-Verlag New York, 1996.

[21] Alan L. Hodgkin and Andrew F. Huxley. A quantitative description of membrane
current and its application to conduction and excitation in nerve. The Journal of
physiology, 117(4):500–544, 1952.

[22] Daniel Johnston and Samuel Miao-Sin Wu. Foundations of cellular neurophysiology.
The MIT Press, 1994.

[23] David Sterratt, Bruce Graham, Andrew Gillies, and David Willshaw. Principles of
computational modelling in neuroscience. Cambridge University Press, 2011.

[24] Alain Nogaret, C. Daniel Meliza, Daniel Margoliash, and Henry D. I. Abarbanel.
Automatic construction of predictive neuron models through large scale assimilation
of electrophysiological data. Scientific Reports, 6:32749, 2016.

[25] Joseph Pedlosky. Geophysical fluid dynamics. Springer-Verlag New York, 1987.

108

[26] Geoffrey K. Vallis. Atmospheric and oceanic fluid dynamics: fundamentals and
large-scale circulation. Cambridge University Press, 2017.

[27] William G. Whartenby, John C. Quinn, and Henry D. I. Abarbanel. The number of
required observations in data assimilation for a shallow-water flow. Monthly Weather
Review, 141(7):2502–2518, 2013.

[28] Robert Sadourny. The dynamics of finite-difference models of the shallow-water
equations. Journal of Atmospheric Sciences, 32(4):680–689, 1975.

[29] Richard A. Anthes. Data assimilation and initialization of hurricane prediction
models. Journal of Atmospheric Sciences, 3:702–719, 1974.

[30] Henry D. I. Abarbanel, Daniel R. Creveling, Reza Farsian, , and Mark Kostuk.
Dynamical state and parameter estimation. SIAM Journal on Applied Dynamical
Systems, 8(4):1341–1381, 2009.

[31] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical
learning: data mining, inference, and prediction. Springer Texts in Statistics. Springer-
Verlag New York, 2009.

[32] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An introduction
to statistical learning: with applications in R. Springer Texts in Statistics. Springer-
Verlag New York, 2013.

[33] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery.
Numerical recipes: the art of scientific computing. Cambridge University Press, 2007.

[34] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H.
Teller, and Edward Teller. Equation of state calculations by fast computing machines.
The Journal of Chemical Physics, 21:1087–1092, 1953.

[35] W. K. Hastings. Monte Carlo sampling methods using Markov chains and their
applications. Biometrika, 57(1):97–109, 1970.

[36] Michael Betancourt. The convergence of Markov chain Monte Carlo methods: from the
Metropolis method to Hamiltonian Monte Carlo. Annalen der Physik, 531(3):1700214,
2018.

[37] Simon Duane, A. D. Kennedy, Brian J. Pendleton, and Duncan Roweth. Hybrid
Monte Carlo. Physics Letter B, 195(2):216–222, 1987.

[38] Radford M. Neal. MCMC using Hamiltonian dynamics. In Steve Brooks, Andrew
Gelman, Galin Jones, and Xiao-Li Meng, editors, Handbook of Markov chain Monte
Carlo, chapter 5, pages 113–162. Chapman and Hall/CRC, 2011.

[39] Michael Betancourt. A conceptual introduction to Hamiltonian Monte Carlo. ArXiv
e-prints, 2017.

109

[40] Robert M. Fano. Transmission of information: a statistical theory of communication.
The MIT Press, 1961.

[41] Sergios Theodoridis. Machine learning: a Bayesian and optimization perspective.
Academic Press, 2020.

[42] Pierre Simon Laplace. Memoir on the probability of the causes of events. Statistical
Science, 1(3):364–378, 1986. Translation to English by S. M. Stigler.

[43] Mark Kostuk, Bryan A. Toth, C. Daniel Meliza, Daniel Margoliash, and Henry D. I.
Abarbanel. Dynamical estimation of neuron and network properties II: path integral
Monte Carlo methods. Biological Cybernetics, 106(3):155–167, 2012.

[44] John C. Quinn. A path integral approach to data assimilation in stochastic nonlinear
systems. PhD thesis, University of California San Diego, 2010.

[45] Jingxin Ye. Systematic annealing approach for statistical data assimilation. PhD
thesis, University of California San Diego, 2016.

[46] Paul J. Rozdeba. Nonlinear inference in partially observed physical systems and deep
neural networks. PhD thesis, University of California San Diego, 2018.

[47] Jingxin Ye, Nirag Kadakia, Paul J. Rozdeba, Henry D. I. Abarbanel, and John C.
Quinn. Improved variational methods in statistical data assimilation. Nonlinear
Processes in Geophysics, 22:205–213, 2015.

[48] Jingxin Ye, Daniel Rey, Nirag Kadakia, Michael Eldridge, Uriel I. Morone, Paul
Rozdeba, Henry D. I. Abarbanel, and John C. Quinn. Systematic variational
method for statistical nonlinear state and parameter estimation. Physical Review E,
92(5):052901, 2015.

[49] Jean Zinn-Justin. Quantum field theory and critical phenomena. International Series
of Monographs on Physics. Clarendon Press, 2002.

[50] Gareth O. Roberts and Jeffrey S. Rosenthal. General state space Markov chains and
MCMC algorithms. Probability Surveys, 1:20–714, 2004.

[51] J. R. Norris. Markov chains. Cambridge Series in Statistical and Probabilistic
Mathematics. Cambridge University Press, 1997.

[52] Krishna B. Athreya, Hani Doss, and Jayaram Sethuraman. On the convergence of
the Markov chain simulation method. The Annals of Statistics, 24(1):69–100, 1996.

[53] Luke Tierney. Markov chains for exploring posterior distributions. The Annals of
Statistics, 22(4):1701–1728, 1994.

[54] Richard E. Bellman. Dynamic programming. Princeton Landmarks in Mathematics
and Physics. Princeton University Press, 2010.

110

[55] Richard E. Bellman. Adaptive control processes: a guided tour. Princeton Legacy
Library. Princeton University Press, 2015.

[56] Vasilios I. Manousiouthakis and Michael W. Deem. Strict detailed balance is unneces-
sary in Monte Carlo simulation. The Journal of Chemical Physics, 110(6):2753–2756,
1999.

[57] Persi Diaconis, Susan Holmes, and Radford M. Neal. Analysis of a nonreversible
Markov chain sampler. The Annals of Applied Probability, 10(3):726–752, 2000.

[58] Radford M. Neal. Improving asymptotic variance of MCMC estimators: non-reversible
chains are better. ArXiv e-prints, 2004.

[59] Herbert Goldstein, Charles P. Poole, and John L. Safko. Classical mechanics. Pearson,
2001.

[60] V. I. Arnold. Mathematical methods of classical mechanics. Graduate Texts in
Mathematics. Springer-Verlag New York, 1989.

[61] Nilesh Tripuraneni, Mark Rowland, Zoubin Ghahramani, and Richard Turner. Mag-
netic Hamiltonian Monte Carlo. In Proceedings of the 34th International Conference
on Machine Learning, volume 70, pages 3453–3461. PMLR, 2017.

[62] Benedict Leimkuhler and Sebastian Reich. Simulating Hamiltonian dynamics. Cam-
bridge Monographs on Applied and Computational Mathematics. Cambridge Univer-
sity Press, 2009.

[63] Ernst Hairer, Christian Lubich, and Gerhard Wanner. Geometric numerical inte-
gration: structure-preserving algorithms for ordinary differential equations. Springer
Series in Computational Mathematics. Springer-Verlag Berlin Heidelberg, 2006.

[64] Nirag Kadakia. Hybrid Monte Carlo with chaotic mixing. ArXiv e-prints, 2016.

[65] Mark Girolami and Ben Calderhead. Riemann manifold Langevin and Hamiltonian
Monte Carlo methods. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 73(2):123–214, 2011.

[66] Michael Betancourt. A general metric for Riemannian manifold Hamiltonian Monte
Carlo. In Frank Nielsen and Frédéric Barbaresco, editors, Geometric Science of
Information, pages 327–334. Springer-Verlag Berlin Heidelberg, 2013.

[67] Ziyu Wang, Shakir Mohamed, and Nando Freitas. Adaptive Hamiltonian and Riemann
manifold Monte Carlo samplers. In Proceedings of the 30th International Conference
on Machine Learning, volume 28, pages 1462–1470. PMLR, 2013.

[68] Ge Zhong and Jerrold E.Marsden. Lie-Poisson Hamilton-Jacobi theory and Lie-
Poisson integrators. Physics Letters A, 133(3):134–139, 1988.

111

[69] Jesús M. Sanz-Serna. Symplectic integrators for Hamiltonian problems: an overview.
Acta Numerica, 1:243–286, 1992.

[70] Haruo Yoshida. Recent progress in the theory and application of symplectic integra-
tors. In Rudolf Dvorak and Jacques Henrard, editors, Qualitative and Quantitative
Behaviour of Planetary Systems, pages 27–43. Springer Dordrecht, 1993.

[71] Nawaf Bou-Rabee and Jesús M. Sanz-Serna. Geometric integrators and the Hamilto-
nian Monte Carlo method. Acta Numerica, 27:113–206, 2018.

[72] Sergio Blanes, Fernando Casas, and J. M. Sanz-Serna. Numerical integrators
for the Hybrid Monte Carlo method. SIAM Journal on Scientific Computing,
36(4):1556–A1580, 2014.

[73] Oren Mangoubi and Nisheeth K. Vishnoi. Dimensionally tight bounds for second-order
Hamiltonian Monte Carlo. In Advances in Neural Information Processing Systems,
2018.

[74] Michael Creutz. Global Monte Carlo algorithms for many-fermion systems. Physical
Review D, 38(4):1228, 1988.

[75] Sourendu Gupta, A. Irbäc, F. Karsch, and B. Petersson. The acceptance probability
in the hybrid Monte Carlo method. Physics Letters B, 242(3):437–443, 1990.

[76] Andrew Gelman, Walter R Gilks, and Gareth O. Roberts. Weak convergence and
optimal scaling of random walk Metropolis algorithms. The Annals of Applied
Probability, 7(1):110–120, 1997.

[77] Edward N. Lorenz. Predictability – a problem partly solved. In Tim Palmer and
Renate Hagedorn, editors, Predictability of weather and climate, chapter 3, pages
40–58. Cambridge University Press, 2006.

[78] Edward N. Lorenz and Kerry A. Emanuel. Optimal sites for supplementary weather
observations: simulation with a small model. Journal of the Atmospheric Sciences,
55(3):399–414, 1998.

[79] Mark Kostuk. Synchronization and statistical methods for the data assimilation of
HVC neuron models. PhD thesis, University of California San Diego, 2012.

[80] Owen P. Hamill, A. Marty, E. Neher, B. Sakmann, and Frederick J. Sigworth.
Improved patch-clamp techniques for high-resolution current recording from cells and
cell-free membrane patches. Pflügers Archiv, 391(2):85–100, 1981.

[81] Bryan A. Toth, Mark Kostuk, C. Daniel Meliza, Daniel Margoliash, and Henry D. I.
Abarbanel. Dynamical estimation of neuron and network properties I: variational
methods. Biological Cybernetics, 105(3):217–237, 2011.

112

[82] Gilles Laurent, Mark Stopfer, Rainer W. Friedrich, Misha I. Rabinovich, Alexander
Volkovskii, and Henry D. I. Abarbanel. Odor encoding as an active, dynamical
process: experiments, computation, and theory. Annual Review of Neuroscience,
24(1):263–297, 2001.

[83] Daniel Johnston and Samuel Miao-Sin Wu. Foundations of cellular neurophysiology.
MIT Press, 1994.

[84] Christof Koch. Biophysics of computation: information processing in single neurons.
Computational Neuroscience Series. Oxford University Press, 2004.

[85] Chris Knowlton, C. Daniel Meliza, Daniel Margoliash, and Henry D. I. Abarbanel.
Dynamical estimation of neuron and network properties III: network analysis using
neuron spike times. Biological Cybernetics, 108(3):261–273, 2014.

[86] C. Daniel Meliza, Mark Kostuk, Hao Huang, Alain Nogaret, Daniel Margoliash, and
Henry D. I. Abarbanel. Estimating parameters and predicting membrane voltages
with conductance-based neuron models. Biological Cybernetics, 108(4):495–516, 2014.

[87] Andrew C. Lorenc. Analysis methods for numerical weather prediction. Quarterly
Journal of the Royal Meteorological Society, 112(474):1177–1194, 1986.

[88] Peter Bauer, Alan Thorpe, and Gilbert Brunet. The quiet revolution of numerical
weather prediction. Nature, 525(7567):47–55, 2015.

[89] Steve Plimpton. Fast parallel algorithms for short-range molecular dynamics. Journal
of Computational Physics, 117(1):1–19, 1995.

[90] Sergei Prokhorenko, Kruz Kalke, Yousra Nahas, and Laurent Bellaiche. Large
scale hybrid Monte Carlo simulations for structure and property prediction. npj
Computational Materials, 4(1):1–7, 2018.

[91] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning repre-
sentations by back-propagating errors. Nature, 323(6088):533–536, 1986.

[92] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet classification with
deep convolutional neural networks. In Advances in Neural Information Processing
Systems, volume 25, 2012.

[93] Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Training very deep
networks. In Advances in Neural Information Processing Systems, volume 28, 2015.

[94] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-
training of deep bidirectional transformers for language understanding. In Proceedings
of the 2019 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, volume 1, pages 4171–4186.
Association for Computational Linguistics, 2019.

113

[95] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing
the loss landscape of neural nets. In Advances in Neural Information Processing
Systems, volume 31, 2018.

[96] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies
with gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2):157–
166, 1994.

[97] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training
recurrent neural networks. In Proceedings of the 30th International Conference on
Machine Learning, volume 28, pages 1310–1318. PMLR, 2013.

[98] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 770–778, 2016.

[99] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feed-
forward neural networks. In Proceedings of the Thirteenth International Conference
on Artificial Intelligence and Statistics, volume 9, pages 249–256. PMLR, 2010.

[100] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based
learning applied to document recognition. In Proceedings of the IEEE, volume 86,
pages 2278–2324. IEEE, 1998.

114

	Dissertation Approval Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	The Information Transfer Problem
	Example Physical Systems
	Hodgkin-Huxley Model
	Shallow-Water Equations

	Outline of the Dissertation

	A Method for Estimating States and Parameters in Dynamical Models
	State-Space Representation
	The Action and Expected-Value Integrals
	Derivation of the Action
	First Partial Derivatives for Numerical Calculations
	The Goal Revisited

	Hamiltonian Monte Carlo
	General Idea of HMC-Like Sampling
	HMC Itself
	HMC in Practice

	Precision Annealing
	Initialization in Path Space
	Procedure for Gradually Enforcing the Model

	Numerical Results on Physical Systems
	The Lorenz96 Chaotic Dynamical System
	Data Preparation
	Results from PAHMC;
	Results from PAHMC;
	Results from PAHMC;
	Results from PAHMC;
	Random-Proposal Monte Carlo Compared to PAHMC

	The Hodgkin–Huxley Neuron Model
	Data Preparation
	Results from PAHMC

	Python Implementations

	Discussion
	Why State Space?
	The Necessity of Estimating Every Degree of Freedom
	The Harsh Geometry of the Initial-Condition Space

	Computational Complexity of PAHMC
	Summary

	A Novel Approach for Training Artificial Neural Networks
	 Motivation and Proposal
	Notation
	Action
	Example Activation Functions

	Numerical Results
	Precision Annealing with HMC
	Precision Annealing with Laplace's Method

	Future Work

	Bibliography

