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EPIGRAPH

It’s not who you are underneath,
it’s what you do that defines you.

Batman Begins

‘Can a man still be brave if he’s afraid?’
‘That is the only time a man can be brave.’

A Game of Thrones

The people who are crazy enough to think
they can change the world are the ones who do.

Steve Jobs
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Commercial buildings consume 19% of energy in the US as of 2010, and tradi-

tionally, their energy use has been optimized through improved equipment efficiency

and retrofits. Beyond improved hardware and infrastructure, there exists a tremendous

potential in reducing energy use through better monitoring and operation. We present

several applications that we developed and deployed to support our thesis that building

energy use can be reduced through sensing, monitoring and optimization software that

modulates use of building subsystems including HVAC. We focus on HVAC systems as
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these constitute 48-55% of building energy use.

Specifically, in case of sensing, we describe an energy apportionment system

that enables us to estimate real-time zonal HVAC power consumption by analyzing

existing sensor information. With this energy breakdown, we can measure effectiveness

of optimization solutions and identify inefficiencies. Central to energy efficiency im-

provement is determination of human occupancy in buildings. But this information is

often unavailable or expensive to obtain using wide scale sensor deployment. We present

our system that infers room level occupancy inexpensively by leveraging existing WiFi

infrastructure. Occupancy information can be used not only to directly control HVAC

but also to infer state of the building for predictive control.

Building energy use is strongly influenced by human behaviors, and timely feed-

back mechanisms can encourage energy saving behavior. Occupants interact with HVAC

using thermostats which has shown to be inadequate for thermal comfort. Building

managers are responsible for incorporating energy efficiency measures, but our inter-

views reveal that they struggle to maintain efficiency due to lack of analytical tools and

contextual information. We present our software services that provide energy feedback

to occupants and building managers, improves comfort with personalized control and

identifies energy wasting faults.

For wide scale deployment of such energy saving software, they need to be

portable across multiple buildings. However, buildings consist of heterogeneous equip-

ment and use inconsistent naming schema, and developers need extensive domain knowl-

edge to map sensor information to a standard format. To enable portability, we present

an active learning algorithm that automates mapping of building sensor metadata to a

standard naming schema.
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Chapter 1

Introduction

It has been estimated that people spend 87% of their time indoors [104], and

thus, buildings shape the experience of the populace in many ways. Modern buildings

have evolved to meet growing requirements and comprise of a plethora of systems such

as lighting, security, water, fire safety and air conditioning. Operating these systems

requires considerable amount of equipment and consumes substantial amount of energy.

The United States Department of Energy estimates that buildings constitute 40% of the

total energy and 70% of the total electricity in the country [5].

With growing concerns on global warming and climate change, there is a move-

ment to reduce the reliance on petroleum and coal based energy consumption. Renewable

energy sources such as solar and wind have been growing steadily to reduce societal

dependence on carbon based fuels [144]. Automobiles are slowly being converted to

hybrid or fully electric vehicles, reducing the petroleum usage by the transportation

sector [169]. These solutions are often referred to as the supply side innovations in smart

grid terminology. Another approach to reduce fuel consumption is to reduce wastage and

improve the efficiency of operation [177]. The energy efficiency solutions are referred to

as demand side management [119]. As buildings are a large consumer of energy [5], re-

ducing their energy consumption will have a large impact on the overall carbon emissions.

Figure 1.1 shows the energy flows within the US as of 2014 and how buildings play a
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Figure 1.1. Sankey diagram showing the energy flow from generation to consumption in
the US as of 2014 [15]

central role in overall energy consumption. The long term plan of the US Department of

Energy is to reduce residential building energy consumption by 50% compared to 2010

baseline consumption [16].

A variety of efforts are being undertaken to reduce building energy consumption.

Incandescent lights are being replaced with CFL and LED lights [132]. Motion sensors

and photo sensors are installed to turn on the lighting only when needed. Building

windows are carefully engineered to reduce solar radiation during hot weather. Energy

Star appliances are being developed that are more efficient than traditional appliances.

Digital devices such as TVs and computers now go to deep sleep when not in use.

Constant speed fans used for ventilation are being replaced with variable speed fans

whose power consumption is proportional to demand. Construction of buildings are

carefully monitored to satisfy certifications such as California Title 24 requirements and
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obtain LEED certifications that ensure high energy efficient standards. Despite these

efforts, building energy demand has been growing steadily for several decades due to

increased economic activity inside buildings. Buildings contributed to only 26% of

overall energy consumption in 1980 compared to 40% in 2010, and they are expected to

contribute 45% by 2035 [5]. We need effective measures that can curtail building energy

consumption further, and this dissertation explores innovative software based solutions

towards improving energy efficiency.

To provide a concrete example of energy consumption profile of a building,

we examine the Computer Science and Engineering (CSE) building at University of

California, San Diego (UCSD) as an example modern building where many energy

efficiency measures have been implemented. The building was constructed in 2004

and has a gross area of 150,000 sq ft. Figure 1.2 shows an image of the building. The

building consists of faculty, administrative staff and student offices as well as lecture

halls, conference rooms and a server room that consumes about 150KW on average,

although its largely constant. Energy efficiency measures include motion sensor based

lighting, glazed windows to reduce solar radiation, central air conditioning with variable

speed drives, and a dedicated cooling system specially designed for the server room.

Figure 1.3 shows a breakdown of the electric power consumption by various

subsystems in the building - lighting, plug loads, server room and mechanical load

such as elevators and air conditioning [20]. We specially installed meters to obtain

subsystem level power measurements to analyze the building power profile. As can be

observed, the lighting system consumes around 10% of the overall power consumption,

showing that the use of CFL bulbs as well as motion sensor based lighting has effectively

curbed lighting power. The building power consumption is dominated by the plug loads,

the server room and the mechanical load. The mechanical load consists of elevators,

domestic water system as well as Heating, Ventilation and Air Conditioning (HVAC)
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Figure 1.2. The Computer Science and Engineering building at University of California,
San Diego. It was constructed in 2004 and has an area of 150,000 sq ft. The building
contains office space, lecture halls and a server room.

system. Another observation is that the building power consumption is still high during

nights and weekends when there is relatively low occupancy and activity. HVAC system

power consumption also remain consistent during weekdays as they run on a static

schedule from 6am to 10pm. In addition to electricity, the HVAC system consumes

considerable amount of hot and cold water for heating/cooling the building, which is

accounted as thermal power consumption. The combined energy consumption of HVAC

system constitutes about 50% of the overall building consumption. Our findings are in

line with observations made in prior work which estimated that HVAC systems consume

48% - 55% of the total building energy across several countries worldwide [142].

Such subsystem level measurement studies point us towards opportunities that
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Figure 1.3. Breakdown of electrical power consumption in the CSE building into lighting,
plug loads, mechanical and server room loads. The power consumed by the building is
not proportional to actual activity and HVAC operates on a static schedule [20].

can lead to significant reduction in building energy consumption. For example, plug loads

could be turned off when not needed and HVAC systems can be tuned to reduce wastage

without sacrificing occupant comfort. To improve energy efficiency, we can continue

using the same strategy developed over the years – upgrade inefficient equipment, install

sensors that increase observability and improve operating efficiency. Many innovative

solutions are being developed – plug level meters that measure appliance power and allow

remote actuation [94, 175], accurate occupancy sensors that can be used for HVAC and

plug load control [64, 18], thermal comfort sensors [75], smart blind systems [107], etc.

Although these solutions can lead to significant energy savings, they invariably involve

equipment or hardware installation which incurs high upfront cost and requires regular

maintenance after deployment. Such solutions deters building owners and institution

facilities management from adopting them. As an example, installing a single motion

sensor in an existing building can cost $900 in our university as per discussions with

our university facilities management and majority of the cost is attributed to manual

labor. Another example is where our university spent ∼$10,000,000 to upgrade HVAC

equipment in a 200,000 sq ft building, called Pacific Hall, and estimates savings of

∼$900,000 per year. The expenses involved is high not necessarily because of hardware
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cost but also because of manual labor involved in incorporating upgrades in an existing

building in active use.

Modern buildings consist of individual subsystem infrastructure that operate in-

dependent of each other. A working thesis here is that buildings can be made significantly

more energy efficient using software solutions that leverage these existing infrastructure

by exploiting information flow across disparate subsystems and creating holistic solutions

that encompass various aspects of energy flow within the building. Since software only

solutions do not require extensive hardware upgrades or additions they can be installed

easily and at lower costs than those solutions that require major retrofits. Buildings

deploy multiple systems to satisfy current requirements – power and water meters for

billing purposes, WiFi network for connectivity, sensors and actuators for operation of

HVAC system, etc. Software systems can be built that analyze the information from

these existing infrastructure to not only increase energy efficiency but also improving

occupant comfort, maintainability of existing systems. Such software solutions enable

exploration of a different design space than those already addressed with hardware up-

grades. Although software solutions already exist in many of these systems deployed in

buildings today, they are stand alone solutions and do not communicate well with each

other. Furthermore, energy consumption of a building is an aggregate function of how

different building subsystem operate as a whole and the energy flow within a building is

interdependent on the different systems deployed.

1.1 Related Work

Building energy efficiency has been identified as an important area of research.

Many academic conference and journals focus on the topic of building energy - ACM

International Conference on Embedded Systems For Energy-Efficient Built Environments,

Journal of Energy and Buildings, Journal of Building and Environment, Sustainability
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track in Human Computer Interaction (CHI) conference and other venues where energy

efficiency of buildings is actively discussed. We focus on a few pertinent related work

here that focus on software enhancements to buildings for saving energy.

There have been several research projects which exploit existing properties of

an infrastructure to gain insights about a system. Prior work has focused on installing

a single sensing point in a system in homes to gain insights into resource usage. For

example, Hydrosense detects water usage at each faucet by measuring pressure in one

of the central pipes in the house [73]. Electrisense detects use of individual electric

appliances within a home by careful analysis of EMI interference measured by electrical

noise [139]. There is an entire community of people researching ways to disaggregate

energy usage to each appliance within homes using smart meter data [106]. The ideas

presented in this dissertation builds on top of these works, and instead of installing new

sensors, we exploit existing sensors already installed in buildings for other purposes.

Further, we specifically focus on developing systems that provide actionable insights and

means to save energy in real building deployments.

Modern buildings consists of large number of networked sensors and actuators for

regular operation and maintenance. The building systems are maintained using Building

Management Systems (BMS) which visualize sensor information and assist building

managers implement various control policies. However, these BMSes are provided as

vertically integrated systems, and are not optimized for implementing energy efficiency

measures. To overcome the limitation of BMSes, the Energy Information Systems (EIS)

have been recognized to provide insights into building energy efficiency [80]. These

systems collect energy information from disparate sources – power meters, water flow

meters, heating/cooling thermal meters, etc. and mitigate the interoperability problem

caused by vertically integrated systems. As building maintenance personnel can now view

information across the system, they can better analyze the building energy performance.
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However, these systems do not integrate actuation mechanisms, and rely on human

actuation to enact efficiency measures. In the systems presented in this dissertation,

we not only integrate data from different sources, but also develop systems that actuate

building systems automatically to improve energy efficiency and develop energy data

analysis methods to reduce cognitive load on the maintenance personnel.

Energy consumption of a building is heavily influenced by actions and behavior of

individuals - occupants, building managers, maintenance personnel [118]. It is important

to engage all the stakeholders involved to improve the effectiveness of energy efficiency

measures. Several studies have focused on design of feedback systems that encourage

users to save energy [83, 72]. In this dissertation, we present an in-depth user study of

building managers and maintenance personnel to understand their perspective on energy

efficiency measures. We also present software applications for occupants to interact with

building components. With analysis of their usage patterns in real building deployments,

we present an analysis of interaction design mechanisms can lead to both improved

comfort and energy savings.

Many papers have developed data analytic and control optimization techniques

for various aspects of building systems such as fault detection, improving control system

efficiency and reducing peak demand. Fault detection and diagnosis in large complex

systems is an active area of research and many sophisticated algorithms have been

proposed and evaluated [99, 100]. During peak electricity demand, the generation of

electricity is expensive, while also causing higher levels of pollution, due to use of peaker

plants. During periods of such high demand, the electric grid issues Demand Response

events to buildings to reduce the demand on the grid [23]. Algorithms for integration

of thermal energy storage and demand response have been developed [160]. Further,

systematic protocols for automated demand response is being implemented [145]. Other

works include building energy simulation [52] and prediction of building energy [179].
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However, principled approach to integrate these numerous control and analysis methods

in a holistic manner is missing. We will present the software frameworks we have

developed that integrate such systems in a systematic and scalable manner.

This short literature review presents the prior works related to the thesis of this

dissertation. Many contemporary research efforts parallel the solutions proposed in this

dissertation. For example, sMAP [57] integrates information from various data sources

and BAS [109] creates APIs that eases software development on top of existing buildings.

Thermovote [63] and Comfy [14] allow occupants to interact with the HVAC system

using software applications. In addition, there is other prior work that is more closely

related to the various systems we will present in this dissertation. We will examine them

in detail in the respective chapters.

1.2 Contributions

We present the design, implementation and evaluation of several software systems

that exploit the existing building infrastructure to improve energy efficiency, maintain-

ability and occupant comfort. We focus on the commercial buildings sector, particularly

operation of HVAC systems as they are energy intensive and large improvements can be

obtained by incorporating innovative software solutions. Each of these solutions have

been deployed on a real testbed and evaluated extensively to validate the solution as well

as quantify the actual benefits. We also present the challenges and solutions for deploying

software systems across multiple buildings so that software applications once developed

can be deployed on a large scale without incurring significant expenses.

Detecting occupancy within buildings at a fine spatial granularity is key for

building management, security, asset tracking, etc. It is also essential if we want to

do occupancy based HVAC control for energy efficiency. Most prior solutions require

additional hardware sensors to be deployed across buildings. The first system that we will
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discuss exploits existing information available for enterprise WiFi network deployments,

coupled with other readily available metadata, to provide robust occupancy detection

at a room level within a building. The occupancy inference algorithm makes use of

metadata such as the building floorplans, office spaces assigned to occupants and location

of access points. This system shows how information flow from WiFi network, office

space management to the HVAC system is exploited to improve HVAC efficiency.

The second system confronts the apportionment of HVAC energy consumption

using existing sensors deployed. Most buildings consists of aggregate building power

meters and it is difficult to identify areas where energy efficiency measures can be

implemented. We analyze the data from HVAC sensors, study the mechanical design of

the CSE building at UCSD and apply heat transfer equations to obtain energy consumed

by each thermal zone in the building. We also develop a web service that provides a

real-time feedback of energy consumption to the building occupants. The user interface,

called Genie, also allows occupants to check HVAC status and change their temperature

controls. Thus, by using information from HVAC sensors, building level power meters,

building architectural diagrams, we analyzed energy flows in depth as well as provided

occupants with this key information with a web application.

The thermostats already installed in the building was not easy to use, did not

provide sufficient control, occupants did not whom to contact in case of discomfort and

as the thermostats were shared between offices, some occupants could not access the

thermostat. After we deployed Genie in the building, many occupants appreciated the

information available, and made regular use of temperature control provided as well as

sent feedbacks when HVAC did not function correctly. Users did not abuse the control

available, and the energy consumption changes were minimal. The facilities management

appreciated that problems such as use of space heaters and blocking of thermostats got

reduced because of feedback mechanism available in Genie. Thus, our software system
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exploited existing HVAC infrastructure to bridge the communication gap with building

occcupants, and provided them transparent access, control and feedback mechanism for

using the HVAC system.

We interviewed building managers and personnel from facilities management

to identify energy efficiency implementation challenges. Our usage study showed that

maintenance staff have overwhelming work load and would often prioritize occupant

discomfort over efficiency measures. The maintenance personnel struggled to infer

insights due to lack of contextual data and analysis tools. We designed our fault manage-

ment system that integrates information from diverse sources, stores historical data, and

enables third party apps using RESTful APIs. We detected 88 faults in the CSE building,

and many of these faults were causing energy wastage which were not found using

traditional methods. Thus, we show another instance where integration of information

across existing resources and analyzing the data using modern algorithms can lead to

new insights that can save energy, and in this case, improve maintainability of buildings.

Buildings are heterogeneous entities and the infrastructure present as well as their

usage characteristics vary widely depending on age, usage model and vendors used. The

naming convention used for sensors vary widely even though most of the equipment are

similar. Mapping of these sensors to a machine readable format requires considerable

manual effort and domain expertise, and increases the cost and time of deployment. With

the help of unsupervised clustering methods and active learning based labeling of sensors

we utilize available sensor information and domain expert labeled examples to accurately

map sensors to the standard naming convention. Thus, with our algorithm we can map

existing building sensors to a machine readable format that can be used for porting

software applications across multiple buildings.
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1.3 Organization

This dissertation is organized as follows. In Chapter 2 of this dissertation, we

present the challenges involved in deploying hardware based solutions in buildings with

the example of wireless occupancy and plug meters developed by our Synergy Labs

research group. In addition, we introduce the principle working of HVAC systems and

their associated software management system which is the focus of all of the software

systems described in this dissertation. We also present the data storage and dissemination

solution developed by our research group that allows us to communicate with various

systems present in the building and build various applications on top of them. The

software systems presented in this dissertation build on top of this data storage service.

In Chapter 3, we present our software system that exploits existing enterprise

WiFi network to detect presence of occupants in buildings and uses the information to

actuate HVAC system accordingly. It is common for commercial buildings to install an

enterprise WiFi network, and occupants tend to connect to this network either using their

laptop or smartphones. We use the WiFi connectivity information along with building

occupant metadata to infer office occupancy and connect this information to the HVAC

system for occupancy based control.7

In Chapter 4, we present our energy apportionment system for HVAC systems

which estimates heating, cooling and electrical power consumption of individual thermal

zones in a building. Such an apportionment can be used to understand the energy flows

in a building, assign energy bills as per individual use and identify methods to reduce

consumption of energy intensive areas. We also provide energy information as a feedback

to the occupants of the building along with useful features such as control of temperature

setting and ability to send thermal feedback.

In Chapter 5, we present the analysis of the software interface usage by occupants
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of the CSE building across 21 months. Over 220 users registered for our service across

21 months, and we compare the usage of the software interface with the traditional

thermostats to examine the pros and cons of the software system. We provide design

guidelines towards the end for improvement of future software interfaces.

In Chapter 6, we present an analysis of software interface design for building

managers and other maintenance staff. Current maintenance personnel are overwhelmed

with the number of tasks they need to do for maintaining HVAC systems. We interviewed

various building management software users across 5 institutions to understand their

point of view. We also present our own solution that may alleviate the concerns expressed

by the building managers, and show the challenges in implementing similar systems for

other existing buildings.

In Chapter 7, we present an automated way to organize sensor metadata infor-

mation to a standard format to enable reusable, portable applications across buildings.

Building vendors use inconsistent naming conventions and it becomes difficult to deploy

software applications in buildings due to initial work involved in mapping existing sensor

metadata to a standard format. We take four example buildings at our university and show

machine learning methods can be used to reduce manual labor involved significantly.

Chapter 8 discusses future work and Chapter 9 concludes the dissertation.



Chapter 2

Building Testbed and Sensor Data Or-
ganization

We describe here our testbed, including sensor nodes and data architecture used

for this research.

2.1 Embedded Sensing for Occupancy

We built occupancy sensing by combining sensing data from Passive Infrared

(PIR) based motion sensors as well as magnetic door sensors [19]. These sensors

improved accuracy of traditionally used motion only sensors which failed to detect people

when they were relatively motionless. By incorporating door sensors, the direction of

motion can be inferred, and accuracy of occupancy detection in single person offices was

found to be 97% in an experimental deployment. We designed the sensors to be wireless,

low cost and low power so that they could be deployed in existing buildings without

extensive wiring. We showed that the occupancy sensor was effective in curtailing

HVAC power consumption as we could now turn On HVAC in offices only when they

are occupied [18]. In addition, we developed a wireless plug level power meter, which

allowed monitoring of appliance power consumption as well as remotely switch the

power outlet [175]. The plug meter was envisioned for detailed power monitoring and

14
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Figure 2.1. Occupancy node deployed on the wall of an office. The reed switch,
PIR sensor and our CC2530 based radio module inside the occupancy node are also
shown [18].

for effective management of devices during demand response events. Figure 2.1 shows

the occupancy sensor and Figure 2.2 shows our plug meter. In addition, we draw upon

deployment experiences published by Hnat et al. [86] and Dawson-Haggerty et al [56].

2.1.1 Design Challenges

To develop sensors that are low cost and easy to deploy, several aspects need to be

considered. The sensors needs to be networked wirelessly as wiring of sensors in existing

buildings is cost prohibitive. The sensor also needs to be low power so that it does not

need power lines and can be perpetually powered using energy harvesting methods [60]

or has a multi-year battery life time. In addition to meeting these stringent hardware
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Figure 2.2. Picture of our energy meter (a, b), our SheevaPlug base station (c) that is
deployed in the hallways, and the CC2530-based wireless module (d) used in our base
station and energy meters. [175].

requirements, the final product needs to satisfy requirements of certification bodies such

as FCC and UL as well as meet building codes such as those for fire safety. Aesthetics of

the product also makes a large impact in adopting of such sensors. For example, prior

deployments have noted that research study participants would unplug sensors because

the LED lights were annoying [86].

As the sensor needs to be low power and wireless, it needs to adopt low data

rate wireless protocol such as ZigBee or 6lowPAN. Thus, just like the WiFi network

infrastructure, a separate network infrastructure needs to be created for these wireless

sensors. Creating this additional layer of network infrastructure is challenging as well.

The wireless network needs to be robust to interference from devices such as WiFi or

microwave. At least minimal wiring is required for gateway devices that connect the

sensor network to the Internet. And finally, the sensors may be placed in challenging

RF environments such as behind a metal desk which reduces their range considerably.

Hence, adequate repeaters need to be deployed to provide coverage to such sensors.

2.1.2 Deployment Challenges

Even though wireless sensors mitigate extensive rewiring in the building, there

are number of concerns that needs to be addressed for a smooth deployment. For instance,

placement of sensor is constrained by the type of the sensor and its sensitivity. For
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example, our occupancy sensor needs to be close to the door and should not be blocked

for proper motion detection (Figure 2.1). But, this is sometimes not possible because of

furniture or other equipment that the occupant needs to have at the same place. Such

impediments reduce sensor accuracy and data validity.

Typically, the same binary program is flashed onto the sensors and metadata

information such as room number needs to be entered at the time sensor is installed. To

reduce deployment time, a specialized application needs to be developed that configures

the sensor with minimal manual effort. Another time consuming step in the deployment

of a sensor node is the calibration of the sensors to the particular indoor environment.

The deployment time itself needs to be coordinated with occupant requirements. Hnat

et al. [86] report that appointment coordination was a major hurdle in their deployment

efforts.

2.1.3 Maintenance Challenges

Maintenance of sensor networks can be surprisingly difficult due to the scale of

deployment. At UC San Diego, even with wired sensors already deployed in buildings,

many sensors fail and get miscalibrated. But, facilities management do not have sufficient

manual labour to fix all of the problems that arise. Even minor maintenance such as

replacement of batteries becomes manually intensive at the scale of hundreds of sensors.

Many such minor problems such as sensor drift or miscalibration are not fixed for months

at a time.

Wireless sensor networks make maintenance even more challenging due to net-

work interference caused by other WiFi devices, metallic furniture, building metal

infrastructure and other radio devices. Both Dawson-Haggerty et al. [56] and Hnat et

al. [86] report challenges in maintaining a functional network because of lack of reliable

connections, unexpected link changes, etc. We find similar challenges in our sensor
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network as well.

Similar challenges are encountered in other types of retrofit solutions. For exam-

ple, the facilities management identified that the economizer in our CSE building was

not functional. But the economizer dampers were large and expensive to replace, and the

management needed to identify both the personnel as well as the funding for undertaking

the retrofit. The economizer was eventually repaired over 18 months later with total

expenses of $26000.

Such challenges in adoption of hardware based solutions motivates my thesis

to look towards software solutions that can lead to energy efficiency improvements.

Although hardware retrofit solutions cannot be avoided altogether, we will present several

examples of software systems which augment or improve upon existing energy saving

solutions. Software solutions can provide insights into building operation with data

analytics, can provide easy to use building interaction systems and incorporate control

optimizations that improve efficiency. In the rest of the chapter, we provide a brief

background to help the reader navigate the rest of the dissertation.

2.2 CSE Building Testbed

Our building testbed, the Computer Science and Engineering (also called EBU3B)

building at University of California - San Diego, was built in 2004 and consists of 466

rooms with 150,000 sqft of floor space.

2.2.1 CSE HVAC System

The HVAC system within our building uses a combination of hot and cold water

pipes in conjunction with air-handler units(AHU) to maintain the appropriate thermal

environment within the building. Given the size of our university, we employ a central

utility plant for producing the hot (∼ 325◦F) and cold (∼ 45◦F) water distributed campus
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Figure 2.3. Overview of the HVAC System in commercial building on our campus.
Hot water and cold air is pumped to different VAV boxes by AHU. VAV boxes provide
independent control in each HVAC zone.

wide using separate loops as shown in Figure 2.3. Our building uses Variable Air Volume

(VAV) boxes that allow local temperature control, which is estimated to cover 20% of

cooling systems and are commonplace since 1990s [90]. The AHU in our building

consists of variable speed drives which supply cold air (converted from the supplied cold

water) using ducts to VAV boxes distributed throughout the building. The hot water loop

is also connected to these VAV boxes using separate pipes. Each VAV box controls the

amount of cold air to be let into an HVAC zone using dampers. A reheat coil, which uses

supplied hot water, is used to heat the cooled air to meet the appropriate HVAC settings

for each zone.

Figure 2.4 shows the system design of the centralized part of the HVAC system.
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Figure 2.4. Centralized part of HVAC system showing details of air handler unit - cooling
coils, heat exchanger, water pumps, supply/return fans, domestic water and CRAC units.

UCSD has a Central Utility Plant (CUP) that operates gas driven turbines with hot and

chilled water by products. Chilled water is used for large scale energy storage that

accounts for nearly 14% of daily energy use of the entire campus. As a result, we do

not have chillers, cooling towers or boilers in the building normally associated with

commercial HVAC systems. As the weather is temperate throughout the year in San

Diego, the HVAC system was designed without any humidity control. Thus, we do

not have any humidifiers or de-humidifiers found in buildings with harsher outdoor

environment. The centralized part of the system supplies cold air and hot water to the

VAV boxes for providing conditioned air to building spaces.

The cold water from CUP, supplied at ∼ 44◦F, is distributed to the rest of the
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Figure 2.5. VAV with reheat system used for controlling the temperature of discharge air
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system by four cold water pumps, two of which are dedicated for supplying water to the

Computer Room Air Conditioning (CRAC) unit for the server room in CSE. The cold

water is passed through cooling coils, which cool the mixture of outside and return air to

the appropriate setpoint (∼ 55◦F) to provide supply air to all the zones in the building.

The supply air is dispensed to the VAV boxes via ductwork using supply fans, and the

flow of return air is facilitated using return fans. The air mixer uses economizers (not

shown) to increase the proportion of outside air if outdoor conditions are favorable for

reducing energy usage.

The hot water from CUP, supplied in the form of pressurized steam at ∼ 325◦F,

passes through heat exchangers for heating up the hot water returned by the VAV boxes.
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Part of the hot water is used to heat the domestic water. The hot water from the HVAC

heat exchanger is supplied via pipes to the VAV boxes using hot water pumps. All the

pumps and the fans used in the centralized part of the system employ Variable Frequency

Drives(VFDs). The CRAC units do not use the hot water, and have an electric reheat

system for environment control.

Figure 2.5 shows the HVAC design of the VAV boxes in CSE. The amount of

cold air supplied to each zone is modulated using a damper, and a flow sensor measures

the airflow rate. The zonal temperature is controlled by modulating the amount of cold

air and by using the hot water coil to reheat the air. The amount of hot water used in

heating the air is modulated using an electronically controlled 2-way valve. Every zone

has a thermostat which measures the current temperature, and acts as the feedback for

the VAV control system. Occupants are allowed to change their temperature setpoints by

±1◦F using the thermostat dial.

2.2.2 Building Management System

A central Building Management System (BMS), managed by Johnson Controls,

has supervisory control over the HVAC system and the various HVAC components are

connected to the BMS via BACnet - a standard protocol for Building Automation and

Control networks [41]. Each VAV box has sensors for measurement (zone temperature,

air flow, damper position), virtual sensors for monitoring (occupancy status, heating and

cooling temperature set points) and control (change set point, change minimum air flow,

change occupancy status). Figure 2.6 gives an overview of BACnet connecting different

HVAC subsystems.

The BMS operates the HVAC system on a weekly schedule. On weekdays, the

HVAC system is put to “Occupied” from 6am to 6pm, then changed to “Standby” mode

till 10pm, and switched to “Unoccupied” for the rest of the night. In the “Occupied” mode,
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Figure 2.6. Overview of control system of HVAC using BACnet. We connect to the
BACnet as a Foreign Device and sends commands using BACnet Read Property and
Write Property for control of HVAC system.

a minimum amount of airflow is maintained for ventilation, and the minimum airflow

setpoint for each zone is determined based on its maximum capacity. The temperature

of the zone is maintained within 4◦F range, and the exact range is determined by the

temperature setpoint set by the BMS as well as the thermostat adjustment set by the

occupant. In the “Standby” mode, the airflow is reduced to minimal as per safety

standards, and the temperature range is increased to 8◦F, and in the “Unoccupied” mode,

the temperature range is further increased to 12◦F. The HVAC system remains in the

“Unoccupied” on weekends and holidays, and if an occupant were to use a zone during

that time, she can express her occupancy by pressing a button on the thermostat. The

basement student labs and public circulation area are an exception to the schedule, and

are always set to “Occupied” mode.
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2.3 BuildingDepot - Data Management Service

Our software applications builds on top of a building information management

web service, BuildingDepot (BD) [22], an open source web service framework that

integrates information from various sources in a building. A connector for each type of

sensor protocol translates vendor specific information to a uniform format, and a RESTful

API provides access to sensor data and metadata. Sensor data is associated with tags

and metadata such as such as location, type and sensor ID, that describe the properties

of the sensor as well as its function in the system. BD supports standardized naming

convention, enabling applications to be reused across different buildings [176]. Currently

our naming convention is the standard imposed by our university, and it can be easily

extended to support standards such as Haystack [1]. BD uses a fast timeseries database

using Cassandra and a metadata cache using Redis. MySQL is used for organizing

metadata as well as relationships among different sensors. In addition, BD supports

services such as authentication, access control, sensor groups and subscription service.

Unlike traditional information management systems, BDDepot also supports actuation of

control systems.

Each application has to register with BD to gain access to the system. Depending

on the permissions provided by the administrator, an application can create/delete sensors,

read/write to specific sensors or sensor groups and subscribe to sensor changes. BD has

been designed for enterprise level management of buildings, and can be implemented

in a distributed manner. For the CSE building, we have implemented BD in a virtual

machine running on top of the Xen VMM. The HTTP server is implemented using Nginx

as the web server, and uWSGI is used as the interface between the web server and python

application, which is implemented with the Flask framework.
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2.3.1 BACnet Connector

The BACnet Connector(BC) creates a virtual sensor in BD for each BACnet

datapoint in the building. The metadata for the sensors are gathered from BACnet object

properties, which include sensor type, location, and BACnet specific ID. The connector

polls the sensors which are relevant for HVAC zone control, and posts the value to the

BD.

For actuation, the BACnet protocol provides a priority array to resolve contention

between applications which send actuation commands to BACnet objects. Our BC is

assigned a higher priority over the default BMS schedule for actuation of HVAC zones,

and any commands sent by the BC will override the default schedule being used by BMS.

BACnet also provides a way to relinquish control, so the system switches back to the

default schedule when BC does not control the HVAC system.

We have implemented our BC on a desktop machine, which is registered to the

BACnet network as a Foreign Device. The BC server is added to the VLAN dedicated

to BMS for controlled access to the BACnet/IP network. The connector has been

implemented in C, on top of the open source BACnet Stack [7].

2.4 Data Collection

We collect data from HVAC sensors using the BACnet Connector, and store the

timeseries data in BuildingDepot. We have been collecting data for the CSE building

since August 2013, and have expanded the collection to all buildings on our university

campus since January 2015.

The power meter data at UCSD is maintained on a separate network, using a

Schneider Electric proprietary protocol, called ION. We poll the meter data using a

separate service. Our building testbed has specially instrumented meters, measuring
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the temperature and flow of hot and cold water used, accounting for thermal power

consumption. Thus, we can accurately measure the savings obtained from various

efficiency measures. Power meters at the subcircuit level allows us to measure electric

power consumption of the entire HVAC system as well as the lighting, computer room

and plug loads subsystems. We also collect data from the local weather stations from

Weather Underground.

In the Metasys BMS, only the sensor data and its associated metadata is provided.

We studied the architectural plans of our building, and manually extracted useful infor-

mation for analysis. For each VAV box, we extracted which rooms belong to a particular

zone, in which of these rooms the thermostat was located, the area and the usage model

(office, kitchen, etc.) of these rooms. We also extracted design specifications for each

VAV box, corrected misnamed sensors, informed FM about missing sensors and zones.

Further, we created a graphical representation of the floor plans and the system diagrams

of the VAV and AHU.



Chapter 3

Occupancy Based HVAC Control Us-
ing WiFi Infrastructure

In this Chapter, we present an occupancy inference system that relies on existing

WiFi infrastructure already deployed in many commercial buildings. This occupancy

information is then used to control the HVAC system for saving energy. This shows

that with appropriate software infrastructure, it is possible to leverage existing buiding

systems to improve its energy efficiency.

Prior research has shown that most modern buildings use static schedules to

run HVAC systems, thereby wasting considerable energy in conditioning unoccupied

spaces [18, 58, 64, 65]. Also, as detailed in Chapter 2, HVAC systems in our university

run on a static schedule from 6am to 10pm. Furthermore, while modern building HVAC

systems use Variable Air Volume(VAV) control, which allows independent control of

thermal zones [90], it is not leveraged effectively by facility managers in practice due to

the absence of accurate occupancy information within physical spaces. As smart phones,

laptops and other WiFi enabled devices are common place today, they can be potentially

leveraged to detect occupancy within buildings.

Using occupancy information for HVAC control has in fact been studied exten-

sively [18, 62, 64, 65, 68, 69]. While CO2 sensors are used to detect occupant density

27
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in large spaces [6, 10], the detection times for changes in concentration of CO2 with

occupancy were found to be too slow for use within commercial buildings [69]. Motion

sensors used for lighting control in modern buildings are inadequate for HVAC control

as they fail to detect relatively stationary occupants [19]. Recent works from Erickson et

al. [64, 65] and Agarwal et al. [18] have therefore focused on deploying more accurate

occupancy sensors within commercial environments, as well as actuating the HVAC

system based on the near real-time occupancy information collected. They estimate

that the energy use of HVAC systems can be reduced by 30% to 42% effectively in

enterprise-scale buildings.

While these occupancy based HVAC actuation systems are indeed effective in

terms of reducing HVAC energy usage, they require deployment of additional occupancy

sensors and the design, setup and maintenance of the associated data collection network.

To examine the upfront installation cost, Erickson et al. [64] report an expense of

$147k for just the hardware for a three floor building, and even simple wireless motion

sensors would cost over $120k for our five floor building testbed. Most importantly,

the deployment and maintenance hurdles are particularly daunting in case of existing

buildings with occupants already inhabiting them. Although wireless sensors help reduce

the deployment costs to some extent, recent research has shown that it can be very

difficult to deploy and maintain a large-scale wireless sensor network in reality [56, 86].

Challenges on deployment of wireless sensor networks in existing buildings has been

elaborated in Chapter 2.

We show that it is possible to implement occupancy based control of HVAC

systems by leveraging the information already available in commercial buildings. There

is a tradeoff between accuracy of detection, cost of deployment and energy savings. This

paper presents one such design point whose effectiveness we have quantified. Specifically,

we present the design and implementation of Sentinel, a system that utilizes a building’s
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existing WiFi network along with WiFi enabled smartphones carried by occupants of that

building to infer occupancy and use that information to actuate the HVAC system. We

show that even coarse grained information readily available from enterprise WiFi systems

such as the Authentication, Authorization and Accounting (AAA) logs of WiFi clients is

sufficient in most cases to determine occupancy of office spaces. In contrast to recent

infrastructure based occupancy solutions [78, 125], Sentinel augments the information

collected from the AAA WiFi logs with metadata information such as occupant identity,

WiFi MAC address and AP location within the building to improve the accuracy of

occupancy detection further.

We have implemented Sentinel on top of BuildingDepot [22], a RESTful webser-

vice that interfaces with legacy building management systems, and show that it is scalable

and can actuate the HVAC system in our building effectively. We have deployed Sentinel

in the Computer Science and Engineering(CSE) building, a 145,000 sqft enterprise-scale

building at UC San Diego(UCSD). We show that Sentinel can effectively determine

occupancy in office spaces, covering ∼40% of floor space in the CSE building. We

demonstrate the feasibility of using WiFi as a sensing solution by observing the usage pat-

tern of smartphones in CSE and studying the WiFi implementation in modern smartphone

operating systems. We find that the requirement for continuous WiFi connectivity con-

tradicts the aggressive WiFi sleep algorithms implemented in smartphones, and provide

provisional solutions to maintain WiFi connectivity without significant affect on battery

life. Based on ground truth occupancy collected for over 10 days we show that Sentinel

accurately infers occupancy 86% of the time, with only 6.2% false negative occupancy

detections in personal spaces (Actual=Occupied, Inferred=Unoccupied). We highlight

the reasons for the inaccuracy, mostly attributed to aggressive power management by

smartphones. Finally, we control 23% of the HVAC zones of our test building using

Sentinel in a single day experiment, and measure savings of 17.8% in the HVAC electrical
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energy consumption.

3.1 CSE Building Testbed

Sentinel utilizes several key infrastructures prevalent in modern buildings for

occupancy based HVAC control - a Building Management System that allows remote

actuation of HVAC system, an enterprise WiFi network and metadata such as occupant

office space assignments. We use the CSE building at UCSD as our building testbed

whose infrastructure and HVAC system operation are described in detail in Chapter 2.

For occupancy based control, we set the zone to Occupied mode when we detect

a zone to be occupied, and set it to Standby mode otherwise. We chose a shallow setback

temperature for our control to reduce any discomfort to the occupants due to misdetection

by Sentinel. Prior research has shown that increased energy savings can be achieved by

deeper setback temperature and modulation of ventilation rate based on the number of

people in a zone [65, 79, 165]. Thus, the energy savings we demonstrate is a conservative

estimate of the savings that could be obtained using advanced control methods. In the

rest of the paper, we refer to an HVAC zone being turned On and Off , which is equivalent

to the HVAC zone being set to Occupied and Standby modes respectively.

3.1.1 WiFi Infrastructure

UCSD employs a modern enterprise-class WiFi system to support the 48,000

strong community. The enterprise WiFi network in UCSD consists of three SSIDs, one

open network - UCSD-GUEST, and two secured networks - eduroam, UCSD-PROTECTED.

The two secured networks are mostly identical, and henceforth, we refer to them as

the protected network. The protected network employs WPA2-E/802.1x for encryption,

and authorized users login using their Active Directory username and password. It is

common in our building, as we will show in Section 3.4.1, for occupants to connect to the
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protected network for regular usage. UCSD-GUEST, on the other hand, is generally used

by visitors of the campus and is insecure with limited access. We describe the specific

details of the WiFi logs collected and used by Sentinel in Section 3.2.2.

3.2 Sentinel: System Design

Our initial goal was to determine the occupancy of each zone in our building using

existing infrastructure without requiring additional sensors or installing any software on

our occupants phones. Although we do not achieve this goal completely, we show that it

is indeed possible to infer occupancy information for approximately half the zones in our

building using WiFi network logs with minimal functionality on client devices.

3.2.1 Occupancy Inference Algorithm

The idea of localization using wireless radios is well known [29]. Turner et

al. [170] studied the performance of established self calibrating WiFi localization algo-

rithms within the CSE building and found that the median and the 95th-percentile error

distance of the algorithms to be worse than simple nearest access point location algorithm.

The errors were attributed to signal reflection and RSSI variations with time. The accu-

racy of indoor localization could be improved with fingerprinting algorithms at the cost

of significant manual effort [180] or with use of compute intensive algorithms [45]. For

our application, we need to localize up to a thousand people in our building for real-time

actuation of HVAC zones. Furthermore, we want to develop an occupancy detection

solution that relies on minimal information from the network infrastructure. Therefore,

for simplicity and scalability, we concentrate on easily obtainable coarse-grained location

of client devices, without employing complex localization techniques that may be more

accurate. Thus, when a client sends a packet to an access point(AP), we assume that

the client is located in a zone within the range of the AP. We show, with the occupancy
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Figure 3.1. Example of occupancy inference using WiFi connectivity. The occupant is
assumed to be in her personal space whenever she is within the associated AP’s zone of
detection, as denoted by “Assumed Location”.

model described below, that it is possible to make inferences about the occupancy of

users in the building even with such coarse-grained information.

Personal and Shared Spaces

We classify physical spaces into two categories: personal spaces and shared

spaces. We define a personal space as an area with a designated owner such as individual

offices assigned to faculty, or desks assigned to students in a lab. There is no restriction

on the size or type of a personal space, so it includes single person offices, cubicle spaces

and rooms shared by multiple people. Shared spaces on the other hand includes the

rest of the building, which essentially have no designated occupant or owner such as
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restrooms, conference rooms, cafeteria, etc.

Consider an occupant with a WiFi enabled device located within the building as

depicted in Figure 3.1. As the device is associated with one of the access points(APs)

in the building, it can be located anywhere in the range of the AP. The occupant could

be in her office, or visiting a colleague’s office, or in a shared space. We assume that

the occupant does not visit a colleague’s office unless the colleague herself is present in

the office. Thus, a personal space cannot be occupied unless the owner is present in the

space. If we can detect the presence of owners in their respective personal spaces, then

we can effectively monitor the occupancy of all personal spaces in the building.

Shared spaces, on the other hand, can be visited by anyone in the building without

restriction. Thus, for inferring occupancy of shared spaces correctly, we would need

to detect the entry and exit of each person in the shared space accurately. Since we do

not employ fine-grained localization information, we do not aim to detect occupancy in

shared spaces and assume that they are always occupied.

Note that one person can be allocated to more than one personal space, and any

number of personal spaces can exist within an HVAC zone. Thus, the personal and shared

space division can be applied to a wide variety of buildings and occupancy patterns.

Zone of Detection

We refer to the physical area covered by a WiFi Access Point (AP) as its zone of

detection. An AP is affiliated with a personal space, if the personal space falls within an

AP’s zone of detection. There can be multiple APs affiliated to a personal space. If the

owner of the personal space is connected to an affiliated AP, then she is considered to be

present in the personal space.

Smaller zones of detection will naturally lead to more precise occupancy in-

ferences, while larger zones of detection causes loss in accuracy. In our building, we
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found that the zone of detection of an AP typically covers up to 10 HVAC zones. This

lack of precision means that we sacrifice potential energy savings when an occupant is

just outside their personal space but inside the zone of detection. Note that even WiFi

localization methods will not help as the 95th-percentile error distance from AP was

found to be worse than the nearest AP algorithm [170]. Figure 3.1 gives an example of

occupancy inference of an occupant who is within the zone of detection of an AP. In

this case, the occupant is assumed to be in her office irrespective of their actual location

within that zone. This assumption resolves the discrepancy between the area covered by

zone of detection of APs and HVAC zones.

We conservatively mark the boundaries of zone of detection of each AP as well

beyond the points at which a typical client handoff takes place. We also assume there is

no cross floor interference between the AP coverage as it was never observed in practice.

For our building, each personal space was associated with at the most four APs. Figure

3.2 shows an example of the personal spaces associated with one of the APs in the

building.

Identity

When the WiFi logs indicate that a client device is connected to a particular AP,

we infer that the client is within the AP’s zone of detection. In order to make a relation

with the personal spaces within the zone of detection of the AP, the client needs to be

mapped to the owner of her personal space. Therefore, an accurate mapping of owners

to personal space, i.e. occupant to office number, has to be maintained by our system.

Further, information of all wireless capable devices used by a building occupant also has

to be maintained. As we are using the AAA logs from the WiFi network for inferring

occupancy, the wireless device to actual building occupant mapping is available to us.
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Access Point 

Personal Space 

Shared Space 

Figure 3.2. Example of an AP with its associated personal spaces. The network coverage
of APs are marked conservatively to reduce false negative errors.

3.2.2 Capturing WiFi Data

We use AAA logs from the WiFi network to collect relevant information from

the occupant devices. AAA logs only collect the connection, disconnection and periodic

live packets from the client devices, which provides us with enough information for

occupancy inference. An alternative is to collect data at the AP level and process each

packet sent by the device. However, the additional information does not help to improve

the accuracy of detection as we show in Section 3.2.4, but increases the burden of

data processing by several orders of magnitude and also intrudes on the privacy of the

occupants.

We use the requests received by the RADIUS server as part of the WPA2/802.1x

protocol for acquiring information on the WiFi devices in CSE. A WiFi device sends

an authentication request to the AP when it first tries to make a connection. The AP

forwards the request to the RADIUS server, which has information on the client MAC

address, the AP MAC address, the SSID to which connection was requested for, as well
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as the client username and password. After successful authentication, the AP sends an

accounting packet indicating the “Start” of the connection to the server.

Similar authentication and accounting packets are sent to the RADIUS server

when a client migrates from one AP to another in the same network, and when the client

disconnects from the network. In addition, the AP sends “Alive” accounting packets to

indicate the client is still connected to the network. If the AP does not hear from the client

for a fixed period of time (1000 seconds in our network), it terminates the connection

with the client and sends a “Stop” accounting packet to the RADIUS server.

When the RADIUS packets indicate that the client has connected to one of the

APs near the personal space of the occupant, then Sentinel marks that personal space

as occupied. When the client migrates to APs in other areas of the building, or gets

disconnected from the network, Sentinel marks that personal space as unoccupied.

3.2.3 Phone Detection Algorithm

There are many WiFi enabled devices popular today - laptops, smartphones,

tablets, and it is possible that a building occupant owns more than one WiFi device.

When the occupant is moving in and out of her personal space, she may not carry all

her WiFi devices. For accurate inference of occupancy, it is important that the system

knows the MAC address of the device which is representative of the current location of

the occupant. For most occupants in our building, this WiFi device was their smartphone,

and henceforth, we refer to the phone as the location representative device.

The RADIUS server gets a packet when a client migrates from one AP to another.

When an occupant is moving inside the building, the phone gets handed-off between

many APs. Over a period of time, the phone would send more number of requests of

authentication to the RADIUS server than other devices. Thus, we mark the device with

the highest number of requests to be the occupant’s phone.



37

The algorithm fails when an occupant buys a new phone. As the new phone starts

off with zero requests, it would be ignored even if it best represents the location of the

user. Such an event cannot be ignored at the scale of a thousand occupants, as there could

always be a few occupants who have a new device.If we do not see any access request

from the device with highest number of requests for 48 hours, we reset the number of

requests of all device owned by the occupant. The 48 hour resets also increased the

robustness of the system to the changing usage patterns of the occupant.

We verified the accuracy of the algorithm by identifying the MAC addresses used

by Sentinel for changing the occupancy status of a personal space. 44 occupants were

chosen at random for manual verification, and for 40 of them, the phones were identified

correctly. The algorithm worked well for all types of devices despite the aggressive WiFi

sleep policies employed (Section 3.2.4).

We found that Mac OS X devices connected and disconnected from the WiFi

network despite being put to sleep mode. Thus, when a Mac OS X computer is left in

sleep mode over a weekend, the number of access requests of the computer exceeds those

of the occupant’s phone, and our system detects the room as occupied. We observed this

on four occasions during our experiments, and it can be avoided by incorporating the

unique number of access points connected to by a device into the algorithm.

3.2.4 Perpetual WiFi Connectivity

Sentinel assumes that the phone is continuously connected to the protected

network when the occupant is in the building. However, this may not happen in practice

because of various reasons - the occupant may not own a smartphone, the occupant

may have forgotten her phone at home, the phone may run out of battery, WiFi network

coverage may be poor within the office, or there may be a network outage. These

problems are associated with any system which seeks to use WiFi clients as a sensor,
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and we do not handle them as part of this work. If the entire building is affected,

Sentinel falls back to the default schedule. If an individual occupant is affected, alternate

means of informing the occupancy of an HVAC zone can be provided. In Sentinel, the

occupants indicate their presence by pressing a button on the thermostat. We also provide

a web interface for indicating user occupancy and preference, similar to the personalized

building control system developed by Krioukov et al. [108].

With smart devices permeating every part of our lives, we hope that WiFi connec-

tivity will become part of the essential infrastructure provided in commercial buildings,

and the connectivity issues would become a rare event in a few years. Further, as offices

typically have abundant power supply, we assume that the occupant would connect the

phone to a charger once it indicates low battery. However, battery powered smartphones

employ a number of power saving strategies, and the specifics of WiFi sleep algorithm

depend on the type of operating system and the model of the device.

We consider three popular variants of smartphones - Android, iOS and Windows

Phone. Both Android and Windows Phone provide options for WiFi power management

when the device is in sleep mode, and the user can opt to keep the WiFi radio awake even

when the device is not in active use. iOS, on the other hand, employs aggressive sleep

algorithm as soon as the screen is locked. On studying the network traces of a WiFi-only

iPad2 using iOS v6.1.2, we observed that when the device screen is locked, it only keeps

the TCP port to Apple Push Notification Service open, and does not respond to other

network packets. When the device does not get a push notification for a period of time,

the WiFi radio is turned off and woken up at 30 minute intervals. In order to avoid errors

in occupancy detection, we request the occupants of the building to change their settings

to fetch mail every 15 minutes, thereby ensuring that we get some information coming

from them over WiFi.
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HVAC Zones with Personal Spaces 

HVAC Zones with Shared Spaces 

Figure 3.3. Partitioning of one wing of a floor based on shared and personal spaces.
Personal spaces which have a common zone with shared spaces are marked as shared.

3.2.5 Partitioning the Building

As we explained in Section 3.2.1, we need to divide the building into personal

and shared spaces. As Sentinel can only infer occupancy of personal spaces, the en-

ergy savings obtained are lower than when actuating entire building HVAC based on

occupancy.

In our building, personal space consists of single room offices and multi-person

shared offices. The shared space consists of computer labs, cafeteria, conference rooms,

etc. In addition, there are storage rooms that are rarely visited, and we mark them as

unoccupied for actuation. The HVAC zones in the building, however, do not follow

the personal and shared space partitioning. For example, there are several zones which

condition a personal space as well as the hallway connected to it. As Sentinel needs to

run shared spaces in static schedule, the personal spaces which share its HVAC zone with

a hallway or lobby are marked as shared spaces as well. Figure 3.3 shows an example of

shared and personal zone mapping for a section of our building.

Table 3.1 shows the area covered by each kind of space in our building. Some
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Table 3.1. Contribution of personal and shared building spaces by area and by HVAC
power consumption. Actuating only personal spaces can lead to at most ∼33% electricity
savings.

Area Electrical Cooling Heating
Personal 37.5% 63.9% 96.0% 108.0%
Shared 58.3% 66.9% 96.4% 90.0%
Storage 4.2% - - -

of the shared spaces like staircases and small hallways are not covered by HVAC zones.

Hence, the HVAC power consumption of personal and shared spaces is not proportional

to the area covered. To measure the contribution of each type of space to the total HVAC

power consumption, we operated the HVAC system with all the zones turned on for one

hour, then turned off all the personal spaces for two hours, then switched the personal

spaces back on, and finally, turned off all the shared spaces for two hours. We conducted

this experiment overnight, as the outdoor temperature is stable at San Diego. On the

night of the experiment - March 20, 2013, the outdoor temperature was at 61±1.7◦F.

Table 1 shows the electrical and thermal energy savings obtained turning off

shared and personal spaces. The personal and shared spaces contributed 63.9% and

66.9% to the electrical power consumption respectively. Thus, the personal spaces

contribute to roughly half of the total HVAC electricity consumption. As the shared

spaces remain conditioned in our system, the electrical power savings we can obtain by

occupancy based conditioning of personal spaces is ∼33% for our building. The heating

and cooling thermal power consumption do not follow similar trends, and we examine

them in detail in Section 3.4.6.

3.3 Implementation

Sentinel’s system architecture follows the principles proposed for management of

sensors in commercial buildings in recent literature [26, 57, 58, 151]. Figure 3.4 provides
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Figure 3.4. System Architecture of Sentinel

an overview of Sentinel. BuildingDepot(BD) [22] acts as a central authority for collection

of sensory data of the building and provides access control to users and applications for

analyzing sensor data and controlling the building actuators. The BACnet Connector acts

as a gateway between the sensors which use the BACnet protocol and BD. Both BACnet

Connector and BD are described in detail in Chapter 2. The Occupancy Inference Server

receives a copy of the packets received at the RADIUS server, and processes the packets

to infer occupancy for the various HVAC zones in the building. The HVAC Actuation

Server processes this occupancy information, and actuates the HVAC system.

3.3.1 Occupancy Inference Server

The Occupancy Inference Server(OIS) receives a copy of each RADIUS packet

sent by the APs in CSE building. OIS processes the incoming packets to infer personal
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space occupancy as described in Section 3.2.1.

For inferring occupancy, the OIS maintains several metadata information - a

mapping between occupant to their phone MAC address, between the occupants and

their office numbers, between offices and the APs in the building, and finally, a mapping

between HVAC zones and offices. OIS creates a virtual sensor in BD for indicating

occupancy of each HVAC zone in the building, and key information from each incoming

packet is stored in a local MySQL database for debugging and future analysis. The

usernames are anonymized in the database for preserving the privacy of the occupants.

Several levels of checks need to be made before deciding that an HVAC zone is

occupied or not. The incoming packets are filtered for the registered occupants of the

building, and then checked if the packets are coming from a “phone”(Section 3.2.3). If

the phone is connected to an AP near the office of the owner, the corresponding personal

space is marked as occupied, and otherwise, its marked as unoccupied. If all the other

personal spaces in the same HVAC zone is unoccupied, the occupancy status of the zone

is updated to occupied and the information is sent to BD.

We have implemented the OIS on top of an open source RADIUS client -

pyrad [12].

3.3.2 HVAC Actuation Server

The HVAC Actuation Server(HAS) acts as a layer of abstraction between the

occupancy information supplied by OIS and the HVAC control using BACnet. During

normal operation, HAS converts the occupancy changes from the OIS to the appropriate

commands for HVAC control. HAS was also used for experiments on HVAC control

which we describe in Section 3.4.6.

Currently, we control the HVAC system in a reactive manner, i.e., we control the

ventilation of a zone when its occupancy changes. Literature has shown that predictive
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control with deep setpoints can lead to higher energy savings in HVAC systems [27,

65, 79, 134]. However, the setback temperature setpoints allowed in our building are

conservative, and the temperature of unoccupied zones is kept within the range of 70◦F

to 78◦F. Goyal et al. [79] find that the energy savings obtained by both predictive and

reactive systems are similar when the setback temperature setpoints are set as per the

ASHRAE standard. They also show that reactive systems have negligible effect on the

comfort of the occupants as the setback temperature setpoints are conservative. Sentinel

is not restricted to reactive control, and we will explore model predictive control as part

of our future work.

3.4 Evaluation

Sentinel has been operational for three weeks at the time of writing this paper,

in the five floor, 145,000 sqft CSE building at UCSD. To show the feasibility of a

building-wide deployment of Sentinel, we show the distribution of smartphone usage

in the building. We evaluate the accuracy of occupancy detection using Sentinel over a

period of 10 days. We then show the occupancy patterns of 38 smartphone users in our

building across a week, and identify periods of inoccupancy which could save HVAC

energy. We have run over 35 experiments on the HVAC system in our building testbed,

and present the HVAC power consumption versus occupancy trends to demonstrate the

potential energy savings using an occupancy based HVAC actuation system. Finally, we

present the energy savings obtained by controlling 55 of the 237 HVAC zones in the

building for one day.

3.4.1 User Study

We surveyed 187 of the 415 registered occupants in our building. The surveys

were short, intended to garner interest in WiFi based control technology. We asked the
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Figure 3.5. Distribution of smartphones and their WiFi usage patterns by the occupants
in our building.

occupants if they would be interested in using such a technology, the kind of smartphone

they use, whether they connected their smartphone to the protected WiFi network in

the building on a regular basis, and if they would participate in WiFi based actuation of

HVAC system in their office space.

Majority of the occupants surveyed showed interest in controlling the HVAC

system based on WiFi connectivity. Over 64% of the occupants owned a smartphone,

and only 10% of the occupants did not connect to the internet using WiFi. Figure 3.5

shows the usage trend of the WiFi devices in the building. Despite the prevalence of

WiFi devices and network coverage across the building, many people reported that they

did not connect to WiFi due to various reasons - poor WiFi coverage in their offices,

adequate data capacity available from cellular network, connectivity problems with the

WPA2/802.1x protocol and battery problems.

It should be noted that there is little incentive for occupants of the building to

stay connected to WiFi using smartphones in an IT building. Most of the occupants

have a desktop computer with ethernet, and many occupants use their laptop for internet
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connectivity. Several occupants indicated that they would connect to WiFi using their

phone if it provided automated control of HVAC system without significant effect on

battery life. Problems with network coverage can be solved by careful placement of

APs within the building, and device connectivity issues would get solved over time by

software/hardware updates to the smartphones. There would always be a few occupants

who do not, or cannot connect to the protected network for various reasons. In our

experiments, occupants need to indicate their presence by manual press of a button on

the thermostat as on weekends. We later added a web based control of access to HVAC

system similar to that proposed by Krioukov et al. [108] as a failsafe option.

3.4.2 Occupancy Accuracy

Accuracy of detecting occupancy using WiFi connectivity has been shown to be

noisy and inaccurate in prior work [78, 125, 168]. However, by restricting the occupancy

detection of Sentinel to personal spaces, and by using additional metadata information like

occupant identity and AP location, Sentinel improves the overall accuracy of occupancy

detection significantly. We demonstrate the accuracy of Sentinel based on data collected

for 116 of the 415 building occupants over a 10 day period.

57% of the smartphones used by the building occupants are iPhones, and as

explained in Section 3.2.4, iOS devices turn off the WiFi radio when it is not in active

use. To participate in WiFi based HVAC control experiments, we requested occupants to

keep their iOS device connected to WiFi and to change device settings to fetch emails

every 15 minutes. We requested the Android and Windows Phone users to enable WiFi

and to change the settings to disable the WiFi aggressive sleep option. The change in

device settings were enforced for two days, and the occupants were given the option to

change back to their default settings if needed.

We define an event as a change in occupancy of a personal space, either as



46

detected by Sentinel, or as seen in ground truth measurements. We use the number of

events correctly identified by Sentinel as a measure of the occupancy accuracy. If Sentinel

incorrectly marks a personal space as occupied, we classify the error as a false positive,

and if the system incorrectly marks a personal space to be unoccupied, we classify it as a

false negative. On a false positive error, we incur a penalty in the energy savings obtained

as the HVAC system would ventilate the personal space unnecessarily. A false negative,

on the other hand, would lead to discomfort to the occupants as the HVAC system would

be put to “Standby” mode. For ground truth comparison, we note the occupancy in

each office across the building, and compare Sentinel logs for occupancy status at the

corresponding timestamp. We also inspect the latest logs from Sentinel, and examine

the occupancy status of the respective zones. In case of discrepancy, we try our best to

identify the underlying cause. We ignore the errors that occur when the occupant leaves

her personal space for less than five minutes, and since the timeout period in RADIUS

protocol is ∼ 17 minutes, we accept a delay of up to 20 minutes in detection when the

occupant is leaving her personal space.

We measured 436 events during the 10 test days, of which 330 events were

recorded in the first two days, and Sentinel accurately identified personal space occupancy

83% of the time. The false positives and the false negatives were 9.4% and 7.5%

respectively. After the first two days, the ground truth was collected only for occupants

known to be still using the modified phone settings. Figure 3.6 gives a breakdown of the

causes of the errors in detection.

Majority of the false positive errors by Sentinel were caused due to an error in

identifying the appropriate device by the phone detection algorithm. As many of the

occupants were enabling their WiFi devices for our experiments, we reset the access

count request of all the recorded occupant devices. As this was done early in the morning,

all the WiFi enabled devices in the building were identified as phones by Sentinel, and the
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errors in detection increased. The phone detection algorithm corrected itself as occupants

came in, and the incorrect device errors died down by midday.

System errors constitute the errors caused due to mistakes in metadata information

stored in Sentinel. Some of the errors included incorrect mapping of the occupant to

their personal space, incorrect authentication username, and incorrect mapping of APs to

personal spaces. We corrected the errors after the first day of ground truth data collection.

If we remove the temporary errors caused due to incorrect device detection and system

configuration errors, the accuracy of Sentinel improves to 86%, and the false negative

errors reduce to 6.2%.

The aggressive WiFi sleep mechanism used in iOS devices led to intermittent

WiFi connectivity, and was the cause of majority of the false negative errors. Although,

we used various mechanisms to keep the WiFi radio active, there were still circumstances

in which the connectivity was not persistent. “iOS Start” errors indicate that the occupant

has entered her personal space, but Sentinel could not detect the occupant as the iOS

device did not switch from the cellular data network to the WiFi network. We noticed

a maximum delay of 23 minutes in iOS Start errors. “iOS Stop” errors occur when the

iOS device turned off the WiFi radio when the occupant was in her personal space. This

behavior was observed among phones which were not in use for a long period of time,

and as much as 3 hour periods of disconnection were observed. However, on most cases,

the iOS devices woke up within 10 minutes of timeout. The device errors were mainly

caused due to late detection of arrival of occupants in to their personal spaces. The late

detection was observed among the Android devices, as it sometimes took longer than

usual to detect WiFi networks in its vicinity. The inaccuracies due to device connectivity

constitute 5% of the error and can be improved by the use of an app on the phones. We

provide the details of an iOS app which addresses this issue in Section 3.5.

When the occupant has left her personal space, but is still within the zone of
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Figure 3.6. Distribution of occupancy detection errors as observed over 436 events and
10 days. The occupancy detection was accurate 83% of the time.

detection of the nearby AP, Sentinel incorrectly marks the space as occupied. We call

such false positives as “zone of detection error”. A similar false positive is incurred when

occupant leaves her personal space but does not carry her phone with her. We classify

such error under “people error”. Occupants also sometimes forgot to enable WiFi on their

phones, or connected it to the guest network, which leads to false negatives. We classify

such errors as people error as well. Both zone of detection and people errors account for

6.9% error in occupancy detection, and are inherent to the occupancy inference algorithm

used by Sentinel. People errors can only be reduced using wearable devices, and zone of

detection errors can be reduced using accurate localization methods.

3.4.3 Occupancy Trends

We have collected the occupancy information inferred from the RADIUS logs for

all the occupants for three weeks at the time of writing this paper. Figure 3.7 shows the

occupancy of the 38 users who are always connected to the protected network, and have

disabled WiFi sleep by default. The occupancy trend is shown for the week of March

18 to March 24, 2013 - one of the busier weeks in our building due to exams. Note that
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Figure 3.7. Occupancy trends of 38 occupants in our building who keep their smart-
phones always connected to WiFi as measured by Sentinel for the week of March 18-24,
2013

occupancy here refers to occupancy of personal spaces, rather than the whole building.

The most interesting part of Figure 3.7 is that the peak of the graph is at 23 people,

only 57% of the maximum 38. Another point of interest is that the general occupancy

decreases as the week progresses, indicating peak of productivity on Monday, and a

maximum of just 15 people on Friday.

On most days, there is a fall in the occupancy during the middle of the day, indi-

cating people leaving their offices for lunch, meetings and discussions. The graph clearly

demonstrates the opportunity of energy savings that could be obtained by controlling the

HVAC system based on occupancy.

On nights and weekends, the occupancy is understandably low, however it is not

zero, as assumed by the static schedules used for HVAC control. The occupants are left

to manually indicate their presence if they are in the building during off hours. WiFi

based occupancy detection can easily detect the presence within an HVAC zone, and

provide automated thermal comfort to the occupants.
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Figure 3.8. Distribution of smartphone battery consumption of 20 participants over 3
days with WiFi “always on”, with WiFi aggressive sleep enabled and with WiFi off.

3.4.4 Impact on Device Battery Life

Battery life of a device is dependent on the WiFi radio chip, the network coverage,

the applications using WiFi, the usage pattern and potentially other factors. Prior works on

WiFi and cellular radio power measurements [32, 43, 182] indicate that WiFi sleep power

is about 2x the sleep power of cellular technologies such as 3G, the data transmission

in WiFi is about an order of magnitude more efficient than cellular, the energy spent by

WiFi radio to scan and associate to an AP is 5x the energy spent for 50KB data transfer,

and the energy consumption of cellular radio varies significantly with signal strength.

To reduce the impact of higher WiFi sleep power, Rahmati et al. [147] and Agarwal et

al. [21] suggest waking up WiFi only when data transfer is required, and iOS follows

a similar model based on our observations (Section 3.2.4). However, this strategy may

not lead to power savings if the phone keeps switching between WiFi and cellular radios

frequently or if the apps installed on the phone require frequent data transfer. Thus, the

impact on battery life would actually depend on the usage pattern of the phone.

Instead of measuring battery consumption in a controlled environment, we mea-



51

sure battery drain as seen by phone owners during their regular usage. We choose 20

participants, not necessarily building occupants, and measure their smartphone battery

performance over three days. There were 10 iPhones, 9 Androids and 1 Windows Phone

in the collection. On the first day, the smartphones were put to WiFi “always on” mode,

by disabling the sleep mode in non-iOS phones, and fetching email every 15 minutes in

iOS phones. On the second day, WiFi was enabled, with aggressive sleep mode enabled.

On the third day, WiFi was switched off completely. The participants were requested

to try and keep similar usage pattern across these three days and report any significant

differences in usage. We normalize the battery drain during three days by the battery

drain observed with WiFi “always on” option, and the combined result is shown in Figure

3.8.

As can be observed from Figure 3.8, there are no clear trends across the three

WiFi modes for these devices. However, we do make several observations. First, in many

cases (particularly for iOS devices) WiFi aggressive sleep leads to lower battery lifetime

than keeping WiFi on probably due to the constant mode switches. Second, turning the

WiFi off completely to use only 3G does not lead to significantly better battery life as

compared to keeping WiFi on, or the 15-min Keep Alives mode for iOS. The Android

device for which this is not the case (Device 6) were verified to be an anomaly since

the user reported that they don’t use the 3G data radio. Therefore, based on our current

data, we have not seen conclusive evidence whether using the aggressive sleep modes

for WiFi actually provides significant battery life improvements than the less aggressive

WiFi on settings. However, given the variations we observed in battery consumption

more extensive data collection would provide better insight into the effect on battery life

due to continuous WiFi connectivity.
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Table 3.2. Breakdown of latency of Sentinel from the time of reception of RADIUS
packet from WiFi device to the time of sending actuation commands to HVAC.

Operation Latency (in ms)
OIS→ BD 194.26 ± 50.6
BD→ HAS 67.18 ± 13.6
HAS→ BD 158.25 ± 61.3
BD↔ BC 185.35 ± 113.4
BD→ HAS 126.35 ± 30.6
Total 731.57 ± 125.4

3.4.5 Actuation Latency

Unlike prior occupancy based control systems [18, 64], we have implemented

Sentinel on top of RESTful web services as recommended in recent literature [58, 26]

using our BuildingDepot(BD) system [22]. BD is designed to support different types of

building applications, is compatible with existing building management solutions and

scales well with number of users, applications and sensors. Similar RESTful frameworks

are also being adopted by industry and academia for building automation applications

such as plug level energy meter [9, 94] and wireless lighting system [11]. Sentinel is one

of the first RESTful systems to be deployed at the scale of an enterprise-scale commercial

building, and actuaion latencies for such systems have not been measured in the literature

so far.

Table 3.2 provides a detailed breakdown of latency to send an actuation command

to the HVAC zones, from the time of detection of occupancy to the time to get the

acknowledgment of the command completion. We have an actuation latency of ∼750ms,

which is fast enough for actuating HVAC systems. However, when the access controls

extend to plug loads and lighting systems, the actuation latency would need to be reduced

further so that the occupants do not notice the delay.
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3.4.6 Potential Energy Savings

Prior work has focused on estimating the energy savings obtained by occupancy

based actuation of HVAC system using simulations on calibrated EnergyPlus building

models [52], and it has been shown that significant savings can be obtained across

different seasons and geographical locations [64, 65, 79]. Goyal et al. [79] show that

the amount of energy savings obtained remain almost the same for both reactive and

predictive strategies for different outdoor conditions if the set back temperatures are

conservative as per ASHRAE standards.

Instead of simulations, we measure the actual energy savings obtained at different

levels of occupancy by conducting experiments directly on our building. We perform our

experiments during night time, as there are only a few people present in the building, and

the night temperature at San Diego was relatively stable at the time of our experiments.

All the experiments were conducted during the month of March, 2013, when the night

temperature was recorded between 55◦F and 60◦F. Note that compared to the day, the

load on the HVAC system during night is lower due to reduced outdoor temperature

and lesser number of people and machines in operation. The energy savings measured

represent a constant load HVAC system, and is a conservative estimate of actual energy

savings possible.

To determine the energy savings obtained with change in occupancy in the

building, we randomly choose a fixed percentage of HVAC zones, and turn them off for

a period of two hours. To allow for variations with respect to outdoor conditions, we

choose the same set of zones, and repeat the experiment. Figure 3.9 shows the electricity

consumption of the HVAC system when we actuated 25% of the zones in the building.

The experiment was started at ∼10pm, and all the zones in the building were gradually

turned on with an interval of 10 seconds between each actuation command. The zones
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Figure 3.9. Measurement of HVAC electrical power consumption with 25% of the HVAC
zones randomly chosen to be alternatively turned on and off on the night of March 16,
2013.

were allowed to stabilize for an hour, and then 25% of the zones were gradually turned

off for a period of two hours. We turn back on the switched off zones after two hours,

and repeat the process once more. We repeat the experiment for at least two nights for

each level of occupancy.

Figure 3.10 shows the changes in electrical power consumption of the HVAC

system with increase in occupancy of the building. There is a clear increase in the

electrical power consumption as the occupancy of the building increases. Although its not

prominent in the figure shown, the drop in electrical energy is not directly proportional to

the fall in occupancy within the building. The electrical power consumption is dominated

by the fans in the Air Handler Unit(AHU) of the building, and power consumption of the

fans are proportional to the cube of the fan rotation speed. Thus, as the occupancy of the

building increases, the fan rotates at a higher speed, leading to disproportional increase

in power. Thus, the energy savings are maximum when the occupancy of the building

drops from 100%, and follows the pattern of diminishing returns as the occupancy further
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Figure 3.10. HVAC electrical power consumption with change in occupancy levels in
the building.

reduces.

Figure 3.11 shows the thermal power consumption of the HVAC system with

increase in occupancy. Both cooling and heating thermal power decrease gradually with

decrease in occupancy of the building. The trends in heating thermal power is not as

clear as cooling thermal power or electrical power because the supplied hot water is not

in continuous use by the HVAC system. The cold water is converted to cold air, and is

used for ventilation by the VAV boxes. The amount of cold air is regulated by the VAV

box using a damper, but a minimum amount of ventilation is maintained by the VAV

even when the zone is unoccupied. Hot water, on the other hand, is used intermittently

by the VAV box to reheat the cold air when needed. The intermittent usage of hot water

translates to different heating thermal power consumption from day to day, and thus, we

do not see any clear trends with change in occupancy.

Even when the building is completely unoccupied, electrical power consumption

is ∼35% of the power consumption at full occupancy, and heating and thermal power

is at ∼70%. As the building is put in to “Standby” mode when it is unoccupied, the
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Figure 3.11. HVAC thermal power consumption with change in occupancy levels in the
building

HVAC system still tries to maintain minimum thermal comfort within the building. For

our building, the temperature guardband is increased by 2◦F on both cooling and heating

setpoints with respect to the setpoints in “Occupied” mode.

The thermal power consumption is still high compared to electrical power when

the building is fully unoccupied. This is because the cold water is used for cooling

the server room in CSE, and the hot water is used for domestic water heating. Also,

recall that our building receives its hot and cold water from a central utility plant(Section

2.2), and thus, the reduction in thermal energy observed is due to the decrease in the

demand for hot and cold water. However, as the hot water and cold air still circulate

through the building, there is still a drop in temperature in the returned hot and cold water.

The thermal power consumption is measured as the energy spent due to the loss in the

temperature difference between the supply and return water. Hence, even at zero percent

occupancy, significant amount of energy is spent for thermal needs.
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Figure 3.12. Temperature profile of an HVAC zone during daytime when it was turned on
and off every two hours. Heating and cooling setpoints are 71◦F and 75◦F respectively.

3.4.7 Thermal Comfort

Prior work suggests that reactive control of HVAC system does not lead to

occupant discomfort when the setback temperature is conservative [18, 79]. To test this

in our building, we performed a controlled experiment on a subset of HVAC zones. We

chose 12 HVAC zones, each of them having different characteristics in terms of size,

location, and number of rooms. Each of the zones were alternated between “Occupied”

and “Standby” modes for two hour periods over a total period of 8 hours during the day

on a weekend.

One of the HVAC zones had a faulty sensor, and we do not consider its temperature

data. Figure 3.12 shows the variation in temperature of the HVAC zone which showed

the maximum thermal discomfort among the remaining 11 zones in the experiment. The

heating and cooling temperature set points of the “Occupied” mode for this zone was

at 71◦F and 75◦F respectively, and the corresponding set points of the “Standby” mode

was 69◦F and 77◦F respectively. Unfortunately, the outside temperature at the time of

the year is temperate, and does not change the temperature of the zone significantly,
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even when it is in the Standby mode. It is clear from Figure 3.12 that the temperature of

the HVAC zone never exceeds 77◦F, and quickly drops to 75◦F as soon as the zone is

switched to “Occupied” mode. Thus, we confirm that the finding by Goyal et al. [79] by

real temperature measurements that the thermal comfort is minimally effected when the

setback temperature setpoints are conservative.

3.4.8 Energy Savings with Sentinel

We controlled the HVAC system of our building testbed using Sentinel for the

116 volunteers from 9am to 6pm on March 26, 2013. Of a total of 237 HVAC zones, we

controlled 55 zones distributed across three of the five floors in the building.

As HVAC zones are often shared between rooms, the actuation policy of the

occupants located within an HVAC zone needs to be the same. As a result of this sharing,

some of the personal spaces needed to be converted to shared spaces, as explained in

Section 3.2.5. Similarly, the occupants who could not participate in the experiment, share

their HVAC control policy with our volunteer occupants. Therefore, a single non-eligible

participant in an HVAC zone forces us to treat the entire zone as a shared space. Despite

this limitation, we control 55 out of 237 HVAC zones in the building for our actuation

experiment. As we are requesting the occupants of the building to shift from their regular

usage patterns, we had to limit our control experiment to just one day. Of the 55 zones

covered by the experiment, 12 zones were known to be unoccupied apriori on the day of

the experiment, and we turned them off for the duration of the experiment.

We compare the energy consumption on the day of our experiment (March 26,

2013) with the energy consumption on March 22, 2013, as the temperature profiles of the

two days were similar. We refer to the day we controlled the HVAC system using Sentinel

as “Experiment Day”, and refer to the day of comparison as the “Typical Day”. Other

close days were cloudy, and we could not use them. Figure 3.14 show the electrical power
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Figure 3.13. Occupancy trends of 116 volunteers on March 26, 2013, the Experiment
Day.

consumption from 9am to 6pm on the Experiment and Typical days, Figure 3.15 shows

the thermal power consumption of HVAC in the same time frame, and finally, Figure

3.13 shows the occupancy of the 116 volunteers on the Experiment Day as measured by

Sentinel.

We saved 17.8% of electrical energy on the Experiment Day, as compared to the

Typical Day. Occupancy trends from Figure 3.13 shows that the building occupancy

gradually increases from 9am to 11am, and remains roughly constant till 6pm. However,

the occupancy peaks at 40 people, indicating most of the volunteer occupants were not

present in the building during the period of experimentation. The relative inoccupancy

was expected, as the Experiment Day was the second day of the spring break at our

university.

The occupancy trend is clearly reflected in the electrical power consumption of

the HVAC system, as it initially starts off lower than the typical day at 9am due to the

reduced number of occupants in the building. As the occupancy within the building

increases, the power consumption also increases gradually until 11am. From 11am to

6pm, the electrical power consumption of both the days follow the same pattern, in

accordance with the changing outdoor weather conditions. The energy savings from
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Figure 3.14. Comparison of outdoor temperature and HVAC electrical power consump-
tion of the Typical Day and Experiment Day. Total savings of 17.8% in electrical energy
was obtained for the duration of the experiment.

11am to 6pm is mainly obtained because of the occupants who did not come in to their

personal spaces on the Experiment Day. The 17.8% electrical energy savings obtained is

in accordance with electrical power consumption trends shown in Figure 3.10, where the

corresponding building occupancy is ∼90%.

As our Experiment Day falls on university spring break, but our Typical Day is

during exam week, it is possible that part of energy savings occur due to reduced activity

in the building. We compared the HVAC electrical power consumption on Experiment

Day with two other spring break days (March 27 and 28, 2013) with cloudy weather

conditions when the HVAC was under static schedule based control, and still measured

electrical energy savings of 7.5% and 11.8% respectively.

The trends in thermal power consumption on the Experiment Day were not as clear.

Cooling thermal energy consumption decreased by 2.2%, but the heating thermal energy

actually increased by 1.5%. Figure 3.11 indicates that the thermal energy consumption is

also consistent with our night time trending experiments, and the heating thermal power
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Figure 3.15. Comparison of HVAC heating and cooling thermal power comparison of
the Typical Day and Experiment Day. No clear trends can be observed, and only 0.8%
energy was saved for the duration of the experiment.

consumption sometimes increased despite a reduction in building occupancy.

The experiment provides an example of the energy savings that could be obtained

across one particular day by controlling 23% of the HVAC zones in CSE. However, the

long term energy savings will be different due to varying weather conditions or occupancy

patterns. As long term occupancy patterns are not available, we do not attempt to project

the energy savings obtained by simple extrapolation of trends we see for one day.

3.5 Discussion

The occupancy inference algorithm proposed in this paper uses the metadata

information available and typical occupancy patterns within offices to mitigate the

inaccuracies associated with locating a WiFi enabled device with respect to its AP. The

algorithm can be adapted to a wide range of office spaces independent of its building

topology, or usage patterns. To infer occupancy using WiFi we use key metadata relating

authorized occupants with their personal office space, their WiFi device MAC address,
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network logs to determine the current status of network connectivity with occupant

devices and the location of APs within the building.

For adoption of our solution in a commercial building, a dependable and easily

accessible fallback solution needs to be provided to the building occupants. Occupants

should be able to inform the BMS of their presence easily in case they forget their phones

at home, or need to lend their office to a visitor. The personalized building control

proposed by Krioukov et al. [108] provides a good platform for user feedback, and we

have implemented a similar web based interface for CSE. Automated tools for keeping

track of occupants in personal spaces, mapping of APs to personal spaces and HVAC

zones to office spaces would also help in quick deployment.

Reliable WiFi connectivity from the users phones is the only requirement from

the occupants of the building for the proposed algorithm. However, as we saw in Sections

3.2.4 and 3.4.4, it is difficult to maintain perpetual connectivity in iOS devices, and

there may be an effect on battery life of devices when they are always connected to

WiFi. IEEE 802.11ah standard [28] is being designed specifically for low power, low

data rate applications, and would enable applications like Sentinel without affecting

battery life. In the meantime, we plan to develop mobile apps which would maintain

WiFi connectivity and still have minimal effect on battery life. The apps would break the

non-intrusive model of deployment, but can be integrated with the personalized building

control system [108]. Alternatively, prediction mechanisms can be used to eclipse the

intermittent connectivity of WiFi devices.

As most of the false negative occupancy detection errors in Sentinel is caused by

iOS devices, we have already developed an iOS app. The app creates a geofence on the

building, and wakes up the device when it enters the geofenced area. The app keeps the

device awake until it connects to WiFi, and then allows the device to go to sleep. Periodic

push notifications from the app wake up the WiFi radio, and the notifications are turned
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off when the device leaves the geofenced area. However, we have not yet evaluated the

app extensively to present its performance results here.

Sentinel only targets personal spaces in office buildings. To improve HVAC

energy efficiency further, shared spaces should also be regulated according to occupancy.

One option is to install wireless sensor network solutions [18, 64] just for the shared

spaces. Use of calendars has been proposed as a proxy for occupancy [58], however

it is not applicable to several kinds of shared spaces like lobby, cafeteria, etc. Indoor

localization has the potential to reduce the zone of detection enough for occupancy

inference in shared spaces. We plan to explore infrastructure based localization techniques

as part of future work.

The HVAC zones in modern buildings are not designed for occupancy based

actuation. Although VAV systems have become commonplace since the late 1990s [90],

the zones normally map several individual rooms. If only one of the rooms within a zone

is occupied, the remaining rooms within the zone are unnecessarily ventilated. Further,

sharing of HVAC zones between shared and personal spaces, requires conditioning of

personal spaces whenever the shared space is occupied. Smaller and more insulated

HVAC zones would lead to more savings based on occupancy control in lieu of higher

installation cost. If the architects of the HVAC system incorporate occupancy based

control into their design for next generation buildings, there could be a significant

reduction in the running cost of the system.

3.6 Related Work

Occupancy based HVAC control has been studied extensively for improving

building energy efficiency [18, 40, 62, 68, 65, 64]. Extensive simulation studies and

practical deployments in commercial buildings have shown that 15% - 42% energy

savings can be obtained using occupancy based control, depending on weather conditions,
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building type and occupancy variation.

Several occupancy detection mechanisms have been developed over the years

for HVAC control. CO2 sensors are used for occupancy based control of high capacity

spaces such as auditoriums and conference rooms [6, 10], but have been found to be

too slow to respond to change in occupancy for smaller rooms found in commercial

buildings [69]. Passive infrared(PIR) motion sensors have been used in modern buildings

for actuation of lighting systems. PIR sensors often fail to detect occupants when they

are relatively motionless, such as while reading or typing. Further, they are vulnerable

to calibration errors, external triggers by sunlight or air draft and only provide binary

occupancy information. These limitations make it challenging to use PIR sensors for

HVAC control. Our own work improved upon these limitations with the addition of door

sensors to obtain occupancy accuracy of 96% and demonstrated up to 15% savings in

HVAC electrical energy for one floor deployment in CSE [18]. However, the occupancy

detection mechanism is only accurate for single person offices, and depend on the

occupants to close the door while exiting the office.

The POEM system [64] uses a combination of ceiling mounted camera and

motion sensors to obtain 94% accuracy in occupancy detection. Erickson et al. use the

near real-time occupancy information from the sensors for predictive control of 30%

of the HVAC zones in an office building and demonstrate up to 26% energy savings.

The cameras used in POEM exploit the hallway topology for occupancy detection. If

the office spaces are located around a circular hallway, or use open cubicle spaces, the

image processing algorithms would have to be modified and re-calibrated. Further, use

of battery powered wireless sensor nodes in POEM involves changing batteries every 45

days.

In contrast, Sentinel provides a solution for actuation of HVAC system using near

real-time occupancy derived from existing WiFi infrastructure. Sentinel neither makes
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any assumption regarding the topology of the building, nor requires careful calibration of

sensors. Leveraging existing infrastructure allows Sentinel to be quickly deployed and

easily maintained. The monetary and ease of use benefits of Sentinel comes at the cost of

assumptions on usage patterns of WiFi devices by building occupants, and works only

for personal spaces. Additional sensors or localization techniques still need to used for

occupancy detection in shared spaces.

Numerous methods for occupancy detection have been developed that leverage

existing infrastructure such as powerline [140], speakers [110], WiFi [29, 180, 45], geo-

magnetism [46], HVAC ductwork [138], or a combination of these [174]. However,

many of these solutions do not work well for HVAC control in commercial buildings

due to issues of scale [140, 45], use of specialized sensors [138, 110], extensive war

driving [180, 46] or complex functionality in client devices [174].

Existing WiFi infrastructure potentially provides the scalability needed for com-

mercial buildings, does not rely on client device functionality and eases deployment and

maintenance. Ghai et al. [78] use a combination of WiFi signals, calendar schedules,

personal computer activity and instant-messaging client status to infer the occupancy

within cubicles with an accuracy of up to 91%. The algorithms have been evaluated

for just 5 volunteers, and do not evaluate scalability. In contrast, we only use WiFi

information, and show the efficacy of our algorithm over 116 occupants of our building.

Melfi et al. [125] use DHCP leases within a real building for occupancy inference and

found the accuracy to be low - 31% to 84%. The inaccuracies of their system were

attributed to unpredictable coverage provided by APs and intermittent connectivity of the

WiFi devices. We overcome the limitations of WiFi sensing by using additional known

information such as occupant identity, occupant office location and focus on personal

spaces. Martani et al. [123] use WiFi logs to determine the live WiFi connections within

a building, and provide a breakdown of the WiFi connections on a floor and room basis.
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They show that WiFi connections correspond well with the HVAC energy consumption

of a building at MIT. However, they make no attempt to correlate WiFi connections with

the ground truth occupancy.

3.7 Summary

We have presented the design and implementation of Sentinel- an occupancy

based HVAC actuation system that leverages existing WiFi infrastructure and occupants

with WiFi enabled smartphones within commercial buildings to reduce HVAC energy

usage. In contrast to prior occupancy sensing solutions which required installation of

additional sensors and associated wireless sensor networks, utilizing existing infrastruc-

ture for occupancy sensing reduces the costs and effort of deployment and maintenance

significantly. We reduce the inaccuracies in occupancy sensing using noisy WiFi signals

by using metadata information about the occupants, access points and the HVAC zones in

the building. We have deployed Sentinel in a 145000 sqft commercial building, and show

the accuracy of occupancy detection within office spaces to be 86%, with only 6.2% false

negative errors. Furthermore, we provided a detailed analysis of the reasons for these

inaccuracies, largely due to aggressive power management by smartphones. Based on

our battery lifetime measurements across a number of devices we show that using less

aggressive WiFi power modes, which improve accuracy of Sentinel, do not necessarily

lead to significantly reduced battery life. We also discuss potential solutions, such as an

App on users phones, that can increase the accuracy of WiFi based occupancy detection

even further. Finally, we demonstrate occupancy based control of 23% of the HVAC

zones of our building testbed using Sentinel and measure electrical energy savings of

17.8% in the HVAC system compared to the static scheduling based control used across

the buildings on our campus.

Chapter 3, in part, is a reprint of the material as it appears in Proceedings of ACM
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Conference on Embedded Networked Sensor Systems (SenSys 13), 2013 by authors

Bharathan Balaji, Jian Xu, Rajesh Gupta and Yuvraj Agarwal with the title Sentinel:

An Occupancy Based HVAC Actuation System using existing WiFi Infrastructure in

Commercial Buildings. The dissertation author is the primary investigator and author of

this paper.



Chapter 4

Zonal Apportionment of HVAC Energy

In this Chapter, we present a method to analyse existing sensor data to attribute

HVAC energy consumption to each thermal zone in a building. This information is then

presented to the building occupants using a web service application. Taking one step

further from Chapter 3, here we integrate information across various sources - HVAC

sensors, building level power meters, building architectural diagrams. We also draw on

information available on the web about equipment installed to examine their impact on

energy in detail. By using energy transfer principles and integrating all of the information,

we create this HVAC energy apportionment system. Thus, this system is another example

of a software based analysis of existing infrastructure to gain insights in energy flow

within a building. The same information with installation of submeters in the building

would be prohibitively expensive.

Several studies have shown that providing relevant energy feedback to the oc-

cupants of a building can lead to significant energy savings [54, 143]. However, the

energy feedback has been limited to electricity consumption [143]and has been designed

for residential buildings [24, 54]. We developed ZonePAC, an energy apportionment

system that bridges this gap between building operations and the experience by individual

occupants. We do this by connecting zonal monitoring and estimation that incorporates

participatory occupant sensing and occupant experiential feedback to be incorporated in

68
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the building scale HVAC system.

ZonePAC estimates the heating, cooling and electrical power consumption of

each zone in a Variable Air Volume (VAV) type system using existing infrastructure

sensors installed as part of the Building Management System (BMS). We then provide

the HVAC power consumption feedback to the occupants of the building over the web

and on mobile devices along with other thermal comfort related measurements such as

measured temperature and setpoint.

We have built ZonePAC on top of BuildingDepot [22] and deployed it in the CSE

building at UCSD. We present the results of our data collection and its analysis regarding

distribution of energy consumption across zones. We identify anomalous behavior and

provide possible causes behind energy inefficiency. Since the ZonePAC system also

provides the occupant with the capability to change local HVAC control settings, we

provide data on user experience and the results of such individual control settings on

overall building operation.

4.1 Zone Power Estimation

The goal of ZonePAC is to provide a real-time estimate of total power consump-

tion of individual HVAC zones. We use the measurements from existing sensors, and

apply first principles to estimate power consumption of an HVAC zone which consists

of three parts - cooling thermal, heating thermal and electrical. The cooling thermal

power is used for converting the warm return air from the zones to the cold supply air,

the heating thermal power is used for reheating the cold supply air when the temperature

setpoint of the zone is too high to be satisfied by reducing the cold air, and the electrical

power is used by the fans and the pumps used for supplying air to the zones from the

central HVAC equipments.
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4.1.1 Cooling Thermal Power

We estimate cooling thermal power using the heat transfer equation:

Qcooling = ρ ∗C ∗q∗ (Tzone−Tsupply) (4.1)

where, ρ = density of air at 20◦C, C = specific heat of air, q = rate of airflow, Tzone =

zonal air temperature, Tsupply = supply air temperature.

In the absence of sensors to directly measure the supply air temperature of each

zone, we approximate it by the supply air temperature as measured by the central air

handler unit (AHU) as it exits the cooling coils. This, of course, neglects the temperature

loss due to imperfect insulation and leaks in the air ducts. Similarly, we estimate the

return air temperature by the zonal temperature as measured by the thermostat in the

zone. Finally, the airflow rate is measured directly by the flow sensor in the VAV box.

For HVAC systems which also provide humidity control, the power consumption

estimate would also have to include the latent heat transfer. The corresponding sensors

measuring the supply air humidity and the return air humidity would be required for an

accurate estimate.

We establish the accuracy of our estimate by comparing the total cooling power as

measured by the building thermal power meter and the aggregate cooling power obtained

by applying equation 4.1 to all the zones of the building. Due to implementation issues,

we use an estimate of the power use by CRAC unit based on empirical measurements that

showed an average use by CRAC unit in a narrow range of 0.50 to 0.60 MMBTU/hour.

Figure 4.1 shows the comparison between cumulative estimated cooling power

and the measured cooling power for July 30, 2013. The results show an average error of

12.8% across one week of measurements. We find that our estimates are accurate during

the night time, but we consistently overestimate during the day. This overestimation is
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Figure 4.1. Comparison of aggregate cooling power estimated and measured cooling
power from installed flow and measured sensors in the CSE building.

due to the fact that we do not have dedicated air ducts for return air, and it is directed

through plenum space to the AHU. The leaks in return air reduces the air temperature

when it reaches the AHU. Another reason for the overestimate is that we do not account

for outside air mixed with the return air before cooling. After adjusting for both the

return air losses and mixing of outdoor air using measured parameters, we found that the

average error of our estimated cooling power improved to 5.1%.

4.1.2 Heating Thermal Power

The only sensor connected to BACnet related to the hot water system is the

“Reheat Valve Command”, which is the valve position command sent by the VAV digital

control system. The reheat valve controls the amount of hot water through the heating

coil, and the building plans show that our building uses a modulating 2-way electronic

control valve. There are two types of modulating valves generally used in hot water coils
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- linear and equal percentage, and both the types of valves are designed to provide linear

heat output with change in valve position. We obtain the maximum heat output of each

VAV box from the building plans, and estimate the heating thermal power as:

Qheating = H ∗Qmax (4.2)

where, H = reheat valve command, Qmax = maximum heat output of heating coil.

To evaluate the accuracy of our estimation we compared the measured heating

thermal power with the aggregate estimated heating power, similar to the methodology

followed in Section 4.1.1. However, the gap between measured and estimated power is

much larger with an upper bound of nearly 10X the estimated heating power. There are

multiple reasons why this estimate could be so far from the actual power consumption.

The “Reheat Valve Command” tag indicates the position of the valve as controlled

by the VAV, but there is no sensor which measures the actual position of the valve.

It is possible that the value is stuck at a position different from that indicated by the

“Reheat Valve Command”, and causes leakage of hot water. In the centralized HVAC

unit, the valve position of HVAC heat exchanger indicated significant amount of flow

corresponding to the measured heating thermal power, and the domestic water heat

exchanger also indicated high flow rate. Lack of flow rate sensors in the exchangers

prevents determination of exact flow rate and heat exchanged. We are working with the

campus facilities personnel to install flow meters to resolve the issue.

4.1.3 Electrical Power

We have added power meters in the CSE building which measures the total

mechanical power, and HVAC systems account for 13% to 46% of total electric power

on a typical summer day. The electricity consumption depends on the airflow demand
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from the HVAC zones in the building, and thus, electric power consumption needs to

be attributed to each zone. The fans and pumps used in CSE are Variable Frequency

Drives(VFDs), and the speed of the motor is directly proportional to the amount of airflow

pumped to the rest of the building. The power consumed by the VFDs is proportional to

the cube of the fan speed. Thus, to estimate the electric power attributed to each zone,

we use the following equation:

Qelectric = q3 ∗Qtotalelectric/Σq3 (4.3)

where, q = rate of airflow, Qtotalelectric = total electrical power measured, Σq3 = summation

of cubic airflow through all zones.

Some of the VAV boxes are equipped with additional supply fans, to maintain

the required air pressure in large zones. Also, some of the zones such as restrooms and

kitchenettes have exhaust fans in them. We determine the status of these terminal fans

using BACnet datapoints available, and we assume they operate at their rated power

provided by manufacturer as there are no power measurements available. We subtract the

contribution of the terminal fans from Qtotalelectricity in equation 4.3, and attribute their

power to the corresponding HVAC zones directly. We ignore the contribution of some of

the smaller equipments such as the air compressor used for operating pneumatic valves

and hot water pumps, as we do not have their power measurements and their contribution

to the total mechanical power is minimal.

4.2 Implementation

ZonePAC has been implemented on top of BuildingDepot [22], an open source

RESTful API based building management web service. The data from BACnet sensors

are collected using our BACnet connector, and the HVAC Meter Service estimates the
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Figure 4.2. System Architecture of HVAC Meter

power consumption of each zone as explained in Section 4.1. The Web User Interface

(WebUI) reads the data from virtual power sensors created by ZonePAC, and presents it

to the occupants. The interface also allows for change in control of HVAC zone settings.

Figure 4.2 shows the software architecture of our system.

The HVAC Meter Service (HMS) subscribes to the relevant BACnet points needed

for power estimation, and BD notifies HMS as new data is posted from BACnet via

a notification url. HMS estimates the power as outlined in Section 4.1 and posts the

computed power back to BD as virtual sensor data. HMS also computes related useful

data such as aggregate heating and cooling power, zone power consumption per unit area,

average zone temperature, etc.

We implement an interactive webapp on top of BD which reads sensor data

from both BACnet and ZonePAC. Interested occupants register their email address, and

WebUI administrators provide permission to access the sensor information after manual

verification. Access control among users is enforced by BD, and users are only provided
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Figure 4.3. Screenshot of Web User Interface

information about zones to which they have physical access. Figure 4.3 shows a snapshot

of the WebUI. It shows the room temperature and the energy consumption as estimated

by ZonePAC. Users can provide feedback on their thermal comfort in 7 levels from

“Cold” to “Hot” as shown in Figure 4.3 along with free form text. We allow the users

to change their temperature setpoint by ±3◦F from the preset setpoint. When a user

turns OFF the HVAC using WebUI, the occupancy mode is changed to “Standby” during

weekday (6am - 10pm), and is changed to “Unoccupied” on nights and weekends. We

also include a suggestion box as an experimental feature that shows personalized energy

saving recommendations. For example, if the VAV is cooling a zone excessively for over

an hour, a suggestion is provided to increase the setpoint by 0.5◦F to save energy. The

details of the WebUI design are provided in Chapter 5, where we study the effect of long

term deployment of such a service to the occupants.

The HVAC Controller Service (HCS) relays the commands provided by WebUI

to the corresponding BACnet points. The HCS was designed such that the control service
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Figure 4.4. Cooling Power Distribution across HVAC Zones

could be made unavailable to the users if needed without affecting the feedback services

provided by WebUI.

4.3 Results

The estimates on zone power using ZonePAC enables us to collect historical data

and analyze the trends in energy consumption. We present our insights from observing

ZonePAC data for 10 days across the 237 zones in CSE. Further, we deploy ZonePAC

WebUI in CSE, and present the data collected for 65 registered building occupants.

4.3.1 Power Consumption Trends

In order to understand the distribution of HVAC power across the zones in the

CSE building, we present the cumulative contribution of individual zones to the total

power. Figure 4.4 shows the distribution for HVAC cooling for the average, the maximum

and the minimum power consumption for July 30, 2013. The peak cooling power is more
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Figure 4.5. Heating Power Distribution across HVAC Zones

than double the average power consumption and which is the reason HVAC system is the

dominant target for energy reduction during demand response events in our campus. On

an average, 50% of the zones consume only 20% of the cooling power, and the remaining

half of the zones account for 80% of the zones. Thus, with limited resources available, it

will be prudent to target power intensive zones for aggressive energy saving strategies

such as occupancy based HVAC control for maximum benefits. Similar trends can be

observed in the distribution of heating and electrical power in Figures 4.5 and 4.6, with

over 150 zones accounting for less than 2% of the total power.

Ironically, the most power intensive zones are the ones which house HVAC

equipment and building substation. The equipment rooms are followed by basement

computer labs. As there is no fixed schedule followed by the students, the labs are

always kept conditioned. Further, as the minimum cooling air is determined by the

maximum capacity of the labs, these zones are overcooled when fewer occupants are
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Figure 4.6. Electrical Power Distribution across HVAC Zones

present causing them discomfort. An occupancy detection system would not only save

energy by reducing the airflow ventilation with change in occupancy, but also provide

better thermal comfort.

The thermostat adjust control in basement labs are often kept in their extreme

positions, further exacerbating the effect of over cooling. As the labs are a shared space,

no one takes responsibility for temperature control, and students are often unaware of

the thermostat location. When the thermostat is set to decrease the temperature setpoint,

there is excessive use of cooling power, and when it is set to increase the setpoint, heating

coils are used with minimum cooling air. Thus, we find basement labs to be dominant

in both heating and cooling power. We observed similar thermostat settings in several

spaces which are shared - student lounge, conference rooms, lobby, kitchenette, etc.

The sizes of the shared zones are large as they are designed for higher capacity, and

hence, the minor changes in thermostat leads to large losses in energy. An ideal energy
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saving strategy would be to provide temperature control to occupants only when they

are physically present in the shared space, and reset to energy efficient settings once the

occupant leaves.

To examine energy inefficiency in smaller zones, we plot the trends in zone power

consumption per unit area, as shown in Figure 4.7. We find that aberrant thermostat

settings cause energy inefficiencies even in smaller zones. Although the thermostat could

have been set according to occupant comfort preference, the feedback from our WebUI

(Section 4.3.2) indicate that many occupants are unaware of the thermostat location and

are uncomfortable with the current temperature settings. This is not unreasonable as a

single zone can constitute multiple office rooms and the thermostat is located in only

one of the rooms. By providing the WebUI, the occupants were both informed of the

measured temperature, and could change their settings if they were not comfortable.

To further investigate the relation between thermostat setpoint and the zone power

consumption, we manually inspect thermostats in the zones which required abnormally

high heating. Although the facilities management mandates a range of ±1◦F from

the predetermined setpoint, we found several thermostats allowed deviation of over

3◦F. Further, the change in the thermostat dial did not lead to a linear change in the

temperature setpoint, and each thermostat had its unique mapping to actual changes in

setpoint. For instance, the sensitivity of one of the thermostats was so high that a small

change in the dial would change the setpoint by several degrees, and the midpoint of

the analog adjust in another thermostat corresponded to an increase in setpoint by 3◦F.

Such thermostat calibrations can lead to unintended temperature settings and cause both

thermal discomfort and wastage of energy. We adjusted the thermostats for 8 of the

zones to reduce the reheat required, which resulted in 50.7% savings in heating power.

However, since our adjustments were not fine enough, it resulted in an increase in airflow

rate which led to no savings in the total power.
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Figure 4.7. Distribution of HVAC Zones by Total Power per Unit Area

We also find that the rooms which have additional cooling demands affect the

power consumption of the nearby zones. For example, one of the office rooms was

repurposed to host computing equipment and the HVAC was requested to be always

in “Occupied” mode and the thermostat was adjusted to its minimum to satisfy the

cooling needs. As a result, significant amount of cold air was pumped to the zone to

maintain the requested temperature. As the same air duct is shared by multiple zones,

and due to heat transfer by conduction and convection across zones, the nearby zones

were overcooled, requiring heavy use of hot water to maintain comfortable temperature.

Facilities personnel informed us that such zones are known to cause inefficiencies and

are installed with a special cooling unit to satisfy the additional cooling demands, but the

zones are difficult to locate unless the occupant directly contacts them.
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4.3.2 Occupant Feedback

We deployed WebUI of ZonePAC for 10 weekdays at CSE, and report results

obtained from 65 registered users across 51 zones. Participation was voluntary, and we

did not provide any incentives to the occupants apart from providing feedback and control

of HVAC system. We provided only the measurements from HVAC sensors on the first

four days of deployment, then added the provision to change settings of the temperature

setpoint and HVAC status. After two days of allowing control of settings, we added

energy savings suggestions to the WebUI as explained in Section 4.2. We received over

140 feedback inputs on thermal comfort, and users changed their HVAC settings over

130 times during the course of the control period.

From the distribution of average zone temperature shown in Figure 4.11, we

observe that most of the zones fall in the comfortable range of 70◦F to 75◦F. The

zones which show large deviations from the ideal temperature are either anomalous or
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unoccupied, such as the server room(60◦F), an unused office space(82◦F)and a zone

with a damaged damper(78◦F). The thermal comfort feedback we received from WebUI

confirmed that most users were comfortable, as 60% of the feedback inputs indicated

acceptable comfort levels as per ASHRAE Standard 55 [3], i.e., Slightly Cool, Neutral or

Slightly Warm.

Before the control of HVAC settings were enabled, most of the comfort complaints

were received when the HVAC system was either running in “Standby” or “Unoccupied”

mode. This indicates that occupants were not aware that they could change the status

by pushing the button on the thermostat. After the control was enabled, the majority

of the complaints were from zones which failed to meet the setpoint despite the HVAC

settings being correct. We found a number of zones in which occupants felt colder or

warmer than the measured temperature, and a few zones which were slow to respond

to the changes in zone temperature. The former problem indicates that in multi-office



83

Mon Tue Wed Thu Fri
Day of Week

15

10

5

0

5

10

15
H

V
A

C
 S

ta
tu

s
ON

OFF

Figure 4.10. HVAC On/Off commands sent by the users for the control week

HVAC zones, a single temperature sensor does not represent the thermal environment of

all the rooms in the zone, and a more granular temperature measurement is required for

providing better thermal comfort to the occupants. The latter problem could be fixed by

tuning the control system of the VAV box to respond faster to the changes in measured

temperature.

Figures 4.9 and 4.10 show the distribution of control inputs from the users of

WebUI across a week. With the flexibility to change HVAC status, many users put the

zone to “Standby” mode if they were not currently in their office. The majority of the ON

commands were all received during the period when HVAC would have been normally

OFF (6pm - 6am). Some of the users also tried to duty cycle the HVAC system between

ON and OFF to save energy. The changes in temperature setpoints do not follow any

clear trends, as users changed the setpoint to whatever they felt comfortable with. Most

users were content with their change in temperature settings in their first attempt, and
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only a few users would change their setpoint more than once a day.

Figure 4.12 shows the energy consumption of for six days of the deployment

of ZonePAC for the 51 zones involved in the user study. We display the energy values

only from 6am - 6pm as there was a bug in the WebUI which kept some of the zones in

“Occupied” mode throughout the night on Monday, and there was an exception set to the

regular schedule which set the HVAC zones to “Occupied” mode on Friday night. Apart

from these exceptions, the trends in energy consumption follow similar trends shown in

Figure 4.12. On an average, we measure 5% energy savings after providing control over

HVAC settings to the users. The energy consumption on Wednesday is unusually low due

to a Demand Response(DR) event from the campus managers which put all the zones in

the building to “Unoccupied” mode from 2pm to 4pm. We do not include Wednesday in

our savings estimate. The difference between energy consumption on the days with and

without energy saving suggestions were negligible.

The low energy savings obtained were expected as occupants are not responsible

for the power bills in their offices and are not completely in control of the HVAC settings.

However, absolute energy savings do not necessarily capture the motivation of the users

to save energy. For example, if a zone is already being conditioned with the minimum

amount of airflow possible, changes in setpoint can only increase the energy consumption

of the zone. One of the users indicated in her feedback that she would prefer to be

slightly cold to prevent reheat of the system and waste energy. However, significant

energy savings could be obtained if the occupants were given more options that could

save energy. For instance, we plan to allow users to set their schedule on the WebUI, and

the HVAC system would be conditioned according to user specific schedule rather than a

global schedule.
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4.4 Discussion

We have built ZonePAC for a modern building with VAV type HVAC system,

and provide feedback to the occupants using a webapp. There are other types of HVAC

systems used in commercial buildings which do not use a centralized plant and use

humidity control equipments. From the general principles presented in this paper, it is

possible to estimate zone power consumption in different types of HVAC systems using

the measurement from installed sensors and modeling the heat transfer process.

Occupancy based HVAC control has been proposed for significant improvement

in energy efficiency of buildings [64, 181]. ZonePAC provides insight into a variety of

situations in which occupancy information would be useful for saving energy(Section

4.3.1). With power consumption information at the zone level, researchers would be able

to design more optimized solutions that would exploit the inefficiencies in current HVAC



86

Fri Mon Tue Wed Thu Fri
Day of Week

0.0

0.5

1.0

1.5

2.0

2.5
T
o
ta

l 
E
n
e
rg

y
 (

M
W

h
) Visualization Only

w/Control

w/Control,Suggestion

Figure 4.12. Average energy consumption of zones which were part of the feedback
experiment

systems.

Feedback from occupants using ZonePAC showed that they care about their energy

footprint on the building(Section 4.3.2). Although our WebUI provides the information

about HVAC and zone power consumption in a clear manner, it does not adopt sustainable

HCI concepts such as use of social network [122] or providing comparison against other

zones [143]. We hope ZonePAC acts as a stepping stone to develop better feedback

interfaces so that occupants are incentivized to save energy.

Several parameters used for estimating HVAC zone power required careful study

of building plans. Although the information from sensors installed in the building were

readily available through BACnet, the details about the type of VAV box, the size of

the air ducts and water pipes are not provided in a manner that could be easily used

for developing applications such as ZonePAC. Automated methods to scan the existing

building plans and extraction of relevant information to form a building model would
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significantly accelerate development of next generation smart building applications.

4.5 Related Work

HVAC power estimation is well understood, and detailed energy analysis can

be done using established simulation engines such as EnergyPlus [52] and DOE-2 [85].

Building models are built using the simulation tools, and the HVAC system is tuned

based on the results of the analysis. The methodology is followed for both design of new

systems [34], as well as existing buildings [47].

Continuous commissioning [126] and automated Fault Diagnosis and Detec-

tion(FDD) [99] have been proposed for monitoring of HVAC systems using sensors and

BMS. Mills et al. [126] report 16% median energy savings in existing buildings due

to commissioning, and the savings were accrued due to faults corrected in all parts of

HVAC system [129]. FDD methods have also advanced over the years from practical

decision based rules [154], system models [115] to data driven approach [61]. How-

ever, the commissioning and energy information systems developed are designed for

domain experts, and no feedback is provided to the building occupants. Moreover, energy

wastage due to behavorial faults such as anomalous thermostat settings remain unchecked.

ZonePAC provides visibility into energy consumption of each zone, and the opportunity

to detect behavioral faults using modern FDD methods. By providing feedback directly

to occupants, ZonePAC also provides the opportunity for the behavorial faults to be

self-corrected.

Prior work has shown that energy feedback can be effective in motivating users to

save energy [24, 54]. In a energy conservation study, Peterson et al. show that motivated

occupants saved 20% more energy when given feedback on energy consumption in a

college dormitory [143]. Recognizing the importance of feedback, plug meters have

been developed to provide feedback on appliance power consumption [94]. However, to
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the best of our knowledge, ZonePAC is the first attempt to provide feedback on HVAC

energy consumption to building occupants.

Prior work has given web based feedback on HVAC system to the building

occupants. Krioukov et al. [108] build a personalized control system, allowing occupants

to view the current status of the system and change settings. Erickson et al. [63] and

Jazizadeh et al. [91, 93] gather thermal comfort feedback from occupants, and change

the HVAC settings to match their thermal needs. Unlike ZonePAC, none of the systems

provide energy feedback to the occupants. Erickson et al. [63] do estimate zone energy

consumption using heat transfer equation, but do not validate its accuracy and do not

account for electrical power consumption. ZonePAC provides occupants with similar

web based HVAC information and includes the estimated zone power consumption.

4.6 Summary

We have built ZonePAC, a real-time HVAC zone power estimation system, built

on top of RESTful web service. We present the trends in zone energy consumption, and

provide insights into improving the energy efficiency of HVAC system. We find that

the usage characteristics of a zone such as aberrant thermostat settings and presence of

cooling demanding equipment can lead to significant wastage of energy. Further, we

designed and deployed an interactive webapp which provides HVAC sensor information,

zone power consumption and control of local HVAC settings to the occupants of the

building. We present the data collected from the feedback study over a period of 10 days,

and show that HVAC energy feedback to the occupants in commercial buildings could be

used to motivate them to save energy.

Chapter 4, in part, is a reprint of the material as it appears in Proceedings of ACM

Workshop on Embedded Systems For Energy-Efficient Buildings (BuildSys 13), 2013 by

authors Bharathan Balaji, Hidetoshi Teraoka, Rajesh Gupta and Yuvraj Agarwal with the
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title “ZonePAC: Zonal Power Estimation and Control via HVAC Metering and Occupant

Feedback”. The dissertation author is the primary investigator and author of this paper.



Chapter 5

Software Augmented Thermostats

In this Chapter, we examine the user experience of using the web application we

developed for ZonePAC. The web application, called Genie, not only provided energy

feedback, but allowed occupants to have better control over their local settings and send

feedback to building manager. Across 21 months, the popularity of this web application

grew in our building, and here we provide a detailed analysis of how use of Genie

compares with that of traditional thermostat already installed in the building. Genie

is another example of an application that exploits existing infrastructure to provide a

better user experience. As a result of providing such an interface, occupants are not only

more comfortable and aware of their energy impact, but also they do not waste energy

by blocking thermostats or using space heaters. They also report on faults that causes

discomfort. Thus, software solutions can help integrate the stakeholders with the goals of

the system.

Office buildings’ occupants interact with the HVAC system (Heating, Ventilation

and Air Conditioning) using thermostats which provide information such as current room

temperature and whether HVAC is operating, as well as enable minor adjustments to the

temperature settings. Since the ability to maintain control over their thermal environment

has been shown to have a major effect on occupant satisfaction [59, 137], it is critical that

these devices are accurate, effective and usable by occupants. In addition, thermostats are

90
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a key component of HVAC operation as they complete the feedback loop in the control

system and provide insights into several types of HVAC faults.

Most buildings typically use a variant of the ubiquitous physical thermostat, under

the assumption that they are intuitive to use, without any occupant training. However,

a recent survey of 215 buildings across US, Canada and Finland showed that 89%

of the buildings do not meet thermal comfort standards [89]. More importantly, in

the survey three of the top five reasons linked to occupant dissatisfaction were due to

thermostats, specifically (a) thermostats are inaccessible, (b) thermostats are controlled

by other people, and (c) HVAC systems do not respond quickly enough to changes on

the thermostat. Meier et al. [124] studied the various thermostat designs available today

and confirmed how a poor user interface (UI) and occupants’ misconceptions have a

significant impact on comfort and HVAC energy consumption.

Software thermostats provide an attractive alternative to physical thermostats [30,

63, 92]. They provide occupants with an interface to the HVAC system via a web service

or a native application, allowing them to have personalized settings that maximize comfort.

Erickson et al [63] showed that use of a native application feedback system led to an

improvement in user satisfaction from 25% to 100% in a university building. Furthermore,

unlike physical thermostats, software thermostats are incrementally deployable within

existing HVAC systems, and are continuously upgradeable with new features or updates

to control policies.

In order to investigate the usage of software thermostats and their impact on com-

fort and energy consumption, we designed and deployed Genie, a software-augmented

thermostat, directly integrated with our building’s HVAC system. Genie displays all

essential information conveyed by traditional thermostats in a web application. Since

software interfaces can be made richer than physical thermostats, Genie supports addi-

tional features such as (i) the ability for occupants to send thermal feedback to building
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managers, (ii) the display of current weather conditions, (iii) an expanded level of control

of the local temperature to ±3◦F, and (iv) the ability to turn On/Off HVAC as needed.

Additionally, Genie estimates the energy use by each thermal zone using heat transfer

equations [30] and display the results to the occupants of that space as a way to measure

their energy impact.

To study real world usage of Genie, we deployed it in the CSE building. Genie

has been in use by 220 users over the period of 21 months and in this paper we present a

detailed analysis of its usage. We further augment our analysis with survey and interviews

conducted at the end of our study to assess the usefulness and usability of Genie to the

building occupants. As far as we are aware, this is the first longitudinal study of physical

and software office thermostats at a large scale.

Our data show several interesting findings that can serve as key design recom-

mendations for implementation and deployment of software thermostats. We observe

that the majority of thermostats are seldom used and find that some thermostats change

temperature settings erroneously without user input, leading to significant discomfort

and equipment damage. Additionally, our results confirm observations made in prior

work that occupants have misconceptions about thermostat operation, and resort to im-

provisations when they are uncomfortable. Our data also shows that occupants are more

comfortable with additional status information and added control for the HVAC system,

and that electronic occupants’ feedback about their comfort provided immediate insights

into HVAC’s usage characteristics and faults.

All in all, the study we present here indicates how providing wider thermal control

to users does not lead to system abuse and the effect on energy consumption is minimal -

while improving comfort and energy awareness.
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5.1 Background and Related Work

Maintaining occupant thermal comfort is essential for a satisfactory [71] and

productive [157] office environment, and studies show that effective HVAC control by

occupants themselves is key [59, 137, 171]. Hence, thermostats and thermal comfort

have been studied extensively [59, 98, 141, 171, 172]. The usability of residential

thermostats has been explored in depth [141], where thermostats have evolved from

simple mechanical devices to digital programmable thermostats. The latest devices even

include network connectivity, learning, energy feedback and updated UIs for occupant

interaction1. On the other hand, the long-term usage of thermostats in office buildings

has not been studied as much.

The thermal comfort model followed in most buildings in the US is specified

by ASHRAE Standard 55 [163], itself based on Fanger’s Predicted Mean Vote (PMV)

model [66]. Fanger’s PMV model considers various parameters such as air temperature,

air velocity, humidity, clothing insulation and metabolism of the occupant to predict

occupant comfort. The PMV expresses comfort with a 7-point scale, ranging from

Hot(+3) to Cold(-3), and occupants are considered comfortable if the PMV is between +1

and -1. Using this model, engineers design systems to maintain a range of temperature

that satisfies at least 80% of the occupants, and provide local control options for minor

changes to the temperature setting.

Several studies have shown that occupants are not comfortable in office spaces [39,

89, 96, 98, 136]. A survey by Huizenga et al. [89] shows that 89% of buildings do not

meet comfort standards and lists (a) hot/cold regions, (b) thermostat inaccessibility and

(c) thermostats controlled by other people, as primary reasons for discomfort. Contextual

interviews by Karjalainen et al. [98] found that users are unaware that thermostat exists,

1Nest: https://nest.com/, Ecobee: https://www.ecobee.com/
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thermostats are inaccessible, they lack informative feedback, users think they are not

allowed to control the thermostat, thermostat’s dial is stiff or broken, and – most com-

monly – users did not know how much the thermostat dial should be turned to get desired

room temperature. In a follow up work, Karjalainen et al. [97] provide design guidelines

based on user studies for office thermostats emphasizing clarity of information, adequate

control, acceptable default settings, informative help and aesthetics. However, these

guidelines were not tested in practice.

Several variations of software thermostats have been proposed to improve the

interaction between occupants and the HVAC system. Murakami et al. [130] introduced

a desktop voting system that determines the temperature of the entire floor based on

occupants’ feedback. Occupants provide feedback whether they want temperature to

be warmer or colder, and communicate comfort level on the standard 7-point scale.

Although the system showed a promising 20% energy savings, it was only deployed for a

few days. Jazizadeh et al. [92] developed a smartphone application that lets occupants

provide feedback on required temperature, airflow and lighting level. Their input is

mapped to a learning model to determine the HVAC settings. However, they do not

deploy their system for real use. Thermovote [63] seeks to overcome the limitations of

the PMV model by using a software interface to gather occupants’ comfort levels in the

standard 7-point scale. The occupant feedback was used to estimate a corrected PMV

and the temperature settings of the office are adjusted automatically. User satisfaction

rose from 25% to 100% with this strategy over a period of 5 months, with a decrease of

10% in energy consumption. However, the occupants were prompted every 10 minutes

for their comfort feedback and were not provided any other feedback on the current

status of HVAC. Comfy2 provides a web interface to office occupants to collect their

comfort feedback. The occupants are given a choice between “Warm” and “Cold”, and

2https://gocomfy.com/
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their feedback is used to adjust the temperature setting for the room. These temperature

settings are gradually relaxed over time until there is another occupant input from the

web interface. Occupants are provided no other information than the simplified “Warm”

and “Cool” buttons. Comfy’s case study reports engagement of 77% of the users across 6

months and an energy reduction of 22% due to the relaxed setting employed when there

is no input from occupants.

These prior work show the promise of software thermostats to overcome limita-

tions of physical thermostat controls. However, these systems also force users to engage

with the system while providing no information on the current HVAC status. It is also

unclear how the existing thermostat works with these software systems and what happens

when users do not have access to a computer or when there is a software failure. No

user study has been conducted to investigate these aspects. Furthermore, the onus of

maintenance of these systems is on the building manager, and prior studies indicate that

building managers are already overwhelmed with HVAC management issues [128, 166].

We propose an alternative design approach where occupants are provided with

essential information such as current room temperature and setpoints, allowing them to

take control of their environment and send feedback based on the information provided.

Balaji et al. [30] designed a web application that shows the HVAC system status, allows

occupants to control their settings and send comfort feedback. This work focused on

providing accurate per-zone energy feedback and on quantifying the effect on energy

consumption when using a software thermostat prototype across five days. We use a

similar design strategy, but study the effect of usage across 21 months. To the best of

our knowledge, none of the prior work has studied the actual use of physical or software

thermostats in a longitudnal study at a large scale. We compare the usage of hardware

thermostats with Genie, studying their use in isolation and when combined. We also

show how users’ feedback can be valuable in fault identification, and how information
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Figure 5.1. Thermostat used in the CSE building. Slider adjusts temperature setpoint by
±1oF . HVAC power button turns On HVAC for 2 hours on nights/weekends.

about energy usage improves overall awareness.

5.2 CSE Building Thermostat

CSE building consists of 236 thermal zones and each thermal zone typically

consists of a large room such as a conference room or multiple small offices. In both

cases HVAC is managed by a single thermostat. Figure 5.1 shows the annotated picture

of the thermostat in use in our building.

From Figure 5.1 we can see that when the thermostat cover is closed, its function-

ality is somewhat unclear to occupants. Once open, the thermostat consists of an analog

thermometer and a slider to adjust the temperature setpoint by ±1◦F. However, since

there is no quantitative feedback on the effect of adjusting the slider, occupants are often

unsure about its effect. In reality, the change in temperature due to the slider position

is often non-linear and differs betweens zones depending on the degree of flexibility
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provided by the building manager in response to comfort complaints. Thus, occupants

experience is inconsistent across different thermostats.

The LED on the panel indicates system status for that zone – when the LED is

On (pink) the HVAC is in Occupied mode, when blinking it is in Stand-by mode and

if the LED is Off, the HVAC is in Unoccupied mode (See Chapter 2 for details). If the

occupants are in the building during off hours, they are expected to push the grey button

to put the system into the Occupied mode for 2 hours. From Fig. 5.1, we can see that

these features are not apparent without prior knowledge.

As there is only one thermostat installed per thermal zone even if the zone

encompasses multiple offices, spaces without thermostats, i.e. Room 2 in Fig. 2.5, cannot

provide direct feedback to the HVAC system. Hence, if an occupant in Room 2 is present

during night/weekends, they cannot engage the HVAC system by pressing the thermostat

power button in Room 1. Further, if Room 1 has high cooling demands, due for example

to usage of heat dissipating equipment such as computers or copiers, Room 2 will be

excessively cooled.

5.3 Genie Design and Implementation

We designed Genie to mitigate many of the problems associated with the use of

thermostats outlined earlier, and satisfy several design goals. First, we want thermostats

to be more accessible and intuitive to use with occupants getting more control of their

environment. Second, occupants should be able to send feedback to the building manager

when needed. Third, we wanted energy conscious occupants to be able to get immediate

feedback on the impact of their settings on the HVAC energy usage. Finally, for the

particularly curious occupants we wanted to provide detailed data for the different sensors

in the HVAC system.
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Figure 5.2. Screenshot of the Genie user interface. Users are given access to the rooms
they have physical access to. They can change the temperature setpoint by ±3◦F, choose
to turn HVAC On/Off and set their own schedule.

5.3.1 User Interface Design

While designing the UI of Genie (Fig. 5.2), we emphasized transparent access to

the HVAC data and functionality such as the current zone temperature, the temperature

setpoint, HVAC system status, the estimated power consumed by the zone, as well as

temperature control. The most pertinent information such as the room temperature as

measured by the thermostat, and the energy consumption as estimated by ZonePAC are

displayed prominently. We estimate zonal power consumption using available sensor

data and heat transfer equations as described in Chapter 4. Users can provide feedback

on their thermal comfort on a scale of -3 to +3, compliant with ASHRAE Standard 55 [3].

The Genie UI also shows a comparison of the current zone’s temperature and power

usage, with the average measurements of the overall building. Finally, we show the “Last

update time” depicting the most recent change to the temperature, as a measure of the
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responsiveness of the system to changes made by occupants.

There are two types of control provided to the users - change in temperature

setpoint, and change in HVAC occupancy status. For each of the zones, a common

temperature setpoint is set by the BMS. The setpoint is typically set to 72◦F, and is

modified if the occupants of the zone register a comfort complaint with the building

manager. Genie’s web-based UI allows users to modify the temperature setpoint of

their zone by ±3◦F. Wyon et al. [178] show that this range is sufficient to meet the

requirements of all the occupants in the building. The setpoints are allowed to be changed

once every 10 minutes per zone. To mitigate issues caused by multiple rooms sharing a

single zone-level thermostat, we list the rooms belonging to the particular thermal zone

in the UI while nudging occupants to be considerate with colleagues in the same zone.

If a conflict of temperature preferences occurs, we suggest that occupants resolve this

offline as the offices in the same zone are usually co-located.

As explained in Chapter 2, there are three types of occupancy modes supported

by the HVAC system in CSE: “Occupied”, “Standby” and “Unoccupied”. When a user

turns OFF the HVAC using WebUI, the occupancy mode is changed to “Standby” during

weekday (6am - 10pm), and is changed to “Unoccupied” on nights and weekends. We

chose to use “Standby” mode during weekdays as the zone status is likely to be changed

if occupants come in to the zone again, and the shallow setback temperature of “Standby”

will reduce the thermal discomfort caused to the occupants. Users need to manually turn

On the HVAC on weekends and set the number of hours they expect to be in their office

through the UI, which puts that zone to the Occupied mode for the entire duration. The

change in HVAC status is also restricted to once every 10 mins per zone.

Users can set their own schedule, and the union of all the user schedules in a

thermal zone is computed to be the zone schedule (default schedule is set to 7am - 7pm

based on our experience).
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As shown in Fig.5.2, users can select different rooms using the navigation bar.

They can request access to the rooms they have physical access to, which is manually ver-

ified before being approved. Genie only takes control of thermal zones whose occupants

have registered, while the rest of the zones are managed by the traditional system. Note

that the physical thermostat remains operational in zones with Genie controlling them,

allowing users to manipulate temperature using either system. Public spaces such as

kitchenettes, lobbies, and classrooms can in theory be accessed by any building occupant,

which could lead to conflicts and abuse if anyone can exercise control. Hence, we initially

restricted Genie access to only the personal offices in the building and then extended

read-only access to public spaces a year later. In that way users could send feedback for

public spaces to the building manager, who could decide to take action.

In addition to real-time monitoring, control and feedback features, Genie also

provides information to users who want to learn more or diagnose faults when they occur.

Each of the sensor measurements – airflow, temperature band, status of damper, etc. –

can be clicked to get historical values in the “Show more details” section. The navigation

bar also provides weather information which has been shown to be useful [124]. The

About page illustrates the HVAC system functionality with detailed diagrams similar to

the one in Fig. 2.5 (See Chapter 2).

The implementation details of Genie has been presented in Chapter 4.

5.4 Genie Deployment

We announced Genie to all the occupants of our testbed building on October 15,

2013 over email. After the initial announcement, we created an internal mailing list

for registered users. Three additional emails were sent to occupants to announce new

features over the 21 month period. Users were not prompted in any other way to use this

service. As of June 2015, there are 220 registered users with a large number of these
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users being familiar with technology since they are student, staff and faculty in Computer

Science.

In addition to collecting logs and sensor data, we deployed a user survey and con-

ducted interviews with occupants at the end of our study to understand their perspective

on Genie’s use. Our questions focused on knowledge of thermostats, comfort, features

that were useful, effect of energy feedback and improvements that can be made to the

system.

In the remainder of this paper we present our mixed-methods analysis based on

sensor data and log files collected by Genie from October 2013 to June 2015, combined

with qualitative data from 32 survey respondents and 9 contextual interviews. We

anonymized data about users and the individual rooms to protect users’ privacy as per our

university’s human research protection office’s guidelines and our IRB approved study.

5.5 Longitudinal Study

In our longitudinal analysis of thermostats’ and Genie’s use we focus on offices

with individual occupants, and ignore common spaces such as conference rooms and

kitchens. Individual offices make up 152 of the thermal zones in our building, of which

82 zones are controlled by Genie and the physical thermostat while the rest (70) are

controlled by physical thermostat alone.

In order to compare usage and investigate emerging patterns we start by focusing

our analysis on two main features provided by both the physical thermostat and Genie:

(1) change of temperature setpoint and (2) HVAC actuation during nights (7pm - 7am)

and weekends. Figure 5.3 shows an overview of the usage of Genie and the thermostats

across all office zones. In general, thermostats are used much more than Genie, with

thermostat usage constituting 73% of all activity. However, in general, only a few zones

show high activity, with 81% of zones showing <5 interactions with the system per
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Figure 5.3. Comparison of temperature setpoint changes and actuation during
nights/weekends made using Genie and physical thermostats across 152 office ther-
mal zones. Note that both the thermostat and Genie are used for the first 82 zones.

month. To better understand how this overall usage is reflected in the two different

interfaces we further analyze users’ behavior by breaking it down in Physical Thermostat

and Genie usage.

5.5.1 Physical Thermostat

Given the proliferation of thermostats in modern homes and buildings, it is not

surprising that occupants used their thermostats at least a few times over our 21 month

study. In fact, 74% of our survey and interview participants knew about the use of the

physical thermostat’s slider to adjust temperature, and 36% about the actuation button for

nights/weekends.

Erroneous Thermostats

Upon manual inspection of thermostat setpoint changes we observed that some

of these changes were erroneously attributed to user interactions. Figure 5.4 shows an

example of frequent thermostat setpoint deviation in the middle of the night. Another

thermostat showed an impossible change of +12oF . These setpoint changes not only

cause discomfort but also lead to energy wastage and equipment damage. We mark these
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thermostats as erroneous and do not consider them for further analysis. We consider a

setpoint change only when it exceeds one-tenth the maximum range, i.e., for a thermostat

slider with a range ±1oF , we consider a change of ≥ 0.2oF .

Thermostats with High Activity

Some of the occupants are familiar with the thermostat, as one of our interviewee

who works regularly on weekends surmises: “I only interact with it on weekends, because

I figure that’s when the temperature control is shut down centrally. [...] at some point if

I’m sitting still in the office for a long time and the detectors don’t detect any motion I

think it turns off automatically and it starts getting warmer. I have to occasionally turn it

on again.” In reality, the HVAC is not connected to the sensors and turns Off after two

hours independent of any motion, but the occupant knew to push the button repeatedly to

keep HVAC working. We also found that occupants who work on weekends figured out

how to use thermostats over time. As another interviewee explains: “I didn’t even know

you could push the button to turn on the AC at that time. So I would remember like...

when I would come in on the weekends it would be hot and I wouldn’t know what to do

about it. [...] it wasn’t until later when someone showed me how to use the thermostat

and where it was even.”

Upon manual inspection of data from zones which have high usage, we noticed

that occupants in these zones have a habit of using the thermostat as soon as they enter

the office in the morning or when it starts getting hot later in the afternoon. We saw an

interesting correlation across users of thermostats with high activity in our data: in all

of the cases the temperature setpoint range was widened to be >±1oF , and the average

range was ±7.3oF . Zone 23 with an abnormally high setpoint changes was a special

case. Two of the occupants in a shared office had conflicting temperature requirements,

and they changed the temperature settings several times in a day.
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Temperature Control and Discomfort

Our interviews revealed that occupants have many misconceptions over how

to use the thermostats and how it affected their office temperature. Many participants

assumed the thermostat did not work, as an interviewee states: “I never thought it ever

did anything. On the days it was too cold it stayed too cold.” One of the occupants

expressed frustration over the thermostat: “we didn’t realize you had to actually push

the button. I mean we were just pushing everything...”, and as a result improvised their

own solution: “Because it just blows down on me so forcefully that I actually went on

top of my desk and I taped a manila folder to my ceiling.” Use of space heaters (even in

summer) is also a common solution used by occupants to combat overcooling by HVAC.

Such improvisations not only cause excessive energy waste, but also leads to equipment

damage. Occupants who did not have a thermostat in their offices often did not realize

they had control over the temperature. As another interviewee states: “I was freezing

to death. You can shut the door if that helps. I was freezing to death and I didn’t know

where the thermostat was to make at least my area...at least comfortable for me...”. Our

surveys corroborate these findings reporting an average comfort level of 2.9 out of 5 with

the use of thermostats.

5.5.2 Genie

After looking at our log files we discovered that the overall usage of Genie seemed

to be much lower than the thermostats (see Fig. 5.3). However, after carefully considering

the possible reasons behind this potentially disappointing result, we recognized that Genie

allows for a wider temperature control than thermostats, which may result in reduced

number of changes as occupants are comfortable with that temperature. Furthermore, the

physical thermostat turns On the HVAC only for 2 hours at a time, while Genie expands
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that to up to 14 hours. Thus, it is possible that Genie’s absolute actuations count does

not correspond to effective usage of the interface. Moreover, our survey indicated that

comfort level after using Genie increased to 4.2 out of 5 vs 2.9 using thermostats, with

the difference being statistically significant (F1,33 = 29.42, p =< 0.0005). To investigate

how users consistently used temperature control across 21 months and why they reported

such an increased comfort level, we further analyzed Genie’s logs.

Engagement over time

Although Genie logs were only available for 122 of 220 users and for 13 out of

the 21 months of deployment (logs are not available for the initial two months and for six

additional months as indicated in Fig. 5.5) we were still able to get a detailed view of

Genie’s usage characteristics. Based on this analysis we were able to categorize Genie’s

users into four distinct types:

• One-time: Users visit the page a few times after registration and do not visit again.

• Short-term: Users actively use Genie for ≤ 2 months.

• Sporadic: Users whose regular use of Genie is spread across more than 2 months,

although interspersed with gaps in their usage for several months.

• Consistent: Users who used Genie consistently for more than 6 months.

Figure 5.5 shows usage data from logs for three example users from each category

and Table 5.1 summarizes the results across all users. From our analysis we conclude

that a significant portion (45.1%) of users were actively engaged in using Genie for more

than two months after their registration.
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Table 5.1. Percentage of Genie users per category: one-time, short-term (<2 months),
sporadic (gaps in usage) and consistent (> 6 months).

User Types One-time Short-term Sporadic Consistent

% Users 24.6% 30.3% 23.8% 21.3%

We investigated further to find out the specifics of when and why people wanted

to use Genie through our surveys and interviews. Our data revealed that Genie was

especially useful when users did not have a thermostat in their office. As one interviewee

explains: “I didn’t actually use the older thermostat because I don’t have a thermostat in

this room. ... for me Genie is great because I have personalized access to my room.” Users

also liked the precision of control made available by Genie, as one survey respondent

comments: “Digital control of the temperature is very, very useful. Moving the slider

[on the thermostat] still leaves a lot of uncertainty as to what exactly will happen, and

the temperature setting helps.” One of the survey respondents commented on how

temperature control affected his productivity: “Genie is awesome and has made a real

difference in my ability to work in my office. I get migraines that are correlated with

higher temperatures, and Genie allows me to set the office temperature to 67, which

greatly reduces occurrence.”.

For the consistent users we found that Genie is often actively used because offices

are uncomfortable on a regular basis. As one user says: “I generally think its fine ...

only in the late afternoon I have to make it cooler”. On the other hand sporadic users

use Genie occasionally because offices are already quite comfortable:, as reported by

one of the interviewees: “I mean, I haven’t used it a lot. I just...uhm...will change the

temperature if it’s like too hot or too cold. And on the weekends if I’m working here

I’ll turn it on because the AC doesn’t turn on automatically.”. Short-term users often

indicated how the initial interest was high and then it vanished with time: “I used it

frequently at some point as in usually over the weekend, I would tweak the temperature
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through the web interface. Then nowadays I don’t come in as often in the weekends. So if I

do come, I might set up the thermostat manually coming in the room. Then usually I don’t

have to deal with it until I leave...so yeah, I may not have been used the web interface

for a while now.”. Finally, one-time users typically forget the URL, or the password for

their account, and do not visit the web page after their initial registration. As one user

indicated: “It looks pretty friendly. It’s more of a matter of out-of-sight...out-of-mind.”

Dual Thermostat Usage

Many of our survey respondents revealed they used the physical thermostat

despite having a Genie account. One of the main reasons echoed by several users was

that the thermostat was sometimes easier to access compared to opening the computer

and controlling the temperature via the web app. As one user says: “I don’t have to

pull up the web interface. It’s just a dedicated slider on the wall, which is pretty easy

for occasional tweaks.” Another reason for using the physical thermostats was that

many occupants were confused about the relationship between Genie and the thermostat

on the wall. As one survey respondent explains: “I don’t quite understand how the

physical thermostat and Genie interact and so I often adjust both.” Both Genie and the

thermostat were functional, but Genie does not directly reflect the changes made through

the thermostat slider. Having access to both controls confused some users; we realized

that this is a design flaw and we are planning to address that in our future work, with the

Genie interface directly reflecting the physical thermostat changes.

Thermal Feedback from Occupants

Genie introduced the ability to send feedback on how comfortable occupants are

in their offices. Some users were unclear on the utility of the feedback, and whether it

affected their HVAC settings. Users therefore initially sent feedback to express their

comfort level or justify their control actions. As one of the feedbacks said: “Felt cool
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for the past 1-2 wks. Just tried changing the room temp from 73 to 75 hoping we feel a

difference!” Other users would ask questions about the interface: “AC seems to be off

during weekend. Can I/anyone turn it on?” Many users initially sent “Good” feedback,

which we interpreted as being satisfied with the HVAC system. However, the majority

of feedback messages we received were linked to users being uncomfortable despite

changing their temperature settings, or complaining about Genie or the HVAC system

not working correctly.

Occupants’ feedback also served an additional means. As facilities managers

do not have time to inspect the problems in every room in a building, faults that occur

at the office zone level are often ignored and remain undiscovered unless an occupant

sends a complaint [166]. The feedbacks from Genie proved to be a valuable resource to

identify such faults and correct them to improve occupant comfort. Figure 5.6 shows

the distribution of comfort feedbacks sent by the users along with the mean values of

their comfort level in the standard 7 point scale. As can be seen from the graph, most

users only send a few feedback messages. These messages usually correspond to extreme

discomfort levels. The textual feedback sometimes elaborates on the issue. For instance,

one user comments: “I am wearing a sweater but I am cold in the office. Walking in the

corridor, I am much colder. My hands are really cold.” Sometimes the users will directly

send a symptom of a fault, for example: “It’s 64 in here now, though the setting is the max

allowed at 73.” During our deployment these messages allowed the building manager to

uncover many unknown or unreported system faults. Examples include sensors which

stopped reporting information, thermostats which were blocked by computers, dampers

getting stuck, Genie not reporting data, etc.
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Energy Feedback to Occupants

Genie provides the estimated energy consumed within the thermal zone to the

users and a normalized average energy consumption for the building to allow users to

compare their energy usage with other zones in the building. While prior work did show

the effect of energy feedback on occupant’s behavior (5% reduction), the results were

preliminary with a small set of users and over 5 days [30]. As part of our study we

analyzed the effect of energy feedback across 21 months. Figure 5.7 shows the effect on

zone energy consumption due to a temperature setting change by the user. We compare

the energy consumption two hours before and after a change made by the user to infer if

the user made an energy conscious decision. The data shows that the energy consumption

could equally decrease or increase, and there is no bias towards energy conserving

settings. As we show later, Genie zones show a 3% decrease in energy consumption on

weekdays and 31% increase in weekends compared to physical thermostat zones.

In addition to the effects we registered in our system, we investigated the personal

occupant’s perception in terms of added energy consciousness. Our survey revealed that

users were divided on whether they were more energy conscious after using Genie, with

a mean score of 2.8/5. Many users commented that their comfort was a clear priority over

the energy consumption. As one interviewee states: “If I’m hot dude...I’m going to turn

it on. I mean uh...I got work to do. You know...if I got to use a little bit of wattage I don’t

care.” Some users agree that it is good to be aware of the energy consumption, but it does

not change their behavior in any way. As one user comments: “I do care, but admittedly

would do whatever I needed to be comfortable without regard to energy consumption.” A

subset of users, however, expressed a desire to better understand their energy footprint,

and wanted more indication in the interface on how they could act upon decreasing it.

One user states: “I think it would be helpful even to see what your peers...what their
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energy consumption is. Just to kind of see if I’m conserving a lot more, or...wow...I’m

way over the top. Maybe I need to start being more conscientious about things.”

38% of the users responded that they were more energy conscious with the feed-

back Genie gave them. Therefore, although many users do not care, energy consumption’s

feedback does have an overall impact in behavior on an important subset of our user base.

Genie’s Limitations

Despite the overall positive feedback from our users, Genie introduced its own

set of problems and exposed some limitations. A common issue among many users

was that the HVAC control was limited to once every 10 minutes. This was our design

decision to protect the HVAC equipment from excessive usage. As a consequence of

this conservative setting Genie was unresponsive to some specific user’s behaviors and

intended interactions with the system. For instance, when users made a minor mistake

with the temperature setting, or accidentally pressed a button, the system would not let

them change the settings for the next 10 minutes. As one user explains: “I was trying

to adjust it and I moved it down and I slipped...and so I let go of the mouse and it only

moved a half degree. Then it was like you can do this again in 10 minutes...” Another

major issue occurred when Genie was temporarily unavailable due to system updates or

maintenance. We have had only a few instances which led to unavailability over some

weekends, and at that time users had to revert to using thermostats. One user sent us a

message when Genie was down: “For some reason the A/C wasn’t running ... I don’t

have a thermostat in my office (it’s in another office next to mine that I don’t have access

to), so genie was my only hope”. Hence, when Genie fails, an alternative such as manual

thermostat override should be available. This is important in case occupants cannot

access a networked device or in case of a software failure. Thus, the system needs to be

carefully designed to address these scenarios.
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Additional Features

Genie provides several other features, most of which remain unused. Most

users do not set their personal schedule if the default schedule is enough to make them

comfortable. The history of each sensor can be obtained by clicking on the measurement

(e.g. 72◦F) in the UI. Although many users indicated history was useful, they did not

realize this feature was available. We provide detailed sensor data and details about what

each sensor means, but this is almost never used.

We did not provide users access to shared spaces such as conference rooms and

lobbies due to conflicts that may occur between requests. To extend Genie functionality

we synchronized the online conference room calendar with the Genie schedule so that

users have control over the HVAC settings for the duration of the meeting. The HVAC is

turned down during non-meeting times to save energy. Although many users liked this

feature when we announced it, most users either forgot about it or did not eventually use

it.

5.6 Impact On the HVAC System

As Genie provides more flexibility for occupants to control their temperature and

turn HVAC On/Off, one of the risks from a building manager perspective is that Genie

could lead to an increase in overall energy consumption or deviation of operation from

the HVAC managament’s original design and intended purpose. To investigate the impact

of this added flexibility, we compared the overall energy consumption and the extent of

control exercised using Genie versus the physical thermostats.

Energy Consumption

We first focus our attention on how Genie impacted energy consumption. Fig-

ure 5.8 shows a comparison of normalized energy consumption for weekdays and week-
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ends separately. The weekday graph indicates that the energy consumption of Genie

zones is comparable to the thermostats, and overall Genie zones save 3.5% energy, The

difference is statistically insignificant (F1,70 = 0.001, p = ns), but we can still confidently

say that Genie’s usage is not linked too more energy consumption during the week. On

the weekends, Genie zones consume more energy on average, and this points to the fact

that users utilize Genie regularly to actuate the HVAC on weekends. Hence, this excess

in energy consumption is justified as it serves to keep the occupants comfortable. Genie

zones consume 31.6% more energy than zones with thermostats during the weekends

but the difference is statistically insignificant (F1,70 = 2.59, p = 0.11). Comparing the

overall energy consumption considering both weekends and weekdays, Genie zones

consume 3.4% more than thermostat zones, but it is again statistically insignificant

(F1,70 = 0.092, p = ns). Therefore, long term use of Genie has not had a significant effect

on HVAC energy use.

Temperature Swing

As the temperature setting can be changed up to 6◦F in Genie, users may tend

to change the temperature settings to its extremes which may lead to excessive energy

consumption or large swings in airflow. We compared the deviation in temperature

settings across different zones over 21 months. Surprisingly, some physical thermostats

show more deviation than Genie, with up to 6◦F standard deviation. This can be attributed

to those physical thermostats whose range have been increased by the building manager

in response to comfort complaints. The occupants do not know by how much they are

changing the temperature as there is no indication in the thermostat. There are a total of

63 out of 152 thermostats whose range is larger than the designed ±1◦F, and the building

manager does not keep a track of these thermostat changes. On the other hand, despite

having the freedom to change the temperature by 6◦F in Genie, surprisingly most extreme
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changes in Genie are around the 4◦F mark. The standard deviation for the change is

±2.0◦F, compared to ±3.5◦F in thermostats, and this difference is statistically significant

(F1,>>100 = 95, p < 0.0005). All in all, we can see here that providing users with clear

information and more control results in better overall behavior than providing a slider

without information on the thermostat.

5.7 Lessons Learned and Design Guidelines

Our combined analysis of thermostat’s and Genie’s usage data with user inter-

views and surveys revealed that the thermostats in our building fail to provide clear

status and feedback information to occupants. In addition, some occupants do not know

where thermostats are located, or do not have access to them. These findings confirm the

outcomes of prior studies [96, 98]. We showed here how software-augmented thermostats

can alleviate these issues as well as provide additional features such as getting feedback

from occupants. Systems like Genie are especially attractive for existing buildings, where

retrofitting can cost from $500-$2,500 for each thermostat [53]. Based on our experience

with the design and development of Genie and our longitudinal study, we discuss below

six specific design guidelines that we believe will guide and inform the future design and

development of software-augmented thermostats.

Relationship to Physical Thermostats

Software thermostat should not aim to replace the physical thermostat. Ther-

mostats have been around since 1572 [173], and many occupants are familiar with its

basic functions. We claim that physical thermostats can still provide basic functions and

occupants should be able to use them when they do not have access to a networked device

or when there is a software failure. However, it is important that both the physical and

software thermostats show a similar interface, and are synchronized with each other’s
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updates, so that users do not get confused with the relationship between them.

Clarity of Information

Users value the precision of information available in a software graphical in-

terface, since it allows them to better comprehend what the HVAC system is trying to

accomplish. Thus, although a simplified interface is necessary, it should not leave out

essential information such as if the HVAC is working currently, and what temperature

settings are in use. Our data shows that users visit the software interface only when they

feel uncomfortable, and that accurate information allows them to infer the current status

quickly.

Provide Adequate Control

Users expressed immense satisfaction in having the ability to control their local

office temperature, which confirms findings from prior studies [59, 137]. Showing users

how much control is available to them and how it affects the HVAC operation allows

users to make intelligent decisions. Our data shows that users are careful with their

control decision and the impact on HVAC operation and energy consumption is minimal.

Comfort Complaints and Feedback to Managers

Comfort feedback not only provides building managers information on the level

of comfort of occupants, but also helps in identifying hard to detect faults such as thermo-

stat blockage. Fault detection algorithms and control strategies can use this information

to crowdsource comfort information and further tune the HVAC system as per user

requirements.
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Actionable Information on Energy Usage

Many users like energy consumption feedback, and a number of them even indi-

cated active interest in using the information to save energy. Prior studies have shown

that providing actionable energy reduction information can be effective in residential

settings [150]. Users need similar information in offices, as one interviewee requested:

“... if by changing this 1 degree I would save this percent of energy, I would do it.”

Prediction and Additional Features

In a software interface, users expect fast reaction times to inputs. Thus, the system

needs to hide HVAC latency and show the effective change that will occur later. Another

strategy is to provide users with predictions of HVAC behavior due to a change in setting,

which has shown to be effective in homes [153]. Further, features such as historical data

should be intuitive to discover for users to actually use them.

5.7.1 Limitations

We note that our study of physical thermostats and Genie usage has been con-

ducted in a university building located in a temperate climate zone in the US. The analog

thermostat we studied is from Johnson Controls, a popular vendor who install HVAC sys-

tems across 125 countries. Although the thermostat model we consider is installed across

most buildings in our university campus, it predates the latest digital model provided by

the vendor. Therefore, more research is needed to verify our findings across different

cultures, climate zones and types of thermostats. Finally, our occupants are all from a

Computer Science building, and more research is required to generalize our findings to

other population pools.



116

5.8 Summary

We designed a software augmented thermostat, called Genie, that provides perti-

nent HVAC status information to the occupants and enables adequate control over their

local temperature. We introduced additional features such as comfort feedback from

occupants as well as energy consumption information to increase occupant awareness.

To evaluate Genie, we deployed it in a five floor university building, and studied its usage

as compared to the physical thermostat alone over 21 months.

We show that occupants have misconceptions about thermostat usage, and some

of them did not know where thermostats were located. Genie users were satisfied with the

clarity of information and level of control available, and 45% of users showed longer term

engagement with the system. In addition, comfort feedback from users provided insights

into non-obvious HVAC faults. The energy feedback provided by Genie increased user

awareness with a subset of the user base motivated to change their behavior. Based on

our usage analysis and design experience, we outlined key design guidelines for software

augmented thermostats.

All in all, we believe that the insights presented in this study will benefit re-

searchers and designers who want to further investigate temperature control in office

buildings and develop user facing smart building applications

Chapter 5, in part, has been submitted for publication of the material as it may

appear in SIGCHI Conference on Human Factors in Computing Systems (CHI ’15), 2015

by authors by Bharathan Balaji, Jason Koh, Nadir Weibel, Yuvraj Agarwal with the title

“Genie: A Longitudinal Study Comparing Physical and Software-augmented Thermostats

in Office Buildings”. The dissertation author was the primary investigator and author of

this paper.
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Figure 5.4. An example of erroneous thermostat behaviour where changes occur fre-
quently in the middle of the night. These changes are frequent in identified erroneous
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0

5

10

15

#
 A

ct
iv

it
y

Data Unavailable

Short-term User Setpoints

Actuation

0

5

10

15

#
 A

ct
iv

it
y

Data Unavailable

Sporadic User

D
ec

-'
1
3

Ja
n
-'
1
4

Fe
b
-'
1
4

M
ar

-'
1
4

A
p
r-

'1
4

M
ay

-'
1
4

Ju
n
-'
1
4

Ju
l-
'1

4
A

u
g
-'
1
4

S
ep

-'
1
4

O
ct

-'
1
4

N
ov

-'
1
4

D
ec

-'
1
4

Ja
n
-'
1
5

Fe
b
-'
1
5

M
ar

-'
1
5

A
p
r-

'1
5

M
ay

-'
1
5

Ju
n
-'
1
5

Time (Month/Year)

0

5

10

15

#
 A

ct
iv

it
y

Data Unavailable

Consistent User

Figure 5.5. Genie activity comparison for a representative user from each category.



118

0 20 40 60 80

3

2

1

0

1

2

3
A

v
e
ra

g
e
 

Fe
e
d
b
a
ck

+ Feedback
− Feedback

0 20 40 60 80
Genie User

0
5

10
15

#
 F

e
e
d
b
a
ck

Figure 5.6. Distribution of feedback given using Genie across all users on standard PMV
7-point scale. Feedbacks help identify extreme conditions in the offices and insights into
HVAC faults.

4

2

0

2

4

E
n
e
rg

y
 C

o
n
su

m
p
ti

o
n
 

C
h
a
n
g
e
 (

kW
h
)

0 10 20 30 40 50 60 70 80
Zone

0
150
300
450

#
 S

e
tp

o
in

t 
C

h
a
n
g
e
s

Figure 5.7. Average energy consumption difference 2 hours before and after a change in
setpoint by a Genie user across all zones.



119

0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
o
rm

a
liz

e
d
 E

n
e
rg

y
(k
W
h
/f
t2

)

Weekdays
Genie

Thermostat

O
ct

-'
1
3

N
ov

-'
1
3

D
ec

-'
1
3

Ja
n
-'
1
4

Fe
b
-'
1
4

M
ar

-'
1
4

A
p
r-

'1
4

M
ay

-'
1
4

Ju
n
-'
1
4

Ju
l-
'1

4
A

u
g
-'
1
4

S
ep

-'
1
4

O
ct

-'
1
4

N
ov

-'
1
4

D
ec

-'
1
4

Ja
n
-'
1
5

Fe
b
-'
1
5

M
ar

-'
1
5

A
p
r-

'1
5

M
ay

-'
1
5

Ju
n
-'
1
5

Time (Month/Year)Month

0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
o
rm

a
liz

e
d
 E

n
e
rg

y
(k
W
h
/f
t2

)

Nights/Weekends
Genie

Thermostat

Figure 5.8. Comparison of Genie and Thermostat zone energy consumption across 21
months. The energy consumption has been normalized by area to account for varying
room sizes. Other confounding factors such as presence of windows is assumed to be
randomly distributed.



Chapter 6

Building Management Software

In this Chapter, we shift the focus from occupants of the building to the building

manager and maintenance personnel. Building managers are essential to the success

of energy management measures in a building. They can monitor building energy,

attend to occupant needs and fix problems that lead to energy wastage. Software tools

and interfaces available to them can enable them to be efficient and ease maintenance

hurdles. Here, we present an analysis of the management systems used in buildings

today and identify key pieces missing that leads to inefficiencies. We also present our

fault management system that addresses these problems, and tease apart the challenges

in implementing such software systems on a real building. This work builds on top of

existing building management solutions, and strengthens my thesis that with the help

of well designed software applications, large energy savings can be obtained in modern

buildings.

Building Management Systems (BMS) are used for management of Heating,

Ventilation and Air Conditioning (HVAC), lighting, security, irrigation, etc. Figure 6.1

outlines BMS’s main architecture. They consist of complex set of equipment and control

programs used by a few key operators such as building managers, maintenance personnel

or service contractors. As large equipment can be controlled using BMS software, even

small actions can affect the comfort and energy efficiency of the entire building.

120
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We studied the usage of BMS across five institutions in the US and outline

here the challenges of everyday use of these systems. Our analysis shows that these

challenges are often due to incorrect design and development of the current systems,

and we suggest design changes to help overcome them. Using contextual inquiry [35],

we interviewed participants with diverse designations who interact with BMS software

regularly. We focus on HVAC management using BMS as it is the only system installed

in most buildings, and the software has advanced to address the challenges that emerge

in a complex system. Our contribution from our building manager user study is therefore

two-fold: first we contextually document key challenges of BMS use across operator

roles, BMS software, type of institution, and geographic location; second, we distill

important insights and design directions that can be incorporated in the development of

the next generation interfaces.

To illustrate challenges in practical deployment of BMSes that overcome the

limitations brought out by our user study, we have designed BuildingSherlock (BDSher-

lock), an extensible, web service based management framework for fault management in

building HVAC systems. The goals of BDSherlock are to solve the current challenges

in HVAC fault management. We have designed BDSherlock with two key principles

in mind - (1) provide extensive HVAC information and allow fault reporting through

Sensor  Speed Pressure Position 

Pump 

Temperature 

Heat Exchanger Equipment  Fan 

Network Protocols  BACnet, Modbus, LonTalk 

Traditional BMS 

Applications  Benchmarking, Fault Detection 

Niagara AX 

Building 1 

Valve 

Flow 

Coil 

Building 2 

Figure 6.1. Architecture of a typical Building Management System
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an open API so that sophisticated algorithms can be implemented and re-used across

different buildings, and (2) provide relevant information to the facilities personnel to

analyze these faults and so that they can act on them quickly. Our framework encourages

collaboration between the stakeholders – facility managers, equipment vendors, service

providers and building occupants.

As part of BDSherlock, we have implemented a fault dashboard for facility

managers where building information from different sources is organized in a single

interface that provides a prioritized list of faults and tools for analyzing these faults. We

have integrated useful contextual information such as estimation of energy wastage due

to a fault, and direct feedback from occupants of the building to aid building managers in

rapid exploration and fault remediation.

We deployed BDSherlock in the CSE building and implemented algorithms to

detect faults at the VAV units, and present our summary of findings here. Some of the

faults we found were unique, and have not been found in commissioning studies in other

buildings on our campus. We captured a total of 88 faults, with estimated savings of 410

MWh/yr.

6.1 Background and Related Work

Several stakeholders are involved in the management of HVAC systems. BMS

operators can be grouped into three categories: people who ensure (a) day to day

operation, (b) comfort of the occupants, and (c) energy efficiency. Facility managers

and operators are common to all buildings in an institution. Building managers work at

the building level, and help maintain all systems in the building. Issues which require

technical expertise are forwarded to the facilities management. In addition, service

contractors who specialize in certain services conduct repairs, upgrade software, etc.

Finally, commissioning consultants are hired short term to ensure that building systems
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are functioning correctly and recommend changes to equipment or control programs. We

use the term “operator” to represent a generic user of BMS.

Despite the need to employ different professionals for managing buildings, insti-

tutions cut costs by having less staff members, relying primarily on the BMS to assist

with monitoring and automation of HVAC systems. BMS are routinely installed in newly

constructed buildings, and older buildings are upgraded to BMS-enabled equipment.

BMS provide services such as monitoring of sensor data across the system, programming

of control sequences for proper equipment operation, reporting faults detected through

sensor data, graphical visualization, and providing access control across users.

Traditionally, BMS are provided by HVAC equipment vendors such as Johnson

Controls, Siemens, and Automated Logic, as end to end customer solutions. Although

proprietary solutions typically do not communicate to systems from other vendors,

communication protocols such as BACnet and Lontalk were introduced to increase

interoperability across vendors. Nevertheless, compatibility remains a challenge as each

vendor uses their own extensions of common protocols.

To overcome a number of those interoperability challenges, vendor-agnostic BMS

platforms such as Niagara AX1 and OpenBMCS2 have been developed that provide

interoperability across different vendors as well as support development of third party

applications. Standards such as oBIX3 and Haystack4 are being developed to semantically

represent building information and access data through REST APIs.

Despite the efforts so far to improve BMS, the work of operators remains chal-

lenging, and is becoming increasingly complex. With hundreds of buildings each with

thousands of sensors, the design of effective, efficient and satisfactory BMS is key to

1http://www.niagaraax.com/
2http://www.openbmcs.com/
3http://www.obix.org/
4http://project-haystack.org/
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overcome challenges and avoid operator overload. We report on a variety of issues that

operators face with today’s systems and outline directions for next generation BMSes.

Few studies have focused on user requirements for addressing building man-

agement issues. Lehrer et al. [113] study building experts and occupants for better

visualization of information. They focus on the information and standards in BMSes that

would help building operators monitor building performance. Khire et al. [102] develop a

fault management framework based on user centered design, and they address fallacies in

modern BMS with an architecture similar to BDSherlock. However, they do not provide

the results of their user study, nor do they present the details of their deployment. Our

interview results are in agreement with these studies showing building operators are

indeed overwhelmed with the number of issues they can handle, and modern BMSes

could be improved significantly to reduce manual labor, provide more information to

benchmark building performance and fix faults. Unlike prior studies, with BDSherlock

we focus on the system level changes to both the BMS and the fault management frame-

work. In addition, we have implemented a prototype for a real building to demonstrate

our framework’s efficacy and share experiences gained with our deployment.

Several commercial fault management frameworks are available, and we examine

SkySpark as a typical example [162]. SkySpark supports integration across data sources

with compatibility with various standards - gbXML, oBIX, and external information

such as utility data. SkySpark supports fault analysis with their custom designed Axon

language, that allows users to write sophisticated rules using available library functions

and can detect faults by executing these rules in their engine. Although this broadens the

type of faults that can be detected considerably, the framework restricts the complexity of

algorithms as they need to be executed within the Spark framework. Data analysts cannot

use popular programming tools - Matlab, R, Python, along with their vast collection

of available libraries. The APIs exposed are restricted for visualization, and does not
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Table 6.1. Innovations and improvements introduced by Niagara AX with respect to the
building operators needs outlined in the interviews.

Contextual and Historical
Data

Third party products for search and visualization, including historical sensor data, can be added on
top of Niagara AX. Operators can have personalized dashboards that show relevant indicators such
as jumps in energy consumption.

Naming Convention Introduced component object model for naming building entities – sensors, sensor metadata,
actuators, and control sequences. Supports rising standards such as oBIX and Haystack.

Fault Reporting
SkySpark is a popular third-party tool for analyzing HVAC sensor data for fault detection and
diagnosis that can be installed on top of Niagara AX. It supports open standards, and provides
relevant information on each fault to the user.

Data Analysis
The platform supports storing of sensor data and auditing of user actions to understand the historical
performance of the HVAC. Historical data also allows users to easily benchmark performance with
respect to their past data.

Vendor Lock-in
JACE box is an intermediary between vendor equipment and the Niagara AX. Boxes contain drivers
to port vendor specific protocols to proprietary protocols. Data is exposed to third party applications
using BAJA open standard.

Search and Reporting
Third party applications developed in Java or as a web service enables data querying using SQL-
like language. Reports can be built to periodically summarize performance, usage and energy
characteristics.

Table 6.2. Portfolio of participants in our user study, the BMS platform they used and
the number of buildings managed by the institution

Institution/Company Participants BMS Buildings

University of California, San
Diego

Energy manager (P1), HVAC techni-
cian (P2), Building Manager (P3)

Johnson Controls Metasys 100+

University of San Diego HVAC technician (P4) Siemens Apogee 50+

Carnegie Mellon University Asset Preservation Manager (P5) Automated Control Logic, Automatrix,
Siemens, Johnson Controls 100+

University of California,
Berkeley

Two building managers (P6, P7)
Automated Control Logic, Siemens, Bar-
rington 100+

San Diego County HVAC maintenance operator (P8) Tridium Niagara AX 520+
Johnson Controls Inc. BMS technician (P9) Johnson Controls Metasys -

Enernoc Inc. Energy efficiency consultant (P10) Various BMS, Enernoc Insight -

include fault management. Our BDSherlock design builds on top these automation

solutions, and mitigates their limitations by advocating an open framework and flexibility

in implementation.

6.2 Understanding Building Operators

To understand the current experiences of building operators, we studied the

use of BMS by ten building operators across five institutions managing more than
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870 buildings (Table 6.2). We followed a hybrid semi-structured [120] and contextual

learning [35] model that elicited direct feedback from the users and engaged them in

detailed description of their experiences. We conducted all but two interviews on-site, at

the participants office or in a nearby conference room, with the remaining two conducted

remotely. We took detailed notes during all interviews, and with participants consent

recorded audio for 7 out of 10 interviews, and for five of them we collected videos of

the operator’s interaction with the system. We transcribed the recorded interviews for in

depth analysis.

Data collected was analyzed by two researchers who worked in the area of smart

buildings for five years and an expert in human-computer interaction and user interfaces.

We exploited elements from grounded theory [164] to perform a thematic analysis and we

grouped emerging elements into seven key challenges that building operators currently

face.

6.2.1 Challenges in Building Management

Regular maintenance of buildings include addressing comfort complaints, resolv-

ing BMS alarms indicating faults in building system, performing periodic tasks such as

replacement of dirty filters or installing/upgrading of equipment or software.

All of our participants felt they were understaffed and underfunded to handle

the number of issues they need to address as summarized by P10 (consultant): “Almost

everywhere we go they don’t have enough maintenance staff to do things right most of the

time. So that’s very common that they do the quick fix rather than the right fix”. Operators

admitted that they were aware that many of their buildings are operating inefficiently,

but did not know which ones were inefficient and how inefficient they were. Their main

strategies to overcome this issue were based on their past experiences, and on the age of

equipment. They also relied on commissioning – i.e. manual checks of specific buildings
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– to identify major inefficiencies. Although sometimes effective, these strategies are

not scalable, do not transfer well to other operators, are not documented, and are not

sustainable for a large campus.

To better understand the underlying reasons behind these challenges we now

detail seven key problems that we identified across our interviews:

Simplistic Fault Reporting: The way faults are reported to the operators are

simplistic and create an alert every time a sensor value goes beyond a pre-specified

threshold. The underlying cause of the alert is not easily identifiable: it could be related

to a sensor drift, an error in configuration, a damage in equipment or a combination

of factors. Alerts which are related to each other are not grouped together, causing a

deluge of alerts for the same fault. Therefore, faults often accumulate and some of them

remain unresolved. For instance, one of the operator showed us >100,000 alerts that

accumulated in her system that she would never be able to catch up with. Also, although

energy efficiency is increasingly important, sensors installed only target critical faults to

reduce costs.

Missing Contextual and Historical Data: Analyzing the underlying cause of

a fault is vital to locate the problem and fix it. To this extent, various levels of data

needs to be available to operators to analyze the status of the system. While historical

sensor data was provided in all BMS, in one of the universities data was only stored

for 3 days, and in another the trending had to be started manually, which at times

happened only after the discovery of a fault. P1 expresses his frustration: “one of its

[data trending] biggest limitations is that I’m always being told that ‘Don’t ask us to map

so many points’or ‘Don’t ask us to set too many trends’because it’ll overload the system.”

Furthermore, relevant information is distributed across a variety of sources. Contextual

information such as equipment location, connection to other units, model number, etc.

are not available. In one institution, the power meter data is accessed separately from the
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HVAC sensor data, and the relationship between different equipment is only present in

architectural drawings. This missing information results in the operator visiting the site

in person to diagnose the fault, which increases the time to fix it considerably.

Inconsistent Naming Convention: Even within the same institution and BMS,

we witnessed lack of standard naming conventions across different buildings. Names are

manually labeled by different operators (and, even renamed over the years), and therefore,

do not follow a consistent naming convention. As P10 explains: “I don’t know if they do

anything to make their point names consistent [...] sometimes they’ll just leave them as

AV1. And that’s not very helpful to anybody.”

No Integrated Data Analysis Tools: BMS only provided raw sensor data, and

did not support easy addition of computed information. Thus, participants reported

having to perform many calculations by hand to analyze data. As P1 explains: “I was

looking at that specific room [...] to see things like ‘Ok does the total supply flow match

up to the total exhaust flow?’I was doing summations in my head of these numbers, like ...

is this making sense?”. BMS do not provide common metrics to be used with analysis

such as benchmark against other buildings or calculate efficiency of operation.

Vendor Lock-in: Traditional BMS lock-in the facilities with their equipment,

so operators can only use vendor-provided hardware and software. Even when open

protocols such as BACnet are adopted, vendor extensions of the protocol do not match

with other vendors. These vendors also provide versions of Niagara AX platform which

are incompatible with other vendors. As P8, who uses a Niagara system complains: “I

wish that there was a way that I can put a third party item onto it so I don’t have to

upgrade the whole system. But that’s not available. It has to come as a part of what they

sell.”

Forgotten Overrides: When fixing certain faults, it is common for operators to

temporarily override current settings to conduct repairs. However, operators frequently
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forget to release their override leading to faults. BMS support storing past operator

operations, but the number of entries is limited. No option is provided to integrate

notes while overriding settings to enable later analysis. As P10 recalls from experience:

“... extremely common would be operators leaving something in override. So either

switching the handoff auto switch on a VFD by hand and just leaving something flat out.

Typically these are things that I’ll do with the intention of having it be temporary but then

you’re too busy to come back and fix the root of the problem so it just stays for weeks or

years.”

Recognize Occupants Misuse: Occupants cause faults because they are unaware

of how HVAC systems work. Space heaters are commonly used during winter, causing

excessive energy wastage. Refrigerators or other appliances block thermostats or air

vents, causing incorrect operation of HVAC. It is difficult to understand and recognize

from the BMS when a faulty operation is due to a misuse: “... a pet peeve of mine is

when people set their air conditioner to like 69 degrees and the [occupants] have the

1500 watt electric heaters going on their desks at the same time.” [P4].

6.3 Discussion

As outlined above, facility managers struggle with integration of different systems,

lack of standardized data formats and are locked into vendors after the initial installation.

The infrastructure for historical data collection is not robust, contextual information

that is key to understanding the underlying situation is missing, and data analytics are

simplistic, putting the onus on the operator to do calculations.

Addressing those issues through vendor-specific HVAC systems is hard, since

they are monolithic and have not been designed with flexibility in mind. However, the

vendor-agnostic solution provided by Niagara AX has the potential to overcome some

of these limitations (Table 6.1). One of the institutions in our study had Niagara AX
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installed in eight (out of 520) buildings. The building manager reported that BMS is

easier to use and helped with benchmarks and faults.

Despite the functionality introduced by Niagara AX, only one of the operators

we interviewed makes use of it. This is due to several reasons. First, many of our

interviewees were unaware of the benefits of vendor-agnostic platforms such as Niagara

AX. Second, even though it helps in the long-term, installation costs in existing buildings

are non-trivial: much of the costs account for manual translation of data from existing

building(s) to Niagara platform. Finally, changes to another system result in at least a

temporary drop in productivity and will introduce a variety of new and different interfaces

that operators are not willing to embrace easily.

6.3.1 Designing Next Generation Interfaces

While the approach put forward by Niagara AX and the overall idea of vendor-

agnostic BMS is useful, more radical changes are needed to exploit the inherent energy

saving capability and improve occupant comfort in buildings. Based on the outcome of the

interviews we identify a finite but carefully investigated list of design recommendations

next.

Automation: Several parts of BMS remain expensive to create or program

because of lack of automation and use of standard machine readable formats. Graphics

for floor plans and equipment connections, for example, are hand drawn. Building

architectural and mechanical plans are available in CAD drawings with standard formats

like Green Building XML, and should be leveraged by BMS. Similar automation features

can be developed for discovery of sensors installed, population of metadata such as

location, and acquisition of equipment datasheets by providing them in machine readable

form.

Data Analytics: With the amount of data available from sensors in the HVAC
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system, a wide variety of analytics and diagnostics can be performed. However, operators

in our study stressed how the current system: “is definitely suboptimal right now, I’m

overwhelmed by the amount of data that’s available and the lack of automation of it.”

[P1]. Several tools and techniques have been created by researchers [52, 99] to develop

HVAC system models, detect faults and inefficiencies, and simulate different scenarios.

However, these tools remain disconnected from BMS. We believe that integrating them

into the BMS will provide useful insights to operators.

Contextual Information: When operators make changes to the HVAC system

(e.g. temperature control), they do not get feedback on the effects on energy or comfort.

Instead, they judge these effects based on the raw values of sensors provided, although

effects are only visible after several minutes to hours. Operators need immediate feedback

using form and metrics that is relevant (e.g. type of room or energy consumed). It will

help them be more efficient and reduce mistakes. P1 commented on this point stating

how “If operators were getting immediate feedback in terms of energy waste ... as soon

as you put that override in it could be like ‘This is going to cost the university $40,000

this year, are you sure?’”

Communication Among Stakeholders: Communication among management

personnel is done through phone calls, emails and work orders, all of them kept separate

from BMS. Novel BMS need to support contextual annotations to avoid misunderstanding.

For example, the energy manager can infer that an override is in place due to repairs

being conducted. BMS also need to involve occupants as their actions directly impact

the system. An operator, for instance, can see that HVAC is active late at night due to a

special occassion.

User Support: BMS usability would greatly increase by adopting standard user

involvement practices. Instead of requiring specialized training, operators can be provided

with wiki pages and discussion boards to encourage learning and adoption of best
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practices. BMS needs to support varying requirement of different roles in management,

and provide appropriate levels of abstraction, permissions and data analytics to assist

them in their daily work.

6.4 BDSherlock: Design and Implementation

To further concretize the lessons learned from our building management study,

we design a fault management framework as a third party application on top of traditional

BMS. We focus on fault management as it is one of the primary services provided by the

BMS and improvements can lead to large savings in energy and reduce operator effort. To

reduce skilled labor, we focus on providing adequate information to the operators so that

they can determine the status of the system at a glance, prioritize their actions to maximize

returns and understand the context of a fault to diagnose it quickly. We rely on algorithms

to provide comprehensive coverage of faults that occur in the system, so that operators

spend minimum amount of time on manual inspections. In addition, we seek to remove

the restrictions in the current BMSes so that data from diverse sources can be integrated

into the system, and the third party fault management applications can be developed.

We have designed BDSherlock to satisfy these objectives by emphasizing information

management, flexibility of implementation and scalability for large deployments. We

advocate that fault management be a priority from the design phase of building systems,

standardized data formats be used to encourage sharing of information as well as re-use of

software applications, automated analysis be deployed to detect faults comprehensively.

6.4.1 Software Architecture

BDSherlock employs web services as the backbone of the framework as they

are easy to use, scalable, and flexible to implement different types of services and

policies [25]. Our framework is a composition of web services, each serving different
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Figure 6.2. System Architecture of BuildingSherlock

functionality of HVAC management. Figure 6.2 depicts our software architecture.

Our framework builds on top of our information management web service, Build-

ingDepot (BDDepot) [22]. Currently our naming convention is the standard imposed by

our university, and it can be easily extended to support standards such as Haystack [1].

Unlike traditional information management systems, BDDepot also supports actuation

of control systems. This capability allows us to support applications such as automated

functionality testing and fault correction.

BDSherlock is composed of three additional services built on top of BDDepot.

The BDSherlock core service is used to register algorithms, report faults, and for user

facing applications like the fault dashboard. The fault detection service uses sensor

information from BDDepot, and reports faults to the BDSherlock service. Finally, the

occupant service, called Genie, provides a web interface to occupants, and reports their

feedback to BDSherlock.



134

6.4.2 Fault Detection and Reporting

BDSherlock relies on third party algorithms to detect faults in the HVAC system

and report them using RESTful APIs. Developers register their algorithm with BDSh-

erlock service, providing information such as the type of sensors they would use, the

type of faults they detect, and parameters of faults they will report. By separating the

detection algorithms and fault reporting, we do not impose any restriction on the type

of analysis used by algorithms. Developers are free to employ tools of their choice, and

implement sophisticated algorithms [99]. Developers use information from BDDepot for

analysis, and we emphasize revealing as much information as possible to enable valuable

insights on system status. We provide long term historical sensor data, and contextual

information such as sensor location, equipment type, room usage model, etc. As we use

a common naming convention for metadata, algorithms can be reused across buildings,

which reduces cost of deployment.

Algorithms report detected faults to the BDSherlock service. We introduce a

library of fault types to enforce standard naming convention when reporting faults. Each

fault type is associated with specific faults associated with parts of equipment or sensor.

Examples include ‘damper stuck’, ‘temperature high’, and ‘valve leak’. To help facilities

personnel prioritize and analyze faults, we encourage algorithms to report additional

metrics about a fault such as confidence of detection, energy savings, impact on comfort,

duration of the fault, expected return on investment etc. In this paper, we focus on

confidence of detection and energy savings.

With use of available information and sophisticated algorithms, we can detect

many faults in HVAC. However, manual analysis is still needed for diagnosis of a fault,

and some faults may never be detected as it occurs only in certain modes of operation.

Automated functionality testing [84] can identify such faults and help with fault diagnosis.
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Figure 6.3. Floorplan view in BDSherlock Faults Dashboard.

For a large campus such as UCSD, there are many faults which are neglected in lieu of

more critical faults. In the meantime, automated fault correction [67] can temporarily fix

faults or run the system in a degraded mode using actuation. BDSherlock architecture

supports both these applications with the use of BDDepot access control and BACnet

priority table for actuation of HVAC system. In this work, we focus on detection, and

leave study of actuation algorithms for future work.

6.4.3 Occupant Feedback

Occupants can provide valuable information about faults that occur in HVAC.

With the help of our Genie web service [30], we enable active occupant participation in

keeping their environment comfortable, and report faults. Details of Genie design and

features has been provided in Chapter 5.
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6.4.4 User Interface Design

The faults dashboard is designed to make it easy for building managers to check

on faults. The front page of the UI shows an overview of the building, providing building

power consumption information, and faults found in each part of the system - cooling

system, heating system, or terminal units in each thermal zone.

The user can navigate the system hierarchically – from the building level, to each

thermal zone and individual rooms. The UI shows a visualization of the HVAC control

system as a symbol diagram with representation of fans, pumps, cooling coils, sensors

and their connections. The page shows live data being collected from BDDepot, and

is refreshed every minute. Each sensor value can be clicked to get historical data. For

each floor, a floorplan view of the building is provided, with color graphs for different

parameters - temperature, energy consumption, faults reported. Figure 6.3 shows the

floorplan for one of the floors in our building testbed. The rooms in the floor are

highlighted when moused over, and the important sensor values gets displayed in a

sidebar. A click on this room leads to a symbol diagram of the corresponding VAV unit

with relevant sensor information. These symbol diagrams are similar to Figures 2.4 and

2.5.

A faults tab shows the list of faults reported. Faults can be sorted or searched

based on system, subsystem, type of fault, confidence, or time of reporting. Clicking

on each fault provides the details of the fault. Figure 6.4 shows a snapshot of this page

for one of the faults reported. Details include the user facing information provided by

the algorithm - fault summary, confidence level, fault type, and it automatically plots

one month’s data from the relevant sensors. All the faults reported by algorithms are

grouped together if they indicate the same type of fault, equipment and location. Thus,

the user can analyze reports by multiple algorithms for a single fault and it also reduces
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Figure 6.4. Fault report view in BDSherlock Faults Dashboard.

data deluge due to multiple reports.

6.5 Deployment

We deployed BDSherlock in the CSE HVAC system. Details of the HVAC system

and our data collection methods have been provided in Chapter 2.

6.5.1 Manual Inspection

Before using the available data to find faults, we performed manual inspection to

ensure correctness of sensor data. An experienced Johnson Controls contractor checked

only the central unit of the HVAC as it time consuming to manually inspect each VAV

box.

Some of the sensors as well as the hot water thermal meter were found to be

miscalibrated, and were fixed. The contractor also noticed that Electronic to Pneumatic

(EP) transducers for cooling coil valves were broken, which kept the valve in a fixed
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position leading to significant leakage. This is an example of a minor fault left undetected

that costs <$100 to fix but led to a massive energy penalty. The economizer damper was

broken, letting 100% outside air into the air mixer irrespective of outdoor temperature.

This leads to substantial wastage, and even though the large damper replacement cost

>$26,000, the expected return on investment is less than a year. The control loop tied

to the economizer was also not working, and the contractor fixed this as well. The

temperature of the supply air was fixed at 55◦F as per design, and dependent on the

cooling demand of the top three energy intensive zones in the building. The contractor

changed it to be dynamic, with the setpoint determined by the average demand of the

zones on each floor. This changed the average supply air temperature to 65◦F. He made a

similar change to the hot water supply temperature setpoint, reducing the average setpoint

from 180◦F to 120◦F. Both of these changes led to significant savings, and made the

HVAC power more proportional to the demand.

6.5.2 Algorithms

Many fault detection techniques have been proposed in the literature [99], and we

focus on data driven algorithms and rules based detection. We focus on the terminal units

(VAV boxes) in the system as they are typically ignored in commissioning processes.

Machine Learning

We implemented several popular unsupervised machine learning algorithms –

subspace methods exemplified by Principle Component Analysis, correlation based

methods based on the intuition behind Strip, Bind and Search [70], and developed our

own algorithm, called Model, Cluster and Compare which compared thermal zones with

similar characteristics to detect faults [131]. We did not implement supervised algorithms

as it required sensor data with fault labels which is not available to us.
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Our analysis revealed several interesting anomalies which are not normally tested

for by the Facilities Management. For example, there were some thermal zones in which

the temperature guard bands do not change with HVAC mode of operation (Section 2.2),

and some zones which had unusually high airflow during unoccupied mode; both of these

faults were due to programming errors. However, the machine learning algorithms could

not identify all the instances of the anomalies in the building, and there were several false

positives in the results. Therefore, we designed customized rules that would capture these

anomalies accurately, and identified many faults in the HVAC after we implemented

them. The details of our data driven investigation is presented in prior work [131].

Rules

Rule based methods are the most prevalent and well known way to detect faults.

However, we aim to implement rules that go beyond checking for threshold violations by a

single sensor as is common in BMSes. Rules can be powerful as they can be programmed

to capture complex non-linear interaction in the control system, and precisely detect

faults. Design of such rules which provide high accuracy require significant domain

knowledge, usage characteristics of the building and thresholded based on historical

performance. In practice, it is difficult to implement such specific rules, and generic rules

given by certification bodies [49] are implemented instead.

We implement generic rules suggested in literature, as well as specific rules

based on the anomalies obtained from our data driven analysis [131]. Our FM was only

interested in faults that caused egregious wastage as they did not have time to fix minor

faults. Hence, we use conservative thresholds to avoid false positives. For instance, when

we checked for airflow leakage in terminal units, almost all the units leaked ¿10 cfm,

but the FM was only interested in those which had ¿50 cfm leakage. We read data from

BDDepot, and processed the data based on fault type, and report the fault if violation of
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Table 6.3. Summary of HVAC faults detected

Rule System # Instances Estimated
Energy Waste

Supply Flow Excess VAV 8 44.9 MWh/yr
Temperature Setpoint VAV 27 167.6 MWh/yr
Insufficient Flow VAV 10 -
Thermostat Adjust VAV 33 -
Insufficient Cooling VAV 8 -
High Temperature VAV 1 -
Economizer
Damper Stuck AHU 1 197.8 MWh/yr
Total 88 410.3 MWh/yr

threshold occurred for a significant period of time. The number of violations is coded

as the confidence of the fault, giving the frequently occurring fault a higher confidence.

While reporting, the algorithm provides the location of the fault, and the sensor which

is defective. It also provides a human readable summary giving a description of the

fault, the amount of violation, and confidence of detection. An example summary is

“Actual supply flow is lower than minimum occupied flow by 276.4 cfm during occupied

mode 92.0% of the time”. The complete list of rules implemented, along with the results

obtained is presented in Section 6.6.

6.6 Evaluation

At the VAV controller level, we detect faults due to misconfiguration, insufficient

or excessive airflow, cooling or heating when unoccupied, and any airflow leakage. We

could not detect heating valve leakage due to lack of discharge air temperature sensors.

We were surprised to find a large number of configuration errors in the VAV

controllers. In 27 zones, the temperature setpoints did not change with changes in

occupancy mode. This fault kept the HVAC operational in these zones even during nights

and weekends, an extravagant waste of energy. We found a similar configuration anomaly
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in 6 zones, where the airflow setpoint was set to be high in unoccupied mode even

when the zone did not require cooling. A particularly wasteful example of a conference

room is shown in Figure 6.5, where the airflow setpoint is high enough to cool the room

to heating temperature setpoint, which then led to heating coil usage to increase the

temperature of the supplied air. Thus, simultaneous heating and cooling occurred in an

unoccupied zone due to a configuration error. The Johnson Controls contractor surmised

that these errors were probably caused due to misunderstanding at the time of initial

building commissioning. As these type of faults are not expected to be present, and not

mentioned even in standardized rule sets [4, 49], they would have gone unrecognized

even during a retro-commissioning process. Such faults are also not detected in any of

the fault frameworks we have examined.

Another uncommon fault we found was associated with thermostat adjust avail-

able to occupants. By default, the thermostat allows occupants to change their temperature

settings by ±1◦F. If this change was found to be inadequate to keep a comfortable tem-

perature within the zone, the maintenance operators increase their range upon a request

from occupants. These changes in thermostat adjusts effectively shifted the temperature

band maintained by HVAC in different occupancy modes (Section 2.2). Due to a flaw in

the initial configuration of thermostats, these changes to thermostat adjusts remained in

effect in unoccupied mode. For zones with large change in adjust, the temperature band

shifted enough to require cooling or heating during unoccupied mode. We found 33 zones

with adjusts greater than ±3◦F. FM found that it is hard to change the programming

to disable these adjusts in unoccupied mode using the BMS, and we plan to leverage

BDDepot to implement the fix ourselves. We skip the energy analysis for this fault, as it

hard to estimate the energy consumed by these zones without such a shift in temperature

band.

We found several faults that would have been detected with the standard set of
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rules. The temperature in one of the kitchens was found to be particularly high despite

maximum cooling by the VAV box. Upon inspection, we found a water cooler was placed

in front of the thermostat, which led to incorrect measurement. This is an example of a

fault where the occupants were unaware of the implications of their actions on the HVAC

system. We also found 10 zones to have insufficient airflow during the occupied mode,

and our basement computer labs to require excessive amount of cooling. These faults

occurred due to the recent change in static pressure settings during the manual inspection

(Section 6.5.1). Although this setting leads to energy savings, insufficient airflow can be

a health hazard, and will make occupants uncomfortable.

Although we used conservative thresholds to detect faults, there were a few

false positives from these rules. Some zones such as mechanical rooms, kitchens, and

restrooms were supposed to be ventilated even in unoccupied mode. Similarly, one

of the rooms was under renovation, and the rules found the zone to have insufficient

ventilation. As our rules did not take these usage characteristics initially, they led to false

detection. This tells us the importance of contextual information to improve the accuracy

of detection algorithms. We have removed these faults from Table 6.3.

We also confirmed the economizer damper fault from sensor readings. The

FM has already fixed the configuration errors, and are in the process of replacing the

economizer dampers. There are several types of fault that still remains to be examined,

such as tuning of PID control loop, and analysis of equipment efficiency at the central

units. We plan to address these in future work.

6.6.1 Energy Analysis

We leverage our prior work, called ZonePAC, to estimate the energy wastage due

to faults [30]. ZonePAC used the information from design specifications, sensor data

and applied heat transfer equation to estimate energy consumption of each zone in the



143

00:00 6:00 12:00 18:0050

60

70

80

90

100

110

Te
m

pe
ra

tu
re

 (°
F)

Cooling SetPoint
Heating SetPoint

Zone Temperature
Heating Command

600

650

700

750

800

850

900

950

Fl
ow

 (C
FM

)

Supply Flow

Figure 6.5. Supply flow excess in a conference room

building. We also apply heat transfer equation is to estimate wastage due to the broken

economizer damper. To estimate wastage accurately, we need to compare the measured

sensor data with the ideal values in the absence of faults. To estimate economizer

energy wastage, we conservatively assume wastage occurs when the economizers are

commanded to be at their minimum position. We compute the ratio of airflow mixture

between outside air and mixed air based on design specifications, and use air temperature

measurements to estimate mixed air temperature. For the VAV level faults, we accumulate

the energy consumed during the periods when the zone requires no heating or cooling

in unoccupied mode. The results of the analysis is summarized in Table 6.3. The total

estimated energy wastage due to the faults discovered is 410.3 MWh/year, including the

economizer damage which accounts for about half the wastage.

6.7 Summary

We collected data across five large institutions in the USA and engaged in dis-

cussions with ten different building operators on their experiences, frustrations and their

informed requirements for novel BMS. After analyzing hours of interviews, we identified
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seven key recurrent problems that need to be addressed. With the help of our participants’

suggestions we then distilled a list of overall directions to take for the design of the next

generation BMS. We believe that these results have direct applicability and can be used to

guide the development of novel interfaces, like the one that we are currently designing as

part of our larger research on building management. We hope that the depth and breadth

of our findings will support the much needed change in perspective and the bootstrapping

of a new class of flexible, user-centered BMS.

We propose a list of requirements for fault management systems. Our suggestions

include integration of information sources, long term data storage, standardized naming

conventions, support for wide variety of fault detection algorithms, tools for analysis of

faults, and reporting of contextual information with fault detection. We designed and

implemented BuildingSherlock (BDSherlock), a web service based fault management

framework which exposes RESTful APIs for reporting of faults by third party algorithms.

We have deployed BDSherlock in the Computer Science building at UC San Diego,

and successfully detected 88 faults in the HVAC system with estimated savings of 410

MWh/yr.

Chapter 6, in part is currently being prepared for submission for publication in

the Journal of Energy and Buildings by authors Bharathan Balaji, Nadir Weibel, Rizhen

Zhang and Yuvraj Agarwal with the title “Understanding Building Operators to Improve

Building Management Software”. The dissertation author was the primary investigator

and author of this material.



Chapter 7

Normalizing Building Metadata

In prior Chapters, we have presented software solutions can save energy, improve

thermal comfort and ease interaction with the building systems. However, to implement

these applications on a large scale, we have to address the heterogeneity of systems

across different types of buildings, from hospitals to shopping malls. Due to lack of a

common sensor ontology in buildings, each vendor and institution have their own naming

schema, and these are not strictly adhered to as they are meant to be human readable. In

this Chapter, we present an algorithm that maps disparately named sensors to a common

naming scheme using machine learning algorithms. This is a necessary step towards

portability of software applications to multiple buildings.

Improvements in the design and manufacture of devices have led to the widespread

availability of cheap sensors, actuators and data collection infrastructure. This, in turn,

has led to increasing interest in “Smart Environments”, which use these technologies to

better understand user context and adapt to meet their requirements by controlling the

physical environment around them. In pursuit of this vision, researchers have sought

to create smart buildings that are responsive to occupants’ needs and comfort while

conserving energy and water resources.

Within commercial buildings, tasks involving indoor climate control and maintain-

ing proper ventilation are typically performed using centralized Building Management

145
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Systems (BMS), such as Metasys from Johnson Controls [51]. A BMS interfaces with a

large number of sensors and actuators deployed within buildings during construction and

commissioning such as thermostats, Variable Air Volume Boxes (VAVs), Air Handler

Units (AHUs), Variable Frequency Drives (VFDs) and chillers. Collectively the sensors,

actuators and the BMS form an integral part of the HVAC system. HVAC systems are

relatively complex, typically interfacing with thousands of sensors and actuators, even

in a moderately sized building (150,000 sq-ft). BMSs collect data from these sensors

and provide vertically integrated tools to not only control the day to day operation of

buildings, but also store and visualize data, analyze trends, and even detect faults [2, 51].

Vendors such as Johnson Controls, Siemens and Automated Logic provide pro-

prietary tools to manage the complexity and provide different functions within buildings.

These are often tied to expensive maintenance contracts and have not kept up with the

state of the art in functionality, user interfaces and design. For instance, despite having

fault management as a key function, facilities managers struggle to keep HVAC systems

running efficiently and many faults remain unaddressed [127, 167]. Our own building

managers report being notified of over 10,000 faults a day - most of which are ignored -

thereby causing occupant discomfort, equipment deterioration and energy wastage [167].

This sensor management problem is compounded by lack of interoperability of methods

to identify and manage sensors, and a general lack of tools to analyze large amount of

sensor data generated [127, 112]. As an example, NIST estimates an annual loss of $15.8

billion in the US due to lack of building interoperability standards [76].

Recognizing this need for systems that enable ‘smarter’ buildings, several recent

efforts have attempted to address the problems of interoperability, information integration,

data storage and access control. These efforts primarily propose middleware services

for buildings that gather information from disparate sources of information, including a

multitude of sensor protocols, and make it available to application developers through
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standardized APIs [2, 22, 26, 58]. Based on our work with building infrastructure, we

see that a key missing piece in all these efforts, however, is related to the assumption

that the underlying sensor information is named consistently and accurately. Given the

long lifetime of buildings relative to individual sensors or their networks, it is common

to see sensor data information fall into disuse over time. This is exacerbated by the

current practice of manually mapping sensor information for each building to a particular

data model by the developers and building managers [167]. This manual mapping is

expensive (requiring domain experts), time consuming, and does not generalize since it

needs to be repeated for every vendor, equipment and building. The lack of standardized

and automated naming has become an impediment to the creation and adoption of smart-

building applications by developers that are portable across buildings and deployments.

The problem of automatically naming sensor metadata correctly and mapping the

sensors and actuators to a uniform ontology is not easy. The challenges include the scale

(thousands of endpoints in a moderately sized building), diverse lifetimes of buildings and

BMSes - that are easily over 50 years in academic campuses - leading to heterogeneity

in equipment types, and varying usage requirements. Researchers have identified this

problem [36, 42, 155], and proposed solutions that still require significant manual effort.

At the same time approaches based on using regular expressions (regex) and training

examples [36, 149], do not generalize due to varying inconsistencies in sensor naming

and do not leverage complementary sensor information such as its metadata and time

series sensor data.

To address these challenges, we present Zodiac, a framework to analyze large

numbers of sensors and actuators - including the time-series based data and the sensor

metadata – and map them to a standard naming scheme with minimal human supervision.

To show the efficacy of Zodiac, we applied it to four buildings on the UCSD campus

comprising of over 20,000 end-points in total. To evaluate the accuracy of Zodiac we
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manually labeled the ground truth in terms of the sensor metadata for these sensors. We

show that Zodiac classified sensor types in these buildings with an average accuracy of

98% accuracy using 28% fewer training examples, when compared to a regex based look

up method, and only 15% more manual inputs than a hypothetical oracle algorithm.

The key contributions of our work are as follows.

• We show that the manual effort required to label sensors is significantly reduced

through hierarchical clustering methods, without requiring customized regex that

need building specific domain knowledge.

• We propose an active learning based approach that is effective in automatically

identifying new sensor actuator types. Manual input is automatically requested to

label these examples, and this labeling is expanded to improve coverage.

• We show that Zodiac is able to classify sensor types with high accuracy with

only a small number of additional training examples than an oracle system with

perfect knowledge. As compared to using regex, Zodiac uses significantly less

examples and provides high sensor type classification accuracy, without requiring

the significant manual effort of writing complex regexes.

We plan to release the sensor metadata to encourage researchers to develop

systems that can automatically learn sensor relationships, pending permission from

the university since some of the sensor data and metadata could be potentially privacy

invasive.

7.1 Background

Modern HVAC systems consist of thousands of sensors and actuators that report

information to a building control system for monitoring and maintenance. For example, a
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Table 7.1. Sample points from HVAC system across three buildings on the UCSD
campus. Metadata of points which have the same point type have inconsistencies, and
points which are different point type can have similar metadata.

Vendor Given Name BACnet Name Description Data Type Unit Point Type

BLDG1.N1STFLR.VAV-1NW.VAV-
47.FLOW-SP

NAE-66/N2-1.VAV-
47.FLOW-SP

Flow Setpoint
Analog
Output

Cubic Feet
per Minute

Supply Air
Flow

Setpoint

BLDG2.RM-2819.SUP-FLOW NAE-14/N2 Trunk 2.VAV-
35.SUP-FLOW

Supply Air Flow
Analog
Input

Cubic Feet
per Minute

Supply Air
Flow

BLDG3 1stFl RM-111.SUPFLOW NAE-10/N2-
1.VMA101.SUPFLOW

Process Variable
Analog
Input

Cubic Feet
per Minute

Supply Air
Flow

BLDG2.RM-1704.RM1705-T NAE-14/N2 Trunk 2.VAV-
36.RM1705-T

Room 1705
Temperature

Analog
Input Fahrenheit

Zone Tem-
perature

BLDG3 1stFl RM-135.ZN-T NAE-10/N2-2.VMA129.ZN-
T

Zone
Temperature

conference rm

Analog
Input Fahrenheit

Zone Tem-
perature

BLDG2.WBASEMENT.RM-
B241.PHX-1.ZNT-SP

NAE-65/N2-2.PHX-1.ZNT-
SP

Zone
Temperature

Setpoint

Analog
Output Fahrenheit

Common
Setpoint

room thermostat informs the control system on how much cooling or heating is required,

and helps an operator determine when the room is too hot or cold. In addition, there

are configuration parameters that determine the operating point of the equipment such

as cooling and heating temperature setpoints for each room. In our buildings, these

serve as the higher and lower temperature bounds that the HVAC system tries to adhere

to. Configuration parameters also include actuation commands such as switching ON a

fan, or scheduling of equipment operation. We refer to the sensors and the associated

configuration parameters in the HVAC system as points.

Points report data to their respective equipment controllers, which are embedded

devices that operate the equipment control system, and react to changes in configuration

parameters. Each of these controllers communicate with middle box servers, called

Network Application Engines (NAEs) in Johnson Controls systems, that collect data

from the controllers, and act as the interface between the HVAC system and BMS

software. A subset of the NAEs in our university are connected to a dedicated network

(VLAN), and they expose the points available via the BACnet protocol [41]. We have
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Network 
Application
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Network 
Application

Engine

Network 
Application

Engine
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Equipment
Controller
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Sensor Point
(Config 

parameter)

Supply Flow
Setpoint

Sensor Point
(Sensor)

BACnet

BACnet

Figure 7.1. Figure shows the architecture of HVAC System points and the BACnet
network layout leveraged for data collection

deployed our own BuildingDepot server [22] on this network to collect sensor data from

180,000 points across 55 buildings on the UCSD campus as of July 2015. (Figure 7.1).

For this paper we focus on a subset of these buildings (four) which are of different sizes

and usage modalities. In particular, for these four buildings, comprising of over 20,000

points, we had to manually label the ground truth for the sensor metadata, including their

type. We use this labeled ground truth for both learning and testing of our automated

labeling framework. The ground truth point types were based on a standardized naming

template specified by UCSD contracts and our prior experience working with HVAC

systems and consultation with the campus building managers. led ground truth for both

learning and testing of our automated labeling framework. The ground truth point types

were based on a standardized naming template specified by UCSD contracts and our

prior experience working with HVAC systems and consultation with the campus building

managers.

Each point in BACnet has associated metadata that describes the point and its
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properties. Some of these properties are specified by the BACnet standard, and others

are defined by the vendor. Table 7.1 shows examples of six points along with a subset

of their metadata. It is common for large campuses and vendors to follow a naming

convention specific to the enterprise or campus [8, 17, 135]. For example, according

to our university’s naming standard, “vendor given name” uses a structured format to

describe a point which when split by ‘.’ gives the building name, the floor and room

at which the sensor is located, the type of equipment it belongs to and the ID of the

equipment, and finally, an abbreviation for the type of point. The “description” of the

point gives the point type, and the “data type” gives both the type of data as well as

whether it is an input or output point. As can be observed in Table 7.1, this naming

convention is not strictly followed or enforced. The ordering of words or the punctuation

may change, abbreviations and their description may change for the same point type, and

as these names are entered manually per equipment, there are typographical errors and

inconsistencies.

To standardize naming across buildings, we need to map the existing points into

a standardized ontology [1]. We focus on accurately mapping the building points to

standardized point types in this paper. Table 7.2 shows the number of point types for

the four buildings we use for this paper. Building 1, has 3213 points that come from

154 distinct point types based on the ground truth labeling we do. Therefore, a perfect

oracle algorithm that could label similar point types from a single example would still

require at least 154 examples (provided by a domain expert) to label all the points in this

building. Our goal is to design algorithms that can accurately label all points and require

as few manual labels as possible, preferably close to unique point types in the building.

Furthermore, the algorithm should be able to learn the patterns in one building, and use it

for labeling points in other buildings - that is it should be able to transfer knowledge and

labels.
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As there is a naming convention based on which points are labeled on our campus

and in other enterprises, regex are a natural fit for identification of sensor type [36]. As

per the naming convention, the “description” of the point gives its point type, and the

last part of the “vendor given name” is the abbreviation for the point type. Thus, we

could maintain a mapping of description and point type abbreviations to their respective

ground truth point types, and label points if their description is present in this map.

As new descriptions are discovered, the domain expert is prompted to enter the point

type. For Building 2, there are 922 unique descriptions mapping to 367 point types and

11910 total points. There are multiple descriptions that map to a single point type due

to variations in the description, as the naming convention is not strictly enforced. The

variations in descriptions can occur due to various reasons – spelling errors, additional

information such as room number, or an alternate description that has the same meaning.

For example, the point type “zone temperature” is also written as “zone temp”(shortening

of word), “zone tempeartuer” (spell error), “room temperature” (alternate version), “zone1

temperature” or “zone temperature room 2102”(additional information). To reduce this

variation, we remove special characters and numbers, and use uniform case. The number

of unique descriptions for Building 2 reduce to 527. Some of the points in the dataset

do not have any description, and we use point type abbreviation to label these points.

These abbreviations can sometimes reveal the point type more accurately, as they do not

necessarily vary due to changes in description. “ZN-T” is an example abbreviation of the

point type “zone temperature”. However, these point types themselves vary, with use of

punctuation, numbers or alternate versions of the abbreviation for the same description.

The total number of unique labels with the combination of descriptions and sensor

abbreviations for blank descriptions for Building 2 is 589. Thus, by some preprocessing

the number of unique descriptions for 11910 points in Building 2 have been reduced from

922 to 589. It would take 589 manual inputs from experts to label Building 2, using regex
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to expand labeled examples. Table 7.1 summarizes the variation observed in descriptions

and abbreviations observed across a few example point types. We design our regex to be

highly accurate, and it is possible to reduce the number of manual inputs for a decrease

in manual inputs. For example, regex for “zone temp” could include both descriptions

“zone temperature” and “zone temp” to reduce one manual input, but may also include a

false description “zone temperature setpoint”. Thus, we rely on exact matches for these

descriptions. Figure 7.2 shows the number of points that could be labeled by regex versus

number of points manually labeled for Building 1.

Among possible errors in managing sensor data are sensor naming errors. Other

errors occur when descriptions of certain point types are used interchangeably across

different equipment. For Building 2, 58 points were mislabeled out of 11910 total points.

Note that some points are hard to label even manually because of lack of metadata, and

we mark these points as “unknown”. In Building 2, 23 points were labeled as unknown.

We observe that using regex requires fairly involved domain expertise, in terms

of the naming convention followed, yet can require large amounts of data. Further, regex

fail to exploit additional metadata information such as unit or data type, and the actual

time series of measurements, all of which can give additional clues to identify the type of

point. We next describe our approach to automatically mapping each point to its sensor

type using minimal manual labeling and no domain knowledge.

7.2 Identifying Point Type

To reduce the number of manual labels required, we group or cluster the features

we have for each point. We use hierarchical clustering to improve the grouping of

points with similar metadata. Starting with a small number of labeled points, preferably

belonging to different clusters, we train a model that automatically labels other clusters,

thus achieving point label expansion. When the model determines that a (new) cluster is
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Figure 7.2. Number of points covered by using regex with respect to the number of
sensors that were manually labeled for Building 1. Note that this graph does not account
for domain expertise required to build the regex.

unrelated to any of the ones already labeled, manual labeling is requested from a domain

expert for a member of this new cluster. We show that this process drastically reduces

the manual effort required to assign types to points, with very few errors. Our machine

learning algorithms rely on implementations from Scikit Learn [156].

7.2.1 Hierarchically Clustering Points

As discussed in Section 7.1, regex can group points which are of similar type

thus reducing the manual effort in assigning point types. However writing regex requires

domain knowledge to map point metadata to its type, and are dependent on the naming

convention, building, and equipment providers. Clustering using point metadata offers

two primary advantages over using regex for grouping. First, clustering uses the intrinsic
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Table 7.2. Table lists the characteristics of our four testbed buildings. The number
of examples required to learn point types by an oracle (c) and regex algorithm (d) are
compared with those of Hierarchical clustering (e), and Active Learning (g,i,j).

Building Total # Point # Unique # Accuracy Learning with Hierarchical # Merged Learning with Merged
Name # Points Types Descriptions Clusters % # Manual Accuracy Clusters # Manual Accuracy

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

Bldg
1

3213 154 251 300 98.7% 245 99.3% 191 181 98.3%

Bldg
2

11910 367 589 1105 99.3% 548 94.5% 499 453 96.0%

Bldg
3

1913 156 228 215 97.1% 204 99.8% 174 169 98.8%

Bldg
4

4380 192 316 329 98.8% 299 100% 206 198 99.1%
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Figure 7.3. Example dendrogram of hierarchical clustering. Points whose metadata
features are similar grouped together first and clusters which are closer to each other are
consecutively grouped in the next stages.

similarities in sensor metadata rather than rely on a pre-specified pattern which may only

be able to capture similarity in terms of few pre-defined descriptors. Thus, clustering

can learn patterns using additional metadata such as units and data type, and can group

together points which have minor variations in their metadata. As a result the grouping

mechanism is more robust than an approach based on individual rules created using regex,

and can generalize to a variety of naming conventions. The second advantage is that

clustering based grouping of points is not dependent on domain expertise to extract useful

information from the metadata. We use hierarchical clustering [95] to group points.
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Figure 7.4. Dendrogram for 1000 points in a building. The two dashed lines indicate
thresholds to obtain clusters of points. As the threshold increases the number of clusters
decrease and the accuracy of clustering points of same type decreases.

The features we use for hierarchical clustering are created based on the “vendor

given name”, description, unit, and the type. The strings are tokenized into individual

words and pre-processed to remove special characters and numbers and to convert to

uniform case. A bag of words [183] representation is used for the feature set. Hierarchical

agglomerative clustering computes the distance between a pair of points using their

feature vectors, and merges those points which have the least distance between them.

These clusters are then recursively merged again based on the linkage metric used. We use

complete linkage, which combines clusters after examining each point within the cluster,

and use manhattan distance as the distance metric. The results obtained are similar for

other distance metrics such as euclidean distance and jaccard index. Manhattan distance

is used for our results since it is easier to interpret in terms of the difference between

point features.

Figure 7.3 shows an example dendrogram obtained by hierarchical clustering of

20 points for illustration. Since the metadata used for describing points of the same type

are similar, the distance between their feature vectors is small, and they naturally get

clustered together in the first few stages. As the clusters get bigger, points of different

types also get merged eventually forming one big cluster. An appropriate threshold

distance on the Manhattan distance needs to be identified that would prevent the merging
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of clusters with different point types.

Figure 7.4 shows the dendrogram obtained with hierarchical clustering of 1000

points from one of the buildings in our testbed. The horizontal lines represent choices

for threshold for obtaining point clusters. As we increase the threshold, the number

of points in a cluster increase, and points of different types may be clustered together.

As we decrease the threshold the total number of clusters increases. As the number of

clusters reflect the number of manual checks that may be required for labeling points, we

would like to obtain as few clusters as possible. These trade offs can be quantified using

network motif methods [81], but for this work we pick a threshold from the dendrogram

based on an estimate of the number of manually labeled points. We conservatively pick a

low threshold to minimize the number of errors in clustering, where errors correspond to

points of different types clustering together. As the feature set we use is the same across

buildings, this threshold remains the same for hierarchical clustering of points in other

buildings as well.

We conservatively define a cluster to be erroneous if it contains points of more

than one ground truth point type. So, a cluster and all the points within it are marked

incorrect even if only one out of hundreds of points is included incorrectly. We applied

hierarchical clustering on 11,900 points in Building 2, and obtained 1105 clusters. Only

18 of these clusters were erroneous, giving an accuracy of 99.3% with only 85 points

mislabeled. An error in clustering occurs when the metadata used to describe points of

different type are very similar. As an observed example, two point types “hot water pump

status” and “chilled water pump status” were misclassified because their descriptions

were blank, and only two letters in their entire metadata were different. It was observed

that by examining the errors in clustering, it may be possible to identify errors in metadata

as well. For example, point types “zone temperature” and “zone temperature setpoint” are

input and output points respectively, but both of them were labeled as inputs, causing an
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error in clustering. As discussed earlier, the clustering was able to combine points which

would have been difficult to identify as similar using regex rules. For example, points

with descriptions “zone temperature”, “cold box temperature” and “freezer temperature”

were clustered together as their other metadata are similar. Column (e) of Table 7.2

summarizes the clustering results of four buildings.

From Table 7.2 we see that Building 2 has 367 unique point types (column c), 922

unique descriptions, 589 unique descriptions (column d) after their case is normalized,

numbers are removed and blank descriptions are mapped to abbreviations. Hierarchical

clustering gives 1105 clusters (column e), which is more than domain based heuristics.

However, the clusters obtained from hierarchical clustering capture the inherent variation

in the naming structure, which is different from those obtained using domain knowledge.

This is because hierarchical clustering looks for similarities across all the metadata

of points while regex is based on domain knowledge that specific metadata such as

point description is more indicative of the point type. As we show in Section 7.2.2,

hierarchical clusters can be useful in learning data driven models. The low intra-cluster

error generated by the hierarchical clustering can then be leveraged to efficiently label a

cluster by manually assigning type of one point in each cluster and propagating the same

to other points in the same cluster.

Furthermore, domain knowledge can be used to improve the clustering further.

We combine two clusters (obtained using hierarchical clustering) when the description

of each point across these clusters were identical. As a result of this, for Building

2, the number of unique clusters dropped to 499 (column i) compared to 589 unique

descriptions. Thus, under the availability of the knowledge of which parts of the point

metadata are most important, the number of lookups required can be reduced when

compared to using regex. Figure 7.5 shows the comparison of the clusters obtained

for Building 1. We next show how manual input can be further reduced by learning
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Figure 7.5. Histogram of points for Building 1 by unique descriptions, hierarchical
clustering, merged clustering and ground truth point types. The number of clusters have
been cutoff at 50 out of a maximum of 300

predictive models based on point metadata.

7.2.2 Learning Point Types

The regex based labeling of point types uses a look up table for different kinds of

metadata, and maps it to its type. Hence, it relies on exact matches on point types, and

each variation of metadata needs to be manually verified before it is added to the table.

Although some of this variation in metadata is captured using hierarchical clustering, it

does not comprehensively capture all the variations that occur. For example, suppose

the point type “supply air flow” has two points with descriptions “supply air flow” and

“supply flow feedback”. A look up table based match cannot automatically learn that

“supply air flow feedback” is also a description of the same point type. Thus, there will
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be three separate lookups for “supply air flow”, “supply flow feedback” and “supply air

flow feedback” using the regex method. If the metadata features used by hierarchical

clustering is different for these three points, they would also be put into three separate

clusters.

A data driven model can learn the relationship between metadata and ground

truth point types, and it can give a prediction for metadata whose examples have not been

observed before. Hence, a data driven model is capable of learning that “supply air flow”,

“supply flow feedback” and “supply air flow feedback” belong to the same point type.

Further, sensor timeseries data can be used to learn models (or rules, or regex) even when

a pre-defined format is unknown for using regex. They can also incorporate additional

features for learning the characteristics of a point. We present our timeseries data based

features used for learning a model in Section 7.2.3

To validate our hypothesis that it is possible to learn an effective model that can

use sensor metadata to predict the point type, we micro benchmark the performance

of a Random Forest classifier [116] for Building 1. We use three fold cross-validation

with the training set having at least one example of each point type. We observe that the

Random Forest classifier can successfully identify point types with an average accuracy

of 97.1%.

A key challenge for training a model that can predict point types based on their

metadata is the availability of labeled training points. In order to train a mapping model

with minimal manual input, we use active learning. To begin, we seed the learning with

ten points which have been labeled by a domain expert. When we inspect the next point,

we need to identify if this point is of the same types as the ones we have already have a

label for, and if not, ask the domain expert if it is a new type.

There are two conflicting forces in learning such a model. There are point types

which have metadata, i.e., features, which are very close to an existing point type, but it
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is of a different type. For example, “occupied temperature setpoint” and “unoccupied

temperature setpoint”. For a poorly trained model, these will be misclassified. And then

there are points whose features are very different, but actually are of the same type. For

example, “airflow rate” and “supply flow feedback”. The model may mark one of these

as a new type, and hence, it increases the number of manual inputs required.

To check whether an unseen point is of a new type, we can assign a probability

of the point belonging to one of the existing classes (i.e., point types). We can build a

generative model for each of the point types seen so far, and use this model to assign

this probability. We experimented with Gaussian Mixture model [148], Multinomial

Naive Bayes model [103] and one class SVM [121], and they did not work well with

our dataset. A discriminative model on the other hand would give the probability of a

point mapping to one of the existing classes. If the model assigns low probability to all

the existing classes, then there is a good chance that this is of new point type. In line

with this intuition, the Random Forest classifier [116] consistently gives low probability

to a point of new type in our dataset. Hence, we use the Random Forest classifier to

determine if we need to ask the domain expert for the correct label.

To label the points of a building, we first cluster the points using hierarchical

clustering, and assume the points within a cluster are of the same type (Section 7.2.1).

We ask for labels for 10 randomly chosen points from distinct clusters from the domain

expert, propagate these labels to all the points in their respective clusters and build a

Random Forest classifier based on these points. Next, we obtain the prediction probability

for a new point. If its probability is high (¿0.9), we assume the prediction to be correct,

and add the points in the corresponding cluster to the training set. If the probability is

low (¡0.2), we ask the domain expert for the point type. We iteratively retrain the model

using the labels learned, and add more points to the cluster. When there are no more

points which satisfy the upper/lower probability thresholds, we decrease/increase the
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thresholds respectively, to learn more points.

Figure 7.6 shows the results for the random forest based active learning for

Building 1. The number of manual inputs required for all points of Building 1 is 245, and

the accuracy of labeling with the obtained random forest classifier is 99.3%. Thus, our

random forest based active learner is able to learn the mapping of points in Building 1

with 6 fewer examples than regex methods (251 examples, Figure 7.2) without any prior

knowledge about the structure of the naming convention. When we used the merged

clusters obtained by combining unique descriptions and hierarchical clusters (Section

7.2.1), the number of manual examples required dropped to 181, with an accuracy of

98.3%. Columns (g, h, j, k) of Table 7.2 summarizes the results for active learning

methods on four buildings. A limitation of our algorithm is that learning rate with manual

inputs is linear as seen in Figure 7.6. However, a better algorithm could be devised that

takes advantage of frequently occurring point types (Figure 7.10) to increase the learning

rate.

Learning Across Multiple Buildings

With regex and look up tables, it is easy to use mapping from one building to

learn the mapping of another. Some point types such as “zone temperature” and “supply

air flow” are common across buildings, and once their mapping is learned, points of the

same type in other buildings can be labeled. To test how much information can be learned

across buildings using regex, we created a look up table using ground truth point types

of Building 2 and used it to label points of Building 1. Figure 7.7 shows the learning

curve obtained for Building 1. All the points in the building were learned using 176

manual inputs, a reduction of 75 labels compared to regex based learning without any

prior knowledge. However, as the description of the two buildings do not follow the exact

same terminology, some errors are introduced, and the accuracy drops to 99.6%.
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Figure 7.6. Learning curve of random forest based active learning algorithm. It required
manual labeling of 245 points for labeling 3213 points in Building 1 with accuracy of
99.3%.

The active learning method used by Zodiac also learns the mapping between

point metadata and its type, it should be able to label points of the same type even across

different buildings as their metadata will be similar. To evaluate the transfer learning

capability of Zodiac, we first built a random forest classifier using ground truth point

types of Building 2, and used the iterative learning method to label points of Building

1. We again used 10 randomly chosen points as seed examples, and the feature vector

for the classifier consists of bag of words of point metadata from both buildings. Figure

7.8 shows the learning curve obtained for mapping of Building 1 points. 173 manual

inputs were used for learning, an improvement of 51 manual labels compared to learning

without any prior experience. Thus, the active learning method is able to successfully

learn from prior experience without domain knowledge, and is about as successful as the
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Figure 7.7. Learning curve of regex based naming across multiple buildings. It requires
manual labels for 176 points in Building 1 (total 3213 points) with accuracy of 99.6%.

regex method. The accuracy of classification was 99.5%, and hence, the learning model

is able to label points using information from another building. This is an initial result

based on one example, and we are in the process of evaluating transfer learning across

other buildings.

7.2.3 Using Time Series Data

To improve the accuracy of point labeling and to further reduce the manual input,

we next try and leverage the time series data from points. This highlights an advantage

of our learning based model, as it can incorporate any additional information that is

available.

In general, time series can be divided into episodes, where each episode is a

sample. For example, in many sensor applications, such as building HVAC, there is a
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Figure 7.8. Learning curve of random forest based active learning across multiple
buildings. It required manual labels for 173 points in Building 1 (total 3213 points) with
accuracy of 99.5%.

natural diurnal variation leading to day length episodes. In order to leverage the time

series data, the problem we are faced with is one of time series classification [77]. This

is a problem that has been well studied in the data mining literature, see for example

[101, 117] for representative techniques and applications. However, these methods often

exclusively focus on coarse patterns or motifs that can be used to distinguish time series

generated from very different processes. In our case, due to the fact that most points

are associated with a common HVAC process - with common diurnal variation and

dependence on external temperature - many time series will have similar patterns. Time

series classification based on fine grained time series features arises in applications

like speaker recognition [33] and signature based appliance classification [88]. In our

experiments we combine features that capture many levels of the time series structure.
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We use four classes of features, namely, scale based, pattern based, texture based

and shape based features. Scale based features capture the range of values that the point

readings can take. We use mean, max, min, upper and lower quartiles and range. For

example, the mean and range of sensor measurements can tell us if a sensor measures

supply air temperature or supply water temperature. Pattern based features capture the

structure of repetitive sub-patterns in the time series. We use three Haar wavelet and

three Fourier coefficients from the power spectral density of the signal as features. Shape

based features capture the coarse structure of the time series, but are insensitive to fine

structure. We use a piece-wise constant model of the time series, as shown in Figure 7.9,

and use the location and magnitude of top two components as features. The error variance

between the piece-wise constant model and the true signal is used as a texture feature.

Texture based features capture the roughness, smoothness and other fine scale features of

the time series. Texture based feature have a history in image processing applications,

but have found limited application in time series classification. However, we find that the

texture based features we use are particularly useful in distinguishing between points like

supply flow - which is rough - and their corresponding set-points which are smooth. In

addition to the error variance mentioned above, we use the variance of the difference and

second difference between consecutive samples, max variation, number of up and down

changes along with an edge entropy measure. The edge entropy measure is intended to

capture the regularity of the time series across multiple episodes (a day in our case). For

each episode, we capture the times at which large changes in value occur, and accumulate

these as counts across episodes. We normalize these counts to sum to one, and compute

the entropy of the resulting probability distribution. If this entropy is high, we can infer

that the point either has limited structure within each episode or between episodes - a

useful feature for point data classification.

As described, we select six features of each type, for a net total of 24 data



167

12 AM 12 PM 12 AM 12 PM 12 AM 12 PM
Time (Hour)

20

30

40

50

60

70

80
A

ir
 F

lo
w

 (
cu

. 
ft

/m
in

)

True Air flow Piece-wise Constant Approximation

Figure 7.9. Piece-wise constant approximation of time series

dependent time series features. While the selection and design of more application

specific features may be useful, we find that these features perform well in practice. To test

this, we evaluate the time series data only, metadata only and time series data+metadata

features on a separate building with 5857 points divided into 198 unique types. The

distribution of point frequencies is shown in Figure 7.10.

The accuracy of the three methods, as a function of the number of labeled points

of each type available is shown in Figure 7.11. We observe that the time series or data

based features are not very effective on their own. This is because of two reasons. There

are some point combinations ‘supply air flow setpoint’ and ‘cooling minimum flow’



168

1 4 7 10 13 16 19 22 25 28 100250
Occurances of Sensor

0

10

20

30

40

50

60

70

N
u
m

b
e
r 

o
f 

S
e
n
so

rs

Figure 7.10. Relative occurrence counts of different point types in a building

which are essentially identical as time series in the way our buildings are configured.

Secondly, there are many points - such as some set points and heating commands that

never change (are always 0) hence are again impossible to differentiate using data alone.

Finally, there are some points like ‘Heating Command’ and ‘Cooling Command’ that are

very similar at coarse and fine time scales (taking values between 0 and 1, sharp changes

at apparently arbitrary points) that are essentially impossible to distinguish using the

features we use. We note that they can be distinguished using point inter-relationships

(heating command will be high when zone temperature is too low), and does suggest

a direction of future work. However, in Figure 7.11 we do see that using point data is

able to provide significant boost to accuracy over using point metadata alone, particularly

when only a few labeled examples are available - exactly the regime that is of interest to

us. This demonstrates potential of using additional information such as point time series
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Figure 7.11. Comparison of text (i.e., point metadata) and (time series) data based
learning methods. The x-axis represents the number of labels required for each point type.
We observe significant improvement when both metadata and time series data features
are used together.

data to improve the classification models.

We add the time series data features to the metadata features to test if they help

our active learning algorithm. Figure 7.12 shows the learning curve of the active learning

algorithm for Building 1 with 3213 points and 300 hierarchical clusters. The additional

data features lead to a slight drop in accuracy (98% vs 99.3%) and an increase in manual

examples required (261 vs 245). We observed similar results when we used merged

clusters for Building 1. As the random forest based active learning algorithm is based on

confidence of label classification, the result indicates that the added data features led to

ambiguity and decreased the confidence threshold. Hence, additional manual inputs are

solicited until lower thresholds can be included. It is possible that a better active learning
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Figure 7.12. Learning curve of random forest based active learning algorithm with
additional timeseries data features for Building 1 with use of hierarchical clusters. It
required manual labeling of 261 points for labeling 3213 points with accuracy of 98%.

algorithm can incorporate data features with improved accuracy. Moreover in the absence

of point metadata, the point time series data can be leveraged to reduce manual labeling.

7.3 Related Work

The organization of sensors using standardized ontologies has been recognized in

literature as a key component for building useful, reusable applications [50, 152, 161].

OntoSensor [152] is a system that labels sensors using an ontology and describes them

using a UML like language for representation and querying. Within the buildings

domain, mapping of sensors, or points, to standardized ontologies is considered to

be critical for information re-usability and development of apps that improve energy

efficiency [42, 82, 111, 149]. Standards are being developed for naming of points in the
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HVAC system [1, 111], and system architectures have been proposed that build upon

a standardized information ontology to build applications that understand contextual

information [82]. However, none of these works focus on mapping of existing points in a

building to a standard ontology.

Schumann et al. [155] identify the mapping of existing points to a standard format

to be a challenge, and propose artificial intelligence based methods such as hierarchical

clustering for learning such a mapping automatically. However, they do not implement or

evaluate their proposed method on real sensors. Reinisch et al. [149] propose a platform

that facilitates the mapping of points to a standard ontology. They do not, however, learn

the mapping, and still rely on manual inputs. Bhattacharya et al. [36] address the problem

of organizing points to a standard template, and their work is closest to our work. They

use a synthesis technique that constructs a metadata structure using transformation rules,

and evaluate their technique on point metadata from several building in their university.

We propose a different approach to the same problem, with use of learning based methods.

The advantage of using a mixture of hierarchical clustering and active learning based

methods is that we can use known information about the points to learn their model. For

example, we used information such as unit, data type, and characteristics of data variation

as features in our model. In contrast, the approach taken by Bhattacharya et al. [36]

requires a human to recognize and formulate the patterns to identify sensor point types.

In machine learning terminology, the learning paradigm where both labeled and

unlabeled points are available is called semi-supervised learning [44]. Active learning

is a form of semi-supervised learning where the learning algorithm presents unlabeled

points to an expert who returns labels for them [48]. It is expected that efficient querying

algorithms will require fewer labeled samples. We consider pool based active learning

algorithms, which exploit situations where a small set of labeled data and a large pool

of unlabeled data are available [114]. Our active learning algorithms are uncertainty
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based - that is we query points we are least confident about. However, we modify these

algorithms to be partly density based [133], i.e., we select which points to query based

on cluster sizes. Based on the intuition that sensors in buildings and related large scale

applications are spatio-temporally organized, we incorporate ideas from hierarchical

active learning [55]. Finally, we note that the use of random forest ensembles with

uncertainty based sampling is related to the idea of Query-by-Committee [159]. While

many variants of active and interactive learning have been proposed in the literature [158],

we find that the algorithms we have chosen work well in practice for our application.

Investigating other alternatives remains an interesting direction for future work.

7.4 Limitations and Future Work

We have shown that it is possible to learn the naming patterns in HVAC systems,

and classify points according to their types with minimal supervision. We have tried

our methodology across four buildings with promising results. Our dataset, however, is

limited to the UC San Diego’s university campus, and most of the equipment is installed

by one vendor. The point naming standards used across many different institutions are

similar to ours [8, 17, 135], but it remains to be seen how our algorithm will generalize

to a different set of equipment, vendors and facilities management.

Standardized point names are are important step towards portable smart building

applications, however there is additional domain specific context that is not captured by

uniform naming. For example, points need to be categorized according to the equipment

they belong to, and the type of equipment needs to be identified for applications like fault

detection and energy analysis. With our text metadata from BACnet, we used equipment

specific features to identify equipment ID and equipment type. For buildings with well

labeled points, hierarchical clustering successfully grouped points by equipment and

clustered the equipment by their type. However, many buildings had point metadata that
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lacked equipment information or had poor equipment naming, and hierarchical clustering

failed for these buildings because the metadata features were not adequate to cluster

points by their equipment type. In future work, we will pursue methods that would map

the points to their respective equipment, identify the equipment and learn the relationship

between the points.

An example of such a problem is the mapping between VAV boxes and AHUs

in a building HVAC system. Many buildings in our campus do not have this mapping

information in the metadata, and facilities managers resort to manually maintained

documents, or scrutinizing building architectural diagrams. In preliminary experiments,

we attempted to find this mapping using data driven methods that identify the correlation

between AHU behavior and the corresponding VAVs served by that AHU. However,

the variation in temperature or airflow data was inadequate to capture this correlation.

One promising approach is to use actuation of HVAC system according to a controlled

sequence to learn such relationship between equipment across the building empirically.

Understanding such domain specific context and standardized representation of

this context is key to developing portable applications that provide useful insights based

on sensor information and provide value added services. To encourage research for devel-

opment of methods that automatically learn relationship between points and map them to

a standardized representation, we release the dataset consisting of metadata of 180,000

points across 55 buildings in the URL: http://www.synergylabs.org/datasets/zodiac.html.

7.5 Summary

Heterogeneity in sensor naming and metadata are an impediment to development

of reusable applications in large scale sensor deployments. We illustrate the scale

and challenges in mapping sensors in HVAC systems in our university buildings to a

standardized naming schema. Regular expression based methods can map sensors to their
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respective types but tend to be too sensitive to minor variations in the sensor metadata and

require substantial domain expertise. Our proposed framework, Zodiac, uses hierarchical

clustering for grouping the sensors based on the inherent patterns in the sensor metadata.

We applied hierarchical clustering on four buildings in our campus, and the clusters were

grouped together based on sensor type with an average accuracy of 98% as compared

to the manually labelled ground truth. Zodiac uses the clusters to train a random forest

classifier using active learning. Our active learning algorithm labeled sensors across four

buildings to their respective types with an average accuracy of 98% requiring 27% fewer

ground truth labels than regular expression based methods.

Chapter 7, in part, is a reprint of the material as it appears in Proceedings of ACM

Conference on Embedded Systems For Energy-Efficient Built Environments (BuildSys

’15), 2015 by authors Bharathan Balaji, Chetan Verma, Balakrishnan Narayanaswamy

and Yuvraj Agarwal with the title “Zodiac: Organizing Large Deployment of Sensors to

Create Reusable Applications for Buildings”. The dissertation author was the primary

investigator and author of this paper.



Chapter 8

Future Work

Building software infrastructure systems such as BuildingDepot [22] have in-

tegrated information from different subsystems in buildings and made it available for

developers using published APIs. Several similar systems have been developed recently.

sMAP [57] provides an API for accessing building sensor timeseries data. Building

Application Stack connects different components in the building and uses a domain

specific language for ease software development [109]. BOSS [58] provides support

for transactions and locking mechanisms to support actuation by software applications.

NiagaraAX by Tridium [2] integrates with contemporary BMSes and supports third party

applications. With the advent of these systems, it is now possible to access building

information that was spread across disparate systems.

Many innovative software applications have been proposed that builds on top of

these building management infrastructure [37]. However, several obstacles remain for

adoption of these software solutions on a wide scale. Although building sensor data is

available, they do not follow a standard naming scheme. There are multiple building

naming standards such as IFC, Green Building XML and Haystack, but these do not

adequately address the requirements of recent software applications [37]. Hence, there is

a need for a standard building ontology that can map existing building information as

well as support software development.
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Several algorithms have been proposed recently that map sensors in existing

building sensors to a standard format – Zodiac [31] from our research group, Building

Adapter [87], Bhattacharya et al. [38] and Gao et al. [74]. These proposed solutions are a

first step as they standardized sensors names, equipment type and location information.

However, building sensor ontology need to encompass relationship between sensors

and equipment to present a holistic view of the system, and developers need tools for

discovering this ontology. Preliminary work has been proposed by Pritoni et al. [146]

and Koh et al. [105] from our research group that use perturbations in the control system

to discover building ontology information in existing buildings.

To enable rapid development and deployment of software applications, developers

need to be supported with development and debugging tools. Modern smartphone

application developers are provided with development environment and emulation tools,

and that has led to a plethora of applications available for users. Similar tools need to be

developed to tackle the complexity of buildings with thousands of sensors and actuators.

Software applications developed recently deploy and test directly on buidings which is

both expensive and time consuming. Apple iOS HomeKit [13] has taken initial steps

towards this direction for home environments with support for networked devices such

as lights and thermostats. Considerable research is necessary to expand such tools for

commercial buildings.



Chapter 9

Conclusion

Buildings are an essential part of our society. We spend majority of our time

inside buildings and we use them to protect many of our resources from the environment.

Our needs have evolved over time, and buildings have changed to meet our diverse

requirements. This evolution is evidenced by advances in building infrastructure in the

past century. Modern buildings consist of various systems such as HVAC, security, water

and fire safety. However, these systems are designed and operated as stand alone units.

But, a building is an integrated entity serving the needs of its owners, and the individual

systems can better serve the needs of the owner if they work together as a single entity.

This dissertation has focused on the energy efficiency of buildings as a primary

requirement. The overall energy consumption of the building depends on the interplay

of all the different systems deployed in buildings, and hence, connecting these different

systems lead to improvements in building energy efficiency. Therefore, instead of

focusing on improvements in a single system or in deployment of additional hardware

infrastructure which increase management overhead, our thesis focuses on software

infrastructure that integrates information from different systems, and exploits them for

implementing energy saving solutions.

We have presented four software systems in this dissertation:

177
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• An occupancy based control of HVAC system that infers occupancy using existing

WiFi infrastructure in buildings.

• An energy apportionment system that estimates zone level energy consumption by

applying heat transfer equation to available sensor data.

• A web application designed to improve occupant interaction with the HVAC system.

It allows occupants to manage their local settings and send complaints to building

manager.

• A fault management system that addresses the limitations of the current building

management tools.

With real-world implementation and evaluation of these systems we have illus-

trated that software solutions can indeed lead to significant energy savings. In addition,

they can improve occupant comfort and ease maintenance of buildings. We have also

elucidated the challenges involved in deployment of software systems in modern building

infrastructure. To truly enable rapid development and deployment of software systems,

we need to create the infrastructure that assists software developers. For example, ma-

chine readable formats of building information will standardize access of heterogenous

information and improve information flow. Similarly, emulation tools will help devel-

opers test ideas in a virtual environment before expensive real-world deployments are

made.

A first step towards this direction is normalization of information across different

buildings. We presented our active learning based methodology of mapping existing

building metadata to a standard format, so that developers do not need to repeat this

mapping for each building they encounter.

My vision is to incorporate software and communication across systems as a core

component of modern buildings. Given a suitable software infrastructure, we can deploy
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software applications that are customized to meet the requirements of the occupants or

the building owner. Such an infrastructure is already in place for software applications in

smartphones and laptops, and their benefits can be seen in all aspects of our society. With

proliferation of such cyber physical systems, not only will we able to make our buildings

smarter, but by connecting buildings and other types of infrastructure together, we can

create entire societies that can mitigate our current problems and evolve for our future

needs.
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