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AN ANALYSIS OF SELF-AMPLIFIED SPONTANEOUS EMISSION 

Abstract 

Kwang-Je Kim 

Center for X-ray Optics 
Lawrence Berkeley Laboratory 

University of California 
Berkeley, California 94720 

November 1985 

The following analysis develops a classical theo~y of how a signal 

evolves from the initial incoherent spontaneous emission in long undu-

lators. The theory is based on the coupled Klimontovich-Maxwell equa-

tions. Formulas for tt1e radiated power, spectral characteristics and 

electron correlations are derived. The saturation due to nonlinear 

effects is studied using a quasi-linear extension of the theory. The 

results agree reasonably well with the recent Livermore experiment in 

the rnicrowave range. Performance of a possible high-gain free electron 

laser in a short-wavelength region is evaluated. 

I. Introduction 

As an electron beam passes through an undulator, the initial 

random field of spontaneous radiation becomes amplified in intensity 

and enhanced in coherence characteristics. This process can be called 

self-amplified spontaneous emission (SASE), and it arises because the 

interaction between the radiation field and the beam causes a bunching 

1n the beam. An understanding of SASE is important in characterizing 

the performance of a high-gain free electron laser, operating in a 

single-pass mode to circumvent the need for mirrors, in the short-

wavelength region [1]. 
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To analyze SASE, it is necessary to generalize the usual free 

electron laser (FEL) analysis in two respects. First, a continuum of 

the frequency range around the resonant frequency must be explored 

since the spectrum characteristics change as the system evolves. 

Second, the discreteness of the electron distribution must be taken 

into account, since otherwise spontaneous emission is not possible. 

This is accomplished in this paper by working with the Klimontovich 

distribution function [2], rather than Vlasov•s. The coupled 

Klimontovich-Maxwell equations are solved by perturbation theory, in 

which deviations of the fine-grained distribution from the smooth 

average is regarded as being a first-order quantity. One finds that 

the radiation_ field is composed of two terms. The first term is pro

portional to the input coherent signal and describes the well-known 

FEL gain process. The second term is proportional to the sum of ran

dom phase factors and represents the SASE process. 

The radiation intensity corresponding to the SASE term reduces to 

the well-known result for spontaneous emission in the limit of small 

interaction. In the regime of exponential growth, one obtains an 

explicit formula for the power and the spectral characteristics of the 

SASE radiation, as well as insights into the correlation properties of 

the electron beam distribution. The exponential growth saturates 

eventually due to nonlinear effects, which can be analyzed in a quasi

linear approximation [3]. These results are then used to discuss the 

recent microwave FEL experiment at livermore [4] and to assess the 

performance of a high-gain, single-pass FEL in the short-wavelength 

region [5]. 

• 
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II. The Klimontovich-Maxwell Equations 

The average energy of the electron beam will be denoted by mc 2
y

0 

(m =electron mass, c =velocity of light). The beam travels along 

the z-direction through an undulator of period length Au with a peak 

magnetic field 8
0

. The resonant frequency w1 and the corresponding 

wavelength A1 are given by 

where K = eB
0

/mcku, e = electron charge and ku = 2n/Au· (MKS units 

are used throughout this paper.) For a one-dimensional case, the 

electric field can be represented by 

w .~ ivw
1
(t - z/c) 

E(z,t) = -
1-1 dv A'(v,z) e 

/2'1T 
-~ 

(1) 

( 2) 

A' in Eq. (2) is a complex amplitude slowly varying in z and is peaked 

around lvl-1. Although the theory can be readily generalized to higher 

harmonic, the focus in this paper will be the fundamental frequency. 

The distance z from the undulator entrance will be chosen as the 

independent variable. The dependent variables describing the motion 

of the i-th electron are 

( 3) 



4 

ni = ( 4) 

Here ti(z) is the time at which the electron passes through z, averaged 

over the wiggling motion. The equations of motion, usually known as 

the pendulum equations, are as follows: 

dni = e K[JJ] A(e.) 
dz 2y; mc 2 1 

Here 

-illvk z 
A(v} = A'(v) e u 

llv = v - 1 

The Klimontovich distribution function is 

F(e,n,z) = ~n L tS(e- ei(z)) o(n- ni(z)) 
A. i 

= V(n) + oF(e,n,z) 

( 5) 

( 6) 

(7} 

( 8) 

( 9) 

(10) 

(11) 

• 
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Here Nx is.the number of electrons within a longitudinal distance 

equal to x
1 

and V(n) is the smoothed initial distribution function 

(normalized so that J V dn = 1), the distribution in e being assumed 

uniform. ~F in Eq. (11) contains the deviation from the smooth back-

ground, as well as the effects of the interaction, and will be treated 

as a small, first-order quantity. The continuity equation in e-n 

space becomes 

(
_a + 2k n i__) ~F + eK[JJ] A(e) _a V(n) = 0 
az u ae 2 2 mc2 an 

Yo 

(12) 

In equation (12), a term containing the product A(e)~F has been dropped 

as being a second-order term. Later, the term will be retained to 

study the saturation effects in a quasi-linear theory. 

The Maxwell equation is 

where j is the current density, Z 
0 

1 I i 9 ~F(v,n) =- e " 
.12; 

~F(e,n) de 

III. The Solutions 

377 Ohms and 

The coupled Klimontovich-Maxwell equations, Eqs. (12) and (13), 

(13) 

(14) 

are identical in structure to the usual Vlasov-Maxwell equations and 

can be solved in linear theory with the Laplace-transform technique. 

One obtains 
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f e
-2ikuzx ( 

1
. ) 

A( ) dx A( O) + d dn oF(v,n,O) 
" ' z = ~ 0 ( x , v ) v ' X + nv 

where d = K[JJ]Z
0
j/8iy

0
w1ku. The contour integration in Eq. (15) 

effects the inverse Laplace transformation and should enclose the 

( 15) 

appropriate poles in the integrand. In addition to poles of kinematic 

origin, the poles obtained by solving the dispersion relation 

tw 3! dV/dn D(x,v) = x + --2 + o dn = 0 x + nv (16) 

determine the dynamics of the system. Here r is a dimensionless param-

eter characterizing the interaction strength [6] and is given by 

(17) 

Equation (16) is essentially the cubic equation known in the litera-

ture [7], but generalized to include the effect of the beam energy 

spread and the detuning in frequency. 

Equation (15) gives the solution in terms of the initial condition 

A(v,O) and oF(v,n,O). The term proportional to the former describes 

the amplification of the coherent input signal and reproduces the 

well-known theory of FEL interaction [8]. Since the main purpose of 

this paper is to study the SASE process, the first term will not be 

considered further. The second term, the SASE term, contains a sum of 

stochastic phase factors which vanishes if averaged over macroscopic-

ally equivalent ensembles. However, physically meaningful quantities 

are quadratic in fields and can be computed by using the relation [2] 

• 
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df(e.n,O) 6F(e',n',0)> = ~ 11 6(e- a•) 6 (n- n') V(n), (18) 
>.. 

where the angular brackets denote the ensemble average. 

The spectral distribution of power is given by 

dP 2ca ( ). ~ = z £ <A v,Z A*(v,Z)> 
w 0 

( 19) 

where a is the beam cross-sectional area and £is the bunch length. 

IV. Spontaneous Radiation 

By dropping the last term in the dispersion relation (Eq. (16)), 

Eq. (15) and the power spectrum given by Eq. (19) are easy to evaluate. 

To compare the result of evaluating Eq. (19) with a known formula one 

multiplies dP/dw by 62 (¢) to obtain the angular distribution. In the 

forward direction, the factor becomes 62(0) = a/>..f. One obtains 

Z0 ( K[JJ] )2 2 I J (sin kuz(nv-L'lv/2))
2 

. = -- y - dnV(n) 
16n3 1 + K2/2 e nv - L'lv/2 , 

(20) 

where I is the beam current aj. Equation (20) is well-known in the 

theory of undulator radiation [9]. 

V. SASE in the Exponential Gain Regime 

In general, the dispersion relation has a solution x = p~, with a 

positive imaginary part xi that gives rise to an exponentially grow

ing intensity term proportional to exp(4kuxiz). The spectral property 

is determined by the behavior of xi as a function of detuning L'lv. For 
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a given momentum distribution V(n), let x1m be the maximum value of 

xi at ~v = ~vm. Thus the growth is strongest at frequency w = wm = 

w1 (1 + ~vm)' ana the spectral shape is obtained by studying the behav

ior of x1 near ~v = ~vm. One obtains 

dP 
Ow= p 

where 

= fdn V(n)/ 1~ + n/PI 2 

g ldD/dxl 2 
X = P~ 

In Eq. (21) a is the rms value of the relative bandwidth. For the 
v 

ideal case, where V(n) = o(n), one obtains [10] 

1 m 1:3 
g = -9- XI = p -2- and 0 

v 

The exponential growth of SASE saturates when pZ/Au becomes of 

order unity, as will be seen later. The bandwidth of SASE in the 

exponentially growing region is smaller by a factor (pZ/A )112 than u . 

( 21 ) 

( 22) 

( 23) 

( 24) 

that of the spontaneous radiation, which is about A /z. However, the . . u 

bandwidths of SASE and the spontaneous radiation are comparable at 

saturation. 

For a more general V(n), the dispersion relation must be solved 

m numerically to obtain x1 , etc. The results for a rectangular 
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distribution are summarized in Fig. (1) and Fig. (2). One notices that 

the growth rate becomes negligible when the width of V(n) is much 

larger than P· 

The total power is obtained by integration, whereby one obtains 
• 

(25) 

2 Here Pbeam =me y
0 

I/e is the power contained in the electron beam. 

VI. Correlation 

By studying the solution for 6F(9,n,z), one obtains the correlation 

function in the exponential growth region 

C(9,9' ,z) = JJ dndn' <6F(9,n,z) d(9' ,n' ,z)> 

2& a 
\) 

-(T 2 ( 9 - 9 I ) 2 /2 
eT e v ( ') cos 9 - 9 (26) 

One sees that the correlation, modulated with the periodicity of the 

radiation wavelength, decreases as the distance between the electrons 

increases. 

VII. Saturation and Quasi-linear Theory 

~ The exponential growth cannot continue indefinitely, and the power 

must saturate at a certain level. The effect is due to nonlinear 
'•' 

effects and can be studied by a quasi-linear extension of the linear 

theory [3]. For this purpose, one replaces V(n) in Eq. (11) by a 
-z-dependent function V(n,z) which is obtained from <F> by averaging 

over 9 as follows: 
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A1 J -V(n,z) ; 2n£ de <F (e,n,z)> 

The continuity equation for V(n,z) is 

'{:!_+ eK a J * - dv(A o F + c.c.) ; 0 az 2y~mc£ an \) \) 

In a quasi-linear theory, one solves the linear equations (12) and 

(13), treating V as z-independent, and obtains A and oF as func-
" \) 

(27) 

(28) 

tionals of V. Inserting these into Eq. (28), one obtains a nonlinear 

Fokker-Planck equation which determines th~ behavior of V as a function 

of z. In this way it is found that the average value of n decreases 

so as to conserve the total energy of the radiation-electron beam sys-

tern. It is also found that the rms spread a of n increases as [11] 
n 

On the other hand, the growth rate becomes negligible when a 
n 

>> p. 

Thus, SASE saturates when the factor in the bracket in Eq. (29) 

(29) 

becomes of order unity. In view of Eq. (25), the saturated power is 

p - p 
sat P beam (30) 

This relation was derived before using an intuitive argument [6]. 

VII. Comparison with the Livermore Experiment 

A high-gain FEL experiment in the microwave region has been carried 

out at Livermore [4]. Using the parameters of the experiment {y
0 

= 7, 

Au ; 9.8 em, A ; 8.67 mm, I ; 850 A, K ; 2.5/2, ~n =full width of a 

.. 
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rectangular momentum distribution= 6.4%, a= 3 x 10/2 cm2), one 

obtains o = 5.66 x 10-2 and the corresponding growth rate of 42.1 dB/m. 

The observed growth rate is 35 dB/m which is smaller than that pre

dicted because of space charge effects. Taking the observed growth 

rate and computing the coefficient in Eq. (25), one finds 

Figure (3) compares thts formula with the experimental result. For 

small z, the theoretical values are less than the experimental points, 

which could be due to the presence of other modes, e.g., higher 

harmonics. For z >2m the theoretical value is higher, which could be 

due to the saturation effects. 

VIII. A High-Gain FEL at 400 ~ 

A high-gain FEL operating in a special by-pass of an optimized 

storage ring is a promising way to achieve high-power radiation at 

short wavelengths [1]. A design of such a system for a 400 ~ FEL is 

described in Ref. [5], where o - 1.5 x 10-3 for an electron beam with 

I - 200 A and an rms momentum spread of 2%, which translates to a full 

width of 7% for a rectangular distribution. Such a system would gen-

erate about 100 MW of peak power, saturated at around 1000 undulator 

periods. The relative band width of the spectrum would be around 10-3. 

IX. Conclusion 

The theory presented here is a consistent, classical treatment of 

the development of a coherent signal from initial noise [12]. The 

theory is one-dimensional and applicable to the situation where the 
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radiation is guided, such as the Livermore experiment. In general, 

however, the three-dimensional aspects, such as diffraction and 

finite-beam-size effects, could play an important role [13,14]. These 

and other extensions of the theory are currently under investigation. 
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Figure Captions 

Fig. 1. The solution of the dispersion relation for arbitrary 

harmonic number n (n = 1 in the rest of this paper). The 

curves show the values of x1/pn 113 as functions of 

6w/(w1nn 113 ) for various values of 8 = 6n n213 tn. The 

momentum distribution is assumed to be rectangular; V(n) 

1/6n for In I < 6n/2 and V(n) = 0 for In I ~ 6n/2. 

Fig. 2. The bet1avior of ~lax( v1) 
rn = x1tP and g ( Eq. (23)) as 

functions of 6n/p. 

= 

Fig. 3. A comparison of the experimental results (solid dots) and the 

theoretical prediction (dotted line) corresponding to the 

Livermore experiment (Ref. [4]). 
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