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ABSTRACT OF THE THESIS 

 

Evaluating the effectiveness of ground motion intensity measures for structural response 

simulation using statistical and causal inferencing 

 

by 

 

Henry Burton 

Master of Science in Statistics 

University of California, Los Angeles, 2022 

Professor Yingnian Wu, Chair 

 

The sufficiency criterion has long been used to evaluate the effectiveness of a ground motion 

intensity measure (𝐼𝑀) in capturing the link between ground shaking and structural response. 

However, a typical sufficiency-based evaluation of an 𝐼𝑀 only tests for the possibility of linear 

dependency and the interaction among the upstream parameters is not considered. To address these 

and other limitations, two new 𝐼𝑀 evaluation methodologies are proposed. The first methodology 

considers the loss of statistical information when an 𝐼𝑀 is used to predict the engineering demand 

parameters (𝐸𝐷𝑃𝑠)  without including the upstream parameters (i.e., earthquake magnitude, 

source-to-site distance and epsilon). The best 𝐼𝑀 is the one that minimizes the loss of predictive 

performance when it is the only model input relative to when it is used as a predictor together with 

the upstream parameters. To consider the possible interactive effects, a machine learning model is 

used when both the 𝐼𝑀 and upstream parameters are used as inputs. The second methodology uses 
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a causal inference approach where the effect of the 𝐼𝑀 on the 𝐸𝐷𝑃 distribution is quantified while 

considering the earthquake magnitude, source-to-site distance and epsilon as control variables. The 

double machine learning approach is implemented for this purpose. The two methodologies are 

applied to a set of five steel specifical moment resisting frames. The results show that the statistical 

loss-based and causal inferencing approaches produce results that are more conclusive than the 

sufficiency-based approach and more consistent with the physical laws that govern the 𝐼𝑀-𝐸𝐷𝑃 

relationship. 
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Chapter 1 

Introduction 

 

1.1 Background and Motivation 

Structural response simulation or nonlinear response history analysis (𝑁𝑅𝐻𝐴𝑠) is a central part of 

the performance-based earthquake engineering (𝑃𝐵𝐸𝐸) procedure (Moehle and Deierlein, 2004). 

Within the context of 𝑃𝐵𝐸𝐸, the goal of 𝑁𝑅𝐻𝐴𝑠 is to quantify the distribution of engineering 

demand parameters (𝐸𝐷𝑃𝑠) as a function of a scalar or vector-valued ground motion intensity 

measure (𝐼𝑀). The quantitative description of an 𝐼𝑀 can be exclusively based on the properties 

of the ground motion (e.g., peak ground acceleration) or can contain information about both the 

ground motion and the structure of interest (e.g., spectral acceleration averaged over a range of 

periods). Several criteria have been used to evaluate the effectiveness of an 𝐼𝑀 in capturing the 

link between ground shaking and structural response. Efficiency, sufficiency, scaling robustness 

and predictability are the most widely  used criteria for evaluating the optimality of an 𝐼𝑀. 

An efficient 𝐼𝑀  is one that minimizes the variability in the 𝐸𝐷𝑃𝑠  from 𝑁𝑅𝐻𝐴𝑠 . This 

variability is also related to the number of ground motions used in the analysis (Eads et al. 2015). 

Numerous studies have been performed to evaluate the relative efficiency of alternative 𝐼𝑀𝑠. The 

earliest ones focused on demonstrating the superior performance of spectral acceleration at the 

first mode period of the structure (𝑆𝑎்ଵ) relative to peak ground acceleration (𝑃𝐺𝐴) in predicting 

displacement-based 𝐸𝐷𝑃𝑠  (e.g., peak story drifts) (Shome and Cornell, 1999). Later studies 

however, showed that 𝑆𝑎்ଵ may not be as efficient when predicting the responses of buildings that 

respond to a range of periods due to higher-mode effects or inelastic behavior (e.g., Luco and 
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Cornell, 2007; Tothong and Luco, 2007). The efficiency of 𝑆𝑎்ଵ was shown to be enhanced by 

including  a second spectral acceleration parameter conditioned on another period (e.g., 2nd mode, 

longer period) (e.g., Mehanny and Deierlein, 2000; Cordova et al. 2000). More recent studies have 

shown that using the geometric mean spectral acceleration over a range of periods ൫𝑆𝑎௔௩௚൯ also 

provided benefits in terms of efficiency (e.g., Eads et al. 2015; Shokrabadi and Burton. 2017). 

A key assumption in 𝑁𝑅𝐻𝐴𝑠  is that, conditioned on the shaking intensity level, the 

resulting 𝐸𝐷𝑃  distribution only depends on the chosen 𝐼𝑀  and not on other “high-level” or 

“upstream” properties such as the event magnitude (𝑀) , the source-to-site distance (𝑅)  and 

epsilon (𝜀) . Also used as a proxy for spectral shape, 𝜀  measures the number of logarithmic 

standard deviations between the observed and predicted shaking intensity (Baker, 2011). A 

sufficient 𝐼𝑀 is one that does not violate this assumption. The sufficiency criterion is desirable 

because it facilitates performing 𝑁𝑅𝐻𝐴𝑠 using ground motions from a diverse set of events (in 

terms of 𝑀, 𝑅 and 𝜀) to evaluate the structural response distribution at some predefined intensity 

level (Eads et al. 2015). Several studies have evaluated the sufficiency of different  𝐼𝑀𝑠 with 

respect to 𝑀, 𝑅 and 𝜀. This is typically done as part of an overall comparative assessment of the 

effectiveness of different 𝐼𝑀𝑠 where efficiency is also considered (e.g., Shome and Cornell, 1999; 

Luco and Cornell, 2007; Tothong and Luco, 2007; Eads et al. 2015; Shokrabadi and Burton. 2017; 

Bradley et al. 2010). Sufficiency has also been used to evaluate the potential bias that is introduced  

when ground motions are scaled to achieve specific intensity levels (e.g., Bradley et al. 2010). 

A key challenge with using sufficiency to evaluate the relative effectiveness of 𝐼𝑀𝑠 is that the 

results are often inconclusive. Consider the case where an  𝐼𝑀 is sufficient with respect to a 

particular ground motion parameter at some fraction of the considered intensity levels (e.g., 

Shokrabadi and Burton. 2017). Similarly, when considering the spatial distribution of 𝐸𝐷𝑃𝑠 over 
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the height of a structure, an  𝐼𝑀 may achieve sufficiency at some floor levels (or stories) but not 

at others (e.g., Bradley et al. 2010). There may also be situations where two 𝐼𝑀𝑠 being compared 

are found to be both sufficient (or insufficient) with respect to the same ground motion parameters. 

Another limitation of the sufficiency-based evaluation is that it is based on linear dependence i.e., 

nonlinear dependencies are not considered. Also, the sufficiency criterion is able to consider the 

dependence on individual ground motion parameters (e.g., between the 𝐸𝐷𝑃 and  𝑀 or between 

the 𝐸𝐷𝑃 and  𝑅). However, it does not consider any potential interaction effects between two or 

more parameters (e.g., between the 𝐸𝐷𝑃 and the joint distribution of  𝑀 and 𝑅 or between the  

𝐸𝐷𝑃 and the joint distribution of 𝑀, 𝑅 and 𝜀).  

1.2 Objectives 

This study presents two new approaches to evaluating the relative effectiveness of two or 

more ground motion intensity measures in estimating structural response demands. The first 

methodology considers the statistical information that is lost when only the 𝐼𝑀 of choice is used 

to obtain the 𝐸𝐷𝑃 distribution relative to when the 𝐼𝑀 is used as a predictor together with other 

ground motion parameters. The loss of statistical information is measured as the root mean square 

difference between the 𝐸𝐷𝑃𝑠 obtained from the  𝐼𝑀-only estimator i.e., 𝐸𝐷𝑃 = 𝑓(𝐼𝑀) and the 

𝐸𝐷𝑃𝑠 obtained from the  𝐼𝑀 and the other ground motion parameters e.g.,  𝐸𝐷𝑃 = 𝑓(𝐼𝑀, 𝑀, 𝑅, 𝜀). 

The 𝐼𝑀 that minimizes the relative loss of statistical information is deemed the most desirable. To 

consider the nonlinear and interactive relationships between the ground motion parameters and the 

𝐸𝐷𝑃 distribution, a machine learning model is used to estimate 𝑓(𝐼𝑀, 𝑀, 𝑅, 𝜀).  

The second methodology uses a causal inference approach to evaluate the relative efficacy 

of different 𝐼𝑀𝑠. Considering the 𝐼𝑀 as the treatment and the 𝐸𝐷𝑃 as the outcome of interest, the 

causal effect is evaluated while considering 𝑀, 𝑅  and , 𝜀  as control variables. To avoid any 
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assumptions about how the controls enter into the regression, a partial linear model is used. More 

specifically, a double machine learning approach is adopted where separate models that predict 

the treatment and outcome as a function of the controls are developed. The effect of the 𝐼𝑀 on the 

𝐸𝐷𝑃 is then obtained through residual-on-residual regression. 

The two new methodologies are applied to a set of special steel moment frames (𝑆𝑀𝑅𝐹𝑠) 

designed to modern code-confirming standards.  

 

1.3 Organization 

The thesis is comprised of five chapters which are organized as follows: 

Chapter 1 outlines the background motivation and objectives of the study. 

Chapter 2 describes the considered building cases including the structural modeling and is 

followed by a summary of the ground motions used in the study. 

Chapter 3 presents the new methodology for evaluating the efficacy of 𝐼𝑀𝑠 used in 𝑁𝑅𝐻𝐴𝑠 

that is based on minimizing the loss of statistical information in the predicted 𝐸𝐷𝑃𝑠 relative to 

when other “upstream” seismic parameters are used. 

Chapter 4 introduces an approach based on casual inferencing for assessing the adequacy of 

𝐼𝑀𝑠 used in 𝑁𝑅𝐻𝐴𝑠. 

Chapter 5 presents a case study that applies the new (statistical loss minimization and causal 

inference) and traditional (i.e., efficiency and sufficiency) approaches to assessing the relative 

effectiveness of ground motion intensity measures.  

Chapter 6 discusses the main conclusions and limitations of this study and gives suggestions 

for future related work.  
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Chapter 2 

Building Cases, Structural Models and Ground Motions 

 
This chapter describes the buildings, structural models and ground motions used in the nonlinear 

response history analyses. 

2.1 Description of Building Cases 

The buildings used in the current study are part of the database developed by Guan et al. (2020). 

The overall database is comprised of 621 steel reduced-beam section (𝑅𝐵𝑆) 𝑆𝑀𝑅𝐹  buildings 

designed in accordance with the ASCE 7-16 standard (ASCE, 2016) and the provisions specified 

in AISC 341-16 (AISC, 2016a), AISC 360-16 (AISC, 2016b) and AISC 358-16 (AISC, 2016c). 

Five of those buildings are used to evaluate the effectiveness of alternative 𝐼𝑀𝑠 for estimating 

𝐸𝐷𝑃 distributions via nonlinear response history analyses. The buildings contain 1, 5, 9, 14 and 

19 stories with two 5-bay 𝑆𝑀𝐹𝑠 in each direction and typical bay widths and story heights of 30’-

0” (9.14 m) and 13’-0” (3.96 m) , respectively. The overall plan configuration and structural 

framing layout is based on the archetypes used in the ATC-123 project (FEMA, 2018). The typical 

floor dead load is 80 psf (3.83 kN/m2) and the roof dead load is 67.5 psf (3.23 kN/m2). The typical 

floor and roof live loads are 50 psf (2.39 kN/m2) and 20 psf (0.96 kN/m2), respectively. 

The designs are based on a location in Los Angeles, California (34.008°N, 118.152°W) 

with site class D and spectral intensity parameters 𝑆௦ = 2.25𝑔  and 𝑆ଵ = 0.6𝑔 . The seismic 

weights and periods obtained from the equation specified in Chapter 12 of ASCE 7-16 are 

summarized in Table 1. Assuming that the buildings are used for office space with Risk Category 

II and Seismic Design Category D, the equivalent lateral force procedure is used to design all 
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buildings with a seismic response coefficient 𝑅 = 8, importance factor 𝐼 = 1.0, drift amplification 

factor 𝐶஽ = 5.5 and overstrength factor Ω଴ = 3. A design drift limit of 2% is considered and the 

minimum strong-column-weak-beam (𝑆𝐶𝑊𝐵) ratio is taken to be 1.0.  

Table 2.1 Number of stories, seismic weight and ASCE 7-16 and 1st mode period (from eigen 

value analyses) for the five buildings 

Number of 

Stories 

Seismic Weight, 

kips (kN) 

ASCE 7-

16 Period 

(s) 

1st Mode 

Period (s) 

1 1800 (8007) 0.21 0.41 

5 8719 (38782) 0.79 1.21 

9 15919 (70810) 1.26 1.41 

14 24919 (110844) 1.80 1.78 

19 33919 (150878) 2.30 2.20 

 

2.2 Structural Models 

Two-dimensional (2D) nonlinear structural models constructed in the Open System of Earthquake 

Engineering (OpenSees) (Mazzoni et al. 2006) are also included as part of the Guan et al. (2020) 

database. Beams and columns are modeled using linear elastic beam-column elements with 

inelastic flexural springs at the ends. The modified Ibarra-Medina-Krawinkler (IMK) material 

model is applied to the zero-length flexural hinges to capture both in-cycle and cyclic deterioration. 

The 24 parameters that define the IMK material model are computed using the empirical equations 

developed and advanced by Ibarra et al. (2005), Lignos (2008) and Lignos and Krawinkler (2010). 

The shear behavior of the panel zones are based on the modeling approach developed by 

Krawinkler (1978). To account for the P- effects caused by loads on the gravity framing not 

explicitly modeled, a truss element is used as a leaning column. A Rayleigh damping ratio of 2% 

is applied to the first and third modal periods of the structure.  
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2.3 Ground Motions 

The 240 unscaled ground motions assembled by Miranda (1999) are used to analyze the nonlinear 

structural models. All ground motions in the set are recorded in California at sites that contain rock 

or firm soil where the shear wave velocity in the upper 30 m (𝑉௦ଷ଴) of the site profile exceeds 600 

ft/s (180 m/s). The event magnitudes range from M 6.0 to M  7.0 with an average of M 6.7. The 

𝑃𝐺𝐴 range is from 0.03 to 0.61g. The individual and median ground motion spectra for the record-

set is shown in Figure 2.1. Histograms showing the empirical distribution of 𝑃𝐺𝐴 and 𝑃𝐺𝑉 are 

presented in  Figure 2.2. The 𝑃𝐺𝐴 range is from 0.029 to 0.776 g with a mean value of 0.175 g. 

The minimum and maximum 𝑃𝐺𝑉 is 1.0 cm/s and 113.44 cm/s, respectively and the mean value 

is 17.15 cm/s. Figure 2.3 plots histograms with the empirical distributions of the event magnitude, 

Boore-Joyner distance ൫𝑅௝௕൯ and epsilon. The event magnitude range is from M 5.8 to M 7.7 with 

a mean of 6.7. The minimum 𝑅௝௕ is 0.6 km and the maximum is 156 km. The mean 𝑅௝௕ for the 

record-set is 38.2 km. As shown in Figure 2.3c, the 𝜖 are approximately normally distributed with 

a near-zero (−0.31) mean value. The lower and upper limit for 𝜖 is -3.03 and 2.96, respectively.  
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Figure 2.1 – Response spectra for the 240 unscaled ground motions used in the nonlinear response 
history analyses  

 

Figure 2.2 – Histograms showing the empirical distribution of (a) 𝑃𝐺𝐴 and (b) 𝑃𝐺𝑉 for the 240 
unscaled ground motions 
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Figure 2.3 – Histograms showing the empirical distribution of (a) 𝑀, (b) 𝑅௝௕ and (c)  𝜖 for the 240 
unscaled ground motions  
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Chapter 3 

A Statistical Loss Minimization Approach to Evaluating the 

Effectiveness of Ground Motion Intensity Measures 

 
Ground motion intensity measures are computed as a function of the earthquake magnitude, fault 

distance, and other seismicity parameters (e.g., fault type). As noted earlier, the epsilon parameter 

is derived from the adopted ground motion model and is used as a measure of spectral shape. When 

performing 𝑁𝑅𝐻𝐴𝑠 , it is desirable that, conditioned on that 𝐼𝑀 , the 𝐸𝐷𝑃  distribution is 

independent of these high-level parameters (𝑀, 𝑅, 𝜀). The sufficiency criteria achieves that goal 

by using linear regression to evaluate this independence property for individual parameters. 

             𝐸[ln(𝐸𝐷𝑃)|𝑋௜, 𝐼𝑀 = 𝑖𝑚] = 𝛽଴ + 𝛽ଵ𝑋௜           (3.1) 

where 𝑋௜ is the high-level parameter of interest (𝑀, 𝑅, 𝜀) and 𝛽ଵ is the regression coefficient that 

is used to evaluate the independence property. Under the null hypothesis that 𝛽ଵ = 0, a p-value 

above some predefined threshold (usually 5%) means that ln(𝐸𝐷𝑃) is independent of 𝑋௜ 

conditioned on the 𝐼𝑀  level. This “one-parameter-at-a-time” approach to evaluating the 

effectiveness of an 𝐼𝑀 using the sufficiency criterion is useful because it provides insight into 

whether the resulting 𝐸𝐷𝑃 distribution will be biased against the considered parameter. However, 

aside from relying on the linearity assumption for the relationship between ln(𝐸𝐷𝑃) and 𝑋௜, the 

joint distribution or interaction effects between the 𝑋௜’s is not considered. 

 The conditional independence property between the 𝐸𝐷𝑃 and the joint distribution of 𝑋௜’s 

can also be expressed as the desire to have 𝑓(𝐼𝑀) ≅  𝑓(𝐼𝑀, 𝐗)  where 𝑓(𝐼𝑀)  is the 𝐸𝐷𝑃 

conditional expectation estimator that based only on the 𝐼𝑀 and 𝑓(𝐼𝑀, 𝐗) is the 𝐸𝐷𝑃 conditional 
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expectation estimator based on the 𝐼𝑀  in addition to all high-level parameters i.e., [𝐗] =

⌊𝑀 𝑅 𝜀⌋. Then, the most effective  𝐼𝑀 in terms of the conditional independence property (𝐼𝑀∗) 

is taken as the one that minimizes the loss of predictive performance in 𝑓(𝐼𝑀) relative to 𝑓(𝐼𝑀, 𝐗). 

The relative loss of predictive performance can be computed as the root mean square error 

(𝑅𝑀𝑆𝐸) between  𝑓(𝐼𝑀) and 𝑓(𝐼𝑀, 𝐗) or, more formally, 

                                 𝐼𝑀∗ = argmin
ூெೕ

ටଵ

ே
∑ ቀ𝑓൫𝐼𝑀௝ , 𝑀, 𝑅, 𝜀൯ − 𝑓൫𝐼𝑀௝൯ቁ

ଶ
ே
௜ୀଵ                               (3.2) 

where 𝐼𝑀௝ is the intensity measure being considered and 𝑁 is the number of ground motion records, 

𝑓൫𝐼𝑀௝൯  is the 𝐸𝐷𝑃  expectation estimator conditioned only on  𝐼𝑀௝  and 𝑓൫𝐼𝑀௝ , 𝑀, 𝑅, 𝜀൯  is the 

expectation estimator when 𝐼𝑀௝  and all high-level parameters are considered. The 𝑅𝑀𝑆𝐸  is 

chosen as the loss metric because its units will be the same as the 𝐸𝐷𝑃 that is being estimated. The 

well-established linear regression model considering the log-log transformed variables (derived 

from a power law) can be used as the 𝐸𝐷𝑃 expectation estimator conditioned only the 𝐼𝑀 i.e., 

𝑓መ(𝐼𝑀)  (Cornell et al. 2002).  

             ln 𝐸𝐷෡𝑃 = ln 𝑎 + b ln 𝐼𝑀             (3.3) 

where 𝐸𝐷෡𝑃  is the median 𝐸𝐷𝑃  that is predicted by the estimator and 𝑎  and b are parameters 

obtained from the regression. To avoid any assumptions about the relationship between the 

predictors and response variable and to consider the interactive effect across predictors, a machine 

learning model is used to as the conditional expectation estimator for the case where the 𝐼𝑀 and 

all high-level parameters are considered i.e., 𝑓መ(𝐼𝑀, 𝑀, 𝑅, 𝜀). The random forest (𝑅𝐹) (Breiman, 

2001) algorithm is used for this purpose. Note that while several other machine learning models 

could also be used here, the relative performance of different algorithms is less important than the 

performance of 𝑓መ(𝐼𝑀) relative to 𝑓መ(𝐼𝑀, 𝑀, 𝑅, 𝜀). 
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𝑅𝐹  has been used in several studies within the structural/earthquake engineering 

community (e.g., Mangalathu and Jeon, 2018; Mangalathu and Jeon, 2019; Xie et al. 2020) where 

detailed descriptions of the algorithm have been provided. As such, only a brief summary is 

provided here. 𝑅𝐹 is an ensemble learning model that aggregates multiple estimators to improve 

predictions in both classification and regression problems. 𝑅𝐹 operates by bootstrapping multiple 

subsets of the same training data set, which are used to construct a pre-specified number of 

classification and regression trees (𝐶𝐴𝑅𝑇) . The 𝐶𝐴𝑅𝑇  algorithm (Breiman et al., 2017) was 

originally developed for classification purposes but has since been extended to solve regression 

problems. Given a data subset, a single tree is constructed by recursively dividing the sample space 

into child nodes based on the observed values of one of the predictors and a chosen split point. 

The predictor and split point are determined using the greedy algorithm, which maximizes the 

purity of the generated sub-samples based on the Gini Index (Breiman et al., 2017). This process 

is repeated until a pre-defined stopping criterion is met. The minimum number of sub-samples in 

a given node, the maximum tree depth and the maximum number of leaf (terminal) nodes are 

examples of stopping criteria that are used in the 𝐶𝐴𝑅𝑇  development. The uniqueness of 𝑅𝐹 

relative to other 𝐶𝐴𝑅𝑇  algorithms stems from the fact that a random subset of the original 

predictors is considered at each split point to avoid highly correlated trees. For new samples, the 

weighted average value of the response variable from the individual trees is used as the final 

prediction. 
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Chapter 4 

Evaluating the Effectiveness of Ground Motion Intensity Measures 

using Causal Inference 

4.1 Overview 

At its core, nonlinear response history analysis (𝑁𝑅𝐻𝐴) seeks to quantify the causal effect of 

ground shaking due to earthquakes (as measured by the ground motion intensity measure i.e., the 

𝐼𝑀) on structural response.  As noted earlier, these 𝐼𝑀𝑠 are computed as a function of a set of 

upstream parameters that include the earthquake magnitude (𝑀), source-to-site distance (𝑅) and 

epsilon (𝜀) where the latter represents the number of standard deviations between the predicted 

and measured 𝐼𝑀. Figure 4.1 shows the directed acyclic graph (𝐷𝐴𝐺) that represents the causal 

relationship between the 𝐼𝑀, engineering demand parameter (𝐸𝐷𝑃) and the upstream seismic 

parameters (𝑀, 𝑅, 𝜀). A 𝐷𝐴𝐺 is a graph that only contains directed edges and has no cycles (i.e., 

there is no path from a single node that leads back to itself) (Geiger and Pearl, 1990). These 

relationships can also be represented using a structural causal model (𝑆𝐶𝑀), which contains a set 

of endogenous and exogenous variables that are linked by a set of functions that capture the  causal 

relationships between the variables. The 𝑆𝐶𝑀 corresponding to the 𝐷𝐴𝐺 in Figure 4.1 is shown 

Equation 4.1. 

             𝑀 = 𝑓ெ(𝑈ெ)           (4.1𝑎) 

             𝑅 = 𝑓ோ(𝑈ோ)           (4.1𝑏) 

             𝜀 = 𝑓ఌ(𝑈ఌ)           (4.1𝑐) 

             𝐼𝑀 = 𝑓ூெ(𝑀, 𝑅, 𝜀, 𝑈ூெ)           (4.1𝑑) 

             𝐸𝐷𝑃 = 𝑓ா஽௉(𝐼𝑀, 𝑀, 𝑅, 𝜀, 𝑈ா஽௉)           (4.1𝑑) 
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where  𝑓∙(∙) is the function representing the relationship between variables and the 𝑈’s are the 

unobserved exogenous variables.  

Within the 𝑁𝑅𝐻𝐴𝑠 and from the causal perspective shown in Figure 4.1, the  𝐼𝑀 can be 

viewed as the treatment (𝐷), the 𝐸𝐷𝑃𝑠 represent the  outcome (𝑌) and 𝑀, 𝑅 and 𝜀 are the set of 

confounders (𝐗). Another perspective is that the effects of 𝑀, 𝑅 and 𝜀 are partially mediated by 

the 𝐼𝑀. In other words, the 𝐼𝑀 represents the indirect effect of 𝑀, 𝑅 and 𝜀 on the 𝐸𝐷𝑃𝑠, however, 

there is also a direct effect i.e., directly from 𝑀, 𝑅 and 𝜀 to the 𝐸𝐷𝑃𝑠 instead of through the 𝐼𝑀. 

In the case where only the 𝐼𝑀 is considered in 𝑁𝑅𝐻𝐴𝑠, the one that maximizes the mediated causal 

effect i.e., the effect of the 𝐼𝑀 on the 𝐸𝐷𝑃.  

 

Figure 4.1 – 𝐷𝐴𝐺 showing the causal relationship between the 𝐼𝑀, 𝐸𝐷𝑃, 𝑀, 𝑅 and 𝜀 

 

4.2 Using causal machine learning to evaluate 𝑰𝑴 performance 

As described in the previous section, the effectiveness of an 𝐼𝑀 can be evaluated by quantifying 

its causal effect on the 𝐸𝐷𝑃 of interest while considering the earthquake magnitude, source-to-site 

distance and epsilon as confounders. In other words, the best 𝐼𝑀 (from causal perspective) is the 

one that maximizes the effect on the 𝐸𝐷𝑃. This study quantifies this effect by integrating partial 
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linear regression (Robinson, 1988) with machine learning, where the latter is used avoid any 

assumptions about the way that the confounding variables (𝑀 , 𝑅  and 𝜀) are entered into the 

regression (Athey et al. 2019; Chernozhukov et al. 2018).  

An unbiased quantification of the causal effect (𝜃) of a treatment, 𝐷 (𝐼𝑀 in this study) on the 

outcome, 𝑌 (here, the 𝐸𝐷𝑃𝑠) requires correct specification of the control variables, [𝐗]. However, 

since correct specification is never known, assumptions about how 𝐗 is considered in the inference 

can lead to “model-dependent” or biased results (King and Zeng, 2006). To address this challenge, 

a semi-parametric or partially linear model (i.e., 𝑌 is linear and additive in 𝐷) is used where the 

way that the control variables enter the regression is unspecified (Athey et al. 2019; Chernozhukov 

et al. 2018; Ratkovic et al. 2021; Robinson, 1998).  

             𝑦௜ = 𝜃𝑑௜ + 𝑓(𝒙௜) + 𝑒௜           (4.2) 

             𝑑௜ = 𝑔(𝒙௜) + 𝑣௜            (4.3) 

where 𝑦௜ , 𝑑௜  and 𝒙௜ are the outcome, treatment and control (or confounding) variables, 

respectively, for observation 𝑖 ∈ {1,2, … , 𝑛}. 𝑓(𝒙௜) is a flexible function that represents the effect 

of the control variables on the outcome. Similarly, 𝑔(𝒙௜) represents the relationship between the 

treatment and controls. 𝑒௜  and 𝑣௜  are error terms associated with the estimation of 𝑦௜  and 𝑑௜ , 

respectively, where 𝔼(𝑒௜|𝒙௜ , 𝑑௜) = 0 and 𝔼(𝑣௜|𝒙௜) = 0. Since 𝑓(∙) and 𝑔(∙) are unknown, they 

are estimated using machine learning models denoted as 𝑓መ(∙) and 𝑔ො(∙), respectively. [𝐗] is an 

𝑛 × 𝑝 matrix where 𝑛 is the number of observations and 𝑝 is the number of control variables or 

confounders.  

 The “double machine learning” method developed by Chernozhukov et al. (2018) is used 

to obtain an estimate of the causal effect ൫𝜃෠൯. The procedure begins by equally splitting the set of 

observations into a “main” (𝒮ଵ) and an “auxiliary” part (𝒮ଶ). The latter is used to fit the machine 
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learning models to obtain  𝑓መ(∙) and 𝑔ො(∙). The main part of the dataset, 𝒮ଵ, is used to perform the 

inference by regressing 𝑦௜ − 𝑓መ(𝒙௜) on  𝑑௜ − 𝑔ො(𝒙௜). The procedure is repeated with the 𝒮ଵ and 𝒮ଶ 

switched (i.e., cross-fitting) and the final causal effect is taken as the average of the two cases. 

Finally, through random splitting and repeated cross-fitting, an empirical distribution can be 

obtained for 𝜃෠  where the median is taken as the point estimate and a standard error is also 

computed.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



17 
 

Chapter 5 

Case study: Application to Special Steel Moment Resisting Frame 

Buildings 

 
The effectiveness of four intensity measures for predicting the peak story drift ratio (𝑃𝑆𝐷𝑅) and 

peak floor acceleration (𝑃𝐹𝐴) in the 𝑆𝑀𝑅𝐹 structures are evaluated. The considered 𝐼𝑀𝑠 include 

peak ground velocity (𝑃𝐺𝑉),  𝑃𝐺𝐴, 𝑆𝑎்ଵ and  𝑆𝑎௔௩௚. Based on the results of a sensitivity analysis, 

a period range of 0.2𝑇ଵ to 1.5𝑇ଵ is used to compute 𝑆𝑎௔௩௚. The relative loss minimization and 

causal inference approaches are used in the 𝐼𝑀  evaluations along with the sufficiency and 

efficiency criteria.  

5.1 Efficiency of Ground Motion Intensity Measures 

To evaluate the efficiency of the four 𝐼𝑀𝑠, a probabilistic seismic demand model (𝑃𝑆𝐷𝑀) is 

developed using the functional form shown in Equation 3. Nonlinear response history analyses are 

performed on each of the five 𝑆𝑀𝑅𝐹 archetypes using the 240 unscaled ground motions. For a 

given structure, the 𝑃𝑆𝐷𝑅 and 𝑃𝐹𝐴 is recorded for each ground motion. Figures 5.1 and 5.2 show 

log-log scatter plots of each 𝐼𝑀 versus the 𝑃𝑆𝐷𝑅 and 𝑃𝐹𝐴, respectively, for the 9-story 𝑆𝑀𝑅𝐹. A 

clear linear trend is observed in all cases which confirms the validity of the 𝑃𝑆𝐷𝑀 functional form. 

However, there are observable differences in the  amount of “scatter” for the different 𝐼𝑀-𝐸𝐷𝑃 

pairs. The dispersion (𝛽) in the 𝐸𝐷𝑃, which is used as the measure of efficiency, is computed as  

             𝛽 = ඩ
1

𝑁 − 2
෍൫𝐸𝐷𝑃 − 𝐸𝐷෡𝑃൯

ଶ
ே

௜ୀଵ

           (5.1) 
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 where 𝐸𝐷𝑃 and 𝐸𝐷෡𝑃 are the recorded (in the 𝑁𝑅𝐻𝐴𝑠) and estimated (using the 𝑃𝑆𝐷𝑀) 

values of the structural response demand, respectively, and 𝑁 is the number of ground motions.  

The 𝛽  values for the five 𝑆𝑀𝑅𝐹  archetypes are summarized in Table 5.1. With the 

exception of the 1-story building, the 𝑃𝑆𝐷𝑅 dispersion for 𝑆𝑎௔௩௚ is consistently lower than the 

others (Table 5.1a). This result is generally consistent with prior studies which showed that 𝑆𝑎௔௩௚ 

is more efficient compared to 𝑆𝑎்ଵ both in terms of 𝑃𝑆𝐷𝑅 estimation and collapse performance 

assessment (Shokrabadi and Burton. 2017; Eads et al. 2015; Tsantaki et al. 2012). Across all 

buildings, the 𝑃𝑆𝐷𝑅  dispersion is highest when 𝑃𝐺𝐴 is used as the ground motion intensity 

measure. This result is also consistent with previous studies comparing the efficiency of 𝑃𝐺𝐴 and 

𝑆𝑎்ଵ when estimating the distribution of peak story drift ratios (e.g., Shome and Cornell, 1999). 

Unlike 𝑃𝑆𝐷𝑅, the most efficient intensity measure for estimating 𝑃𝐹𝐴 varies significantly based 

on the building case (Table 5.1b). For the 1-story and 5-story buildings, the most efficient 𝐼𝑀𝑠  are 

𝑆𝑎்ଵ and 𝑆𝑎௔௩௚, respectively. For the remaining buildings 𝑃𝐺𝑉 has the lowest 𝑃𝐹𝐴 dispersion. If 

the average dispersion over all buildings is used as the overall measure of efficiency, 𝑆𝑎௔௩௚, which 

has a mean 𝛽 of 0.294 for 𝑃𝐹𝐴, would be the most efficient. 
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Figure 5.1 – Scatter plots showing 𝑃𝑆𝐷𝑅 versus (a) 𝑃𝐺𝐴, (b) 𝑃𝐺𝑉, (c) 𝑆𝑎்ଵ and (d)  𝑆𝑎௔௩௚ in 
log-log space for the 9-story 𝑆𝑀𝑅𝐹 

 



20 
 

 

Figure 5.2 – Scatter plots showing 𝑃𝐹𝐴 versus (a) 𝑃𝐺𝐴, (b) 𝑃𝐺𝑉, (c) 𝑆𝑎்ଵ and (d)  𝑆𝑎௔௩௚ in log-
log space for the 9-story 𝑆𝑀𝑅𝐹 
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Table 5.1 – (a) 𝑃𝑆𝐷𝑅 and (b) 𝑃𝐹𝐴 dispersions (𝛽) for all 𝑆𝑀𝐹 archetypes 

(a) 

Building 
𝑷𝑺𝑫𝑹 dispersions (𝜷) 

𝑷𝑮𝑨 𝑷𝑮𝑽 𝑺𝒂𝑻𝟏 𝑺𝒂𝒂𝒗𝒈 

1-story 0.490 0.453 0.170 0.285 
5-story 0.572 0.358 0.281 0.223 
9-story 0.512 0.316 0.340 0.279 

14-story 0.582 0.336 0.382 0.316 
19-story 0.523 0.300 0.438 0.365 

 
(b) 

Building 
𝑷𝑭𝑨 dispersions (𝜷) 

𝑷𝑮𝑨 𝑷𝑮𝑽 𝑺𝒂𝑻𝟏 𝑺𝒂𝒂𝒗𝒈 

1-story 0.406 0.404 0.188 0.249 
5-story 0.374 0.330 0.361 0.297 
9-story 0.395 0.320 0.389 0.332 

14-story 0.384 0.364 0.471 0.419 
19-story 0.396 0.315 0.471 0.410 

 

5.2 Sufficiency of Ground Motion Intensity Measures 

This section evaluates the sufficiency of the four 𝐼𝑀𝑠 with respect to magnitude, distance and 

epsilon for estimating both peak story drift ratio and peak floor accelerations. Recall that a set of 

240 unscaled ground motions are used to perform 𝑁𝑅𝐻𝐴𝑠 on the five 𝑆𝑀𝑅𝐹 buildings and the 

𝑃𝑆𝐷𝑅 and 𝑃𝐹𝐴 is recorded. To facilitate the sufficiency-based evaluation, the ground motion set 

is placed in six bins and the median value within each bin is used as the relevant intensity level. 

The number of ground motions in each bin and the corresponding median 𝑃𝐺𝐴 and 𝑃𝐺𝑉 values 

are summarized in Table 5.2. The period/building dependent 𝑆𝑎்ଵ and 𝑆𝑎௔௩௚ are not included in 

Table 5.2. 

The sufficiency of the four 𝐼𝑀𝑠 with respect to 𝑀, 𝑅, and 𝜀 is first examined for the 9-
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story 𝑆𝑀𝑅𝐹. For each 𝐼𝑀 and 𝐸𝐷𝑃, Figures 5.3 and 5.4 shows how the p-value varies with the 

ground motion intensity level. The assumed sufficiency threshold of 0.05 is also shown on the 

plots. Recall that an  𝐼𝑀 is deemed sufficient with respect to the high-level variable of interest if 

the p-value from the linear regression exceeds this threshold. The first key observation is that for 

both 𝑃𝑆𝐷𝑅 (Figure 5.3) and 𝑃𝐹𝐴 (Figure 5.4) and the three high-level parameters, the sufficiency 

of some 𝐼𝑀𝑠 varies based on the intensity level. For example, 𝑆𝑎௔௩௚ is sufficient with respect to 

the event magnitude when estimating 𝑃𝑆𝐷𝑅 for four of the six intensity levels. For the same 𝐸𝐷𝑃, 

𝑆𝑎௔௩௚ is sufficient at two-of-six and five-of-six intensity levels for 𝑅 and 𝜀, respectively. This 

dependency of the sufficiency of an 𝐼𝑀 with the considered intensity level has been observed in 

prior studies (e.g., Shokrabadi and Burton, 2017). Other studies that considered the spatial 

distribution of 𝐸𝐷𝑃𝑠  (not considered in the present study) have also found variations in the 

sufficiency of 𝐼𝑀𝑠 across different floor and story levels (e.g., Bradley et al. 2010). 

Table 5.2 – Ground motion count and median 𝑃𝐺𝐴 and 𝑃𝐺𝑉 in each bin 

Intensity 

Level No. 

No. of 

Records 

Median 

𝑷𝑮𝑨 (g) 

Median 

𝑷𝑮𝑽 (cm/s) 

1 10 0.0398 1.50 

2 30 0.0527 3.59 

3 40 0.0718 5.59 

4 40 0.1067 9.26 

5 40 0.1533 13.24 

6 80 0.3099 31.74 
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Figure 5.3 – Variation of p-values with intensity level for sufficiency of  𝐼𝑀𝑠 with respect to (a) 
𝑀, (b) 𝑅, and (c) 𝜀  when estimating 𝑃𝑆𝐷𝑅 in 9-story building 

 

 

Figure 5.4 – Variation of p-values with intensity level for sufficiency of  𝐼𝑀𝑠 with respect to (a) 
𝑀, (b) 𝑅, and (c) 𝜀  when estimating 𝑃𝐹𝐴 

For a more holistic assessment of the sufficiency for all buildings, Tables 5.3, 5.4 and 5.5 

summarize the fraction of intensity levels for which each 𝐼𝑀  is found to be sufficient. For 

sufficiency with respect to event magnitude in estimating 𝑃𝑆𝐷𝑅, 𝑃𝐺𝑉 and 𝑆𝑎௔௩௚  have similar 

overall performance and 𝑃𝐺𝐴 performs the worse. Also, while 𝑃𝐺𝐴 shows more overall 

sufficiency for 𝑃𝐹𝐴 (compared to 𝑃𝑆𝐷𝑅), it is still generally outperformed by the other three 𝐼𝑀𝑠. 

For sufficiency with respect to source-to-site distance,  𝑃𝐺𝐴 outperforms the other  𝐼𝑀𝑠 when 

estimating 𝑃𝐹𝐴 and 𝑃𝐺𝑉 is the most sufficient for 𝑃𝑆𝐷𝑅. 𝑃𝐺𝐴 performs poorly when estimating 
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both 𝑃𝐹𝐴 and 𝑃𝑆𝐷𝑅 when sufficiency with respect to epsilon is considered. 𝑆𝑎௔௩௚ has the best 

overall performance in this regard when considering the two 𝐸𝐷𝑃𝑠. These results highlight the 

difficulty in choosing “the best” 𝐼𝑀 based on the sufficiency criteria because of the variation in 

performance across the different high-level parameters (i.e., 𝑀, 𝑅 and 𝜀), intensity level and type 

of 𝐸𝐷𝑃. 

Table 5.3 – Sufficiency of 𝐼𝑀𝑠 with respect to magnitude for (a) 𝑃𝑆𝐷𝑅 and (b) 𝑃𝐹𝐴  

(a) 

Building 
Fraction of Intensity Levels where 𝑰𝑴 is Sufficient (p-value > 0.05) 

𝑷𝑮𝑨 𝑷𝑮𝑽 𝑺𝒂𝑻𝟏 𝑺𝒂𝒂𝒗𝒈 

1-story 4/6 6/6  6/6 6/6 
5-story 1/6 6/6 6/6 6/6 
9-story 0/6 6/6 6/6 4/6 

14-story 0/6 5/6 5/6 6/6 
19-story 0/6 5/6 1/6 4/6 

 
(b) 

Building 
Fraction of Intensity Levels where 𝑰𝑴 is Sufficient (p-value > 0.05) 

𝑷𝑮𝑨 𝑷𝑮𝑽 𝑺𝒂𝑻𝟏 𝑺𝒂𝒂𝒗𝒈 

1-story 4/6 4/6 6/6 6/6 
5-story 2/6 6/6 6/6 4/6 
9-story 1/6 3/6 6/6 3/6 

14-story 3/6 3/6 5/6 3/6 
19-story 1/6 5/6 1/6 4/6 
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Table 5.4 – Sufficiency of 𝐼𝑀𝑠 with respect to source-to-site distance for (a) 𝑃𝑆𝐷𝑅 and (b) 𝑃𝐹𝐴  

(a) 

Building 
Fraction of Intensity Levels where 𝑰𝑴 is Sufficient (p-value > 0.05) 

𝑷𝑮𝑨 𝑷𝑮𝑽 𝑺𝒂𝑻𝟏 𝑺𝒂𝒂𝒗𝒈 

1-story 5/6 3/6 4/6 3/6 
5-story 4/6 5/6 2/6 3/6 
9-story 3/6 5/6 3/6 2/6 

14-story 2/6 4/6 2/6 2/6 
19-story 1/6 4/6 3/6 1/6 

 
(b) 

Building 
Fraction of Intensity Levels where 𝑰𝑴 is Sufficient (p-value > 0.05) 

𝑷𝑮𝑨 𝑷𝑮𝑽 𝑺𝒂𝑻𝟏 𝑺𝒂𝒂𝒗𝒈 

1-story 5/6 4/6 5/6 5/6 
5-story 4/6 3/6 1/6 2/6 
9-story 5/6 3/6 2/6 2/6 

14-story 4/6 4/6 1/6 2/6 
19-story 3/6 3/6 2/6 1/6 

 

Table 5.5 – Sufficiency of 𝐼𝑀𝑠 with respect to epsilon for (a) 𝑃𝑆𝐷𝑅 and (b) 𝑃𝐹𝐴  

(a) 

Building 
Fraction of Intensity Levels where 𝑰𝑴 is Sufficient (p-value > 0.05) 

𝑷𝑮𝑨 𝑷𝑮𝑽 𝑺𝒂𝑻𝟏 𝑺𝒂𝒂𝒗𝒈 

1-story 1/6 5/6 6/6 5/6 
5-story 0/6 4/6 3/6 3/6 
9-story 0/6 3/6 4/6 5/6 

14-story 0/6 2/6 5/6 6/6 
19-story 0/6 4/6 6/6 6/6 

 
(b) 

Building 
Fraction of Intensity Levels where 𝑰𝑴 is Sufficient (p-value > 0.05) 

𝑷𝑮𝑨 𝑷𝑮𝑽 𝑺𝒂𝑻𝟏 𝑺𝒂𝒂𝒗𝒈 

1-story 1/6 5/6 6/6 5/6 
5-story 0/6 5/6 4/6 4/6 
9-story 0/6 5/6 4/6 5/6 

14-story 0/6 3/6 5/6 5/6 



26 
 

19-story 0/6 4/6 6/6 5/6 
 

5.3 Evaluating Ground Motion Intensity Measures using Statistical Loss 

Minimization Appraoch 

This section evaluates the four 𝐼𝑀𝑠 using the relative loss minimization approach. Recall that two 

types of estimation models are developed for each 𝐸𝐷𝑃. The first type of model, which is denoted 

as 𝑓መ(𝐼𝑀),   is based on linear regression of the 𝐼𝑀 against the relevant 𝐸𝐷𝑃 in log-log space. The 

second model 𝑓መ(𝐼𝑀, 𝑀, 𝑅, 𝜖) estimates the 𝐸𝐷𝑃 using the 𝑅𝐹 algorithm where the 𝐼𝑀 is adopted 

as a feature along with 𝑀, 𝑅 and 𝜖. The 𝑅𝑀𝑆𝐸 of the estimated 𝐸𝐷𝑃 is then used as a proxy for 

the predictive performance of  𝑓መ(𝐼𝑀) relative to 𝑓መ(𝐼𝑀, 𝑀, 𝑅, 𝜖). The results of the relative loss 

minimization assessment is summarized in Table 5.6, where it is observed that 𝑆𝑎௔௩௚  has the 

lowest 𝑅𝑀𝑆𝐸 value for 𝑃𝑆𝐷𝑅 (Table 5.6a) across all buildings. 𝑆𝑎்ଵ has the second-best overall 

performance for the same 𝐸𝐷𝑃 with a lower 𝑅𝑀𝑆𝐸 value for four of the five buildings. These two 

findings are generally consistent with the results from the efficiency-based assessment as well as 

prior studies. Also noteworthy is the fact that, across the five buildings, the 1-story case has the 

lowest relative loss when 𝑃𝐺𝐴 is used to estimate 𝑃𝑆𝐷𝑅. In contrast to  𝑃𝑆𝐷𝑅,  𝑃𝐺𝐴 is the best 

performing 𝐼𝑀 when estimating 𝑃𝐹𝐴, producing the lowest 𝑅𝑀𝑆𝐸 in four of the five buildings. 

Again, this result is consistent with that of other studies which have shown that 𝑃𝐺𝐴 performs well 

when estimating acceleration or force-based 𝐸𝐷𝑃𝑠. The next best is 𝑆𝑎௔௩௚ which has the lowest 

𝑅𝑀𝑆𝐸 in one of the five buildings and values comparable to that of 𝑃𝐺𝐴 in three of the five 

buildings. Compared to the sufficiency criteria, the relative loss minimization approach provides 

more conclusive findings that are consistent with prior studies and the efficiency-based assessment.  
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Table 5.6 – 𝑅𝑀𝑆𝐸 values corresponding loss of predictive performance of 𝑓መ(𝐼𝑀) relative to 

𝑓መ(𝐼𝑀, 𝑀, 𝑅, 𝜀): (a) 𝑃𝑆𝐷𝑅 and (b) 𝑃𝐹𝐴 

(a) 

Building 
Relative Loss (𝑹𝑴𝑺𝑬) 

𝑷𝑮𝑨 𝑷𝑮𝑽 𝑺𝒂𝑻𝟏 𝑺𝒂𝒂𝒗𝒈 

1-story 9.11E-04 1.44E-03 9.95E-04 7.29E-04 
5-story 2.06E-03 2.24E-03 1.24E-03 9.94E-04 
9-story 1.52E-03 1.73E-03 1.13E-03 9.26E-04 

14-story 1.42E-03 1.49E-03 1.05E-03 9.67E-04 
19-story 1.21E-03 1.00E-03 1.11E-03 9.57E-04 

 
(b) 

Building 
Relative Loss (𝑹𝑴𝑺𝑬) 

𝑷𝑮𝑨 𝑷𝑮𝑽 𝑺𝒂𝑻𝟏 𝑺𝒂𝒂𝒗𝒈 

1-story 0.033 0.044 0.044 0.034 
5-story 0.039 0.045 0.037 0.032 
9-story 0.045 0.061 0.056 0.044 

14-story 0.042 0.062 0.066 0.056 
19-story 0.041 0.055 0.065 0.056 

 

 

5.4 Evaluating Ground Motion Intensity Measures using Causal Inferencing 

The four 𝐼𝑀𝑠 are evaluated using the casual inference approach in this section. Recall that 

the goal is to evaluate the causal effect (𝜃) of each 𝐼𝑀 on the 𝐸𝐷𝑃𝑠 of interest while controlling 

for the earthquake magnitude, source-to-site distance and epsilon i.e., 𝑀, 𝑅 and 𝜖. The double 

machine learning method is implemented where the Random Forests algorithm is used as the 

learning model for both the 𝐸𝐷𝑃𝑠  ቀ𝑦௜ − 𝑓መ(𝒙௜)ቁ (outcome) and 𝐼𝑀𝑠  (treatment) ൫𝑑௜ − 𝑔ො(𝒙௜)൯. 

The residuals from those two models are plotted against each other in Figure 5.5 and Figure 5.6. 

A linear trend is generally observed for both the 𝑃𝑆𝐷𝑅 (Figure 5.5) and 𝑃𝐹𝐴 (Figure 5.6) residuals. 
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However, as expected, there are variations in the amount of scatter across the different 𝐼𝑀𝑠. Recall 

that 𝜃 is obtained from regressing the 𝐸𝐷𝑃 residuals against the 𝐼𝑀𝑠 residuals. Cross-fitting is 

applied to a single random sample split because minimal variance in the results from the two 

samples is obtained.  

The results for all five buildings are summarized in Tables 5.7 and 5.8. Focusing first on 

𝑃𝑆𝐷𝑅, Table 5.7a shows that, for the 1-story building, 𝑃𝐺𝐴 is the best performing 𝐼𝑀 (from a 

causal perspective), closely followed by 𝑆𝑎௔௩௚. However, for the remaining buildings (i.e., 5-, 9-, 

14- and 19-story), 𝑆𝑎௔௩௚  has the highest 𝜃 and is therefore the most effective. This finding is 

generally consistent with that of the evaluation based on relative loss of statistical information. For 

the same set of buildings, 𝑆𝑎்ଵ  has the second-best performance with 𝑃𝐺𝑉  having orders of 

magnitude lower  𝜃 values than the other three 𝐼𝑀𝑠. The overall results are similar for 𝑃𝐹𝐴 with 

𝑃𝐺𝐴 having the highest 𝜃 value for the 1-story building followed by 𝑆𝑎௔௩௚ then 𝑆𝑎்ଵ. Whereas, 

for the remaining buildings, 𝑆𝑎௔௩௚ has the highest 𝜃 value and is therefore the most effective of 

the 𝐼𝑀𝑠. Like 𝑃𝑆𝐷𝑅, 𝑃𝐺𝑉 performs much worse than the other three 𝐼𝑀𝑠 across all five buildings.  
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Figure 5.5 – Plot showing 𝑃𝑆𝐷𝑅 ቀ𝑦௜ − 𝑓መ(𝒙௜)ቁ versus 𝐼𝑀 ൫𝑑௜ − 𝑔ො(𝒙௜)൯ residuals for the 9-

story 𝑆𝑀𝑅𝐹: (a) 𝑃𝐺𝐴, (b) 𝑃𝐺𝑉, (c) 𝑆𝑎்ଵ and (d)  𝑆𝑎௔௩௚  
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Figure 5.6 – Plot showing 𝑃𝐹𝐴 ቀ𝑦௜ − 𝑓መ(𝒙௜)ቁ versus 𝐼𝑀 ൫𝑑௜ − 𝑔ො(𝒙௜)൯ residuals for the 9-

story 𝑆𝑀𝑅𝐹: (a) 𝑃𝐺𝐴, (b) 𝑃𝐺𝑉, (c) 𝑆𝑎்ଵ and (d)  𝑆𝑎௔௩௚  
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Table 5.7 – Causal effect (𝜃) values for all ground motion intensity measures and buildings: (a) 𝑃𝑆𝐷𝑅 

and (b) 𝑃𝐹𝐴. 

(a) 

Building 
Causal Effect (𝜽) 

𝑷𝑮𝑨 𝑷𝑮𝑽 𝑺𝒂𝑻𝟏 𝑺𝒂𝒂𝒗𝒈 

1-story 2.11E-2 1.44E-4 1.03E-2 1.58E-2 
5-story 3.09E-2 2.41E-4 3.53E-2 4.95E-2 
9-story 2.50E-2 1.91E-4 3.16E-2 4.19E-2 

14-story 2.11E-2 1.61E-4 3.43E-2 4.06E-2 
19-story 1.92E-2 1.53E-4 3.34E-2 4.58E-2 

 
(b) 

Building 
Causal Effect (𝜽) 

𝑷𝑮𝑨 𝑷𝑮𝑽 𝑺𝒂𝑻𝟏 𝑺𝒂𝒂𝒗𝒈 

1-story 0.65 0.0046 0.31 0.49 
5-story 0.69 0.0050 0.70 1.00 
9-story 0.93 0.0068 1.05 1.44 

14-story 1.00 0.0069 1.33 1.66 
19-story 0.92 0.0066 1.36 1.87 

 

Table 5.6 – Standard error for causal effect (𝜎ఏ) for all ground motion intensity measures and buildings: 

(a) 𝑃𝑆𝐷𝑅 and (b) 𝑃𝐹𝐴. 

(a) 

Building 
Standard Error (𝜽𝝈) 

𝑷𝑮𝑨 𝑷𝑮𝑽 𝑺𝒂𝑻𝟏 𝑺𝒂𝒂𝒗𝒈 

1-story 0.00182 0.00302 0.00131 0.00138 
5-story 0.00326 0.00346 0.00254 0.00191 
9-story 0.00236 0.00278 0.00235 0.00185 

14-story 0.00222 0.00251 0.00261 0.00208 
19-story 0.00185 0.00202 0.00259 0.00214 
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(b) 

Building 
Standard Error (𝜽𝝈) 

𝑷𝑮𝑨 𝑷𝑮𝑽 𝑺𝒂𝑻𝟏 𝑺𝒂𝒂𝒗𝒈 

1-story 0.0676 0.0937 0.0641 0.0585 
5-story 0.0627 0.0852 0.0814 0.0640 
9-story 0.0773 0.1152 0.1080 0.0880 

14-story 0.0749 0.1256 0.1424 0.1203 
19-story 0.0741 0.1140 0.1415 0.1229 

 

 

 

 

 

 

 

Chapter 6 

Conclusions 

Several criteria have been used to evaluate the efficacy of different ground motion intensity 

measures (𝐼𝑀) in predicting the seismic response of structures, the most common being efficiency 

and sufficiency. An efficient 𝐼𝑀 is one that minimizes the dispersion in the predicted engineering 

demand parameters (𝐸𝐷𝑃) and the sufficiency criterion seeks to limit or eliminate the dependency 

of the  𝐸𝐷𝑃𝑠 (conditioned on some 𝐼𝑀 level) on “higher-level” or “upstream” seismic parameters 

such as the event magnitude (𝑀), source-to-site distance (𝑅) and epsilon (𝜀). This study proposes 

two new approaches to 𝐼𝑀 evaluation. For the first approach, the most suitable 𝐼𝑀 (from the 

perspective of limiting the dependency on upstream parameters) is the one that minimizes the loss 
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of statistical  information when only the 𝐼𝑀  is used to estimate the 𝐸𝐷𝑃  distribution 𝑓መ(𝐼𝑀), 

relative to when the 𝐼𝑀  is used along with other upstream parameters 𝑓መ(𝐼𝑀, 𝑀, 𝑅, 𝜖) . More 

specifically, the best 𝐼𝑀 is the one that minimizes the root mean square error (𝑅𝑀𝑆𝐸) of the 𝐸𝐷𝑃𝑠 

estimated using 𝑓መ(𝐼𝑀) relative to when 𝑓መ(𝐼𝑀, 𝑀, 𝑅, 𝜖) is used. The second approach evaluates the 

causal effect (𝜃) of the 𝐼𝑀 on the 𝐸𝐷𝑃 of interest while controlling for 𝑀, 𝑅 and 𝜖. The 𝐼𝑀 with 

the highest 𝜃 is deemed the most effective. 

For the statistical loss minimization approach, the well-established probabilistic seismic demand 

model (𝑃𝑆𝐷𝑀) that is based on a linear relationship between the log-transformed 𝐼𝑀 and 𝐸𝐷𝑃 is 

used for 𝑓መ(𝐼𝑀). Also, to avoid any assumptions about the type of dependency between the 𝐸𝐷𝑃 

and upstream parameters, a machine learning model is used for  𝑓መ(𝐼𝑀, 𝑀, 𝑅, 𝜖). The machine 

learning-based approach also captures any joint dependencies or interactions among the upstream 

variables. The double machine learning strategy is implemented in the causal inference approach 

where machine learning models are used for estimating the  𝐸𝐷𝑃 (outcome) and 𝐼𝑀 (treatment) 

as a function of the control variables i.e., 𝑓መ(𝑀, 𝑅, 𝜀) and 𝑔ො(𝑀, 𝑅, 𝜀), respectively. The causal effect 

is then taken as the coefficient from the linear regression of the 𝐸𝐷𝑃 residuals against the  𝐼𝑀 

residuals. 

The two 𝐼𝑀 evaluation methodologies are applied to a  set of special moment resisting frames 

(𝑆𝑀𝐹𝑠) using peak story drift ratios (𝑃𝑆𝐷𝑅) and peak floor acceleration (𝑃𝐹𝐴) as the 𝐸𝐷𝑃𝑠 of 

interest. The considered 𝐼𝑀𝑠  include peak ground acceleration (𝑃𝐺𝐴), peak ground velocity 

(𝑃𝐺𝑉), spectral acceleration at the first mode period (𝑆𝑎்ଵ) and the spectral acceleration averaged 

over a range of periods ൫𝑆𝑎௔௩௚൯. The sufficiency and efficiency criteria were also applied and the 

findings from the four types of assessments were compared. In general, 𝑆𝑎௔௩௚was found to be the 
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most efficient 𝐼𝑀 for estimating both 𝑃𝑆𝐷𝑅  and 𝑃𝐹𝐴, although, more so for the former. The 

results from the sufficiency-based assessment were much less conclusive. The best 𝐼𝑀 in terms of 

sufficiency was found to be highly dependent on the building, ground motion intensity level and 

the type 𝐸𝐷𝑃 being estimated. In contrast, the relative loss minimization and causal inference 

approaches provided clear findings that were generally consistent with the efficiency-based 

assessment and results from prior studies on multi-criteria evaluation of alternative 𝐼𝑀𝑠. 𝑆𝑎௔௩௚ 

had the best overall performance (i.e., lowest 𝑅𝑀𝑆𝐸) for estimating 𝑃𝑆𝐷𝑅  followed by 𝑆𝑎்ଵ . 

Although, it is worth noting that 𝑃𝐺𝐴 performed best in both methods in the 1-story building. For 

𝑃𝐹𝐴 , 𝑃𝐺𝐴  had the lowest 𝑅𝑀𝑆𝐸  for four of the five building cases. However, in the causal 

inference assessment, it only performed best for the 1-story building. In summary, the results from 

the relative loss minimization and causal inference assessments show that 𝑆𝑎௔௩௚ is the best 𝐼𝑀 for 

estimating displacement-based 𝐸𝐷𝑃𝑠  (with the possible exception of 1-story buildings) while 

𝑃𝐺𝐴 is more appropriate for acceleration or force-based 𝐸𝐷𝑃𝑠. This overall finding is consistent 

with prior studies on assessing the efficacy of alternative 𝐼𝑀. 

The proposed methodologies were only applied to one structure-type (i.e., 𝑆𝑀𝐹𝑠) and high-rise 

buildings were not considered. Also, the 𝐼𝑀 evaluations were based on 𝐸𝐷𝑃𝑠 generated using 

unscaled ground motions. Responses from incremental dynamic analyses (𝐼𝐷𝐴𝑠)  or multiple 

stripe analyses (𝑀𝑆𝐴𝑠) were not included in the case study. To generalize the findings in terms of 

the robustness of the relative loss minimization and causal inference approaches, additional studies 

are needed where 𝐼𝑀𝑠 are evaluated using other structure types (e.g., other lateral force resisting 

systems and building heights) and dynamic analysis procedures (e.g., 𝐼𝐷𝐴𝑠 and 𝑀𝑆𝐴𝑠). 
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