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Bias in mobility datasets drives
divergence inmodeledoutbreakdynamics

Check for updates

Taylor Chin 1, Michael A. Johansson1,2, Anir Chowdhury3, Shayan Chowdhury3,4, Kawsar Hosan 3,5,
Md Tanvir Quader3, Caroline O. Buckee 1 & Ayesha S. Mahmud 6

Abstract

Background Digital data sources such as mobile phone call detail records (CDRs) are
increasingly being used to estimate population mobility fluxes and to predict the
spatiotemporal dynamics of infectious disease outbreaks. Differences in mobile phone
operators’ geographic coverage, however, may result in biased mobility estimates.
Methods We leverage a unique dataset consisting of CDRs from three mobile phone
operators in Bangladesh and digital trace data from Meta’s Data for Good program to
compare mobility patterns across these sources. We use a metapopulation model to
compare the sources’ effects on simulated outbreak trajectories, and compare resultswith a
benchmark model with data from all three operators, representing around 100 million
subscribers across the country.
Results We show that mobility sources can vary significantly in their coverage of travel
routes and geographic mobility patterns. Differences in projected outbreak dynamics are
more pronounced at finer spatial scales, especially if the outbreak is seeded in smaller and/
or geographically isolated regions. In some instances, a simple diffusion (gravity) model was
better able to capture the timing and spatial spread of the outbreak compared to the sparser
mobility sources.
ConclusionsOur results highlight the potential biases in predicted outbreak dynamics from
a metapopulation model parameterized with non-population representative data, and the
limits to the generalizability of models built on these types of novel human behavioral data.

Spatiotemporal patterns of human mobility and aggregation have been
shown to be influential in driving the spatial spreadof outbreaks for a variety
of pathogens1–8. Access to accurate and timely data on human mobility is
therefore critical for responding effectively to epidemics.Digital data sources
like call detail records (CDRs), which are attributes of calls and SMS-texts
routinely collected by mobile phone operators for administrative purposes,
are increasingly being used to understand mobility patterns in relation to
infectious disease transmission dynamics. Use of mobile phone data for
modeling research during the SARS-CoV-2 pandemic, in particular, has
increased awareness of these digital data sources, resulting in efforts to
standardize definitions of mobility metrics and workflows9,10.

CDRs, which capture data from any individual who has a phone
with a SIM card used for calling and messaging, are particularly valuable

as a source of mobility data in resource-poor countries, where many
individuals still do not have smartphones. CDR-derived mobility esti-
mates have been shown to outperformmore traditional mobility estimate
sources, including census commuter data and gravity-type mobility
networks, in reproducing local outbreak dynamics11,12. From a practical
perspective, since CDRs are routinely collected by telecom operators
for administrative purposes, they represent a relatively low-cost and
efficient data source for researchers to use, provided data sharing
arrangements can be established between researchers and the mobile
phone operators. For these reasons, CDR-derived mobility estimates
have been used to model the transmission dynamics of various infectious
diseases, including rubella4, malaria13,14, dengue15,16, Zika12, cholera1,17, and
SARS-CoV-2 18.
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Plain Language Reporting Summary

Movement of people can be estimated from
mobile phone location tracking data. These
dataare increasinglybeingused topredict the
spread of infectious diseases. We built
mathematical models using different sources
of mobile phone location tracking data to
show thepotential biases, and the limits to the
generalizability, of infectious disease models
built on these types of novel human
behavioral data. We found that different
sources of location data varied substantially
in their spatial coverage. These differences
can impact the ability to use these sources of
information to predict the spread of infectious
diseases.
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Despite some of the advantages of CDR data, potential bias in mobile
phone ownership is a well-established challenge when interpretingmobility
estimates from mobile phone data. Mobile phone owners in Kenya and
Rwanda, for example, were found to be more likely to be males with higher
income and education and from larger households relative to people
without mobile phones19,20. At the same time, however, other work has
suggested that mobility estimates based on CDR data may be relatively
robust to these demographic differences in ownership21.

While previous work has illuminated both the promise and some
limitations of CDR data22–24, the impact of biased geographic representa-
tiveness has hitherto been underexplored. This bias arises due to differences
in geographic coverage of mobile phone operators based on the location of
their subscriber base, their subscribers’ travel-relevant characteristics (e.g.
socioeconomic status, work travel demands) that influence their operator
choice, and the location of their cellphone towers. For example, an operator
might lack cell phone towers in certain regionsof a country and therefore fail
to capturemobility patterns in these regions, whereas other operatorsmight
have towers in the same regions. Using CDR data from one mobile phone
operator is a common practice in research due to data access constraints.
Reliance on data from a sole operator, however, may introduce unclear
biases based on that operator’s unique geographic coverage area. The extent
to which modeling conclusions may change depending on access to CDR
data fromdifferentmobile phone operators remains poorly understood and
quantified.

Here, we addressed these gaps by leveraging datasets from three (of
four) mobile phone operators in Bangladesh. We analyzed differences in
CDR-derived mobility patterns across these three operators and also
compared these estimates to mobility estimates derived from digital trace
data from Meta’s Data for Good program, which is based on data from
smartphone users. We then used a metapopulation model with spatial
coupling between geographic units parameterized via these mobility esti-
mates to simulate the outbreak of a hypothetical respiratory pathogen
seeded in different cities in Bangladesh. We compared simulations with a
benchmark model parameterized with data from all three operators, to
evaluate each of the mobility sources’ effects on simulated outbreak tra-
jectories. In the absence of high-resolution population-representative
mobility data, the benchmark model provides the closest approximation
available for “ground-truth” data, with the combined CDR data repre-
senting 100 million subscribers out of the total country’s population size of
169 million people. We find that mobility sources can vary significantly in
their coverage of travel routes and geographic mobility patterns. The dif-
ferences in the mobility sources had substantial impact on the simulated
epidemics, including whether the epidemics spread across the country, how
fast they spread, the geographic pattern of spread, and the overall impact.
Our results show that differences in projected outbreak dynamics are more
pronounced at finer spatial scales, especially if the outbreak is seeded in
smaller and/or geographically isolated regions. In some instances, a simple
diffusion (gravity) model was better able to capture the timing and spatial
spread of the outbreak compared to the sparser mobility sources.

Methods
Call detail record data
We derived mobility estimates from Call Detail Records (CDR) data
obtained from three mobile phone operators in Bangladesh using methods
previously described3,4,15,25 and summarized here. In brief, subscribers were
assigned to an upazila—one of 544 sub-district administrative units—each
day in the analysis period, April 28, 2020 to September 1, 2020, based on
their most frequently used cell tower for routing calls and SMS texts. Trips
between upazilas were defined as a change in a subscriber’s assigned tower
location compared to the previous day. The aggregated data received from
each operator consisted of the daily number of trips taken between all pairs
of upazilas and the number remaining in each upazila from one day to
the next.

Due to our privacy sharing arrangements with the operators, we refer
to them only as Operators 1, 2, and 3. Together these three operators

represent approximately 100 million subscriptions in Bangladesh, which
has a total population size of approximately 169 million. To ensure anon-
ymity, the mobile phone data were aggregated temporally at a daily scale as
well as spatially at the upazila administrative level. All three operators
generated this data for public health use during the first year of the COVID-
19 pandemic. The operators used the same methods for generating the
aggregated data; however, theremight still be differences across operators in
how the original raw CDR data was generated and stored.

Although the data were from 2020 during the COVID-19 pandemic,
which disrupted absolute travel volumes, we assumed the travel patterns in
terms of the proportions of people traveling between pairs of upazilas to be
representative of normal travel patterns. To check the validity of this
assumption, we used data fromOperator 1 from 2017 (i.e., data prior to the
COVID-19 pandemic), which is the only operator with available data from
2017, to estimate the proportions of people traveling between pairs of
upazilas onweekdays.We averaged over weekdays because of differences in
the date ranges with available data for 2017 and 2020. The 2017 data from
Operator 1 consists of approximately 64 million subscribers and covers the
time period from April 1-September 30, 2017. The correlation between
upazila-to-upazilamobilityproportions from2017and those from2020was
estimated as r = 0.73 (Supplementary Fig. 1. Based on this high correlation
between2017 and2020values,wemade the assumption that data from2020
may be representative of relative travel patterns (e.g., proportion of travelers
traveling from Dhaka to all other upazilas in these time periods) despite
disruptions to the absolute number of people traveling in 2020. To generate
mobility estimates that are representative of typical travel patterns, we
removed the dates May 24-May 26, 2020 and July 31-August 2, 2020 from
the datasets since these dates represent the Eid holidays, which disrupt
average travel patterns.

Meta Data for Good
In addition to CDR data, we analyzed mobility estimates fromMeta’s Data
forGood program26. SinceMeta’sData forGood is free and openly available
to responseworkers and researchers who request access, it has been used for
mobility estimates in several modeling studies, especially during the SARS-
CoV-2 pandemic27–29. While data from Meta is more accessible to
researchers than CDR data, there are important differences in the popula-
tions captured by the different data sources. CDR users include people who
have a cell phone with a SIM card, whereas Meta’s Data For Good captures
an open cohort of people who meet the following criteria: (1) have a
smartphone, (2) have the Meta application on their phone, and (3) have
shared their location history data by having location services enabled on
their phone.

We usedMeta’s Movement Between Tiles and Population (Tile Level)
datasets30 from the timeperiodMarch 21-September 30, 2020.User location
is categorized by Bing Tiles. Population data are based on users’ most
frequently visited tile during 8-hour windows. The Movement Between
Tiles data consist ofmovement vectors estimated based on changes in users’
modal location in the current 8-hour window compared to their modal
location in the preceding 8-hour window. Lastly, to help preserve anon-
ymity, if the number of users is below 10 users for a given 8-hour window,
the observation is dropped from the dataset.

We calculated district-level values bymapping theBingTiles’ centroids
to districts and summing across values that fell in each district. Daily esti-
mateswere calculatedby taking anaverage across the three, 8-hourwindows
per day.

Gravity model
To compare mobility estimates from CDR andMeta, we compared against
two null gravity models constructed at the district and upazila levels. We
calculated the number of people traveling from location j to location i, Xij,
using a gravity model as:

Xij ¼ kðpαi � pβj Þ=dγij ð1Þ
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Where k is a constant, pi and pj are the populations of location i and
location j, respectively, dij, is the Euclidean distance between location i and
location j, and α; β; γ are parameter estimates from the literature31. In the
main results, we present simulation results using a gravity model with
parameters from existing literature, rather than fitting a gravity model fit to
the CDR data from Bangladesh, as we believe this is a better representation
ofwhat a researcher or practitionermight use in the absence of other sources
of data. As a comparison, we also fit the gravitymodel to the combined data
from Operators 1, 2, and 3. We fit a negative binomial regression model to
the observed count of trips between locationswith log pi, log pj, and log dij as
the independent variables (results are in Supplementary Table 1). We use
the fitted parameters from the regressionmodel to estimateXij. The gravity
model with parameters from literature and the fitted gravity model are
remarkably similar, and produce similar deviations in simulated disease
dynamics compared to the benchmarkmodel (Supplementary Fig. 2, Fig. 3).

Descriptive data sources
Upazila- and district-level shapefiles are from The Humanitarian Data
Exchange32. Upazila-level population estimates from 2020 are from
WorldPop33. We summed across rasters with centroids that fell in each
upazila. We then summed across upazilas to get district-level population
estimates. Average annual nightlight levels per district from 2020 were used
as a proxy for the degree of urbanicity and obtained from the Earth
Observation Group – VIIRS Nighttime Lights dataset34. Mean household
income in USD for each union, which is a sub-upazila administrative unit,
from 2013 is fromWorldPop35.We took an average of values across unions
and upazilas to get upazila-level and district-level estimates, respectively.

Metapopulation model
Wesimulated the outbreak of a hypothetical emerging respiratory pathogen
using a metapopulation model structure to incorporate spatial coupling
between upazilas. The model was adapted from Li et al.36, and can be sum-
marized by the following equations:
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whereSi; Ei; Ii
S, Ii

A;Ni are the susceptible, exposed, symptomatic infec-
tious, asymptomatic infectious, and total population in upazila i,

respectively; β is the transmission rate of symptomatic, infectious indivi-
duals; α is the factor by which the transmission rate is multiplied for
asymptomatic infectious individuals; δ is the probability of having clinical
symptoms; σ is the inverse of the latent period; γ is the recovery rate; andMij
is the daily average number of subscribers traveling from upazila j to upa-
zila i

As in Li et al., we assumed that symptomatic infectious individuals do
not travel, although theycan travel during the latentperiod36. Themodelwas
integrated stochastically using a fourth order Runge-Kutta (RK4) scheme,
where for each step of the RK4 scheme, each term on the right-hand side of
Eqs. (2)-(5) was based on a random sample drawn from a Poisson
distribution36.

Given the analysis’ focus on understanding the impact of geographic
bias in mobility estimates rather than simulating an actual outbreak, we
fixed some of the assumptions for natural history parameters (Table 1). The
parameter values were chosen not to represent any specific disease, but
rather to model an outbreak of an emerging respiratory pathogen with
epidemiological parameters that are in the range of observed parameters for
respiratory pathogens in human populations. However, we incorporated
variability in the transmission coefficient, β; by using four values for the
basic reproduction values, R0, because of its importance in outbreak
dynamics. The basic reproduction number, R0, and the transmission coef-
ficient are related through the expression forR0, whichwas computed as the
dominant eigenvalue of the next-generation matrix as the following:

R0 ¼
β

γ
½δ þ ð1� δÞα� ð7Þ

While we intentionally do not model a specific disease, we chose a
range ofR0 values that are close to empirical estimates for influenza and
COVID-19 across a wide range of settings. VaryingR0 impacts the final size
of the outbreak, the peak incidence, the timing of the peak, and spatial
spread of the disease. With higher transmission rates (higherR0) the
pathogen spreadsmorequickly bothwithin andacrossdistricts leading to an
earlier and more intense outbreak peak (Supplementary Fig. 4). We ran
three sets of simulations based on three different seed cities in Bangladesh –
Dhaka, Chittagong, and Panchagarh. These cities were chosen because of
their range in population sizes and geographic locations, which were varied
to test the impact of different seed conditions on outbreak trajectories:
Dhaka and Chittagong represent large urban cities in the center and
southern most region of Bangladesh, respectively, while Panchagarh
represents a less populous and more geographically isolated area in the
north. The three locations were chosen to illustrate the impact of the out-
break starting in highly connected and densely populated locations (Dhaka,
followed by Chittagong) versus a smaller, more rural area (Panchagarh).
Dhaka and Chittagong were also chosen as they are the largest cities in the
country with high connectivity both domestically and internationally. In
previous outbreaks, both of these locations have shown to be important for
emergence and spread of pathogens1–3. With four different value assump-
tions for the basic reproduction number and three different seed cities, 12
sets of simulations were run at both the district and upazila levels. The CDR

Table 1 | Parameter definitions and value assumptions for the metapopulation model

Parameter Definition Value

R0 Basic reproduction number (1.2, 1.3, 1.5, 2)

β Transmission coefficient for symptomatic infectious individuals Calculated based on assumptions for R0 and
expression for R0

α Multiplicative factor by which transmission coefficient is multiplied for asymptomatic vs.
symptomatic infectious individuals

0.5

δ Proportion of infections that are symptomatic 0.65

1=σ Mean latent period 3 days

1=γ Mean infectiousness period 5 days
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and Meta data were used to parameterize the rates at which individuals
move between pairs of upazila, Mij, the calculations for which are descri-
bed later.

Due to the geographic resolution of the tiles inMeta’s data, the highest
resolution spatial scale at which we could derive mobility estimates using
Meta’s Data For Good was the district level. District-level simulations
therefore used population-level mobility estimates from Meta, the three
CDRoperators, and a district-level gravitymodel. Upazila-level simulations
used mobility estimates from the three CDR operators and an upazila-level
gravity model. To allow for comparisons across Meta and CDR data, we
present themainfindings in terms of the results of district-level simulations.
We also discuss findings from upazila-level simulations and include their
results in the Supplementary Information. District-level simulations were
initialized with 500 people in the latent compartment in the seeded district.
As a sensitivity analysis, we also initialized the district-level simulationswith
200 and 1000 people in the latent compartment (Supplementary Fig. 5).
Changing the initial number infected changed the timing of the outbreak
peak but did not substantially alter our results. Upazila-level simulations,
meanwhile, were initialized with 100 people in each of the five most
populous upazilas in the seeded district (Supplementary Table 2).

We ran each set of district-level simulations 1000 times and quantified
95% uncertainty bounds for the number of people in each of the com-
partments across the simulation runs. Upazila-level simulations were run
100 times to limit computational demands. Differences in outbreak tra-
jectories across the runs capture uncertainty from two sources: (1) the
stochastic Poisson processes in the transmission model and (2) sampling
from mobility matrices, which is described later. All simulations were run
for 75 weeks (525 days). Incidence shown in the main results figures was
calculated as the number of symptomatic infectious individuals, as
asymptomatic individuals are likely not captured by surveillance.

Construction of origin-destination mobility matrices for the
metapopulation model
We transformed the aggregated raw CDR data received from the operators
into origin-destinationmobilitymatrices using the following steps. For each
operator, the aggregated raw data describe the daily number of trips taken
between pairs of upazilas and the number of subscribers who stay put in
each upazila. Since the three operators have different date coverages in the
time period April 28 to September 1, 2020 (excluding the Eid holidays), we
calculated average weekend day values and average weekday values across
the time period for each data source (Supplementary Fig. 6).We defined the
aggregatedmobilitymatrices for each operator asQwith elements qij at row
i and column j, which represents the average daily number of subscribers
traveling from upazila j to upazila i, with missing values imputed, as
described in the Supplementary Information. When upazila i to upazila j
reference the same upazila, the matrix element represents the average
number of subscribers who start and remain in that same upazila on a
given day.

We incorporated uncertainty from the data sources by accounting for
differences in their number of subscribers. For each mobility matrix ele-
ment, qij, we estimated a beta distribution using Bayesian inference (binom
bayes function in the binom R package), which uses a naïve beta prior
(alpha=0.5, beta=0.5) on the probability of success for a binomial dis-
tribution to estimate a beta posterior, such that upazilaswith fewsubscribers
will have highuncertainty.Here, the number of successeswas thematrix cell
value, representing the number of people traveling between two upazilas,
and the number of independent trials was the matrix column total, which
represents the number of people in each upazila who stay put or travel from
that upazila in a given day, a proxy for the number of subscribers in the
upazila. To populate a simulated mobility matrix with uncertainty incor-
porated,B, wedrewa randomvalue forbij fromthebetadistributiondefined
by the alphai,j and betai,j shape parameters estimated for each mobility
matrix cell value.

We then normalized the resulting matrix to create matrix H with
elements hij by calculating the proportion of each cell value to its respective

column total:

hij ¼ bij=
Xn

i¼1
bij

where n is the number of upazilas. Each hij is therefore a realization of a
proportion of all subscribers who are residents of i thatmove to each j on an
average day. We assumed that these proportions for subscribers are
equivalent to the proportions of the entire population andmultipliedH by a
diagonal matrix:

K ¼ H � diagðpÞ

where p is a vector of upazila population sizes (i.e. p ¼ ½p1; . . . ; pn�T for n
upazilas). Matrix K represents the average daily number of people in the
population traveling from upazila j to upazila i.

Lastly, we calculated a symmetric matrix S by taking the average of
reciprocal values in K to balance upazila-level population inflows and
outflows:

S ¼ ðK þ KT Þ=2

where KT is the transpose of matrix K. For district-level simulations, we
summedupazila values inSbasedon their districts to create a corresponding
district-level mobility matrix, D. The final origin-destination mobility
matrices,M, used as inputs in the metapopulationmodel are either S in the
case of the upazila-level simulations or D for district-level simulations
(Supplementary Table 3). To parameterize the mobility matrix in the
metapopulationmodel,we created aweekly vector by repeating theweekday
mobility matrix five times followed by repeating the weekend mobility
matrix twice, and ran simulations for 75 weeks.

The metapopulation model was initialized using a population vector
containing the sums of the mobility matrix columns, representing the
effective population sizes of each upazila or district. Conceptually, if an
operator’s data indicatesmore travel to a specific upazila compared to travel
from that upazila, the effective population size for that upazila will be larger
than its actual population size. This type of upazila would represent one that
receives a lot of visitors in a given day. While the effective population
size for Bangladesh is the same as the country’s actual population size,
the effective population size accounting for mobility and actual population
size diverge for districts and especially for less populous districts (Supple-
mentary Fig. 7).

For the benchmarkmodel, we used the combined data fromOperators
1, 2, and 3 to create the mobility matrix. Together these three operators
represent approximately 100 million subscriptions in Bangladesh, which
has a total population size of approximately 169million.While somemobile
phoneusers inBangladeshmayhavemultiplemobile phones and SIMcards
from different operators, leading to potential double counting in the data,
this is likely to only be a small fraction of the population given the distinct
geographic coverage pattern for each operator (Fig. 1). We were unable to
find other population-representative data sources that can provide the
spatial and temporal resolution needed to compare with our data sources
and to model disease dynamics. We did not include the data fromMeta for
two main reasons: 1) the Meta data is digital trace data from users with
smartphones, thus ensuring overlap with the CDR data; 2) the Meta data is
also derived using a different algorithm and it was not possible to obtain
upazila-level estimates.

All analyses were conducted in R version 4.2.1. The analyses presented
here involves the secondary analysis of existing data that has been de-
identified and aggregated. No identifiable private information was available
to authors, and this research does not fall within the regulatory definition of
research involving human subjects.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.
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Results
Geographic Differences in Coverage
The mobile phone operators differed in terms of their geographic repre-
sentativeness based on the normalized number of subscribers across the 64
districts (Fig. 1). Dhaka, the capital in the center of Bangladesh, had the
highest normalized number of subscribers relative to all other districts for all
three operators. Operator 1’s coverage was geographically dispersed with
coverage in most districts, Operator 2 had concentrated coverage in the
southern Chittagong Hill Tracts region, and Operator 3 had higher geo-
graphic coverage in the northern Mymensingh division and southwestern
Khulna division. Meta’s coverage was highly concentrated in Dhaka. The
four different mobility sources also showed different patterns for the most
frequent travel routes, defined as the number of trips divided by the origin
district population size (Fig. 1). Several of Operator 1’s top routes were
centered around travel to and from Dhaka. The top routes for Operators 2
and 3, meanwhile, were to and from the southern Chittagong Hill Tract
districts. Meta’s top routes were distributed throughout Bangladesh.

Thepronounceddifferences in coverage betweenMeta versus the three
mobile phone operators reflect the demographic differences between Meta
users and mobile phone subscribers. Since smartphones are not widely
adopted yet in Bangladesh, districts withmanyMeta users were, on average,
districts with higher household income and urbanicity levels (Supplemen-
tary Fig. 8). By contrast, the number of Operator 1 subscribers across dis-
tricts was more weakly correlated with districts’ mean household income
and urbanicity levels.

The upazila-level origin-destination matrices reveal substantial dif-
ferences across operators in the number of upazila pairs with travel (Sup-
plementary Fig. 9A). Operator 1’s data included trips between upazilas for
approximately 93% of all upazila pairs, whereasOperator 2’smatrix was the
sparsest, with only approximately 10% of upazila pairs having trips between
themand85%of all pairwise upazilaswithno recorded travel between them.
Operator 3 fell in between Operators 1 and 2 in terms of matrix sparsity,
with 78% of upazila pairs having trips between them. These differences in
matrix sparsity on the upazila-level are reflected at the district level (Fig. 2).
Meta’s district-level matrix was the sparsest of the four data sources, with
several district pairs that have no travel between them.

The operators also differed in terms of the proportion of their sub-
scribers who move every day, which is reflected most clearly in the pro-
portionwho do notmove (Fig. 2, Supplementary Fig. 9B). Operator 1’s data
had higher proportions of people staying put across its districts (mean =
0.97; IQR= 0.01), contrasting Operator 2’s lower and more heterogeneous
proportions (mean = 0.86; IQR = 0.06). Operator 3 fell between Operator 1

and 2 (mean = 0.93; IQR = 0.02). Meta’s data had the highest proportion of
people staying put in their origin district (mean = 0.99; IQR 0.004) (Fig. 2).
On average, more people therefore traveled between upazilas based on
Operator 2’s data compared to data from Operator 1 and 3. Of note,
althoughOperator 2’smatrix was sparser thanOperator 1 or 3’s, the upazila
pairs with no connectivity in Operator 2 data were upazilas with smaller
populations on average and also had low connectivity in data from
Operators 1 and 3 (Supplementary Fig. 10). In summary, Operator 2 data
had higher overall mobility for subscribers but captured no travel for some
locations, which had low levels of travel in the other Operator datasets.

Outbreak Trajectory Differences
The three operators and the gravity model predicted similar country-wide
incidence trajectories when the outbreak was seeded in Dhaka (Fig. 3A,
Supplementary Fig. 4). The mobility matrix generated from Meta, mean-
while, produced a delayed outbreak after similar initial growth in the first
~225 days. Meta’s epidemic took off in the seed city Dhaka earlier than the
outbreaks generated from the other mobility sources, but the outbreak then
took a while to reach all other districts, contrasting the other mobility
sources’ more synchronously timed outbreaks (Fig. 3B, Supplemen-
tary Fig. 11).

When the outbreak was seeded in Chittagong, the gravity model pre-
dicted a slightly delayed outbreak compared to the three mobile phone
operators (average outbreak peak at day 331 for the gravity model vs. day
313-315 for the operators, for R0 ¼ 1:3), while Meta’s outbreak was most
delayed in timing (Fig. 3A). The gravity model, Meta, and Operator 1
generated early initial outbreaks in the seed city of Chittagong and delayed
outbreak timing for all other districts (Fig. 3B, Supplementary Fig. 11).

The outbreaks from the three Operators and the gravity model were
more differentiatedwhen the outbreakwas seeded inPanchagarh,which is a
smaller andmore geographically isolated city. This divergencewasdrivenby
different travel rates to Dhaka across the mobility sources, with the gravity
model and Meta predicting slower outbreak introductions to Dhaka com-
pared to the other sources (Fig. 4).In this scenario, however, Meta’s data
produced a total incidence curve more similar to that of the other mobility
sources because the outbreaks generated from the other sources also took a
while to reach Dhaka, which has a crucial role in country-wide outbreak
dynamics due to its connectedness to all other districts in each dataset.
Meta’s delayed timing across districts therefore better matched the timing
across districts predicted by the other mobility sources (Supplementary
Fig. 11). When values of R0 were increased from 1.2 to 2, the estimated
outbreak trajectories showed similar patterns, though with faster outbreaks

Fig. 1 | Number of subscribers and top travel routes for each mobility data
source. The district color represents the normalized number of subscribers across
districts for each mobility data source, defined as the number of subscribers in each
district divided by the number of subscribers in Dhaka.The line color represents the

top 15 routes by relative volume from each mobility data source, where routes are
ranked by the estimated number of travelers between districts divided by the
population of the origin district.
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Fig. 2 | District-level origin-destination matrices. The values reflect the daily
average log number of trips taken by people in the population on weekdays in 2020
after excluding the Eid holidays. The matrices have been made symmetric, and
districts have been ordered by latitude. The proportion of trips takenwithin a district

vs. to other districts, averaged across all districts, is shown in the top left corner. The
gravity model is only used to predict travel between districts, and there are no
predictions on within-district travel (along the diagonal).

Fig. 3 | Outbreak dynamics by seed city and mobility data source. Incidence of
symptomatic, infectious individuals for all of Bangladesh over time by seed city and
mobility matrix source when R0 ¼ 1:3 (A). Time the outbreak peaks and time the
outbreak takes off (≥ 50 cumulative symptomatic infected cases) across districts by

seed city and mobility matrix source. The district order on the y-axis is ordered by
distance to the seed city, with the closest district to the seed city on the bottom and
the farthest district on the top of each plot (B).
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in all scenarios (SupplementaryFig. 4).DespiteOperator 2’s relatively sparse
upazila-level matrix, at the district level, across the different seed cities, it
yielded outbreaks of similar total size compared to that of the other sources
because it still predicted connectivity across all districts (Fig. 3A).

In terms of the heterogeneities in the spatial timing of district-level
outbreaks, the gravity model predicted the timing of district-level outbreaks
in non-seed cities to be in accordance with the district’s distance to the seed
city (Fig. 3B). Models using the mobile phone operator data generally had
earlier outbreaks than the gravitymodel, especially formoredistantdistricts.
This observation was most pronounced when the outbreak was seeded in
Panchagarh; in this scenario the gravity model’s first outbreak to peak was
the one in Panchagarh at 178 days and the last was Bandarban’s in southern
Bangladesh on day 409. The district-level outbreaks generated from
Operator 1’s mobility data had similar peak times across the different seed
city simulations, centeredat around315days, butmoredifferences in timing
emerged when the outbreak was seeded in Panchagarh, reflecting the city’s
lower travel connectivity to other places compared to the seed cities of
Dhaka and Chittagong. Meta’s outbreaks across districts were staggered
over time, reflecting the data source’s lower levels of mixing between
districts.

Simulations with all mobility sources produced similar final outbreak
size compared to the benchmark model (Fig. 3A, Fig. 5A). However, there
was substantial heterogeneity in the timing of the outbreak spread,

compared to the benchmark model (Fig. 3B). Simulations from Meta,
Operator 1 and Operator 2 diverged the most from the benchmark; simu-
lations using Meta generally had a slower spread, while simulations using
Operator 2 suggested a much more rapid spread.

Differences in travel patterns across the mobility sources also affected
the early spatial spread of the outbreak, where outbreak introduction was
defined as the day a district reached at least 10 symptomatic infectious cases.
For Operator 2 the high synchronicity in outbreak timing across districts
(peak times ranging from 309 to 314 days) was due to the higher travel
between places predicted by this data source, which resulted in more rapid
spread across all districts relative to othermobility sources (Fig. 4).Operator
3 also had higher overall mobility than Operator 1, which similarly
explained its faster spatial spread like Operator 2’s (Fig. 4). The early spatial
spread of outbreaks using Meta’s data, by contrast, was limited to the dis-
tricts neighboring each seed city due to the district-level matrix sparsity.

Due to the large outbreaks generated under all scenarios, the final
epidemic size, defined as the cumulative incidence of symptomatic infec-
tions as a proportion of Bangladesh’s total population, was similar across
mobility sources and within each R0 and seed city scenario (Fig. 5A). In
contrast with the similarity in final epidemic sizes across mobility sources,
the early spatial spread of the outbreak variedmore across districts (Fig. 5B).
Across all seed cities and R0 values, Operator 2’s data resulted in the highest
number of districts with at least one case in the first 30 days of the outbreak;

Fig. 4 | Spatial variation in outbreak timing by seed city and mobility data source. Time to outbreak introduction, defined as the day the district had at least 10
symptomatic cases, across districts by matrix mobility source and seed city.
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at R0 values of 1.3 or higher, the outbreak spread to almost all 64 districts in
the first 30 days with Operator 2’s data. By contrast,Meta’s data produced a
much slower initial spread, ranging from 4 to 8 districts having at least one
case within 30 days across R0 values when seeded in Dhaka, 1 to 5 districts
when seeded in Chittagong, and 4 to 28 districts when seeded in Pan-
chagarh. Meta’s data lacked connections in many rural districts, such as
those aroundPanchagarh. Because of the binomial sampling that accounted
for fewor no subscribers,mobility could be overestimated for somedistricts,
resulting in the faster initial predicted spread when seeded in Panchagarh.
Differences between Operators 2 and 3 for this metric, meanwhile, dimin-
ished athigherR0 values of 1.5 and2. In general,withhigher values ofR0, the
differences in the timing of the peak are less pronounced across simulations
as the high transmissibility of the pathogen leads to rapid spread even for
mobility sources with lower volumes of travel. In other words, when
transmission rates are sufficiently high, the pathogen spreads even with
relatively low connectivity across districts.

While the outbreak trajectories in terms of country-wide incidence
were relatively similar across mobility sources in the district-level
simulations, significant differences emerged with the upazila-level
simulations (Supplementary Fig. 12). Using Operator 2 data, some or
all outbreaks died out for scenarios where R0 was 1.5 or lower due to the
upazila-level sparsity of Operator 2’s mobility matrix. Across all sce-
narios, there was clearer divergence between each operator and the
gravity model trajectories in terms of final size, peak size, and timing. The
outbreak trajectories of Operators 1 and 3 become more similar only at
higher R0 values of 1.5 and 2.

We compared the root mean squared difference from the benchmark
model (Fig. 6), and found that across all values of R0 and choice of seed city,
Operator 1 had the smallest difference from the benchmark. Interestingly,
simulations using data fromMeta had the largest differences when the seed
cities were Dhaka and Chittagong, suggesting that inmany situations using

a gravity model may provide more reliable estimates. In general, the gravity
model performed well (comparable to simulations using data from
Operator 2 and Operator 3) when the seed cities were large (Dhaka and
Chittagong).

Discussion
Given the importance of population level mobility on the transmission
dynamics of infectious disease outbreaks, accurate measurements of mobi-
lity are critical for accuratemodeling of outbreaks and for designing effective
interventions. We demonstrate the significant differences in travel patterns,
geographic coverage and volume of travel estimated from different sources
of digital data frommobile phones and socialmedia. This analysis sheds light
on a methodological aspect of CDR analysis that has been underexplored –
the bias that results from differences in operators’ geographic representa-
tiveness. Using data from three mobile phone operators in Bangladesh, we
found that different data sources implied very different mobility patterns,
including different levels of connectedness between locations and different
overall levels ofmobility.When comparedwith the benchmarkmodel using
the combineddata fromall three operators, wefind several important results
for guiding practitioners: 1) as expected datasets with greater population
coverage performed better than simulations with more sparse data; 2) in
many instances, the gravitymodelmaybe abetter choice thanusingmobility
sources with very low population coverage such as Meta; and 3) where an
outbreak starts, the transmissibility of the pathogen, and the outcomes of
interest, for example, peak incidence or timing of spatial spread, determines
the magnitude of deviation from the benchmark.

The differences in the mobility sources had substantial impact on the
estimated spread pattern of simulated epidemics, including whether the
epidemics spread across the country, how fast they spread, the geographic
patternof spread, and theoverall impact.These effects varied along the three
dimensions of the simulated epidemics: (1) the city where the outbreak was

Fig. 5 | Differences in outbreak dynamics by seed city, mobility data source, and
reproduction number. Final size of the epidemic (defined as the proportion of the
cumulative number of symptomatic infectious individuals out of Bangladesh’s total
population) by seed city and mobility source. 95% uncertainty bounds across

1000 simulations shown in error bars (A). Number of districts with at least one case
within the first 30 days by seed city and mobility source. 95% uncertainty bounds
across 1000 simulations shown in error bars (B).
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seeded, (2) the spatial unit of analysis, and (3) the transmissibility of the
pathogen. Simulated epidemics initialized in the large and centrally con-
nected capital Dhaka, run at the district-level, and parameterized using
higher R0 values, exhibited relatively limited differences between the out-
break trajectories predicted by the different mobility sources. In contrast,
initiation in less-connected locations, spread at finer geographical resolu-
tion, and lower R0 values, which are all real-world considerations for epi-
demic models, accentuated differences.

For example, the district-level simulation results using Operator 2’s
data had similar final epidemic size and overall outbreak timing to those of
the gravity model and Operators 1 and 3. However, at the upazila level,
Operator 2 mobility did not always produce country-wide epidemics, and
the outbreak trajectories were very different betweenmodels, particularly at
lower values of R0. In a highly connected population, with a highly trans-
missible pathogen, and with minimal interventions, more sparse or biased
datasets may have limited impact. However, with real heterogeneities in
outbreak introductions, local scale spread, and lower transmissibility (which
may even apply to high R0 pathogens due to immunity or mitigation
measures), these differences become much more important.

While simulations using the gravity model and each operator were
similar in the conditions that produced large and fast epidemics, the
simulations based on Meta’s mobility data differed even under these con-
ditions. The sparsity of the district-level mobility matrix fromMeta reflects
the low uptake of smartphones and low usage of Meta apps in Bangladesh
currently. These differences led to outbreaks across districts that were
delayed and asynchronous in timing, resulting in comparablefinal epidemic
sizes butdivergent spatiotemporal dynamics compared to theothermobility
data sources. The limitations of the mobility patterns captured by Meta are
an important point of consideration. While these data offer immense pro-
mise, their coverage in low-resource settings,where they couldpotentially be
most useful, may still be too low to use even for the simplest large scale
metapopulation models.

Althoughwe focus here onmobile phone operators in Bangladesh, our
results are important to consider for any infectious disease modeling and
prediction efforts using these novel sources of human mobility data. Our
results suggest that the geographic representativeness of the data source, the
spatial resolution of data available, the starting location of the outbreak, and
the transmissibility of the pathogen are all important considerations when
choosing a mobility data source for modeling and forecasting.

Our analysis has some important limitations and we make several
simplifying assumptions in this analysis. While our model addresses geo-
graphic heterogeneity explicitly by modeling spread by mobility between
locations (districts or upazilas), it assumes homogeneous mixing within
those locations, an over-simplification of the complex local-scale trans-
mission dynamics. CDRs do not capture many aspects relevant to trans-
mission, such as transmission chains within upazilas, behaviors practiced
while traveling (e.g. mask wearing, traveling more during non-peak hours,
quarantining upon arrival at one’s destination), or type of travel (e.g. public
transportation vs. private vehicles). We also assume that symptomatic
individuals do not travel, which may underestimate the peak incidence and
the introduction times to different locations. Finally, we do not consider
variation in local conditions, such as healthcare infrastructure, social and
cultural practices, local political environment, climate, etc., that can impact
the spread of infectious diseases and lead to spatial heterogeneities in disease
dynamics. These considerations may be important when simulating an
actual epidemic, whereas our analysis was focused on exploring bias and
therefore did not model a particular pathogen or past outbreak.

CDR and digital trace data have additional limitations to consider. First,
they are often very difficult or impossible to attain, even from a single
provider. They are also subject to biases due to heterogeneities in phone
ownership and usage patterns. People who use cell phones on average likely
travel more than the general population based on their demographic char-
acteristics, like age, gender, and occupation19,20. Children in particular are
typically not captured with CDR or digital trace data37, but are an important

Fig. 6 | Difference between the simulated incidence for each mobility source and
the combined dataset from all three operators (representing greatest population
coverage). The difference is calculated as the square root of the mean squared

difference across all time points and all districts. Differences are shown by seed city
and R0 values. Note that that y-axis scaling is different for each row since epidemic
sizes, and therefore magnitude of differences, vary by R0.
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demographic group for disease transmission. In the context of the mobility
matrices estimated here, the proportion of the population estimated to stay
put in a geographic area versus travel to other geographic areas is likely higher
in the general population than what is estimated using CDR data. Addi-
tionally, novel big data sources on human behavior, such as CDR and digital
trace data, are generated using computer algorithms thatmay introducemore
uncertainty and bias compared to traditional methods of data collection38.

Finally, a key limitation of this study is the lack of ground-truthdata on
population mobility in Bangladesh. While we use a benchmark model,
comprising of data from all three operators, to evaluate the performance of
each mobility source, the benchmark mobility is also plagued by the same
limitations as described above, although likely to a lesser degree as it
represents a significant portion of the country’s population. To address this
important methodological challenge, future work should be focused on
developing methods for collecting population-representative high-resolu-
tion data on movement patterns, for example, through frequent nationally
representative surveys, and on generating metadata for CDR data that
includes demographic characteristics that could be used to correct for
sampling biases.

In light of these findings, sensitivity analyses may help capture
uncertainty in a mobility data source with limited geographic repre-
sentativeness. These analyses could vary the proportion of people
assumed to stay in their origin district and could increase the con-
nectivity implied by the dataset (i.e. reduce matrix sparsity by making
assumptions for location pairs with no trips). Future work could also use
other data sources, such as travel surveys and questionnaires, to estimate
the proportion of people that stay put on a given day and adjust the
matrices to reflect travel patterns that are more representative of those of
the general population. Another research priority involves continuing to
develop and compare metrics that can be calculated from alternative data
sources, such as travel surveys and census data, and CDRs37,39,40.

In an increasingly interconnected world, epidemic preparedness and
response must account for how populations are interconnected. Here, we
demonstrate that even with what might be considered ideal datasets of
phone level mobility for large sectors of the population of Bangladesh and a
relatively simple simulated epidemic, expected dynamics are highly variable
depending on whichmobility data are available. Modeling analyses that are
reliant on a single mobile phone operator, unless the operator captures a
significant proportion of the underlying population base, likely reflect the
biases of the operator’s geographic footprint. Digital data sources provide
unprecedented opportunities for estimating critical population mobility
fluxeswith real-time data, yet understanding and accounting for their biases
remains an important area of research. This work contributes to the debate
on the generalizability of models built on these types of human behavioral
data that are increasingly being used in public health, and highlights the
potential pitfalls of using these data for providing mechanistic insights into
disease transmission.

Data availability
TheCDRdata that support thefindings of this study are available on request
from a2i. a2i anonymized the CDRdata to ensure the security of the privacy
and sensitivity of the data. The Meta datasets are available to researchers
through Meta upon request from Meta’s Data for Good program.

Code availability
Code for our analyses is available on Github at https://github.com/taylor-
chin/bgd-mobility-release.
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