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Abstract

Integrating Brain Connectome and Lesion Data for Patient Outcome Prediction

by

Po-Yu Kao

This research focuses on introducing novel machine learning algorithms for predict-

ing the outcome of patients with brain disorders using MR images. We first introduce

the challenges in medical image analysis and overview the magnetic resonance imaging,

datasets, and existing tools. A brain lesion segmentation method is then presented. The

main novelty of this method is a new feature fusion method that integrates location

information and the state-of-the-art patch-based neural networks for lesion segmenta-

tion. The proposed feature fusion method improves the segmentation performance of the

patch-based neural networks. Thereafter, we focus on predicting the overall survival of

brain tumor patients. We introduce a novel feature called the tractographic feature to

capture the potentially damaged regions due to the presence of the lesion. The tracto-

graphic feature is built from the lesion and average connectome information from a group

of normal subjects. It takes into account different functional regions that are affected by

the lesion, thus complementing the commonly used lesion volume features. The tracto-

graphic feature is tested on the Multi-modal Brain Tumor Segmentation (BraTS) 2018

dataset and achieves a better overall survival prediction performance than other features

and the gold standard that uses patient age. The proposed tractographic feature is also

used to predict the clinical outcome of stroke patients. On the publicly available stroke

benchmark, Ischemic Stroke Lesion Segmentation (ISLES) 2017, our proposed tracto-

graphic feature achieves higher accuracy than the state-of-the-art feature descriptors.

Finally, we focus on predicting the outcome of mild traumatic brain injury (TBI) pa-

x



tients. The tractographic feature cannot be built in this case since the mTBI patients

do not have brain lesions in the traditional MR images or CT scans. Here, we present

an unsupervised 3D feature clustering algorithm, consisting of 3D dictionary learning,

convolutional network, k-means clustering algorithm with group constraint, to gather

mild TBI patients into three groups using their structural and diffusion MR images. The

proposed method won the 3rd place in Mild Traumatic Brain Injury Outcome Prediction

(mTOP) 2016 challenge.
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Chapter 1

Introduction

Cogito, ergo sum

René Descartes, 1637

The brain is the control center of the human body. It is a part of the nervous system

including the spinal cord and a large network of nerves and neurons. Together, the

nervous system controls everything from senses to the muscles throughout body [14].

When the brain is damaged, it affects many different functions, including memory,

sensation, and personality. Brain disorders include any conditions or disabilities that

affect the brain. This includes conditions that are caused by illness, genetics, or traumatic

injury

In this dissertation, we focus on three different types of brain disorders: brain tumor,

stroke and traumatic brain injury.

Brain Tumor A brain tumor is a collection, or mass, of abnormal cells in the brain.

The skull, which encloses the brain, is very rigid. Any growth inside such a restricted

space can cause problems. Brain tumors can be malignant or benign. When tumors

grow, the pressure inside the skull is increased. This can cause brain damage, and it can
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be life-threatening.

Brain tumors are categorized as primary or secondary. A primary brain tumor orig-

inates in the brain. Many primary brain tumors are benign. A secondary brain tumor,

also known as a metastatic brain tumor, occurs when cancer cells spread to the brain

from another organ, such as lung or breast [15].

Glioma is a common type of brain tumor in adults originating in the glial cells that

support neurons and help them function. The World Health Organization (WHO) clas-

sification system categorizes gliomas from grade I (lowest grade) through grade IV (high-

est grade), based upon histopathologic characteristics which predict their behavior over

time [16]. Low-grade gliomas (LGGs) consist of WHO-grade I tumors and WHO-grade

II tumors, that tend to exhibit benign tendencies and indicate a better prognosis for the

patient. WHO-grade III and IV tumors are included in high-grade gliomas (HGGs) that

are malignant and more aggressive. In this dissertation, we focus on high-grade giloma

and low-grade giloma patients.

Stroke Stroke is the top five cause of death and a leading cause of disability in the

United States. A stroke occurs when a blood vessel that carries oxygen and nutrients to

the brain is either blocked by a clot or bursts. When it happens, part of the brain cannot

get the blood and oxygen, and the impacted brain cells die.

Stroke can be caused either by a clot obstructing the flow of blood to the brain (called

an ischemic stroke) or by a blood vessel rupturing and preventing blood flow to the brain

(called a hemorrhagic stroke). A transient ischemic attack (TIA), or mini-stroke, is

caused by a temporary clot [17]. In this dissertation, we use publicly available data on

the ischemic stroke patients.
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Traumatic Brain Injury A traumatic brain injury (TBI) is defined as a blow to the

head or a penetrating head injury that disrupts the normal function of the brain. TBI

can happen when the head suddenly and violently hits an object or when an object

pierces the skull and enters brain tissue. Symptoms of a TBI can be mild, moderate

or severe, depending on the extent of damage to the brain. Mild cases may result in a

brief change in mental state or consciousness, while severe cases may result in extended

periods of unconsciousness, coma or even death [18]. In this dissertation, we focus on

mild traumatic brain injury which is hard to be observed and diagnosed in the CT scan

or structural MR image.

1.1 Challenges

Lack of appropriately annotated large-scale datasets is the biggest challenge in med-

ical image analysis. Although every day there are millions of medical images generated

worldwide, most of them lack proper annotations for training scalable machine learning

methods. Unlike annotating natural images, annotating medical images requires medical

knowledge from experts such as radiologists and physicians. Besides, manual annotation

by clinical experts is both time-consuming and expensive. For these reasions, high-quality

annotated medical imaging datasets are not easily available. For example, the well-known

natural image dataset, ImageNet [19], has more than 14 million annotated images but

one of the largest medical image datasets, the Adolescent Brain Cognitive Development

Neurocognitive Prediction Challenge (ABCD-NP-Challenge 2019) [20–24], only provides

data for 8556 subjects including 3739 training subjects, 415 validation subjects and 4402

testing subjects with subject-wised annotations. In addition, the Multi-modal Brain

Tumor Segmentation (BraTS) 2016 and BraTS 2017 [25] only have 750 subjects with

voxel-wised annotations.
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1.2 Summary of Contributions

The main contributions of this dissertation are threefold: First, we propose a novel

feature fusion method which integrates location information of brain and the state-of-

the-art patch-based neural networks that improve the segmentation performance of these

networks. Second, we propose a novel tractographic feature from the lesion region to

predict the clinical outcome of stroke patients and the overall survival of brain tumor

patients. Third, we propose a fully unsupervised methodology to learn the 3D features

from the volumetric data and use these features to predict the outcome of patients with

mild traumatic brain injury in an unsupervised manner.

1.3 Dissertation Organization

In Chapter 2, an overview of magnetic resonance imaging (MRI), datasets and tools

used in this research are presented. We introduce (i) the structural and diffusion MRI,

(ii) the datasets of brain tumor patients, stroke patients, mild traumatic brain injury

patients, and normal subjects, and (iii) the tools for visualization, registration, and fiber

tracking.

In Chapter 3, we present a brain lesion segmentation method that takes into account

location information. Current segmentation methods for this problem include 3D U-

Net [26] and DeepMedic [27, 28]. Due to the limitation of GPU memory in the current

infrastructure, these state-of-the-art neural networks can only be trained by the sub-

regions (patches) of the brain rather than the whole brain volume. Therefore, location

information of these patches of the brain is missing for these networks. That is, these

neural networks do not know where these patches come from the brain. Here, we present

a novel feature fusion method which integrates location information and these state-of-

4



Introduction Chapter 1

the-art patch-based neural networks for brain lesion segmentation. The proposed feature

fusion method provides location information of sub-patches to the patch-based neural

networks with a limited GPU memory constraint. An existing brain parcellation atlas

is used as additional location information to the patch-based neural networks. The

proposed location information fusion method improves the segmentation performance of

these state-of-the-art patch-based neural networks. The experimental results are reported

in a public multi-modal brain tumor segmentation (BraTS) 2018 dataset [2–4].

In Chapter 4, we focus on predicting the overall survival of brain tumor patients. We

first use the brain tumor segmentation method proposed in Chapter 3 to segment the

brain tumor from multi-modal structural MR images. We introduce a new feature, called

the tractographic feature, that incorporates the lesion locations towards predicting the

overall survival rates of tumor patients. From the lesion region, we also extract other

features such as the volume of lesion, the shape characteristics of the lesion, and the

distributions of the lesion in different brain regions to predict the OS of brain tumor

patients.The proposed tractographic feature has a better OS prediction performance

than other first-order features and patient’s age which is shown to be the gold standard

in this task [29–32]. We report experimental results on a public multi-modal brain

tumor segmentation (BraTS) 2018 dataset [2–4]. We also compare the OS prediction

performance of tractographic features extracted from the predicted lesion and the ground-

truth lesion.

In Chapter 5, we focus on predicting the clinical outcome of ischemic stroke patients.

Here, we use the ground-truth of the stroke lesion to predict the clinical outcome of

patients to have a fair comparison with the-state-of-the-art features [9]. These features,

computed from the ground truth lesion data, are used to train random forest based es-

timators. It is noted that one random forest regressor is only trained with one type of

feature. The proposed tractographic feature again has the best clinical outcome predic-
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tion performance compared to other features and similar performance compared to the

state-of-the-art feature [9]. Besides, the proposed tractographic feature is more robust,

and its dimensionality is much less than the state-of-the-art feature [9]. The experimental

results are reported in a public ischemic stroke lesion segmentation (ISLES) 2017 [33,34]

dataset.

In Chapter 6, we focus on predicting the outcome of patients with mild traumatic

brain injury. Since the lesion data is not available on this study, we can not use the

proposed tractographic features. Instead, we propose an unsupervised 3D feature clus-

tering method to cluster the subjects into 3 groups. We learn the 3D dictionaries from

the brain MR-T1, diffusion tensor fractional anisotropy, and diffusion tensor mean diffu-

sivity images provided by the mild traumatic brain injury outcome prediction challenge

(mTOP) 2016 competition. These dictionaries are then used as the convolution kernels of

a 3D network to extract the feature from each subject. Thereafter, we apply the k-means

clustering algorithm on the extracted features to predict the outcomes of subjects with

group constraint.

In Chapter 7, we present some future directions and conclude this dissertation.
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Chapter 2

Brain Imaging, Datasets and Tools

Man can alter his life by altering his

thinking.

William James

This chapter first introduces different types of Magnetic Resonance Imaging (MRI)

including structural MRI (sMRI) and diffusion MRI (dMRI). We then introduce the

datasets used in this research. These datasets contain brain tumor patients, stroke pa-

tients, mild traumatic injury patients, and normal subjects. We also briefly discuss the

existing tools including ITK-SNAP [8], FSL [35–37], and DSI Studio [38] used in this

research.

2.1 Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is used in radiology to construct images of the

anatomy and the physiological processes of the body. MRI scanners generate strong

magnetic fields, magnetic field gradients, and radio waves to form images of the organs

inside the body and the body tissue. Different from computed tomography (CT or CAT)
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scans and positron emission tomography (PET) scans, MRI does not associate with X-

rays or the use of ionizing radiation.

An MRI scan is still a better imaging choice than a CT scan because of the hazards

of X-ray in CT. MRI is widely operated in hospitals and clinics for medical diagnosis,

staging of disease and follow-up without exposing the body to ionizing radiation. An MRI

scan yields different information compared with a CT scan. Risks and discomfort may be

associated with MRI scans. Compared with CT scans, MRI scans typically take longer

(approximately 40 minutes), and the examined subject is required to enter a narrow and

confining tube. Besides, subjects with medical implants or non-removable metal inside

their body are unsafe to undergo an MRI examination.

2.1.1 Structural Magnetic Resonance Imaging

Structural magnetic resonance imaging (sMRI) is a widely used medical imaging tech-

nique in research as well as in clinical practice [39]. sMRI translates the local differences

in water content into different shades of gray that serve to outline the shapes and sizes of

the brain’s various sub-regions. An MRI scanner delivers a specific radio-frequency that

excites hydrogen atoms in the water molecule, which returns some of this energy in the

form of a characteristic nuclear magnetic resonance signal. Not all protons “resonate” in

that way, but enough do such that the resulting computer-generated image constitutes

a highly detailed map of the brain’s tissues and structures. Therefore, this tool can be

used to discover the presence of abnormal tissue through the changes in tissue density or

composition. Radiologists examining an sMRI can readily distinguish between gray and

white matter and other types of tissue, both normal, such as blood vessels, and abnor-

mal, such as tumors, by their different shading and contrast compared with surrounding

areas [40].
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Different Types of Sequences

Many pulse sequences are available, emphasizing different aspects of normal and ab-

normal brain tissue. By modifying sequence parameters such as repetition time (TR)

and echo time (TE), for example, anatomical images can emphasize contrast between

gray and white matter (e.g., T1-weighted with short TR and short TE) or between brain

tissue and cerebrospinal fluid (e.g., T2-weighted with long TR and long TE). Sequences

vary in the information they provide and how long they take to acquire. Different im-

age processing approaches often require specific types of sequences and may recommend

specifically tuned sequences to provide the best results [41].

Four different types of MR images are used in this research. These MR images include

T1-weighted image (MR-T1), contrast-enhanced T1-weighted image (MR-T1ce), T2-

weighted image (MR-T2), and T2 Fluid Attenuated Inversion Recovery image (FLAIR).

Figure 2.1 shows examples of MR-T1, MR-T2, and FLAIR images, and Figure 2.2 shows

a comparison of MR-T1 and MR-T1ce images [42]. More details of these different types

of MR images are described as follows.

T1-weighted image (MR-T1) T1-weighted image (MR-T1) with short TR and short

TE provides good contrast between gray matter (dark gray) and white matter (lighter

gray) tissues, while CSF is void of signal (black). Therefore, water, such as CSF, as well

as dense bone and air, appear dark, and fat, such as lipids in the myelinated white matter,

appears bright. Cortex (grey matter) appears dark, and the contrast between the grey

matter and white matter is best. Besides, pathological processes, such as demyelination

or inflammation, often increase water content in tissues, which decreases the signal on

T1; white matter disease often shows up as darker areas in the lighter gray-colored white

matter.
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Figure 2.1: Comparison of MR-T1 (left), MR-T2 (middle), and FLAIR (right) images
of the brain. These MR images are from MICCAI Brain Tumor Segmentation (BraTS)
2018 challenge [1–4].

Contrast-enhanced T1-weighted image (MR-T1ce) T1-weighted imaging can

also be performed while infusing Gadolinium (Gad). Gad is a non-toxic paramagnetic

contrast enhancement agent. When injected during scanning, Gad changes signal inten-

sities by shortening T1. Thus, Gad is very bright on T1-weighted images. Gad enhanced

images are especially useful in looking at vascular structures and breakdown in the blood-

brain barrier, e.g., tumors or inflammation.

T2-weighted image (MR-T2) T2-weighted image with long TR and long TE pro-

vides good contrast between CSF (bright) and brain tissue (dark). Some T2 sequences

demonstrate additional contrast between gray matter (lighter gray) and white matter

(darker gray). Therefore, water, such as CSF, appears bright, while air appears dark,

and fat, such as lipids in the white matter, appears dark. In addition, pathological pro-

cesses, such as demyelination or inflammation, often increase water content in tissues,

which increases signal on T2; white matter disease often shows up as brighter areas,

which makes subtle changes easier to be detected.
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Figure 2.2: Comparison of MR-T1 (left), and MR-T1ce (right) images of the brain.
These MR images are from MICCAI Brain Tumor Segmentation (BraTS) 2018 chal-
lenge [1–4].
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T2 Fluid Attenuated Inversion Recovery image (FLAIR) FLAIR image with

very long TR and very long TE is very sensitive to pathology and provides good contrast

between CSF (dark) and abnormalities (bright).

2.1.2 Diffusion Magnetic Resonance Imaging

Diffusion-weighted imaging (DWI) is designed to detect the random movements of

water protons. Water molecules diffuse relatively freely in the extracellular space. Their

movement is significantly restricted in the intracellular space. Spontaneous movements,

referred to as diffusion, rapidly become restricted in ischemic brain tissue. During is-

chemia, the sodium-potassium pump shuts down and sodium accumulates intra-cellularly.

Water then shifts from the extracellular to the intracellular space due to the osmotic gra-

dient. As water movement becomes restricted intra-cellularly, this results in an extremely

bright signal on DWI. Thus, DWI is an extremely sensitive method for detecting an acute

stroke. Figure 2.3 shows two example DWI images of the brain.

2.2 Datasets

The datasets used in this research include the brain MR images of (i) brain tumor

patients, (ii) ischemic stroke patients, (iii) mild traumatic brain injury patients, and (iv)

normal subjects.

2.2.1 Multimodal Brain Tumor Segmentation (BraTS)

Multimodal Brain Tumor Segmentation (BraTS) 2018 [1–4, 43] dataset is designed

for two tasks (i) brain tumor segmentation and (ii) overall survival (OS) prediction of

the brain tumor patients. It provides pre-operative multimodal MRI scans of high-grade
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Figure 2.3: DWI images of the brain. These images are from MICCAI Mild Traumatic
Brain Injury Outcome Prediction (mTOP) 2016 challenge.

glioma (HGG) patients and lower-grade glioma (LGG) patients, with a pathologically

confirmed diagnosis and available overall survival (OS) as the training, validation and

testing data.

BraTS 2018 dataset is public, and it can be accessed and downloaded through the offi-

cial webpage (https://www.med.upenn.edu/sbia/brats2018/registration.html). It

contains 285 training subjects (210 HGG and 75 LGG), 66 validation subjects, and 191

testing subjects. Each subject has four 3D MRI modalities (MR-T1, MR-T1ce, MR-T2,

and MR-FLAIR) rigidly aligned, re-sampled to 1 × 1 × 1 mm isotropic resolution, and

skull-stripped. The image size is 240 × 240 × 155 in the x-, y-, and z-directions, re-

spectively. For brain tumor segmentation task, annotations include 3 tumor sub-regions:

the enhancing tumor (ET), the edema (ED), and the necrotic & non-enhancing tumor

(NCR/NET). The annotations are combined into three nested sub-regions: whole tumor

(WT), tumor core (TC) and enhancing tumor (ET), as shown in Figure 2.4. The ground
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truth labels are withheld for the validation and testing dataset. These datasets require

participants to upload the segmentation masks to the official server for evaluations. The

validation dataset (66 cases) allows multiple submissions and is designed for intermediate

evaluations. The testing dataset (191 cases) allows only a single submission and is used

to calculate the final BraTS segmentation challenge ranking.

Figure 2.4: Glioma sub-regions. These multimodal MR image patches with anno-
tations are from a BraTS 2018 training subject. The multimodal MR image patches
show from left to right: the whole tumor (yellow) visible in FLAIR (A), the tumor
core (red) visible in T2 (B), the enhancing tumor (blue) visible in T1ce (C). The
annotations are integrated to generate the final labels of the tumor sub-regions (D):
edema (yellow), non-enhancing tumor & necrosis (red), enhancing tumor (blue).

For the overall survival prediction task, the BraTS 2018 dataset also includes the age

(in years), survival (in days) and resection status for each of 163 subjects in the training

dataset, and 59 of them have the resection status of gross total resection (GTR). The

validation dataset has 53 subjects with the age (in years) and resection status, and 28

of them have the resection status of GTR. The test dataset has 131 subjects with the

age (in years) and resection status, and 77 of them have the resection status of GTR.

For the OS prediction task, we only predict the overall survival (OS) for glioma patients
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with resection status of GTR. That is, 59, 28, and 77 subjects are considered in the

training, validation, and test set, respectively. The ground truth OS is withheld for the

validation and testing dataset. These datasets required participants to upload the OS

to the official server for evaluations. The validation dataset (28 cases) allows multiple

submissions and is designed for intermediate evaluations. The testing dataset (77 cases)

allows only a single submission and is used to calculate the final BraTS OS prediction

challenge ranking.

2.2.2 Ischemic Stroke Lesion Segmentation (ISLES)

Ischemic Stroke Lesion Segmentation (ISLES) 2017 (http://www.isles-challenge.

org/ISLES2017/) [33,34] is a public available dataset and contains diverse ischemic stroke

cases. It provides two different tasks including lesion outcome prediction and clinical

outcome prediction. ISLES 2017 is used for clinical outcome prediction in our research.

Figure 2.5 shows the timeline of ISLES 2017 data acquisition. The typical stroke treat-

ment procedure involves the acquisition of brain images at a time-since-stroke (TSS) in

minutes. Depending on these and other factors, a treatment decision is made and in-

tervention occurs after a time-to-treatment (TTT) in minutes. The outcome of this

intervention is assessed via the standardized thrombolysis in cerebral infarction (TICI)

score (see Table 2.1). After the effects are stabilized, the final clinical outcome is deter-

mined with the modified Rankin Scale (mRS) (see Table 5.1) and the final lesion outcome

by brain imaging.

The treating physician has to decide in each case individually, whether the risky

intervention (be it thrombectomy or thrombolysis) is justified by the potential gain, based

solely on the lesion appearance, the time-since-stroke (TSS) and her/his experience. A

method to reliably predict the actual lesion and clinical outcome from the acute scans
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Figure 2.5: Timeline of ISLES 2017 data. Figure adjusted from the official ISLES
2016 website (http://www.isles-challenge.org/ISLES2016/).

alone would provide invaluable evidence for the clinical decision-making process.

Image Format & Pre-processing The provided images are in uncompressed Neu-

roimaging Informatics Technology Initiative (NIfTI) format. All MR images have been

skull stripped and co-registered to each individual subject space.

Acute Imaging Data Details The training set contains 43 ischemic stroke patients.

Two diffusion maps are provided for each subject. The diffusion maps contain the DWI

trace images (DWI maps) and the apparent diffusion coefficient (ADC) maps. The

perfusion maps contain the cerebral blood volume (CBV), cerebral blood flow (CBF)

and mean transit time (MTT), defined as the ratio of volume to flow of cerebral blood

(CBV/CBF). Furthermore, the time to peak (TTP) concentration of the CA and the

time need at which the residue function reaches its maximum value (Tmax).

Follow-up Stroke Imaging After approximate 90 days of the intervention, an

anatomical sequence (MR-T2 or MR-FLAIR) was obtained when the stroke lesion had

stabilized to assess the final lesion outcome. The provided ground-truth stroke lesion

maps of ISLES 2017 were manually delineated on those images.
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Clinical Parameter Details The ISLES 2017 also provides clinical parameters includ-

ing time-since-stroke (TSS), time-to-treatment (TTT), thrombolysis in cerebral infarction

(TICI) scale, and modified Rankin scale (mRS) for each training subject.

Time-since-stroke (TSS) in minutes is the main factor as only a fast re-establishing

of the cerebral perfusion can lead to benefits for the ischemic stroke patient. The less

time passed since stroke onset, the more likely a re-perfusion can rescue brain tissue.

Time-To-Treatment (TTT) in minutes denotes the time passed between imaging the

patient and the intervention, e.g., re-perfusion treatment. Similar to the TSS, its value

determines the amount of recoverable brain tissue.

The TICI scale shown in Table 2.1, proposed by Higashida et al. [11], provides a

standardized method to evaluate intra-cranial perfusion assessed in cerebral angiogra-

phy. The TICI scale is used to assess the achieve re-perfusion after a flow-restoration

intervention such as thrombectomy.

Days to the modified Rankin scale (mRS) are also provided for each ISLES 2017

training subject. The 90-days mRS is a commonly used and standardized scale to assess

the degree of disability 90 days after a stroke incidence and can be considered as the

clinical outcome [13]. In this research, we only focus on the subjects who acquire the

mRS on 90 days. The purpose of our research is to predict the clinical outcome of stroke

patients based on their stroke lesion mask. Table 2.2 shows the details of mRS grades.

2.2.3 Mild Traumatic Brain Injury Outcome Prediction (mTOP)

Mild traumatic brain injury outcome prediction (mTOP) 2016 dataset (https://

tbichallenge.wordpress.com) is a private dataset. It can only be used in participating

mTOP 2016 challenge. No copyright transfer of any kind will take place. mTOP 2016

dataset consists of 27 subjects belonging to 3 different categories (healthy, patient cat-
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Table 2.1: Thrombolysis in Cerebral Infarction (TICI) scores [11,12]

Grade 0 No Perfusion. No antegrade flow beyond the point of occlusion.

Grade 1
Penetration With Minimal Perfusion. The contrast material passes be-
yond the area of obstruction but fails to opacify the entire cerebral bed
distal to the obstruction for the duration of the angiographic run.

Grade 2

Partial Perfusion. The contrast material passes beyond the obstruction
and opacifies the arterial bed distal to the obstruction. However, the
rate of entry of contrast into the vessel distal to the obstruction and/or
its rate of clearance from the distal bed are perceptibly slower than its
entry into and/or clearance from comparable areas not perfused by the
previously occluded vessel, eg, the opposite cerebral artery or the arterial
bed proximal to the obstruction.

Grade 2a Only partial filling (2/3) of the entire vascular territory is visualized.

Grade 2b
Complete filling of all of the expected vascular territory is visualized, but
the filling is slower than normal.

Grade 3

Complete Perfusion. Antegrade flow into the bed distal to the obstruction
occurs as promptly as into the obstruction and clearance of contrast
material from the involved bed is as rapid as from an uninvolved other
bed of the same vessel or the opposite cerebral artery.

Table 2.2: Modified Rankin Scale (mRS) scores [13]

Grade 0 No Symptoms at all.

Grade 1
No significant disability despite symptoms; able to carry out all usual
duties and activities.

Grade 2
Slight disability; unable to carry out all previous activities, but able to
look after own affairs without assistance.

Grade 3
Moderate disability; requiring some help, but able to walk without assis-
tance.

Grade 4
Moderately severe disability; unable to walk without assistance and un-
able to attend to own bodily needs without assistance.

Grade 5
Severe disability; bedridden, incontinent and requiring constant nursing
care and attention.

Grade 6 Deceased.

egory I or patient category II) each consisting of 9 subjects. Patients were categorized

in one of the two groups according to their outcome after mild TBI. The testing set

contains 15 subjects belonging to 3 different categories (healthy, patient category I or
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patient category II) each consisting of 5 subjects.

Imaging Data Details The dataset is available in both raw and pre-processed format.

The raw dataset consists of MR T1-weighted images (MR-T1), diffusion-weighted images

(DWI) and corresponding meta-data including b-vectors (bvecs) and b-values (bvals).

The pre-processed data include MR T1-weighted images (MR-T1), fractional anisotropy

(DT-FA) and mean diffusivity (DT-MD) maps from DWI, as well as probability maps

for grey matter (GM) and white matter (WM) shown in Figure 2.6.

Figure 2.6: Pre-processed images of one mild traumatic brain injury outcome pre-
diction (mTOP) 2016 subject. MR-T1, grey and white matter probability maps,
fractional anisotropy and mean diffusivity (from left to right). Figure taken from the
official mTOP 2016 website.

The dimension of the pre-processed MR-T1 image is 182×218×182 in the x-, y-, and

z-directions, respectively, with 1mm× 1mm× 1mm voxel resolution. The dimension of

DT-FA and DT-MD image is 91×109×91 in the x-, y-, and z-directions, respectively, with

2mm× 2mm× 2mm voxel resolution. All provided MR images are in the Neuroimaging

Informatics Technology Initiative (NIfTI) format.

Image Pre-Processing MR-T1 images were first bias field corrected and skull-stripped.

Then, they were rigidly registered to the MNI 152 [44] 1mm space. Grey and white mat-

ter probability maps were extracted from the registered images in the MNI 152 1mm

space. Diffusion images were first de-noised, corrected for head motion and eddy current
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artifacts as well as bias-field corrected. Then, extracted DT-FA and DT-MD maps were

mapped to the MNI 2mm space by rigid registration to the corresponding MR-T1 image

(inter-subject registration).

2.2.4 Human Connectome Project (HCP)

The Human Connectome Project (HCP) was started in July 2009 [45] as the first of

three Grand Challenges of the NIH’s Blueprint for Neuroscience Research [46]. The goals

are to construct a connectome that will elucidate the anatomical and functional connec-

tivity within the healthy human brain, and to create a great number of data that will

facilitate research into brain disorders [47,48]. On September 15, 2010, the NIH awarded

grants totaling 40 million US dollars to multiple research institutions led by Washington

University, St. Louis, the University of Minnesota, Twin Cities, Massachusetts Gen-

eral Hospital (MGH)/Harvard University, Boston, and the University of California Los

Angeles (UCLA) [49].

HCP is a public dataset and can be accessed through their official website (https:

//db.humanconnectome.org/app/template/Login.vm). HCP S1200 [50] is used in this

research to construct the average diffusion information of a group of normal subjects.

The 1200 Subjects Release (S1200) includes behavioral and 3T MR imaging data from

1206 healthy young adult participants (1113 with structural MR scans) collected in 2012-

2015. In addition to 3T MR scans, 184 subjects have multi-modal 7T MRI scan data

and 95 subjects also have some resting-state MEG (rMEG) and/or task MEG (tMEG)

data available.
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2.3 Tools

In this section, we introduce the existing tools used in this research. These tools are

used for visualization, registration and fiber tracking.

2.3.1 ITK-SNAP

ITK-SNAP [8] is a free, open-source, and multi-platform software application used

to visualize and segment structures in 3D medical images. It provides manual and semi-

automatic segmentation tools using active contour methods. It also offers image naviga-

tion for 3D medical images. The main advantages of ITK-SNAP include (1) support for

multiple 3D image formats, including NIfTI and DICOM, (2) support for multi-channel

and time-varying images, and (3) manual segmentation in the sagittal, coronal, and trans-

verse planes at once. Figure 2.7 shows an example of using ITK-SNAP for visualizing

the multi-modal MR images with the ground-truth tumor lesions labels of a BraTS 2018

training subject. ITK-SNAP is used for visualization purposes in our research.

2.3.2 FMRIB Software Library (FSL)

FSL [35–37] provides extensive and comprehensive tools for analyzing structural MRI,

functional MRI, and diffusion tensor imaging (DTI) brain imaging data. It runs on both

Linux and Windows via a virtual machine. Most tools can be run through both the

command line and GUI. The overview of FSL tools is available on the official website

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki).

FMRIB’s Linear Image Registration Tool (FLIRT) We only use the brain image

registration tool called FLIRT [51–53] (FMRIB’s Linear Image Registration Tool) in our

research. FLIRT (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT/UserGuide) is
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Figure 2.7: Visualizing multi-modal MR images with the ground-truth tumor lesions
labels of a BraTS 2018 training subject in ITK-SNAP. Top left, top right, and bottom
left windows show the axial, sagittal, and coronal planes of multi-modal MR images,
respectively. Bottom left window shows the 3D reconstruction from the labels.
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an automated affine registration tool for the brain image. It registers the brain image

in the subject to the normalization space, e.g., the MNI 152 space. Both linearly and

non-linearly generated MNI 152 template images are stored in fsl/data/standard (see

Figure 2.8).

Figure 2.9 shows the GUI of FLIRT in FSL. Here, we try to register a BraTS 2018

training subject (240 × 240 × 155) to the MNI 152 1mm space (182 × 218 × 182) using

its MR-T1 image. One needs to specify the reference image and the input image, and

FLIRT will generate the registered image. Figure 2.10 shows an example of the original

MR-T1 images of the BraTS 2018 training subject and the resulting registered MR-T1

images of the same subject in the MNI 152 space.

2.3.3 DSI Studio

DSI Studio [38] is a tractography software tool that pinpoints brain connectome. It

provides several analysis methods for diffusion MRI (http://dsi-studio.labsolver.

org/Manual). It has both GUIs and command-line tools. In our research, we use a

deterministic fiber tracking method which is provided by DSI Studio to reconstruct the

average fiber tracts of a group of normal subjects and the data analysis tool to build the

connectivity matrix of the fiber tracts.

DSI Studio provides a deterministic fiber tracking algorithm that uses quantitative

anisotropy to improve accuracy [54]. Deterministic fiber tracking tends to yield the best

estimation of fiber tracts since it is more similar to a maximum likelihood estimation of

the fiber tracks. Deterministic fiber tracking is suitable for our research purpose since

we would like to find the most likely route of a fiber pathway from a group-averaged

connectome. Figure 2.11 shows the whole-brain fiber tracts of a group average diffusion

information, and these tracts are reconstructed by using DSI Studio. Please refer to their
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Figure 2.8: A list of linearly and non-linearly generated MNI 152 template images in
fsl/data/standard.
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Figure 2.9: GUI of FLIRT in FSL. Here, we try to register a BraTS 2018 training
subject (240×240×155) to the MNI 152 1mm space (182×218×182) using its MR-T1
image. You need to specify the reference image and the input image, and FLIRT will
generate the registered image.
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Figure 2.10: Top: The original MR-T1 images of BraTS 2018 training subject
(240 × 240 × 155). Bottom: The resulting registered MR-T1 images of the same
subject in the MNI 152 space (182× 218× 182).
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official web-page for more details of fiber tracking (http://dsi-studio.labsolver.org/

Manual/Fiber-Tracking#TOC-Step-T3:-Fiber-tracking).

Figure 2.11: The whole-brain fiber tracts of a group average diffusion information,
and these tracts are reconstructed by using DSI Studio. The left bottom figure shows
the diffusion tensor imaging (DTI), and the middle figure shows the constructed fiber
tracts. Different colors of fiber tracts represent different directions.

DSI Studio also provides data analysis tools for the constructed fiber tracts. It can

convert the fiber tracts into the connectivity matrix which describes the numbers of fibers

between different brain parcellation regions. Figure 2.12 shows the connectivity matrix

of the whole-brain fiber tracts in Figure 2.11 built by DSI Studio with the automated

anatomical labeling [5] (AAL) atlas.

The network measures such as density, transitivity, global efficiency, the diame-

ter of the graph, etc. can be extracted from the connectivity matrix using DSI Stu-

dio. Figure 2.13 shows the network measures of the connectivity matrix in Figure 2.12

by using DSI Studio. Please refer to their office web-page for more details of track-
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Figure 2.12: The connectivity matrix of the whole-brain fiber tracts in Figure 2.11
built by DSI Studio with the automated anatomical labeling [5] (AAL) atlas. The
dimension of this connectivity matrix is 116 × 116, and the element value of this
connectivity matrix represents the number of tracts passing through two AAL regions.
The brighter element values represents the higher numbers of tracts passing through
two regions.
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specific analysis and network measures (http://dsi-studio.labsolver.org/Manual/

tract-specific-analysis).

Figure 2.13: The network measures of the connectivity matrix in Figure 2.12 by using
DSI Studio.
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Chapter 3

MRI Brain Tumor Segmentation by

Leveraging Location Information

The world as we have created it is a

process of our thinking. It cannot

be changed without changing our

thinking.

Albert Einstein

An automated and accurate brain lesion segmentation tool is needed to automati-

cally predict the outcome of patients with brain lesions. In this chapter, we proposed

a feature fusion method which integrates location information and multimodal MR im-

ages into the state-of-the-art patch-based neural networks for brain tumor segmentation.

This is motivated by the observation that lesions are not uniformly distributed across

different brain regions and that a locality-sensitive segmentation is likely to obtain bet-

ter segmentation accuracy. Towards this, we use an existing brain parcellation atlas in

the Montreal Neurological Institute (MNI) space and map this atlas to the individual

subject data. This mapped atlas in the subject data space is integrated with structural
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Magnetic Resonance (sMR) imaging data and patch-based neural networks, including 3D

U-Net [26] and DeepMedic [28], are trained to classify the different brain lesions. Multi-

ple state-of-the-art neural networks are trained and integrated with XGBoost fusion in

the proposed two-level ensemble method. The first level reduces the uncertainty of the

same type of models with different seed initializations, and the second level leverages the

advantages of different types of neural network models. The two main contributions of

this work are: First, we propose a location information fusion method which improves

the segmentation performance of state-of-the-art networks; Second, we proposes a novel

two-level ensemble method which reduces the uncertainty of prediction and leverages the

advantages of different neural networks.

3.1 Introduction

Glioma is a common type of brain tumor in adults originating in the glial cells that

support neurons and help them function. The World Health Organization (WHO) clas-

sification system categorizes gliomas from grade I (lowest grade) through grade IV (high-

est grade), based upon histopathologic characteristics which predict their behavior over

time [16]. Low-grade gliomas (LGGs) consist of WHO-grade I tumors and WHO-grade

II tumors, that tend to exhibit benign tendencies and indicate a better prognosis for

the patient. WHO-grade III and IV tumors are included in high-grade gliomas (HGG)

that are malignant and more aggressive. Patients with HGG had median survival time

(MST) 18 months, and the MST of patients with Grade III and IV glioma were 26 and 13

months, respectively [55]. Gliomas are further divided into four types of lesions, namely

edema, non-enhancing core, necrotic core, and non-enhancing core based on the acute-

ness of the tumor cells. However, segmenting the different lesions of gliomas is a daunting

task because of the intrinsic heterogeneity which affects their visual appearance as well
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as shape. Clinically, MR images help a doctor to evaluate the tumor and plan the treat-

ment. Moreover, the treatment depends on the type, size, shape, grade, and location of

the tumor, which varies widely. Consequently, this observation leads to the importance

of an automated and accurate brain tumor segmentation for better diagnosis of brain

tumors. Also, the manual annotation process is time and resource consuming, therefore,

an automated and accurate brain tumor segmentation method is in great demand.

Deep neural networks (DNNs) have achieved state-of-the-art segmentation perfor-

mance on the recent Multimodal Brain Tumor Segmentation (BraTS) Challenges [1].

Kamnitsas et al. [56] conducted the comparative study on performance and concluded

that deep learning along with ensemble learning-based methods outperform the others as

they leverage the advantage of each deep learning model. Wang et al. [57] analyzed three

different binary segmentations task rather than a single multi-class segmentation task,

and three different binary segmentations task has a better performance than a single

multi-class segmentation task. Similarly, Isensee et al. [58] proposed to integrate seg-

mentation layers at different levels of optimized 3D U-Net-like architectures followed by

element-wise summation. [59] implemented a modified decoder and encoder structure of

CNN to generate dense segmentation. Likewise, Isensee et al. [60] demonstrated that an

original U-Net architecture trained with additional institution dataset improved the dice

score of enhancing tumor. Mckinley et al. [61] also proposed a U-Net-like network and in-

troduce a new loss function, a generalization of binary cross-entropy, to account for label

uncertainty. Furthermore, Zhou et al. [62] explored the ensemble of different networks

including multi-scale context information and also segmented three tumor subregions in

cascade with an additional attention block.

Our recent work [63] utilizes an existing parcellation to bring location information

of brain into patch-based neural networks that improve the brain tumor segmentation

performance. Outputs from 26 models are averaged, including 19 different types of
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DeepMedics [28] and seven different types of 3D U-Nets [26], to get the final tumor

predictions. The proposed ensemble containing six models including three DeepMedics

and three 3D U-Nets with different seed initializations takes less than 1 minutes in the

inference time. We also propose a novel two-level ensemble method which reduces the

uncertainty of predictions in the first level and takes advantage of different types of models

in the second level. Our experimental results show that the proposed location fusion

methods improve the segmentation performance of the single state-of-the-art patch-based

network and an ensemble of multiple state-of-the-art patch-based networks. The proposed

ensemble has better segmentation performance compared to the state-of-the-art networks

in BraTS 2017 dataset and competitive performance to the state-of-the-art networks in

BraTS 2018 dataset.

3.2 Dataset

The Multimodal Brain Tumor Segmentation Challenges (BraTS) 2017 dataset and

BraTS 2018 dataset [2–4,43] comprise clinically-acquired pre-operative multimodal MRI

scans of glioblastoma (GBM/HGG) and lower-grade glioma (LGG) as training, valida-

tion and test data. There are 285 subjects in the training set and 46 and 66 subjects in

the validation set of BraTS 2017 and BraTS 2018, respectively. The lesion ground-truth

labels are available for the training subjects but withheld for both the validation and

test subjects. MRI scans were available as native (T1), contrast-enhanced T1-weighted

(T1ce), T2-weighted (T2) and T2 Fluid Attenuated Inversion Recovery (FLAIR) vol-

umes. These scans were distributed after being skull-stripped, pre-processed, re-sampled

and interpolated into 1 mm isotropic resolution with an image size of 240 × 240 × 155

in the x-, y-, and z-direction. Tumor segmentation labels were produced manually by

a trained team of radiologists and radiographers. The edema was segmented primarily
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from T2 images, non-enhancing and enhancing core of the tumor from T1ce together with

the lesions visible in T1 and necrotic core from T1ce. We used the annotated and co-

registered imaging datasets including the Gd-enhancing tumor, the peri-tumoral edema

and the necrotic and non-enhancing tumor core for our training and test procedure.

3.3 Data Pre-processing

Different modalities used for mapping tumor-induced tissue changes include MR-T1,

MR-T1ce, MR-T2, and MR-FLAIR, which leads to varying intensity ranges. We first

normalize each modality to a standard range of values. Each MR image is pre-processed

by first clipping it at (0.2 percentile, 99.8 percentile) of non-zero voxels to remove the

outliers. Subsequently, each modality is normalized individually using x̄i = (xi − µ)/σ

where i is the index of voxel inside the brain, x̄i is the normalized voxel, xi is the

corresponding raw voxel, and µ and σ are the mean and standard deviation of the raw

voxels inside the brain, respectively.

3.4 Network Architectures

Two different network architectures adapted from DeepMedic [28] and 3D U-Net [26]

are examined in this study. DeepMedic was initially designed for brain lesion segmenta-

tion, e.g., stroke lesions [64] and brain tumor lesions [27], and 3D U-Net which is the 3D

version of U-Net [65] is widely used for the volumetric image segmentation tasks [66–68].

More details of network architectures are described below.

34



MRI Brain Tumor Segmentation by Leveraging Location Information Chapter 3

3.4.1 Modified DeepMedic

The first network architecture shown in Figure 3.1 is modified from DeepMedic [28].

The number of convolutional kernels is indicated within the white box. Batch normal-

ization [69] is used. Residual connection [70] is used in the normal resolution path, and

trilinear interpolation is used in the upsampling layer of the downsampled resolution

path. The size of the receptive field of normal resolution path is 25 × 25 × 25, and the

size of the receptive field of the downsampled resolution path is 19× 19× 19. The recep-

tive field of downsampled resolution path is downsampled from an image patch of size

55×55×55 by a factor of 3 in the same center as the receptive field of normal resolution

path. The modified DeepMedic predicts the central 9× 9× 9 voxels of the receptive field

of normal resolution path.

Training and Test Procedure

The modified DeepMedic is only trained with patches that have approximately 50%

foreground (lesion) and 50% background to solve the class imbalance problem, and it is

trained with batch size 50. In every epoch, 20 patches are extracted from each subject.

The network is trained for a total of 500 epochs. The weights of the network are updated

by Adam algorithm [71] with an initial learning rate of l0 = 10−3 following the schedule of

l0×0.1epoch, L2 penalty weight decay of 10−4, and AMSGrad [72]. A standard multi-class

cross-entropy loss is used. Randomly flipping in x-, y-, and z-axis with a probability of

50%, and random noise are applied in the data augmentation of the training procedure.

At the test time, a sliding window scheme of step size 9 is used to get the tumor lesion

prediction of the test subject. Training takes approximately 6 hours, and a test for each

subject takes approximately 24 seconds on an Nvidia 1080 Ti GPU and an Intel Xeon

CPU E5-2696 v4 @ 2.20 GHz.
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Figure 3.1: The network architecture of modified DeepMedic. conv(3): 3 × 3 × 3
convolutional layer, BN: batch normalization, upsample(3): trilinear interpolation by
a factor of 3, and conv(1): 1× 1× 1 convolutional layer.
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3.4.2 Modified 3D U-Net

The second network architecture shown in Figure 3.2 is modified from 3D U-Nets [26].

Different colors of blocks represent different types of layers. The number of convolutional

kernels is indicated within the white box. Group normalization [73] is used, and the

number of groups is set to 4. Residual connection [70] is used in the encoding path, and

trilinear interpolation is used in the upsampling layer.

Figure 3.2: The network architecture of modified 3D U-Net. conv(3): 3 × 3 × 3
convolutional layer, GN: group normalization, D(0.3): dropout layer with 0.3 dropout
rate, maxpool(2): 2 × 2 × 2 max pooling layer, and conv(1): 1 × 1 × 1 convolutional
layer.

Training and Test Procedure

The modified 3D U-Net is trained with randomly cropped patches of size 128×128×

128 voxels and batch size 2. In every epoch, a cropped patch is randomly extracted from

each subject. The network is trained for a total of 300 epochs. The weights of the network

are updated by Adam algorithm [71] with an initial learning rate l0 = 10−3 following the

schedule of l0 × 0.1epoch, L2 penalty weight decay of 10−4, and AMSGrad [72]. For the

loss function, the standard multi-class cross-entropy loss with the hard negative mining

is used to solve the class imbalance problem of the dataset. We only back-propagate

the negative (background) voxels with the largest losses (hard negative) and the positive
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(lesions) voxels to the gradients. In our implementation, the number of selected negative

voxels is at most three times more than the number of positive voxels. Besides, data

augmentation is not used for both training and testing. At the test time, we input the

entire image of size 240×240×155 voxels into the trained 3D U-Net for each test patient

to get the predicted lesion mask. Training takes approximately 12.5 hours, and the test

takes approximately 1.5 seconds per subject on an Nvidia 1080 Ti GPU and an Intel

Xeon CPU E5-2696 v4 @ 2.20 GHz.

3.5 Incorporating Location Information

The heatmaps (see Figure 3.3) of different brain tumor lesions reveal that different le-

sions have different probability occurring in different locations. However, the patch-based

convolutional neural networks (CNNs), e.g., DeepMedic or 3D U-Net, do not consider

location information for brain tumor segmentation.

In this study, an existing brain parcellation atlas, Harvard-Oxford Subcortical atlas [6]

(see Figure 3.3), is used as location information for the patch-based CNNs. The details

of Harvard-Oxford Subcortical parcellation regions are described in Table. 3.1. There are

two main reasons for choosing this atlas: (1) this atlas covers more than 90% of a brain

region, and (2) lesion information and location information are converted into this atlas.

The distribution in Figure 3.3 is calculated by dividing the total volume of the lesions

from 285 training subjects by the total volume of the corresponding brain parcellation

in the MNI 152 space.

Our proposed location information fusion method which is shown in Figure 3.4 explic-

itly includes location information as input into a patch-based CNN. First, the Harvard-

Oxford subcortical atlas is registered to the individual subject space from MNI 152 1mm

space [44] using FMRIB’s Linear Image Registration Tool (FLIRT) [51] from FSL. The
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registered atlas is then split into 21 binary masks and concatenated with the multimodal

MR images as input to a patch-based CNN for both training and test. As a result, the

fused input has 25 channels. The first four channels provide the image information, and

the last 21 channels contain the location information.

Figure 3.3: Top row shows the heatmaps of different lesions (from left to right: edema,
necrosis & non-enhancing tumor, and enhancing tumor) from 285 training subjects of
BraTS 2018. The brighter (yellow) voxel represents higher value. Bottom row shows
(left) Harvard-Oxford subcortical structural atlas [6], and (right) the percentage of
brain lesion types observed in different parcellation regions of the Harvard-Oxford
subcortical atlas from 285 training subjects of BraTS 2018. The x-axis indicates the
brain parcellation label ID. Regions not covered by the Harvard-Oxford subcortical
atlas are in label 0.
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Table 3.1: The label ID and corresponding brain region of Harvard-Oxford Subcortical Atlas.

Label ID Brain region
1 Left Cerebral White Matter
2 Left Cerebral Cortex
3 Left Lateral Ventrical
4 Left Thalamus
5 Left Caudate
6 Left Putamen
7 Left Pallidum
8 Brain-Stem
9 Left Hippocampus
10 Left Amygdala
11 Left Accumbens
12 Right Cerebral White Matter
13 Right Cerebral Cortex
14 Right Lateral Ventricle
15 Right Thalamus
16 Right Caudate
17 Right Putamen
18 Right Pallidum
19 Right Hippocampus
20 Right Amygdala
21 Right Accumbens

Figure 3.4: The proposed location information fusion method for brain tumor seg-
mentation using a patch-based convolutional neural network.
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3.6 Ensemble Methods

Ensemble methods aim at improving the predictive performance of a given statistical

learning or model fitting technique. The general principle of ensemble methods is to

construct a linear combination of some model fitting methods, instead of using a single

fit of the method [74]. Ensembles have been proven to have better performance than any

single model [75]. In the following, we propose a two-level ensemble approach, including

the arithmetic mean and boosting, and more details of these methods are described

below.

3.6.1 Arithmetic Mean

The arithmetic mean, x̄, is the average of n values x1, x2, ...xn, i.e., x̄ = (x1 + x2 +

...+ xn)/n. If we have n models in our ensemble, then the arithmetic mean P is defined

by the formula:

P =
1

n

n∑
i=1

pi =
p1 + p2 + ...+ pn

n
(3.1)

where pi is the probability map of model i. The arithmetic mean ensemble method

reduces the uncertainties of different models.

3.6.2 XGBoost

Boosting algorithms are widely used in machine learning to achieve state-of-art per-

formance. It improves the prediction of the models by training the base learners se-

quentially to improve their predecessor. There are different boosting algorithms such as

AdaBoost [76,77], short for Adaptive Boosting, and Gradient Boosting [78,79]. AdaBoost

tunes the weights for every incorrect classified observation at every iteration while Gra-
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dient Boosting tries to fit the new predictor to the residual errors made by the previous

predictor. Both of the boosting algorithms are generally very slow in implementation

and not very scalable. Chen et al. [80] described a scalable tree boosting system called

XGBoost which is an implementation of gradient boosted decision trees that are efficient

in run-time and space complexity. It also supports parallelization of tree construction,

distributed computing for training very large models, out-of-core computing for very

large datasets that do not fit into memory and cache optimization to make the best use

of hardware. These features make XGBoost ideal for our purpose of study in brain tumor

segmentation, therefore, it is used in our study.

3.6.3 Two-Level Ensemble Approach: Arithmetic Mean and

XGBoost

An ensemble of multiple identical network architectures with different seed initializa-

tions has been proven to reduce the uncertainty of models and improve the segmentation

performance [81]. Moreover, Dietterich [75] demonstrated that the boosting algorithm

has the best performance compared to bagging and randomized trees. Inspired by their

works, we propose a two-level ensemble approach shown in Figure 3.5 that averages the

probability maps from the same type of models in the first level and then boosts the

averaged probability maps from different models by using the XGBoost algorithm in the

second level. We have examined three different classification strategies in the second

level, and these classification strategies are based on multi-class classification and binary

class classification.
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Figure 3.5: The workflow of two-level ensemble approach.

Multi-Class Classification

The multi-class classification problem refers to classifying voxels into one of the four

classes. It produces segmentation labels of the background and different glioma lesions

that include: 1) the “enhancing tumor”, 2) the “edema”, and 3) the “necrosis & non-

enhancing tumor”. Since XGBoost is known to produce better results in different machine

learning problems [82], XGBoost is used in our multi-class classification problem with

the softmax function objective. The softmax function σ is defined by

σ(z)i =
ezi∑K
j=1 e

zj
for i = 1, . . . , K and z = (z1, . . . , zK) ∈ RK .

where K is the number of classes in the classification problem. Using the softmax ob-

jective function, we get a neural network that models the probability of a class zi as

multinominal distribution.

Binary Classification

The multi-class classification problem can be reduced to several binary classifica-

tion problems where each binary classifier is trained to classify voxels into two classes.
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There are two different approaches, one-versus-all and one-versus-one, to perform such

a transformation. For a k-class problem, one-versus-all method trains k different binary

classifiers where the two-class classifier Ci learns to distinguish the class i from all the

other k − i classes.

C+ = Ci and C− = {Cj|j = 1, · · · , K, j 6= i}

One-versus-one approach is based on training k×(k−1)/2 classifiers, where each classifier

learns to distinguish 2 classes only.

C+ = Ci and C− = {Cj|j 6= i}

where C+ and C− are the two classes of the binary class classification problem.

3.7 Evaluation Metrics

Two evaluation metrics, dice similarity score (DSC) and Hausdorff distance, are com-

monly used in the brain tumor segmentation problem. DSC is used to measure the

similarity of the predicted lesions and ground-truth lesions, and Hausdorff distance is

used to measure how far the predicted lesions are from the ground-truth lesions. More

details of these two evaluation metrics are described in the following sections.
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3.7.1 Dice Similarity Score

Dice similarity score (DSC) is a statistic used to measure the similarity of two sets.

It is defined as

DSC =
2|G ∩ P |
|G|+ |P |

(3.2)

where |G| and |P | are the number of voxels in the ground-truth and prediction, respec-

tively. DSC ranges between 0 to 1 (1 means perfect matching).

3.7.2 Hausdorff Distance

Hausdorff distance dH(X, Y ) measures how far two subsets {X, Y } of a metric space

are from each other. It is defined as

dH(X, Y ) = max{sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)} (3.3)

where d is the Euclidean distance, sup is the supremum, and inf is the infimum. Hausdorff

distance ranges from 0 to infinity (0 means perfect matching). In this study, 95 percentile

of Hausdorff distance (HD95) is used to disregard the outliers.

3.8 Experiments and Results

In this section, we demonstrate the advantage of the proposed location information

fusion method and the proposed two-level ensemble learning method. In Experiment

1, we first examine the segmentation performance of the proposed location information

fusion method on a single model. In Experiment 2, we examine the performance of the

proposed location information fusion method on an ensemble of the same type of models.
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In Experiment 3, we examine different ensemble methods which predict the final brain

tumor lesions based on the output probability maps from DeepMedics and 3D U-Nets. In

Experiment 4, we compare the segmentation performance of the proposed method with

state-of-the-art methods.

3.8.1 Experiment 1: Location information fusion method on a

single model

In the first experiment, we examine the performance of the proposed location informa-

tion fusion method on a single patch-based neural network. We first train a DeepMedic

and a 3D U-Net using only multimodal MR images. Thereafter, we train another identi-

cal DeepMedic and another identical 3D U-Net with multimodal MR images and binary

brain parcellation masks. BraTS 2018 training set is used to train the models with 5-fold

cross-validation, and BraTS 2018 validation set is used as the test set. The experimental

results are shown in Table 3.2. Here, the proposed location fusion method improves the

brain tumor segmentation performance of both single state-of-the-art models.

Table 3.2: Results of the first experiment on BraTS 2018 validation set. The result
are reported as mean. Bold numbers highlight the improved results with additional
brain parcellation masks within the same type of model.

DSC HD95
Model Description ET WT TC ET WT TC

DeepMedic 78.1 89.5 81.4 4.21 10.60 9.90
DeepMedic + BP 79.0 89.6 81.3 3.78 8.87 6.55

3D U-Net 74.9 89.7 76.6 5.85 4.88 10.46
3D U-Net + BP 76.4 90.1 76.9 5.48 4.87 10.07
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3.8.2 Experiment 2: Location information fusion method on an

ensemble

In the second experiment, we examine the performance of the proposed location

information fusion on the ensemble of DeepMedics and the ensemble of 3D U-Nets. Each

ensemble has identical network architectures with different seed initializations, and the

output of the ensemble is the arithmetic mean from networks. We first train ensembles of

DeepMedics without additional brain parcellation masks. Thereafter, we train ensembles

of 3D U-Nets without additional brain parcellation masks. In the end, we train another

identical ensemble of DeepMedics and another identical ensemble of 3D U-Nets with

additional brain parcellation masks. BraTS 2018 training set is used to train the models

with 5-fold cross-validation, and BraTS 2018 validation set is used as the test set. The

experimental results are shown in Table 3.3. Here, the proposed location fusion method

improves the ensemble of multiple same types of state-of-the-art models

Table 3.3: Results of the second experiment on BraTS 2018 validation set. The result
are reported as mean. Bold numbers highlight the improved results with additional
brain parcellation masks within the same type of ensemble.

DSC HD95
Ensemble Description ET WT TC ET WT TC

DeepMedic 79.7 90.0 81.4 3.94 7.44 8.88
DeepMedic + BP 78.4 90.2 81.8 3.37 5.64 7.01

3D U-Net 77.6 90.0 78.0 5.01 4.39 9.77
3D U-Net + BP 77.4 90.4 79.3 4.25 4.59 9.66

3.8.3 Experiment 3: Different ensemble methods

In the third experiment, we examine the performance of different ensemble methods

including arithmetic mean and two-level ensemble approaches described in Section. 3.6.

We first train three identical DeepMedics with additional brain parcellation channels and

47



MRI Brain Tumor Segmentation by Leveraging Location Information Chapter 3

different seed initializations. We also train three identical 3D U-Nets with additional

brain parcellation channels and different seed initializations. Then, we apply different

ensemble methods on the probability maps from these models to generate the final tumor

segmentation mask. More details of different ensemble methods are described below.

Experiment 3.1: Arithmetic Mean

In this experiment, the final tumor segmentation mask is directly generated by aver-

aging the probability maps from three DeepMedics and three 3D U-Nets. BraTS 2018

training set is used to train the models with 5-fold cross-validation, and BraTS 2018

validation set is used as the test set. The experimental results are shown in Table 3.4.

Experiment 3.2: Two-Level Ensemble: Multi-Class Classification

In this experiment, we directly apply an XGBoost classifier on the probability maps

from three DeepMedics and three 3D U-Nets. The input vector of XGBoost classifier has

10 dimensions (5-class probability maps from 2 ensembles of the same type of models).

The XGBoost classifier outputs the 5-class labels which contain a background (label 0),

enhancing tumor (label 1), edema (label 2), and necrosis & non-enhancing tumor (label

4). BraTS 2018 training set is used to train the models with 5-fold cross-validation, and

BraTS 2018 validation set is used as the test set. The experimental results are shown in

Table 3.4 as TLMC.

Experiment 3.3: Two-Level Ensemble: Binary Classification

In this experiment, we train three XGBoost binary classifiers on the resulting prob-

ability maps generated from three DeepMedics and three 3D U-Nets in the first level.

During training, each classifier uses a one-versus-one approach to distinguish between
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two binary classes. We trained three different models namely, model WT (whole tumor),

model TC (tumor core) and model ET (enhancing tumor) as shown in Figure 3.6.

For model WT: C+ = CWT and C− = Cbackground

For model TC: C+ = CTC and C− = CWT

For model ET: C+ = CET and C− = CTC

The tumor core class is a subset class of the whole tumor, and the enhancing tumor

class is a subset of the tumor core class. For prediction, we feed the average probability

maps from three DeepMedics and three 3D U-Nets to the three models. The input

vector has 10 dimensions (5-class probability maps from 2 ensembles of the same type of

models). The model WT classifies the voxels into the whole tumor and background. For

model TC, we feed the probability maps of such voxels that are classified as the whole

tumor from the experiment in Section. 3.8.3. For model ET, we feed the probability

maps of such voxels that are classified as tumor core from the previous prediction in

the experiment. BraTS 2018 training set is used to train the models with 5-fold cross-

validation, and BraTS 2018 validation set is used as the test set. The experimental

results are shown in Table 3.4 as TLBC.

Experiment 3.4: Two-Level Ensemble: Fusion Classifications

This is the final experiment to integrate the methods from the previous experiments.

We observe that while the experiment in Section. 3.8.3 performs best for classifying voxels

into the background, whole tumor and tumor core, the experiment in Section. 3.8.3 has

the best performance on necrosis & non-enhancing tumor. We use model WT, model TC

and multi-class classifier model for the fusion model. For prediction, we feed the average

49



MRI Brain Tumor Segmentation by Leveraging Location Information Chapter 3

Figure 3.6: The training workflow of two-level binary classification approach.

probability maps from three DeepMedics and three 3D U-Nets to the three models. The

input vector has 10 dimensions (5-class probability maps from 2 ensembles of the same

type of models). The model WT classifies the voxels into the whole tumor and back-

ground. For model TC that is trained to classify voxels into the whole tumor and tumor

core, we feed the probability maps of such voxels that are classified as the whole tumor

from the experiment in Section. 3.8.3. For necrosis & non-enhancing tumor class, we

feed the probability maps to the multi-class classifier as in Section. 3.8.3. To merge the

three different predicted results, we classify the voxels into four classes with background,

whole tumor, tumor core, and necrosis & non-enhancing tumor in decreasing order of

priority. For example, if a voxel is classified into both whole tumor and tumor core, we

give the final label as that of tumor core according to the preference mentioned before.

Therefore integrating these two gives the effective scores as shown in Table 3.4 as TLFC.

BraTS 2018 training set is used to train the models with 5-fold cross-validation, and

BraTS 2018 validation set is used as the test set. The workflow of fusion classification is
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shown in Figure 3.7. Here, the proposed ensemble method, two-level fusion classification

(TLFC) method, has the best performance compared to other ensemble methods includ-

ing arithmetic mean, two-level multi-class classification (TLMC), and two-level binary

classification (TLBC).

Figure 3.7: The workflow of Fusion Classification method. For post processing step,
we classify the voxels into four classes with background, whole tumor, tumor core
and necrosis & non-enhancing tumor in decreasing order of priority. For example, if
a voxel is classified into both whole tumor and tumor core, we give the final label as
that of tumor core according to the preference mentioned before.

Table 3.4: Results of the third experiment on BraTS 2018 validation set. The results
are reported as mean. Bold numbers highlight the best performance between different
ensemble methods.

DSC HD95
Ensemble Methods ET WT TC ET WT TC

Arith. mean 78.3 90.6 81.3 3.72 4.35 7.77
TLMC 78.3 90.7 81.0 2.81 4.38 7.80
TLBC 76.6 90.7 82.2 7.93 4.39 8.34
TLFC 78.2 90.8 82.3 2.96 4.39 6.91

3.8.4 Experiment 4: Compare to the State-of-the-art Methods

In this experiment, we compare the brain tumor segmentation performance of the

proposed method described in Section. 3.8.3 with the state-of-the-art methods on both
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BraTS 2017 and BraTS 2018 dataset. The quantitative results are shown in Table. 3.5.

The proposed method has the best tumor segmentation performance compared to other

state-of-the-art methods in BraTS 2017 with a similar number of models in the ensemble.

Also, the proposed method has a competitive tumor segmentation performance compared

to other state-of-the-art methods in BraTS 2018 with fewer models in the ensemble.

Table 3.5: The first three rows show the results of our proposed method and the
state-of-the-art methods on BraTS 2017 validation set, and the bottom four rows
show the results of our proposed method and the state-of-the-art methods on BraTS
2018 validation set. The results are reported as mean. Bold numbers highlight the
best performance in each dataset. These results are directly copied from their paper.

DSC HD95
Methods # of models ET WT TC ET WT TC

Kamnitsas et al. [56] 7 73.8 90.1 79.7 4.50 4.23 6.56
Isensee et al. [58] 5 73.2 89.6 79.7 4.55 6.97 9.48
Proposed method 6 74.3 90.4 78.5 3.49 4.46 8.45
Myronenko [59] 10 82.3 91.0 86.6 3.93 4.52 6.85

Isensee et al. [60] 10 81.0 90.8 85.4 2.54 4.97 7.04
Kao et al. [63] 26 78.8 90.5 81.3 3.81 4.32 7.56

Proposed method 6 78.2 90.8 82.3 2.96 4.39 6.91
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3.9 Discussion and Summary

Due to the computational limitation, we are not able to input the whole brain volume

of size 240 × 240 × 155 to a neural network for training purpose. Alternatively, we

randomly crop sub-regions of the brain and input these sub-regions to the neural network

for training. For the current patch-based neural networks, we noted that these neural

networks lack location information of the brain for both training and test procedure. That

is, these patch-based neural networks do not have the information about where the patch

comes from the brain. Therefore, we proposed the location fusion method which explicitly

carries location information of the brain into patch-based neural networks such as 3D U-

Net and DeepMedic. An existing structural brain parcellation atlas, HarvardOxford

Sub-cortical Atlas, is used as additional location information to these patch-based neural

networks in both training and test.

From Table 3.2, we demonstrate that the proposed location fusion method improves

the brain tumor segmentation performance of both single state-of-the-art model. Also, we

demonstrate that the proposed location fusion method improves the ensemble of multiple

same types of state-of-the-art models in Table 3.3. The proposed location fusion method

yields a smoother prediction for both 3D U-Net and DeepMedic compared to the resulting

prediction without location information (see Figure 3.8 and 3.9).

From Table 3.4, the proposed ensemble method, two-level fusion classification (TLFC)

method, has the best performance compared to other ensemble methods including arith-

metic mean, two-level multi-class classification (TLMC), and two-level binary classi-

fication (TLBC). TLFC takes advantages of TLMC and TLBC. Moreover, Figure 3.10

shows the predictions of brain tumor lesions from different ensemble methods, and TLFC

method has the best performance among other methods.

From Table 3.5, the proposed method has the best tumor segmentation performance
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Figure 3.8: Examples of predictions from single model with different inputs. Top row
shows the predictions from DeepMedic, and bottom row shows the predictions from
3D U-Net (from left to right: ground-truth lesions, prediction from single model, and
prediction from single model with additional brain parcellation masks.) Red: enhanc-
ing tumor, yellow: necrosis & non-enhancing tumor, and green: edema. ITK-SNAP [7]
is used to visualize the MR images and lesion masks.
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Figure 3.9: Examples of predictions from ensemble with different inputs. Top row
shows the predictions from ensemble of DeepMedics, and bottom row shows the pre-
dictions from ensemble of 3D U-Nets (from left to right: ground-truth lesions, predic-
tion from ensemble, and prediction from ensemble with additional brain parcellation
masks.) Red: enhancing tumor, yellow: necrosis & non-enhancing tumor, and green:
edema. ITK-SNAP [7] is used to visualize the MR images and lesion masks. four
classes
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Figure 3.10: Examples of predictions from different ensemble methods. Top left image
shows the ground-truth lesion mask, and top middle image shows the predictions using
arithmetic mean. Top right image shows the prediction using two-level multi-class
classification (TLMC) method. Bottom left image shows the prediction using two-level
binary classification (TLBC) method, and bottom right image shows the prediction
using two-level fusion classification (TLFC) method. Red: enhancing tumor, yellow:
necrosis & non-enhancing tumor, and green: edema. ITK-SNAP [7] is used to visualize
the MR images and lesion masks. four classes
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compared to other state-of-the-art methods in BraTS 2017 with a similar number of

models in the ensemble. Also, the proposed method has a competitive tumor segmenta-

tion performance compared to other state-of-the-art methods in BraTS 2018 with fewer

models in the ensemble. It is noted that the model of Myronenko [59] requires a huge

amount of GPU memory (32 GB) for training, and Isensee et al. [60] trained the models

with additional public and institutional data. In addition, Myronenko [59] and Isensee et

al. [60] have 10 models in their ensemble but our proposed ensemble only has 6 models.

The proposed ensemble has much fewer models with a better segmentation performance

compared to our previous work which has 26 models [63]. The test time of our previous

ensemble takes approximately 30 minutes on an Nvidia 1080 Ti GPU and an Intel Xeon

CPU E5-2696 v4 @ 2.20 GHz. However, the proposed ensemble only takes approximate

3 minutes on the same infrastructure. Our previous ensemble rank 6th out of 63 teams

in BraTS 2018 segmentation challenge, and the proposed ensemble even has a better

performance and less interference time compared to the previous ensemble.

In summary, we proposed a novel method to integrate location information about the

brain into a patch-based neural network for improving brain tumor segmentation. Our

experimental results demonstrate that the proposed location information fusion approach

improves the segmentation performance of the baseline models including DeepMedic and

3D U-Net. Moreover, the proposed location information fusion method can be easily

integrated with other patch-based network architectures to potentially enhance their

brain tumor segmentation performance. We also proposed a two-level fusion classification

method which reduces the uncertainty of prediction in the first level and takes advantage

of different types of models in the second level. Also, the proposed ensemble method

can be easily integrated with more different types of neural networks. The proposed

ensemble helps the neurologists on delineating brain tumor and improves the quality of

the neuro-surgery.
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Chapter 4

Overall Survival Prediction using

Tractographic Feature

Many of life’s failures are people

who did not realize how close they

were to success when they gave up.

Thomas A. Edison

This chapter focuses on predicting the overall survival of brain tumor patients given

the lesion region. We introduce a novel methodology to integrate human brain connec-

tomics, brain parcellation information, and the brain lesion mask for overall survival (OS)

prediction. We leverage the average connectome information from the Human Connec-

tome Project (HCP) and map each subject brain volume onto this common connectome

space. From this, we compute tractographic features that describe potential neural dis-

ruptions due to the brain tumor lesion. These features are then used to predict the

overall survival of the subjects. The main novelty in the proposed methods is the use of

normalized brain parcellation data and tractography data from the Human Connectome
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Project for analyzing MR images for segmentation and survival prediction. Experimental

results are reported on the BraTS 2018 dataset.

4.1 Introduction

Glioblastomas, or Gliomas, are one of the most common types of brain tumor. They

have a highly heterogeneous appearance and shape and may happen at any location in the

brain. High-grade glioma (HGG) is one of the most aggressive types of brain tumor with a

median survival of 15 months [83]. We introduce a novel methodology to predict overall

survival of brain tumor patients using tractographic feature. The proposed pipeline

consists of two steps: In the first step, we utilize the brain tumor segmentation method

proposed in Chapter 3 to automatically segment the brain tumor lesion from structural

MR images. In the second step, we extract the tractographic feature to predict the overall

survival of brain tumor patients.

Shboul et al. [84] extracted 40 features from the predicted brain tumor mask and used

a random forest regression to predict the glioma patient’s OS. Jungo et al. [85] extracted

four features from each subject and used a support vector machine (SVM) with a radial

basis function (RBF) kernel to classify glioma patients into three different OS groups.

We propose a novel method to extract the tractographic features from the lesion regions

on structural MR images via an average diffusion MR image which is from a total of 1021

HCP subjects [86] (Q1-Q4, 2017). We then use these tractographic features to predict

the patient’s OS with an SVM classifier with a linear kernel.
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4.2 Dataset

The BraTS 2018 dataset also includes the age (in years), survival (in days) and

resection status for each of 163 subjects in the training dataset, and 59 of them have the

resection status of Gross Total Resection (GTR). The validation dataset has 53 subjects

with the age (in years) and resection status, and 28 of them have the resection status of

GTR. The test dataset has 131 subjects with the age (in years) and resection status, and

77 of them have the resection status of GTR. For this task, we only predict the overall

survival (OS) for glioma patients with resection status of GTR. That is, 59, 28, and 77

subjects are considered in the training, validation, and test set, respectively.

4.3 Overall Survival Prediction using Tractographic

Feature

Our proposed training pipeline, shown in Figure 4.1, includes three stages: In the

first stage, we use the proposed ensemble from the section 3 to obtain the predicted

tumor mask for each subject. In the second stage, we extract the tractographic features

explained in Section. 4.3.2 from each subject. We then perform feature normalization

and selection. In the final stage, we train an support vector machine (SVM) classifier

with a linear kernel using the tractographic features extracted from the training subjects.

We evaluate the overall survival classification performance of tractographic features on

the BraTS 2018 training dataset with the 1000-time repeated stratified 5-fold cross-

validation, validation dataset, and test dataset.
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Figure 4.1: Training pipeline for overall survival prediction of brain tumor patients.

4.3.1 Glioma Segmentation

To segment the glioma, we use the proposed ensemble in Chapter 3 to obtain the

prediction of three different types of the lesion including necrosis & non-enhancing tumor,

edema, and enhancing tumor.

4.3.2 Tractographic Feature Extraction from the Glioma Seg-

mentation

After we obtain the predicted lesion mask, we extract the tractographic feature from

the whole tumor region which is the union of all different lesions for each subject.

Tractographic Feature: Tractographic feature describes the potentially damaged par-

cellation regions impacted by the brain tumor through fiber tracking. Figure 4.2 shows

the workflow for building a connectivity matrix for each subject. First, the predicted

whole tumor mask and the average diffusion orientation distribution function from HCP-

1021, created by QSDR [87], are obtained for each subject. FLIRT [51–53] from FSL is

used to map the whole tumor mask from the subject space to the MNI 152 1mm space.

Second, we use a deterministic diffusion fiber tracking method [54] to create approxi-

mately 1,000,000 tracts from the whole tumor region. Finally, a structural brain atlas is
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Figure 4.2: Workflow for building a connectivity matrix for each subject. The fiber
tracts are created by DSI Studio (http://dsi-studio.labsolver.org/), and ITK-S-
NAP [8] is used for visualizing the 3D MR images and 3D labels.

used to create a connectivity matrix ~Wori for each subject. This matrix contains infor-

mation about whether a fiber connecting one region to another passed through or ended

at those regions, as shown:

~Wori is a N × N matrix, and N is the number of parcellation in a structural brain

atlas.

~Wori =



wori,11 wori,12 . . . wori,1N

wori,21 wori,22 . . . wori,2N

...
...

. . .
...

wori,N1 wori,N2 . . . wori,NN


(4.1)

If wij is pass-type, it shows the number of tracts passing through region j and region

i. if wij is end-type, it shows the number of tracts starting from a region i and ending

in a region j or starting from a region j and ending in a region i. From the original
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connectivity matrix ~Wori, we create a normalized version ~Wnrm and a binarized version

~Wbin.

~Wnrm = ~Wori/max( ~Wori) (4.2)

/ is the element-wise division operator, and max( ~Wori) is the maximum value of the

original connectivity matrix ~Wori.

~Wbin =



wbin,11 wbin,12 . . . wbin,1N

wbin,21 wbin,22 . . . wbin,2N

...
...

. . .
...

wbin,N1 wbin,N2 . . . wbin,NN


(4.3)

wbin,ij = 0 if wori,ij = 0, and wbin,ij = 1 if wori,ij > 0. Then, we sum up each column in a

connectivity matrix to form a unweighted tractographic feature vector.

~V =
N∑
i=1

wij =

[
v1, v2, . . . , vN

]
(4.4)

Furthermore, we weight every element in the unweighted tractographic feature vector

with respect to the ratio of the lesion in a brain parcellation region to the volume of this

brain parcellation region.

~Vwei = ~α� ~V , ~α =

[
t1/b1, t2/b2, . . . , tN/bN

]
(4.5)

� is the element-wise multiplication operator, ti is the volume of the whole brain tumor

in the i-th brain parcellation, and bi is the volume of the i-th brain parcellation. This

vector ~Vwei is the tractographic feature extracted from brain tumor.

In this problem, automated anatomical labeling (AAL) [5] is used for building the

connectivity matrix. AAL has 116 brain parcellation regions, so the dimension of the
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connectivity matrix ~W is 116× 116 and the dimension of each tractographic feature ~Vwei

is 1 × 116. In the end, we extract six types of tractographic features for each subject.

Six types of tractographic features are computed from 1) the pass-type of the original

connectivity matrix, 2) the pass-type of the normalized connectivity matrix, 3) the pass-

type of the binarized connectivity matrix, 4) the end-type of the original connectivity

matrix, 5) the end-type of the normalized connectivity matrix and 6) the end-type of the

binarized connectivity matrix.

4.3.3 Feature Normalization and Selection

First, we remove features with the low variance between subjects and then apply a

standard z-score normalization on the remaining features. In the feature selection step,

we combine recursive feature elimination with the 1000-time repeated stratified 5-fold

cross-validation and an SVM classifier with a linear kernel. These feature processing

steps are implemented by using scikit-learn [88].

4.3.4 Overall Survival Prediction

We first divide all 59 training subjects into three groups: long-survivors (>15 months),

short-survivors (<10 months), and mid-survivors (between 10 and 15 months). Then,

we train a SVM classifier with linear kernel on all training subjects with 1000-time

repeated stratified 5-fold cross-validation to evaluate the performance of the proposed

tractographic feature on overall survival prediction for brain tumor patients. We also

evaluate the OS prediction performance of tractographic feature on the BraTS 2018

validation and test dataset.
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4.4 Experimental Results and Discussion

We first examine the overall survival classification performance of our proposed trac-

tographic feature compared to other types of features including age, volumetric features,

spatial features, volumetric-spatial features, and morphological features.

Volumetric Features: The volumetric features include the volume and the ratio of

brain to the different types of lesions, as well as the tumor compartments. 19 volumetric

features are extracted from each subject.

Spatial Features: The spatial features describe the location of the tumor in the brain.

The lesions are first registered to the MNI152 1mm space by using FLIRT, and then the

centroids of the whole tumor, tumor core and enhancing tumor are extracted as our

spatial features. For each subject, we extract 9 spatial features.

Volumetric-spatial Features: The volumetric-spatial features describe the volume of

different tumor lesions in different brain regions. First, the Harvard-Oxford subcortical

structural atlas brain parcellation regions are registered to the subject space by using

FLIRT. The volumes of different types of tumor lesions in each of the parcellation regions

left-brain region, middle-brain region, right-brain region, and other brain region are ex-

tracted as volumetric-spatial features. For each subject, we extract 78 volumetric-spatial

features.

Morphological Features: The morphological features include the length of the major

axis of the lesion, the length of the minor axis of the lesion and the surface irregularity

of the lesions. We extract 19 morphological features from each subject.

In the first experiment, the ground-truth lesion is used to extract different types of
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features, and the pass-type of the binarized connectivity matrix is built to compute the

tractographic feature. Recursive feature elimination with cross-validation (RFECV) is

used in the feature selection step to shrink the feature. A SVM classifier with the linear

kernel is trained with each feature type, and stratified 5-fold cross-validation is conducted

1000 times to achieve a reliable metric. The average and standard deviation of overall

survival classification accuracy for different types of features on the BraTS 2018 training

dataset is shown in Figure 4.3. This figure demonstrates that the proposed tractographic

features have the best overall survival classification performance compared to age, volu-

metric features, spatial features, volumetric-spatial features, and morphological features.

Initial analysis based on feature selection indicates that 12 out of 116 AAL regions are

more influential in affecting the overall survival of the brain tumor patient.

Figure 4.3: Overall survival classification accuracy between different types of features
on BraTS 2018 training dataset. 1000-time repeated stratified 5-fold cross-validation
is used to obtain the average classification accuracy.
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Next, the pass-type of the binarized connectivity matrix is built from the predicted

lesion and the tractographic feature is computed from this connectivity matrix. The

overall survival classification performance of this tractographic feature is compared with

the tractographic feature from our first experiment. In this experiment, we follow the

same feature selection method and training strategy, using the same SVM classifier with

a linear kernel. The average and standard deviation of overall survival classification

accuracy on the BraTS 2018 training dataset is reported in Table 4.1. From this table,

the average classification accuracy drops to 63 % when we use predicted lesions instead

of ground-truth lesions to generate the tractographic features. This drop is likely caused

by the imperfection of our tumor segmentation tool.

Table 4.1: The overall survival classification performance of the proposed tracto-
graphic features from the ground-truth lesions and from the predicted lesions on the
BraTS 2018 training dataset with 1000-time repeated stratified 5-fold cross-validation.

The source of tractographic features Classification accuracy (mean±std)
Ground-truth Lesions 0.70 ± 0.12

Predicted Lesions 0.63 ± 0.13

For the training data, the tractographic features are computed using the ground-

truth whole tumor, and a linear SVM classifier trained on these features. We used

stratified 5-fold cross-validation on the training dataset, averaged over 1000 independent

trials. The average OS classification accuracy using the tractographic features was 0.892

on the training set and 0.697 on the cross-validation set. However, when applied to

the BraTS 2018 validation and test datasets, the accuracy dropped to 0.357 and 0.416,

respectively [1]. Note that for the validation and test data, there is no ground-truth

segmentation available. So we first predicted the whole tumor and then the tractography

features are extracted from these predicted tumors, followed by the OS classification using

the previously trained linear SVM. We speculate that the automated segmentation to

predict the whole tumor is one possible reason for the significant variation in performance
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between the training and validation/test data, besides, any data specific variations.

4.5 Summary

For overall survival prediction, the novel use of tractographic features appears to be

promising for aiding brain tumor patients. To the best of our knowledge, this is the first

time to integrate brain parcellation and human brain connectomics for overall survival

prediction of brain tumor patients. The final publication of this chapter is available at

Springer via https://doi.org/10.1007/978-3-030-11726-9_12.
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Chapter 5

Utilizing Tractographic Feature to

Predict the Clinical Outcome of

Stroke Patients

Every great dream begins with a

dreamer. Always remember, you

have within you the strength, the

patience, and the passion to reach

for the stars to change the world.

Harriet Tubman

In this chapter, we focus on predicting the clinical outcome of stroke patients given

the stroke lesion mask. The volume of stroke lesion is the gold standard for predict-

ing the clinical outcome of stroke patients. However, the presence of stroke lesion may

cause neural disruptions to other brain regions, and these potentially damaged regions

may also affect the clinical outcome of stroke patients. In this chapter, we also utilize

the tractographic feature to capture these potentially damaged regions and predict the
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modified Rankin Scale (mRS), which is a widely used outcome measure in stroke clinical

trials. The tractographic feature is built from the stroke lesion and average connectome

information from a group of normal subjects. The tractographic feature takes into ac-

count different functional regions that may be affected by the stroke, thus complementing

the commonly used stroke volume features. The proposed tractographic feature is tested

on a public stroke benchmark Ischemic Stroke Lesion Segmentation (ISLES) 2017 and

achieves higher accuracy than the stroke volume and the state-of-the-art feature on pre-

dicting the mRS grades of stroke patients. Also, the tractographic feature yields a lower

average absolute error than the commonly used stroke volume feature.

5.1 Introduction

According to the World Health Organization, stroke is the second leading cause of

death and the third leading cause of disability worldwide [89]. 15 million people worldwide

suffer a stroke each year, and 5.8 million people die from it [90]. Around 87% strokes are

ischemic strokes, which happen as a result of an obstruction within a blood vessel in the

brain [91]. The corresponding lack of oxygen results in different degrees of disability of

people, and the modified Rankin Scale (mRS) shown in Table 5.1 is commonly used to

measure the degree of disability or dependence in the daily activities of stroke patients

[13]. The mRS has been widely used to measure the clinical outcome for stroke clinical

trials [92–94].

Several studies [92,95–101] demonstrate significant correlations between stroke volume

and mRS grades, with larger lesions predicting more severe disability. That is, the volume

of stroke lesion is a gold predictor on the clinical outcome. There are few recent studies

which extract different features other than the volume from stroke lesion to predict the

mRS grades of stroke patients. Forkert et al. [102] used the problem-specific brain regions
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Table 5.1: The modified Rankin Scale (mRS)

Score Description
0 No symptoms.
1 No significant disability. Able to carry out all usual activities, despite some

symptoms.
2 Slight disability. Able to look after own affairs without assistance, but unable

to carry out all previous activities.
3 Moderate disability. Requires some help, but able to walk unassisted.
4 Moderately severe disability. Unable to attend to own bodily needs without

assistance, and unable to walk unassisted.
5 Severe disability. Requires constant nursing care and attention, bedridden,

incontinent.
6 Deceased.

for lesion overlap quantification and the multi-class support vector machine to predict

the mRS grades of stroke patients. Maier and Handels [9] extracted 1650 image features

and 12 shape characteristics from the stroke, the volume surrounding the stroke and the

remaining brain volume, and applied a random forest regressor with 200 trees on these

1664 features to predict the mRS scores of stroke patients. Choi et al. [103] used a shallow

convolutional neural network to extract image features, fitted a logistic regression model

with clinical parameters, and integrated the outputs from both the neural network and

the regressor to predict the mRS scores of stroke patients. Mahmood and Basit [104]

extracted the local image features and stroke characteristics, and used a regression forest

to predict the mRS scores of stroke patients. All these recent studies focus on extracting

the first-order features of the stroke lesion. However, the presence of stroke lesion may

damage other brain regions that may affect the clinical outcome of stroke patients.

In this chapter, we construct the second-order feature from the stroke lesion of a

patient and the average connectome information from a group of normal subjects without

diffusion MR images of the stroke patient. This so-called tractographic feature describes

the potential damage brain regions due to the neural disruptions of stroke lesion. Then,
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we use the tractographic features of stroke patients to predict their mRS grades. In

this chapter, we show that the tractographic feature is a better predictor on the clinical

outcome of stroke patients. Also, we discover that the stroke lesion in the left brain has a

higher impact on mRS grades of stroke patients compared to the stroke lesion in the right

brain. The details of the tractographic feature we use for stroke patients are described

in Section 5.3 and the quantitative results are provided in Section 5.5.

The main contribution of this chapter is we demonstrate that the tractographic feature

has potential to be a better predictor on the clinical outcome of stroke patients compared

to the volume of stroke, other first-order features, and the state-of-the-art feature.

5.2 Dataset

Ischemic Stroke Lesion Segmentation (ISLES) 2017 [33,34] provides 43 subjects in the

training dataset. Each subject has (1) two diffusion maps including diffusion-weighted

imaging (DWI), and apparent diffusion coefficient (ADC), (2) five perfusion maps con-

taining cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit time

(MTT), time-to-peak (TTP) and, time-to-maximum (TMAX), (3) one ground-truth le-

sion mask, and (4) clinical parameters. The ground-truth lesion mask was built in the

follow-up anatomical sequence (MR-T2w or MR-FLAIR). The clinical parameters include

mRS score ranging from 0 to 4, time-to-mRS (88+ days), thrombolysis in cerebral infarc-

tion (TICI) scale grade from 0 to 3, time-since-stroke (in minutes), and time-to-treatment

(in minutes). TICI scale grade, time-since-stroke and, time-to-treatment were missing for

some subjects. Therefore, these three clinical parameters are not considered in our exper-

iments. We only focus on the subjects who obtain an mRS score at 3 months (90 days)

following hospital discharge since ascertainment of disability at 3-month post-stroke is

an essential component of outcome assessment in stroke patients [105]. Therefore, only
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37 subjects from ISLES 2017 are considered.

5.3 Tractogrpahic Feature

Tractographic feature describes the potentially damaged region impacted by the pres-

ence of the stroke lesion through the average connectome information [106] from 1021

Human Connectome Project (HCP) [86] subjects. For each HCP subject, q-space diffeo-

morphic reconstruction (QSDR) [87] is used to compute the diffusion orientation distri-

bution function. Figure 5.1 shows the workflow of building a tractographic feature for a

stroke patient.

Given the stroke lesion in the subject space, we first map the stroke lesion to the

Montreal Neurological Institute (MNI) space by using FLIRT [51–53] from FSL (low im-

age quality may cause problems on the image registration.) Second, we place one seed

within each voxel of the whole brain region, and a deterministic diffusion fiber tracking

method [54] is used to find the possible tracts passing through the stroke volume inside

the brain from the average connectome information of 1021 HCP subjects. Topology-

informed pruning (TIP) [107] is used to remove false-positive tracts. The detailed pa-

rameters for fiber tracking are depicted in the following sections. Third, an existing brain

parcellation atlas is used to create the connectivity matrix C, which describes the degree

of damage between different brain parcellation regions. C is a N×N connectivity matrix,

and N is the number of brain parcellation regions in an existing atlas.

C =



c11 c12 . . . c1N

c21 c22 . . . c2N
...

...
. . .

...

cN1 cN2 . . . cNN


(5.1)
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Figure 5.1: The workflow for constructing a tractographic feature from a stroke region.
First, the stroke lesion is registered to the average diffusion orientation distribution
function in the MNI space, and we place one seed in each voxel inside the whole
brain region to find all possible tracts passing through the stroke volume. Second,
an existing brain parcellation atlas is used to form a connectivity matrix. Here, we
show a simple example of dividing the brain into three sub-regions. Therefore, the
size of the connectivity matrix of fiber tracts is 3× 3. Each value in this connectivity
matrix stands for the number of fiber tracts starting from a brain parcellation region
and ending in another brain parcellation region. Then, we normalize this connectivity
matrix with respect to its maxima (10 in our example.) Afterward, we sum up each
column of this normalized connectivity matrix to form a row vector. We then use the
distribution of stroke lesion in different brain parcellation regions to build a weight
vector whose size is 1× 3. Finally, this row vector is multiplied by the weight vector
element-wisely to form the tractographic feature.
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cij notes the number of tracts starting from a region i and ending in a region j. Note

that this connectivity matrix is symmetric. Then, we normalize this connectivity matrix

by dividing every element on this matrix by its maximum value.

Ĉ = C � 1

cm
(5.2)

Ĉ is the normalized connectivity matrix, � is the element-wise multiplication operator,

and cm is the maximum element of the connectivity C. Afterward, we sum up each

column in this normalized connectivity matrix Ĉ to form a row vector ~L.

~L =
N∑
i=1

ĉij =

[
l1, l2, . . . , lN

]
(5.3)

From the stroke lesion, we build a weight vector ~γ which is the volume of the stroke

lesion in each brain parcellation region.

~γ =

[
s1, s2, . . . , sN

]
(5.4)

si is the volume of the stroke lesion in the i-th brain parcellation region. In the end, the

row vector ~L from Eq. (5.3) is multiplied by this weight vector ~γ element-wisely to form

the tractographic feature ~T .

~T = ~γ � ~L (5.5)

� is the element-wise multiplication operator. This vector ~T is the tractographic feature

extracted from stroke lesion without any diffusion information of a patient. The Auto-

mated Anatomical Labeling (AAL) [5] template is used to define 116 brain regions so the

dimension of the tractographic feature is 116. The reason for choosing AAL rather than

other existing atlases because this atlas contains an optimal number (∼ 100) of brain
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regions that could make each region large enough to compensate possible stroke-induced

lesion effect or distortion, and this atlas contains cortical, subcortical and cerebellar

regions, which could be equally important for mRS prediction [108].

5.3.1 Parameters of Fiber Tracking

DSI Studio [38] is used to build the fiber tracts for each subject. Table 5.2 shows the

tracking parameters1 we used in our experiments. The type of stroke lesion is set to ROI

(–roi=stroke lesion) that found all possible tracts passing through the stroke lesion.

Table 5.2: Tracking parameters of building the fiber tracts for stroke pa-
tients in this chapter. More details of parameters can be found at
http://dsi-studio.labsolver.org/Manual/Fiber-Tracking.

Parameter Value
Termination Index qa

Threshold 0.15958
Angular Threshold 90

Step Size (mm) 0.50
Smoothing 0.50

Min Length (mm) 3.0
Max Length (mm) 500.0

Topology-Informed Pruning (iteration) 1
Seed Orientation All orientations

Seed Position Voxel
Randomize Seeding Off

Check Ending Off
Direction Interpolation Tri-linear

Tracking Algorithm Streamline(Euler)
Terminate if 2,235,858 Tracts
Default Otus 0.60

1parameter id=F168233E9A99193F32318D24ba3Fba3Fb404b0FA43D21D22cb01ba02a01d
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5.3.2 Parameters of Connectivity Matrix

DSI studio is used to create the connectivity matrix (http://dsi-studio.labsolver.

org/Manual/command-line-for-dsi-studio) followed by fiber tracking. Automated

Anatomical Labeling [5] is chosen to form a 116× 116 connectivity matrix. The type of

the connectivity matrix is set to end, the value of each element in the connectivity ma-

trix is the count of fiber tracts, and the threshold to remove the noise in the connectivity

matrix is set to 0.

5.4 Experiments

5.4.1 Experiment 1: tractographic feature vs. other first-order

features

In our first experiment, we compare the mRS prediction performance of the tracto-

graphic feature with other first-order features extracted from the lesion mask. These fea-

tures include the volumetric feature, spatial feature, morphological feature and volumetric-

spatial feature described in Table 5.3. The pipeline of our first experiment is depicted in

Figure 5.2.

We first register the stroke lesion from the subject space to the MNI space to overcome

the differences of the voxel spacing and image dimension between different subjects,

and features are extracted from this normalized stroke lesion. From this normalized

stroke lesion, we extract tractographic feature and other features shown in Table 5.3.

After feature extraction, we apply a standard feature normalization on the extracted

features to ensure that each dimension of the features has the same dynamic range.

Then, we apply two feature selection methods on these different types of features. The

first feature selection is to remove the dimensions of the feature with the low variance
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Figure 5.2: The pipeline of the first experiment for predicting the clinical outcome of
stroke patients. The stroke lesion is first mapped to the MNI space, and five different
types of features are extracted from this normalized stroke lesion. Then, we apply the
standard feature normalization on this extracted feature to ensure each dimension of
the feature has the same scale. After feature normalization, we remove the dimensions
of the feature with a lower variance between subjects and apply recursive feature
elimination with cross-validation (RFECV) on the feature selection. In the end, we
train one random forest regressor with each type of features and use these random
forest regressors to predict the mRS grades with each type of features for the stroke
patients.
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between subjects. The second step is to apply the recursive feature elimination with

leave-one-out cross-validation and a random forest regressor that search for the best

subset of feature which yields the lowest average absolute error. After feature selection,

we train one random forest regressor for each type of features. That is, five random forest

regressors are trained with five different types of features. Each random forest regressor

has 300 trees, and the maximum depth of each tree is 3 with the same initial seed. In

the end, we use different types of features with corresponding random forest regressors

to predict the mRS grades of stroke patients.

Table 5.3: First-order features extracted from the stroke lesion.

Type of feature Descriptions
Volumetric feature Volumetric feature is the volume of the lesion (in mm3)

in the MNI space, and it only has one dimension.
Spatial feature Spatial feature describes the location of the lesion in the

brain. The centroid of the lesion is extracted as the spatial
feature for each subject, and the spatial feature has three
dimensions.

Morphological feature Morphological feature describes shape information of the
lesion. The length of the major axis and minor axis of
the lesion, the ratio of the length of the major axis and
minor axis of the lesion, the solidity and roundness of the
lesion, and the surface of the lesion are extracted as the
morphological feature. The morphological feature has six
dimensions for each subject.

Volumetric-spatial feature Volumetric-spatial feature describes the distribution of le-
sion in different brain parcellation regions from an ex-
isting structural atlas. Automated Anatomical Labeling
(AAL) [5] is used to build the volumetric-spatial feature
so the dimension of the volumetric-spatial feature is 116.
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5.4.2 Experiment 2: tractographic feature vs. state-of-the-art

feature

We first extract 1650 image features and 14 shape features from the lesion volume

and the ADC map and concatenate these two different types of features together to

build a feature with 1664 dimensions. Then, we apply a standard feature normalization

to this feature to ensure each dimension of the feature has the same scale. Afterward, we

remove the dimensions of the feature with the low variance between subject and apply

a recursive feature elimination with leave-one-out cross-validation to search for the best

subset of feature which gives us the best mRS prediction performance. In the end, we

apply a random forest regressor with 300 trees whose maximum depth is 3 on this selected

feature to predict the clinical outcome of stroke patients. We use the same pipeline as our

first experiment to extract the tractographic feature from the stroke lesion and predict

the mRS grades of stroke patients.

5.4.3 Experiment 3: performance of feature selection

In the third experiment, we would like to examine the performance of feature selection

on predicting the mRS grades of stroke patients. From Figure 5.2 and Figure 5.3, feature

selection is applied on features extracted from the stroke lesion before predicting the

mRS grades of stroke patients. The feature selection includes removing the dimensions

of the feature with the low variance between subjects and recursive feature elimination

with leave-one-out cross-validation. In this experiment, we directly apply the random

forest regressor with 300 trees whose maximum depth is 3 on the normalized features

without feature selection to predict the mRS of stroke patients.
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Figure 5.3: Experiment 2 pipeline. We adjust the feature extraction method proposed
by Maier and Handels [9] to work on ISLES 2017. First, we extract 1650 image features
and 14 shape information from the stroke lesion and the ADC map. These two different
types of features are concatenated together to form a feature with 1664 dimension.
Then, we normalize this extracted feature to ensure each dimension of this feature has
the same scale. After feature normalization, we remove the dimensions of the feature
with the low variance between subjects and apply recursive feature elimination with
leave-one-out cross-validation to find the best subset of feature which has the smallest
average absolute error. Then, we use a random forest regressor with 300 trees whose
maximum depth is 3 on the selected feature to predict the mRS grades of stroke
patients.
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5.4.4 Evaluation Metrics

The employed evaluation metrics are (i) the accuracy, which is the percentage of the

predicted labels matching the corresponding ground-truth labels, and (ii) the average

absolute error between the predicted labels and the corresponding ground-truth labels.

5.5 Experimental Results

5.5.1 Experiment 1: tractographic feature vs. other first-order

features

We evaluate the mRS prediction performance of different types of features with leave-

one-out cross-validation on the ISLES 2017 training dataset. The quantitative results

are reported in Table 5.4 and the confusion matrices are shown in Figure 5.4. From

Table 5.4, the tractographic feature has the highest accuracy on predicting the mRS

scores of stroke patients compared to the volumetric features, volumetric-spatial feature,

morphological features, and spatial features. Moreover, the tractographic feature yields a

lower average absolute error than volumetric feature, volumetric-spatial feature (p < 0.1),

morphological feature (p < 0.05) and spatial feature (p < 0.01). Also, Figure 5.4 shows

that the tractographic feature has a better performance in predicting mRS score 2 and

3 compared to other first-order features.

5.5.2 Experiment 2: tractographic feature vs. state-of-the-art

feature

The quantitative results of the state-of-the-art feature are shown in the last row of

Table 5.4 and the Figure 5.4f. From Table 5.4, the tractographic feature also achieves
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(a) Tractographic Feature (b) Volumetric Feature

(c) Volumetric-Spatial Feature (d) Morphological Feature

(e) Spatial Feature (f) Maier and Handels [9]

Figure 5.4: The confusion matrices of the predicted mRS grades and the corresponding
ground-truth mRS grades using different types of features. These confusion matrices
are normalized by the number of subjects in each mRS grades. The diagonal ele-
ments represent the percentages for which the predicted mRS grade is equal to the
ground-truth mRS grade. The higher (darker) the diagonal values of the confusion
matrix the better, indicating many correct predictions. Feature selection steps are
applied on these features. A random forest regressor is trained to predict the mRS
grades for stroke patients with leave-one-out cross-validation.
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Table 5.4: The mRS prediction performance of different types of features on the ISLES
2017 training dataset with leave-one-out cross-validation. Feature selection steps are
applied on these features. A random forest regressor is used to predict the mRS score
for each stroke patient. The random forest regressor has 300 trees, and the maximum
depth of each tree is 3. The bold numbers show the best performance. (The average
absolute error is reported as mean ± std.)

Type of feature Accuracy Average absolute error
Tractographic feature 0.622 0.487± 0.683

Volumetric feature 0.514 0.595 ± 0.715
Volumetric-spatial feature 0.568 0.621 ± 0.817

Morphological feature 0.378 0.703 ± 0.609
Spatial feature 0.351 0.919 ± 0.882

Maier and Handels [9] 0.595 0.460 ± 0.597

higher accuracy and similar average absolute error (p = 0.81) compared to the state-of-

the-art feature. From Figure 5.4, the tractographic feature has a better performance on

predicting mRS grade 1 and 2 compared to the state-of-the-art feature.

5.5.3 Experiment 3: performance of feature selection

The mRS prediction performance of different types of features without feature selec-

tion is reported in Table 5.5. Compared with Table 5.4 and Table 5.5, it is shown that

the feature selection steps improve the performance of tractographic feature, volumetric-

spatial feature, morphological feature and the state-of-the-art feature, particularly for

the tractographic feature (p < 0.5) and state-of-the-art feature (p < 0.01). Also, it is

noted that without feature selection, the tractographic feature has the best accuracy

compared to other features and similar average absolute error (p = 0.76) compared to

the volumetric feature (see Table 5.5).

84



Utilizing Tractographic Feature to Predict the Clinical Outcome of Stroke Patients Chapter 5

Table 5.5: The mRS prediction performance of different types of features without
feature selection steps on the ISLES 2017 training dataset with leave-one-out cross–
validation. A random forest regressor is used to predict the mRS score of each stroke
patient. The random forest regressor has 300 trees, and the maximum depth of each
tree is 3. The bold numbers show the best performance. (The average absolute error
is reported as mean ± std.)

Description Accuracy Average absolute error
Tractographic Feature 0.541 0.622 ± 0.748

Volumetric feature 0.514 0.595 ± 0.715
Volumetric-Spatial Feature 0.514 0.649 ± 0.779

Morphological Feature 0.351 0.730 ± 0.600
Spatial feature 0.351 0.919 ± 0.882

Maier and Handels [9] 0.405 0.730 ± 0.684

5.6 Discussion

From the first experiment, the tractographic feature has the best mRS prediction ac-

curacy and the lowest average absolute error compared to other first-order features(See

Table 5.4). The main reason is that the tractographic feature integrates volumetric-

spatial information of the stroke lesion and average diffusion information from a group

of normal subjects. Average diffusion information gives the tractographic feature po-

tentially damaged regions impacted by the stroke lesion. Potentially damaged brain

regions can be discovered by finding the possible tracts passing through the lesion vol-

ume. These potentially damaged regions are formatted in the connectivity matrix from

Eq. (5.1). The weight ~γ from Eq. (5.4) brings spatial and volumetric information of the

lesion to the tractographic feature. Also, it is worth noting that the volumetric-spatial

feature is similar to the tractographic feature without average connectome information,

and the mRS prediction performance of volumetric-spatial feature has a significant im-

provement (p < 0.1) by considering average connectome information from a group of

normal subjects.

From the second experiment, the tractographic feature also has better accuracy than
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the state-of-the-art features proposed by Maier and Handels [9] on predicting the mRS

of stroke patients. Their feature contains 99% image features from the ADC maps and

only 1% shape information of the stroke lesion. That is, their feature does not work well

without the ADC maps. Moreover, the inconsistent voxel values between different MR

images might cause some problems to their image features. However, the tractographic

feature is more robust compared to image features since the tractographic feature is

generated from a lesion mask and it does not require intensity information from MR

images.

In the first two experiments, we apply the recursive feature selection with cross-

validation on different types of features and this procedure reduces one dimension of

feature recursively until finding the best subset of the feature. This feature selection step

significantly improves the performance of the tractographic feature (p < 0.05) whose

dimension shrinks to 8 from 116. This selected tractographic feature comes from eight

AAL regions (left and right inferior temporal gyrus, right Rolandic operculum, left middle

frontal gyrus, orbital part and triangular part of right inferior frontal gyrus, left angular

gyrus and left putamen) shown in Figure 5.5. After feature selection, we use a random

forest regressor to predict the mRS grades of stroke patients with one type of feature. The

random forest regressor can give importance to each dimension within a type of feature.

The importance of each AAL region within the selected tractographic feature is shown in

Figure 5.6. From this figure, left inferior temporal gyrus yields higher average importance

compared to the other seven regions within 37 ISLES 2017 training subjects on the task

of predicting the mRS grades. Left inferior temporal gyrus is connected to areas that are

important for language processing and speech production. That could explain the reason

why this region has the greatest effect on the mRS of stroke patients [109].

In the third experiment, we use different types of features with a random forest re-

gressor to predict the mRS grades of stroke patients without feature selection steps. As
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Figure 5.5: Selected tractographic feature from eight AAL regions for predicting the
clincial outcome of stroke patients. These regions include left (in red) and right (in
pink) inferior temporal gyrus red, right Rolandic operculum (in orange), left middle
frontal gyrus (in yellow), orbital part (in green) and triangular part (in blue) of right
inferior frontal gyrus, left angular gyrus (in purple) and left putamen (in grey) after
applying the recursive feature selection with cross-validation on the original tracto-
graphic features. These tractographic features are extracted from 37 ISLES 2017
training subjects. The figure is drawn by using BrainNet Viwer [10].
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Figure 5.6: Region importance of eight selected AAL brain parcellation regions for
predicting the clinical outcome of stroke patients. These regions are given by a ran-
dom forest regressor with 300 trees whose maximum depth is 3. The average val-
ues are marked in the green triangles. Left inferior temporal gyrus (LITG) yields
a higher mean importance (0.26) than right Rolandic operculum (RRO, 0.14), left
middle frontal gyrus (LMFG, 0.13), orbital part (ORIFG, 0.11) and triangular part
(TRIFG, 0.10) of right inferior frontal gyrus, left angular gyrus (LAG, 0.09), left puta-
men (LP, 0.09) and right inferior temporal gyrus (RITG, 0.08) within 37 ISLES 2017
training subjects on the task of predicting the mRS grades of stroke patients.
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mentioned above, a random forest regressor can give the importance to each dimension

within a type of feature. That is, the importance to each 116 AAL regions from the orig-

inal tractographic feature is given by the random forest regressor for the task of clinical

outcome prediction. The importance of all AAL regions are shown in Table 5.6. From

this table, left inferior temporal gyrus again is the most important areas affecting the

mRS of stroke patients compared to other regions. Figure 5.7 shows the fiber tracts pass-

ing through the left inferior temporal gyrus, and a large number of fibers are going across

the splenium of the corpus callosum that may explain the reason why the left inferior

temporal gyrus is the most crucial regions in predicting the mRS of stroke patients [110].

In addition, it should be noted that the seven most important regions (left inferior tem-

poral gyrus, left middle frontal gyrus, right Rolandic operculum, left putamen, triangular

part and orbital part of right inferior frontal gyrus and left angular gyrus) are selected

after applying two feature selection steps on the original tractographic feature (see Fig-

ure 5.5), and the total importance of these regions is 0.58. Left inferior temporal gyrus,

left middle frontal gyrus and left angular gyrus are on the left and eloquent areas that

mean they should likely have a profound effect on the patient’s neurological status [111].

Left putamen is one of the structures that compose the basal ganglia. Stroke damage in

the left putamen is strongly associated with motor disorders and cognitive disorders [112].

Moreover, from Table 5.6, the importance of the left hemispheres is 0.55, and the right

hemispheres is 0.37. Namely, the lesion in the left hemispheres has a higher impact on the

clinical outcome of stroke patients compared to the lesion in the right hemispheres [113].

Again, the stroke lesion in the left brain, particularly in inferior temporal gyrus, has a

higher impact on predicting the mRS grades of stroke patients.
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Table 5.6: Region importance of AAL brain parcellation regions averaged from 37
ISLES 2017 subjects. Regions whose importance is less than 0.01 are not listed in this
table. The importance of left hemispheres is 0.55, and right hemispheres are 0.37. The
importance of regions is given by a random forest regressor trained with the original
tractographic features of 37 ISLES 2017 subjects with leave-one-out cross-validation.
The values are reported as mean.

Region Importance
Left inferior temporal gyrus 0.19
Left middle frontal gyrus 0.09
Right Rolandic operculum 0.08
Left putamen 0.07
Triangular part of right inferior frontal gyrus, Orbital part of right
inferior frontal gyrus, Left angular gyrus

0.05

Right inferior temporal gyrus 0.04
Opercular part of right inferior frontal gyrus 0.03
Orbital part of right superior frontal gyrus, Right insula, Left hip-
pocampus, Left middle occipital gyrus, Left precuneus, Right globus
pallidus

0.02

Left precentral gyrus, Right precentral gyrus, Right superior frontal
gyrus, Right middle frontal gyrus, Opercular part of left inferior frontal
gyrus, Triangular part of left inferior frontal gyrus, Right hippocampus,
Left amygdala, Right middle occipital gyrus, Left postcentral gyrus,
Left inferior parietal lobule, Left globus pallidus, Left thalamus, Left
middle temporal gyrus, Right middle temporal pole

0.01
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Axial View Coronal View Sagittal View

Figure 5.7: The fiber tracts passing through the left inferior temporal gyrus from
the average connectome information of 1024 HCP subjects. We place a seed in each
voxel inside the whole brain to find all possible tracts passing through the left inferior
temporal gyrus.
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5.7 Summary

Tractographic feature leads to promising mRS prediction results in ISLES 2017 dataset.

However, this dataset contains only 37 stroke subjects and further validation on a larger

and diverse data is needed. Besides, it has been shown that fusion of multiple features

can boost the performance of large-scale classification and recognition [114–117], and it

is worth a further investigation with a larger and more comprehensive dataset. Also, the

tractographic feature can be extracted from any CT or MR scan with a brain lesion, e.g.,

traumatic brain injury, brain tumor. The region importance table (Table 5.6) would be

a helpful reference for researchers. The final publication of this chapter will be available

in the coming proceedings of 5th International MICCAI Brainlesion Workshop, BrainLes

2019 by Springer.
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Chapter 6

Unsupervised 3D Feature Learning

for Predicting with Mild Traumatic

Brain Injury

Your time is limited, so don’t waste

it living someone else’s life. Don’t

be trapped by dogma - which is

living with the results of other

people’s thinking.

Steve Jobs

In this chapter, we focus on predicting the outcome of mild traumatic brain injury

patients. It is noted that it is hard to observe the hematoma on the structural MR images

of patients with mild traumatic brain injury. Therefore, our proposed tractographic

feature does not work in this condition. Alternatively, we present an unsupervised three-

dimensional feature clustering algorithm to gather the Mild Traumatic Brain Injured

Outcome Prediction (mTOP) 2016 challenge data into 3 groups. We use the brain MR-
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T1, diffusion tensor fractional anisotropy, and diffusion tensor mean diffusivity images

provided by the mTOP 2016 competition. A distance-based size constraint method for

data clustering is used. The proposed approach achieves 0.267 adjusted rand index

and 0.3556 homogeneity score within the 15 labeled test subjects, corresponding to 10

correctly classified data items. Our proposed method was ranked third in the mTOP

2016 challenge (https://tbichallenge.wordpress.com/) held with the international

conference on medical image computing and computer-assisted intervention (MICCAI)

2016.

6.1 Introduction

Traumatic brain injury (TBI) is an important public health concern in the United

States and worldwide. TBI is defined as an acute brain injury resulting from mechanical

energy to the head from external physical forces. It is estimated that approximately 1.5-2

million Americans suffer from TBI annually. TBI also contributes to approximately 30%

of all deaths in the USA annually. TBI often results in residual symptoms that affect an

individual’s cognition, movement, sensation, and/or emotional functioning. Recovery and

rehabilitation from TBI may require considerable resources and may take years. Some

individuals never fully recover, and some require lifetime ongoing care and support. TBI

has an enormous social and financial cost, with estimates of the annual financial burden

associated with TBI ranging between 9 and 10 billion US dollars [118,119].

Predicting the outcome of patients suffering from TBI could be both facilitate clinical

decision making and support the development of new therapeutic concepts. However,

prognostics are often based on clinical or cognitive symptoms, which might be biased

by personal perception. Therefore, there is an urge for more objective methods that

detect radiological evidence after TBI. However, the strong heterogeneity of the injury
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pattern and the complex change of pathology over time pose a persistent challenge. This

especially holds true for mild traumatic brain injury (mTBI), where lesions are non-

prevalent and conventional MRI often appears normal, but the injury can cause post-

concussional symptoms and neuro-cognitive dysfunction. Despite its valuable potential

for outcome prediction, MRI-based features which describe mTBI pathology are not

fully understood. Diffusion MRI could be the key to reveal biological factors of strong

predictive power. Indeed, common techniques such as local region or whole-brain analysis

are highly dependent on adequate image registration and brain parcellation and can be

restricted by the high dimensionality of the data.

This chapter addresses the challenge of feature detection and classification of sub-

ject data based on brain imaging for mTBI. The imaging data include the MR-T1 and

diffusion-weighted images (DWI). Bellotti et al. [120] combined the graph-based and k-

nearest neighbors (K-NN) methods to predict the outcome of mTBI patients. Cai and

Ji [121] developed an injury prediction or classification pipeline based on diffusion tensor

imaging (DTI) by combining a novel deep learning approach with statistical permutation

tests. While there is extensive work on applying unsupervised learning to clustering 2D

image features [122–125], the problems posed by the mTBI dataset are particularly chal-

lenging since the features of interest are likely very localized. Furthermore, the subject

categorization is derived not necessarily from the image data but from other observations,

making this problem very distinct from the traditional works in natural image processing.

Our proposed workflow includes four stages. The first stage performs data prepa-

ration and pre-processing on mild traumatic brain injury outcome prediction (mTOP)

2016 dataset. The second stage performs learning 3D features from brain MR-T1, diffu-

sion tensor fractional anisotropy (DT-FA) and diffusion tensor mean diffusivity (DT-MD)

images from 27 subjects of mTOP 2016 dataset. The third stage performs feature repre-

sentation for each subject, and the last stage performs group clustering based on these
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feature representations. The main contributions of this chapter are two-fold. First, we

propose a fully unsupervised methodology to learn the 3D features from the volumetric

data. Second, we propose a novel distance-based size constraint methodology for data

clustering.

6.2 Dataset

The mTOP 2016 dataset consists of MR-T1, DT-FA and DT-MD images, see Fig 6.1.

The training set contains 27 subjects belonging to 3 different categories (healthy, patient

category 1 or patient category 2) each consisting of 9 subjects. The testing set contains

15 subjects belonging to 3 different categories (healthy, patient category 1 or patient

category 2) each consisting of 5 subjects. The mTBI patients are categorized into one of

two groups based on their long term recovery status following the injury. The imaging

data includes for MR-T1 image at 182 × 218 × 182 voxels, with 1mm × 1mm × 1mm

voxel resolution, and the dimension for DT-FA and DT-MD image is 91× 109× 91 with

2mm× 2mm× 2mm voxel resolution.

Figure 6.1: An example of the mTOP 2016 dataset. Left: MR-T1 image, Mid: DT-FA
image, Right: DT-MD image.

96



Unsupervised 3D Feature Learning for Predicting with Mild Traumatic Brain Injury Chapter 6

Figure 6.2: Data preparation for MR-T1 images.

6.3 Data Preparation and Pre-processing

Data preparation for MR-T1 images is shown in Fig 6.2. For MR-T1 images, we

consider 8× 8× 8 voxel volume represented as a 512 dimensional vector of voxel values,

x̃
(i)
T1 ∈ R512, where i indexes the 3D patch. The overlap between the volumes in a sliding

window is 50%, and those volumes that have more than 75% zero values are discarded.

Thus, a large number of data vectors are generated that are then organized as column

vectors in a matrix. Moreover, these vectors are normalized to zero mean and unit

standard deviation:

x(i) =
x̃(i) −mean(x̃(i))

std(x̃(i))

where x̃(i) is a unnormalized column vector and “mean” and “std” are the mean and

standard deviation of the element of x̃(i). Let XT1 represent this matrix that includes data

from all of the 27 subjects. Similarly, two other matrices XFA and XMD are constructed.

However, since the spatial resolution of the data for these two cases is different from the

MR-T1, we use a 4 × 4 × 4 voxel volume. Therefore, the data vectors all represent a
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512mm3 spatial volume.

After normalization, we apply the standard Zero Component Analysis (ZCA) whiten-

ing transform [126] on each of the datasets XT1, XFA, and XMD. This helps minimize

the correlation among the components of the column vectors. For contrast-normalized

data, we set the whitening parameter εzca to 0.01 for 8× 8× 8 voxel patches and 0.1 for

4× 4× 4 voxel patches.

6.4 3D Dictionary learning via K-means clustering

The next step is to learn a dictionary for each of the data matrices using the standard

K-means clustering [127]. A separate dictionary is learned for each of the three matrices.

Let the data matrix be X ∈ RN×M and the corresponding dictionary be D ∈ RN×K .

Then,

Loop until convergence:

c
(i)
j =


D(j)>x(i), if j = arg min

l
|D(l)>x(i)| ∀i, j.

0, otherwise.

D := XC> +D

D(j)/||D(j)||2 ∀j

where c
(i)
j is the code vector associated with the input x(i) (ith column of X), and

D(j) is the jth column of the dictionary D that is a 3D feature we learned. In the end,

we will learn K 3D features from a dataset(D ∈ RN×K). Note that C ∈ RK×M . Let the

three corresponding dictionaries be DT1, DFA, and DMD.
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6.5 Feature Representation using 3D Convolutional

Network

Feature computation workflow schematic is shown in Figure 6.3. Input data includes

the three types: brain MR-T1, DT-FA, and DT-MD, for each of the subjects. Each of

these datasets is first normalized by subtracting the mean voxel value and dividing by the

standard deviation within the brain region. The dictionary code words learned from the

K-means clustering above are used as the weights for the first convolutional layer. The

stride for MR-T1 is 2 voxels, and for DT-FA and DT-MD is 1 voxel. This is followed by

a 3D max-pooling layer of size 3× 3× 3. The final merge layer concatenates the features

from the three different pooling layers, thus constructing a single feature vector for each

of the subjects. The dimensions of the resulting 3D feature vector are 1536×25×32×23.

Figure 6.3: 3D Convolutional Network for Feature Extraction.
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6.6 Group Clustering with Size Constraints

Ideally one would like to train the convolutional network to adjust the weights for

discriminating the three different classes. However, given the number of data points (27

training subjects), this is currently not feasible. We explored training an SVM with

cross-validation but the initial results were not promising. Instead, we now consider this

problem as one of unsupervised clustering in the feature space computed by the above

hand-tuned convolutional network.

For clustering, we use the standard K-means clustering with distance-based size-

constraint, building upon the method described in [128]. However, Zhu et al. [128] do

not provide a unique solution as it only uses the cluster labels. Instead, we modify the

method to account for both labels and distances to the centroid as follows.

Given a dataset of N objects with P centroids (number of clusters), let Dist be the

N × P distance matrix,

Dist =



d11 d12 . . . d1P

d21 d22 . . . d2P
...

...
. . .

...

dN1 xN2 . . . dNP


(6.1)

where dip is the distance between i object and p-th centroid. The objective is to compute

a constrained P ×N binary label matrix L,

L =



l11 l12 . . . l1N

l21 l22 . . . l2N
...

...
. . .

...

lP1 lP2 . . . lPN


(6.2)
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such that

P∑
i=1

lij = 1, j = 1, . . . , n , and
N∑
j=1

lij = Ni, i = 1, . . . , p (6.3)

where lij = 1 if the j-th object is assigned to cluster i, and cluster i is constrained to

have exactly Ni points. This results in the following problem statement:

minimize
n∑

k=1

Dist(k)L
(k) (6.4)

where Dist(k) is the kth row of Dist, and L(k) is the kth column of L. This binary integer

linear programming problem can be easily solved by any existing solver. The mTOP

2016 dataset has 27 subjects which are belonged to three different classes, and each class

has nine subjects. Therefore, for this dataset, we set N = 27, P = 3, and Ni = 9 for each

class.

6.7 Experimental Results and Discussion

Experiments are carried out with the following parameter settings: (i) whether to use

whitening, (ii) the size of 3D patches (iii) the size of the 3D max-pooling kernel and (iv)

the number of 3D features.

6.7.1 Evaluation Metrics

We use adjusted rand index (ARI) [129] and homogeneity score (HS) [130] to measure

the performance. The adjusted rand index measures the similarity of two assignments

(clustered labels vs. ground truth labels), which is invariant to permutations and nor-

malized to chance. The similarity score is between 1.0 and -1.0. Random labelings have
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an ARI close to 0.0, and 1.0 stands for a perfect match. Homogeneity score measures the

purity of ground truth labels within a cluster. HS is between 1.0 and 0.0. 1.0 stands for

perfectly homogeneous labeling.

Figure 6.4: 3D features learned by K-means algorithm from MR-T1 images. Each
row stands for a 3D feature and different columns stand for different axial planes.
Left: Learned from whitened image patches. Right: Learned from un-whitened image
patches.

6.7.2 Effect of whitening

In general, the whitening transformation helps improve accuracy. Figure 6.4 shows

some example dictionary elements learned from K-means clustering and contrasts that to

the original data. We observe that the ZCA transformation results in a sharper dictionary

kernel. Figure 6.5 shows the clustering performance with and without whitening. The

x-axis here shows the size of the dictionary. With the ZCA transform the results improve

considerably as evidenced by the corresponding ARI and HS scores. This experiment

used a stride size of 4 voxels and 8 × 8 × 8 patch size for MR-T1 images, a stride size

of 2 voxels and 4 × 4 × 4 patch size for DT-FA and DT-MA image, and a 25 × 32 × 23

kernel in the max-pooling layers.
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6.7.3 Effect of 3D patch size

We also computed features at different 3D patch (volume) size settings and the results

are plotted in Figure 6.6. Similar to the previous figure, the x-axis shows the size of the

dictionary. The 3D feature size in the inset corresponds to the MR-T1 images. This

experiment used ZCA transformed (whitened) data and 3× 3× 3 kernels in max-pooling

layers, 2 voxel stride size for MR-T1 image and 1 voxel stride size for DT-FA and DT-MD

images. Overall, the 8× 8× 8 features for MR-T1 image and the 4× 4× 4 features for

DT-FA and DT-MD image worked best. Therefore, increasing the max-pooling kernel

decreased classification accuracy.

Figure 6.5: The effect of whitening
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Figure 6.6: The effect of 3D features size

6.7.4 Effect of the size of 3D max-pooling kernel

In figure 6.7, we compared the results between 3× 3× 3, and 25× 32× 23 maximum

pooling kernel size. The x-axis also shows the size of the dictionary. In our experiments,

we observe that 3 × 3 × 3 maximum pooling kernels have the best performance. This

experiment used whitened datasets, 8×8×8 feature kernels, and a stride size of 2 voxels

for MR-T1 image, and 4 × 4 × 4 feature kernels and 1 voxel for DT-FA and DT-MD

images.

6.7.5 Effect of Dictionary size

We considered feature representations with 64, 128, 256, and, 512 3D dictionary items.

Figures 6.5, 6.6 and 6.7 clearly show that a dictionary size of 512 gives the best results.

Going beyond 512 did not result in much improvement.
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Figure 6.7: The effect of max-pooling size

6.8 Summary

We explored the unsupervised classification of the mTBI challenge dataset. Given the

small number of samples, it is not feasible to train a deep learning network for feature

extraction and classification. Instead, we focused on computing volume features and

using them for classification. In the end, the best classification results correctly classified

10 out of 15 samples for which the labels are known, and the corresponding unsupervised

clustering scores are ARI= 0.267 and HS = 0.3556. The proposed method was placed

third in the MICCAI-mTOP 2016 challenge. The final publication of this chapter is

available at Springer via https://doi.org/10.1007/978-3-319-55524-9_26.
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Chapter 7

Conclusions and Future Work

The past is a place of reference, not

a place of residence; the past is a

place of learning, not a place of

living.

Roy T. Bennett

In this dissertation, we focused on predicting the outcome of patients with brain

disorders including brain tumor, stroke, and mild traumatic brain injury. For the patients

with a brain lesion, we propose a novel tractographic feature to capture the potentially

damaged regions due to the presence of the brain lesion. The tractographic feature is

built from the brain lesion and average connectome information from a group of normal

subjects. The tractographic feature takes into account different functional regions that

may be affected by the lesion, thus complementing the commonly used lesion volume

features. The tractographic feature is tested on a public brain tumor dataset and a public

ischemic stroke dataset and achieves a better outcome prediction performance than the

gold standards, other commonly used features, and the state-of-the-art features [63,131].

To automate the outcome prediction pipeline using the tractographic feature, a
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brain lesion segmentation is needed. Towards addressing this problem, we also pro-

pose a location information fusion method which integrates location information of the

brain with the state-of-the-art patch-based neural networks including 3D U-Net [26] and

DeepMedic [27, 28]. The proposed feature fusion method is tested on a public brain

tumor segmentation dataset, and it improves the segmentation performance of these

patch-based neural networks. Also, our proposed ensemble won the 6th place out of 63

teams in BraTS 2018 challenge [63].

For predicting the outcome of mild traumatic brain patients, we explore the unsuper-

vised classification of the mTBI challenge dataset. Given the small number of samples,

it is not feasible to train a deep learning network for feature extraction and classification.

Instead, we focused on computing volumetric features and using it for classification in an

unsupervised manner. The proposed method was ranked third in the MICCAI-mTOP

2016 challenge [132].

7.1 Future Directions

Brain Lesion Segmentation

Squeeze-and-Excitation (SE) [133] block, which adaptively recalibrates channel-wise

feature responses by explicitly modeling interdependencies between channels, is shown to

bring significant improvements in performance for existing state-of-the-art convolutional

neural networks at a slight additional computational cost. The integration of SE unit,

brain location information, and the state-of-the-art patch-based neural networks has the

potential to significantly improve the segmentation performance of existing state-of-the-

art patch-based neural networks.

In addition, utilizing a long short-term memory (LSTM) [134], a bidirectional LSTM

[135] or a Convolutional LSTM [136] to learn the 3D spatial relations of brain with 3D
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convolutional neural networks seems a promising direction for the brain lesion segmen-

tation. Also, the brain tumor segmentation performance of 3D U-Net has a significant

improvement by utilizing lesion prior directly [137] but the lesion prior fusion method

needs to be validated in other patch-based neural network architectures.

Tractographic Feature

The proposed tractographic feature is built from average connectome information of

a group of normal subjects. Another approach is to build the disruption matrices for

every normal subject given the brain lesion mask and calculate the average disruption

matrices based on individual matrices. This approach has the potential to improve the

outcome prediction performance of the tractographic feature but it takes more time to

generate the fiber tracts from each subject. Also, using the tractography-based atlases

to generate the disruption matrix has the potential to improve the outcome performance

of the tractographic feature. Besides, the tractographic feature can also apply to the

traumatic brain injury (TBI) patients with hematoma to predict their outcome. The

computerized tomography (CT) scan is commonly used to diagnose the TBI patients.

We have implemented a registration tool [138] which maps the CT scan of head in the

subject space to the MNI 152 space [139]. This tool is a good starting point to extract

the proposed tractographic feature for TBI patients with CT scans. In addition, if the

patient-specific tractography data is available, we can apply similar concepts to construct

the patient-specific tractographic features. The expectation is that these patient-specific

tractographic features will provide more accurate information for predictive computation

compared to the average HCP-based tractographic features.
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