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Abstract

Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), infects an estimated two billion people worldwide and
is the leading cause of mortality due to infectious disease. The development of new anti-TB therapeutics is required,
because of the emergence of multi-drug resistance strains as well as co-infection with other pathogens, especially HIV.
Recently, the pharmaceutical company GlaxoSmithKline published the results of a high-throughput screen (HTS) of their
two million compound library for anti-mycobacterial phenotypes. The screen revealed 776 compounds with significant
activity against the M. tuberculosis H37Rv strain, including a subset of 177 prioritized compounds with high potency and low
in vitro cytotoxicity. The next major challenge is the identification of the target proteins. Here, we use a computational
approach that integrates historical bioassay data, chemical properties and structural comparisons of selected compounds to
propose their potential targets in M. tuberculosis. We predicted 139 target - compound links, providing a necessary basis for
further studies to characterize the mode of action of these compounds. The results from our analysis, including the
predicted structural models, are available to the wider scientific community in the open source mode, to encourage further
development of novel TB therapeutics.

Citation: Martı́nez-Jiménez F, Papadatos G, Yang L, Wallace IM, Kumar V, et al. (2013) Target Prediction for an Open Access Set of Compounds Active against
Mycobacterium tuberculosis. PLoS Comput Biol 9(10): e1003253. doi:10.1371/journal.pcbi.1003253

Editor: Alexander Donald MacKerell, University of Maryland, Baltimore, United States of America

Received May 2, 2013; Accepted August 11, 2013; Published October 3, 2013
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Introduction

One third of the world’s population is infected with Mycobac-

terium tuberculosis (MTB), the causative agent of tuberculosis [1].

Approximately 95% of infected individuals are thought to have

persistent, latent MTB infections that remain dormant until

activated by specific environmental and host response events.

Approximately 10% of latent infections eventually progress to

active disease, which, if left untreated, kills more than half of the

infected patients [2]. Moreover, there is an increasing clinical

occurrence of MTB strains with extensive multi-drug-resistance

(eg, MTB MDR and MTB XDR), where mortality rates can

approach 100% [3]. In some countries, the MTB MDR and XDR

strains may account for up to 22% of infections [1]. In addition,

current TB therapeutic regimes involve a combination of

antibiotics, administered at regular intervals over a 6-month

period, which makes patient compliance an issue, especially in

developing countries [1,2].

The discovery and development of new antibiotics is widely

recognized as one of the major global health emergencies, yet it is

also a major pharmaceutical challenge. Most currently used

antibiotics were discovered during the golden era from the 1940s

to 1960s through large scale screening of compound collections for

anti-bacterial activity – the so-called whole cell or phenotypic

screens [4]. The emergence of bacterial molecular genomics

technologies and the availability of whole genome sequences in the

1990s led to dramatic changes in anti-bacterial drug discovery,

where the emphasis was placed on screening essential targets for

inhibitory compounds. However, despite intensive efforts, target-

based screening has been largely unsuccessful in producing clinical

candidate molecules [5]. As a result, a return to whole cell

screening has been widely advocated, in combination with novel

technologies and bioinformatics to rapid identify targets associated

with a compound’s mechanism of action (MOA) [4,6].

Recently, the pharmaceutical company GlaxoSmithKline

(GSK) completed an anti-mycobacterial phenotypic screening

campaign against M. bovis BCG, a non-virulent, vaccine Mycobac-

terium strain, with a subsequent secondary screening in M.

tuberculosis H37Rv (MTB H37Rv) for hit confirmation [7]. A total

of 776 potent compound hits (including 177 MTB H37RV hits

with limited human cell line toxicity) were made openly available

to the wider scientific community through the ChEMBL database

(http://dx.doi.org/10.6019/CHEMBL2095176). The aim of this

release was to stimulate mechanism of action analyses using
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chemical genetics/proteomics approaches, as well as to provide

many potential new starting points for synthetic lead generation

activities. To attain these goals, it is essential to identify the likely

protein targets of these active compounds. Here, we introduce an

integrative computational analysis towards the genome-wide

characterization of targets for selected compounds against

tuberculosis. Our approach is in contrast to the classical target-

based experiments, widely used in drug discovery, that suffer from

very high attrition rates in anti-infective molecules [8]. This study

should also serve the wider anti-tuberculosis research community

by providing a list of genes and pathways that are more likely to be

validated as TB targets for drug discovery and development.

We applied computational approaches using three domains of

knowledge, namely the ‘‘assay space’’, ‘‘chemogenomics space’’

and ‘‘structural space’’, to identify new targets that are likely to

interact with the active compounds from the GSK collection. We

characterized the structural and chemical spaces of the recently

released set of 776 compounds active against tuberculosis [7] and

grouped the compounds into a total of 551 structural families.

Subsequently, we predicted their likely targets using three

orthogonal and complementary computational approaches. Joint-

ly, we identified several amino-acid biosynthesis proteins as

possible targets of several compounds in the dataset. A total of

207 unique pairs of compounds and potential MTB targets have

been predicted. These compounds constitute a basis for further

hypothesis-led exploration of their mode of action. We briefly

outline the possible impact and contribution of our findings to

Open Drug Discovery Initiatives [9,10,11], in particular against

tuberculosis.

Results/Discussion

The TCAMS-TB compound dataset
GSK recently released the data from a phenotypic screen

against tuberculosis (available at ChEMBL http://dx.doi.org/10.

6019/CHEMBL2095176) [7]. This open access dataset contains a

total of 776 compounds active against M. bovis BCG, a non-

virulent Mycobacterium species widely used in experimental studies

as a vaccine component, and a subset of 177 confirmed

compounds active against MTB strain H37Rv. The compound

collection had been pre-filtered to remove known anti-bacterial

compounds to maximize the discovery of novel compounds with

anti-Mycobacterium activities. About 90% of the compounds have

a quantitative estimate of drug-likeness (QED) value above 0.35

[12], herein called optimal drug-like compounds (Figure 1). The

remaining 10% of compounds, which are highlighted by red bars

in Figure 1, have higher molecular weights (.400 KD) and slightly

higher hydrophobicity, expressed as the calculated logarithm of

the 1-octanol/water partition coefficient (ALogP) [13]. For the

subset of 177 compounds active against H37Rv, the average

molecular weight is statistically smaller than for the entire dataset

(Figure 1), consistent with known trends of lipophilicity and

cytotoxicity/polypharmacology. The molecular PSA (polar surface

area), ALogP (octanol–water partition coefficient) and wQED

(weighted QED) scores result in statistically indistinguishable

average values and distributions for both datasets. To assess the

diversity of the dataset, we applied our Random Forest Score

(RFS) to identify pairs of similar compounds (Methods). An all-

against-all comparison was performed by nAnnolyze [14] and any

pair of compounds with an RFS higher than 0.9 were considered

similar. The resulting network of compound similarities was

layered using Cytoscape [15] (Figure 1E). The entire dataset of

776 compounds was clustered into a total of 551 compound

families, primarily composed of two large compound families and

481 singleton families. The two large families of compounds

(GSKFAM_1 and GSKFAM_2) included 38 compounds each

connected by 156 and 80 links, respectively (Figure 1F). In

summary, the active compound set released by GSK is composed

of drug-like molecules with non-redundant and diverse scaffolds.

Integrative computational analysis
The 776 compounds released by GSK were used as input to our

integrative computational analysis approach that combines the

results from a chemogenomics space search (CHEM), a structural

space search (STR) and a historical assay space search (HIST).

First, the exploration of the chemical space allowed us to identify

likely targets for the input compounds based on their structural

similarity to compounds with experimentally validated targets

deposited in the ChEMBL database [16]. The approach employed

a multi-category Naı̈ve Bayesian classifier, which has been

successfully used in ligand-based target prediction efforts

[17,18,19]. Second, the exploration of the structural space allowed

for the identification of likely targets based on the structural

similarity of compounds and protein targets with known three-

dimensional structures. The method was based on an improved

version of the AnnoLyze program [14]. Finally, the exploration of

the historical data on screening assays resulted in testable

hypotheses for the anti-Mycobacterium mode of action of the

selected compounds, based on the historical data from internal

GSK screening experiments. This integrative approach allowed us

to predict targets for the set of released compounds in the absence

of known structural data (CHEM and HIST) or the absence of

knowledge of the binding site (STR). When the three-dimensional

structure of the target and the localization of the binding site are

known or predicted, it is often helpful to follow up with molecular

docking (see [20] and examples below). However, such an

approach would be prohibitive for large numbers of compounds

against a large number of targets, because molecular docking

results still need to be interpreted manually for best impact. The

three methods used in our integrative approach are further

detailed in the Methods section of this manuscript.

Chemogenomics space (CHEM)
We applied a multi-category Naı̈ve Bayesian classifier

(MCNBC) that was built and trained using structural and

bioactivity information from the ChEMBL database [16]. Given

a new compound, the model calculates a likelihood score based on

the molecule’s individual sub-structural/fingerprint features and

Author Summary

Mycobacterium tuberculosis is a major worldwide pathogen
infecting millions individuals every year. Additionally, the
number of antibiotic resistant strains has dramatically
increased over the last decades. Trying to address this
challenge, the pharmaceutical company GlaxoSmithKline
has recently published the results of a large-scale high-
throughput screen (HTS) that resulted in the release of 776
chemical compound structures active against tuberculosis.
We have used this dataset of compounds as input to our
computational approach that integrates historical bioassay
data, chemical properties and structural comparisons. We
propose 139 targets alongside their respective hit com-
pounds and made them open to the wider scientific
community. Our hope is that the availability of the
experimental data from GSK and our computational
analysis will encourage further research providing validat-
ed therapeutically targets against this devastating disease.

MoA Prediction against TB
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produces a ranked list of likely targets. In total, the 776 compounds

in the M. bovis BCG dataset resulted in 2,179 statistically

significant target associations (at a Z-score .2.0) to proteins in

the ChEMBL database from 62 different organisms (63% of hits

are to human proteins). A simple orthology search against the

MTB proteins from this set resulted in 1,401 compound-target

relationships for 84 MTB proteins, with detectable orthology to 34

organisms. The specific predictions from the chemical space

search are available at http://www.tropicaldisease.org/

TCAMSTB (CHEM type).

Structural space (STR)
We applied a Random Forest Score that identified structural

similarities between any compound in the dataset and ligands from

Figure 1. GSK dataset of 776 compounds. Panels A to D describe the drug-like properties of the compounds, including the subset of 177
compounds active against MTB (green color). Red colored subsets correspond to compounds with weighted QED score smaller than 0.35 [12]. The
distribution’s mean values are shown in the top-right corner of each plot. A) Molecular weight distribution. B) PSA distribution. C) ALogP distribution.
D) Weighted QED distribution. Panels E and F show the structural clusters of the compounds. Links between compounds indicate 0.9 or higher RFS
similarity. E) Entire network of 776 compounds resulting in 551 structural families (486 singletons). F) Highlight of family number 1 with 38
compounds (inner images for the three most connected compounds in the family).
doi:10.1371/journal.pcbi.1003253.g001

MoA Prediction against TB

PLOS Computational Biology | www.ploscompbiol.org 3 October 2013 | Volume 9 | Issue 10 | e1003253



the Protein Data Bank (PDB) [14]. Each compound in the M. bovis

BCG dataset is compared to ,2,500 ligands for which there are

known complex structures in the PDB, identifying structural

similarities to be included in a pre-built network of structural

relationships between ligands and targets. In total, the 776

compounds resulted in 207 significant target associations (RFS

score .0.4) to proteins in a set of modeled three-dimensional

structures from the MTB proteome. The specific predictions from

the structural space search are available at http://www.

tropicaldisease.org/TCAMSTB (STR type).

Historical assay space (HIST)
We used the historical GSK bioassay data to develop

hypotheses for the anti-Mycobacterium mode of action for the

active compounds. Using conservative activity thresholds, we

found among the compounds active against MTB H37Rv

unambiguous annotations for 49 compounds and their previ-

ously measured activity in 120 biochemical assays against 63

human targets (i.e., sub-micromolar IC50 or EC50). Overall, the

M. bovis BCG screens resulted in a considerably larger number

of active compounds and thus have a correspondingly greater

amount of historical assay information. A total of 240

compounds were found to have activity recorded in 642 assays

involving 209 human targets, with the largest human target

classes being GPCRs and protein kinases, as expected. We then

searched for orthologous sequences of the human assayed

proteins in the MTB H37Rv and M. bovis BCG genomes using

conservative criteria for assigning human-Mycobacterium homol-

ogy (BLAST E-value #1.0e210). Although there are significant

evolutionary differences between bacterial and mammalian

genomes, we still found 19 M. bovis BCG homologous genes

(Table S1) in different target classes (Figure S1), including

kinases (8 genes), cytochrome P450s (2 genes) and nine other

enzymes such as a putative D-amino acid oxidase, an amidase, a

putative flavin-containing monoamine oxidase, a NAD-depen-

dent deacetylase, a putative catechol-O-methyltransferase, a

protease, a putative epoxide hydrolase, a 3-ketoacyl-(acyl-

carrier-protein) reductase, and a dihydroorotate dehydrogenase

2. While these M. bovis BCG genes had orthologous sequences in

MTB H37Rv, fewer compounds were associated with putative

targets in the latter species. For example, two Mycobacterium

kinases and five enzymes were exclusively associated with M.

bovis BCG positive compounds. Two kinases (pknA and pknB)

and one enzyme (fabG) were experimentally characterized as

essential for the survival of MTB [21,22]. A total of 20 and 94

compounds were indirectly mapped by human protein target

homology to 12 MTB H37Rv and 19 M. bovis BCG genes,

respectively. The specific predictions from the historical assay

space search are detailed in Supporting Information and are

available at http://www.tropicaldisease.org/TCAMSTB (HIST

type).

Subset of compounds with predicted targets
Of the 776 compounds in the GSK dataset, only one

compound (GSK445886A) was predicted to hit diverse targets

from different pathways by the three independent methods

(Figure 2A). A total of 25 and 9 compounds were jointly

predicted to hit a target by CHEM/STR and CHEM/HIST

searches, respectively. The majority of predictions were

obtained by the CHEM approach (404 compounds with

predicted targets), followed by the STR approach (38 com-

pounds with a predicted target) and the HIST approach (20

compounds with predicted targets). Such results were expected

because the available information on biological activity shrinks

as we move from the general ‘‘chemical’’ to the more specific

‘‘structural’’ and ‘‘historical’’ spaces. Interestingly, as an

indication of the orthogonality of the three approaches, most

of the redundancy of compounds with a predicted target was

specific to each approach. In other words, each of the three

approaches covered different parts of the space of compound-

target predictions. For example, the CHEM approach predicted

a target for 300 compound families (compared to a total of 404

unique compounds), of which it still shared 34 with either the

STR or the HIST approaches (Figure 1B). A similar trend was

observed for the other two approaches, indicating that the

common compounds mostly occurred in small compound

families or even singletons. Indeed, the GSK445886A com-

pound, which was predicted to have a target by all three

approaches, corresponded to a singleton compound family

(GSKFAM_293).

To identify whether the three different approaches predicted

targets for specific families in the dataset, we calculated the log

odds probability (LogOdd) of a given compound family to appear

in the list of selected compounds, given their different distributions

in the original dataset (Figure 2C). This analysis aimed at

identifying possible biases or artifacts specific to each of the three

independent methods used in our integrative approach. Eleven

compound families were under-represented in the selected dataset

and 18 families were over-represented (with LogOdd values

smaller than 20.5 and greater than 0.5, respectively). Interesting-

ly, GSKFAM_551, which is a singleton with the SKF-67461

compound, was over-represented in the subset of selected

compounds. Such predictions were based mostly on the STR

and CHEM searches and may correspond to the chemical

properties of the compound, resulting in a high false-positive rate

for those two approaches. Conversely, the GSKFAM_4, which

contains 15 compounds, is under-represented in the final subset of

selected compounds, with only 1 hit identified by the CHEM

approach.

Predicted targets
There are a total of 1,044 unique MTB targets associated with a

total of 112 pathways annotated in the KEGG database [23] (the

mtu identifiers below refer to the relevant KEGG pathway id). Of

those, the three orthogonal approaches identified targets for the

selected set of compounds in a total of 84 pathways (Figure 3A).

The STR search resulted in hits to 71 unique pathways, while the

CHEM and the HIST searches resulted in hits to 35 and 16

pathways, respectively. These results were expected, because the

target information is reduced from the STR space to the HIST

space. A total of 11 unique pathways were predicted by the three

approaches (Figure 3A and Table 1); these include many pathways

associated with amino acid and nucleotide metabolism, such as

arginine and proline metabolism (mtu00330), tryptophan metab-

olism (mtu00380), phenylalanine metabolism (mtu00360), tyrosine

metabolism (mtu00350), histidine metabolism (mtu00340), gly-

cine/serine/threonine metabolism (mtu00260) and pyrimidine

metabolism (mtu00240). The results indicate that the GSK

compounds potentially target proteins associated with primary

metabolism. Interestingly, another seven pathways, not identified

by the HIST approach, were found over-represented in the final

set of predicted targets (Figure 3B). Those include some further

primary and secondary metabolism systems, including streptomy-

cin biosynthesis (mtu00521), folate biosynthesis (mtu00790),

nitrogen metabolism (mtu00910), aminoacyl-tRNA biosynthesis

(mtu00970), purine metabolism (mtu00230), penicillin and ceph-

alosporin biosynthesis (mtu00311), D-arginine and D-ornithine

MoA Prediction against TB
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metabolism (mtu00472), and one carbon pool by folate

(mtu00670).

Predicted pairs of compound-target
To assess the significance of our predictions using the three

different approaches, we calculated a t-statistics p-value of any

compound family - KEGG pathway pair (Methods). The search

identified 8 different compound families with significant links (p-

value ,161025) to 14 different KEGG pathways (Table 2). The

GSK compound family 1, through its compounds GSK975784A,

GSK975810A, GSK975839A, GSK975840A and GSK975842A,

was predicted to target the glycerolipid (mtu00561) and glycer-

ophospholipid metabolisms (mtu00564), with significant over-

representation through 6 different targets including Rv2182c and

Rv2483c, both acyltransferases essential for the survival of the

bacteria [21]. The GSK compound family 3 was predicted to

target the ABC transporters (mtu02010) through its compounds

GSK547481A, GSK547490A, GSK547491A, GSK547499A,

GSK547500A, GSK547511A, GSK547512A, GSK547527A,

GSK547528A and GSK547543A. Similarly, it was also predicted

to target the aminoacyl-tRNA biosynthesis (mtu00970) pathways,

through 3 different targets including Rv1640c, a lysyl-tRNA

synthetase essential for the survival of the bacteria [21]. The GSK

compound family 7, was predicted to target several pathways

through 2 different targets Rv0053 (30S ribosomal protein S6) and

Rv0650 (a glucokinase), none considered essential for the survival

of the bacteria [21]. The GSK compound family 9 through its

compounds GSK1188379A and GSK1188380A, was predicted to

target the ABC transporters (mtu02010) pathway through the

Rv0194 target (ATP-binding cassette, subfamily C) considered

non-essential for the survival of the bacteria [21]. Identical results

were obtained with the GSK compound family 16 through its

compounds GSK1825940A and GSK1825944A. The GSK

compound family 35 through its compounds BRL-10143SA and

Figure 2. Subset of GSK compounds with predicted targets. A) Venn diagram with common compounds with predictions from the three
different approaches (that is, in green from the search of the chemogenomics space, in purple from the search of the structural space, and in red from
the historical data). B) Venn diagram with common compound families with predictions from the three different approaches. C) Most under and
over-represented chemical families in our predictions. Upper plot shows the probability of finding a given family in the original dataset (grey bars)
compared to the probability of finding it in the dataset with predicted targets (blue bars). Lower plot shows the log odds per selected family (i.e.,
absolute log odds larger than 0.5).
doi:10.1371/journal.pcbi.1003253.g002

MoA Prediction against TB
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BRL-51093AA was predicted to target the one carbon pool by

folate (mtu00670) pathway through the Rv2763c and Rv2764c

targets (a dihydrofolate reductase and a thymidylate synthase,

respectively) considered non-essential for the survival of the

bacteria [21]. The GSK compound family 173 through its

compound GSK14022909A was predicted to target the

aminoacyl-tRNA biosynthesis (mtu00970) pathway through

three essential targets [21], Rv1640c, Rv3598c and Rv3834c

(a lysyl-tRNA synthetase, a lysyl-tRNA ligase, and a seryl-

tRNA ligase, respectively), which are essential for the survival

of the organism [21]. Interestingly, this family is also

predicted to target Rv3105c and Rv3135 genes (a peptide

chain release factor 2 and a PPE family protein), which are

also essential for the survival of the organism [21]. Finally, the

GSK compound family 334 through compound GSK270671A

was predicted to target the nitrogen metabolism (mtu00910)

pathway through the Rv1284 and Rv3588 targets (carbonic

anhydrases) considered essential for the survival of the

bacteria [21].

An example of a serine/threonine-protein kinase (pknB)
target

Even though target Rv0014c, a serine/threonine-protein

kinase, was not identified as belonging to an enriched pathway

(it is not annotated in the KEGG database), it was predicted by

the HIST approach to be a target for the GSK1365028A,

GSK1598164A, GSK275628A and GW664700A (all singleton

families in our compound clustering). Kinases are the most

prominent human target class having identifiable orthologs in

both M. tuberculosis H37Rv and M. bovis BCG genomes

(Figure 4A). The human genome encodes over 450 kinases,

while Mycobacterium contains between 4 and 24 serine/threonine

kinases, depending on the exact species (M. tuberculosis and M.

bovis have 11 conserved kinases each). At least two of these

kinases, pknA and pknB, have been determined to be essential

for in vitro viability of M. tuberculosis [21]. To further evaluate

potential MoA of kinase inhibitors, we computationally docked

several compounds into the adenine-binding portion of the ATP

binding pockets of the two available experimental structures for

the essential kinase pknB. The criteria for choosing the

compounds were whole cell screening activity of MIC90 less

than 10 mM and IC50 less than 8 mM. Two structures (PDB

IDs: 2PZI and 3F69) were selected because both were co-

crystallized with an inhibitor, clearly detailing their ATP

binding pockets.

An empirical docking score threshold of 28.5 kJ/mol was

chosen to identify putative positive bindings of the active

compounds across the two pknB PDB models (Table S2).

GSK1598164A, an inhibitor of several human serine/threonine

protein kinases, was positive in both H37RV and BCG whole

cell screens, based on favorable docking scores (29.19 and

28.96 kJ/mol against 2PZI and 3F69, respectively). Both

GSK1598164A and the enzymatic product ADP in the crystal

structure were found to interact with the Glu93 of pknB, where

the nitrogen atoms on the ‘head’ unit form the hydrogen bond

with Glu93 (Figure 4B). Glu93 is conserved across both human

and TB kinases (Figure 4A). Several residues in the putative

hydrophobic binding pocket (Leu17, Gly18, Phe19, Val25,

Ala38, Val72, Met92, Glu93 and Val95) were also found to be

within 4 Å of both GSK1598164A and ADP. In conclusion, our

analysis suggests that several bactericidal compounds in the

published phenotypic screen act by inhibiting essential M.

tuberculosis kinases.

Figure 3. Predicted KEGG pathways targeted by the GSK
compounds. A) Venn diagram with common pathways from the three
different approaches. B) Most under and over-represented pathways in
our predictions. Panels A) and B) with the same representation as in
Figure 2.
doi:10.1371/journal.pcbi.1003253.g003

MoA Prediction against TB
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Table 1. List of seven common hit pathways identified by the three independent approaches.

Pathway Approach Targets Compound families

mtu00240 STR Rv1381 255

Pyrimidine metabolism Rv3048c 86

Rv3314c 255

CHEM Rv2139 Several

Rv2764c Several

Rv3247c 497

HIST Rv2139 2

mtu00260 STR Rv0489 551

Glycine, serine and threonine metabolism Rv1296 551

Rv3708c 551

CHEM Rv1905c 5,252,497

Rv3170 Several

HIST Rv3170 5

mtu00330 STR Rv1652 476,488

Arginine and proline metabolism CHEM Rv0458 60

Rv1905c 5,252,497

Rv3170 Several

HIST Rv1263 5,272

Rv3170 5

mtu00340 STR Rv0187 551

Histidine metabolism Rv0520 551

Rv1498c 300

Rv1603 551

Rv1605 551

CHEM Rv0458 60

Rv3170 Several

HIST Rv3170 5

mtu00350 STR Rv0187 551

Tyrosine metabolism Rv0520 551

Rv1498c 300

Rv1703c 551

CHEM Rv3170 Several

HIST Rv3170 5

mtu00360 STR Rv1908c 551

Phenylalanine metabolism Rv3469c 551

CHEM Rv3170 Several

HIST Rv1263 5,272

Rv3170 5

mtu00380 STR Rv0859 551

Tryptophan metabolism Rv1908c 551

CHEM Rv0458 60
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An example of a compound targeting the aminoacyl-
tRNA biosynthesis pathway

The CHEM and STR methods identified Rv3598c (lysS1

lysine-tRNA ligase 1) and Rv3834c (serS serine-tRNA ligase) as

possible targets for the GSK1402290A compound, respectively.

Both enzymes are part of the aminoacyl-tRNA biosynthesis

pathway (mtu00970) and are essential in in vitro experiments

[21]. Moreover, the mtu00970 pathway was selected in our

analysis as being significantly associated with GSKFAM_173

(GSK1402290A compound).

The CHEM approach predicted that the human lysyl-tRNA

synthetase (UniProt ID Q15046) was a likely target of

GSK1402290A, with a likelihood score of 11.3 and a Z-score of

2.4. Furthermore, the model indicated that the individual

fragments contributing to this prediction were derived by its fused

triazole ring (e.g., pyrazole and imidazole features), as well as by its

aniline group. In fact, the model for this target was trained using

47 active compounds from ChEMBL and almost all of them

contained the aforementioned fragments (Figure 5A). Moreover,

the predicted human target shared in OrthoMCL [24] the

ortholog group (OG5_126972) with MTB’s lysine-tRNA ligase 1

(UniProt ID P67607).

The STR method predicted a link between the compound and

the target through a 3D model of the Rv3834c protein built based

on the known structure of a seryl-tRNA synthetase from Aquifex

aeolicus. The Rv3834c target and the seryl-tRNA synthetase

template aligned with 43% sequence identity and resulted in

good quality models (MPQS.1.5) [25]. To further evaluate

potential MoA of the GSK1402290A compound, we computa-

tionally docked it into the nAnnoLyze predicted binding site for

Rv3834c (Figure 5). The AutoDock run resulted in a best pose

with 28,4 kJ/mol, indicating interactions between the

GSK1402290A compound and the Rv3834c target (Figure 5B).

In support of this model, the interactions occur with conserved

protein residues, given the curated multiple sequence alignment

for PFAM family PF00587 (tRNA synthetase class II core domain).

In summary, our CHEM and STR predictions suggest that

GSK1402290A could act as an inhibitor of the aminoacyl-tRNA

biosynthesis pathway and provide the basis for further chemical

optimization of this compound.

Open targets against tuberculosis
The recent publication of a large-scale screening effort for

identifying drug-like small molecule compounds active against

tuberculosis has been used as starting point for our research. Here,

we predicted the likely mode of action of a selected set of

compounds active against tuberculosis, based on a computational

approach that integrates data from historical assay results,

chemical features and their relationship to activity, and structural

comparisons. Our integrated approach resulted in prediction of

several compound-target pairs, which can be further tested using

genomics, genetics and biochemical assays. More broadly, our

approach can be applied to whole cell screens for any pathogen,

provided sufficient datasets are available.

We have predicted a wide range of MTB specific as well as

more evolutionary conserved targets. While compounds with

known activity against a human protein could be compromised by

toxicity, and therefore should be eliminated from further study,

empirical evidence suggests that existence of a human orthologous

sequences is not a strong filter for selecting pathogen targets. Many

clinically used antibiotics have targets with human orthologs, such

quinolones (DNA gyrase and topoisomerases), rifampicin (RNA

polymerase), mupirocin (isoleucyl-tRNA synthetase) and the latest

anti-TB drug now in Phase II testing, bedaquiline (F1F0 ATPase)

[4,6]. The associated side effects of antibiotics are mostly due to

high doses treatments affecting off-target proteins (including

human ortologs) and not specifically to on-target effects. The

billion plus years of evolutionary distance between prokaryotes

and mammals has lead to significant divergence between

orthologous proteins such that there is sufficient structure activity

relationship or SAR bandwidth to develop specific inhibitors of the

pathogen target, in our case MTB.

It is important to note that we also had a subset of compounds

with historical data indicating activity against human protein

targets with no known homologs in MTB, such as the GPCRs.

Thus, their mechanism of action against MTB must be due to

non-human target related interactions. These compounds must be

pursued with caution as drug candidates given their known in vitro

interaction with a human protein. Nevertheless, such compounds

could be valuable tools for understanding MTB viability. In

general, knowledge of potential human protein interactions adds

to the design of effective counter-screens to drive compound SAR

specificity and potency towards the pathogen.

The public availability of the data and compounds [7] as well as

our predictions (http://www.tropicaldisaes.org/TCAMSTB/ or

ftp://ftp.ebi.ac.uk/pub/databases/chembl/tb) will facilitate fur-

ther research on drug discovery against tuberculosis. A major goal

of our work is to encourage other researchers to experimentally

validate the described targets and make their findings publicly

available as soon as possible, thus optimizing the process of

developing a safe and well tolerated novel therapy for tuberculosis.

Methods

Compound dataset
All compound datasets used in this study (that is, BCG dataset of

776 GSK compounds including the H37Rv sub-dataset of 177

Table 1. Cont.

Pathway Approach Targets Compound families

Rv1323 Several

Rv3170 Several

HIST Rv1263 5,272

Rv3170 5

The additional four common pathways identified not shown correspond to general pathway descriptions (i.e., mtu01100 ‘‘Metabolic pathways’’, mtu01110 ‘‘Biosynthesis
of secondary metabolites’’, mtu01120 ‘‘Microbial metabolism in diverse environments’’, and mtu00000 ‘‘No Pathway’’). Target genes in italics are either in vivo or in vitro
essential in the TraSH Essentiality database [21].
doi:10.1371/journal.pcbi.1003253.t001
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Table 2. Significant links between GSK compound families and KEGG pathways.

GSK Family Compound Target Pathways

1 GSK975784A Rv2182c Glycerolipid metabolism (mtu00561)

Glycerophospholipid metabolism (mtu00564)

Rv2483c No Pathway

GSK975810A Rv2182c Glycerolipid metabolism (mtu00561)

Glycerophospholipid metabolism (mtu00564)

Rv2483c No Pathway

GSK975839A Rv2182c Glycerolipid metabolism (mtu00561)

Glycerophospholipid metabolism (mtu00564)

Rv2483c No Pathway

Rv2299c No Pathway

GSK975840A Rv2182c Glycerolipid metabolism (mtu00561)

Glycerophospholipid metabolism (mtu00564)

Rv2483c No Pathway

GSK975842A Rv2182c Glycerolipid metabolism (mtu00561)

Glycerophospholipid metabolism (mtu00564)

Rv2483c No Pathway

Rv2045c No Pathway

Rv2139 Pyrimidine metabolism (mtu00240)

Rv2299c No Pathway

Rv2483c No Pathway

3 GSK547481A Rv0194 ABC transporters (mtu02010)

GSK547490A Rv0194 ABC transporters (mtu02010)

GSK547491A Rv0194 ABC transporters (mtu02010)

GSK547499A Rv0194 ABC transporters (mtu02010)

GSK547500A Rv0194 ABC transporters (mtu02010)

GSK547511A Rv0194 ABC transporters (mtu02010)

GSK547512A Rv0194 ABC transporters (mtu02010)

GSK547527A Rv1640c Aminoacyl-tRNA biosynthesis (mtu00970)

Rv3598c Aminoacyl-tRNA biosynthesis (mtu00970)

Rv0194 ABC transporters (mtu02010)

GSK547528A Rv1640c Aminoacyl-tRNA biosynthesis (mtu00970)

Rv3598c Aminoacyl-tRNA biosynthesis (mtu00970)

Rv0194 ABC transporters (mtu02010)

GSK547543A Rv0194 ABC transporters (mtu02010)

7 GSK1829727A Rv0053 Ribosome (mtu03010)

Rv0379 No Pathway

Rv0650 Glycolysis/Gluconeogenesis (mtu00010)

Galactose metabolism (mtu00052)

Starch and sucrose metabolism (mtu00500)

Amino sugar & nucl. sugar metab. (mtu00520)

Streptomycin biosynthesis (mtu00521)

MoA Prediction against TB
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Table 2. Cont.

GSK Family Compound Target Pathways

GSK1829729A Rv3855 No Pathway

Rv0053 Ribosome (mtu03010)

Rv0379 No Pathway

Rv0650 Glycolysis/Gluconeogenesis (mtu00010)

Galactose metabolism (mtu00052)

Starch and sucrose metabolism (mtu00500)

Amino sugar & nucl. sugar metab. (mtu00520)

Streptomycin biosynthesis (mtu00521)

GSK1829816A Rv0053 Ribosome (mtu03010)

Rv0379 No Pathway

Rv0650 Glycolysis/Gluconeogenesis (mtu00010)

Galactose metabolism (mtu00052)

Starch and sucrose metabolism (mtu00500)

Amino sugar & nucl. sugar metab. (mtu00520)

Streptomycin biosynthesis (mtu00521)

GSK479031A Rv0053 Ribosome (mtu03010)

Rv0379 NoPathway (mtu00000)

Rv0650 Glycolysis/Gluconeogenesis (mtu00010)

Galactose metabolism (mtu00052)

Starch and sucrose metabolism (mtu00500)

Amino sugar & nucl. sugar metab. (mtu00520)

Streptomycin biosynthesis (mtu00521)

GSK957094A Rv3170 Gly, Ser and Thr metabolism (mtu00260)

Arginine and proline metabolism (mtu00330)

Histidine metabolism (mtu00340)

Tyrosine metabolism (mtu00350)

Phenylalanine metabolism (mtu00360)

Tryptophan metabolism (mtu00380)

Rv0053 Ribosome (mtu03010)

Rv0379 No Pathway

Rv0650 Glycolysis/Gluconeogenesis (mtu00010)

Galactose metabolism (mtu00052)

Starch and sucrose metabolism (mtu00500)

Amino sugar & nucl. sugar metab. (mtu00520)

Streptomycin biosynthesis (mtu00521)

9 GSK1188379A Rv0194 ABC transporters (mtu02010)

GSK1188380A Rv0194 ABC transporters (mtu02010)

16 GSK1825940A Rv0194 ABC transporters (mtu02010)

GSK1825944A Rv0194 ABC transporters (mtu02010)

35 BRL-10143SA Rv1649 Aminoacyl-tRNA biosynthesis (mtu00970)

Rv2763c One carbon pool by folate (mtu00670)

Folate biosynthesis (mtu00790)

One carbon pool by folate (mtu00670)

Rv2764c Pyrimidine metabolism (mtu00240)

BRL-51093AM Rv2763c One carbon pool by folate (mtu00670)

Rv2764c Folate biosynthesis (mtu00790)

One carbon pool by folate (mtu00670)
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compounds) were obtained directly from the ChEMBL database

(as deposition set http://dx.doi.org/10.6019/CHEMBL2095176).

Chemical properties of the compounds (Figure 1) were calculated

as previously described [12].

Exploring the chemogenomics space
A multi-category Naı̈ve Bayesian classifier (MCNBC) was

built using structural and bioactivity information from the

ChEMBL database (version 14) [16]. In brief, the classifier

learns the various classes (in this case protein targets) by

considering the frequency of occurrence of certain sub-

structural features for the different chemical compounds. Given

a new, unseen compound, the model calculates a Bayesian

probability score based on the molecule’s individual features

and produces a ranked list of likely targets. The model was built

in Accelrys Pipeline Pilot (version 8.5). The structure and

bioactivity data were extracted from the ChEMBL database and

conformed the following filters: (i) the activity value was better

than 10 uM (pIC50.5), (ii) the target type was a protein, (iii)

the activity type was IC50, Ki or EC50, and (iv) the target

confidence score was above 7.0. The last filter ensured that

there was a reported direct interaction between the ligand and

the protein target. The script resulted in 489,056 distinct

compound-target pairs. To increase the robustness of the model,

only targets with 40 or more active compounds were considered

further, thus reducing the number of unique compound-target

pairs to 466,686, spanning 1,258 distinct targets and 271,918

distinct compounds.

Two multiple-category models were subsequently built.

Firstly, a model was created by choosing at random 85% of

the compound records as the training set, so that the remaining

15% could be used as a test set for model validation, ensuring no

overlapping structures in the 85-15 partition [17]. The MCNBC

trained on 85% of the 271,918 ChEMBL compounds and

associated targets was then used to predict the targets for the

remaining 15% of the ChEMBL subset, containing 40,788

distinct compounds, unseen by the model. Standard ECFP_6

fingerprints were employed as molecular descriptors for the

classifier [26]. These fingerprints encode a molecular structure

as a series of overlapping features/fragments of a diameter of up

to three bond lengths.

For each compound in the test set, the Pipeline Pilot model

generated a likelihood score Ptotal for all possible targets. This is

derived by the Laplacian-corrected Bayes rule of conditional

probability P(A|Fi) for each fingerprint feature i of the

compound.

Pi ADFið Þ~ AFiz1ð Þ= TFi A=Tð Þz1½ �

Ptotal~logP Pi ADFið Þð Þ~
X

log Pi ADFið Þ

where Fi is the ith fingerprint feature; A is the number of active

molecules for a target; T is the total number of molecules; AFi is

the number of active molecules containing feature i; and TFi is

the number of all molecules containing feature i.

For the purposes of this validation, only the top five target

predictions were considered (i.e., the ones with the highest positive

likelihood score). This reflects a real-life situation where only a

small number of target predictions can be practically and

economically tested experimentally. To test the accuracy of the

method, the five target predictions were then compared to the

actual target reported for that particular compound.

The model derived by the training set ranked the correct target

highest among all 1,258 possible targets for 82% of the compounds

in the test set (Figure 6A). The target is correctly predicted on the

second guess for 6% of the compounds and correctly predicted on

the third guess for 2% of the compounds. In total, 92% of the

compounds in the test set are correctly assigned to their known

targets within the top five predicted targets. The ChEMBL

database groups most of the individual protein targets into a

hierarchical classification of target family names. Given this

information, further analysis was done to examine the accuracy of

the target classification predictions. Individual targets were

replaced by their respective protein classification annotation using

a lookup dictionary. In total, 568 unique protein classification

labels were considered. The model’s predictive power improves,

returning the correct protein family as the top ranked prediction in

88% of the compounds and within the top five predictions in 94%

of the compounds (Figure 6A). After the successful validation of

the method, a second model was created utilizing 100% of the

data and keeping the rest of the parameters intact. The derived

model was then used for predicting the targets of all GSK

compounds.

Table 2. Cont.

GSK Family Compound Target Pathways

Pyrimidine metabolism (mtu00240)

173 GSK1402290A Rv1640c Aminoacyl-tRNA biosynthesis (mtu00970)

Rv3598c Aminoacyl-tRNA biosynthesis (mtu00970)

Rv3834c Aminoacyl-tRNA biosynthesis (mtu00970)

Rv3105c No Pathway

Rv3135 No Pathway

334 GSK270671A Rv1284 Nitrogen metabolism (mtu00910)

Rv3588c Nitrogen metabolism (mtu00910)

Rv3273 Nitrogen metabolism (mtu00910)

Rv1707 No Pathway

Target genes in italics are either in vivo or in vitro essential in the TraSH Essentiality database [21]. Pathways highlighted in bold are responsible of the significant link to
the GSK family.
doi:10.1371/journal.pcbi.1003253.t002
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Exploring the structural space
A network of structural similarities between compounds and

targets was built to identify the most likely target of a given

compounds in our GSK dataset. To explore the structural space

we used an improved version of our previously published

AnnoLyze algorithm [14], which was based on homology

detection through structural superimposition of targets and their

interaction networks to small compounds similarly to previously

published approaches [27,28]. Briefly, the new nAnnoLyze

algorithm relies in four pre-built layers of interconnected networks,

First, the ‘‘GSK Ligand’’ network where nodes are GSK

compounds and edges correspond to their similarity as measured

by a Random Forest classifier score (RFS) (see below). Second, the

‘‘PDB Ligand’’ network where nodes are ligands in the Protein

Data Bank (PDB) [29] and edges correspond to their similarity also

measured by the RFS. The ‘‘GSK Ligand’’ network is linked to

the ‘‘PDB ligand’’ network by edges corresponding to the

compound similarity measure by the RFS. Third, the ‘‘PDB

Protein’’ network where nodes are proteins in PDB and edges

corresponds to their structural similarity as measured with the

MAMMOTH structural superimposition [30]. Fourth, the ‘‘MTB

Models’’ network where nodes are structure models of MTB

targets and edges corresponds to their structural similarity after

superimposition by the MAMMOTH program. The two central

networks (that is, ‘‘PDB Ligand’’ and ‘‘PDB Protein’’ networks) are

connected by co-appearance in any solved structure in the PDB

and the ‘‘PDB Protein’’ and the ‘‘MTB Models’’ networks are also

linked by the structural comparison between any protein in the

PDB and all models from MTB. Finally, once all the networks are

constructed, we identified the closest path between any GSK

compounds and a MTB target and scored their relationship as the

sum of all similarities scores in the network. Such score was then

normalized between 0 (non-similar) and 1 (similar) and only pairs

of GSK compounds and their MTB targets with scores higher

than 0.4 were kept.

To identify whether two compounds could be considered

similar, we developed a new Random Forest classifier (RFS),

which was trained with a dataset of ‘‘similar’’ and ‘‘non-similar’’

ligands. Two ligands were similar if they bind the same binding

site as defined by the LigASite database, a gold-standard dataset of

biologically relevant binding sites in protein structures [31]. To

avoid overestimation in the validation of our approach, all ligands

in the database that were included in a testing set of 2,380 ligands

from the PDB were removed. Our training set of similar ligands

included 197 pairwise comparisons considered as ‘‘true similar’’

and a set of randomly paired ligands as ‘‘true non-similar’’

comparisons. The SMSD program [32] was then used to compare

all pair of selected ligands to obtain their Tanimoto score, bond

Figure 4. PknB kinase docking to GSK1598164A. A) Multiple sequence alignment of Mycobacterium PknB kinase with selected human kinases.
Human kinases were selected on the criteria of having available PDB structures and top Psi-BLAST scores to M. bovis transmembrane serine/
threonine-protein kinase B (pknB). First sequence in the alignment (gene name; PDB identifier) is M. tuberculosis transmembrane serine/threonine-
protein kinase B (PknB; 3F69), which is 99% identical to M. bovis PknB and was used in compound docking models. Other sequences are CAMK2D
(2EWL), MARK3 (2QNJ), MARK2 (3IEC), AKT2 (1GZK) and SGK1 (2R5T). Residues known to interact with ADP in pknB are highlighted in red. The amino
acids aligned with Glu93, which may be essential for the binding of the GSK1132084A, are highlighted in green. B) Binding models of the
GSK1598164A and ADP within pknB binding site (left and right panels, respectively).
doi:10.1371/journal.pcbi.1003253.g004
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breaking energy, Euclidian distance for equivalent atoms, stereo-

chemical match, substructure fragment size, and finally the

molecular weight difference. Such scores were then normalized

and constituted a vector defining the similarity between any two

compared ligands, which was then used as input for the Random

Forest classifier. The aim of the classifier was thus to identify

hidden relationships between the six scores to maximize its

capacity to identify true pairs of similar ligands and discern them

from non-similar ligands. The classifier was then tested with a 10-

fold cross validation procedure and resulted in an area under the

ROC curve of 0.97 and a very small false positive rate of 1.6%

(Figure 6B).

To populate the ‘‘MTB Model’’ network with structures of

MTB targets, we built all possible comparative structure models

for any protein in the M. tuberculosis H37Rv, M. bovis BCG, and M.

smegmatis genomes using the ModPipe program [25]. All sequences

were obtained from the Genomes Web site of the NCBI database.

Such modeling resulted in a total of 34,894 comparative models

for which 5,008 were predicted to be reliable models (that is, 1.1 or

higher ModPipe quality score and ga341 higher than 0.7). Next,

we structurally compared this set of selected models to any non-

redundant (90% sequence identity) structure in the PDB that

contained at least one known ligand. Structural comparisons

between two proteins were performed using the MAMMOTH

algorithm [30]. Four different scores were stored for each

structural superimposition: percentage of sequence and structure

identity for the entire protein and percentage of sequence and

structure identity for the residues involved in the binding site

defined as any residue in the PDB template structure within 6

Ångstroms of any atom in the ligand. A binding site in a model

was considered then similar to a binding site in a known PDB

structure if at least the binding site sequence and structure

Figure 5. Targeting the aminoacyl-tRNA biosynthesis pathway. A) CHEM results show that GSK1402290A shared several substructural
features with compounds reported as potent lysyl-tRNA synthetase inhibitors in the ChEMBL database (e.g., CHEMBL474582 and CHEMBL508242). B)
STR results predicted the serS as a target of GSK1402290A with its binding site including residues F205, H209, G225, T226, E228, R257, F276, K278, and
E280, which are conserved in the PFAM family PF00587 (tRNA synthetase class II core domain). Zoomed image shows the pose for GSK1402290A
predicted by AutoDock and the binding site residues (i.e., within 6 Å from the compound) coloured from low sequence conservation (blue) to high
sequence conservation (red).
doi:10.1371/journal.pcbi.1003253.g005
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similarity were higher than 40%. This similarity cut-off was

previously validated in a large-scale comparison of known ligand-

protein pairs [14].

The final entire network of comparisons included the 776

compounds from the GSK dataset, ,2.500 unique ligands from

the PDB, ,16,000 unique protein structures from the PDB and a

total of ,5,000 structure models from MTB. Such network

resulted in 207 pairs of GSK compound to MTB target short paths

(i.e., score .0.4).

Exploring historical assay data
GSK proprietary compound screening databases were queried

for any historical assay data associated with both Mycobacterium

species active compounds. The majority of these screens were

against human protein targets. The threshold above which

compound efficacy against specific human targets was considered

significant was defined as pIC50$5.0 for inhibition or antagonist

assays, and pEC50$5.0 for agonist, activation or modulator

assays. Activities at more than 600 target-result type combinations

(some targets are assayed in both an antagonist and agonist mode)

were analyzed amongst the BCG and H37Rv active compounds,

representing potential modes of action. The target activities for the

screened compounds were analyzed to identify targets over-

represented amongst the anti-malarial actives vs. inactives.

Using BLASTP [33] we queried the protein complement of

published MTB H37Rv and M. bovis BCG genomes with RefSeq

proteins [34] for all human targets accepting a homology cut-off of

an E-value #1.0e-10 and visual inspection of the alignments.

Putative homologous relationships were confirmed by reciprocal

BLASTP searches of identified Mycobacterium homologues against

the human RefSeq protein databases. Initial multiple sequence

alignments were performed using the program CLUSTALW v1.8

[35] with default settings and subsequently refined manually using

the program SEQLAB of the GCG Wisconsin Package v11.0

software package (Accelrys, San Diego, CA, USA).

Statistical assessment of predicted links between
compounds and targets

We measured two different statistics to assess the significance of

a particular link between a chemical compound and a target

pathway. Firstly, we calculated the LogOdds (that is, the odds of

an observation given its probability). A feature i (in our case, a

compound in Figure 2C or a pathway in Figure 3B) has a

probability (pi,c) in the entire dataset and a probability (pi,r) of being

at the subset of selected compounds/pathways. Their LogOdds

are defined as the logarithm of its Odds (Oi):

Oi~
pi,c

1{pi,cð Þ

�
pi,r

1{pi,rð Þ

Therefore, Odds higher than 1 (or positive LogOdds) indicate

over-occurrence of the compound/pathway in the selected

subset. Odds smaller than 1 (or negative LogOdds) indicate

under-representation of the compound/pathway in the selected

subset. Secondly, a p-value score was calculated for each

predicted link between a compound and a target pathway using

a Fisher’s exact test for 262 contingency tables comparing two

groups of annotations (i.e., the group of compounds in a given

pathway and the group of compounds in the entire dataset)

[36].

Computational docking of compound in the structure of
selected targets

Autodock 4.2 was used for docking studies [37]. The

ga_num_evals were set at 250,000 to balance docking perfor-

mance and CPU consumption. Thirty replicates were run for

each chemical-protein pair and the binding conformation with

the lowest docking score was chosen for visualization using

PyMOL.

Supporting Information

Figure S1 Target class space. A) For positive hits in M.

tuberculosis H37Rv screens, the distribution of human target classes

affected by compounds based on known human protein potency

and selectivity criteria as described in the text. The number of

human targets is indicated for each class as well as the potential

number of homologous genes (in parentheses). B) Distribution of

49 compounds screened against 1 or more targets having pIC50 or

pEC50 values .5.5 in 120 assays by human target classes. Some

compounds have historical assay information and potency against

multiple target classes. Also indicated is the number of assays

against targets with putative homologues in M. tuberculosis (in

parentheses). C) Similar analysis of human target classes and D)

240 compounds in 642 assays for M. bovis BCG screens.

(DOCX)

Figure 6. Predictive accuracy of the CHEM and STR methods. A)
Predictive power of the MCNBC model using individual targets (left) or
target classification information (right). B) Accuracy of the RFS
differentiating similar from non-similar pairs of ligands. ROC curve
indicates the optimal threshold for the RFS score of 0.58, which results
in an area under the curve of 0.97 and a false positive rate of only 1.6%.
doi:10.1371/journal.pcbi.1003253.g006
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Table S1 Predicted M. tuberculosis H37Rv and M.
bovis BCG gene targets based on homology to human
target assays.
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Table S2 Docking scores for the active compounds
across two pknB structure models.
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