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Abstract

Speaking is one of the most complex actions we perform, yet nearly all of us learn to do it 

effortlessly. Production of fluent speech requires the precise, coordinated movement of multiple 

articulators (e.g., lips, jaw, tongue, larynx) over rapid time scales. Here, we used high-resolution, 

multi-electrode cortical recordings during the production of consonant-vowel syllables to 

determine the organization of speech sensorimotor cortex in humans. We found speech articulator 

representations that were somatotopically arranged on ventral pre- and post-central gyri and 

partially overlapping at individual electrodes. These representations were temporally coordinated 

as sequences during syllable production. Spatial patterns of cortical activity revealed an emergent, 

population-level representation, which was organized by phonetic features. Over tens of 

milliseconds, the spatial patterns transitioned between distinct representations for different 

consonants and vowels. These results reveal the dynamic organization of speech sensorimotor 

cortex during the generation of multi-articulator movements underlying our ability to speak.

Speech communication critically depends on the capacity to produce the large set of sounds 

that compose a given language1,2. The wide range of spoken sounds results from highly 

flexible configurations of the vocal tract, which filters sound produced at the larynx via 

precisely coordinated movements of the lips, jaw and tongue 3–5. Each articulator has 

extensive degrees of freedom, allowing a large number of different realizations for speech 

movements. How humans exert such exquisite control in the setting of highly variable 

movement possibilities is a central unanswered question1,6,7.
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The cortical control of articulation is primarily mediated by the ventral half of the lateral 

sensorimotor (Rolandic) cortex (ventral sensorimotor cortex, vSMC) 11–13,17–19, which 

provides corticobulbar projections to and afferent innervation from the face and vocal tract 

(Fig. 1a, b)8,9. The U-shaped vSMC is composed of the pre- and post-central gyri 

(Brodmann areas 1, 2, 3, 6b), and the gyral area directly ventral to the termination of the 

central sulcus called the guenon (Brodmann area 43) (Fig. 1a, b) 8,10–13. Using electrical 

stimulation, Foerster and Penfield described the somatotopic organization of face and mouth 

representations in human vSMC14,15. However, focal stimulation could not evoke 

meaningful utterances14,16, implying that speech is not stored in discrete cortical areas. 

Instead, the production of phonemes and syllables is thought to arise from a coordinated 

motor pattern involving multiple articulator representations1,3,4,12.

To understand the functional organization of vSMC in articulatory sensorimotor control, we 

recorded neural activity directly from the cortical surface in three human subjects implanted 

with high-density multi-electrode arrays as part of their work-up for epilepsy surgery17 (Fig. 

1a). Intracranial cortical recordings were synchronized with microphone recordings as 

subjects read aloud consonant-vowel (CV) syllables (19 consonants followed by either /

a/, /u/, or /i/, Supplementary Figure 1) commonly used in American English. This task was 

designed to sample across a range of phonetic features, including different constriction 

locations (place of articulation), and different constriction degree/shape (manner of 

articulation) for a given articulator 18–20.

vSMC Physiology During Syllable Production

We aligned cortical recordings to acoustic onsets of consonant-to-vowel transitions (t = 0) to 

provide a common reference point across CVs (Fig. 1c–e). We focused on the high-gamma 

frequency component of local field potentials (85–175 Hz)17,21,22, which correlates well 

with multi-unit firing rates23. For each electrode, we normalized the time-varying high-

gamma amplitude to baseline statistics by transforming to z-scores.

During syllable articulation, approximately 30 active vSMC electrode sites were identified 

per subject (~1200 mm2, change in z-score > 2 for any syllable). Cortical activity from 

selected electrodes distributed along the vSMC dorso-ventral axis is shown for /ba/, /da/, 

and /ga/ (Fig. 1c–e). The plosive consonants (/b/, /d/, /g/) are produced by transient 

occlusion of the vocal tract by the lips, front tongue, and back tongue, respectively, whereas 

the vowel /a/ is produced by a low, back tongue position during phonation. Dorsally located 

electrodes (e.g. e124, e108; black) were active during production of /b/, which requires 

transient closure of the lips. In contrast, mid-positioned electrodes (e.g. e129, e133, e105; 

grey) were active during production of /d/, which requires forward tongue protrusion against 

the alveolar ridge. Amore ventral electrode (e.g. e104; red) was most active during 

production of /g/, which requires a posterior-oriented tongue elevation towards the soft 

palate. Other electrodes appear to be active during the vowel phase for /a/ (e.g. e154, e136, 

e119).

Cortical activity at different electrode subsets was superimposed to visualize spatiotemporal 

patterns across other phonetic contrasts. Consonants produced with different constriction 
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locations of the tongue tip, (e.g. /θ/ [dental], /s/ [alveolar], and /ʃ/ [post-alveolar]), showed 

specificity across different electrodes in central vSMC (Fig. 1f), though were not as 

categorical as those shown for articulators shown in Fig. 1c–e. Consonants with similar 

tongue constriction locations, but different constriction degree/shape, were generated by 

overlapping electrode sets exhibiting different relative activity magnitudes (Fig. 1g, /l/ 

[lateral] vs. /n/ [nasal stop] vs. /d/ [oral stop]). Syllables with the same consonant followed 

by different vowels (Fig. 1h, /ja/, /ji/, /ju/) revealed similar activity patterns preceding the 

CV transition. During vowel phonation, a dorsal electrode is clearly active during /u/ (black 

arrow), but not /i/ or /a/, whereas another electrode in the middle of vSMC had prolonged 

activity during /i/ and /u/ vowels compared to /a/ (red arrow). These contrastive examples 

illustrate that important phonetic properties can be observed qualitatively from the rich 

repertoire of vSMC spatiotemporal patterns.

Spatial Representation of Articulators

To determine the spatial organization of speech articulator representations, we examined 

how cortical activity at each electrode depended upon the movement of a given articulator 

(using a general linear model). We assigned binary variables to four articulatory organs 

(lips, tongue, larynx, and jaw) used in producing the consonant component of each CV 

(Supplementary Figure 1). In Figure 2a, we plot spatial distribution of optimal weightings 

for these articulators (averaged over time and subjects), as a function of dorsal-ventral 

distance from the Sylvian fissure and anterior-posterior distance from the central sulcus. We 

found representations for each articulator distributed across vSMC (Fig. 2a). For example, 

the lip representation was localized to the dorsal aspect of vSMC, whereas the tongue 

representation was more distributed across the ventral aspect.

To determine topographic organization of articulators across subjects, we extracted the 

greatest 10% of weightings from individual articulator distributions (Fig. 2a) and used a 

clustering algorithm (k-nearest neighbor) to classify the surrounding cortex (Fig. 2b). We 

found an overall somatotopic dorsal-ventral arrangement of articulator representations laid 

out in the following sequence: larynx (X), lips (L), jaw (J), tongue (T), and larynx (X) (Fig. 

2a, b, see Supplementary Figures 2–5). An analysis of the fractional representation of all 

articulators at single electrodes revealed clear preferred tuning for individual articulators at 

single electrodes and also demonstrated that single electrodes had functional representations 

of multiple articulators (Supplementary Figure 6).

Timing of Articulator Representations

Because the time-course of articulator movements is on the scale of tens of milliseconds, 

previous approaches have been unable to resolve temporal properties associated with 

individual articulator representations. We examined the timing of correlations between 

cortical activity and specific consonant articulators (using partial correlation analysis), and 

included two vowel articulatory features (back tongue & high tongue; Supplementary Figure 

1).

In figure 3a, we plot time courses of correlations for electrodes with highest values, sorted 

by onset latency. We found that jaw, high tongue, and back tongue had very consistent 
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timing across electrodes. Similar results were found for tongue, lips, and larynx, but with 

more variable latencies. Timing relationships between articulator representations were 

staggered, reflecting a temporal organization during syllable production: lip and tongue 

correlations began well before sound onset (Fig. 3a, c, d); jaw and larynx correlations were 

aligned to the CV transition (Fig. 3a, c, d); high tongue and back tongue features showed 

high temporal specificity for the vowel phase, peaking near the acoustic mid-point of the 

vowels (~250 ms, Fig. 3b–d). This sequence of articulator correlations was consistent across 

subjects (Fig. 3d, P < 10−10, ANOVA, F = 40, df = 5, n = 211 electrodes from 3 subjects) 

and accords with timing of articulator movement shown in speech kinematic studies3,5,18,24. 

We found no significant onset latency differences in those areas immediately anterior and 

posterior to the central sulcus (±10 mm), or across the geunon (Supplementary Figure 7). 

This is consistent with mixed sensory and motor orofacial responses throughout vSMC, 

which are also seen in stimulation experiments14,25

Phonetic Organization of Spatial Patterns

We hypothesized that the coordination of multiple articulators required for speech 

production would manifest as spatial patterns of cortical activity. Here, we refer to this 

population-derived pattern as the phonetic representation. To determine its organizational 

properties, we used principal components analysis to transform the observed cortical activity 

patterns into a ‘cortical state-space’ (9 spatial PCs for all subjects, ~60% of variance 

explained, Supplementary Figure 8–9)26–30. K-means clustering during the consonant phase 

(−25 ms prior to the release of the consonant) showed that the cortical state-space was 

organized according to the major oral articulators (quantified by Silhouette analysis): labial 

(lips), coronal (front) tongue, and dorsal (back) tongue (Fig. 4a, Supplementary Figure 10). 

During the vowel phase, we found clear separation of /a/, /i/, and /u/ vowel states (Fig. 4b). 

Similar clustering of consonants and vowels was found across subjects (P < 10−10 for 

clustering of both consonants and vowels, Supplementary Figure 11).

Theories of speech motor control and phonology have speculated a hierarchical organization 

of phoneme representations given anatomical and functional dependencies of the vocal tract 

articulators during speech production1,3,4,18,19,31. To evaluate such organization in vSMC, 

we applied hierarchical clustering to the cortical state-space (Fig. 4c–d). For consonants, this 

analysis confirmed that the primary tier of organization was defined by the major oral 

articulator features: dorsal, labial, or coronal (Fig. 4c). These major articulators were 

superordinate to the constriction location within each articulator. For example, the labial 

cluster could be subdivided into bi-labial and labio-dental. Only at the lowest level did we 

observe suggestions of organization according to constriction degree/shape, such as the 

sorting of nasal (/n/ syllables), oral stops (/d/, /t/), and lateral approximants (/l/). 

Analogously, during the vowel period, a primary distinction was based upon the presence/

absence of lip-rounding (/u/ vs. /a/ & /i/) and secondary distinction based on tongue posture 

(height and front/back position)(Fig. 4d). Therefore, the major oral articulator features that 

organize consonant representations are similar to those for vowels.

Across early time points (−375:120 ms), we found that consonant features describing 

constriction location yielded a significantly greater correlation with the cortical state-space 
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than constriction degree, which in turn was significantly more correlated than the upcoming 

vowel (P < 10−10, Wilcoxon signed-rank test (WSRT), n = 297 from 3 subjects, see 

Supplementary Figure 12 for phonetic feature sets). This analysis demonstrates that 

constriction location accounts for more structure of spatial activity patterns than does 

constriction degree/shape. Analogously, across later time points (125:620 ms), we found that 

vowel features provided the greatest correlation (vowel configuration vs. others, P < 10 −10, 

WSRT, n = 297 from 3 subjects).

Dynamics of Phonetic Representations

The dynamics of neural populations have provided insight into the structure and function of 

many neural circuits 6,26,27,29,32,33. To determine the dynamics of phonetic representations, 

we investigated how state-space trajectories for CVs entered and departed target regions for 

phonetic clusters. Trajectories of individual CV syllables were visualized by plotting their 

locations in the first two PC dimensions versus time (Fig. 5a, b, PC1 & PC2; for Subject 1).

We first examined how trajectories of different consonants transitioned to a single vowel /u/ 

(Figure 5a). The cortical state-space was initially unstructured, and then individual 

trajectories converged within phonetic clusters (e.g. labial, front tongue, dorsal tongue, and 

sibilant), while simultaneously cluster trajectories diverged from one another. These 

convergent and divergent dynamics gradually increased the separability of different phonetic 

clusters. Later, as each consonant transitioned to /u/, trajectories converged to a compact 

target region for the vowel. Finally, trajectories diverged randomly, presumably as 

articulators returned to neutral position. Analogous dynamics were observed during the 

production of a single consonant cluster (e.g. labials) transitioning to different vowels (/

a/, /i/, and /u/)(Fig. 5b).

We quantified the internal dynamical properties of the cortical state-space by calculating 

cluster separability, which measures the mean difference of between-cluster and within-

cluster distances. The time course of cluster separability, averaged across subjects and CVs, 

is plotted in Figure 5c: separability peaked ~200 ms before the CV transition for consonants 

(onset, ~−300 ms), and at +250 ms for vowels (onset, ~50 ms). We further examined the 

dynamics of correlations between the structure of the cortical state-space and phonetic 

features (averaged across subjects), which is plotted in Figure 5d. Across subjects, we found 

that cluster separability and the correlation between cortical state-space organization and 

phonetic features were tightly linked for both consonants and vowels in a time-dependent 

fashion (R2 range = [0.42–0.98], P < 10−10 for all). This demonstrates that the dynamics of 

clustering in the cortical state-space is strongly coupled to the degree to which the cortical 

state reflects the phonetic structure of the vocalization.

The dynamic structure of the cortical state-space during production of all CV syllables is 

summarized in Figure 5e. In this visualization, the center of each colored tube is located at 

the centroid of the corresponding phonetic cluster. Tube diameter corresponds to cluster 

density and color saturation represents the correlation between the structure of the cortical 

state-space and phonetic features. This visualization highlights that, as the cortical state 

comes to reflect phonetic structure (coloring), different phonetic clusters diverged from one 
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another, while the trajectories within clusters converged. Furthermore, we observed 

correlates of the earlier articulatory specification for sibilants (red, e.g. /sh/, /z/, /s/). 

Additionally, with all CVs on the same axes, we observed that consonants occupy a 

substantially distinct region of cortical state-space compared to vowels, despite sharing the 

same articulators. The distribution of distances comparing consonant and vowel 

representations was significantly greater than the consonant-consonant comparison or 

vowel-vowel comparison (P < 10−10 for all comparisons, WSRT, n = 4623 for all, 

Supplementary Figure 11). Finally, the consonant-to-vowel sequence reveals a periodic 

structure, which is sub-specified for consonant and vowel features.

Discussion

Our broad-coverage, high-resolution, direct cortical recordings allowed us to examine the 

spatial and temporal profiles of speech articulator representations in human vSMC. Cortical 

representations were somatotopically organized, and punctuated by sites tuned for a 

preferred articulator and co-modulated by other articulators. The dorsal-ventral layout of 

articulators recapitulates the rostral-to-caudal layout of the vocal tract. However, we found 

an additional laryngeal representation located at the dorsal-most end of vSMC 11,13,34,35. 

This dorsal laryngeal representation appears to be absent in non-human primates8,36,37, 

suggesting a unique feature of vSMC for the specialized control of speech. Pre- and post-

central gyrus neural activity occurred before vocalization, which may reflect the integration 

of motor commands with proprioceptive information for rapid feedback control during 

speaking12,38–43.

Just as focal stimulation is insufficient to evoke speech sounds, it is not any single 

articulator representation, but rather the coordination of multiple articulator representations 

across the vSMC network that generates speech. Analysis of spatial patterns of activity 

revealed an emergent hierarchy of network states, which organized phonemes by 

articulatory features. This functional hierarchy of network states contrasts with the 

anatomical hierarchy often considered in motor control44. The cortical state-space 

organization likely reflects the coordinative patterns of articulatory motions during speech, 

and is strikingly similar to a theorized cross-linguistic hierarchy of phonetic features 

(“feature geometry”)3,19,20,31,45. In particular, the findings support gestural theories of 

speech control3 over alternative acoustic (hierarchy primarily organized by constriction 

degree)20 or vocal tract geometry theories (no hierarchy of constriction location and 

degree)19.

The vSMC population exhibited convergent and divergent dynamics during production of 

different phonetic features. The dynamics of individual phonemes were superimposed on a 

slower oscillation characterizing the transition between consonants and vowels, which 

occupied distinct regions of the cortical state-space. Although trajectories could originate or 

terminate in different regions, they consistently passed through the same (target) region of 

the state-space for shared phonetic features46. Large state-space distances between 

consonant and vowel representations may explain why it is more common to substitute 

consonants with one another, and same for vowels, but very rarely across categories in 

speech errors (i.e. slips of the tongue’)47.
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We have demonstrated that a relatively small set of articulator representations can flexibly 

combine to create the large variety of speech sounds in American English. The major 

organizational features found here define many phonologies throughout the world31. 

Consequently, these cortical organizational principles are likely to be conserved, with 

further specification for unique articulatory properties across different languages.

Methods

The experimental protocol was approved by the Human Research Protection Program at the 

University of California, San Francisco.

Subjects and Experimental Task

Three native English speaking human subjects underwent chronic implantation of a high-

density, subdural electrocortigraphic (ECoG) array over the left hemisphere (two subjects) 

or right hemisphere (one subject) as part of their clinical treatment of epilepsy (see 

Supplementary Table 1 for clinical details)48. Subjects gave their written informed consent 

before the day of surgery. All subjects had self-reported normal hearing and underwent 

neuropsychological language testing (including the Boston Naming and verbal fluency tests) 

and were found to be normal. Each subject read aloud consonant-vowel syllables (CVs) 

composed of 18–19 consonants (19 consonants for two subjects, 18 consonants for one 

subject), followed by one of three vowels. Each CV was produced between 15 and 100 

times. Microphone recordings were synchronized with the multi-channel ECoG data.

Data acquisition and Signal Processing

Cortical local field potentials (LFP) were recorded with ECoG arrays and a multi-channel 

amplifier optically connected to a digital signal processor (Tucker-Davis Technologies 

[TDT], Alachua, FL). The spoken syllables were recorded with a microphone, digitally 

amplified, and recorded inline with the ECoG data. ECoG signals were acquired at 3052 Hz.

The time series from each channel was visually and quantitatively inspected for artifacts or 

excessive noise (typically 60 Hz line noise). These channels were excluded from all 

subsequent analysis and the raw recorded ECoG signal of the remaining channels were then 

common average referenced and used for spectro-temporal analysis. For each (useable) 

channel, the time-varying analytic amplitude was extracted from eight bandpass filters 

(Gaussian filters, logarithmically increasing center frequencies (85–175 Hz) and semi-

logarithmically increasing band-widths) with the Hilbert transform. The high-gamma (high-

γ) power was then calculated by averaging the analytic amplitude across these eight bands, 

and then this signal was down-sampled to 200 Hz. High-γ power was z-scored relative to the 

mean and standard deviation of baseline data for each channel. Throughout the Methods, 

when we speak of High-γ power refers to this z-scored measure, denoted below as Hγ.

Acoustic Analysis

The recorded speech signal was transcribed off-line using WaveSurfer (http://

www.speech.kth.se/wavesurfer/). The onset of the consonant-to-vowel transition (C->V) 

was used as the common temporal reference point for all subsequent analysis (see 
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Supplemental Figure 1). This was chosen because it permits alignment across all of the 

syllables and allows for a consistent discrimination of the consonantal and vocalic 

components. Post-hoc analysis of acoustic timing revealed the onset of the consonant-to-

vowel transition to be highly reproducible across multiple renditions of the same syllable. 

As such, alignment at C->V results in relatively small amounts of inter-syllable jitter in 

estimated times of acoustic onset, offset and peak power.

For temporal analysis of the CV acoustic structure, each individual vocalization was first 

converted to a cochlear spectrogram by passing the sound-pressure waveform through a 

filter bank emulating the cochlear transfer function49. As the current analysis of cortical data 

leverages the cross-syllabic variability in (average) Hγ (see below), we reduced the dataset 

of produced vocalizations to a single exemplar for each CV syllable. For each unique CV 

syllable, the cochlear spectrograms associated with each utterance of that CV (Si(t,f)) were 

analyzed to find a single proto-typical example (Pspct), defined as the syllable that had the 

minimum spectral-temporal difference from every other syllable of that kind:

(1)

The onset, peak, and offset of acoustic power were extracted for each syllable prototype 

using a thresholding procedure.

Articulator state matrix and Phonetic feature matrix

To describe the engagement of the articulators in the production of different CV syllables, 

we drew from standard descriptions of the individual consonant and vowel sounds in the 

International Phonetic Alphabet (IPA)50. Each CV syllable was associated with a binary 

vector describing the engagement of the speech articulators utilized to produce the CV. For 

the linear analysis presented in Figures 2 and 3, the articulator state vector (Bi) for each CV 

syllable si was defined by six binary variables describing the four main articulator organs 

(Lips, Tongue, Larynx, Jaw) for consonant production and two vocalic tongue 

configurations (High Tongue, Back Tongue) (Supplemental Figure 1). Although more 

detailed descriptions are possible (e.g. alveolar-dental), the linear methods utilized for these 

analyses necessitate that the articulator variables be linearly independent (no feature can be 

completely described as a linear combination of the others), though the features may have 

correlations. An expanded phonetic feature matrix (nine consonant constriction location 

variables, four tongue configuration variables, and six consonant constriction degree/shape 

variables, again derived from IPA, Supplemental Figure 9), was used in the non-parametric 

analysis of the cortical state-space (Figures 4 and 5).

Analysis of Articulator Representations

Spatial Organization Derived from a General Linear Model

To examine the spatial organization with which Hγ was modulated by the engagement of the 

articulators, we determined how the activity of each electrode varied with consonant 

articulator variables using a general linear model. Here, at each moment in time (t), the 
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general linear model described the Hγ of each electrode as an optimally weighted sum of the 

articulators engaged during speech production. Hγ(t) recorded on each electrode (ei), during 

the production of syllable sj, Hγij(t), was modeled as a linear weighted sum of the binary 

vector associated with the consonant component of sj,(Bc
j):

(2)

The coefficient vector βi(t) that resulted in the least-mean square difference between the 

levels of activity predicted by this model and the observed Hγ(t) across all syllables was 

found by linear regression. For each electrode ei at time t, the associated 1×4 slope vector 

(βi(t)) quantifies the degree to which the engagement of a given articulator modulated the 

cross-syllable variability in Hγ(t) at that electrode. Coefficients of determination (R2) were 

calculated from the residuals of this regression. In the current context, R2 can be interpreted 

as the amount of cross-syllabic variability in Hγ that can be explained by the optimally 

weighted linear combination of articulatory state variables.

The spatial organization of the speech articulators was examined using the assigned weight 

vectors (βi(t)) from the GLM described above. First, the fit of the GLM at each electrode ei 

was determined of interest if, on average, the associated p-value was less than 0.05 for any 

one of the four consonant articulator time windows (TA) determined from the partial-

correlation analysis below. We defined this time window to be the average onset-to-offset 

time of significant partial correlations for each individual articulator in each subject (see 

Partial Correlation Analysis). This method identifies electrodes whose activity is well 

predicted by the GLM for any of the individual articulators, as well as combinations thereof, 

for extended periods of time. As these time windows extend for many points this is a rather 

stringent criterion in comparison to a peak-finding method or single significant-crossings. In 

practice, the minimum (across time) p-values associated with the vast majority of these 

electrodes are several orders of magnitude less then 0.05. For the electrodes gauged to be 

significant in each subject, we averaged the weights for each articulator (A) in that 

articulators time window (TA). Thus, each electrode of interest (ei) is assigned four values, 

with each value corresponding to the weighting for that articulator (A), averaged across that 

articulator’s time window (TA):

(3)

For the analysis of representational overlap at individual electrodes (Figure 2c), each 

electrode was classified according to the dominant articulator weight in a winner-take-all 

manner48. The fractional articulator weighting was calculated based off of the positive 

weights at each electrode, and is plotted as average percent of summed positive weights.

For spatial analysis, the data for each subject was smoothed using a 2mm uniform circular 

kernel. The maps presented and analyzed in Supplementary Figure 2–3 correspond to these 

average weights for the Lips, Tongue, Larynx, and Jaw. The maps presented and analyzed in 

Figure 2 correspond to these average weights for each articulator averaged across subjects. 

Bouchard et al. Page 9

Nature. Author manuscript; available in PMC 2013 September 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The spatial organization of vSMC is described by plotting the results of the GLM for an 

individual on the cortex of that individual. We used a Cartesian plane defined by the 

Anterior-Posterior distance from the Central Sulcus (ordinate) and the Dorsal-Ventral 

distance from the Sylvian Fissure (azimuth). This provides a consistent reference frame to 

describe the spatial organization of each subject’s cortex and to combine data across subjects 

while preserving the individual differences.

Somatotopic map and k -Nearest Neighbors Algorithm

To construct the summary somatotopic map of Figure 2b, we first extracted the spatial 

location of the top 10% of weights for each articulator (averaged across subjects, data in 

Figure 2a). We then used a k-nearest neighbor algorithm to classify the surrounding cortical 

tissue based on the nearest k = 4 neighbors within a spatial extent of 3 mm of each spatial 

location; if no data points were present within 3 mm, the location is unclassified (white). 

Locations where no clear majority (> 50%) of the nearest-neighbors belonged to a single 

articulator were classified as mixed (gold). These values were chosen to convey, in summary 

form, the visual impression of the individual articulator maps, and to ‘fill-in’ spatial gaps in 

our recordings. The summary map changed smoothly and as expected with changes in 

threshold of individual articulator maps, k (number of neighbors), spatial extent, and 

minimum number of points. Results are qualitatively insensitive to the details of this 

analysis, including the choice of 10% as a threshold, as changes in the clustering algorithm 

could be made to accommodate subtle differences in data inclusion. For visual comparison, 

we display the somatotopic maps derived from the same algorithm derived from the top 5%, 

top 10% and top 15% of weights in Supplementary Figure 4.

Partial Correlation Analysis

To quantify the temporal structure with which single-electrode Hγ was correlated with the 

engagement of a single articulator, we used partial correlation analysis. Partial correlation 

analysis is a standard statistical tool that quantifies the degree of association between two 

random variables (here, Hγ(t) and the engagement of a given articulator, Ai), while 

removing the effect of a set of other random variables (here, the other articulators, Aj, j≠i). 

For a given electrode, the partial correlation coefficient between Hγ(t) across syllables at 

time t and articulator Ai (ρ(Hγ(t),Ai)) is calculated as the correlation coefficient between the 

residuals r(Hγ(t),Aj), j≠i, resulting from de-correlating the Hγ(t) and every other articulator 

Aj, i≠j, and the residuals r(Ai,Aj), i≠j, resulting from de-correlating the articulators from one 

another:

(4)

Where σ1 and σ2 are the standard deviations of r(Hγ(t),Aj) and r(Ai,Aj) respectively. In the 

current context, the partial correlation coefficients quantify the degree to which the cross-

syllabic variability in Hγ at a given moment in time was uniquely associated with the 

engagement of a given articulator during speech production. For each articulator, we 

analyzed those electrodes whose peak partial correlation coefficient (ρ) exceeded the mean ± 

2.5 σ of ρ values across electrodes and time ( > mean(ρ(ei,t))+ 2.5σ(ρ(ei,t))). In the text, we 
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focus on the positive correlations (which we denote as R), because there were typically a 

larger number of positive values (mean ρ > 0), the temporal profiles are grossly similar for 

negative values, and for expositional simplicity. Results did not qualitatively change with 

changes in this threshold of ~ ± 0.2 σ. We extracted the onset, offset, and peak times for 

each articulator for each electrode that crossed this threshold. The data presented in Figure 

3d are the mean ± s.e. of these timing variables across electrodes pooled across subjects. The 

average onset and offset for each of the four consonant articulators (A [Lips, Tongue, Jaw, 

Larynx]) in each subject was used to define the articulator time window (TA) used in the 

spatial analysis described above.

Cortical State-Space and State-Space Analysis

PCA and Cortical-State Space

Principal components analysis (PCA) was performed on the set of all vSMC electrodes for 

dimensionality reduction and orthogonalization. PCA was performed on the n x m*t 

covariance matrix Z with rows corresponding to channels (of which there are n) and 

columns corresponding to concatenated Hγ(t) (length t) for each CV (of which there are m). 

Each electrode’s time series was z-scored across syllables to normalize response variability 

across electrodes. The singular-value decomposition of Z was used to find the eigenvector 

matrix M and associated eigenvalues λ. The PCs derived in this way serve as a spatial filter 

of the electrodes, with each electrode ej receiving a weighting in PCi equal to Mij, where M 
is the matrix of eigenvectors. Across subjects, we observed that the eigenvalues (λ) 

exhibited a fast decay with a sharp inflection point at the ninth eigenvalue, followed by a 

much slower decay thereafter (Supplemental Figure 6). We therefore used the first nine 

eigenvectors (PC’s) as the cortical state-space for each subject.

The cortical state-space representation of syllable sk at time t, K(sk,t), is defined as the 

projection of the vector of cortical activity associated with sk at time t, Hγk(t), onto M:

(5)

We calculated the contribution of articulators to the cortical state-space (PCwij) by 

projecting each electrodes weight vector (βj) derived from the GLM model above into the 

first three dimensions of the cortical state-space (i=1:3):

(6)

Here, PCwij is a four-element vector of the projected articulator weights for electrode ej into 

PCi. In Supplemental Figure 8, we plot log10 of the absolute value of PCwij across 

electrodes, which describes the distribution of magnitudes of the representations associated 

with the four articulators in a given PC.

Clustering Analysis

k-means and hierarchical clustering were performed on the cortical state-space 

representations of syllables, K(sk,t), based on the pair-wise Euclidean distances calculated 
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between CV syllable representations. Agglomerative hierarchical clustering used Ward’s 

Method. All analyses of the detailed binary phonetic feature matrix were performed using 

both Hamming and Euclidean distances; results did not change qualitatively or statistically 

between metrics. We utilized silhouette analysis to validate the claim that there were three 

clusters at the consonant time. The silhouette of a cluster is a measure of how close (on 

average) the members of that cluster are to each other, relative to the next nearest cluster. 

For a particular data set, the average silhouette for a given number of clusters describes the 

parsimony of the number of clusters in the data. Hence, examining the silhouette across 

different number of clusters gives a quantitative way to determine the most parsimonious 

number of clusters51. Higher values correspond to more parsimonious clustering. On 

average across subjects, this analysis validated the claim that three clusters (Average 

Silhouette = 0.47) was a more parsimonious clustering scheme than either two (Average 

Silhouette = 0.45) or four clusters (Average Silhouette = 0.43).

Correlation of cortical state-space structure with phonetic structure

At each moment in time, we wanted to quantify the similarity of the structure of cortical 

state-space representations of phonemes and the structure predicted by different phonetic 

feature sets. To this end, we measured the linear correlation coefficient between vectors of 

unique pair-wise Euclidean distances between phonemes calculated in the cortical state-

space (DC(t)) and in the phonetic feature matrix (DP):

(7)

As described above, the phonetic feature matrix was composed of three distinct phonetic 

feature sets, (consonant constriction location, consonant constriction degree/shape, vowel 

configuration). Distances were calculated independently in these three sub-sets and 

correlated with DC. Standard error measures of the correlation coefficients were calculated 

using a bootstrap procedure (1000 iterations).

Cluster Separability

Cluster separability is defined at any moment in time as the difference between the average 

of cross-cluster distances and the average of within cluster distances. This quantifies the 

average difference of the distance between syllables in different clusters and the tightness of 

a given cluster. We quantified the variability in cluster separability estimation through a 

1000 iteration bootstrap procedure of the syllables used to calculate the metric.

Cluster Density

We quantified the average cluster density by calculating the average inverse of all unique 

pair-wise distances between CVs in a given cortical state-space cluster. It is a proper density 

because the number of elements in a cluster does not change with time.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. vSMC Physiology During Syllable Production
a, MRI reconstruction of single subject brain with vSMC electrodes (dots), colored by 

distance from Sylvian fissure. b, Expanded view of vSMC anatomy: pre- and post-central 

gyri (PrCG and PoCG), central sulcus (cs), Sylvian fissure (Sf). Scale bar =1 cm. c–e (top), 

Vocal tract schematics for three consonants (/b/, /d/, /g/), produced by occlusion at the lips, 

tongue tip, and tongue body, respectively (red arrow). (middle) Spectrograms of spoken 

consonant-vowel (CV) syllables. (bottom) Average cortical activity from subset of 

electrodes. Vertical, dashed line is acoustic onset of CV transition. f–h, Cortical activity at 

selected electrodes for different phonetic contrasts (mean ± s.e.). Acoustic waveforms 

Bouchard et al. Page 16

Nature. Author manuscript; available in PMC 2013 September 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



displayed above. f, Fricatives [/θ/(“th” of “thin”), /s/, /ʃ/(“sh” of “shin”)] with different 

constriction locations. g, Front tongue consonants (/l/, /n/, /d/) with different constriction 

degree/shapes. h, Single consonant [/j/ (“y” of “yes”)] with different vowels (/a/, /i/, /u/). 

Red arrow corresponds to a tongue electrode with prolonged activity for /i/ and /u/ vowels. 

Black arrow corresponds to active lip electrode for /u/.
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Figure 2. Spatial Representation of Articulators
a, Localization of lips, jaw, tongue, and larynx representations. Average magnitude of 

articulator weightings (color scale) plotted as a function of anterior-posterior (AP) distance 

from the central sulcus and dorsal-ventral (DV) distance from the Sylvian fissure (n = 3 

subjects). b, Functional somatotopic organization of speech articulator representations in 

vSMC. Lips (L, red); jaw (J, green); tongue (T, blue); larynx (X, black), mixed (Gold). 

Letters correspond to locations based upon direct measurement-derived regression weights, 

shaded rectangles correspond to regions classified by k-nearest neighbor.
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Figure 3. Temporal Representation of Articulators
a–b, Timing of correlations between cortical activity and consonant (a) and vowel (b) 
articulator features. Heat maps display correlation coefficients (R) for a subset of electrodes. 

c, Acoustic landmarks. Onset (<), peak power (o) and offset (>) for CV syllables (mean ± 

s.e., n = 168 syllables, all subjects). (x) is vowel midpoint. s.e. bars are smaller than 

symbols. d, Temporal sequence and range of correlations. Symbols same as in (c). Data are 

mean (symbol) ± s.e. (solid line) across electrodes from all subjects. Number of electrodes 

contributing to each articulator is displayed on the right.
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Figure 4. Phonetic Organization of Spatial Patterns
a–b, Scatterplots of CV syllables in the first three principal components for consonants (t = 

−25 ms) (a) and vowels (t = +250 ms) (b) A subset of CVs are labeled, all others have dots. 

Coloring denotes k-means cluster membership. c–d, Hierarchical clustering of cortical state-

space at consonant and vowel time points. Individual syllables are color-coded and 

dendrogram branches are labeled by known linguistic categories. e–f, Correlations between 

cortical state-space and phonetic features. Black line: median; grey box: 25th and 75th 

percentile. ***: P < 10−10, WSRT; n = 297 for both consonants and vowels.
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Figure 5. Dynamics of Phonetic Representations
a–b, Cortical state-space trajectories. a, Consonants transitioning to the vowel /u/ (red-

sibilant, green-coronal tongue, blue-dorsal tongue, black-labial). Each line corresponds to a 

single CV trajectory. Symbols; left triangle: t = −500ms, square: t = −25ms, circle: t = 

250ms, right triangle: t = 750ms. b, Trajectories of the labial consonants transitioning to /

a/, /i/ and /u/(cyan, magenta, and yellow, respectively). c–d Across-subject averages of 

cluster separability (c) and correlation between cortical state-space structure and phonetic 

features (d) for consonants (red) and vowels (black) (mean ± s.e). e, Time-course of CV 

syllable trajectories for Subject 1. Each color corresponds to one of the consonant or vowel 

groups.
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