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Abstract

Predictive Control under Uncertainty for Safe Autonomous Driving: Integrating
Data-Driven Forecasts with Control Design

by

Ashwin Mark Carvalho

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Francesco Borrelli, Chair

Self-driving vehicles have attracted a lot of interest due to their potential to significantly
reduce traffic fatalities and transform people’s lives. The reducing costs of advanced sensing
technologies and the increasing capabilities of embedded computing hardware have enabled
the commercialization of highly automated driving features. However, the reliable operation
of autonomous vehicles is still a challenge and a major barrier in the large scale acceptance
and deployment of the technology.

This dissertation focuses on the challenges of designing safe control strategies for self-
driving vehicles due to the presence of uncertainty arising from the non-deterministic fore-
casts of the driving scene. The overall goal is to unify elements from the fields of vehicle
dynamics modeling, machine learning, real-time optimization and control design under un-
certainty to enable the safe operation of self-driving vehicles. We propose a systematic
framework based on Model Predictive Control (MPC) for the controller design, the effective-
ness of which is demonstrated via applications such as lateral stability control, autonomous
cruise control and autonomous overtaking on highways. Data collected from our experi-
mental vehicles is used to build predictive models of the vehicle and the environment, and
characterize the uncertainty therein. Several approaches for the control design are presented
based on a worst-case or probabilistic view of the uncertain forecasts, depending on the ap-
plication. The proposed control methodologies are validated by experiments performed on
prototype passenger vehicles and are executed in real-time on embedded hardware with lim-
ited computational power. The experiments show the ability of the proposed framework to
handle a variety of driving scenarios including aggressive maneuvers on low-friction surfaces
such as snow and navigation in the presence of multiple vehicles.
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Chapter 1

Introduction

1.1 Motivation and Background

In the past decade, significant progress has been made in the research and commercial deploy-
ment of advanced driving assistance features such as autonomous cruise control, emergency
braking and lane keeping assistance systems. These features augment existing active safety
systems such as anti-lock braking and electronic stability control, and are expected to pave
the way to fully self-driving cars. The technology has attracted a lot of attention both from
the public and the government due to their potential to transform people’s lives and the
transportation industry at large. The main interest lies in the dramatic increase in road
safety that can be achieved by means of self-driving vehicles. According to the National
Highway Traffic Safety Administration (NHTSA), 35,092 people lost their lives in crashes on
U.S. roadways in the year 2015, which is the largest percentage increase between consecutive
years in nearly 50 years [93]. Approximately 90 people died each day and 6,400 were injured.
94% of the above crashes were attributed to human error [110]. The U.S. Department of
Transportation, in its landmark policy on automated vehicles, has stressed the importance
of the technology to mitigate that huge proportion of accidents [118]. It also emphasizes the
need for the rigorous testing and validation before self-driving cars can be mass produced.
Currently, the reliable operation of autonomous vehicles over long periods of time still re-
mains a challenge. Systems implemented in research and production require the driver to be
engaged at all times and the distance traveled between driver interventions is relatively low.

One of the main assumptions that would facilitate the control design for the safe opera-
tion of autonomous cars is the precise knowledge of the vehicle’s location, and the current
and future locations of objects around the vehicle. If this assumption is satisfied, control
design for autonomous driving can be addressed using basic techniques, with extensive tun-
ing and switching between local controllers to handle heterogeneous driving scenarios. This
dissertation focuses on the challenges of control design when the above assumption cannot be
satisfied, that is, there is uncertainty in the motion of the autonomous vehicle (also referred
to as the ego vehicle) and the forecast locations of objects in the driving scene. Driver man-
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uals around the world always warn drivers of wrong predictions. As an example, the driving
rules in Australia require the driver to look around for “children (who) are small and can
be unpredictable” [53]. The New Jersey driver manual [112] classifies “hazards . . . into three
groups” with one of them being “pedestrians and animals” which “are characterized by un-
predictability and quick movement.” Even drivers of other vehicles in traffic often exhibit a
lack of predictability, especially in scenarios such as intersection and roundabout navigation
and merging lanes on highways.

Undoubtedly, driving requires forecasts, which can be highly uncertain in some driving
scenarios. The simplest way to deal with uncertain forecasts in autonomous driving is to
reduce the vehicle speed and wait until the uncertainty becomes negligible. In general, this
might not be always possible (for instance, when driving at high speed on a highway), may
generate deadlock scenarios (waiting forever at an intersection) and is not the preferred
driving mode of the vast majority of the drivers. For such scenarios, control design for
autonomous driving is a real challenge.

In addition to the uncertainty in the driving scene, several features make the autonomous
vehicle control problem non-trivial and interesting. The nonlinear dynamics of the vehicle,
modeling errors and the presence of state and input constraints make the application of
classical control schemes difficult. The consideration of the vehicle dynamics and the uncer-
tainty therein is especially important while operating on low-friction surfaces such as snow
where it is relatively easy for the vehicle to suddenly drift out of control. The use of classical
controllers would entail several heuristics to assess the criticality of the situation and ac-
cordingly activate a control strategy which is finely tuned for that particular situation. This
has been a standard approach in the automotive industry with regards to the development
of active safety systems. However, this approach does not safely extend to the domain of
self-driving cars.

The framework of Model Predictive Control (MPC) or Receding Horizon Control (RHC)
provides a systematic approach to deal with the aforementioned challenges. Here, the control
law is computed as the output of a Finite Time Constrained Optimal Control (CFTOC)
problem. At each time step, a model of the system is used to propagate the effect of
the control input on the future system states and the associated uncertainty over a finite
prediction horizon. The optimal sequence of control inputs is determined such that the
constraints on the state and input are satisfied and a chosen performance metric which is
a function of the predicted states and inputs is optimized. The first input of the optimal
plan is applied to the system, and the process is repeated at the next time step with the
new measurements, thus yielding a feedback control strategy. Previous work has shown the
effectiveness of MPC for the control of semi-autonomous and fully autonomous vehicles, for
example, [8, 43, 45, 48, 49, 54, 55].

This dissertation focuses on the control challenges associated with the application of
MPC-based strategies for safe semi-autonomous and fully autonomous driving in the face
of uncertain forecasts of the vehicle, driver and environment subsystems. A systematic
framework for the control design is proposed, the generality and effectiveness of which is
demonstrated via several applications. The common themes across the applications presented
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in this dissertation are as follows.

• Data-driven uncertainty characterization: We use real driving data for the identifi-
cation of the uncertainty in the models of the vehicle, driver and environment used
for the predictive control design. The nature of the uncertainty informs the choice of
the solution methodology used for the control design. For example, traffic prediction
models yield a multimodal probabilistic description of the uncertainty, thus requiring
a control strategy which can deal with the corresponding probabilistic predictions.

• Navigation in complex scenarios: Some of the presented applications involve the op-
eration of the vehicle in challenging environments involving, for example, aggressive
driving maneuvers on slippery surfaces such as snow. Other applications deal with
general traffic environments involving the presence of multiple vehicles in the vicinity
of the autonomous vehicle. The consequence is an increased level of uncertainty in the
driving scene which must be accounted for by the controller.

• Robustness to uncertainty: The goal of the MPC-based controller is to compute a
control policy which is robust to the uncertainty in the forecasts over the prediction
horizon. We use several notions of robustness depending on the specific application and
the aforementioned uncertainty characterization. In particular, worst-case approaches
guarantee safety for all possible realizations of the uncertainty while probabilistic ap-
proaches provide an upper bound on the probability of constraint violation. The out-
come in either case is a deterministic constrained optimization problem to be solved
online.

• Real-time optimization: We place an emphasis on the real-time implementation of our
proposed control strategies on embedded computing platforms. Tailored algorithms
which exploit the structure of the problem are presented.

In summary, we combine elements from the fields of vehicle dynamics modeling, machine
learning, real-time optimization and predictive control design under uncertainty to enable
the safe operation of semi-autonomous and self-driving vehicles in complex driving scenarios.

1.2 Thesis Outline and Contributions

A schematic of this dissertation is depicted in Figure 1.1 and serves as a pictorial guide of
how the chapters are linked. The contributions of the individual chapters are highlighted
below.

Chapter 2 formally introduces the control problem that is addressed in this dissertation.
First, the design of a simple of driver assistance feature using the framework of MPC is
discussed to motivate the need for forecasts and to discuss the associated control challenges.
We present the problem formulation for control in the presence of uncertainty due to the
forecasts of the motion and behavior of the three main elements in the driving scene - the
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Figure 1.1: Outline of the dissertation.

vehicle, the driver and the environment. The latter consists of entities such as surrounding
vehicles, bicyclists and pedestrians. Various characterizations of the uncertainty are dis-
cussed, ranging from deterministic approaches where no uncertainty is considered to robust
ones where the worst-case effect of disturbances needs to be accounted for. Probabilistic
models provide a trade-off between these two extremes. An overview of existing solution
methodologies for the control problem under uncertainty is presented.

The above predictive control scheme relies on models of the vehicle and environment sub-
systems in order to make forecasts of the corresponding states over the prediction horizon.
A detailed treatment of the various vehicle models used in this dissertation is provided in
Chapter 3. The focus is on models which are useful from the perspective of model-based
control design, where it is necessary to trade-off model accuracy for the computational com-
plexity of the resulting control law. The choice of vehicle model is highly coupled with the
specific application under consideration. For example, simple point-mass models suffice for
the longitudinal controller presented in Chapter 7. However, for the experiments performed
on snow in Chapter 5, a higher fidelity model is used which accounts for the highly non-
linear tire-road interaction at the four wheels. The characterization of the various sources
of uncertainty in the vehicle model and the identification using real driving data is also
discussed.

Chapter 4 presents forecast models of the positions and velocities of surrounding vehi-
cles (referred to as target vehicles). Our focus is on highway driving applications and on
approaches that can be run efficiently in real-time. First, a method based on the frame-
work of multiple model filtering is proposed to predict the longitudinal and lateral motion of
target vehicles on highways. The control actions of the vehicles are modeled as parametric
state-feedback policies, the parameters of which are learned from real data collected using
our experimental vehicle. We present a learning-based approach based on Hidden Markov
Models (HMMs) to identify the lane changing intent of target vehicles, which is an input for



CHAPTER 1. INTRODUCTION 5

the autonomous cruise control system developed in Chapter 7. A framework for modeling
interactions between the ego and target vehicles in car-following situations is also presented.
Finally, two approaches for formulating collision avoidance constraints between the ego and
target vehicles based on their predicted positions are presented.

Chapters 5–8 deal with the control design for several semi-autonomous and fully au-
tonomous driving applications using the framework presented in Chapter 2 and the vehicle
and environment models of Chapters 3 and 4, respectively. For each application, we use
a particular characterization of the system uncertainty and present strategies to solve the
associated control problem.

Chapter 5 proposes a method to reduce the online computational burden of current
nonlinear predictive control strategies used for autonomous lane keeping and obstacle avoid-
ance when no uncertainty in the vehicle or environment is considered. The approach is
based on Sequential Quadratic Programming (SQP) wherein a sequence of computationally
cheaper quadratic optimization subproblems is solved at each time step. Each subproblem
is constructed using a linearization of the system dynamics and safety constraints around
the solution from the previous iteration resulting in an iterative refinement of the optimal
trajectory. The proposed controller is validated via hardware-in-the-loop simulations and
tests on a prototype vehicle. The experiments were performed on snow covered tracks where
the nonlinear vehicle dynamics cannot be neglected. We show that the controller can yield
smooth trajectories while avoiding static and moving obstacles. Moreover, the use of a
longer prediction horizon than existing schemes is enabled which can be useful in emergency
situations. The method is general in that any vehicle and environment model can be em-
ployed. Moreover, it can be used to solve the nonlinear CFTOC problems appearing in the
subsequent chapters.

Chapter 6 proposes a robust control strategy that prevents the vehicle from drifting
out of control while being operated by a driver, especially on slippery surfaces such as
snow. The novelty of the approach is the systematic consideration of the uncertainty due to
modeling errors and the actions of the driver. Set-theoretic methods are used for the control
design, wherein a hybrid piecewise affine model of the vehicle dynamics is used and system
uncertainties are modeled as set-valued functions of the state and input. The construction
of the uncertainty sets is based on data collected from our prototype vehicle. Experiments
performed on snow-covered and icy tracks show the ability of the controller to prevent the
vehicle from drifting during aggressive maneuvers. While the method is presented for the
semi-autonomous driving application with a driver in the loop, it easily extends to the
autonomous case.

Chapter 7 proposes a robust predictive control strategy for autonomous cruise control
systems. The main contribution is accounting for the uncertainty in the motion of the target
vehicle in front of the ego (referred to as the preceding vehicle). A worst-case approach is used
to predict the motion of the preceding vehicle. Set-theoretic and analytical approaches are
presented to construct the robust safety constraints for the ego vehicle. Vehicles cutting-in to
the path of the ego vehicle are accounted for by using the lane change intention estimator pre-
sented in Chapter 4. In addition, a method for personalizing the system is presented which
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learns driver preferred control actions from data collected from that driver. Experiments
performed using our prototype vehicle on highways demonstrate the performance improve-
ments due to the consideration of cutting-in vehicles. Moreover, the ability of the controller
to keep the vehicle safe in certain hazardous situations is shown, where an aggressive braking
maneuver is required to prevent a violation of the safety distance.

Chapter 8 uses a probabilistic description of the various system uncertainties and proposes
approaches based on stochastic predictive control for automated highway driving applica-
tions. First, the motivation for probabilistic approaches over robust ones, especially while
dealing with the uncertainty due to traffic forecasts, is provided by means of an illustrative
example. Two approaches for stochastic MPC are presented, one where a Gaussian repre-
sentation of the uncertainty is maintained and the other where samples are used to represent
the uncertainty. A hybrid scheme is proposed which combines the benefits of the aforemen-
tioned approaches from the perspective of autonomous vehicle control. Simulations show the
ability of our approach to systematically trade off risk for conservatism in a typical urban
driving scenario. We discuss the implications of using a unimodal description of environ-
mental uncertainty (via Gaussian distributions) versus a multimodal one (via samples) using
a simulative example. Experiments on our prototype vehicle demonstrate the controller’s
ability to run in real-time on embedded platforms and handle a commonly occurring lane
change scenario where the reaction of the target vehicle must be considered. Finally, we dis-
cuss how the robust control strategies presented in the previous chapters can be combined
with the stochastic approach for autonomous navigation in urban driving scenarios.

1.3 List of Publications

The results presented in this dissertation have appeared in a number of publications coau-
thored by the author of the dissertation, in particular:

• Chapters 2, 3, 4, 8 are based on:

– A. Carvalho, Y. Gao, S. Lefèvre, and F. Borrelli. “Stochastic predictive con-
trol of autonomous vehicles in uncertain environments”. In: 12th International
Symposium on Advanced Vehicle Control. 2014,

– A. Carvalho, S. Lefèvre, G. Schildbach, J. Kong, and F. Borrelli. “Automated
driving: The role of forecasts and uncertainty - A control perspective”. In: Eu-
ropean Journal of Control 24 (2015). SI: 2015 European Control Conference,
pp. 14–32.

• Chapters 3, 4, 5 are based on:

– A. Carvalho, Y. Gao, A. Gray, H. E. Tseng, and F. Borrelli. “Predictive control
of an autonomous ground vehicle using an iterative linearization approach”. In:
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16th IEEE Conference on Intelligent Transportation Systems. 2013, pp. 2335–
2340.

• Chapters 3, 6 are based on:

– A. Carvalho, G. Palmieri, H. E. Tseng, L. Glielmo, and F. Borrelli. “Robust
vehicle stability control with an uncertain driver model”. In: 2013 European
Control Conference. 2013, pp. 440–445.

• Chapter 7 is based on:

– S. Lefèvre, A. Carvalho, and F. Borrelli. “Autonomous car following: A learning-
based approach”. In: 2015 IEEE Intelligent Vehicles Symposium. 2015,

– S. Lefèvre, A. Carvalho, and F. Borrelli. “A learning-based framework for velocity
control in autonomous driving”. In: IEEE Transactions on Automation Science
and Engineering 13.1 (Jan. 2016), pp. 32–42,

– A. Carvalho, A. Williams, S. Lefèvre, and F. Borrelli. “Autonomous cruise con-
trol with cut-in target vehicle detection”. In: 13th International Symposium on
Advanced Vehicle Control. 2016.
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Chapter 2

Model Predictive Control for Control
Under Uncertainty

In this chapter, the generic formulation and mathematical preliminaries of the predictive
control problem for autonomous driving in the presence of uncertainty are presented. First,
a simple example is shown to motivate the need for predictive control techniques which can
account for uncertainty. Several approaches for the controller design are reviewed which
involve transforming the problem into a deterministic one. Finally, an overview of the
methods developed in this dissertation is given.

2.1 Notation

Throughout this dissertation, the superscripts v, d and e are used to denote quantities
corresponding to the vehicle, driver and environment, respectively.

The subscript t represents discrete time steps. That is, t + 1 denotes the time instant
following t separated by a time step ∆t. The sampling times ∆tv, ∆td and ∆te are allowed
to be different from each other and to vary with time. The subscript k has a special meaning
in terms of time. At any time instant t, the predicted value of a variable z at time t + k
is denoted by zk|t. For simplicity of notation, zk|t is sometimes simply written as zk; this is
clear from the context. The true value (measured or estimated) of a variable z at time t is
zt which is equal to z0|t. The notation zt1:t2 denotes the sequence {zt}t2t=t1 of values of the
variable z from time instant t1 to t2.

In the most general case, the states of the vehicle and the environment subsystems are
expressed in the belief space, that is, the space of probability distributions. For example, if
the uncertainty in the state of the vehicle is characterized by a multivariate Gaussian random
variable, the belief state consists of the mean and variance of this variable. The variables xvt
and uvt denote the vehicle state and control input, respectively, at time t. The environment
state and the driver’s control input are denoted by xet and udt , respectively. Uncertain vari-
ables associated with the vehicle, environment and driver are concisely represented by the
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disturbance vector d?t with ? ∈ {v, e, d}.
Calligraphic symbols, for example X ,U denote sets. Usually, these sets are polyhedra or

polytopes. A polyhedron X is an intersection of a finite set of closed half-spaces:

X = {x : aTi x ≤ bi, i = 1, . . . ,m}. (2.1)

A polytope is a bounded polyhedron.
If a continuous random variable z has a Probability Density Function (PDF) p, this is

written as:

z ∼ p. (2.2)

N (µ,Σ) represents a multivariate Gaussian (or normal) distribution with mean µ and co-
variance Σ. The corresponding PDF evaluated at a point z is denoted as N (z;µ,Σ) and is
given by:

N (z;µ,Σ) =
1

(2π)
k
2 |Σ| 12

exp

(
−1

2
(z − µ)TΣ−1(z − µ)

)
, (2.3)

where |Σ| is the determinant of Σ.
The symbols In and 0n denote the identity and null (zero) matrices, respectively, of size

n× n. The same symbols without the subscript n denote the corresponding matrices of an
appropriate size which is clear from the context.

2.2 Model Predictive Control for Active Safety: An

Illustrative Example

The objective of this section is to motivate the use of forecasts in designing controllers for
intelligent vehicles. We present the design of a linear MPC strategy for an emergency brake
assist system. The goal is to track the driver’s intended acceleration and intervene only
when a violation of the preset safety distance to the vehicle in front is anticipated. Since the
focus is on motivating the usefulness of predictive control approaches, the simplified example
assumes that there is no uncertainty in the system. That is, the future positions of objects
in the environment and the future inputs of the driver are known without uncertainty. In
addition, the driver controls the steering such that the vehicle stays in the center of its lane.

The longitudinal motion of the vehicle is described by a double integrator model, where
the control input is the longitudinal acceleration. We assume no mismatch between the
simulated vehicle model and the one used in the predictive controller design. A learning-
based driver model is used to predict the driver’s acceleration inputs {udk|t}T−1

k=0 over the

prediction horizon T (the approach will be described in detail in Chapter 7). At each time
step t, the predictive controller solves the following Constrained Finite Time Optimal Control
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Figure 2.1: Snapshots of simulation with the ego vehicle E in blue and the target vehicle T in red.
The red line depicts the trajectory of the target vehicle, which is assumed to be known a-priori.

(CFTOC) problem:

min
uc
0:T−1|t

T−1∑
k=0

(
uvk|t − udk|t

)2
, (2.4a)

subject to: xvk+1|t = Axvk|t +Buvk|t, (2.4b)

xvk+1|t ≤ xmax
k+1|t, (2.4c)

umin ≤ uvk|t ≤ umax, (2.4d)

uvk|t = uck|t + udk|t, (2.4e)

(k = 0, . . . , T − 1)

xv0|t = xvt , (2.4f)

and implements the optimal input uvt = uc0|t + ud0|t to the double integrator system xvt+1 =
Axvt +Buvt , where:

xvt =

[
ξt
vt

]
, A =

[
1 ∆tv

0 1

]
, B =

[
0

∆tv

]
. (2.5)

The variables ξt and vt denote the longitudinal position and velocity of the ego vehicle.
The cost function in (2.4a) penalizes the deviation between the vehicle inputs uvk|t and the

predicted inputs udk|t given by the driver model. The variable xmax
k|t in (2.4c) is the upper

bound on the state xvk|t and consists of the position bound due to the vehicle in front and

the speed limit. The inequalities in (2.4d) represent actuator limits, and (2.4f) is the initial
condition for the state.

Two snapshots of the scenario for the simulations are shown in Figure 2.1. The ego vehicle
E is moving in the left lane with a slower vehicle T (also referred to as the target vehicle) in
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Figure 2.2: Driver and controller inputs dur-
ing the simulation. The controller tracks the
driver’s acceleration until a violation of the
safety distance is predicted around t = 5 s. The
controller applies harder braking to keep the
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Figure 2.3: Open-loop predictions of the rela-
tive distance to the vehicle in front at t = 6
s. The red line depicts what would have hap-
pened had the controller not intervened. The
controller plans to brake harder than the driver
to prevent the relative distance going below the
specified safety distance of 4 m.

the neighboring lane. As E approaches T , the latter changes lanes into the former’s path,
requiring a response from the driver of the ego vehicle.

The acceleration inputs applied by the driver and controller are shown in Figure 2.2.
Initially, the driver accelerates as there is no vehicle ahead, and the controller matches the
driver’s input exactly. When T changes lanes into the path of E at t = 4.8 s, the driver
begins to brake. However, the controller anticipates a violation of the safety distance to the
vehicle in front and applies a higher value of braking than the driver. This is seen by the
discrepancy between the driver’s and the controller’s inputs around t = 5 s in Figure 2.2.
The difference between the two inputs is depicted by the black line.

The open-loop predictions of the relative distance to the vehicle in front at t = 6 s are
shown in Figure 2.3. If the controller had not intervened, the driver’s inputs would have
caused the vehicle to violate the specified safety distance of 4 m at t = 7.2 s. Figure 2.4
shows that the controller does not allow the relative distance between the ego and target
vehicles to go below the specified safety distance during the simulation.

In summary, the above example illustrates the use of predictions of the driver’s inputs
and the lead vehicle’s positions to compute safe control actions for the ego vehicle. However,
two important elements are not considered by this example. Firstly, the vehicle model in
(2.4) is oversimplified and does not capture the non-linear vehicle dynamics nor the tire-road
interaction. However, the use of a higher fidelity vehicle model would increase the complexity
of the on-line optimization problem. This trade-off is discussed further in Chapter 3, which
presents vehicle models that are suitable for real-time MPC.

The second element not considered is the uncertainty in the measured and predicted
values of the vehicle, driver and environment states. The ability of the controller to prevent
a collision in the above example relies on perfect knowledge of the vehicle states, driver’s
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Figure 2.4: Relative distance between lead and controlled vehicles. The red circle at t = 4.8 s
indicates the instant at which the target vehicle is detected in front of the ego vehicle.

input and position of the target vehicle. These assumptions are not realistic and can easily
lead to unsafe control actions. In Chapters 3 and 4, we will present models of the vehicle
and environment which include a description of the uncertainty in terms of set bounds or
probability density functions (PDFs). This requires MPC design methodologies that account
for uncertainty without being overly conservative, which are presented in Chapters 6–8.

In the following section, we present the general formulation of the predictive control
problem which accounts for uncertainty at the design stage. Several uncertainty models and
solution strategies are also discussed.

2.3 Problem Formulation for Control Under

Uncertainty

The following CFTOC problem will be used to present the control methodologies developed
in this dissertation:

min
κc
0:T−1|t(·)

T−1∑
k=0

E
[
J(xvk+1|t, x

ref
k+1|t, u

v
k|t, u

v
k−1|t, u

d
k|t)
]
, (2.6a)

subject to: xvk+1|t = f v(xvk|t, u
v
k|t, d

v
k|t), (Vehicle model) (2.6b)

xek+1|t = f e(xvk|t, x
e
k|t, d

e
k|t), (Environment model) (2.6c)

udk|t = fd(xvk|t, x
e
k|t, d

d
k|t), (Driver model) (2.6d)

uck|t = κck|t(x
v
k|t, x

e
k|t), (Control policy) (2.6e)

uvk|t = fu(udk|t, u
c
k|t), (Input mapping) (2.6f)

[uvk|t, u
v
k−1|t] ∈ U , (Input constraints) (2.6g)

g(xvk+1|t, x
e
k+1|t) ≤ 0, (Safety constraints) (2.6h)
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(k = 0, . . . , T − 1)

x?0|t = x?t , uv−1|t = uvt−1, (? ∈ {v, e}) (Initial conditions) (2.6i)

where E[z] denotes the expected value of z. Problem (2.6) seeks a set of feedback control
policies κc0:T−1|t(·) = {κck|t(·)}T−1

k=0 which minimizes the expected cost (2.6a) and satisfies

the safety and comfort constraints (2.6g)–(2.6h). The state-feedback policies in (2.6e) map
the perceived vehicle and environment state to the control input. The reference trajectory
{xref

k|t}Tk=1 consists of information such as the desired speed and lane. The vehicle model f v(·)
in (2.6b) and the environment model f e(·) in (2.6c) represent the uncertain dynamics of the
corresponding state vectors. The driver model fd(·) in (2.6d) is a mapping from the vehicle
and environment states to the control actions of the driver. The mapping fu(·) in (2.6f)
defines how the inputs of the driver and controller are combined to obtain the input to the
vehicle. The initial conditions based on the current state measurements and control input
applied at the previous time step are given in (2.6i). In the following sections, we use zk to
denote the variable zk|t.

2.3.1 Solution Methodologies

The solution to the CFTOC problem (2.6) depends on the characterization of the uncertainty
d? (with ? ∈ {v, e, d}) in the system models, which can be done in several ways. We denote
by D? the set of all possible realizations of the uncertainty d?. Let p? denote the probability
density function (PDF) of d? over the set D?. Further, let d̄? ∈ D? be a point estimate of
d?, for example, the expected value d̂? of d? under the distribution p? over the set D?. The
above quantities are allowed to be time-varying in which case the subscript k is used, that
is, D?k, p?k, d̄?k.

The uncertainty d?k in the system models f ?(·) result in the predicted states xvk and xek
being uncertain. Consequently, the safety constraints (2.6h) cannot be treated deterministi-
cally. Instead,

• constraint satisfaction can be enforced for a nominal value of the disturbance:

g(xvk, x
e
k) ≤ 0 with d?j = d̄?j ∀j < k. (2.7)

The constraints (2.7) are referred to as nominal constraints and the problem obtained
by replacing constraints (2.6h) with (2.7) in (2.6) is called a Nominal MPC problem.

• constraint satisfaction can be enforced for all admissible values of the disturbance:

g(xvk, x
e
k) ≤ 0 ∀d?j ∈ D?j ∀j < k. (2.8)

The constraints (2.8) are referred to as robust constraints and the problem obtained
by replacing constraints (2.6h) with (2.8) in (2.6) is called a Robust MPC (RMPC)
problem.
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• we can allow for a small probability of constraint violation:

P (g(xvk, x
e
k) ≤ 0) ≥ 1− εk with d?j ∼ p?j ∀j < k, (2.9)

where P (A) is the probability that the event A is true. The notation d?j ∼ p?j implies
that the random variable d?j has the PDF p?j . The constraints (2.9) are referred to as
chance constraints and the problem obtained by replacing constraints (2.6h) with (2.9)
in (2.6) is called a Stochastic MPC (SMPC) problem.

The solution to the CFTOC problem (2.6) comprises three main steps:

(i) the translation of the optimization over control polices κck(·) into a finite-dimensional
optimization problem,

(ii) the propagation of the uncertain system states over the prediction horizon in order to
translate the robust constraints (2.8) or probabilistic constraints (2.9) into determin-
istic constraints, and

(iii) the solution of the resulting mathematical program.

With the exception of linear systems and special classes of disturbance sets D? (e.g., polyhe-
dra) or probability distributions p? (e.g., Gaussians), steps (i) and (ii) are non-trivial for the
robust and stochastic MPC problems. Various methods have been presented in literature
to handle steps (i) and (ii), and they affect the complexity of the mathematical program in
step (iii) as well as the conservatism of the resulting solution (see, for example, [25, 63, 86,
129]).

There are two broad approaches for solving step (i) [14]:

• Open-loop prediction schemes solve for a sequence of control actions over the prediction
horizon instead of a mapping κck(·). That is:

κck(x
v
k, x

e
k) = ûck, (2.10)

where {ûck}T−1
k=0 are the optimization variables in (2.6) instead of {κck}T−1

k=0 .

• Closed-loop prediction schemes solve for a parametric representation of the mapping
κck(·). That is:

κck(x
v
k, x

e
k) = κck(x

v
k, x

e
k; θ

c
k), (2.11)

where {θck}T−1
k=0 are the optimization variables in (2.6) instead of {κck}T−1

k=0 .

Open-loop approaches are conservative as they look for one input sequence which has to
counteract all possible future uncertainty realizations, without taking into account the fact
that measurements will be available in the future. Closed-loop formulations overcome this
issue but they can lead to computationally intractable problems as the space of control
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policies is infinite dimensional. A compromise lies in fixing the control structure (e.g., affine
state or disturbance feedback policies), parameterizing the control sequence in the feedback
gains, and optimizing over these parameters [70, 71]. The on-line computational complexity
can be further reduced by computing the state or disturbance feedback gain off-line (e.g.,
using the Linear-Quadratic Regulator (LQR) algorithm).

The translation of the robust constraints (2.8) in step (ii) into deterministic ones on the
nominal state (that is, the state of the system assuming a point estimate of the disturbances)
involves propagating the worst-case effect of the disturbance set over the horizon. For linear
systems with additive bounded disturbances described by polyhedral sets, the state con-
straints can be tightened using the reachable set of the system under the disturbance input
[34]. In [27], a tube-based approach is developed where a nominal MPC problem is solved
with tightened constraints. The amount of tightening is computed on the basis of a robust
positively invariant set of the uncertain system around a nominal trajectory under a pre-
computed feedback law. This approach extends to nonlinear systems which are affine in the
control input [129].

The chance constraints (2.9) in step (ii) are translated into deterministic ones by enforc-
ing tightened constraints on the expected values of the states and inputs. The tightening
offset is computed based on the tails of the disturbance probability distributions [60, 111].
In practice, the PDFs have a finite support and are non-Gaussian. In addition, the vehi-
cle models are non-linear, making it difficult to propagate the distribution of the vehicle
states over the prediction horizon. Exact solutions to the SMPC problem for non-linear
systems subject to non-Gaussian disturbances are, in general, computationally intractable
for real-time implementation on current vehicle platforms. Analytical methods are based
on a linearization of the system dynamics and a Gaussian approximation of the uncertainty.
Sampling-based methods provide an alternative approach to transform the chance constraints
for non-Gaussian random variables (see, for example, [20, 24, 50]) The approach consists in
transforming the chance constraints (2.9) into deterministic counterparts by evaluating them
at a large number of disturbance samples.

Non-Gaussian and finitely supported disturbances have also been studied in [26, 27, 70,
71, 88, 113] in the context of SMPC. In [26, 27], a tube-based method is used to translate
the chance constraints. The work in [70, 71] suggests to translate the chance constraints
into deterministic ones by using tightening offsets. The offsets are computed off-line using
numerical approximations of convolution integrals. In [88, 113], polynomial expansions are
used to approximate probability distribution functions.

2.3.2 Contributions

With regards to solving the CFTOC problem (2.6) in the context of autonomous driving
applications, the contributions of this dissertation are as follows:

• In Chapter 5, a tailored sequential quadratic programming (SQP) algorithm for solving
the nonlinear Nominal MPC problem is developed to reduce the online computational
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burden.

• In Chapter 6, a Robust MPC approach for lateral stability control is presented which
accounts for uncertainty in the driver’s actions.

• In Chapter 7, a Robust MPC approach for Autonomous Cruise Control (ACC) systems
is developed which accounts for the uncertainty in the motion of the preceding vehicle.

• In Chapter 8, analytical and sampling-based Stochastic MPC approaches are used for
an automated highway driving application. Uncertainty arising from the modeling and
state estimation errors and the motion of surrounding vehicles is considered.

The aforementioned methods rely on the vehicle and environment models presented in Chap-
ters 3 and 4.

2.3.3 Practical Considerations

Interaction between vehicle, driver and environment

The CFTOC problem (2.6) accounts for the models of the environment and driver in the
optimization problem and their interaction with the autonomous vehicle. From an imple-
mentation standpoint, this requires embedding the predictive models (2.6c) and (2.6d) of
the environment and driver, respectively, in the numerical optimization solver. This implies
evaluating the model outputs at each inner iteration of the optimization algorithm and their
gradients with respect to the decision variables. In general, this is intractable due to the
computations involved in these models. Moreover, they may not be differentiable making
the use of gradient-based solvers impossible. We address this practical issue as follows.

Notice that the models (2.6c) and (2.6d) depend on the autonomous vehicle’s state xvk
which is not known ahead of time. If an estimate of xvk were available over the prediction
horizon, the dynamics of the driver and environment can be decoupled from that of the
vehicle and can be taken outside the CFTOC problem (2.6). Fortunately, as the finite horizon
problem is solved at each time step, an estimate of the vehicle’s expected future states is
available based on the open-loop solution of (2.6) at the previous time step. Accordingly,
we introduce the following assumption:

Assumption 2.1. At time step t, the predicted states of the ego vehicle at time step (t− 1)
are used to decouple the environment and driver models (2.6c) and (2.6d) from the vehicle
state xvk. That is:

xek+1|t = f e(xv
?

k+1|t−1, x
e
k|t, d

e
k|t), (2.12a)

udk|t = fd(xv
?

k+1|t−1, x
e
k|t, d

d
k|t), (2.12b)

where {xv?k+1|t−1}T−1
k=0 is the optimal vehicle state sequence obtained from the solution of the

CFTOC problem (2.6) at time step (t− 1).
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This implies that the predicted environment state xek and driver input udk are computed
outside the optimization problem and fed as inputs to the solver. The predictions are still
allowed to be uncertain due to their dependence on the random variables dek and ddk.

We also make a simplification regarding the feedback policy κck(·) to be optimized. In the
most general form, κck(·) is a function of xvk and xek. A meaningful policy for the autonomous
driving task would be highly nonlinear and intractable to compute in a real-time optimization
framework. Instead, we use a partially closed-loop approach (to be differentiated from the
work and terminology in [116]) where κck(·) is only a function of the vehicle state xvk. This is
formalized by the following assumption:

Assumption 2.2. The feedback policy κck(·) is independent of the environment state xek.
That is:

uck = κck(x
v
k). (2.13)

The above assumption is aligned with Assumption 2.1 by which the environment and driver
models are decoupled from the control inputs uck.

Combining problem (2.6) with Assumptions 2.1 and 2.2, the modified CFTOC can be
written as:

min
κc
0:T−1|t(·)

T−1∑
k=0

E
[
J(xvk+1|t, u

v
k|t, u

v
k−1|t, x

ref
k+1|t, u

d
k|t)
]
, (2.14a)

subject to: xvk+1|t = f v(xvk|t, u
v
k|t, d

v
k|t), (2.14b)

uvk|t = fu(udk|t, u
c
k|t), (2.14c)

uck|t = κck|t(x
v
k|t), (2.14d)

[uvk|t, u
v
k−1|t] ∈ U , (2.14e)

g(xvk+1|t, x
e
k+1|t) ≤ 0, (2.14f)

(k = 0, . . . , T − 1)

xv0|t = xvt , uv−1|t = uvt−1. (2.14g)

Control input mapping

With the exception of the semi-autonomous driving application presented in Chapter 6, this
dissertation focuses on fully autonomous driving applications. In these cases, the driver does
not apply any input to the system. Concretely, the mapping fu(·) is given by:

uvk = fu(udk, u
c
k) = uck. (2.15)

In the semi-autonomous driving application in Chapter 6, the driver has the ability to directly
augment the vehicle steering. In that case:

uvk = fu(udk, u
c
k) = udk + uck. (2.16)
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Chapter 3

Vehicle Dynamics Models

3.1 Introduction

In the context of path planning and control of autonomous vehicles, the goal of the vehicle
dynamics model is to provide a relationship between physical inputs and the position and
orientation of the vehicle. Vehicle models can be broadly classified, in an increasing order of
complexity, into three categories:

1. Point-mass models treat the vehicle as a particle. Such models yield large tracking
errors when used for path planning due to their inability to account for dynamic fea-
sibility [48].

2. Kinematic models are a function of vehicle geometry, and can represent the vehicle
motion in a range of conditions which does not involve highly dynamic maneuvers
and/or tire force saturation [69].

3. Dynamic models rely on tire models to describe the interaction between the vehicle and
the road. In this case, the complexity arises from the non-linear relationship between
the tire forces, and the vehicle states and inputs [96, 101].

This chapter focuses on vehicle models that are useful from a control perspective, that is,
models that capture the essence of the dynamics while being computationally cheap for real-
time model-based control strategies. Recall that the discrete-time state update equations
corresponding to the vehicle model are compactly written as:

xvt+1 = f v(xvt , u
v
t , d

v
t ), (3.1)

where xvt and uvt are the vehicle state and input vectors, respectively. The variable dvt
denotes the disturbance vector, which is introduced to represent parametric uncertainty
and modeling errors. In formulations where the system dynamics depend on time-varying
exogenous parameters (such as the road curvature), the vehicle model is written as:

xvt+1 = f v(xvt , u
v
t , d

v
t ; p

v
t ), (3.2)
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(a) Body-fixed velocities, yaw rate, inertial position and angular heading

(b) Body-fixed and tire longi-
tudinal and lateral forces

(c) Body-fixed and tire longi-
tudinal and lateral velocities

Figure 3.1: Notation used in the nonlinear vehicle model.

where pvt is the parameter vector. These must be differentiated from physical parameters
such as the vehicle mass and dimensions which are assumed to be constant or to vary slowly
with time. Without loss of generality, the parameter vector is omitted in the presentation
of the control design in the later chapters.

The following sections detail the models that are used in the various applications pre-
sented in this dissertation. We first present nominal models which do not consider distur-
bances or modeling errors in Sections 3.2–3.5 and then present some characterizations of
model uncertainty in Section 3.6.
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3.2 Dynamic Models

3.2.1 Four Wheel Nonlinear Vehicle Model

The four wheel nonlinear model considers the effects of the tire forces at each of the four
wheels. The notation used is depicted in Figure 3.1. In addition, the subscript ? ∈ {f, r}
is used to indicate variables corresponding to the front (f) and rear (r) axles of the vehicle
while the subscript • ∈ {l, r} is used for the left (l) and right (r) sides. The following set of
nonlinear differential equations are used to describe the motion of the vehicle in an inertial
coordinate frame:

ẍ = ẏψ̇ +
1

m

∑
?∈{f,r}

∑
•∈{l,r}

Fx?• , (3.3a)

ÿ = −ẋψ̇ +
1

m

∑
?∈{f,r}

∑
•∈{l,r}

Fy?• , (3.3b)

ψ̈ =
1

Iz
(lf

∑
•∈{l,r}

Fyf• − lr
∑
•∈{l,r}

Fyr• + lw(−Fxfl + Fxfr − Fxrl + Fxrr)), (3.3c)

Ẋ = ẋ cosψ − ẏ sinψ, (3.3d)

Ẏ = ẋ sinψ + ẏ cosψ, (3.3e)

where m and Iz denote the vehicle mass and yaw inertia, respectively, lf and lr denote the
distances from the vehicle’s Center of Gravity (CoG) to the front and rear axles, respectively,
and lw denotes the vehicle’s half track-width. ẋ and ẏ denote the longitudinal and lateral
velocities in the body-fixed coordinate frame, respectively, and ψ̇ denotes the yaw rate. X
and Y denote the inertial coordinates of the vehicle, and ψ is the angular heading. The
above variables are shown in Figure 3.1a.

The longitudinal and lateral forces in the body-fixed coordinate frame Fx?• and Fy?• ,
respectively, are given by:

Fx?• = Fl?• cos δ?• − Fc?• sin δ?•, (3.4a)

Fy?• = Fl?• sin δ?• + Fc?• cos δ?•, (3.4b)

where the variables Fl?• and Fc?• are the longitudinal and lateral (cornering) forces in the
coordinate frame aligned with the tire axes, and δ? is the steering angle between the wheel
and the road at the corresponding wheel (see Figure 3.1b for an illustration). The following
assumption is introduced on the steering angles:

Assumption 3.1. Only the front wheels can be steered, and the steering angles at the front
left and right wheels are equal, i.e., δfl = δfr = δf , and δrl = δrr = 0.

The relationship between the lateral forces Fc?• and the vehicle states are described by tire
models of the form:

Fc?• = hc(α?•, σ?•, Fz?• , µ?•), (3.5)
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where α?• and σ?• denote the tire slip angle and slip ratio, respectively, Fz?• is the normal
force and µ?• is the friction coefficient between the tire and the road surface. Details of the
tire models are presented in Section 3.2.4. The slip angles and slip ratios are a consequence
of the distortion of the tire contact patch when the vehicle is steered and/or it accelerates
or brakes. These quantities are formally defined below.

Definition 3.2 (Slip angles). The slip angles α?• are defined as the inverse tangent of the
ratio of the lateral and longitudinal velocities:

α?• = arctan
vc?•
vl?•

, (3.6)

where:

vc?• = vy?• cos δ?• − vx?• sin δ?•, (3.7a)

vl?• = vy?• sin δ?• + vx?• cos δ?•, (3.7b)

vyf• = ẏ + lf ψ̇, vx?l = ẋ− lwψ̇, (3.7c)

vyr• = ẏ − lrψ̇, vx?r = ẋ+ lwψ̇. (3.7d)

The slip angle is the effective direction of motion at the wheels with respect to the longitu-
dinal axis of the wheel. This is illustrated in Figure 3.1c.

Definition 3.3 (Slip ratios). The slip ratios are defined as:

σ?• =

{
Rω?•
vl?•
− 1 if vl?• ≥ Rω?•

1− vl?•
Rω?•

if vl?• < Rω?•
, (3.8)

where R is the wheel radius and ω?• is the angular velocity of the wheel.

The slip ratio σ?• = −1 corresponds to the case when the wheels are locked (i.e. ω?• =
0, vl?• 6= 0), while σ?• = 1 corresponds to a “spin-out” (i.e. vl?• = 0, ω?• 6= 0). The
dependence of the slip ratio on the angular velocity ω?• necessitates the consideration of
the rotational dynamics of the wheels in addition to the vehicle dynamics in (3.3). From
the perspective of model-based control design, the state vector xv gets extended by four
elements (corresponding to the angular velocities at the four wheels), significantly increasing
the controller’s computational complexity. Hence, we introduce the following assumption:

Assumption 3.4. For the computation of the lateral tire forces Fc?• by (3.5), the slip ratios
σ?• at each of the four wheels is assumed to be equal to zero.

In general, the longitudinal tire forces Fl?• also have a nonlinear dependence on the slip
angles and ratios as in the case of the lateral forces in (3.5). However, as discussed above,
this would require a consideration of the wheel dynamics which is not desirable. Moreover,
the assumption of zero slip ratio (Assumption 3.4) is not valid in the longitudinal case as
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Figure 3.2: Notation used in the dynamic and kinematic bicycle models.

the slip ratio is the primary reason for the generation of longitudinal tire forces. Instead, we
model the longitudinal forces Fl?• in (3.4) as:

Fl?• = β?•µ?•Fz?• , (3.9)

where β?• is referred to as the braking ratio. Intuitively, it is the ratio of the longitudinal tire
force Fl?• to the total available force µ?•Fz?• . As with the slip ratio, β?• = −1 corresponds to
the case when the wheels are locked, while β?• = 1 corresponds to a spin-out. The existence
of a lower level controller is assumed which controls the individual wheel braking torques
and the engine throttle in order to track a given value of β?•. Hence, the braking ratio β?•
is treated as the control input.

Summary

The discrete-time model (3.1) is obtained from (3.3) by the first-order forward Euler method.
The state and input vectors for the four wheel nonlinear model are defined as xvt = [ẋt, ẏt, ψ̇t,
Xt, Yt, ψt]

T and uvt = [δft , βflt , βfrt , βrlt , βrrt ]
T , respectively.

3.2.2 Dynamic bicycle model

Bicycle models represent the left and right wheels of the vehicle by a single wheel. This
approximation is a common approach in developing models suitable for control design (see
e.g. [31, 47, 54, 101]). The notation used is depicted in Figure 3.2. The nonlinear differential
equations in this case are given by:

ẍ = ax, (3.10a)

ÿ = −ẋψ̇ +
2

m

(
Fcf cos δf + Fcr

)
, (3.10b)
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ψ̈ =
2

Iz

(
lfFcf cos δf − lrFcr

)
, (3.10c)

Ẋ = ẋ cosψ − ẏ sinψ, (3.10d)

Ẏ = ẋ sinψ + ẏ cosψ, (3.10e)

where ax is the external longitudinal acceleration, and the variables Fcf and Fcr are the
lateral tire forces at the front and rear axles, respectively, given by tire models of the form
(detailed in Section 3.2.4):

Fc? = hc(α?, σ?, Fz? , µ?) for ? ∈ {f, r}. (3.11)

A modified definition of the slip angles α? is used in the case of the bicycle model.

Definition 3.5 (Slip angles). The slip angles α? are defined as:

α? = arctan
vc?
vl?
, (3.12)

where:

vc? = vy? cos δ? − vx? sin δ?, (3.13a)

vl? = vy? sin δ? + vx? cos δ?, (3.13b)

vyf = ẏ + lf ψ̇, vyr = ẏ − lrψ̇, (3.13c)

vx? = ẋ− lwψ̇. (3.13d)

with δr = 0.

Note that the body slip angle α shown in Figure 3.2 is given by:

α = arctan
ẏ

ẋ
, (3.14)

and is used later in the kinematic bicycle model (Section 3.3.1). Under the assumption of
small steering angle, lateral velocity and yaw rate, the tire slip angles can be approximated
as:

αf = −δf +
ẏ + lf ψ̇

ẋ
, (3.15a)

αr =
ẏ − lrψ̇
ẋ

. (3.15b)

This is useful as the slip angles are a linear function of the states and inputs under the
additional assumption of constant longitudinal velocity ẋ. We exploit this property later in
Chapter 6.
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Summary

The discrete-time model (3.1) is obtained from (3.10) by the first-order forward Euler
method. The state and input vectors for the dynamic bicycle model are defined as xvt =
[ẋt, ẏt, ψ̇t, Xt, Yt, ψt]

T and uvt = [δft , axt ]
T , respectively.

3.2.3 Lateral Model for Yaw Moment Control

The models presented above in Sections 3.2.1 and 3.2.2 describe both the longitudinal and
lateral motion of the vehicle. Moreover, as they include the kinematics (i.e., the evolution of
the position and orientation), they are suitable for the purpose of path planning and control.
For applications such as lateral stability control (discussed in Chapter 6), only a description
of the lateral dynamical states (i.e., excluding the kinematics) is necessary. The following
modified nonlinear bicycle model is used [67, 101]:

ÿ = −ẋψ̇ +
2

m
(Fcf + Fcr), (3.16a)

ψ̈ =
2

Iz
(lfFcf − lrFcr) +

1

Iz
Mz, (3.16b)

where Mz is the external yaw moment which is generated by means of the slip ratio controllers
used in the nonlinear vehicle model in Section 3.2.1. The lateral forces Fc? are computed
by the tire models presented in Section 3.2.4. The lateral dynamics model is based on the
following assumptions:

Assumption 3.6. For the evaluation of the tire forces Fcf and Fcr , the friction coefficient
µ and the normal force Fz are known, constant and identical for both wheels.

Assumption 3.7. The longitudinal velocity ẋ is assumed to be known and constant over the
prediction horizon for the purpose of control design.

The discrete-time model (3.1) is obtained from (3.16) by the first-order forward Euler
method. The state and input vectors for the dynamic bicycle model are defined as xvt =
[ẏt, ψ̇t]

T and uvt = [δft ,Mzt ]
T , respectively. As the longitudinal speed ẋt is time-varying and

not controlled, it is a part of the parameter vector pvt in (3.2).

3.2.4 Tire Models

As seen in Sections 3.2.1–3.2.3, tire models provide a mathematical relationship between the
lateral tire forces Fc and the vehicle states:

Fc?• = hc(α?•, σ?•, Fz?• , µ?•). (3.17)

In the subsequent discussion, the subscripts ?• corresponding to the wheel are dropped for
simplicity of notation. Several approaches for modeling tire behavior have been presented
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in the literature. The Pacejka tire model is a semi-empirical model commonly used in high-
fidelity vehicle simulation models [96]. Its main limitations are the large number of parame-
ters to be identified and the black-box nature of the model. An analytical approximation of
the Pacejka model is given by:

Fc = D sin (C arctan (B(1− E)α + E arctan (Bα))) , (3.18)

where B, C, D, E are constants which are identified from experimental data. Note that this
approach ignores the effect of σ, Fz and µ. Typically, a bank of such models is used, each
valid in a small range of σ, normal Fz and µ.

The Fiala tire model is more suited for control design due to its explicit representation
involving few parameters [62]:

Fc =

−Cα tanα + C2
α

3µFz
√

1−β2
| tanα| tanα− C3

α

27(1−β2)µ2F 2
z

tan3 α, if |α| < αsl,

−
√

1− β2µFzsign α, if |α| ≥ αsl,
(3.19)

where Cα denotes the tire cornering stiffness and αsl = tan−1
(

3µFz
Cα

√
1− β2

)
is the tire slip

angle at which maximum lateral force is obtained. Recall that β is the braking ratio which
was introduced in (3.9).

A common approach used in automotive active safety applications is the linear tire model,
wherein h(·) in (3.17) is a linear function of the slip angle:

Fc = −Cαα. (3.20)

As in the case of the Pacejka model, a bank of such models can be used to account for effects
due to varying σ, Fz and µ. A benefit of the linear tire model (3.20) is that combined with
the slip angle approximation (3.15), a Linear Parameter Varying (LPV) approximation of
the dynamic bicycle model (3.10) can be derived [101]. This allows the use of techniques
from linear systems theory for the controller design.

Figure 3.3 shows the variation of lateral tire force with slip angle for the aforementioned
tire models, for a given slip ratio, normal force and friction coefficient. The gray dots
depict the lateral force values estimated from data collected during experiments on a winding
road and a ‘figure 8’ drift maneuver. The speed of the vehicle ranged from 10 to 35 m/s
during these experiments. The parameters of each of the tire models are identified from the
experimental data using a standard nonlinear least-squares regression approach. That is,
the parameters are chosen to minimize the error (measured by the vector 2-norm) between
the state predicted by the vehicle model (3.1) and that measured during the experiment.
It is seen that the linear tire model fits the data well for low slip angles. At higher slip
angles, however, the nonlinear effects introduced due to tire saturation are not captured by
the linear tire model. In these regimes, the Fiala and Pacejka tire models are seen to perform
better.
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Figure 3.3: Variation of lateral tire force with slip angle using different tire modeling approaches.
The gray dots indicate the values estimated during a test on a winding road and a ’figure 8’ drift
maneuver. The vehicle speed ranged from 10 to 35m/s.

Summary

In this dissertation, we use the linear tire model for applications such as highway driving
(Chapter 8) where the vehicle operates at relatively low slip angles. The Fiala and Pacejka
models are used in applications involving road surfaces such as snow (Chapter 5 and 6) where
the tires are operating close to their limits.

3.2.5 Road-aligned coordinate frame

A simple transformation allows us to express the position and orientation of the vehicle in a
coordinate frame aligned with the road or lane centerline [101]. The vector of position and
orientation coordinates at time t is given by:

[ξt, ηt, φt]
T , (3.21)

where ξ is the longitudinal position of the vehicle along the road, and η and φ denote the
lateral position error and angular error with respect to the lane centerline, respectively. The
notation is depicted in Figure 3.4.

The differential equations corresponding to the position and orientation in (3.10) are
modified as:

ξ̇ =
1

1− κr(ξ)η (ẋ cosφ− ẏ sinφ) , (3.22a)

η̇ = ẋ sinφ+ ẏ cosφ, (3.22b)

φ̇ = ψ̇ − κr(ξ)ξ̇, (3.22c)

where the function κr(ξ) provides the road curvature at the longitudinal position ξ.
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Figure 3.4: Position [ξ, η]T and orientation φ in the road-aligned frame.

Remark 3.8. The mapping κr(·) can be obtained from an on-board sensor such as a forward
looking camera and is most commonly parameterized as a cubic polynomial:

κr(ξ) =
3∑
j=0

cjξ
j. (3.23)

The above transformation to a road-aligned frame is especially useful in lane-keeping and
obstacle avoidance applications for several reasons. Firstly, the goal of tracking the lane
centerline can be achieved by setting the reference position to ηref = 0. Secondly, the safety
constraints enforced by the lane boundaries and obstacles can be expressed as simple lower
and upper bounds on the state η (see e.g. [55],[56]). Moreover, under the assumptions of con-
stant speed, low road curvature and a linear tire model, the resulting dynamic bicycle model
in the road-aligned frame (3.22) is linear in the states and inputs[101]. As a consequence
of the aforementioned properties, the resulting MPC optimization problem is a Quadratic
Program (QP) which can be solved efficiently in real-time.

Replacing the coordinates [Xt, Yt, ψt]
T with [ξt, ηt, φt]

T in the nonlinear vehicle model (3.3)
and the dynamic bicycle model (3.10) yields the modified state vector xvt = [ẋt, ẏt, ψ̇t, ξt, ηt, φt]

T .
The curvature mapping κrt (·) is added to the parameter vector pvt in (3.2).

3.3 Kinematic Model

The main issue with dynamic models is that they are undefined at low speeds. Specifically,
the lateral tire forces in (3.17) are a function of the slip angles which become singular at low
speeds due to the velocity term in the denominator (see Definitions 3.2 and 3.5). Kinematic
models preclude this issue and have been shown to be effective for autonomous vehicle control
design [69]. The derivation of the kinematic model is based on the following assumption:

Assumption 3.9. The slip angle at each wheel is zero. That is, the velocity vector at the
wheel is aligned with the wheel.
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While the above assumption is valid at low speeds, in practice, it is a reasonable assumption
even at higher speeds for applications such as highway driving where the slip angles are
small.

3.3.1 Kinematic bicycle model

The notation used in the kinematic bicycle model is shown in Figure 3.2. The following set
of differential equations describe the motion of the vehicle in the inertial frame:

Ẋ = v cos(ψ + α), (3.24a)

Ẏ = v sin(ψ + α), (3.24b)

ψ̇ =
v

lr
sinα, (3.24c)

v̇ = a, (3.24d)

α = arctan

(
lr

lf + lr
tan δf

)
, (3.24e)

where v and a denote the velocity and acceleration of the CoG, respectively, and α denotes
the angle between the velocity vector and the longitudinal axis, referred to as the body slip
angle. Whereas the slip angles are functions of the vehicle states and steering angle in the
case of the dynamic models presented in Section 3.2, in the kinematic bicycle model, the
body slip angle α is only a function of the vehicle geometry and steering angle.

The discrete-time model (3.1) is obtained from (3.24) by the first-order Euler method.
The state and input vectors for the kinematic bicycle model are defined as xvt = [Xt, Yt, ψt, vt]

T

and uvt = [δft , at]
T , respectively.

3.3.2 Road-aligned coordinate frame

As in the case of the dynamic bicycle model, the position and orientation of the vehicle can
be expressed in a curvilinear coordinate frame aligned to the road (see Figure 3.4). The
differential equations corresponding to the position and orientation in (3.24) are modified
as:

ξ̇ =
1

1− κr(ξ)ηv cos(φ+ α), (3.25a)

η̇ = v sin(φ+ α), (3.25b)

φ̇ =
v

lr
sinα− κr(ξ)ξ̇. (3.25c)

Replacing the coordinates [Xt, Yt, ψt]
T with [ξt, ηt, φt]

T in the kinematic bicycle model (3.24)
yields the modified state vector xvt = [ξt, ηt, φt, vt]

T . The curvature mapping κrt (·) is added
to the parameter vector pvt in (3.2).
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3.3.3 Comparison with the dynamic bicycle model

We use data collected from our experimental vehicle in order to compare the accuracy of the
kinematic bicycle model presented above and the dynamic bicycle model presented in Section
3.2.2. A detailed analysis can be found in [28, 68, 69]. For a given model, the accuracy is
quantified by the multi-step open-loop prediction errors, which are defined as follows:

Definition 3.10. The k-step open-loop prediction xvk|t of the state vector at time t is recur-
sively defined as:

xvk|t = f v(xvk−1|t, u
v
t+k−1, d̄

v
k−1|t), ∀k = 1, 2, . . . (3.26)

initialized with:

xv0|t = xvt . (3.27)

The k-step open-loop prediction error x̃vk|t is defined as:

x̃vk|t = ‖xvt+k − xvk|t‖2, (3.28)

where ‖z‖2 =
√
zT z. By definition, x̃v0|t = 0.

In particular, note the use of the actual (measured) input uvt+k−1 from the dataset and a
nominal value of the disturbance d̄vk−1|t (usually equal to zero) in (3.26).

Figure 3.5 shows the percentage distributions of the 1 and 5 step open-loop prediction
errors of the inertial position for the kinematic and dynamic bicycle models with a discretiza-
tion time of 0.2 s. The latter uses the linear tire model (3.20) to compute the lateral tire
forces. The data was collected at our test facility on a winding track modeled after a racing
track. During Test 1 which involved lower speeds (Figure 3.5a), it is seen that both models
perform similarly well in predicting the states of the vehicle, although the mean and variance
for the dynamic model are lower in general. However, at higher speeds (Test 2, Figure 3.5b),
the prediction errors of the dynamic model are significantly lower than those of the kinematic
model.

A benefit of kinematic models is that they only depend on the geometric parameters of
the vehicle. On the other hand, dynamic models include additional parameters such as mass,
rotational inertia, tire stiffness coefficients and the road friction coefficient. These param-
eters vary with operating conditions and require online non-linear parameter identification
techniques [64].

Dynamic models are able to capture the vehicle dynamics while driving at the limits
of handling [61]. Emergency collision avoidance maneuvers on low-friction surfaces such as
snow in [29] show that the tire slip angles during such maneuvers are close to, and often
exceed, their saturation limits.

To summarize, the choice of vehicle model is highly dependent on the application under
consideration. In our implementation, we use a hybrid approach where the model used in the
predictive controller is switched based on the current operating point. Specifically, we use
the kinematic bicycle model for speeds lower than a given threshold to deal with stop-and-go
situations and the dynamic bicycle model for higher speeds.
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(a) Test 1: Mean speed = 14.1 m/s, Maximum speed = 17.2 m/s
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(b) Test 2: Mean speed = 24.7 m/s, Maximum speed = 37.8 m/s

Figure 3.5: Percentage distributions of the 1 and 5-step open-loop position errors of the kinematic
and dynamic bicycle models at time steps of 0.2 s. The mean and standard deviation of these errors
are denoted by µ and σ, respectively. The subscripts K and D refer to the kinematic model and
the dynamic model, respectively.

3.4 Longitudinal Point-Mass Model

In general, point-mass models are not useful for the design of lateral controllers due to
their large modeling errors [48]. However, such models are sufficient for longitudinal control
applications such as autonomous cruise control (Chapter 7). In our work, we model the
longitudinal motion as a double integrator system described by the following equations:

ξ̇ = v, (3.29a)

v̇ = a. (3.29b)

The discrete-time model (3.1), obtained by the zero-order hold method, can be written as:

ξt+1 = ξt + ∆tvvt +
1

2
∆tv

2

at, (3.30a)

vt+1 = vt + ∆tvat. (3.30b)

The state and input vectors are xvt = [ξt, vt]
T and uvt = at, respectively.
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3.5 Actuator Models

The vehicle models presented above assume that the inputs δf and ax (or a) can be controlled
directly. In practice, however, low-level controllers are used to transform the aforementioned
commands into physical control signals. For example, in the case of the prototype Hyundai
vehicle described in Appendix A.2, steering angle control is achieved by means of controlling
the torque reference sent to the Electronic Power Steering (EPS) system. Similarly, the
vehicle’s longitudinal motion is controlled by means of a desired acceleration command to
the cruise-control system installed on the vehicle. These low-level controllers introduce delays
in the overall control loop. Including the dynamics of these actuators in the vehicle model
allows us to better account for the effect of the control inputs on the vehicle states. Moreover,
directly optimizing on physical inputs in the MPC problem mitigates issues due to tracking
errors of the low-level control systems. We present models of the acceleration and steering
actuators in Sections 3.5.1 and 3.5.2, respectively.

Remark 3.11. The dynamics of the actuators that control the slip ratios σ?• and the yaw
moment Mz are not considered here. It is assumed that they have relatively fast dynamics.
Reasonable tracking errors can be obtained by imposing suitable constraints on the rate of
change of inputs in the MPC problem.

3.5.1 Acceleration lag model

In the case of the longitudinal acceleration, a synthetic input ades
x introduced which is mapped

to the actual longitudinal acceleration of the car by a first-order delay:

ȧx = − 1

τa
ax + ades

x , (3.31)

where τa is the actuator time constant. As mentioned earlier, the input ades
x is the reference

command sent to the vehicle’s cruise control system. When (3.31) is added to the vehicle
dynamics (3.1), the state vector xv is augmented with the longitudinal acceleration ax and
the input vector uv consists of ades

x instead of ax.

3.5.2 Steering torque model

Steering angle control is achieved by means of the vehicle’s EPS system where the physical
input is the motor torque command τs. The steering system including the EPS motor,
steering column, rack-and-pinion and linkages is modeled by a lumped inertia wherein the
second-order equations of motion are written as:

δ̈f = −βs
Js
δ̇f −

Ks

Js
δf +

1

Js
τs, (3.32)
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where Js, βs, Ks denote the equivalent rotational inertia, damping and stiffness coefficients,
respectively. In this case, when (3.32) is added to the vehicle dynamics (3.1), the state
vector xv is augmented with [δf , δ̇f ]

T and the input vector uv consists of the steering torque
τs instead of δf .

Angle vs. torque control

The choice of the steering angle δf or the torque τs as the control input is largely dictated by
actuator setup on the experimental vehicle used. For example, in the case of the prototype
Jaguar vehicle described in Appendix A.1, angle control can be achieved directly as the
vehicle is equipped with an Active Front Steering (AFS) system. On the other hand, the
prototype Hyundai vehicle described in Appendix A.2 consists of a Motor Driven Power
Steering (MDPS) system which takes an overlay torque command as the input. In this case,
we can either directly optimize on the torque τs or optimize on the angle δf and use a lower
level feedback controller to generate the torque command.

3.5.3 Parameter identification

For the purpose of controller design, the actuator models (3.31) and (3.32) are linear ap-
proximations of the underlying nonlinear system dynamics. This is because the systems
themselves consist of low-level controllers and elements such as lookup tables which make
them hard to model analytically. To account for the model mismatch, online identification
techniques can be used to update the parameters in these models (see [42] for details related
to the steering model identification).

3.5.4 Input constraints

Physical limits on the actuators and comfort requirements impose bounds on the control
input and its rate of change:

uvmin ≤ uvt ≤ uvmax, (3.33a)

∆tv · u̇vmin ≤ uvt − uvt−1 ≤ ∆tv · u̇vmax. (3.33b)

The values of the bounds uvmin, uvmax, u̇vmin and u̇vmax are detailed in Appendix A for our
experimental vehicles. The constraints (3.33) are concisely written (as in (2.6g)) as:

[uvk|t, u
v
k−1|t] ∈ U , (3.34)

where U is a polytope defined by the inequalities in (3.33).
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3.6 Uncertainty Characterization

The models presented above do not include any description of the uncertainty dvt appearing
in the vehicle model (3.1). This section describes the various sources of uncertainty and a
mathematical characterization.

3.6.1 Measurement noise

Noisy sensory measurements and partial state feedback lead to uncertainty in the current
state of the vehicle xvt . We use state observers to estimate the state xvt conditioned on the
history of measurements up to time t. Approaches for nonlinear state estimation such as the
Extended and Unscented Kalman Filter (see [115] for details) model xvt as a multivariate
Gaussian random variable:

xvt ∼ N (x̂vt ,Σ
v
t ). (3.35)

The parameters x̂vt and Σv
t are recursively updated at each time step based on the measure-

ments received.

3.6.2 Model mismatch

As the vehicle model (3.1) is a mathematical representation of the underlying system dynam-
ics, it is necessary to account for the error in the state-update equations. Model mismatch
also occurs from the discretization of the continuous time dynamics. In our work, we use an
additive disturbance formulation to account for modeling errors:

xvt+1 = f v(xvt , u
v
t ) +Dvdvt , (3.36)

whereDv denotes the disturbance-to-state transition matrix, usually chosen to be the identity
matrix.

In robust control approaches such as that in Chapter 6, the disturbance dvt is constrained
to lie in a polyhedral set:

dvt ∈ Dvt . (3.37)

In addition, Dvt is allowed to be a set-valued mapping of the state xvt or input uvt . Details
on the construction of the set Dvt can be found in Chapter 6 for the lateral stability control
application.

In probabilistic control approaches such as that in Chapter 8, we use a Gaussian repre-
sentation of the disturbance:

dvt ∼ N (d̂vt ,Σ
d
t ). (3.38)

To motivate the choice of a Gaussian, we use data collected from our experimental vehicle to
quantify the predictions errors in the vehicle model. As an example, Figure (3.6) shows the
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percentage distributions of the one-step prediction error of the lateral dynamical states ẏ
and ψ̇ and the lane-relative position η and orientation φ computed using the dynamic bicycle
model in 3.2.2. The one-step prediction error x̃v1|t at time t is defined as:

x̃v1|t = xvt+1 − f v(xvt , uvt ), (3.39)

where xvt and uvt refer to the measured values of the state and input vectors, respectively.
The data was collected while driving on the highways around Berkeley. The distributions
of the prediction errors are seen to exhibit unimodal behavior, thus justifying the Gaussian
representation.
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Figure 3.6: Percentage distributions of the one-step prediction error for the dynamic bicycle model
with a linear tire model. The model discretization time is 0.1 s. The data was collected on the
highways around Berkeley.

3.6.3 Imperfect parameter knowledge

As noted in Section 3.2.4, tire model parameters such as the stiffness coefficients are estimated
from experimental data. Similarly, while physical parameters such as the mass, rotational
inertia and vehicle dimensions can be measured, parameter identification techniques are
used to account for their variation over time and to reduce modeling errors [64]. Statistical
techniques for parameter identification typically yield a point estimated and an associated
variance. Thus, a Gaussian representation of the uncertainty is a natural choice in this case.
In fact, when parametric uncertainty is considered in the control design problem, we augment
the state vector xvt with the uncertain parameters. Formally, let xv,vt and xv,pt denote the
vehicle state vector (constituting, for example, the velocity, position, orientation) and the
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vector of uncertain parameters, respectively. The modified state vector xvt is defined as:

xvt = [xv,vt , xv,pt ]T . (3.40)

The parameters in xv,pt are assumed to evolve according to a constant parameter model.
Concretely, the modified discrete-time state update equations are given by:

xvt+1 = f v(xvt , u
v
t , d

v
t ), (3.41)

with:

f v(xvt , u
v
t , d

v
t ) =

[
xv,vt+1

xv,pt+1

]
=

[
f v,v(xvt , u

v
t , d

v,v
t )

xv,pt + dv,pt

]
. (3.42)

Note the coupling introduced via the dynamics model f v,v(·). The variables dv,vt and dv,pt
denote the disturbances related to the discrete-time updates of xv,vt and xv,pt , respectively,
and together constitute the disturbance vector dvt . The Gaussian uncertainty models (3.35)
and (3.36) apply. With this formulation, the control design in the presence of parametric
uncertainty can be handled in a similar manner as that with model mismatch. This is
discussed later in Chapter 8.

3.7 Summary

In this chapter, we discussed the vehicle models used in the various applications in this
dissertation. The model choice is dictated by the expected operating conditions of the vehicle
and by the sensors and actuators present on the vehicle. For example, the nonlinear Fiala
tire model is employed for the experiments performed on snow in Chapter 5 as the slippery
surface necessitates consideration of the nonlinear tire effects. Moreover, the four-wheel
model is used as the experimental vehicle enables the actuation of the individual braking
torques at the four wheels. Finally, a concrete formulation of the disturbance models (related
to the vehicle model) used in the control design in this dissertation is presented.
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Chapter 4

Environment Models for Automated
Driving

4.1 Introduction

Autonomous vehicles navigating in the presence of other objects such as cars and pedestrians,
must anticipate their future behavior in order to plan safe trajectories. A challenge with
predicting the motion of target vehicles is that unlike the ego vehicle, useful indicators
of intent such as the steering wheel angle cannot be measured. Instead, one must rely on
measurements such as relative positions and velocities of target vehicles from sensor onboard
the ego vehicle.

An overview of existing approaches for target vehicle motion modeling can be found in
[76]. Physics-based models extrapolate the vehicle’s movement based on a simplified model
of the vehicle dynamics with some assumptions on the driver’s inputs. These are compu-
tationally cheap to implement but only suitable for short prediction horizons. Longer-term
predictions require maneuver-based models, which exploit the structure of the driving prob-
lem to represent the various maneuvers of drivers by motion primitives [10, 114]. Trajectory
prediction is performed by comparing the trajectory executed so far with the set of motion
primitives. An alternate approach is to first estimate the intent of the target vehicle (e.g.
keep or change lanes), and generate a trajectory which is consistent with the intent [107,
114]. Interaction-aware models yield an even higher level of realism as they base their predic-
tions on an understanding of the interactions between vehicles. Most methods use Dynamic
Bayesian Networks to model dependencies between vehicles in traffic scenarios [52]. These
models perform better for long-term predictions as compared to physics and maneuver based
models at the cost of computational complexity.

From the perspective of this dissertation, a more relevant classification is that based on
the nature of the forecasts in terms of the associated uncertainty. Specifically, within each
of the above categories, environment models can be further classified into (i) deterministic,
(ii) set-based, (iii) stochastic, and (iv) scenario-based models. Deterministic models provide
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a single predicted trajectory for each object in the scene. While this simplifies the control
design process, deterministic models cannot capture the uncertainty associated with the
future actions of human drivers, especially over longer time periods.

Set-based predictions over-approximate the future occupancy of target vehicles, given
a prediction model and bounds on the drivers’ actions [6]. While this allows for a formal
verification of safety [5], we show in Chapter 8 that such a worst-case approach leads to
an extremely conservative control policy. It is, however, suitable for applications such as
autonomous cruise control as shown in Chapter 7.

Stochastic models use standard probability distribution functions to model the driver’s
behavior [35]. A deterministic trajectory can easily be obtained as the most likely outcome of
the stochastic model. Gaussian Mixture Models (GMMs) are typically used to characterize
the distributions over the future positions or trajectories of target vehicles [66]. In general, it
is difficult to include traffic rules and the interaction between vehicles in such models because
it increases their complexity.

Scenario-based models can overcome these limitations by not stating the probability
distributions explicitly [4, 9]. Instead, the uncertainty is described via a finite number of
samples, each representing one possible future outcome. This facilitates the modeling of
vehicle interactions, by excluding traffic scenarios that are unrealistic, e.g. if they cause a
collision.

The choice of a deterministic, set-based or probabilistic environment model is dictated
by the strategy used for the control design. For example, a deterministic approach is used
for nominal MPC problem in Chapter 5, a worst-case approach is used for the design of the
robust controller in Chapter 7, and probabilistic models are used for the stochastic MPC
problems in Chapter 8. This chapter presents details of the environment models used in the
various applications in this dissertation. In particular:

1. A probabilistic multiple model filtering approach is proposed in Section 4.2 to estimate
the lane changing intent of target vehicles and the associated lane change trajectory.

2. Section 4.3 presents a learning-based method to estimate the lane change probability
of a target vehicle given the measurements of its lateral position.

3. Preliminary work in order to account for the reaction of target vehicles in adjacent
lanes to the ego vehicle’s lane change intention is discussed in Section 4.4.

4. Section 4.5 discusses two approaches for formulating collision avoidance constraints on
the state of the ego vehicle based on the predictions of the environment models.

The evolution of the environment over time is described by the following discrete-time state-
space representation:

xek+1 = f e(xvk, x
e
k, d

e
k), (4.1)

where the disturbance dek is introduced to model the uncertainty in the environment dynam-
ics. Typically, the state vector xek contains the position, orientation and velocity of each
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target vehicle in the scene and includes a representation of the uncertainty therein. The
control inputs to the target vehicles are implicitly modeled by making some assumptions or
as possibly non-linear functions of the system state. Hence, they do not explicitly appear in
(4.1).

In the remainder of this dissertation, the acronyms EV and TV stand for Ego Vehicle
and Target Vehicle, respectively.

4.2 Multiple Model Approach

In this section, we propose a probabilistic model based on the framework of multiple model
filtering for the prediction of the lateral and longitudinal motion of target vehicles. The
method combines physics and maneuver-based models. The main idea is to model each
target vehicle as a hybrid dynamical system, that is, a system consisting of both continuous
and discrete states. This is a natural choice for traffic modeling [76]. Specifically, the discrete
states (also referred to as modes) correspond to maneuvers such as lane keeping and lane
changing. Within each of the modes, the continuous dynamics describe the motion of the
vehicle corresponding to that mode. The problem of estimating the mode of the vehicle
and predicting its future positions can then be posed as a state estimation problem for the
hybrid system. In this work, we use the framework of multiple model filtering which has
been successfully used in target tracking applications [87].

4.2.1 Modeling

The dynamics of the jth TV are described by a Markov jump affine system:

xejt+1
= A

(i)
t x

e
jt +D

(i)
t d

e(i)

t + E
(i)
t , (4.2a)

yejt = H
(i)
t x

e
jt + we

(i)

t , (4.2b)

where xejt and yejt denote the TV state and measurement vectors, respectively, at time t.

The process noise de
(i)

t and measurement noise we
(i)

t are assumed to be independent and
identically distributed (i.i.d.) as N (0, Q(i)) and N (0, R(i)), respectively. The superscript (i)
in (4.2) refers to the model m(i) in the model set M = {m(1),m(2), . . . ,m(M)},. Transitions
between modes have fixed probabilities given by a matrix π ∈ RM×M , such that:

πij = P (mt+1 = m(j)|mt = m(i)), (4.3)

where mt denotes the mode at time t. For the prediction problem, we decouple the longi-
tudinal and lateral motion of the TV. The models used for each are described below. The
subscript j and superscript e are dropped for visual clarity.
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4.2.2 Longitudinal models

We choose x = [ξ, ξ̇, ξ̈]T and y = [ξ, ξ̇]T for the longitudinal state and measurement vectors,
respectively. As we do not model traffic interactions using the multiple model framework,
two modes based on the common assumptions of constant velocity and acceleration are used
to model the longitudinal motion as described below.

Constant velocity

A
(1)
t =

 1 ∆te ∆te
2

2

0 1 ∆te

0 0 0

 , D
(1)
t =

 ∆te
2

2

∆te

1

 , E
(1)
t =

 0
0
0

 , (4.4)

where ∆te is the sampling time.

Constant acceleration

A
(2)
t =

 1 ∆te ∆te
2

2

0 1 ∆te

0 0 1

 , D
(2)
t =

 ∆te
2

2

∆te

1

 , E
(2)
t =

 0
0
0

 . (4.5)

The measurement matrix in both the above cases is given by:

H
(1)
t = H

(2)
t =

[
1 0 0
0 1 0

]
. (4.6)

4.2.3 Lateral models

We use parametric state-feedback models to represent the lateral dynamics in typical lane
keeping and lane changing maneuvers. It is assumed that the TV changes one lane at a time
and that it prefers staying close to the lane center. The TV lateral state and measurement
are chosen to be x = [η, η̇]T and y = η, respectively. The lateral acceleration of the TV with
respect to the lane is assumed to evolve as:

η̈t ≈
η̇t+1 − η̇t

∆te
= −K2(ηt − ηref)−K1η̇t. (4.7)

Thus, ηt is assumed to have a second-order response. The gains K1 and K2 affect the nature
of this response and ηt → ηref as t → ∞ if the gains are chosen such that the system (4.7)
is stable. The corresponding system matrices are given by:

A
(i)
t =

[
1 ∆te

−∆teK
(i)
2 1−∆teK

(i)
1

]
, D

(i)
t =

[
∆te

2
/2

∆te

]
, (4.8a)
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E
(i)
t =

[
0

∆teK
(i)
2 ηref(i)

]
, H

(i)
t =

[
1 0

]
, (4.8b)

where the superscript (i) denotes the mode. The main idea of the proposed approach is to
capture the variation in the manner in which human drivers change lanes by means of a
finite number of representative gains {K(i)

1 , K
(i)
2 }Mi=1. In general, the higher the values of the

gains, the more aggressive is the driving style. Our goal is to identify these values from real
data. This is presented in the next section.

Remark 4.1. The choice of xe = [η, η̇] and ye = η is based on the assumption that only the
lateral position of the TV with respect to its lane can be estimated. This is done by fusing the
lane information from the vision system or a digital map with the relative position of the TV
obtained from sensors on-board the EV such as the radar, camera and lidar. If additional
states such as the orientation and yaw rate can be estimated, these can be augmented to the
state xe and models such as the kinematic bicycle model of Section 3.3.1 can be used instead
of the point-mass model in (4.8).

4.2.4 Parameter identification

We use data collected from our experimental vehicle for the identification of the gains
{K(i)

1 , K
(i)
2 }Mi=1 used to model the lateral motion of TVs. The number of modes M is treated

as a tuning parameter.
The identification is performed as follows. We first extract lane change trajectories from

multiple datasets recorded using our vehicle, which are shown in Figure 4.1. Left and right
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Figure 4.1: Lane change trajectories from 77 recorded datasets. Right lane change trajectories are
flipped with respect to the lane center.

lane changes are treated identically due to their symmetry with respect to the lane center.
Without loss of generality, we flip right lane change trajectories with respect to the lane
center, hence, only left lane changes are seen in Figure 4.1. Note that the time duration



CHAPTER 4. ENVIRONMENT MODELS FOR AUTOMATED DRIVING 41

of each trajectory is allowed to be different. For each trajectory, a nonlinear least squares
regression is performed to identify values of K1 and K2 such that the prediction error of the
model over the duration of the lane change (4.8) is minimized. Concretely, the following
nonlinear optimization problem is solved for a given trajectory:

min
K1,K2

T∑
t=1

(yt − ŷt)2 , (4.9a)

subject to: x̂t+1 = Atx̂t + Et, (4.9b)

ŷt+1 = Htx̂t+1, (4.9c)

(t = 0, . . . , T − 1)

x̂0 = x0, (4.9d)

where T is the trajectory length. The cost function (4.9a) to be minimized is the sum of
squares of the difference between the measurement yt and its predicted value ŷt given by the
model (4.9b)–(4.9c). The system matrices Ft, Et and Ht in (4.9b)–(4.9c) are given by (4.8)
and depend on the optimization variables K1 and K2. The value of ηref (which appears in Et)
is equal to the lane width estimated by the vision system. For the purpose of identification,
the full initial state x0 = [η0, η̇0]T is assumed to be measured in (4.9d).

The above procedure yields a set of gains {K(i)
1 , K

(i)
2 }

Ntraj

i=1 , one per trajectory (Ntraj is
total number of trajectories). Next, we use K-means clustering to identify representative
values of the gains, where the number of clusters is equal to the desired number of modes
M . This yields the set {K(i)

1 , K
(i)
2 }Mi=1.

The results of the gain identification and clustering are shown in Figure 4.2 for the case
of M = 5 using the 77 lane change trajectories shown in Figure 4.1. We observe a wide
range of behaviors as seen by the large range of values of K1 and K2. The identified clusters
are depicted by the different colors and marker types in Figure 4.2. The lane change profiles
corresponding to the 5 modes are shown in Figure 4.3.

4.2.5 Interacting Multiple Model Kalman Filter

At each time step t, our goal is to estimate the following quantities conditioned on the history
of measurements y1:t:

1. Model probability:

µ
(i)
t = P (mt = m(i)|y1:t). (i = 1, . . . ,M) (4.10)

This yields a distribution over the discrete modes and provides an estimate of which
model in the set M is in effect at time t. In the case of the lateral models (Section
4.2.3), the model probability is directly linked to the TV’s intent such as lane keeping
or changing.
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Figure 4.2: Gains K1 and K2 identified from
60 lane change trajectories and clustered into 5
modes depicted by the different marker types.
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Figure 4.3: Lane change profiles corresponding
to the 5 representative values of K1 and K2

identified from data.

2. Posterior mean and covariance:

x̂t = E[xt|y1:t], Σt = Var[xt|y1:t]. (4.11a)

This is the estimated state of the vehicle at time t accounting for the distribution over
the discrete modes.

In the above equations, E[v] and Var[v] denote the expected value and variance of v, respec-
tively. The problem of estimating the above quantities is posed as a hybrid system state
estimation problem. The Interacting Multiple Model Kalman Filter (IMM-KF) developed in
[95] is a computationally efficient algorithm for this problem which involves running a bank
of M Kalman filters in parallel. We use the implementation of the algorithm described in
[99]. At each time step t, the following steps are performed:

Step 1 : Evaluate mixing probabilities:

µ
j|i
t−1 =

πjiµ
(j)
t−1

µ
(i)
1|t−1

, where µ
(i)
1|t−1 =

M∑
j=1

πjiµ
(j)
t−1. (4.12)

Mixing estimates and covariances:

x̄
(i)
t−1 =

M∑
j=1

x̂
(j)
t−1µ

j|i
t−1, Σ̄

(i)
t−1 =

M∑
j=1

[
Σ

(j)
t−1 + (x̄

(i)
t−1 − x̂(j)

t−1)(x̄
(i)
t−1 − x̂(j)

t−1)T
]
µ
j|i
k−1.

(4.13)

Step 2 : For each model m(i), run Kalman filter with inputs (x̄
(i)
t−1, Σ̄

(i)
t−1) using Algorithm 4.1

to obtain the following mode-conditioned estimates:

(x̂
(i)
t ,Σ

(i)
t , ỹ

(i)
t , S

(i)
t ).
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Step 3 : Update the probability of each model:

µ
(i)
t =

µ
(i)
1|t−1N (ỹ

(i)
t ; 0, S

(i)
t )

M∑
j=1

µ
(j)
1|t−1N (ỹ

(j)
t ; 0, S

(j)
t )

. (4.14)

Step 4 : Compute the posterior estimates,

x̂t =
M∑
j=1

x̂
(i)
t µ

(i)
t , Σt =

M∑
i=1

[
Σ

(i)
t + (x̂t − x̂(i)

t )(x̂t − x̂(i)
t )T

]
µ

(i)
t . (4.15)

Algorithm 4.1 Kalman filter equations for model m(i)

Input: (x̄
(i)
t−1, Σ̄

(i)
t−1)

Prediction step:

1: x̂
(i)
1|t−1 = A

(i)
t−1x̄

(i)
t−1 + E

(i)
t−1

2: Σ
(i)
1|t−1 = A

(i)
t−1Σ̄

(i)
t−1A

(i)T

t−1 +D
(i)
t−1Q

(i)
t−1D

(i)T

t−1

Update step:

3: ỹ
(i)
t = yt −H(i)

t x̂
(i)
1|t−1

4: S
(i)
t = H

(i)
t Σ

(i)
1|t−1H

(i)T

t +R
(i)
t

5: K
(i)
t = Σ

(i)
1|t−1H

(i)T

t S
(i)−1

t

6: x̂
(i)
t = x̂

(i)
1|t−1 +K

(i)
t ỹ

(i)
t

7: Σ
(i)
t = Σ

(i)
1|t−1 −K

(i)
t S

(i)
t K

(i)T

t

Output: (x̂
(i)
t ,Σ

(i)
t , ỹ

(i)
t , S

(i)
t )

4.2.6 Target State Prediction

The main goal of the environment model is to forecast the state of the TV and the associated
uncertainty over the prediction horizon of the controller. The method used to propagate the
uncertainty of the TV over the horizon depends on the probabilistic control strategy em-
ployed. In particular, for the analytical stochastic MPC approach in Section 8.2, a Gaussian
representation of the uncertainty is desired, while for the sampling-based and hybrid SMPC
approaches in Sections 8.3 and 8.4, respectively, samples of the predicted states over the
horizon are required.
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Gaussian (unimodal) predictions

In order to obtain a Gaussian estimate of the future uncertainty, we base the predictions on
the most likely model mML

t , defined as the model m(i) with the highest model probability

µ
(i)
t . Concretely:

mML
t = arg max

m(i)∈M
µ

(i)
t . (4.16)

The predictions of the mean x̂1:T |t and variance Σ1:T |t of the state of the TV are then given
by the dynamics in (4.2a) corresponding to mML

t . Concretely:

x̂k+1|t = A
(ML)
k x̂k|t + E

(ML)
k , (4.17a)

Σk+1|t = A
(ML)
k Σk|t(A

(ML)
k )T +D

(ML)
k Q(ML)(D

(ML)
k )T , (4.17b)

(k = 0, . . . , T − 1)

where the superscript (ML) refers to the model mML
t . The above recursion is initialized

with x̂0|t = x̂t, Σ0|t = Σt, which are obtained from the IMM-KF.

Sampled (multimodal) predictions

In order to generate samples of the predicted TV states, we utilize the distribution over
the discrete modes given by {µ(i)

t }Mi=1. The process for generating a set of S sampled states

{x(s)
1:T |t}Ss=1 over the prediction horizon is detailed in Algorithm 4.2 below.

Algorithm 4.2 Sampled predictions of target vehicle state

1: for s = 1 to S:
2: Sample model m(j) with probability µ

(j)
t

3: Compute predicted mean x̂1:T |t and variance Σ1:T |t consistent with model m(j):

x̂k+1|t = A
(j)
k x̂k|t + E

(j)
k ,

Σk+1|t = A
(j)
k Σk|t(A

(j)
k )T +D

(j)
k Q(j)(D

(j)
k )T ,

(k = 0, . . . , T − 1)

initialized with x̂0|t = x̂t, Σ0|t = Σt.

4: At prediction step k, sample from N (x̂k|t,Σk|t) to obtain sampled state x
(s)
k|t (k =

1, . . . , T ).

Note that the longitudinal and lateral state predictions are performed separately and
later combined for the control design.
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4.3 Lane Change Intention Estimation

This section presents a learning-based approach to infer the lane changing intent of vehicles
in the neighboring lanes. Such an approach is useful in applications where (i) it is only
necessary to determine if a target vehicle is likely to change lanes and the actual execution
of the path is not relevant, or (ii) the lane change trajectory prediction is conditioned on
the intent of the target vehicle. For example, in the Autonomous Cruise Control (ACC)
application presented in Chapter 7, the intent estimator is used to identify relevant targets.
The framework was proposed in [78] for the lane change detection and trajectory prediction
of the ego vehicle and is applied here for the motion prediction of target vehicles.

4.3.1 Modeling and training

Based on the work of [78], we model the lane change decision making process for a given TV
as a Hidden Markov Model (HMM). We define the following variables:

• mt ∈ M = {LK,LCL,LCR} is the hidden mode or latent variable at time instant t
(LK = lane keeping, LCL = lane change left, LCR = lane change right).

• zt is the observed variable at time instant t. In our case, zt = ηet , where ηe is the lateral
position of the TV with respect to the centerline of the nearest lane. The variable ηe

is estimated using a combination of the position of the TV relative to the EV obtained
from the sensor fusion system and the road geometry information provided by the
camera on the EV.

Remark 4.2. Additional features such as the relative orientation of the TV with respect to
its lane can be used to improve the performance of the lane change intention estimation.
The choice of a single observed variable η in our work is due to limitations imposed by the
current sensing systems onboard our experimental vehicle.

The joint probability distribution of the modes m0:t = {m0, . . . ,mt} and the observations
z1:t = {z1, . . . , zt} is given by:

P (m0:t, z1:t) = P (m0)
t∏

k=1

P (mk|mk−1)P (zk|mk), (4.19)

where the emission probability density function P (zk|mk) is modeled as a Gaussian dis-
tribution. The parameters which characterize the prior and transition probability mass
functions P (m0) and P (mk|mk−1), respectively, and the means and covariances of the Gaus-
sian emission density function are learned from data collected from our test vehicle using the
Expectation-Maximization (EM) algorithm and the Bayesian Information Criterion [78].
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4.3.2 Inference

During online operation, at time t, inference on the HMM gives a probability distribution
over the hidden mode mt for each TV conditioned on the history of observations z1:t. That
is, P (mt = i|z1:t) can be recursively computed as:

P (mt = i|z1:t) ∝ P (zt|mt = i)
∑
j∈M

P (mt−1 = j|z1:t−1)P (mt = i|mt−1 = j), (4.20)

initialized with the prior distribution P (m0). In certain applications (for example, the Au-
tonomous Cruise Control (ACC) system presented in Chapter 7), the most likely intent of
the surrounding TVs is of interest. The most likely mode or intent mML

t at time t is defined
as:

mML
t = arg max

i∈M
P (mt = i|z1:t). (4.21)

The lane change intention estimator presented in this section is applied to the problem of
identifying relevant target vehicles for the purpose of ACC in Chapter 7. The ability of the
approach to detect lane changes earlier than an existing method is shown via experiments
performed on our test vehicle. The results of the performance improvements due to the
integration of the lane change estimator and controller are also discussed.

4.4 Interaction-aware Car-Following Model

The models presented above do not account for interactions between the various traffic
entities. For example, the intent of TVs to change lanes is usually motivated by the presence
of a slower moving vehicle in their own lane and the ability to speed up by moving to the
adjacent lane. In this section, we present a simplified approach to account for the interaction
between the EV and surrounding TVs. The approach is used for the experimental study in
Section 8.6 for a very specific scenario described below.

The goal of the interaction-aware car-following model is to account for the reaction of a
TV in the adjacent lane to the EV’s intent to change lanes in front of it. Consider a scenario
wherein a TV approaches the EV from behind. If the EV indicates its intent to change lanes
by means of the turn signal or by a lateral movement towards the TV’s lane, the TV may
either respond by slowing down to allow the EV to change lanes or not respond and maintain
its current behavior. In the former case, we would like the EV to recognize the compliance
of the TV and change lanes in front of the TV. Our intuition is that not considering the
interaction between the TV and the EV would yield a conservative control policy by the EV
where it does not change lanes. However, in such a commonly observed scenario in everyday
urban driving, human drivers tend to anticipate the motion of the TV and change lanes if
they are confident that the TV is compliant. The aim of the proposed environment model
is to:
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(i) estimate the intent of the TV to yield to the EV, and,

(ii) generate forecasts of the longitudinal motion of the TV consistent with the intent.

In combination with the stochastic MPC-based controller presented in Chapter 8, we expect
the EV to replicate the decision making process of a typical human driver.

4.4.1 Problem formulation

We introduce the following notation:

• me
t ∈ Me = {Yield(Y ),Do Not Yield(N)} is the behavior of the TV which cannot be

observed directly. If me
t = Y , the TV yields to the EV when the latter indicates its

intent to change lanes. If me
t = N , the TV does not respond to the EV and continues

tracking the reference speed vref or the vehicle in its own lane.

• xet = [ξet , v
e
t ]
T is the measured or estimated state of the TV at time t.

• uet = aet is the acceleration input applied by the TV at time t. This is treated as
unknown but an estimate âet of the current acceleration is assumed to be available.

• zet = [ξrt , v
r
t ]
T is the feature vector measured by the TV. It consists of the relative

position and velocity of the primary target relative to the TV, which is the vehicle that
the TV considers as the one to follow. As we assume no communication with the TV,
the feature vector zet is unknown.

The acceleration input uet is assumed to be given by a car-following model of the TV:

uet = κe(xet , z
e
t , v

ref) + det , (4.22)

where det is an additive disturbance normally distributed asN (0,Σe). In our implementation,
we use the Intelligent Driver Model (IDM) which was proposed in [117] for microscopic traffic
simulations. The acceleration of the TV is given by:

uet = aemax

1−
(
vet
vref

)δ
−
(
ξr,des
t

ξrt

)2
 , (4.23)

where the desired following distance ξr,des
t is given by:

ξr,des
t = ξrsafe + max

{
0, vetTh +

vet v
r
t

2
√
aemaxa

e
brake

}
. (4.24)

In the absence of a primary target vehicle, ξr,des
t is set to 0 and the last term in (4.23) drops

out. This is referred to as the free-flow mode. The parameters that define the IDM for
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a particular driver are the maximum acceleration aemax, reference speed vref , acceleration
exponent δ, minimum following distance ξrsafe, time headway Th and desired deceleration
aebrake. The TV is assumed to follow the longitudinal point-mass model described in Section
3.4, concisely written as:

xet+1 = f e(xet , u
e
t ). (4.25)

We introduce the following assumption:

Assumption 4.3. The reference speed vref , the parameters defining κe(·) and the variance
Σe of the disturbance det are assumed to be known.

If the feature vector zet could be measured, we would be able to predict the mean and variance
of uet and hence xet , using (4.22) and the point-mass model (4.25). Instead, we assume that zet
cannot be observed directly, but is a known function of the hidden mode me

t . In particular,
if me

t = Y , zet consists of the relative distance and velocity of the EV (assuming the EV
would like to change lanes), and if me

t = N , zet consists of the relative measurements of the
vehicle in front of it in its own lane.

4.4.2 Intent estimation

The problem of estimating the probability that the TV will yield to the EV given the estimate
of its acceleration âet is posed as a Bayesian estimation problem. Concretely:

P (me
t = Y |âet ) ∝ P (âet |me

t = Y )P (me
t = Y ), (4.26)

where P (me
t ) is the prior over the set M which assumed to be a uniform distribution, that

is, P (me
t = Y ) = P (me

t = N) = 0.5. The conditional probability P (âet |me
t ) is computed

as N (âet − κe(zet (m
e
t ), v

ref); 0,Σe). The notation zet (m
e
t ) indicates the dependence of the

feature zet on the hidden mode me
t , that is, zet is known for a given me

t ∈ M. Note that
P (me

t = N |âet ) = 1− P (me
t = Y |âet ).

4.4.3 Prediction

The interaction-aware car-following model presented here is used with the SMPC approach
in Chapter 8 where sampled predictions of the future state of the TV are desired. This is
achieved as follows. At time t, we first sample from the distribution P (me

t |âet ) to obtain me(s)

t

(the superscript denotes the sth sample). Then, we sample the disturbance det in (4.22) and

compute the sampled input ue
(s)

t . This is propagated through the dynamics (4.25) to obtain

the predicted sampled state xe
(s)

1|t . A full-horizon sample xe
(s)

1:T |t can be obtained by iteratively

running the above procedure assuming the mode is invariant, that is, me(s)

0:T−1|t = me(s)

t .
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Remark 4.4. The method presented here is specific to the scenario described above and is
only used in Section 8.6 to demonstrate the ability of the proposed control strategy to handle
multimodal traffic forecasts. In the experiment, the parameters of the model κe(·) are assumed
to be known, but the primary target that the TV is trying to track is unknown.

4.5 Collision Avoidance

In this section, we present two approaches for collision avoidance which are used in this dis-
sertation. In the context of constrained predictive control, the goal is to construct constraints
of the form g(xvk|t, x

e
k|t) ≤ 0 on the predicted vehicle and environment states xv1:T |t and xe1:T |t,

respectively, over the prediction horizon. While the vehicle states xv1:T |t are a function of the
control inputs uv0:T−1|t, the environment states xe1:T |t are computed by the forecast models

described above in this chapter and are independent of the vehicle inputs uv0:T−1|t (refer to

the discussion in Section 2.3.3).

4.5.1 Safety corridor approach

This method for formulation collision avoidance constraints is similar to the approaches in
[8, 49]. The main idea is to map static and moving obstacles in the environment into a region
of the road in which the vehicle can move safely. At a given time step k of the prediction
horizon, the boundaries of the safe region are a function of the predicted obstacle positions
at that time instant. Hence, in general, the boundaries are a time-varying function of the
longitudinal position ξk|t of the EV along the road. As in [49], we define the safe region
in the road-aligned coordinate frame, as this results in simple upper and lower bounds on
the lateral position ηk|t of the EV. Let ηLk (ξk|t) and ηUk (ξk|t) denote the lateral positions of
the lower and upper boundaries of the safe region, respectively, with respect to the road
centerline. These are illustrated in Figure 4.4 for the simple case of one obstacle. In our
work, we express the boundaries as piecewise affine functions of the longitudinal position ξk|t
of the EV. This is seen by the lower boundary ηLk (·) in Figure 4.4.

The collision avoidance constraints using the safety corridor approach are given by:

ηLk (ξk|t) ≤ ηk|t ≤ ηUk (ξk|t). (4.27)

The dependence of the bounds on the predicted positions of the TVs is implicitly accounted
for by their dependence on the predicted time step k. Note that the constraints are inde-
pendent of the road curvature as they are expressed in the road-aligned coordinate frame.

In general, the constraints given by (4.27) are non–convex and non–differentiable due to
the nonlinear dependence of the bounds ηLk and ηUk on ξk|t, which in turn depends on the
control inputs uvk|t yet to be determined. This is not an issue if general purpose nonlinear

solvers (such as NPSOL [51]) are used to solve the resulting optimization problem. However,
for the linearization-based approach presented in Chapter 5, a convex approximation of the
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Figure 4.4: Upper and lower boundaries ηUk (ξk|t) and ηLk (ξk|t), respectively, for the given scenario
using the safety corridor approach. In general, the boundaries are given by piecewise affine functions
of the EV’s longitudinal position ξk|t.

safety constraint is desired. The linearization of (4.27) around a nominal EV state x̄vk|t is
given by:

ηk|t ≤ ηUk (ξ̄k|t) + gUk (ξk|t − ξ̄k|t), (4.28a)

ηk|t ≥ ηLk (ξ̄k|t) + gLk (ξk|t − ξ̄k|t), (4.28b)

with:

gUk = ∇ξk|tη
U
k (ξk|t)|ξ̄k|t , (4.29a)

gLk = ∇ξk|tη
L
k (ξk|t)|ξ̄k|t . (4.29b)

Note that ξ̄k|t is the element of the nominal state vector x̄vk|t corresponding to the longitudinal

position along the road. Fortunately, the chosen parameterization of the mappings ηLk (·) and
ηUk (·) implies that their derivatives with respect to ξk|t are piecewise constant. The constraint
(4.28) can be rewritten in the standard form of a linear equality:

Ge
k(x

v
k|t − x̄vk|t) ≤ hek. (4.30)

4.5.2 Signed distance function

The safety corridor approach presented above is tailored for collision avoidance in structured
applications such as highway driving. A more general collision avoidance formulation is
presented in [109], which is based on the signed distance function between objects.

Definition 4.5 (Signed distance). Let A and B be convex shapes. The signed distance
sd(A,B) is defined as the magnitude of the smallest translation that puts the two shapes A
and B (1) in contact, if they are currently separated or (2) out of contact, if they are currently
in contact.

This is illustrated in Figure 4.5. Intuitively, when the objects are separated, the signed
distance is the smallest distance between any two points on the objects. On the other hand,
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Figure 4.5: Signed distance between convex shapes A and B (Figure similar to that in [109])

when the objects are in collision, the signed distance (also known as the penetration depth
in this case) is the minimum distance by which either object has to be moved in order to
resolve the collision. Details about the signed distance and its computation are presented
in [109]. Without loss of generality, we consider the case of one moving TV. Let the TV be
represented by a convex shape Tk|t, and the EV by Ek|t. Note that Tk|t and Ek|t are functions of
xek|t and xvk|t, respectively, and the vehicle geometries. Clearly, collision avoidance is achieved
by constraining the signed distance to be greater than the minimum safety distance dsafe.
That is:

sd(Tk|t, Ek|t) ≥ dsafe. (4.31)

The above constraint is nonlinear and nonconvex in general. Moreover, the computations
involved make it formidable for use with a real-time nonlinear predictive control scheme. In
practice, (4.31) is linearized around a nominal EV state x̄vk|t to obtain:

Ge
k(x

v
k|t − x̄vk|t) ≤ hek, (4.32)

with:

Ge
k = −∇xv

k|t
sd(Tk|t, Ek|t)|x̄v

k|t
, (4.33a)

hek = sd(Tk|t, Ēk|t)− dsafe. (4.33b)

Ēk|t denotes the convex shape corresponding to x̄vk|t. The polyhedral safety region obtained

by the linearized signed distance function (4.32) for two configurations of x̄vk|t and xek|t is
depicted in Figure 4.6. The shaded area is the unsafe region for the EV’s center of gravity.
The efficient computation of the gradient ∇xv

k|t
sd(Tk|t, Ek|t) is discussed in [109] and can be

obtained as an output of a collision checking library.

4.5.3 Summary

In general, the collision avoidance constraints in (4.32) and (4.27) formulated using the
approaches in Sections 4.5.2 and 4.5.1, respectively, are concisely written as:

g(xvk, x
e
k) ≤ 0. (4.34)
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Figure 4.6: Unsafe region for the depicted positions of the EV E and TV T in two scenarios. The
EV’s center of gravity must lie outside the gray shaded area for a collision to be avoided.

The above constraints, linearized about a nominal state x̄vk, are concisely written as:

Ge
k(x

v
k|t − x̄vk|t) ≤ hek. (4.35)
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Chapter 5

Iterative Linearization for Real-Time
Nominal Model Predictive Control

5.1 Introduction

This chapter focuses on the design of a real-time path-following and obstacle avoidance con-
troller for the nominal or deterministic predictive control problem where uncertain variables
assume their mean values. In this context, the controller design is challenging due to: (1)
the nonlinearity of the vehicle dynamics, and (2) the presence of time–varying nonconvex
state constraints while navigating in a dynamic environment. Because of its ability to handle
system nonlinearities and constraints in a unified manner, MPC has been shown to be an
attractive control methodology in this class of applications [8, 43, 45, 48, 49, 54, 55].

The main limitation in using optimization–based control strategies, such as MPC, is
the computational burden of solving the optimization problem in real–time. The complexity
arises from the nonlinearity of the vehicle dynamics and the non–convexity of the constraints
[49]. While linearizing the system dynamics leads to some of the constraints becoming con-
vex, the collision avoidance constraints are still non–convex. Moreover, a linearized vehicle
model is a good approximation only in a small region around the reference state and input
vectors about which the linearization is performed. The use of nonlinear MPC for vehicle
control has been proposed in [45, 48, 49, 54, 55]. General purpose solvers for nonlinear
optimization, such as NPSOL [51], are used to solve the resulting non–convex optimization
problem.

Low-complexity MPC schemes in the context of automotive control applications have
been proposed in several works in literature. The approach in [44] still solves a nonlinear
optimization problem at each time step, but the number of control inputs (and hence, decision
variables) is reduced by exploiting the structure of the four-wheel nonlinear model in (3.3). A
linearization-based MPC approach to solve the nonlinear optimization problem is proposed
in [43]. A Linear Time-Varying (LTV) model of the vehicle dynamics over the prediction
horizon is computed based on the assumption of constant control inputs. The resulting
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CFTOC problem to be solved online is a Quadratic Program (QP). A similar approach is
used in [82], but the LTV model is obtained by using a shifted sequence of optimal inputs
from the previous time step. In [130], the real-time iteration scheme (proposed in [39] by
the same authors) is applied to the collision avoidance problem for autonomous vehicles
using nonlinear MPC. This approach is based on a single linearization and the solution of
a QP at each sampling time. A drawback of these approaches is that if the optimal input
sequence differs significantly from the one used for linearization (for example, due to the
sudden appearance of an obstacle), the LTV model used for the control design is no longer
a good approximation of the vehicle dynamics. This motivates the need for an iterative
linearization procedure where a sequence of approximate problems is solved at each time
step.

In this chapter, we present a tailored algorithm based on sequential quadratic program-
ming (SQP) which exploits the structure of the autonomous driving control problem. SQP
involves the iterative solution of a convex approximation to the original problem [18, 58, 94].
We use a similar approach to that in [109] wherein a method based on sequential convex
programming for trajectory optimization is proposed. At each iteration of the optimization
procedure, a convex approximation of the obstacle-free space is computed and the equal-
ity constraints due to the system dynamics are linearized. This results in a sequence of
computationally cheaper QPs to be solved at each time step.

The features of the presented approach are listed below.

1. The algorithm is general in that it can be used with any of the nonlinear vehicle models
presented in Chapter 3. In the examples in this chapter, we use the high-fidelity four-
wheel nonlinear vehicle model of Section 3.2.1.

2. We validate the approach in challenging driving situations where a consideration of
the nonlinear tire-road interaction is especially important. In particular, we perform
autonomous driving experiments at high speeds on snow where the friction coefficient
is around 0.3.

3. The algorithm is run in real-time on embedded computing platforms with relatively low
processing power. We show the ability of our tailored approach in reducing the online
computational time as compared to a generic nonlinear solver currently employed.

4. Although we solve a Nominal MPC in this chapter (that is, system uncertainties are
assumed to take on their mean values), the approach easily extends to the solution of
the Robust and Stochastic MPC problems. This is due to the fact that the solution of
these problems involves their translation into deterministic ones.

This chapter is organized as follows. Section 5.2 presents the formulation of the MPC prob-
lem, Section 5.3 details the proposed algorithm, Section 5.4 shows results from hardware–in–
the–loop (HIL) simulations, experimental results are presented in Section 5.5, and concluding
remarks are made in Section 5.6.
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5.2 Nonlinear MPC Formulation

The nominal open-loop CFTOC problem for autonomous navigation and obstacle avoidance
is given by:

min
uv
0:T−1|t

T−1∑
k=0

‖xvk+1|t − xref
k+1|t‖2

Q + ‖uvk|t‖2
R + ‖∆uvk|t‖2

P , (5.1a)

subject to: xvk+1|t = f v(xvk|t, u
v
k|t, d̄

v
k|t), (5.1b)

g(xvk|t, x̄
e
k|t) ≤ 0, (5.1c)

∆uvk|t = uvk|t − uvk−1|t, (5.1d)

[uvk|t, u
v
k−1|t] ∈ U , (5.1e)

(k = 0, ..., T − 1)

xv0|t = xvt , uv−1|t = uvt−1, (5.1f)

where the notation ‖z‖2
Q = zTQz. The cost function (5.1a) penalizes the deviation of the

state from a given reference trajectory {xref
k|t}Tk=1 in addition to penalizing the magnitude

and the rate of the control inputs. Note the use of the mean value of the disturbance
d̄vk in the dynamics (5.1b) and the nominal predicted environment state x̄ek in the safety
constraints (5.1c). We now present a tailored algorithm for solving (5.1). The presented
methodology is applicable to any nonlinear dynamics model f v(·) and any formulation of
the safety constraints g(·). The models used in our work are made clear later in Section 5.4.
In the following sections, we use zk to denote the variable zk|t.

5.3 Iterative Linearization Approach

The proposed algorithm is similar in structure to an SQP approach [18, 58, 94]. Recall that
the optimization problem (5.1) is nonconvex due to the nonlinearity of the dynamics map
f v(·) in (5.1b) and the nonconvexity of the collision avoidance constraints (5.1c). Hence,
we analytically linearize the vehicle dynamics model, and simplify the collision avoidance
constraints to obtain a QP approximation to the original problem. Such an approach is
significantly faster than a numerical convexification scheme.

We introduce the following notation. Let Ūvt = {ūvk}T−1
k=0 denote the current candidate

solution to the optimization problem (5.1), that is, the current guess for the optimal open-
loop control sequence. Let X̄ v

t = {x̄vk}Tk=1 be the sequences of predicted states generated by
the nonlinear vehicle model (5.1b) with the input sequence Ūvt and x̄v0|t = xt as the initial

condition. We first find a convex local approximation to the original problem around X̄ v
t

and Ūvt . The resulting QP is then solved to obtain a new candidate solution. This process of
convexification and optimization is iterated till a convergence criterion is satisfied. A method
of approximately convexifying constraints, given Ūvt and X̄ v

t , is presented below.
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5.3.1 Convexification of constraints

Vehicle dynamics

The nonlinear model (5.1b) can be linearized about Ūvt and X̄ v
t to yield a linear time-varying

(LTV) state-space representation:

xδ,vk+1 = Akx
δ,v
k +Bku

δ,v
k , (k = 0, ..., T − 1) (5.2a)

xδ,v0 = 0, (5.2b)

where:

xδ,vk = xvk − x̄vk, (5.3a)

uδ,vk = uvk − ūvk, (5.3b)

and:

Ak = ∇xvk
f v(xvk, u

v
k, d

v
k)|(x̄vk,ūvk,d̄vk), (5.4a)

Bk = ∇uvk
f v(xvk, u

v
k, d

v
k)|(x̄vk,ūvk,d̄vk). (5.4b)

Analytical expressions for the matrices Ak and Bk as a function of the nominal trajectory
are determined offline for the specific vehicle model employed. The analytical linearization
is computationally much less expensive as compared to any numerical linearization scheme,
especially when the dimensions of the state and input space, and the prediction horizon are
large. Automatic differentiation solvers can also be used to reduce implementation errors
(see, for example, [98]).

Safety constraints

Recall that the collision avoidance constraints as formulated in (5.1c) are non-differentiable
in general. The linearized safety constraints are given by:

Ge
kx

δ,v
k − hek ≤ 0, (k = 0, ..., T − 1) (5.5)

where:

Ge
k = ∇xvk

g(xvk, x
e
k)|(x̄vk,x̄ek), (5.6a)

hek = −g(x̄vk, x̄
e
k). (5.6b)

The collision avoidance constraints presented in Section 4.5 are particularly amenable to
the above linearization procedure. In the case of the signed distance function presented in
Section 4.5.2, the gradient with respect to the ego vehicle’s state can be computed analytically
as shown in [109]. Similarly, the piecewise affine nature of the safety corridor constraint
formulation in Section 4.5.1 allows us to easily compute the gradients of the upper and lower
bounds of the corridor with respect to the vehicle states.
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5.3.2 QP formulation

The convexification methodology presented in Section 5.3.1 transforms the nonconvex opti-
mization problem (5.1) into a QP given by:

min
uδ,v0:T−1

T−1∑
k=0

‖x̄vk+1 + xδ,vk+1 − xref
k+1‖2

Q + ‖ūvk + uδ,vk ‖2
R

+ ‖uδ,vk ‖2
Rδ + ‖∆uvk‖2

P +Mεk+1, (5.7a)

subject to: xδ,vk+1 = Akx
δ,v
k +Bku

δ,v
k , (5.7b)

Ge
kx

δ,v
k ≤ hek, (5.7c)

∆uvk = (ūvk + uδ,vk )− (ūvk−1 − uδ,vk−1), (5.7d)

[ūvk + uδ,vk , ū
v
k−1 + uδ,vk−1] ∈ U , (5.7e)

‖uδ,vk ‖ ≤ εu,tr (5.7f)

(k = 0, ..., T − 1)

xδ,v0 = xvt − x̄vt , uδ,v−1 = uvt−1 − ūvt−1. (5.7g)

The additional term ‖uδ,vk ‖2
Rδ

in the objective function (5.7a) penalizes the deviation uδ,vk
from ūvk in order to improve the convergence of the algorithm. A trust region constraint
(5.7f) is introduced to ensure the accuracy of the linear model (5.7b) around the nominal
trajectory Ūvt and X̄ v

t . In practice, the linearized safety constraints (5.7c) are imposed as soft
constraints by introducing a slack variable which is heavily penalized in the cost function
(5.7a) by a large number M .

The computational complexity of the MPC problem can be further reduced by keeping
the input vectors constant for every Tb time steps in the prediction horizon. That is:

uvi·Tb+k = uvi·Tb ∀ k = 0, ..., (Tb − 1), ∀ i = 0, ..., (T/Tb). (5.8)

This is equivalent to holding the deviations uδ,vk constant for every Tb steps and reduces the
number of optimization variables in (5.7) by a factor of Tb. We refer to the parameters T
and Tb as the prediction horizon and the input blocking factor, respectively.

5.3.3 Overall algorithm

The nonlinear constrained finite-time optimal control problem (5.1) is solved in a receding
horizon manner by using Algorithm 5.1. The variable Nmax limits the maximum number
of iterations of the iterative linearization procedure. The function warm start(·) uses the
optimal input sequence Ūvt−1 from the previous time step to generate an initial candidate
input sequence Ūvt for the current time step as follows:

ūk|t =

{
ūk|t−1, if k = 0, 1, ..., (T − 2)

ūT−2|t−1, if k = T − 1.
(5.9)
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The function simulate(·) generates the state sequence X̄ v
t using the nonlinear vehicle model

(5.1b). The function solve QP(·) formulates the QP (5.7) using Ūvt and X̄ v
t (as presented

in Section 5.3.1) and yields the perturbed input sequence U δ,vt = {uδ,vk }T−1
k=0 . The algorithm

terminates when the norm of the perturbations is below a specified threshold εu or the
iteration limit Nmax is reached.

Algorithm 5.1 Tailored MPC algorithm

1: Initialize:
Ūv0 = 0

2: while t ≥ 0 do:
3: xt|t = xt . Measure state
4: Ūvt = warm start(Ūvt−1) . Initialize candidate solution
5: iter = 0 . Iteration number
6: while ‖U δ,vt ‖ > εu and iter < Nmax do:
7: X̄ v

t = simulate(xt,t, Ūvt ) . Simulate system using (5.1b)

8: U δ,vt = solve QP(Ūvt , X̄ v
t ) . Solve QP (5.7)

9: Ūvt = Ūvt + U δ,vt . Update candidate
10: iter = iter + 1

11: u?t = ūvt|t . Apply optimal input
12: t = t+ 1

Remark 5.1. The main feature of the algorithm is that it generates a sequence of states
and inputs (X̄ v

t and Ūvt , respectively) that are dynamically feasible according to the nonlinear
vehicle model (5.1b). In fact, dynamic feasibility is maintained at every iteration of the
algorithm.

Remark 5.2. As the linearization is performed analytically, the time-limiting step is the
solution of the QP (5.7). This can be sped up by using tailored embedded QP solvers [40,
41].

5.4 Simulation Results

We compare the performance of the proposed controller with that of the controller which
uses the general purpose nonlinear solver NPSOL. Note that NPSOL implements a sequen-
tial quadratic programming (SQP) algorithm for nonlinear optimization [51] and that the
internal QP solver used by NPSOL (i.e. LSSOL) is the same as that used by the proposed
algorithm. The main difference is that NPSOL computes the convex approximation of the
nonlinear problem using numerical differentiation which is slow, especially for a large prob-
lem. Moreover, NPSOL does not utilize any problem specific information to convexify the
nonlinear program.
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5.4.1 Simulation setup

HIL simulations of the controller are performed on a dSPACE rapid prototyping system
consisting of a DS1401 MicroAutoBox (IBM PowerPC 750FX processor, 800 MHz) and a
DS1006 processor board (Quad-core AMD Opteron processor, 2.8 GHz). The controller
runs on the MicroAutoBox, and the DS1006 board simulates the vehicle dynamics using a
nonlinear four wheel vehicle model with a Pacejka tire model. The simulation model is of
a higher fidelity than that of the four wheel vehicle model presented in Section 3.2.1 as it
also considers the rotational dynamics of the wheels. The physical parameters correspond
to those of the prototype Jaguar vehicle described in Appendix A.1. The control actions are
executed at 10 Hz.

5.4.2 Technical approach

Vehicle model: The nonlinear four wheel vehicle model presented in Section 3.2.1 with a
Fiala tire model is used for the control design. The position and orientation of the ve-
hicle are expressed in the inertial frame. Hence, xvt = [ẋt, ẏt, ψ̇t, Xt, Yt, ψt]

T and uvt =
[δft , βflt , βfrt , βrlt , βrrt ]

T . In order to reduce the number of optimization variables and hence
the computational demand, we use a similar approach as in [44] and introduce the following
assumption on the braking ratios.

Assumption 5.3. The braking ratio at the front left (right) wheel is equal to that at the rear
left (right) wheel, i.e., βfl = βrl = βl, and βfr = βrr = βr.

The modified input vector is given by uvt = [δft , βlt , βrt ]
T . The road is assumed to be straight

and aligned with the inertial axes. A single lane road is considered with the centerline defined
by Y = 0.

Safety constraints: The collision avoidance constraints are formulated using the safety cor-
ridor approach discussed in Section 4.5.1.

Environment model: The environment state xet consists of the inertial positions of all TVs in
the scene. We assume that the future positions of all TVs are known ahead of time without
any uncertainty. Thus, the nominal values x̄et are known over the duration of the simulation.

5.4.3 Results and discussion

We denote the controller which uses the proposed iterative linearization scheme as Controller
1, and the controller which uses NPSOL as Controller 2. Note that both controllers are
solving the nonlinear problem (5.1) with identical safety constraints. That is, the complexity
of the optimization problem solved by both controllers is the same in terms of the number
of optimization variables and constraints. The simulation results are summarized in Figures
5.1–5.2.
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Figure 5.1: Simulation 1: The performance of the proposed controller (Controller 1) is similar to
that of the controller which uses NPSOL (Controller 2) for the same sampling time, prediction
horizon, environment scenario and constraints in the optimization problem.

The scenario consists of a single obstacle in the path of the vehicle. The edge of the
obstacle is at a distance of 2 m from the road centerline. In order to account for the width
of the vehicle, a tolerance of 1 m is included in the obstacle and lane bounds. A triangular
zone is appended to the front of the obstacle to avoid aggressive maneuvers. We assume
the existence of a high–level decision making module which decides the side of the obstacle
on which the vehicle must pass. The entry speed of the vehicle is 15 m/s. In our tests,
the high–level module uses a simple heuristic to choose the side with greater room to pass.
The goal of the controller is to track the road centerline (that is, Y ref = 0) while avoiding a
collision with the obstacle.

In Simulation 1, the performance of the two controllers is compared when the same
prediction horizon and input blocking factor are used (T = 9, Tb = 3). The path of the
vehicle is shown in Figure 5.1. The performance of the two controllers is observed to be
similar.

In Simulation 2, the prediction horizon for controller 1 is increased to T = 30, while that
for controller 2 is increased to T = 11. The path of the vehicle is shown in Figure 5.2.

Remark 5.4. The prediction horizon used in Simulation 2 is the maximum allowable given
the 100 ms sampling time.

It is seen that the vehicle stays very close to the obstacle while using controller 1, and returns
to the road centerline with almost no overshoot. However, controller 2 does not improve its
performance compared to Simulation 1. Moreover, the proposed methodology allows the use
of a much longer prediction horizon as compared to the approach that uses NPSOL. This is
desirable for the early consideration of hazards.
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Figure 5.2: Simulation 2: Controller 1 uses a much longer prediction horizon as compared to
Controller 2.

5.5 Experimental Results

5.5.1 Experimental setup

The experiments were performed on the prototype Jaguar vehicle described in Appendix
A.1 at the Smithers winter testing center in Michigan on tracks covered with packed snow
(µ ≈ 0.3). The goal is to validate the performance of the proposed iterative linearization
approach in relatively challenging situations where a consideration of the nonlinear vehicle
dynamics is essential. The choice of the vehicle and environment models and the safety
constraint formulation is the same as that in the simulations (see Section 5.4.2 for details).
The control actions are executed at 10 Hz.

5.5.2 Results and discussion

The following parameters are used for the controller: T = 21, Tb = 3, Nmax = 8. The
experimental results are presented in Figures 5.3–5.5. The green lines depict the open–loop
planned paths while the black line denotes the actual path of the vehicle. In the scenarios
considered, the road is straight and the edge of each obstacle is at a distance of 1.5 m from
the road centerline. A triangular zone is appended to the front and back of each obstacle to
avoid aggressive avoidance maneuvers. As in the case of the simulations, we assume that a
high-level module decides the side of the obstacle on which the vehicle must pass.

Figure 5.3a plots the path of the vehicle while avoiding a single obstacle at an entry speed
of 80 km/hr. The vehicle stays close to the obstacle, and returns to the road centerline with
a low overshoot. The slip angles at the four wheels are shown in Figure 5.3b. The controller
is able to keep the slip angles within the limits. It is seen that at around t = 45 s, the slip
angles at the front wheels are close to the limiting values (≈ 4 deg).

Figure 5.4 shows the path of the vehicle while avoiding two obstacles separated by a
distance of 70 m. The vehicle passes the two obstacles on opposite sides due to the high–
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(b) Slip angles at the four wheels

Figure 5.3: Experimental test 1: The vehicle avoids a single obstacle with an entry speed of 80
km/hr.
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Figure 5.4: Experimental test 2: The vehicle avoids two separated obstacles with an entry speed
of 60 km/hr.
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Figure 5.5: Experimental test 3: The vehicle avoids an obstacle moving at 36 km/hr with an entry
speed of 80 km/hr. The positions of the vehicle and the obstacle at five time instants t1, ..., t5
during the test are shown.
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level decision making heuristic. An important point to be noted is that the number of
constraints and the complexity of the optimization problem (5.7) is independent of the
number of obstacles. This is due to the consideration of obstacles by the safety corridor
approach.

Figure 5.5 plots the path of the vehicle while avoiding an obstacle moving at a constant
speed of 36 km/hr. The positions of the vehicle and obstacle at time instants t1, ..., t5 during
the test are shown. The edge of the obstacle is 1 m away from the road centerline. The
lateral position of the obstacle remains constant, and it is assumed that the controller knows
the present and future positions of the obstacle.

5.5.3 Controller tuning

We discuss the tuning of the controller keeping the parameters listed in Section 5.5.2 fixed
from an implementation perspective. Recall that the parameter Rδ was introduced in (5.7a)
to penalize the perturbation from the sequence Ūt. If Rδ is of the order of magnitude of Q
and R, the iterative procedure takes longer to converge. On the other hand, if Rδ � Q,R,
the convergence is faster at the cost of not meeting the original objectives. We deal with
this trade–off by using the following heuristics:

• For i = 0: Rδ � Q,R≪ c

• For i < Nsat: R
δ ← βRδ, where β > 1

• For Nsat ≤ i < Nmax: Q,R� Rδ � c

where i is the iteration number, and Nsat is an additional tuning parameter. Based on the
above heuristics, the set of tuning parameters used in the experiments is given in Table 5.1.

Table 5.1: Tuning parameters for experiments

Parameter Value Parameter Value

Q diag (0.01, 0.02, 0.05, 0.1, 0.1, 0) R diag (0.05, 0.1, 0.1)

Initial Rδ diag (0.001, 0.001, 0.001) c diag (104, 105)

β 100 Nsat 3

5.6 Conclusions

In this chapter, we presented a tailored algorithm for the nonlinear nominal MPC problem
based on an iterative linearization of the vehicle dynamics and a convex approximation of the
safety constraints. It reduces the online computational complexity of the nonlinear MPC
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scheme. Simulative and experimental results show the ability of the proposed algorithm
to run in real-time on embedded computing platforms. Moreover, much longer prediction
horizons as compared to general purpose nonlinear solvers can be used. The experiments
involve aggressive maneuvers at high speeds on snow and demonstrate the ability of the
controller to keep the vehicle safe in scenarios involving multiple static and moving obstacles.
While uncertainty is not considered in this chapter, the presented approach is general and
easily extends to the robust and stochastic MPC problems presented later in Chapters 7 and
8, respectively.
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Chapter 6

Robust Lateral Stability Control with
an Uncertain Driver Model

6.1 Introduction

Modern passenger vehicles are equipped with active safety systems which assist drivers in
order to stabilize the vehicle and prevent accidents. In this chapter, we focus on the inte-
gration of two active safety systems, Electronic Stability Control (ESC) and Active Front
Steering (AFS), which enhance vehicle stability by applying braking torques to the wheels
and correcting the front steering, respectively [3, 122]. This problem has been studied in
the past by several authors. For instance, optimal control methods have been studied in
[84], generalized predictive control in [92] and state feedback linearization in [19]. In [38,
97], the authors presented a model–based predictive control technique in which a piecewise
affine (PWA) vehicle dynamics model was used for the control design.

Four elements make the control problem nontrivial: the vehicle model uncertainty, the
nonlinear tire characteristics, the presence of state and input constraints, and the uncertainty
in driver behavior. We present a systematic approach to design a robust lateral stability
controller which addresses all four challenges in a unified framework during the control
design process. In particular, the nonlinear vehicle dynamics are modeled as a PWA system
in which the states and inputs are subject to hard constraints. Model mismatch is captured
by introducing an additive uncertainty in the input. Finally, the driver’s steering input is
treated as a bounded disturbance in the model, whose bounds are a set–valued function of
the vehicle states.

The principal goal of our control strategy is to enlarge the vehicle’s stability region
when it undertakes aggressive maneuvers. Such maneuvers are primarily determined by the
front wheel steering angle which is a combined effect of the driver’s steering input and the
AFS correction. In order to take both contributions into account, we propose the use of a
predictive control framework which considers the driver’s input as a measured disturbance,
and the AFS correction as a constrained control input. Our main motivation is to ensure
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robustness to the uncertainty in the driver’s inputs at each time step. In this work, we extend
the methodology presented in [97] to account for this uncertainty. Existing approaches in
literature do not address the uncertain driver behavior and constraint satisfaction challenges
in a systematic way. In particular, in [38], the driver’s input is assumed to be constant
over the prediction horizon. In [46], the output of the controller is the desired total steering
angle (driver + AFS), which could lead to the possibility of an infeasible AFS command. In
[92], no constraints are imposed on the steering corrections that can be applied by the AFS
system.

We use set–theoretic methods for the control synthesis [16]. The theoretical framework
developed in [97] forms the basis for our control design. In particular, we compute the
robust control invariant (RCI) set for the PWA vehicle model using results on min–max and
max–min reachability [12, 16, 102]. Such a RCI set constitutes the target set of a robust
time–optimal control algorithm. Experimental tests at high speeds on ice with aggressive
driver maneuvers show the effectiveness of the proposed scheme.

The chapter is organized as follows. Section 6.2 describes the derivation of the PWA
model starting from the nonlinear bicycle model. The construction of the set–valued bounds
on the driver steering is shown in Section 6.3. In Section 6.4, we discuss the theoretical
framework used for the design of the robust controller. We present experimental results in
Section 6.5, followed by final remarks in Section 6.6.

6.2 Piecewise Affine Vehicle Model

The design of the robust stability controller is based on the lateral dynamics model (3.16)
in Section 3.2.3. The PWA approximation of the nonlinear lateral tire force function hc?(·)
in (3.17) with ? ∈ {f, r} is given by:

hpwa
c? (α?) =


cs?α? + (cl? + cs?)α̂? if α? ≤ −α̂?,
−cl?α? if − α̂? ≤ α? ≤ α̂?,

cs?α? − (cl? + cs?)α̂? if α? ≥ α̂?,

(6.1)

where cl? and cs? are the cornering stiffnesses of the tires in the linear and saturated regions,
respectively, and α̂? is the slip angle at which the lateral force is maximum. Figure 6.1
shows the lateral force plotted against the slip angle for the Pacejka tire model (with slip
ratio σ = 0), the PWA approximation. The gray dots depict the lateral force values estimated
from data collected during experiments on a winding road and a ‘figure 8’ drift maneuver.

The hybrid bicycle model is obtained by combining the lateral dynamics model (3.16),
the slip angle approximation (3.15), the assumption of constant longitudinal speed ẋ (see
Assumption 3.7) and the PWA approximation (6.1). It is written as:[

ÿ

ψ̈

]
= Ai

[
ẏ

ψ̇

]
+Bi

[
δf
Mz

]
+ fi if (ẏ, ψ̇, δf ) ∈ Ri. (i = 1, . . . , 9) (6.2)
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Figure 6.1: Lateral tire forces and the PWA approximation

Model (6.2) has nine modes resulting from all possible combinations of the three modes for
the front wheels and the three modes for the rear wheels. The polyhedral regions {Ri}9

i=1

define the state and input constraints corresponding to these nine modes. The regions are
obtained from the slip angle inequalities associated with each of the cases in (6.1).

It is important to note that in a vehicle equipped with an AFS system, the front wheel
steering angle δf is the sum of the steering angles resulting from two independent inputs:
(i) the driver’s input at the steering wheel, and (ii) the AFS input. That is:

δf = δd + δAFS. (6.3)

We also introduce an additive uncertainty dvu in the input to account for unmodeled actuator
dynamics and input delays. The modified PWA bicycle model can then be written in a
discrete–time state–space form as:

xvt+1 = Adix
v
t +Bd

i u
v
t +Dd

i δdt + fdi +Bd
i d

v
ut , (6.4)

(xvt , u
v
t , δdt) ∈ Qi, (i = 1, 2, ..., 9)

dvut ∈ Dvu(uvt ),

where xvt := [ẏt, ψ̇t]
T and uvt := [δAFSt ,Mzt ]

T . The collection of polyhedral regions {Qi}9
i=1 is

obtained from {Ri}9
i=1 in (6.2), but lies in a higher dimensional space due to the decoupling

of the steering input by (6.3). Dvu(·) is a set–valued mapping which defines bounds on dvu.
Note that Dvu(·) is chosen to be a set–valued function as the uncertainty in the input may
depend on its value. In our implementation, we assume an uncertainty of 10% in each of the
control inputs. The model (6.4) has the standard form of the additive disturbance model
presented in Section 3.6.2 with dvt = [δdt , d

v
ut ]

T . Reformulating (6.2) as (6.4) has several
advantages:
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(i) It allows us to impose bounds (arising from design constraints) directly on δAFS as
opposed to imposing bounds on δf . This ensures that the input commanded by the
controller can actually be attained.

(ii) It enables us to guarantee vehicle stability for any anticipated behavior of the driver.
This is achieved by treating δd in (6.4) as a measured disturbance which is bounded
by a function of the vehicle states. We design the controller to be robust to this
disturbance.

In the remainder of the chapter, the superscript v corresponding to the vehicle is dropped
for better visual clarity.

6.3 Uncertain Driver Model

In this section, we construct constraints of the form δd ∈ Dx(x), where Dx(·) is a set–valued
mapping of the state x. One approach in determining bounds on δd is to assume a worst–case
scenario. That is, |δd| ≤ δmax

d , where δmax
d is the bound on δd due to the physical limits of the

steering wheel. Such constraints, however, ignore the relationship between the yaw rate and
the front wheel steering angle, and hence, are too conservative. We derive less conservative
bounds on δd based on a steady-state cornering analysis of the linear bicycle model [89, 101].
At steady-state, the relationship between ψ̇ and δf is given by:

ψ̇ss =
ẋ

L(1 + ẋ2/v2
ch)
δf,ss =:

δf,ss
Kψ,ss

=: Gψ,ssδf,ss, (6.5)

where L = lf + lr and vch is the characteristic speed [101]. Gψ,ss := 1/Kψ,ss represents
the steady-state yaw rate gain. Inverting (6.5) and assuming no control (δAFS,ss = 0) at
steady-state gives:

δf,ss = δd,ss = Kψ,ssψ̇ss. (6.6)

We use the value of δd,ss obtained from (6.6) as a linear state–dependent estimate of the
driver’s steering input. We then assume that the actual value of δd lies in an interval
centered at δd,ss. Thus:

Dx(x) =
{
δd : |δd −Kψ,ssψ̇| ≤ ε, |δd| ≤ δmax

d

}
, (6.7)

where ε is a non–negative parameter which must be chosen. The constraint δd ∈ Dx(x) can
also be expressed in terms of a polytopic constraint in R3. That is:

δd ∈ Dx(x)⇔ (x, δd) ∈ Dd ⊆ R3. (6.8)

Note that the bounds on δd are derived assuming the vehicle is cornering in a steady–state
condition. Therefore, in practice, the average gain (δd/ψ̇) differs from Kψ,ss. We account
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Figure 6.2: State-dependent constraints on δd validated with data from different sets of experiments
and the same driver.

for this by using a modified gain Kψ in (6.7). This is illustrated in Figure 6.2 in which we
plot the values of δd vs ψ̇ obtained from experimental tests. The empirical value of Kψ was
computed to be Kψ ≈ 0.5 sec. The projection of the polytope Dd defined in (6.8) on the
δd–ψ̇ space is also plotted in Figure 6.2. Note that the choice of Kψ and ε is critical to our
analysis. For example, in Figure 6.2b, a higher value of ε is needed to ensure constraint
satisfaction. The choice of ε is a trade–off between being too conservative on one hand, and
having the possibility of violating constraints on the other.

6.4 Robust Control Design

The objective of the robust stability control system is to keep the front and rear tires in
the linear region for all admissible values of δd and du. This linear mode of the vehicle is
denoted as “Mode 1”. If the vehicle goes outside mode 1, we want the controller to compute
a feasible input which ensures that the vehicle goes back into mode 1 in a finite number of
time steps. Moreover, when the vehicle is in mode 1, the controller action should be such
that the predicted state at the next time step should also lie in mode 1. These notions
of reaching a specified target set in the state–space and staying within the target set for
all admissible values of the disturbance variables can be formalized using the framework of
robust reachability analysis [16, 103].

6.4.1 Robust reachability framework

We make use of the notion of robust controllable or backward reachable sets which are defined
below.

Definition 6.1. The one–step robust backward reachable set to a given target set X in the
state–space is defined as:

Pre(X ) := {x : ∀δd ∈ Dx(x),∃u such that (x, u, δd) ∈ Q, x+ ∈ X ,∀du ∈ Du(u)}, (6.9)
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where x+ is the predicted state at the next time step given by (6.4) and Q :=
⋃9
i=1Qi.

The Pre(·) mapping gives us the set of states from which there exists at least one feasible
input that can ensure that the predicted state is inside the target set, for all admissible
values of the disturbances δd and du. In addition to the one–step controllable sets, we
introduce the notions of the robust control invariant (RCI) set associated with mode 1, and
the corresponding control mapping. Let P1 = Projx(Q1), where Q1 ⊆ R5 defines the state
and input constraints for mode 1.

Definition 6.2. A set X 1
i ⊆ P1 is called a mode 1 RCI set if for every x ∈ X 1

i and each
δd ∈ Dx(x), there exists a control u such that (x, u, δd) ∈ Q1 and x+ ∈ X 1

i , for all du ∈ Du(u).

Definition 6.3. The maximal mode 1 RCI set X 1
∞ is the RCI set which contains all mode

1 RCI sets X 1
i .

Definition 6.4. The control mapping U1
∞(·) corresponding to X 1

∞ is defined as

U1
∞(x, δd) :=

{
u : (x, u, δd) ∈ Q1, x ∈ X 1

∞, x
+ ∈ X 1

∞ ∀du ∈ Du(u)
}
. (6.10)

If the state x of the vehicle lies in X 1
∞, then for each δd ∈ Dx(x), any choice of input u from

U1
∞(x, δd) would cause the predicted state at the next time step to remain in X 1

∞. However,
it is possible for the state of the vehicle to go outside X 1

∞ due to unmodeled factors such as
sudden disturbances, change in surface friction coefficient, etc. In such a scenario, we would
like to drive the state of the vehicle back into the mode 1 RCI set in a finite number of time
steps. This leads to the notion of N–step backward reachable sets or N–step controllable
sets.

Definition 6.5. The N–step backward reachable sets XN to a given target set X are recur-
sively defined as:

Xk = Pre(Xk−1), (k = 1, ..., N) (6.11a)

X0 = X . (6.11b)

If the state of the vehicle lies in XN , there exists a sequence of control inputs {uk}N−1
k=0 which

ensures that the predicted state of the vehicle will lie inside the target set X in N steps. We
can compute XN by using Algorithm 6.1 (discussed in Section 6.4.2) to recursively compute
Pre(Xk), (k = 0, ..., N). Figure 6.3 shows the 3–step backward reachable sets to X 1

∞ for
µ = 0.3 and ẋ = 50 kph. Note that XN is non–convex in general as it is a union of convex
sets. We now define the control mappings corresponding to the k–step backward reachable
sets.

Definition 6.6. The control mapping Uk(·) corresponding to Xk is defined as:

Uk(x, δd) :={u : (x, u, δd) ∈ Q, x ∈ Xk, x+ ∈ Xk−1,∀du ∈ Du(u)}. (6.12)
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Figure 6.3: 3–step controllable sets to the mode 1 RCI set X 1
∞, µ = 0.3, vx = 50 kph. The different

colors correspond to the various steps. The red set depicts X 1
∞.

When the state of the vehicle goes outside the RCI set, our control strategy identifies the
smallest k such that x ∈ Xk. For each δd ∈ Dx(x), choosing any input from Uk(x, δd) ensures
that the predicted state of the vehicle will lie inside Xk−1. Repeating this procedure at every
time step ensures that the controller will eventually drive the state back into X 1

∞ in a finite
number of time steps. Note that the analysis guarantees robustness to the uncertainty du
as well as to the disturbance δd so long as the constraints du ∈ Du(u) and δd ∈ Dx(x) are
satisfied.

6.4.2 Reachability analysis of the PWA bicycle model

We apply the algorithm developed in [97] for the robust reachability analysis of the PWA
hybrid bicycle model with input and state-dependent disturbances. The algorithm for the
computation of the one-step backward reachable set and RCI set can be derived in terms of
set operations on the target set. The reader is referred to [97] for details of the proof. It is
useful to define the following sets which represent state, input and disturbance constraints,
and their projections:

Ω := {(x, u, δd, du) : (x, u, δd) ∈ Q,
δd ∈ Dx(x), du ∈ Du(u)} ⊆ R7, (6.13a)

Ωx,u,δ := Projx,u,δ(Ω), Ωx,δ := Projx,δ(Ω),

Ωx := Projx(Ω). (6.13b)

The steps for the computation of Pre(X ) are given by Algorithm 6.1. Based on this method,
the iterative procedure to compute the mode 1 RCI set is given by Algorithm 6.2. Note the
use of Pre1(X ) instead of Pre(X ) in Algorithm 6.2. This notation implies that we perform
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Algorithm 6.1 Pre set computation

1: Φ(X ) = {(x, u, δd, du) ∈ Ω : x+ ∈ X}
2: ∆1 = Ω\Φ(X ),
3: Ψ = Projx,u,δ (∆1),
4: Σ1 = Ωx,u,δ\Ψ,
5: Σ2 = Projx,δ (Σ1),
6: ∆2 = Ωx,δ\Σ2,
7: ∆3 = Projx (∆2),
8: Pre(X ) = Ωx\∆3

Output: Pre(X )

Algorithm 6.2 RCI set computation

1: Initialize:
i = 0
Xi = P1

2: repeat
3: i = i+ 1
4: Xi = Pre1(Xi−1) ∩ Xi−1

5: until Xi == Xi−1

6: X 1
∞ = Xi

Output: X 1
∞

the one–step reachability analysis using the constraints and dynamics associated with mode
1 only. Figure 6.4 shows the output of Algorithm 6.2 for µ = 0.3 and vx = 50 kph. As the
model (6.4) is affine, and the state and input constraints are polyhedral, the sets Pre(X ) and
X 1
∞ are also polyhedral by construction [103, 97]. The Multi–Parametric Toolbox (MPT)

[73] in MATLAB can efficiently perform set operations on polytopes, and hence was used
for the reachability analysis and RCI set computations.

6.4.3 Robust control design with reference tracking

The stability control system provides front steering corrections and yaw moment commands
in order to track a given reference in the state–space. The reference signals, r = [ẏref , ψ̇ref ]T ,
are a function of the current states and the driver’s steering input. We use a standard
reference generator for ESC systems [67] which is based on a steady–state cornering analysis
of the linear bicycle model. The optimal control input, u? = [δAFS,M ]T , is computed by
minimizing a quadratic cost function as:

u? = arg min
u∈U?(x,δd)

(x+ − r)TQ(x+ − r) + (u− upre)TR(u− upre), (6.14)



CHAPTER 6. ROBUST LATERAL STABILITY CONTROL 73

P1

X
1

∞
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Figure 6.4: Maximal RCI set X 1
∞, µ = 0.3, vx = 50 kph.

where Q and R are suitably chosen positive definite matrices, x+ is the predicted state at
the next time step given by model (6.4), and upre is the control input commanded at the
previous time step. Depending on the current value of the state x, the set of admissible
control inputs U?(x, δd) is given by either (6.10) or (6.12). In particular, if x ∈ X 1

∞, then
U?(x, δd) = U1

∞(x, δd), otherwise U?(x, δd) = Uk(x, δd), where k is the smallest positive integer
for which Uk(x, δd) is not empty. Note that the controller is switched based on the polytopes
U1
∞ and Uk which are computed offline.

The cost function in (6.14) is used only when the vehicle is in mode 1 or when the front
tires are not saturated. If the front tires are saturated, we impose a penalty on the high
positive or negative slip angle in order to drive it to that value at which maximum lateral
force is obtained. Since the AFS only provides control of the front slip angle, we ignore the
rear slip angle in the modified cost function. In this case, we obtain the control input u? as
the optimizer of the following problem:

u? = arg min
u∈U?(x,δd)

(x+ − r)TQ(x+ − r) + (u− upre)TR(u− upre) + P (α+
f − α̂f )2, (6.15)

where P > 0, α+
f is the linear approximation of the predicted front slip angle at the next time

step given by (3.15) and α̂f is the value of the front tire slip angle at which the lateral force
is maximum. The definition of U?(x, δd) is the same as that for the optimization problem
(6.14). The problems (6.14) and (6.15) are quadratic programs as x+ and α+ are affine in
u, and the sets U?(x, δd) defining the constraints on u are polyhedral. Note that the optimal
control input u? has two components: i) the front wheel steering angle δ?AFS and ii) the yaw
moment M?

z . While we can directly set the AFS input to δ?AFS, the yaw moment command
must be converted to four individual braking torques that can be applied to the four wheels.
The wheel braking torques are computed from M?

z using the algorithm presented in [46].
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6.5 Experimental Results

6.5.1 Experimental setup

The prototype Jaguar vehicle described in Appendix A.1 was used for the experimental
validation of our approach. The sampling time for the experiments was Ts = 0.05 s.

6.5.2 Results

We performed several tests on an icy surface (µ ≈ 0.3), and present the results from two
relevant experiments in this work. In the first experiment, the driver performed a double
lane change maneuver with an entry speed of 60 kph and maintained an almost constant
position of the accelerator pedal. The tuning parameters are listed in Table 6.1. Note the
different sets of parameters used depending on whether the vehicle state lies within the RCI
set X 1

∞ or not.

Table 6.1: Tuning parameters for lateral stability control experiments

Parameter Value Parameter Value

N 4

Inside X 1
∞ Outside X 1

∞
Q diag (0.1, 30) Q diag (0.1, 10)
R diag (2, 0.1) R diag (2, 0.1)

P 0.07

The vehicle response is shown in Figures 6.5a–6.5c. In Figure 6.5a, we show the perfor-
mance of the controller in tracking yaw rate and lateral velocity signals. We also compare the
vehicle states with the controller being active to the states when the active safety system is
disabled. We obtain a satisfactory tracking performance and are able to prevent the vehicle
from attaining high values of lateral velocity and yaw rate.

In the upper plot of Figure 6.5b, we plot the driver’s steering input, the AFS command
and the measured total front wheel steering angle. The controller imposes a counter–steering
correction which results in vehicle stabilization. The AFS command is opposite to the driver’s
input in order to generate a counter–yaw moment to avoid a spin–out. In addition, the
braking moment command supports this action as shown in the bottom part of Figure 6.5b.

Figure 6.5c depicts the evolution of the state trajectory superimposed on the 3–step
backward reachable set which were computed offline. The controller is able to compute an
input command such that the vehicle states always lie in X 1

∞.
The second experiment was performed on an icy circular track (µ ≈ 0.2) of diameter 110

m at a speed of approximately 40 kph. The aim of this test was to verify the controller action
i) when the vehicle simultaneously experiences front and rear tire saturation and ii) when
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Figure 6.5: Experiment 1: Double lane change maneuver with an entry speed of 60 kph.

model mismatch occurs as a result of any of the assumptions of known friction coefficient
(Assumption 3.6) and constant speed (Assumption 3.7) not being satisfied. In particular, our
control model assumes a friction coefficient of 0.3, which is different from the actual friction
coefficient observed in this experiment. The tuning parameters are the same as those used
in the first experiment. The vehicle response is shown in Figures 6.6a–6.7b.

Figure 6.6b shows the state trajectory superimposed on the 3–step controllable set. Al-
though the state of the vehicle goes outside the mode 1 RCI set X 1

∞, the controller is able to
bring the state back into X 1

∞ within a short time. In Figure 6.6a, we note that the tracking
performance is affected by the excursion of the state outside X 1

∞. The main reason for the
relatively poor tracking in such a situation is that the reference trajectory is generated using
a steady–state cornering analysis.

We illustrate the effectiveness of using the modified cost function (6.15)) in Figures 6.7a
and 6.7b. In the top part of Figure 6.7a, we plot the driver’s steering input, the AFS
command and the measured total front wheel steering angle. Figure 6.7b shows that around
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Figure 6.6: Experiment 2: Driving on icy circular track (µ ≈ 0.2) of diameter 110 m at a speed of
approximately 40 kph.

t = 185 s, the absolute values of both, the front and rear tire slip angles become greater than
α̂f and α̂r, respectively. In order to stabilize the vehicle in this case, the controller generates
a negative yaw moment by the combination of a negative AFS command and a negative yaw
moment command, as desired. This causes the front tire slip angle to return to the linear
region at t = 187 s.

6.6 Conclusions

In this chapter, we presented the design of a robust vehicle stability controller which uses AFS
and differential braking. The control approach explicitly considers the driver’s intent in the
control design process, taking into account the uncertainty in both, the driver behavior and
the commanded input. The experimental results illustrate the effectiveness of the proposed
controller, which is able to guarantee convergence into the maximal RCI set despite model
mismatch and the presence of state and input constraints.

While the presented application involves the driver in the loop, the method is general and
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Figure 6.7: Experiment 2: Driving on icy circular track (µ ≈ 0.2) of diameter 110 m at a speed of
approximately 40 kph.

can be applied to the autonomous driving case as well. In fact, this simplifies the control
design as the state-dependent disturbance δd (that is, the driver’s input) is zero. In this
case, the set-valued mapping U?(·) (defined in Section 6.4.3) is only a function of the vehicle
state xv. The goal of the autonomous controller is to choose a control input uvt from the set
U?(xvt ) at time t to guarantee the lateral stability of the vehicle. The vehicle state xvt , the
system dynamics (6.4) and the cost functions in (6.14)–(6.15) would have to be appropriately
modified to encode additional objectives such as lane keeping.
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Chapter 7

Safe Personalized Autonomous Cruise
Control

7.1 Introduction

Autonomous or Adaptive Cruise Control (ACC) systems were introduced in the automotive
industry in the early 1990s and are present in many passenger vehicles today [119]. By
controlling the speed of the ego vehicle to match a desired reference such as the road speed
limit and adapting the speed to that of the car in front, these systems help prevent rear-end
collisions and relieve the driver of a tedious task. Moreover, they can easily be combined
with an autonomous lane-keeping system such as the one presented in Chapter 5 to provide
full autonomy on highways. In this chapter, we focus on three aspects of ACC which are
detailed below.

Guaranteed Safety

The main requirement of ACC systems is to prevent collisions with the vehicle in front of it
(referred to as the preceding vehicle) or target vehicles which may cut-in to its path. The
problem of guaranteeing safety is complicated by the fact that the preceding vehicle’s future
motion is not known. Common approaches for designing safety constraints in car-following
applications are based on certain assumptions about the preceding vehicle’s behavior such
as constant velocity or constant acceleration. The predicted positions and velocities of the
preceding vehicle are then used to compute spacing constraints based on, for example, a
desired time-to-collision (see e.g. [11, 81]). While such approaches perform well in practice,
they do not guarantee safety for all possible actions of the preceding vehicle. For instance, a
situation in which the preceding vehicle brakes suddenly to come to a stop is likely to result
in a rear end collision. In the context of vehicle platooning, the authors in [7] construct a set
of states from which there exists a safe control law such that collisions with the leader platoon
are avoided for all possible maneuvers of the leader. We aim to construct a similar safe set
based on the notion of robust reachability analysis. In [127], the envelope of opportunity for
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drivers in car-following situations is analyzed, that is, when and how drivers must brake to
avoid rear-end collisions. Our goal is to incorporate such envelopes directly as constraints in
the optimal control problem for safe decision making.

Personalization

In addition to safety, ACC systems and fully autonomous cars in general must generate
smooth control actions for the comfort of their passengers. However, the notion of comfort
varies greatly from driver to driver. Current ACC systems are based on constant time-
headway policies where the desired speed of the vehicle is proportional to the distance to the
vehicle in front [65]. The time-headway is defined as the ratio of the relative distance between
the ego and preceding vehicles to the speed of the ego vehicle. In addition to knowing the
driver’s desired time-headway, a challenge for ACC systems is designing controllers that can
achieve this headway with an acceleration profile which feels comfortable to the driver. For
example, some drivers may like to aggressively close the gap between themselves and the
preceding vehicle while others prefer using a low value of acceleration. Current systems are
based on extensive tuning to achieve a comfortable behavior which is hard to customize to
drivers’ preferences. We propose using a learning-based approach to learn a model of the
driver’s longitudinal behavior from driving data collected from that particular driver. This
requires minimal tuning. Moreover, in combination with the robust controller, collisions are
prevented if the expected driver’s actions are not safe for the given scenario.

Several approaches for learning driving styles of individual drivers have been presented in
the literature. Parametric approaches fix the structure (functional form) of the model and
identify the corresponding parameters from data. Examples include the constant velocity
and acceleration models, the Intelligent Driver Model (IDM) [117] and the SUMO simulator
model [13]. Non-parametric methods, on the other hand, learn the model structure and
parameters from data. In this class, the frameworks of Artificial Neural Networks (ANNs)
[100], imitation learning using dataset aggregation [104] and Gaussian Mixture Regression
[22, 23] have been used to learn control actions for robots from demonstrations by a human.
Inverse Optimal Control (also known as Inverse Reinforcement Learning) techniques instead
learn a representation of the cost function from which humans derive their control actions
and are applied to the driving problem in [1, 2, 80, 72]. A comparison of parametric and
non-parametric approaches in [77] shows that the latter outperforms the former for long-term
predictions of driver behavior. We use a combination of Hidden Markov Models (HMMs)
and Gaussian Mixture Regression (GMR) in our work, which was presented in [74] for the
longitudinal control task.

Multi-lane target vehicles

Current ACC systems use a combination of on-board radar and camera to identify a Primary
Target (PT) - the car in front of the ego vehicle in its own lane. The relative distance and
speed of the PT are then passed to the control algorithm, which determines an acceleration
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command for the ego vehicle such that a safe following distance is maintained. If a PT is
not detected, the controller tracks a desired speed such as the road speed limit.

A challenging scenario for current ACC systems is to deal with target vehicles in neigh-
boring lanes cutting in to the lane of the ego vehicle. The authors in [91] recognize the
vehicle cutting in as the PT when the Time to Lane-Crossing (TLC) of the target vehicle is
within a threshold. In [90], a fuzzy logic approach is used to compute the probability of a
target vehicle entering into the ego vehicle’s lane. These approaches are rule-based and not
robust to noisy measurements. Moreover, they assume the existence of a single PT. In the
case of multiple target vehicles, existing approaches choose the most relevant one based on
some heuristics.

The authors in [108] develop a model to estimate the probability that a vehicle in the
neighboring lane cuts-in to the lane of the ego vehicle. Their approach is based on the
headway times of the vehicle changing lanes with respect to the vehicles surrounding it. A
drawback of this approach is that drivers’ tendencies to initiate lane changes vary signifi-
cantly. Specifically, for a given traffic situation, some drivers may attempt to change lanes
while others may not.

Probabilistic approaches for detecting lane changes of target vehicles are proposed in [36,
106]. In [36], a probabilistic network is constructed where the input nodes are an extensive
set of features extracted from the driving scene and include inter-vehicle relationships. A
combination of Gaussian functions of the input nodes and thresholding is used to identify
the lane change intent. The work in [106] identifies key features for lane change prediction of
target vehicles starting from a larger feature set. A naive Bayes classifier is used to compute
the lane change intent. In our work, we use the learning-based intent estimation algorithm
presented in Chapter 4 (Section 4.3), which was shown to be effective for the intent prediction
of the ego vehicle [78]. We apply this method to the prediction of target vehicle intent where
only a limited set of measurements or features of target vehicles can be reliably estimated
using existing sensors. Our goal is to study the effect of cut-in detection of surrounding
vehicles on the performance of the proposed ACC system.

Summary of contributions

In this chapter, we focus on advanced autonomous cruise control systems with the following
features:

1. The personalization of the car-following behavior of the autonomous vehicle using data
collected from the driver. A learning-based approach is used to build a model of the
driver’s longitudinal acceleration given the history of driving situations.

2. Identification of relevant target vehicles in the scene for the purpose of ACC based on
their lane change probabilities. The probability of a target vehicle changing lanes is
estimated by a learning-based method trained on real driving data.
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Figure 7.1: Autonomous Cruise Control (ACC) system architecture as described in Section 7.1.

3. The design of a controller based on robust predictive control which accounts for the
uncertainty in the future motion of the relevant target vehicles. This allows the au-
tonomous vehicle to be safe even under aggressive braking maneuvers by the vehicles in
front of it. The controller can handle multiple vehicles without the need for heuristics
to choose the most safety-critical one.

The effectiveness of the proposed approach is demonstrated by offline simulations using data
collected from our test vehicle and by real-time experiments on highways.

A schematic of the system architecture is shown in Figure 7.1. The “Sensor Fusion” mod-
ule combines the measurements from the sensors such as radar, camera, lidar and GPS/INS
to provide estimates of the relative positions and velocities of target vehicles (TVs) in front
of the ego vehicle (EV). The “Relevant Target Identification” module computes lane change
probabilities of the detected TVs and identifies relevant TVs for ACC. These are denoted as
Relevant Targets (RTs) as opposed to a single PT in the case of conventional ACC systems.
Based on an assessment of the Most Relevant Target (MRT), the “Driver Model” generates a
reference acceleration for the “Controller” which computes the desired acceleration command
for the “Vehicle”.

The remainder of the chapter is organized as follows. We first present the design of the
robust controller and the relevant target identification in Section 7.2. The driver model used
for the personalization of the ACC system is presented in 7.3. Off-line simulation results
using real data and real-time experimental results are presented in Sections 7.4 and 7.5,
respectively, to demonstrate the effectiveness of the proposed approach. Finally, concluding
remarks are made in Section 7.6.

Note on sensor fusion

While the sensor fusion algorithm is not a focus of this dissertation, it is a key element for
the robust detection of objects in front of the ego vehicle. Our sensor fusion approach was
developed by the author in [126] and is summarized below.
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The experimental vehicle used for this application (Vehicle B described in Appendix A)
is equipped with a radar, camera and lidar. Each sensor reports the relative positions and
velocities of the TVs in front of the EV with respect to its body fixed coordinate frame. The
main challenge of sensor fusion is data association, that is, deciding which measurements from
the three sensors originate from the same TV. In our case, the individual sensors perform their
own tracking, so we use a globally optimal probabilistic track-to-track association algorithm
to determine which tracks pertain to the same real-world object. Based on the work of
[37], we formulate the problem as a variation of the 3-dimensional assignment problem.
Measurements from each of the three sensor tracks are grouped into triples to represent the
hypothesis that those measurements have a common origin. The output of the algorithm
is the optimal assignment which minimizes a chosen cost function. The cost of a triple is
defined to be the negative log of the ratio of the probability that all three measurements
in the triple pertain to the same object to the probability that all three measurements are
spurious. The cost function is then the sum of the costs of all possible triples. The resulting
optimization problem is a Mixed Integer Linear Program (MILP) which can be solved online.
We use the open-source solver ECOS for solving the optimization problem [40].

A fused measurement of each associated TV’s states is obtained by a convex combination
of the measurements from each sensor. Additionally, a Kalman filter is used to estimate the
relative positions and velocities of the TVs with respect to the EV.

7.2 Robust Control Design

In this section, we present the design of the robust predictive controller. First, the analysis
with a single RT (known as the preceding vehicle) is presented. It is extended for the case
of multiple RTs.

7.2.1 Vehicle models

Ego vehicle

The longitudinal point-mass model introduced in Section 3.4 is used to model the ego vehicle
motion. Compactly, the linear time-invariant (LTI) model is written in state-space form as:

xvt+1 = Axvt +Buvt , (7.1)

with xvt = [ξt, vt]
T and uvt = at.

Remark 7.1 (Actuator dynamics). As noted in Section 3.5, it is straightforward to include
the acceleration lag in the ego vehicle model (7.1). For the sake of clarity, we do not explicitly
consider the actuator dynamics in the subsequent controller synthesis. The analysis is general
as the LTI model structure (7.1) is retained even when the acceleration lag model (3.31) is
included in the system dynamics. The main difference is in the increase in the dimension of
the state vector by one element.
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Preceding vehicle motion

The motion of the preceding vehicle is also assumed to be governed by the model which
describes the ego vehicle motion. That is:

xet+1 = Axet +Bdet , (7.2)

with xet = [ξet , v
e
t ]
T and det = aet . As the future behavior of the preceding vehicle is not known,

the proposed RMPC scheme assumes the acceleration det of the preceding vehicle at time t
to be a disturbance whose bounds are described as:

det ∈ D := {d : aemin ≤ d ≤ aemax}, (7.3)

where aemin and aemax are the estimated minimum and maximum accelerations, respectively,
of the preceding vehicle. The goal of the RMPC design is to satisfy the safety constraints
discussed below for all det ∈ D.

7.2.2 Safety constraints

The safety requirement of avoiding collisions for all possible realizations of the disturbance
det in the set D is enforced by the following constraint on the relative distance between the
preceding and ego vehicles over the prediction horizon:

ξek|t − ξk|t ≥ dsafe ∀dej|t ∈ D ∀j = 0, . . . , k − 1, (7.4)

where dsafe is the minimum safe following distance.
Due to the simple nature of the dynamics (7.2), disturbance bounds (7.3) and relative

distance constraints (7.4), robust satisfaction of (7.4) can be achieved by assuming that the
disturbance dek|t takes on its lower bound aemin at every time step in the prediction horizon.
Intuitively, if the preceding vehicle actually accelerates at a value greater than aemin, the
relative distance will be greater than that computed with the worst-case value aemin. Hence,
(7.4) will be satisfied for all possible values of the disturbance, as is shown formally below.

The predicted worst-case states of the preceding vehicle, denoted by x̄ek|t = [ξ̄ek|t, v̄
e
k|t],

evolve as:

x̄ek+1|t = Ax̄ek|t +Baemin. (7.5)

In addition, we constrain the speed of the preceding vehicle to be non-negative. The pre-
dicted positions ξ̄ek|t from (7.5) are used to formulate the safety distance constraints over the
prediction horizon:

ξ̄ek|t − ξk|t ≥ dsafe. (7.6)

From the system dynamics in (7.5), it is easy to show that:

ξ̄ek|t ≤ ξek|t ∀dej|t ∈ D ∀j = 0, . . . , k − 1. (7.7)
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Hence, satisfaction of (7.6) ensures that (7.4) is satisfied.
In addition to maintaining a safe following distance to the preceding vehicle, the controller

must ensure that the EV respects the speed limit:

vk|t ≤ vmax, (7.8)

where vmax is the speed limit of the road. The state constraints (7.6) and (7.8) are concisely
expressed as:

g(xvk|t, x̄
e
k|t) ≤ 0. (7.9)

In addition, we introduce constraints on the control input (defined in (3.34)):

[uvk|t, u
v
k−1|t] ∈ U (7.10)

7.2.3 Persistent feasibility

In general, there is no guarantee that the safety constraints (7.9) and (7.10) will be satisfied
in closed-loop. This problem of persistent (or recursive) feasibility is well studied in the
literature (see [85] for a survey). In RMPC, persistent feasibility can be ensured by intro-
ducing a suitably chosen terminal set in which the system state at the end of the horizon is
constrained to lie. A sufficient condition for recursive feasibility is that the terminal set is a
Robust Control Invariant (RCI) set, which were introduced in Section 6.4 and defined below
for the current application:

Definition 7.2. Consider the system xt+1 = f(xt, ut, dt), where the state xt ∈ X , the input
ut ∈ U and the disturbance dt ∈ D. A set R ⊆ X is said to be an RCI set for the system if:

xt ∈ R =⇒ ∃ut ∈ U s.t. f(xt, ut, dt) ∈ R ∀dt ∈ D. (7.11)

Remark 7.3. In the absence of disturbances in the system, the corresponding set is called a
Control Invariant (CI) set.

Definition 7.4. The RCI (resp. CI) set which contains all other RCI (resp. CI) sets is
called the maximal RCI (resp. CI) set.

An RCI set is the set of states from which there exists a feasible input such that the state at
the next time step lies within the set for all possible values of the disturbance. Computing
an RCI set for the car-following problem is not trivial due to the fact that the motion of
the preceding vehicle cannot be controlled. The set of reachable states corresponding to
the model (7.5) given the disturbance bounds (7.3) includes negative speeds of the preceding
vehicle. Hence, standard methods for computing the RCI set for linear systems (see [17] for a
survey) would result in a conservative or empty RCI set. Theoretically, the preceding vehicle
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behaves as a switched (or hybrid) system where the permissible values of the acceleration are
such that the vehicle does not attain negative speeds. This, however, significantly complicates
the computation of the RCI set. Moreover, the resulting set usually consists of a union of
convex sets, and is non-convex. In this work, we propose a method of computing a polyhedral
(hence, convex) terminal constraint for the RMPC problem.

We use the same assumption about the future behavior of the preceding vehicle as is
used in the design of the safety constraints (7.6). Starting from its state xet = [ξet , v

e
t ] at

time instant t, the preceding vehicle is assumed to apply maximum braking. Let (t + ks)
denote the time at which the preceding vehicle comes to a stop. The model (7.5) allows us
to compute the predicted worst-case states {x̄ek|t = [ξ̄ek|t, v̄

e
k|t]

T}ksk=0. Note that v̄ek|t = 0 for
k ≥ ks. We will show that the worst-case assumption is sufficient to compute the required
RCI set.

The computation of the RCI terminal set is broken down into two steps. In the first step,
we compute the maximal CI set (denoted as Xep) for the predicted ego and preceding vehicle
states at time (t + ks). This is the set of safe states for the ego vehicle assuming that the
preceding vehicle has already come to a stop. The second step is to compute the set XT of
states [xvT |t, x̄

e
T |t] at the end of the controller prediction horizon that can be driven into Xep

in (ks − T ) number of time steps. This ensures the infinite horizon safety of the terminal
vehicle state xvT |t. Concretely, starting from xvT |t, the controller can bring the state into Xep
in a finite number of steps, and once there, it can keep the state in Xep by the definition of
the maximal CI set. The formal definitions of the sets Xep and XT are introduced below.

The maximal CI set Xep for the predicted ego and preceding vehicle states at time (t+ks)
is defined as follows:

Xep = {[xvks|t, x̄eks|t] | ∃uvks|t ∈ U s.t. [xvks+1|t, x̄
e
ks+1|t] ∈ Xep, xvks+1|t = Axvks|t +Buvks|t,

x̄eks+1|t = x̄eks|t, g(xvks|t, x̄
e
ks|t) ≤ 0}. (7.12)

The absence of the worst-case disturbance aemin in (7.12) is due to the fact that v̄ek|t = 0 for
k ≥ ks. Therefore, the preceding vehicle cannot decelerate further. This also allows us to
set x̄eks+1|t = x̄eks|t in (7.12). Note that Xep is a polyhedron as the system dynamics are linear
in the states and inputs and the safety constraints are defined by a set of linear inequalities.

Remark 7.5. The input constraint set U in (7.12) only includes the bounds on the control
input uvk defined in (3.33a) and does not include the rate constraints (3.33b). Later, in
Section 7.2.4, we will show how the analysis can be extended to include the aforementioned
rate bounds.

We use the Multi-Parametric Toolbox (MPT) in MATLAB is used to compute Xep [59]. The
projection of Xep in the ξr-v space is shown in Figure 7.2, where ξr = ξe − ξ is the relative
distance between the preceding and ego vehicles. As expected, the maximum admissible ego
speed increases with the relative distance. The black line depicts the direction of unbound-
edness of Xep. Recall that Xep is a polyhedron although it does not appear so from Figure 7.2
at first glance. This is due to the fact that the approximate analytical expression for the left
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Figure 7.2: Projection of the maximal CI set Xep in the ξr-v space for dsafe = 5 m and vmax = 25
m/s. The black line depicts the direction of unboundedness of Xep.

boundary of Xep is quadratic in the speed v of the ego vehicle as will be shown later in Section
7.2.5. The analytical derivation is based on the continuous-time representation (3.29) of the
longitudinal dynamics whereas the above analysis uses the discretized representation (3.30).
This results in the quadratic boundary being approximated by a set of linear inequalities.

Recall that the next step is to compute the set XT of terminal states [xvT |t, x̄
e
T |t] that can

be driven into Xep in (ks − T ) number of time steps. The computation of the terminal set
XT is based on the notion of backward reachable sets, which were introduced in Section 6.4
and are defined below for the current application.

Definition 7.6. Consider the system xt+1 = f(xt, ut), where the state xt ∈ X , and the input
ut ∈ U . The one-step backward reachable set to a given target set T ⊆ X is defined as:

Pre(T ) = {x ∈ X | ∃u ∈ U s.t. f(x, u) ∈ T }. (7.13)

Definition 7.7. The N-step backward reachable sets RN to a given target set T are recur-
sively defined as:

Rk = Pre(Rk−1) (k = 1, . . . , N), R0 = T . (7.14)

For our problem, the set Pre(T ) for a given target set T takes the form:

Pre(T ) = {[xvk|t, x̄ek|t] | ∃uvk|t ∈ U s.t. [xvk+1|t, x̄
e
k+1|t] ∈ T , xvk+1|t = Axvk|t +Buvk|t,
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x̄ek+1|t = Ax̄ek|t +Baemin, g(xvk|t, x̄
e
k|t) ≤ 0}. (7.15)

Note the use of the worst-case disturbance aemin in (7.15). This is due to the assumption that
the acceleration of the preceding vehicle takes on its minimum value aemin from time instant
(t+ T ) to (t+ ks).

We now state and prove the following theorem which allows us to compute a suitable
terminal constraint for the RMPC problem.

Theorem 7.8. Let XT = Rks−T , where Rks−T is the (ks−T )-step backward reachable set to
Xep. The RMPC problem is persistently feasible with respect to the safety constraints (7.10)
and (7.9) if the terminal constraint [xvT |t, x̄

e
T |t] ∈ XT is introduced.

Proof: Let [xvT |t, x̄
e
T |t] ∈ XT = Rks−T as defined above. From (7.14) and (7.15), there exists a

feasible sequence of control inputs {avk|t}ks−1
k=T such that the sequence of states {[xvk|t, x̄ek|t]}ksk=T+1

satisfies the state constraints (7.9) and [xvks|t, x̄
e
ks|t] ∈ Xep for dek|t = aemin (k = T, . . . , ks − 1).

As aemin is the worst-case acceleration of the preceding vehicle, the above statement holds
for all possible dek|t ∈ D (k = T, . . . , ks − 1). Moreover, by (7.12), [xvks|t, x̄

e
ks|t] ∈ Xep implies

that for k ≥ ks, there exists a feasible control input avk|t which keeps the ego vehicle safe. In

summary, the satisfaction of the constraints (7.9) and the terminal constraint is guaranteed
in closed-loop for all possible values of dek|t ∈ D (k ≥ 0). �

As the backward reachability analysis in (7.14) is performed in discrete-time, the k-step
backward reachable set Rk to the target set Xep corresponds to a specific value of v̄e. In
particular, Rk corresponds to v̄e = −aemink∆tv. Figure 7.3 shows the projection of the sets
Rk corresponding to the target set Xep in the ξr-ve-v space for k = 10, 20, 30, 40, 50. Each
Rk is a two-dimensional plane in the ξr-v space. In order to account for continuous values
of v̄e, we set:

XT = Rk? , (7.16)

where:

k? = max
k=1,2,...

k s.t. v̄eT |t ≥ −aemink∆tv. (7.17)

Intuitively, for a given value of v̄eT |t, we choose a k-step backward reachable set corresponding
to a value of v̄e less than v̄eT |t. Persistent feasibility is still guaranteed as the above choice is
conservative.

Remark 7.9. If ks ≤ T , XT = Xep is sufficient to guarantee persistent feasibility. This is
the case if the preceding vehicle is expected to come to a full stop with maximum deceleration
aemin within the prediction horizon of the controller.
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Figure 7.3: Projection of the sets Rk corresponding to the target set Xep in the ξr-ve-v space for
k = 10, 20, 30, 40, 50. Each two-dimensional slice in the ξr-v space corresponds to a particular value
of ve.

7.2.4 Dealing with actuator rate constraints

We now extend the above analysis to include the input rate constraints defined in (3.33b).
We define the auxiliary control input ∆uvk|t = uvk|t − uvk−1|t. Note that uv−1|t is initialized to
the input uvt−1 commanded at the previous time step. Further, the state vector is augmented
to include the control input at the previous time step. Concretely, we define the augmented
state vector as:

x̃vk|t =

[
xvk|t
uvk−1|t

]
. (7.18)

The corresponding system dynamics are given by:

x̃vk+1|t = Ãx̃vk|t + B̃ũvk|t, (7.19)

with:

ũvk|t = ∆uvk|t, (7.20a)

Ã =

[
A B
0 I

]
, B̃ =

[
B
I

]
. (7.20b)

Expressing the dynamics in the standard form of a LTI system allows us to employ the
terminal set computations developed in Section 7.2.3 with the following modifications:
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1. As the augmented state vector x̃vk|t now contains the control input uvk−1|t, the modified

state constraints g(x̃vk|t, x̄
e
k|t) include the actuator bounds (3.33a).

2. As the modified control input ũvk|t is the change ∆uvk|t in inputs between consecutive
time steps, the polytope U used in the terminal set computations in Section 7.2.3 is
defined by the actuator rate bounds (3.33b).

Consideration of the actuator rate constraints increases the conservativeness of the terminal
set as the stopping distance of the ego vehicle increases.

7.2.5 Analytical approaches for computing the terminal set

The methodology for computing the robust control invariant set presented in Section 7.2.3
yields a polyhedral representation of the terminal set XT . The advantage of the approach
based on robust reachability analysis is that it allows for the systematic consideration of the
actuator dynamics and rate constraints. Moreover, as the computed set is convex, it can be
used with a large number of convex optimization solvers for solving the resulting CFTOC
problem. A potential drawback from the standpoint of real-time implementation is that the
number of halfspaces defining the polyhedron XT can be large, resulting in an equivalent
number of state constraints in the online optimization problem. In this section, we derive an
analytical expression for the terminal set which can account for the input rate constraints
but not the actuator dynamics. Nevertheless, the analysis provides us with a reasonable
terminal set.

A similar analysis is performed in [127] in the context of threat assessment for human
driven vehicles with the goal of providing warnings to drivers. It is assumed that the driver
of the ego vehicle can instantaneously apply maximum braking after a certain reaction time.
We generalize this approach by accounting for actuator rate constraints.

The computation is based on the following intuition: in the worst-case event that the
preceding vehicle applies maximum braking starting from its current state, the best response
of the ego vehicle is to also do the same. In order to account for the rate bounds on the
control input, we assume that the ego vehicle can decrease its acceleration at a maximum
rate of |u̇vmin|. As discussed in [127], two cases need to be considered. In Case 1, the preceding
vehicle comes to a full stop before the ego vehicle. In this case, the separation of the vehicles
after they have both stopped is relevant, and must be greater than the safety distance dsafe. In
Case 2, the ego vehicle comes to a full stop before the preceding vehicle. Here, the minimum
separation between the vehicles is attained before they have both stopped, in particular, the
time at which the velocities of both vehicles is equal. In this case, the minimum separation
must be greater than the safety distance dsafe. We first analyze the conditions under which
Case 1 or 2 applies.

Let xvT |t = [ξT |t, vT |t] and uvT−1|t = aT−1|t be the state and control input at the end of the
horizon. The computation of the time to stop ts for the ego vehicle is given by Algorithm 7.1.
If the acceleration a of the vehicle is allowed to be unbounded, ts is given by the expression
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on Line 2. However, as the acceleration a is lower bounded by uvmin, applying a constant
jerk of u̇vmin causes this lower bound to be reached at time tmd. After tmd, the ego vehicle
can brake at a constant acceleration uvmin to come to a stop. ts is then given by Line 5. The
time to stop for the preceding vehicle, assuming it can achieve its maximum deceleration
aemin instantaneously, is given by:

tes = −
v̄eT |t

2aemin

. (7.21)

Hence, Case 1 applies when tes ≤ ts and Case 2 applies otherwise. We now present the design
the RCI terminal set for the two cases.

Algorithm 7.1 Computation of ego vehicle stopping time

Input: ξ := ξT |t, v := vT |t, a := aT−1|t . State and input at end of horizon

1: tmd =
uvmin−a
u̇vmin

. Time to achieve minimum deceleration uvmin with jerk u̇vmin

2: ts = 1
u̇vmin

(
−a−

√
a2 − 2vu̇vmin

)
. Time to stop with constant jerk u̇vmin

3: if tmd < ts:
4: vmd = v + atmd + 1

2
u̇vmint

2
md . Velocity at tmd

5: ts = tmd − vmd

uvmin
. Time to stop with constant jerk u̇vmin followed by constant

acceleration uvmin

Output: ts

Case 1: tes ≤ ts

In this case, the distances traveled by the ego and preceding vehicles in the process of coming
to a halt need to be computed. The distance dvbrake traveled by the ego vehicle by applying
the minimum jerk u̇vmin is given by Algorithm 7.2. As in the case of the stopping time
computations in Algorithm 7.1, if the acceleration a is allowed to be unbounded, dvbrake is
given by the expression on Line 8. However, as the acceleration a is lower bounded by uvmin,
applying a constant jerk of u̇vmin causes the lower bound to be reached at time tmd. After
tmd, the ego vehicle can brake at a constant acceleration uvmin to come to a stop.

The braking distance debrake for the preceding vehicle, assuming it can achieve its maximum
deceleration aemin instantaneously, is given by:

debrake = −
(v̄eT |t)

2

2aemin

. (7.22)

Note the use of the predicted worst-case speed v̄eT |t in (7.22). Robust persistent feasibility in
Case 1 is guaranteed by defining the following terminal set:

XT = {[ξT |t, vT |t, aT−1|t] : ξT |t + dvbrake + dsafe ≤ ξ̄eT |t + debrake}. (7.23)
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Algorithm 7.2 Computation of ego vehicle braking distance (Case 1)

Input: ξ := ξT |t, v := vT |t, a := aT−1|t . State and input at end of horizon

1: tmd =
uvmin−a
u̇vmin

. Time to achieve minimum deceleration uvmin with jerk u̇vmin

2: ts = 1
u̇vmin

(
−a−

√
a2 − 2vu̇vmin

)
. Time to stop with constant jerk u̇vmin

3: if tmd < ts:
4: vmd = v + atmd + 1

2
u̇vmint

2
md . Velocity at tmd

5: ξmd = ξ + vtmd + 1
2
at2md + 1

6
u̇vmint

3
md . Position at tmd

6: dvbrake = ξmd − ξ − v2md

2uvmin
. Braking distance with constant jerk u̇vmin followed by

constant acceleration uvmin

7: else:
8: dvbrake = vts + 1

2
at2s + 1

6
u̇vmint

3
s . Braking distance with constant jerk u̇vmin

Output: dvbrake

Case 2: tes > ts

In this case, the separation between the ego and preceding vehicles at the time when their
velocities are equal needs to be computed. This yields the minimum separation between the
vehicles. Let v = vT |t, a = aT−1|t, v

e = v̄eT |t. If the acceleration of the ego vehicle is allowed

to be unbounded, the time t
(1)
ms at which the minimum separation is achieved is given by:

t(1)
ms = {t ∈ R+|v + at+

1

2
u̇vmint

2 = ve + aemint}. (7.24)

The condition on the RHS of (7.24) equates the velocities of the vehicles. If t
(1)
ms > tmd

(tmd is defined on Line 1 of Algorithm 7.2), the modified time to minimum separation t
(2)
ms is

computed as:

t(2)
ms = {t ∈ R+|vmd + uvmin(t− tmd) = ve + aemint}, (7.25)

where the ego velocity vmd at tmd is defined on Line 4 of Algorithm 7.2. Equation (7.25)
accounts for the fact that the ego vehicle will achieve its maximum deceleration uvmin at tmd

and continue braking at constant acceleration from then onwards. The minimum separation
ξrms between the vehicles is then given by Algorithm 7.3 and is computed along the same
lines as the braking distance in Algorithm 7.2.

Robust persistent feasibility in Case 2 is guaranteed by defining the following terminal
set:

XT = {[ξT |t, vT |t, aT−1|t] : ξrms ≥ dsafe}. (7.26)

Remark 7.10. It is possible that solutions to (7.24) and/or (7.25) do not exist. This implies
that the minimum separation is either attained before time t + T (that is, the end of the
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Algorithm 7.3 Computation of minimum separation (Case 2)

Input: ξ := ξT |t, v := vT |t, a := aT−1|t, ξ
e := ξ̄eT |t, v

e := v̄eT |t . State and input at end of
horizon

1: tmd =
uvmin−a
u̇vmin

. Time to achieve minimum deceleration uvmin with jerk u̇vmin

2: if tmd < t
(1)
ms:

3: vmd = v + atmd + 1
2
u̇vmint

2
md . Velocity at tmd

4: ξmd = ξ + vtmd + 1
2
at2md + 1

6
u̇vmint

3
md . Position at tmd

5: ξvms = ξmd + vmd(t
(2)
ms − tmd) + 1

2
uvmin(t

(2)
ms − tmd)2 . Position at t

(2)
ms with constant

jerk u̇vmin followed by constant acceleration uvmin

6: ξems = ξe + vet
(2)
ms + 1

2
aemin(t

(2)
ms)2 . Preceding vehicle position at t

(2)
ms with constant

acceleration aemin

7: else:
8: ξvms = ξ + vt

(1)
ms + 1

2
a(t

(1)
ms)2 + 1

6
u̇vmin(t

(1)
ms)3 . Position at t

(1)
ms with constant jerk u̇vmin

9: ξems = ξe + vet
(1)
ms + 1

2
aemin(t

(1)
ms)2 . Preceding vehicle position at t

(1)
ms with constant

acceleration aemin

10: ξrms = ξems − ξvms

Output: ξrms

prediction horizon) or at time t+ ts (that is, when the ego vehicle comes to a stop). In this
case, the following terminal constraint is sufficient for persistent feasibility:

ξ̄eT |t − ξk|t ≥ dsafe, (7.27a)

ξ̄ets|t − ξts|t ≥ dsafe, (7.27b)

where ξ̄ets|t and ξts|t are the positions of the preceding and ego vehicles, respectively, when

the latter comes to a stop. ξ̄ets|t and ξts|t can be computed using Algorithm 7.2 and (7.22),
respectively.

Summary

In summary, the RCI terminal sets are given by (7.23) or (7.26) depending on the relative
stopping times of the preceding and ego vehicles. While the computations involved (Algo-
rithms 7.1, 7.2, 7.3) are nonlinear, they can be embedded in optimization solvers such as
NPSOL [51] which rely on function evaluations to compute the values and gradients of the
constraints. For convex optimization solvers, we use the terminal set obtained by the robust
reachability approach presented in Section 7.2.3. Here, even in the presence of a large num-
ber of inequalities defining XT , we can achieve efficient real-time performance as most of the
inequalities are expected to be inactive.

A practical approximation which yields a much simpler expression for the terminal con-
straint is to only consider Case 1 (that is, tes ≤ ts) and assume that the ego vehicle can
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achieve its maximum deceleration instantaneously. In this case, the terminal constraint is
given by:

ξ̄eT |t −
(v̄eT |t)

2

2aemin

−
(
ξT |t −

v2
T |t

2uvmin

)
≥ dsafe. (7.28)

That is, we constrain the distance between the ego and preceding vehicles when they come
to a stop to be greater than the safety distance dsafe. Note that the set of states defined by
(7.28) is not a RCI set.

7.2.6 Safety margin

The inequality in (7.28) introduces the notion of a safety margin. We define the braking
distance margin (BDM ) at time t as follows:

BDM t = ξ̄eT |t −
(v̄eT |t)

2

2aemin

−
(
ξT |t −

v2
T |t

2uvmin

)
− dsafe. (7.29)

We use this metric to determine the most relevant TV for the driver model presented in
Section 7.3. That is, among the detected relevant target vehicles (discussed below in Section
7.2.7), the vehicle with the smallest BDM is chosen as the most relevant TV. This metric
is also used to compare the performance of our algorithm against an existing approach in
Section 7.4.

7.2.7 Dealing with multi-lane targets

The above analyses assume the existence of a single TV in front of the EV, referred to as
the preceding vehicles. One of our main objectives is to account for TVs cutting in to the
EV’s lane. We use the lane change intention estimator developed in Section 4.3 to identify
such Relevant Targets (RTs).

Recall that, for a given TV at time t, the intention estimator provides an estimate
of its most likely mode mML

t ∈ M = {LK,LCL,LCR} conditioned on the history of
measurements. Among all TVs in front of the EV, we define the RTs as:

• the TVs in the EV’s lane,

• the TVs in the adjacent left lane whose most likely mode mML
t = LCR,

• the TVs in the adjacent right lane whose most likely mode mML
t = LCL.

Let NRT denote the number of RTs detected at time t, and xeit the state of the ith RT at
time t (i = 1, . . . , NRT ). We enforce the safety constraints (7.9) and the terminal constraint
for each RT. Concretely:

g(xvk|t, x
ei
k|t) ≤ 0, (k = 1, . . . , T − 1) (7.30a)
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[xvT |t, x
ei
T |t] ∈ XT . (7.30b)

(i = 1, . . . , NRT )

Remark 7.11. The above relevant target selection strategy is not truly “robust” in a worst-
case sense due to the use of the most likely mode. This is due to the fact that a worst-case
analysis would cause the ego vehicle to slow down frequently and unnecessarily even for very
small lane change probabilities of the neighboring vehicles. We show this by means of a
simulative example later in Chapter 8.

7.2.8 Online optimization problem

The CFTOC problem to be solved online at time t is given by:

min
uv
0:T−1|t,ε

T−1∑
k=0

(
‖vk+1|t − vref‖2

Q + ‖uvk|t − udk|t‖2
R + ‖∆uvk|t‖2

P

)
+Mε (7.31a)

subject to: xvk+1|t = Axvk|t +Buvk|t, (7.31b)

g(xvk|t, x
ei
k|t) ≤ ε, (i = 1, . . . , NRT ) (7.31c)

∆uvk|t = uvk|t − uvk−1|t, (7.31d)

[uvk|t, u
v
k−1|t] ∈ U , (7.31e)

(k = 0, . . . , T − 1)

[xvT |t, x
ei
T |t] ∈ XT , (i = 1, . . . , NRT ) (7.31f)

x0|t = xt, uv−1|t = uvt−1, ε ≥ 0. (7.31g)

The safety constraints (7.31c) are imposed as soft constraints where the slack variable ε is
penalized by a large number M . The reference acceleration udk|t in the cost function (7.31a)
is the driver desired acceleration which is generated by the driver model presented next in
Section 7.3. The above formulation allows the controller to replicate the driver’s driving style
while still maintaining safety guarantees in the presence of uncertainty. In general, the value
of R is much larger than that of Q to encourage the controller to track udk|t. However, in
the absence of any RTs, a free-flow mode is triggered wherein the controller tracks the road
speed limit or a user-defined reference speed vref as in conventional cruise control systems.
In this case, the value of Q is increased.

7.3 Personalized Driving

In this section, we present the driver model used for personalizing the driving behavior of the
ego vehicle. The goal of the driver model is to generate a sequence of reference accelerations
ud0:T−1|t for the MPC-based controller for the given driving situation. The idea is to learn the
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driver’s control input udk|t from the data collected from that particular driver. By tracking this
input, the controller can yield a driving style similar to that of the driver, thus personalizing
the autonomous vehicle behavior.

We use the approach developed in [74] which employs the frameworks of Hidden Markov
Models (HMMs) and Gaussian Mixture Regression (GMR). Similar to the lane change inten-
tion estimation algorithm presented in Section 4.3, the car-following behavior of the driver
is modeled as a HMM. In this case, however, the discrete modes do not hold a physical
meaning such as lane keeping or changing in the lateral case. Instead, the modes allow for a
systematic identification of the areas of the feature space where the driver likes to operate.
We define the following variables:

• mt ∈ {1, . . . ,M} is the hidden mode at time instant t, where M is the number of
hidden modes.

• zt = [ξrt , v
r
t , vt] is the vector of observations at time t, where ξrt = ξet −ξt and vrt = vet−vt

are the relative distance and relative velocity of the most relevant TV, respectively.

• at is the acceleration of the EV at time instant t.

The joint distribution of the modes m0:t = {m0, . . . ,mt}, observations z1:t = {z1, . . . , zt} and
accelerations a1:t = {a1, . . . , at} is given by:

P (m0:t, z1:t, a1:t) = P (m0)
t∏

k=1

P (mk|mk−1)P (zk, ak|mk), (7.32)

where the emission probability density function P (zk, ak|mk = i) is modeled as a Gaussian
N (µi,Σi). The parameters that characterize the prior and transition probability mass func-
tions in (7.32) and the means and covariances of the Gaussian emission density function are
learned from data collected from a single driver using the Expectation-Maximization (EM)
algorithm and the Bayesian Information Criterion [74].

During online operation, the reference acceleration udt at time t is computed using Gaus-
sian Mixture Regression (GMR) as:

udt = E[at|z1:t] =
M∑
i=1

P (mt = i|z1:t)[µ
a
i + Σaz

i (Σzz
i )−1(zt − µzi )], (7.33)

where:

µi =

[
µzi
µai

]
, Σi =

[
Σzz
i Σza

i

Σaz
i Σaa

i

]
. (7.34)

The conditional distribution over modes P (mt = i|z1:t) is computed recursively as:

P (mt = i|z1:t) ∝ P (zt|mt = i)
∑
j∈M

P (mt−1 = j|z1:t−1)P (mt = i|mt−1 = j), (7.35)



CHAPTER 7. SAFE PERSONALIZED AUTONOMOUS CRUISE CONTROL 96

initialized with the prior distribution P (m0).
A sequence of reference accelerations ud0:T−1|t over the prediction horizon T of the con-

troller can be obtained by iteratively simulating udk|t through the vehicle dynamics (7.1) and

running (7.33) using the simulated features. In order to compute the predicted values of the
features, the most relevant TV is assumed to move at a constant velocity over the horizon.

7.4 Experimental Results: Multi-lane Scenarios

This section demonstrates the performance of the proposed ACC system in traffic situations
involving target vehicle cut-ins. While the system is capable of running in real-time on
our experimental vehicle (see Section 7.5), it was tested in offline simulations using sensory
data collected from our vehicle for a fair comparison with existing approaches. Specifically,
we simulate the effect of the control input on the motion of the EV but use real data to
reconstruct the environment. It is assumed that the EV has no influence on TVs that cut-in
to its path. The data collection, scene reconstruction and controller evaluation processes are
explained in more detail below.

7.4.1 Data collection and scene reconstruction

We collected manual driving data from our on-board vehicle sensors (radar, camera, lidar,
GPS/INS) on highways. In order to accurately reconstruct the evolution of the environment,
the inertial motion of the EV is estimated using the GPS/INS measurements. Combining
this with the relative motion of the TVs perceived by the outward looking sensors allows
us to estimate the inertial motion of the TVs. It is then straightforward to compute the
apparent relative motion of the TVs with respect to the EV during a simulation involving
the proposed controller. The TV data is passed to the sensor fusion and RT identification
algorithms. The resulting RT data is used as an input to the MPC-based controller. Finally,
the EV motion is simulated using (3.30), hence closing the loop.

We focus specifically on short segments of the datasets (around 10-15 seconds each) which
involve a cut-in maneuver by a TV in the neighboring lane. The segment start time is chosen
to be a few seconds before the TV initiates the lane change and the end time is when the
TV completes the lane change.

7.4.2 Evaluation methodology

We compare the performance of the proposed ACC approach (denoted as ACC 1) with the
existing ACC system implemented on our experimental vehicle (denoted as ACC 2). Note
that the existing system uses a combination of radar and camera without any lane change
intent estimation to identify a single PT. The PT identification is based on whether a candi-
date TV lies in a virtual lane constructed on the basis of the longitudinal velocity and yaw
rate of the EV. The main difference between ACC 1 and ACC 2 lies in the identification of
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Metric Unit ACC 1 ACC 2

µa m/s2 1.00± 0.46 1.91± 0.91

pa m/s2 2.00± 1.12 3.01± 1.17

µj m/s3 2.04± 1.83 2.20± 1.68

pj m/s3 8.69± 2.45 9.53± 1.29

BDM m 42.8± 15.9 32.2± 17.1

TTC i s−1 0.20± 0.12 0.81± 1.24

Table 7.1: Means and standard deviations of the metrics defined in Section 7.4.2 for the proposed
approach (ACC1) and the existing approach (ACC2) computed from 28 simulations.

the RTs or the PT. For a fair evaluation, the same control strategy (presented in Section
7.2) is used for both approaches.

For each segment of the dataset involving a simulation of either ACC 1 or ACC 2, we
compute the following metrics:

1. Absolute values of the mean and maximum deceleration, µa and pa, respectively.

2. Absolute values of the mean and maximum negative jerk, µj and pj, respectively.

3. Minimum braking distance margin, BDM , as defined in (7.29), computed for the most
relevant TV.

4. Maximum inverse time-to-collision, TTC i, defined as the ratio of the relative speed of
the EV with respect to the most relevant TV and the relative distance.

Metrics 1 and 2 characterize the comfort of the system, where lower values correspond to a
smoother behavior. Metrics 3 and 4 characterize the safety. A higher value of the BDM is
desired while a lower value of TTC i implies lower collision risk.

7.4.3 Results

For a given approach (ACC 1 or ACC 2), the mean and standard deviation of the quantities
described in Section 7.4.2 were computed for 28 segments from 4 datasets and are tabulated
in Table 7.1. We see that ACC 1 yields lower values of the mean and maximum deceleration as
compared to ACC 2 resulting in a more comfortable experience for the driver. The difference
in the mean and peak negative jerk is less marked. This can be attributed to the fact that
only aggressive cut-in maneuvers were selected for the analysis which required a sudden
change in the acceleration commanded by the controller. The average values of the BDM
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Figure 7.4: Comparison of the closed-loop acceleration profiles during a simulation of the scenario
described in Section 7.4.3 of the proposed approach (ACC1, solid line) and the existing approach
(ACC2, dashed line). ACC1 results in a smoother acceleration command that ACC2.

and TTC i show that ACC 1 yields a safer behavior than ACC 2, validating the consideration
of TVs’ lane change intentions.

We further analyze an interesting and challenging situation recorded in one of the datasets
where two TVs changed lanes in front of the EV within a short span of time. At time
t = 5.4 s (from an arbitrary t = 0), the first TV (TV 1) crosses the right boundary of
the EV’s lane, followed by the second TV (TV 2) at time t = 9.2 s. The small relative
distance and lower speeds of the TVs necessitates a braking maneuver by the EV. Figure 7.4
shows a comparison of the acceleration profiles for ACC 1 and ACC 2 when this scenario is
reconstructed in simulation. It is seen that due to the lane change estimation of TV 1, ACC 1
starts braking at t = 4.3 s, 1.2 s before ACC 2, resulting in a smoother acceleration profile.
Later, when TV 2 cuts in, ACC 1 responds at t = 8.1 s, 1.8 s before ACC 2. The deceleration
command saturates in the case of ACC 2 but not in the case of ACC 1. A comparison of the
metrics defined in Section 7.4.2 for both approaches is shown in Table 7.2.

7.4.4 Target vehicle cut-in detection

Finally, we compare the performance of the proposed RT identification methodology pre-
sented in Section 7.2.7 (ACC 1) against the existing approach (ACC 2). The metric used is
the time difference between the two approaches recognizing a cutting-in TV as a RT or PT.
From the 28 cut-in scenarios experienced during our experiments, we found that our method
identifies a RT 1.28± 0.26 s before the existing approach.

The trajectory of a TV’s lateral position η while it performs a cut-in maneuver from one
of the datasets is shown in top plot of Figure 7.5. The middle plot shows the estimated
most likely mode (defined in Section 7.2.7). We see that the estimator switches to the lane
change right (LCR) mode 1.4 s before the estimated center of mass of the TV crosses the
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Metric Unit ACC 1 ACC 2

µa m/s2 0.95 2.05

pa m/s2 2.35 4

µj m/s3 1.42 1.70

pj m/s3 10 10

BDM m 33.4 20.3

TTC i s−1 0.26 0.52

Table 7.2: Comparison of the metrics defined in Section 7.4.2 for ACC1 and ACC2 during a
simulation of the scenario described in Section 7.4.3.
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Figure 7.5: Results of the relevant target identification for a TV cut-in scenario from one of the
datasets (described in Section 7.4.4). ACC1 identifies the RT 1.85 s before ACC2.

lane boundary. The bottom plot of Figure 7.5 depicts the binary variable indicating whether
or not the TV has been identified as a RT for both methods ACC 1 and ACC 2. It is seen
that ACC 1 identifies the RT 1.85 s before ACC 2 in this scenario.
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7.5 Experimental Results: Personalization and Safety

In this section, we show the ability of the proposed ACC system to reproduce different driving
styles and keep the vehicle safe in scenarios where the reference deceleration generated by
the driver model is not sufficient to prevent a rear-end collision.

As driver modeling is not the main focus of this dissertation, we only briefly review
the results of studies performed with different drivers. Readers are referred to [74, 75] for
more details of this analysis. In order to evaluate the ability of the driver model presented in
Section 7.3 to learn different driving styles, we collected highway driving data from 5 drivers.
For each driver, two models are learned, (i) a personalized model which is trained using the
data collected from that driver, and (ii) an average model trained using the data collected
from the remaining drivers. Each model is evaluated offline in simulation and presented
with the same scenarios from the relevant datasets. In order to quantify the similarity
between the behavior of a driver model in simulation and the real driver from which the
data was collected, the Kolmogorov-Smirnov (KS) distance of the empirical distributions of
two key indicators are computed. These are the inverse Time-To-Collision TTCi (defined in
Section 7.4) and the Vehicle Specific Power (V SP ), which is an indicator of the instantaneous
engine load of the vehicle. A smaller KS distance implies a greater similarity between two
distributions. For the data collected from each driver, we run the offline evaluation using
both the personalized and average models, and compute the aforementioned metrics. The
results are shown in Figure 7.6. It is seen that the personalized models perform consistently
better than the average ones from the smaller KS distance. On average, the decrease in the
KS distance is 27.0% for the V SP and 49.5% for the TTCi.
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Figure 7.6: KS distances obtained for two driving style indicators, TTCi and VSP, for 5 different
drivers (Figure from [75])

The following experiments were performed on the prototype Hyundai Grandeur described
in Appendix A.2.

In the first experiment (referred to as Experiment 1), we show the effect of changing
the driver model used to generate the reference acceleration for the controller. Two models
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are used. Driver Model 1 was learned from a conservative driver who preferred keeping a
larger time-headway (hence, relative distance) to the preceding vehicle. On the other hand,
Driver Model 2 was learned from a relatively aggressive driver who maintained smaller time-
headways to the preceding vehicle.

The results from Experiment 1 are shown in Figure 7.7. Initially, the vehicle was operating
with the ACC system enabled using Driver Model 1 to generate the reference input. At
around time t = 20 s, the operator used a button on the steering wheel to switch the model
to that of Driver 2. The top plot depicts the acceleration applied by the controller and the
accelerations that would have been applied by Driver Model 1 and 2 for the driving situation
at the corresponding time. We see that before t = 20 s, the controller tracks the reference
provided by Driver Model 2. During the same time period, the acceleration reference given
by Driver Model 1 is much higher and saturates the upper bound of the control input. After
t = 20 s, the controller initially tracks the reference given by Driver Model 2, but eventually
reduces the acceleration command as the road speed limit is reached. The speed profiles of
the EV and most relevant TV (i.e, the MRT) are shown in the middle plot while the bottom
plot shows the relative distance between the MRT and EV. It is seen that Driver 2 prefers
closing the gap between itself and the vehicle in front to yield a much smaller time-headway
as compared to Driver 1.
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Figure 7.7: Experiment 1: Switching from Driver Model 1 (conservative) to Driver Model 2 (ag-
gressive). MRT denotes the most relevant TV while EV denotes the ego vehicle.
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In the following experiments, we demonstrate the ability of the controller to enforce the
safety constraints in scenarios where simply following the reference acceleration provided
by the driver model would lead to a rear-end collision. For safety reasons, the experiments
were performed at low speed using virtual preceding vehicles. An average driver model built
using data from multiple drivers was used for the reference generation. We performed the
following two experiments, referred to as Experiment 2 and 3.

The results for Experiment 2 are summarized in Figures 7.8a–7.8d. The vehicle is initially
moving with a speed of about 4.3 m/s with no vehicle in front of it. The driver model provides
a positive acceleration reference which the controller matches closely. At around t = 38 s,
when the ego vehicle’s speed is roughly 6.5 m/s, we introduce a virtual preceding vehicle
at a relative distance of 8 m moving at 5 m/s. Although unlikely, such a situation could
arise in practice if a vehicle in a neighboring lane makes a sudden lane change into the ego
vehicle’s lane. The driver model responds by commanding a negative acceleration. However,
the controller anticipates a violation of the safety distance and applies a stronger braking.
This is seen by the discrepancy between the driver model and controller inputs in Figure
7.8a. The open-loop predictions of the relative distance to the preceding vehicle made by the
controller at t = 40 s are shown in Figure 7.8b. If the driver model reference was matched
exactly, the safety distance of 5 m would be violated at t = 40.8 s. This is seen by the red line
going below the black line in Figure 7.8b. The controller plans to deviate from the reference
input to keep the predicted relative distance (blue line) greater than the safety distance
(black line). Figure 7.8c shows that the controller does not allow the relative distance to
go below the specified safety distance in closed-loop operation. The speeds of the ego and
preceding vehicles during the experiment are shown in Figure 7.8d.

In Experiment 3, we show the ability of the controller to handle situations in which the
virtual preceding vehicle initially violates the safety constraints. We introduce the virtual
preceding vehicle at a relative distance of 4 m to the ego vehicle moving at a speed of 5
m/s. The initial relative distance is less than the specified safety distance of 5 m. Moreover,
the ego vehicle is moving faster than the preceding vehicle. As shown in Figure 7.9, the
controller commands the maximum braking |amin| as expected.

7.6 Conclusions

In this chapter, we show the application of robust predictive control to the Autonomous
Cruise Control (ACC) problem where the motion of the surrounding vehicles is unknown.
A data-based lane change intention estimator identifies relevant targets for the purpose of
ACC. Safety constraints are formulated accounting for the worst-case actions of the potential
target vehicles. Moreover, a method of personalizing the car-following behavior of the system
based on demonstrations from a human driver is presented. The results show the ability of
the controller to reproduce various driving styles and to keep the vehicle safe in scenarios
such as cut-in maneuvers by surrounding vehicles.



CHAPTER 7. SAFE PERSONALIZED AUTONOMOUS CRUISE CONTROL 103

Driver Model

Controller

A
cc
el
er
at
io
n
[m

/s
2 ]

Time [s]
34 36 38 40 42 44 46 48

−2

−1.5

−1

−0.5

0

0.5

(a) Closed-loop acceleration commands pro-
vided by the driver model and controller. The
controller tracks the driver model reference un-
til a violation of the safety distance is predicted
around t = 39 s. The controller applies harder
braking to keep the vehicle safe.
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(b) Open-loop predictions of the relative dis-
tance between the preceding and ego vehicles
made at t = 40 s. The red line depicts the pre-
dicted relative distance if the controller tracked
the driver model reference exactly. The con-
troller brakes harder than the reference to pre-
vent a constraint violation.
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(c) Closed-loop relative distance between the
preceding and ego vehicles. The high values
before t = 38.6 s indicate the absence of a pre-
ceding vehicle in that duration.
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(d) Closed-loop speed profiles of the ego and
preceding vehicles.

Figure 7.8: Experiment 2: Safety performance of controller.
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Figure 7.9: Experiment 3: Acceleration commands provided by the driver model and controller.
The controller applies maximum braking at around t = 47 s as the initial relative distance between
the ego and preceding vehicles violates the safety distance.



105

Chapter 8

Stochastic Predictive Control for
Automated Highway Driving

8.1 Introduction

The control design in Chapters 6 and 7 is based on robust MPC where disturbances are
assumed to be bounded and have a uniform distribution over their support sets. While such
a worst-case approach is suitable for the applications presented in the respective chapters,
our intuition is that it does not extend to general traffic scenarios where lateral and longitu-
dinal predictions of target vehicles must be considered. This chapter focuses on stochastic
approaches where we utilize knowledge of the distribution of the uncertainty to reduce the
conservatism of the resulting control policy. We first motivate the need for probabilistic ap-
proaches over robust ones, specifically while dealing with the uncertainty arising from traffic
predictions.

Motivating Example

We consider a simple scenario. The ego vehicle E is driving in the left lane, initially at
a speed of 10 m/s. The target vehicle T1 is driving at a constant speed of 10 m/s in the
right lane, and keeps its speed and lane during the simulation. The goal for E is to track a
reference speed of 15 m/s and pass T1 in doing so.

At each time step, we use a worst-case approach to predict the set of reachable states
of T1 over the prediction horizon. We assume that T1 will keep its speed constant over the
horizon and only focus on the uncertainty associated with its future lateral motion. At time
t, the kinematic bicycle model (3.24) is used to simulate the motion of T1 over the horizon
with the worst-case inputs ūe0:T−1|t given the current state xet . The worst-case control inputs
are defined as the extreme points of the set U which defines the actuator limit. Concretely,
the extreme points are given by two sequences ūmin,e

0:T−1|t and ūmax,e
0:T−1|t, defined as:

ūmin,e
k+1|t = max{ūmin,e

k|t + ∆teu̇emin, u
e
min}, (8.1a)
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Figure 8.1: Snapshot of simulation with worst-case target vehicle predictions. The red shaded
rectangles show the set of all possible states of the target vehicle T1 assuming constant speed.
The red circles depict the closed-loop trajectory of T1, while the blue circles depict the open-loop
trajectory of the ego vehicle E.

ūmax,e
k+1|t = min{ūmax,e

k|t + ∆teu̇emax, u
e
max}, (8.1b)

initialized with ūmin,e
0|t = ūmax,e

0|t = 0 as the control inputs of T1 cannot be measured. The

corresponding extreme states of T1 over the horizon are denoted as x̄min,e
0:T−1|t and x̄max,e

0:T−1|t. At
each time step k of the prediction horizon, the reachable set of T1 is obtained by taking the
convex hull of the vehicle shapes corresponding to x̄min,e

k|t and x̄max,e
k|t . The safety constraints

are formulated by using the signed distance approach of Section 4.5.2 using the the afore-
mentioned reachable set and the predicted position xvk|t of E. No uncertainty in the motion
of E is considered for the sake of simplicity.

A snapshot at the end of the simulation (when the overall vehicle-environment system
reaches a steady-state) is shown in Figure 8.1. The red shaded rectangles depict the reachable
sets of T1 at the discrete time steps of the prediction horizon. Each rectangle corresponds to
one time step and lighter rectangles correspond to later time steps. The blue circles depict
the open-loop trajectory of the ego vehicle E. It is seen that the predicted occupancy of
T1 over the horizon spans the entire width of the roadway, thus preventing E from passing
it. The closed-loop speed profile of E is shown in Figure 8.2. We see that the ego vehicle
initially tries to reach the reference speed, but is forced to slow down to satisfy the safety
constraints due to the worst-case predictions.

The stochastic predictive control strategies presented in this chapter resolve the above
issue as follows. Based on the motion of the target vehicles, a probability distribution over
their future actions (and hence, states) is estimated. The distributions are either represented
explicitly as Gaussians or using samples. This assigns low probabilities to events such as
extreme steering maneuvers by the surrounding vehicles. In the event that a target vehi-
cle does exhibit aggressive behavior, we rely on the environment model to detect this and
estimate the corresponding distributions of the future target vehicle predictions.



CHAPTER 8. STOCHASTIC MPC FOR AUTOMATED HIGHWAY DRIVING 107

Time [s]

ẋ
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Figure 8.2: Closed-loop longitudinal speed profile of the ego vehicle E. The ego vehicle initially
speeds up to the reference speed, but slows down to satisfy the safety constraints due to the worst-
case predictions.

Related work

The broad problem of control in the presence of stochastic uncertainty is well-studied in
literature. In the predictive control literature, the problem is referred to as Stochastic or
Chance-constrained MPC, while in the robotics literature, the term Belief-space Planning is
also used. In the latter, additional uncertainty due to partial observability of the system
state is considered. The problem then lies in the class of Partially Observable Markov
Decision Processes (POMDPs) where a dual objective exists of reaching a specified goal
while performing information gathering actions to reduce the uncertainty of the state. From
the perspective of autonomous vehicle control, full state feedback is usually a reasonable
assumption except in the cases where parametric uncertainty in the system dynamics is
considered (as discussed in Appendix B). Here, we review prior work in optimization-based
stochastic control.

As discussed in Section 2.3.1, the main challenges in SMPC are the characterization
of the future uncertainty in the state and the translation of the chance-constraints into
deterministic ones. Efficient solution strategies exist for linear systems affected by additive
Gaussian disturbances with polyhedral chance-constraints [71, 124]. Analytical expressions
for the predicted variance of the state and the constraint tightening offset can be obtained.
Finitely supported non-Gaussian disturbances are also considered in [71] where a numerical
scheme is used to evaluate the multivariate convolution integral required to tighten the
chance-constraints.

For nonlinear systems, a linearization-based approach is commonly used. In [120], the
nonlinear system dynamics are linearized around a nominal trajectory. The goal is to quantify
the distribution of the state along the trajectory assuming that a given feedback controller
and state estimator will be used for the control and estimation, respectively. The approach
is used to assess the safety of candidate trajectories provided by a high-level planner al-
gorithm, but not to compute the optimal trajectory itself. The work is extended in [121]
where an iterative linearization method is used to compute a locally optimal policy for the
unconstrained finite horizon problem starting from a given feasible trajectory. Obstacles
are encoded as costs in the objective function and the probability of not colliding with an
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obstacle is maximized. However, probabilistic constraint satisfaction is not guaranteed and
no uncertainty in the obstacles is considered.

Uncertainty in the parameters defining the polyhedral chance-constraints is accounted
for in [125]. The constraint parameters are modeled as Gaussian random variables in [125]
and a tractable approximation is presented to obtain a deterministic convex optimization
problem.

Sampling-based methods have shown to be effective for dealing with the issues of nonlin-
ear system dynamics, non-Gaussian disturbances and nonconvex constraints with uncertain
parameters. In [123], the uncertain constraint parameters and disturbances in the system are
sampled. A convex bounding approach is used to approximate the chance-constraint, which
may lead to an overly conservative solution. In [50], samples of the disturbance are drawn
and used to enforce the state constraints. However, this may be computationally expensive
due to the large number of equality and inequality constraints in the optimization problem.

For the specific application of autonomous driving, optimization-based planning under
uncertainty has been studied in [33, 79, 105, 128]. A linearized vehicle model is used in [79]
to propagate the state uncertainty over the horizon and chance-constraints are formulated
for collision avoidance. However, the environment is assumed to be deterministic. Sampling-
based methods with reduced complexity are presented in [33, 105] for autonomous highway
driving applications by only considering uncertainty in the forecasts of the environment.
In [128], a similar approach as in [120] is used to assess the safety of a set of trajectories
provided by a motion planner, but no modification of the trajectories is performed.

Contributions

The focus of our work is on developing a framework for the stochastic predictive control of
autonomous vehicles in order to systematically deal with uncertainty in the forecasts of the
vehicle and the environment. The approach must be able to handle the nonlinear vehicle
dynamics and potentially non-Gaussian uncertainty arising from traffic predictions. In this
chapter, we first review the following two approaches for solving the SMPC problem (2.6)
with the chance-constraints (2.9):

• Analytical SMPC, where the distribution of the uncertain variables is characterized
by multivariate Gaussians. A linearization of the system dynamics around a nominal
trajectory is used to propagate the uncertainty in the state over the horizon. The
chance-constraints are tightened based on the predicted variance of the state vector.
The control design for the autonomous driving application using analytical SMPC is
presented in Section 8.2.

• Sampling-based SMPC, where the distribution of the uncertain variables is represented
by means of samples. The constraints are enforced for all sampled state variables thus
guaranteeing chance-constraint satisfaction. The control design using sampling-based
SMPC is discussed in Section 8.3.
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In Section 8.4, the aforementioned strategies are compared from the perspective of au-
tonomous vehicle control and a hybrid SMPC approach is proposed which combines the
strengths of either method. In particular, the analytical SMPC approach is used to prop-
agate the uncertainty in the vehicle state based on a linearization of the dynamics and a
Gaussian characterization of the uncertainty. A sampled representation of the uncertain
traffic forecasts along with a sample aggregation scheme is used to handle environmental
uncertainty. Simulation and experimental results are presented in Sections 8.5 and 8.6,
respectively, which illustrate the following:

1. The trade-off between risk and conservatism that can be obtained by the use of a
probabilistic control framework.

2. The value of accounting for multimodal distributions of environmental uncertainty by
means of a sampled representation.

3. The ability of the presented control schemes to run in real-time on embedded hardware.

8.2 Analytical Stochastic MPC

This section provides the background for the analytical SMPC strategy. Recall the notation
introduced in Chapter 2. The subscript t denotes the current time step whereas the subscripts
k and k|t refer to the predicted time step t+k at time t. The symbol zt1:t2 (or zk1:k2|t) denotes

the sequence {zt}t2t=t1 (or {zk|t}k2k=k1
).

8.2.1 Preliminaries

Analytical SMPC approaches are restricted to linear systems with normally distributed ad-
ditive disturbances. The fact that linear transformations of Gaussian random variables are
themselves normally distributed allows for the easy propagation of the uncertainty through
the system dynamics. Moreover, an analytical expression for the chance-constraint tighten-
ing can be obtained. Accordingly, the following assumptions are introduced.

Assumption 8.1. The random variable xvt corresponding to the ego vehicle’s state vector at
time t is modeled as a multivariate Gaussian:

xvt ∼ N (x̂vt ,Σ
v
t ). (8.2)

The disturbance dvt in the vehicle dynamics f v(·) is an i.i.d. multivariate Gaussian:

dvt ∼ N (d̂vt ,Σ
d
t ). (8.3)

The predicted states xv1:T |t (simply denoted as xv1:T ) are also modeled as Gaussians:

xvk|t := xvk ∼ N (x̂vk,Σ
v
k). (k = 1, . . . , T ) (8.4)
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Estimates of the mean x̂vt and variance Σv
t at time t can be obtained by a state observer. The

above assumption is aligned with the stochastic uncertainty characterization in the vehicle
model presented in Section 3.6.1. The main challenge with the analytical SMPC approach
is characterizing the predicted means x̂v1:T and variances Σv

1:T over the prediction horizon
for the nonlinear vehicle dynamics model f v(·). In our work, we adopt a linearization-based
approach to efficiently predict the means and variances of the state vector. The following
assumption is introduced:

Assumption 8.2. The ego vehicle dynamics model f v(·) is linearized about a nominal open-
loop trajectory {x̄v0:T , ū

v
0:T−1, d̄

v
0:T−1} of the ego vehicle to obtain the following Linear Time-

Varying (LTV) representation:

xδ,vk+1 = Akx
δ,v
k +Bku

δ,v
k +Dkd

δ,v
k , (8.5)

where the deviations from the nominal trajectory are denoted as:

xδ,vk = xvk − x̄vk,
uδ,vk = uvk − ūvk,
dδ,vk = dvk − d̄vk,

and the system matrices are given by:

Ak = ∇xvk
f v(xvk, u

v
k, d

v
k)|(x̄vk,ūvk,d̄vk),

Bk = ∇uvk
f v(xvk, u

v
k, d

v
k)|(x̄vk,ūvk,d̄vk),

Dk = ∇dvk
f v(xvk, u

v
k, d

v
k)|(x̄vk,ūvk,d̄vk).

The nominal input sequence ūv0:T−1 can be obtained from the open-loop solution of the SMPC
problem at the previous time step. This is similar to the warm start procedure used in the
iterative linearization algorithm in Section 5.3.3. The state sequence x̄v1:T is computed by a
forward simulation of the vehicle dynamics f v(·) using ūv0:T−1 and the initial state x̄v0|t = x̂vt .

Note that (8.5) is consistent with the additive disturbance formulation in Section 3.6.2. The
nominal disturbance d̄vk|t is identically equal to d̂vt . Thus, dδ,vk ∼ N (0,Σd

k).

In order to make the treatment of the chance-constraints (2.9) tractable, we make the
following assumption on the formulation of the safety constraints:

Assumption 8.3. The mapping g(·) in the probabilistic safety constraints (2.9) is affine in
the vehicle state. Concretely:

g(xvk, x
e
k) = Ge

kx
δ,v
k − hek. (8.6)

That is, we approximate the nonconvex safe region g(xvk, x
e
k) ≤ 0 for the ego vehicle by

the polyhedral region Ge
kx

δ,v
k − hek ≤ 0. Uncertainty in the environment is accounted for by

modeling hek as a multivariate Gaussian:

hek ∼ N (ĥek,Σ
h
k). (8.7)
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By the above assumption, the chance-constraints (2.9) can be rewritten as:

P (Ge
kx

δ,v
k ≤ hek) ≥ 1− εk. (8.8)

The linearization of the constraints to obtain Ge
k and hek is performed in a similar manner as

in the iterative linearization procedure in Chapter 5 (Section 5.3.1). In general, Ge
k and hek

are functions of the nominal states x̄vk and x̄ek.
The validity and generality of the above assumptions is analyzed later in Section 8.4

while comparing the analytical and sampling-based SMPC approaches.

8.2.2 Closed-loop approach

As mentioned in Section 2.3.1, we would like to adopt a closed-loop formulation where a
parametric representation of the control policy κc(·) is computed. In this work, we use the
following affine representation of the control policy:

uδ,vk = Kkx
δ,v
k + cvk. (8.9)

This is a commonly chosen parameterization in the literature [71, 120, 124]. Note that we
have implicitly assumed that uvk = uck in (8.9) as this chapter focuses on fully autonomous
applications without the driver in the loop (see Section 2.3.3 for details).

Due to the linearization in Assumption 8.2 and the presence of constraints in the problem,
the chosen control policy parameterization in (8.9) is not necessarily optimal for the original
SMPC problem. Nevertheless, the state feedback (8.9) has useful implications which are
explained in Section 8.2.3.

While it is possible to optimize over the feedback gains Kk in the SMPC optimization
problem, we assume fixed feedback gains that are computed a-priori. We solve an uncon-
strained finite time optimal control (FTOC) problem (also known as the Linear Quadratic
Regulator (LQR) problem) to obtain a sequence of gains K0:T−1 over the prediction horizon.
The FTOC solves the following minimization problem:

min
v0,...,vT−1

E

[
T−1∑
k=0

xδ,vk+1Q̃x
δ,v
k+1 + vkR̃vk

]
, (8.10a)

subject to: xδ,vk+1 = Akx
δ,v
k +Bkvk, (k = 0, . . . , T − 1) (8.10b)

where the matrices Q̃ and R̃ are tunable parameters. Note that in general, the cost function
(8.10a) differs from the cost (2.6a) in the SMPC problem. Intuitively, the FTOC problem
tries to keep the trajectory close to the nominal one, while the SMPC problem (2.6) computes
a sequence of offsets cv0:T−1 to achieve the objectives specified by (2.6a) while satisfying the
state and input constraints. The optimal solution to (8.10) is given by the state-feedback
law:

vk = Kkx
δ,v
k . (8.11)

The feedback gains are computed by the backward recursion in Algorithm 8.1.
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Algorithm 8.1 FTOC recursion

1: Initialize:
ST = Q̃

2: for k = T − 1 to 0:
3: Kk = −(BT

k Sk+1Bk + R̃)−1BT
k Sk+1Ak

4: Sk = Q̃+ ATk Sk+1Ak + ATk Sk+1BkKk

Output: {Kk}T−1
k=0

8.2.3 Uncertainty propagation

The key element of the SMPC approach is the characterization of the uncertainty in the
predicted states xδ,v1:T . By the feedback policy (8.9), the inputs uδ,v0:T−1 are a function of the

uncertain states xδ,v0:T−1. Hence, uδ,v0:T−1 are also stochastic and the uncertainty therein must
be characterized.

Substituting for uδ,vk in the LTV dynamics (8.5) using the feedback policy (8.9) yields:

xδ,vk+1 = Φkx
δ,v
k +Bkc

v
k +Dkd

δ,v
k , (8.12)

Φk = Ak +BkKk.

As the initial state xδ,v0|t = xδ,vt and the disturbance dδ,vk are assumed to be normally distributed

(by Assumption 8.1), the mean x̂δ,vk and variance Σv
k of the state evolve as:

x̂δ,vk+1 = Φkx̂
δ,v
k +Bkc

v
k, (8.13a)

Σv
k+1 = ΦkΣ

v
kΦ

T
k +DkΣ

d
kD

T
k , (8.13b)

initialized with x̂δ,v0|t = 0 and Σv
0|t = Σv

t . As the control policy in (8.9) is affine in the state,

the input uδ,vk is distributed as:

uδ,vk ∼ N (ûδ,vk ,Σ
u
k), (8.14)

with:

ûδ,vk = Kkx̂
δ,v + cvk, (8.15a)

Σu
k = KkΣ

v
kK

T
k . (8.15b)

Effect of state feedback

From (8.13b), we see that the closed-loop formulation (8.9) has an interesting consequence.
By allowing the future control input uδ,vk to be a function of the future measured state xδ,vk ,
we assume that measurements in the future will be available. This is opposed to the open-
loop approach where K0:T−1 is set to zero and cv0:T−1 is the open-loop control sequence to be
optimized. If K0:T−1 stabilizes the LTV system (8.5), the predicted variance Σv

1:T is smaller
than in the open-loop case with K0:T−1 = 0.
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Remark 8.4. By (8.13b), the predicted variance Σv
1:T over the horizon is independent of

the modified control inputs cv0:T−1 due to the linearity of the system dynamics (Assumption
8.2) and the Gaussian characterization of the uncertainty (Assumption 8.1). This implies
that the uncertainty propagation can be performed a-priori, that is, outside the numerical
optimization problem where the inputs cv0:T−1 are computed [120, 124]. The above property
is further discussed in Section 8.2.5.

8.2.4 Constraint tightening

The characterization of the state uncertainty allows us to write the probabilistic constraints
(8.8) as deterministic constraints on the mean x̂δ,vk . We first consider the case of single chance-
constraints where Ge

k is a row vector and hek is a univariate Gaussian random variable.

Theorem 8.5 (Chance-constraint tightening). A necessary and sufficient condition for the
chance-constraint (8.8) to be satisfied is:

Ge
kx̂

δ,v
k ≤ hek − γ(εk), (8.16)

γ(εk) = erf−1(1− 2εk)

√
2
[
Ge
k −1

] [ Σv
k 0

0 Σh
k

] [
(Ge

k)
T

−1

]
. (8.17)

The proof is detailed in [71]. The main idea is to compute the tightening offset γ(·) based
on the tail of the univariate normal random variable Ge

kx
δ,v
k − hek.

In the case of joint chance-constraints where Ge
k is a matrix and hek is a vector, we employ

Boole’s inequality to decompose the original constraint into several univariate constraints.

Theorem 8.6 (Joint chance-constraint tightening). Let nc be the number of constraints.
That is, hek ∈ Rnc×1. A sufficient condition for the chance-constraint (8.8) to be satisfied is
the existence of {εki}nci=1 such that:

Ge
ki
x̂δ,vk ≤ heki − γ(εki), (i = 1, . . . , nc) (8.18a)

nc∑
i=1

εki ≤ εk, (8.18b)

εki ≥ 0, (i = 1, . . . , nc) (8.18c)

where γ(·) is defined in (8.17). Ge
ki

and heki denote the ith row of Ge
k and hek, respectively.

Intuitively, the variable εki determines the amount of the total risk εk is allocated to the
ith constraint. The constraint (8.18b) ensures that the total risk is less than the maximum
allowed risk εk.
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Remark 8.7. The variables {εki}nci=1 can be added as optimization variables to the SMPC
problem to determine the optimal risk allocation [83]. In our implementation, however, we
treat the aforementioned variables as tunable parameters. A common choice is:

εki =
εk
nc
, (8.19)

which corresponds to a uniform risk allocation between constraints.

8.2.5 Deterministic optimization problem

In summary, the analytical SMPC approach is based on the following steps:

Step 1 : Linearization of the system dynamics around a nominal trajectory (Assumption 8.2).

Step 2 : Affine parameterization of the feedback control policy (Section 8.2.2)

Step 3 : Propagation of the mean and variance of the state xvk using the linearized dynamics,
affine policy and a Gaussian representation of the uncertainty (Assumption 8.1, Section
8.2.3)

Step 4 : Tightening of the linearized chance-constraints (8.8) using the predicted variance of
the state (Assumption 8.3, Section 8.2.4).

The above steps yield the following deterministic CFTOC problem:

min
cv0:T−1

T−1∑
k=0

J(x̂vk+1, û
v
k, û

v
k−1, x

ref
k+1, u

d
k), (8.20a)

subject to: x̂δ,vk+1 = Φkx̂
δ,v
k +Bkc

v
k, (8.20b)

ûvk = ūvk +Kkx̂
δ,v
k + cvk, (8.20c)

[ûvk|t, û
v
k−1|t] ∈ U , (8.20d)

Ge
ki
x̂δ,vk ≤ heki − γ(εki), (i = 1, . . . , nc) (8.20e)

x̂δ,vk = x̂vk − x̄vk, (8.20f)

(k = 0, . . . , T − 1)

x̂v0|t = x̂vt , ûv−1|t = uvt−1. (8.20g)

The variables {εki}nci=1 are assumed to satisfy the risk allocation constraints (8.18b)–(8.18c).
Recall that the computation of the predicted variance Σv

1:T is independent of the de-
cision variables cv0:T−1 (see Remark 8.4). Combined with the analytical tightening of the
chance-constraints, it can be seen that the complexity of the resulting numerical optimiza-
tion problem is the same as in the nominal case where Σv

1:T is set to zero. The additional
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effort comes from the computation of the gains K0:T−1 (by Algorithm 8.1) and the predicted
variance Σv

1:T (by (8.13b)) which are performed outside the optimization loop.
In the autonomous driving application considered in this work, the cost function J(·) is

quadratic in the vehicle states and inputs. This allows us to use the means x̂vk and ûvk to com-
pute the expected value of the cost function in (8.20a). With the aforementioned choice of
the cost function, the CFTOC problem (8.20) is a QP, which makes it amenable to the iter-
ative linearization procedure developed in Chapter 5. Concretely, the problem (8.20) can be
solved iteratively at each sampling time, where the nominal trajectory {x̄v0:T , ū

v
0:T−1, d̄

v
0:T−1}

is updated at each iteration using the solution at the previous iteration. An additional
trust-region constraint and penalty on the deviation from the nominal trajectory can be
added as in the algorithm presented in Section 5.3.3. The benefit of the iterative procedure
is that encourages the optimal trajectory to be close to the nominal one, thus maintaining
the validity of the LTV model around the optimal trajectory. Simulation results showing
the application of the analytical SMPC approach to the autonomous navigation problem are
discussed in Section 8.5.

Remark 8.8. The analytical SMPC approach presented above assumes that the full state
of the vehicle can be directly measured at every time step, as seen by the control policy
parameterization in (8.9). In partially observable environments, additional uncertainty due
to measurement noise must be considered. This affects the closed-loop policy and uncertainty
propagation steps in Sections 8.2.2 and 8.2.3, respectively. A detailed treatment of the control
design in the presence of measurement uncertainty is provided in Appendix B and is based
on the work in [120, 124].

8.3 Sampling-based Stochastic MPC

This section reviews the recent developments in sampling-based SMPC or Scenario MPC
(SCMPC) with a focus on application to the autonomous driving domain [50, 105]. We use
an open-loop formulation where we directly optimize on the control inputs uvk. The approach
can be generalized to optimize parameterized feedback policies κck(·) as in the case of the
analytical SMPC approach. Moreover, we assume full state feedback as the consideration of
measurement uncertainty is non-trivial.

8.3.1 Sampling-based predictions

In SCMPC, uncertain variables in the problem are represented by scenarios, which are
sampled realizations of the uncertainty. We focus only on the uncertainty associated with
the vehicle and the environment as the subsequent applications do not involve a driver in
the loop. Let {dv(s)k }Ss=1 and {de(s)k }Ss=1 denote S samples of the random variables dvk and dek,
respectively. A scenario ω(s) is defined as the full horizon sample:

ω(s) = {(dv(s)0 , de
(s)

0 ), . . . , (dv
(s)

T−1, d
e(s)

T−1)}. (8.21)
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Consequently, by the dynamics of the vehicle and the environment, we get samples of the
states {xv(s)k }Ss=1 and {xe(s)k }Ss=1. Note that while the sampled vehicle states {xv(s)k }Ss=1 are
deterministic, they are functions of the control input {uvk}T−1

k=0 . That is:

xv
(s)

k+1 = f v(xv
(s)

k , uvk, d
v(s)

k ) ∀s = 1, . . . , S. (k = 0, . . . , T − 1) (8.22)

The main idea of SCMPC is to impose the nonlinear safety constraints (4.34) for all possible
scenarios:

g(xv
(s)

k , xe
(s)

k ) ≤ 0 ∀s = 1, . . . , S. (k = 1, . . . , T ) (8.23)

8.3.2 Deterministic optimization problem

Using the sampled dynamics (8.22) and constraints (8.23), we obtain the following deter-
ministic CFTOC problem:

min
uv0:T−1

T−1∑
k=0

1
S

S∑
s=1

J(xv
(s)

k+1, u
v
k, u

v
k−1, x

ref
k+1, u

d
k), (8.24a)

subject to: xv
(s)

k+1 = f v(xv
(s)

k , uvk, d
v(s)

k ) ∀s = 1, . . . , S, (8.24b)

[uvk|t, u
v
k−1|t] ∈ U , (8.24c)

g(xv
(s)

k , xe
(s)

k ) ≤ 0 ∀s = 1, . . . , S, (8.24d)

(k = 0, . . . , T − 1)

xv
(s)

0|t = x̂vt ∀s = 1, . . . , S, uv−1|t = uvt−1. (8.24e)

The above problem is nonconvex in general and can be solved using a nonlinear optimization
package.

8.3.3 Choice of sample size

Recent results in SCMPC have developed a relationship between the number of scenarios S
and the satisfaction of the chance-constraint (2.9) [50]. Intuitively, the larger the number of
samples, the lower the probability ε of violating the safety constraints g(xvk, x

e
k) ≤ 0. The

work in [50] formalizes this relationship, which is based on the notion of the support rank of
the chance-constraint (2.9). The support rank ρk is defined as the dimension of the linear
subspace spanned by the constraint g(xvk, x

e
k) ≤ 0.

Let Vt denote the probability that the constraint (8.24d) is violated at the next time step
(t + 1) with the optimal control input uvt obtained by solving the CFTOC (8.24). Given a
sample size S, the expected value of Vt is bounded above as [50]:

E[Vt] ≤
ρ1

S + 1
. (8.25)
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Thus, in order to achieve a closed-loop violation probability of ε, a sample size S ≥ (ρ1/ε)−1
is required, which is proportional to the support rank. Fortunately, due to the nature of the
collision avoidance constraints that define g(·), the support rank is low. For example, in [105],
it is shown that the support rank is 1 for the specific formulation of the safety constraints.
In [33], the support rank is shown to be bounded by 2 for the case of an overtaking scenario.
An upper bound on the number of support constraints exists for the general autonomous
driving scenario due to the limited number of vehicles that can surround the ego vehicle at
any given time.

Scenario removal

The SCMPC approach allows for the removal of scenarios after they have been sampled. This
helps protect against outliers generated from the random sampling process which may cause
an abrupt change in the control policy. The discarding of scenarios affects the relationship
between the number of remaining samples and the probability of constraint violation (see
[24, 50] for details). Intuitively, if the number of remaining scenarios is the same as the
original number (that is, with no removal), the closed-loop constraint violation probability
is higher. In general, systematic scenario removal requires the CFTOC problem (8.24) to
be solved several times at each time step which is computationally challenging for real-time
implementation. However, simpler heuristics for determining the most extreme scenarios
can be employed in the autonomous driving problem. For example, when dealing with
forecasts of a target vehicle, if its lane change probability is estimated to be sufficiently low,
scenarios corresponding to the lane change maneuver can be discarded. We use a similar
domain-specific scheme in our implementation.

8.4 Hybrid Stochastic Model Predictive Control

In the next section, we compare the analytical and sampling-based SMPC approaches and
propose an approach that combines the benefits of both methods. We refer to this as the
hybrid SMPC approach.

8.4.1 Analytical vs. sampling-based SMPC

The main limitation of the analytical SMPC approach presented in Section 8.2 is that the
characterization of all system uncertainties is restricted to Gaussian distributions. While
this may be a reasonable assumption for modeling errors and disturbances in the vehicle
dynamics (see Section 3.6), this is not the case for uncertainty in the forecasts of surrounding
vehicles. For example, a target vehicle in the process of changing lanes induces a multimodal
distribution on its future position. This is shown using data collected from our experimental
vehicle. We analyzed about 50 minutes of driving data on highways around Berkeley which
included lane keeping and lane changing maneuvers. Using the data, a Gaussian Mixture
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Model (GMM) was learned which models the joint probability distribution between the
vehicle’s current lateral position and velocity, and the lateral position at a future time step.
In order to use the model to predict the distribution of the future positions of the vehicle,
we use Gaussian Mixture Regression (GMR) [21] to compute the conditional distribution of
the future lateral position given the current lateral position and velocity.

Current position
Past
Future (measured)
Predicted mean
Predicted samples

Time [s]

η
[m

]

18 19 20 21 22 23 24 25

−2

0

2

4

6

Figure 8.3: Sampled predictions of the vehicle’s lateral position starting from its current state
at t = 20 s. The solid red line depicts its past trajectory while the dotted green line shows the
actual future trajectory which is not known to the model. The red circles depict the means of the
predictions at the corresponding time steps.

GMM

Gaussian

η [m]η [m]η [m]

k = 4.0 sk = 2.0 sk = 0.4 s

0 2 40 2 40 2 4

Figure 8.4: PDFs of the distributions of the predicted lateral position of the vehicle at 3 different
time steps of the horizon. The solid blue line shows the GMM characterization of the distribution
while the dotted red line is the Gaussian approximation.

Figures 8.3 and 8.4 show the results of the prediction for a situation where the vehicle is
about to initiate a lane change. In Figure 8.3, the sampled predictions of the vehicle’s lateral
position over a horizon of 4 s are shown, starting from its current position at t = 20 s. Based
on the driving data, our model predicts that the vehicle could either change lanes (reflected
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by the samples going towards the left) or keep its current lane (reflected by the samples
returning towards the lane center). The actual future trajectory of the vehicle is a lane change
(depicted by the green line), but this is not known to the prediction model. The red circles
show the means of the predictions over the horizon assuming a Gaussian approximation of
the distribution. Clearly, the predicted trajectory does not make physical sense as it lies
in between the lane keeping and changing maneuvers. Figure 8.4 shows the PDFs of the
distributions of the predicted lateral position of the vehicle at 3 different time steps of the
horizon. Our conclusion is that the Gaussian assumption is not a valid characterization of
the uncertainty in traffic forecasts. Another situation in which the Gaussian assumption
breaks down is in the case of a vehicle approaching an uncontrolled intersection where it
may decide to go straight or turn left or right. Thus, any distribution on its future position
must be multimodal.

The sampling-based SMPC in Section 8.3 resolves this issue by representing system un-
certainties by samples. The only requirement of the system model is that it can generate
samples of the future states. This is an additional benefit as compared to the analytical
approach where an explicit characterization of the mean and variance over the horizon is
required. The sampled representation, however, does come at a computational cost. As seen
from (8.22) and (8.23), there is one equality constraint (corresponding to the dynamics) and
one inequality constraint (corresponding to the safety constraints) per scenario for each time
step of the horizon. This yields S times the number of equality and inequality constraints
as compared to the nominal MPC problem, making it computationally formidable for real-
time applications. Our aim is to combine the benefits of the analytical and sampling-based
SMPC approaches to obtain a real-time control scheme capable of handling uncertainty in
the vehicle, driver and environment states. Our algorithm is similar in spirit to the work in
[123], where the uncertain parameters of the linear constraints are sampled and a Gaussian
representation of the system state is used to tighten the chance-constraints.

8.4.2 Aggregating samples due to environment uncertainty

We make the following observation regarding the sampled constraints (8.23). Assume no
uncertainty in the vehicle state xvk. That is, dvk is equal to a nominal value d̄vk with probability

one, and there is one sample xv
(1)

k corresponding to the nominal value x̄vk.

Our claim is that, in most cases, it is possible to aggregate the samples {xe(s)k }Ss=1 (at
each predicted time step k) into a reduced set of samples by exploiting the structure of the
driving problem. We provide an illustration by means of Figure 8.5. Consider the scenario
in Figure 8.5a where the target vehicle T1 is in the process of changing lanes. Two nominal
predicted trajectories are shown; the blue and red lines correspond to the left lane change
and lane keeping maneuvers, respectively. The rectangles represent the sampled predictions
of T1 at the end of the prediction horizon of 15 time steps as given by the environment
model. The blue and red rectangles correspond to the left lane change and lane keeping
maneuvers, respectively. We draw 5 samples for each of the maneuvers, corresponding to a
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lane change probability of 50%. Sampled predictions for the other time steps in the horizon
are not shown for the sake of clarity.

Figures 8.5b and 8.5c show two approaches for aggregating samples arising from envi-
ronment uncertainty, referred to as Methods 1 and 2, respectively. In Method 1, samples
corresponding to the same maneuver as combined together. This can be done by computing a
rectangular bounding box aligned with the road as depicted by the green rectangle in Figure
8.5b. Another approach is to compute the convex hull of the relevant samples [33]. Method
1 yields one aggregated sample per maneuver, hence the reduced number of samples is equal
to the number of maneuvers. In our illustration, we get 2 aggregated samples (corresponding
to the lane change and lane keeping maneuvers), which is depicted by the green polygons in
Figure 8.5b.

In Method 2 (Figure 8.5c), all samples of the target vehicle’s predicted pose all combined
together. Again, this can be done by computing a rectangular bounding box aligned with
the road (green rectangle in Figure 8.5c) or by taking the convex hull. Method 2 results in
one aggregated sample per time step of the horizon, but is clearly more conservative than
Method 1. The former is suitable for highway driving situations such as that in Figure
8.5a. Here, a single aggregated sample which spans the width of the roadway makes physical
sense as this would cause the ego vehicle to stay behind T1 till it completes the lane change
maneuver. Method 1 is suitable for urban driving scenarios such as intersection navigation.
For example, in the case of a target vehicle approaching an intersection, the environment
model yields predictions corresponding to multiple maneuvers such as going straight, turning
left or right. Here, a single aggregated sample would not make physical sense and would be
overly conservative.

We formalize the notion of sample aggregation by introducing the following assumption:

Assumption 8.9 (Sample aggregation). At each time step k of the prediction horizon, the

samples {xe(s)k }Ss=1 corresponding to environment uncertainty can be aggregated into a reduced

sample set {x̃e(s)k }S̃s=1 by the methods presented above such that:

g(xvk, x̃
e(s)

k ) ≤ 0 ∀s = 1, . . . , S̃ =⇒ g(xvk, x
e(s)

k ) ≤ 0 ∀s = 1, . . . , S. (8.26)

Typically, S̃ � S.

Equation (8.26) follows from the fact that Methods 1 and 2 perform a conservative aggre-
gation of the samples via the convex hull or bounding box. Note that the sampled states
{xe(s)k }Ss=1 and {x̃e(s)k }S̃s=1 not only contain information such as the position and orientation

of the target vehicles, but also their geometries. The effective dimensions of x̃e
(s)

are larger
than those of the samples xe

(s)
they contain.

8.4.3 Accounting for uncertainty in the vehicle dynamics

The approach presented in Section 8.4.2 for dealing with uncertainty in the environment
forecasts does not consider the uncertainty in the vehicle state xvk. In the presence of this
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(a) Sampled constraints and nominal trajectories for lane change left and lane keeping.

(b) Method 1 for sample aggregation:
Samples corresponding to each maneuver
are combined into a single sample by com-
puting a rectangular bounding box. The
number of reduced samples is equal to the
number of maneuvers (2 in this case).

(c) Method 2 for sample aggregation: All
samples are combined into a single sample
by computing a rectangular bounding box.
The number of reduced samples is equal to
1.

Figure 8.5: Illustration of the proposed sample aggregation strategies.

uncertainty, we use the analytical SMPC approach of Section 8.2 to propagate the mean and
variance of the state xvk over the horizon. This is based on a Gaussian characterization of
the uncertainty (Assumption 8.1) and a LTV model of the vehicle dynamics (Assumption
8.2). Using the approach presented in 8.2.3, we can compute the mean x̂vk and variance Σv

k

of the state xvk over the horizon as a function of the inputs cvk.

8.4.4 Constraint tightening

The final step in the hybrid SMPC approach is the tightening of the sampled constraints
8.26 for the reduced set of samples S̃. As in Assumption 8.3, for a tractable determination of
the tightening offsets γ(·), we linearize the nonlinear constraint mapping g(·). Specifically, at
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time step k of the prediction horizon, the convex approximation of the safe region g(xvk, x̃
e(s)

k )
corresponding to the sth aggregated sample is given by:

Ge(s)

k (xvk − x̄vk) ≤ he
(s)

k , ∀s = 1, . . . , S̃, (8.27)

with:

Ge(s)

k = ∇xvk
g(xvk, x

e
k)|x̄vk,x̃e(s)k

, (8.28a)

he
(s)

k = −g(x̄vk, x̃
e(s)

k ). (8.28b)

The constraint tightening procedure presented in Section 8.2.4 can now be applied to
obtain the following deterministic constraint on the mean x̂vk:

Ge(s)

k (x̂vk − x̄vk) ≤ he
(s)

k − γ(ε
(s)
k ). (8.29)

The risk allocation constraints:
∑S̃

s=1 ε
(s)
k ≤ εk, ε

(s)
k ≥ 0, are assumed to be satisfied.

8.4.5 Hybrid approach

In summary, the outline of the hybrid SMPC approach is as follows:

Step 1 : Use the analytical SMPC methodology to characterize and propagate the uncer-
tainty in the vehicle state xvk over the horizon. In order to do this efficiently, we use a
Gaussian representation of the uncertainty in the vehicle dynamics (Assumption 8.1) and
a linearized vehicle model (Assumption 8.2).

Step 2 : Use a sampled representation of the environment state xek and the aggregation pro-
cedure in 8.4.2 to obtain a reduced number of sampled constraints per time step of the
horizon.

Step 3 : Tighten the aggregated safety constraints as a function of the predicted variance in
the vehicle state xvk. This requires a linearization of the safety constraints computed with
respect to the aggregated samples (Assumption 8.3).

The above approach yields the following deterministic CFTOC problem:

min
cv0:T−1

T−1∑
k=0

J(x̂vk+1, û
v
k, û

v
k−1, x

ref
k+1, u

d
k), (8.30a)

subject to: x̂δ,vk+1 = Φkx̂
δ,v
k +Bkc

v
k, (8.30b)

ûvk = ūvk +Kkx̂
δ,v
k + cvk, (8.30c)

[ûvk|t, û
v
k−1|t] ∈ U , (8.30d)

Ge(s)

k x̂δ,vk ≤ he
(s)

k − γ(ε
(s)
k ), (s = 1, . . . , S̃) (8.30e)
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x̂δ,vk = x̂vk − x̄vk, (8.30f)

(k = 0, . . . , T − 1)

x̂v0|t = x̂vt , ûv−1|t = uvt−1. (8.30g)

Problem (8.30) is a QP. To improve the quality of the solution, the iterative linearization
procedure developed in Chapter 5 can be applied as discussed in Section 8.2.5. In addition to
linearizing the dynamics and safety constraints, each iteration of this procedure would involve
computing the gains K0:T−1, variances Σv

1:T and tightening offsets γ(ε
(s)
k ). The computational

complexity can be further reduced by keeping the aforementioned quantities (that is, the
gains, variances and tightening offsets) fixed over the iterations performed at a given time
step. This approach is used in the experiments performed in Section 8.6.

Remark 8.10 (Safety guarantees). Note that due to the hybrid analytical and sampling
approach to deal with the chance-constraints, no formal guarantees of the constraint violation
probability as function of the number of scenarios S and the parameter εk can be obtained.
However, our method allows for a systematic treatment of the uncertainty in the vehicle and
environment forecasts.

8.5 Simulation results

This section demonstrates the application of the analytical SMPC scheme of Section 8.2
to the autonomous navigation problem in urban environments. We explore the trade-off
between risk and conservatism that can be obtained by tuning the constraint violation prob-
ability used in the controller design. The effect of using multimodal distributions of the
future locations of target vehicles as opposed to Gaussian distributions is also studied.

8.5.1 Simulation setup

Simulations are performed in MATLAB and the CFTOC problem (8.20) is solved using
Gurobi [57]. The controller is connected in closed–loop with a higher fidelity four–wheel
nonlinear model (which uses a Pacejka tire model) to simulate model mismatch. The physical
parameters of the prototype Hyundai vehicle described in Appendix A.2 are used.

8.5.2 Test scenario

The scenario for the simulation is shown in Figure 8.6a. The ego vehicle E is moving at a
speed of 10 m/s in the left lane with the objective of staying in the left lane and increasing
its speed to 15 m/s. The target vehicles T1 and T2 are in the right lane at the start of the
simulation. T1 moves at a speed of 8 m/s and is in the process of changing its lane to the
left lane. Its lane change trajectory is generated using a sigmoid function. T2 moves in a
straight line at a speed of 10.5 m/s and stays in the right lane for the entire duration of the
simulation.
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8.5.3 Technical approach

Vehicle model: The dynamic bicycle model described in Section 3.2.2 with a linear tire model
is used for the control design. The position and orientation of the vehicle are expressed in
the road-aligned frame. Hence, xvt = [ẋt, ẏt, ψ̇t, ξt, ηt, φt]

T and uvt = [δft , axt ]
T .

Reference generation: A simple reference generator which provides speed and lateral position
set-points is used in this example. These constitute the reference state sequence xref

1:T |t. In

particular, the reference speed is 15 m/s while the desired lateral position is the center of
the left lane.

Environment model: The multiple-model filtering approach presented in Section 4.2 is used
to estimate and predict the positions of the target vehicles. For the predictions, the dynamics
corresponding to the most likely mode are used to propagate the mean and variance of the
state of each target vehicle over the horizon (see Section 4.2.6 for details).

Controller: We use the analytical SMPC approach presented in Section 8.2. The collision
avoidance constraints are formulated using the signed distance approach of Section 4.5.2.
The SMPC problem is solved with a constraint violation probability εk = 0.004 in (8.8).
This corresponds to a constraint satisfaction probability of 99.6%. The prediction horizon
is T = 20 time steps with a discretization time of 0.1 s, resulting in a preview time of 2 s.

8.5.4 Results

Snapshots of the simulation at various times are shown in Figure 8.6. In each sub-figure, the
blue and red circles depict the means of the open-loop (predicted) positions of the ego and
target vehicles, respectively, at the corresponding time step of the simulation. The predicted
positions of E are obtained from the solution of the optimization problem, and those of T1

and T2 are given by the environment model. The spacing between the predicted positions
depicted by the circles is an indication of the predicted speed of the vehicles.

As seen in Figure 8.6b, the environment model predicts a lane change maneuver for T1

at t = 2.5 s. The potential constraint violation causes the controller to command a braking
action and decrease the speed of E. To attain the objective of maintaining the reference
speed, the controller attempts to plan a path around T1, but is prevented from doing so
by the presence of T2 (Figure 8.6c). When T2 passes E and a sufficient safety distance is
available, the controller plans and executes an overtaking maneuver as shown in Figures 8.6d
and 8.6e. Finally, the controller plans a path in between T1 and T2 when feasible to cause E
to return to its original lane and increase its speed (Figure 8.6f).

8.5.5 Risk vs. conservativeness

An important element of the SMPC problem is the risk parameter εk, defined as the proba-
bility of violating the probabilistic safety constraints. In order to study the effect of varying
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(f) t = 22.5 s

Figure 8.6: Snapshots of simulation with the ego vehicle E in blue and the target vehicles T1 and
T2 in red. The blue and red circles are the predicted positions of the ego and target vehicles,
respectively, over the horizon.

εk on the performance of the controller, we repeat the simulation presented above using the
nominal approach. This is, all disturbances are assumed to take on their mean values and
the amount of chance-constraint tightening in (8.18) is zero.

A snapshot of the simulation at t = 4.7 s for the nominal and stochastic MPC cases is
shown in Figure 8.7. In the nominal case, the controller finds the more aggressive maneuver
of changing lanes in between the two target vehicles to be feasible, as seen in 8.7a. This can
be compared to the relatively conservative maneuver planned by the SMPC-based controller
shown in Figure 8.7b, in which the vehicle stays behind T1 and overtakes only when T2 has
passed.

An interesting statistic we compare in this simulation is the time taken by the ego vehicle
to reach the 400 m mark. In the nominal case, the EV traverses this distance in 27.4 s. On the
other hand, the SMPC strategy results in a commute time of 34.4 s for the same distance.
For more complex scenarios encountered in day-to-day driving and longer distances, this
difference will be much larger.
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(a) εk = 0.5 (Nominal MPC)
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(b) εk = 0.998 (Stochastic MPC)

Figure 8.7: Simulation showing the effect of varying the risk parameter εk on the conservatism of
the controller. The notation is the same as that in Figure 8.6

In the context of urban driving, scenarios like the one described in our simulation study
are expected to occur often. The use of conservative worst-case approaches may result in
the ego vehicle stopping or slowing down unnecessarily, leading to longer commute times.
Nominal approaches may lead to unsafe and aggressive behavior. The framework proposed
in this work allows us to systematically trade-off between these two extremes.

8.5.6 Effect of traffic forecasts: Gaussian vs. multimodal

In the above example, predictions of the future states of the TVs is based on their most likely
mode estimated by the multiple model filter. While this may be a reasonable assumption
in most cases, the distributions of the future states tend to be multimodal as discussed in
Section 8.4.1, especially in situations involving lane changes of target vehicles. Here, we
show an example where a significant difference in the performance of the ego vehicle can be
obtained depending on the forecast approach chosen.

The scenario consists of a single target vehicle T1 moving erratically in the left lane at
a constant speed of 8 m/s. The ego vehicle starts behind it in the right lane at a speed of
10 m/s with the objective of tracking a reference speed of 15 m/s, passing T1 in doing so.
The target vehicle T1 is designed to be adversarial in the following sense. When the relative
spacing between E and T1 is below a certain threshold, the latter initiates a lane change into
the path of E. However, T1 aborts the lane change maneuver when it reaches the boundary
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of its own lane.
The multiple model filtering approach of Section 4.2 is used to estimate the intent and

predict the motion of T1. Two approaches for forecasting the motion of T1 based on the
output of the filter are compared. These have been presented in Section 4.2.6 and are briefly
reviewed here. Recall that at each time step, the filter provides a distribution over the dis-
crete modes and an estimate of the mean and variance of the TV state based on the history of
measurements. In Approach 1, a Gaussian characterization of the uncertainty in the predic-
tions is used. We estimate the most likely model mML

t and compute a Gaussian distribution
of the future position of T1 using the dynamics corresponding to mML

t (Equations 4.16–4.17).
In Approach 2, we use a sampled representation of the uncertainty in the predictions. Here,
we sample from the distribution over the discrete modes and use the corresponding dynamics
to obtain a sample of the future target vehicle position (Algorithm 4.2). All samples are
aggregated according to Method 2 described in Section 8.4.2. A simple scenario removal
scheme is used to discard extreme scenarios corresponding to low probability maneuvers in
order to reduce the conservatism of the controller.

The scene at t = 10 s is shown in Figure 8.8. The blue circles depict the means of the
open-loop predictions of E, while the red ones show the mean predicted trajectory of T1 over
the horizon. The solid red line is the observed trajectory of T1 so far while the dotted red
line is its future trajectory which is not known to the traffic prediction model. The main
difference between Approaches 1 and 2 lies in the predicted variance of the state of T1, which
is depicted by the red shaded region surrounding its predicted trajectory. When a Gaussian
characterization based on the most likely model is used (Approach 1), T1 is expected to
return to the lane center. Moreover, the variance associated with the predictions is low.
Hence, E plans to increase its speed and pass T1 as is seen by the relatively larger spacing
between the blue circles in Figure 8.8a. On the other hand, as Approach 2 considers the
distribution over the modes, the variance associated with the predictions is relatively larger.
This prevents E from planning a passing maneuver. Hence, E plans to slow down and stay
behind T1 which is observed by the relatively smaller spacing between the blue circles in
Figure 8.8b.

Figure 8.9 shows the closed-loop speed profile of E over the duration of the simulation.
There is a larger variation in the speed with Approach 1 due to the fact that the controller
repeats the process of attempting a passing maneuver and then aborting it due to the
change in the most likely model. On the other hand, Approach 2 yields a relatively cautious
control policy and hence, a smoother speed profile as the controller never attempts a passing
maneuver. This is closer to how a human driver would handle the given scenario.

8.6 Experimental Results

This section demonstrates the ability of the hybrid SMPC approach presented in Section
8.4 to run in real-time on our experimental vehicle and handle a typical urban driving
scenario. We also show the benefit of accounting for the interaction between the ego and
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Figure 8.8: Snapshots of the simulation at time t = 10 s. The blue and red circles are the open-loop
predictions of E and T1, respectively. The solid red line is the observed trajectory of T1 so far while
the dotted red line is its future trajectory which is not known to the forecast model.

Approach 1: Gaussian

Approach 2: Multimodal

Time [s]

ẋ
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Figure 8.9: Comparison of closed-loop speed profiles using traffic forecasts based on the most likely
mode (Gaussian, dotted red line) and the multimodal distribution generated by the multiple model
filter (solid blue line).

target vehicles. For safety reasons, the experiments are performed at low speeds using a
virtual (or simulated) target vehicle.

8.6.1 Test scenario

The scene at the start of the experiment (t = 0 s) is shown in Figure 8.10a. The ego vehicle
E is moving in the right lane at a speed of about 6 m/s with a reference speed of 8 m/s. The
virtual target vehicle T1 is at a relative distance of about 20 m behind E in the left lane and
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moving at a speed of about 14 m/s. The acceleration of T1 is computed using the Intelligent
Driver Model presented in Section 4.4. We assume that T1 is operated by a compliant driver.
That is, when the ego vehicle indicates its desire to change lanes to the left via the turn
signal, T1 responds and slows down to create a sufficient gap for E to change lanes. However,
the environment model used by E to forecast the motion of T1 is not aware of this, and must
estimate the likelihood that it is compliant.

At time t = 2.0 s, the operator of E turns the left turn signal on to trigger a lane change
command for the ego vehicle. The lane change is achieved by changing the lateral position
reference ηref to the center of the left lane. The goal for the ego vehicle is to change lanes
if it is safe to do so, given the predictions of the target vehicle and the corresponding safety
constraints.

8.6.2 Technical approach

Vehicle model: The kinematic bicycle model described in Section 3.3.1 is used for the control
design. The position and orientation of the vehicle are expressed in the road-aligned frame.
Hence, xvt = [ξt, ηt, φt, vt]

T . In this application, we focus only on the lateral control and
assume the existence of a low-level controller to track a constant speed reference. This is
equivalent to choosing uvt = δft and setting at = 0 in the bicycle model (3.24).

Reference generation: A simple reference generator which provides a constant lateral position
set-point ηref is used in this application. This constitutes the reference state sequence xref

1:T |t.

Environment model: The interaction-aware car-following model presented in Section 4.4 is
used to predict the longitudinal motion of the target vehicle. Based on an estimate of the
TV’s acceleration, the model estimates the probability that the TV will slow down to make
room for the ego vehicle to change lanes. We generate full horizon samples of the future
trajectories of the TV using the method presented in Section 4.4. The reference speed of the
TV in the free-flow mode is 20 m/s.

Controller: We use the hybrid SMPC approach proposed in Section 8.2. The collision
avoidance constraints are formulated using the safety corridor approach of Section 4.5.1. At
each time step k of the horizon, the sampled predictions from the environment model are
aggregated into a single sample using Method 2 presented in Section 8.4.2. The analytical
SMPC approach with full state feedback is used to propagate the variance of the state xvk over
the horizon. The SMPC problem is solved with a constraint violation probability εk = 0.005
in (8.8). The prediction horizon is T = 10 time steps with a discretization time of 0.2 s,
resulting in a preview time of 2 s.

8.6.3 Results

Snapshots of the experiment are shown in Figure 8.10. The blue and red circles are the
predicted positions of the ego and target vehicles, respectively, over the horizon. The vertical
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(f) t = 10.0 s

Figure 8.10: Snapshots of experiment with the ego vehicle E in blue and the target vehicle T1 in
red. The blue and red circles are the predicted positions of the ego and target vehicles, respectively,
over the horizon. The vertical green lines indicate the safe region for E computed by the safety
corridor approach, given the sampled predictions of T1,

green lines indicate the safe region for the center of gravity of E over the prediction horizon
computed by the safety corridor approach, given the sampled predictions of T1. At t = 0
s (Figure 8.10a), T1 is relatively close to E and moving faster. Thus, the ego vehicle is
restricted to move in its own lane, as seen by the vertical green lines lying completely within
the right lane. When the operator of E indicates a lane change at t = 2.0 s (Figure 8.10b),
the situation is similar. The ego vehicle plans a path to the left which is constrained to lie
in it’s own lane.

However, as T1 is modeled as being compliant, it responds to the EV’s intent to change
lanes and starts slowing down. At t = 3.6 s (Figure 8.10c), we see that based on the
predictions of T1, the safe region for E extends into the left lane at the last time step of the
prediction horizon. This still does not enable E to change lanes. A similar situation occurs
at t = 4.2 s (Figure 8.10d) where the safe regions corresponding to the last 5 time steps of
the prediction horizon extend into the left lane. While this does not allow E to immediately
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change lanes, the controller plans to initiate the lane change maneuver towards the end of
the horizon. Finally, at t = 4.7 s (Figure 8.10e), the safety constraints allow the ego vehicle
to change lanes. The lane change maneuver is completed around t = 10.0 s as seen in Figure
8.10f.

8.6.4 Effect of not accounting for interactions

The model used to forecast the acceleration input and the resulting longitudinal trajectory of
the target vehicle T1 estimates the probability that T1 will yield to the ego vehicle E. When
the confidence that T1 is compliant is sufficiently high, the resulting safety constraints allow
E to complete the lane change. We examine the effect of not accounting for this interaction
between E and T1 by repeating the above experiment with a modified environment model.
Concretely, we assume that T1 is always in a non-compliant mode where it does not respond
to the EV’s intention to change lanes. In this case, the environment model predicts the
acceleration of T1 based on its free-flow mode of operation, where T1 is assumed to track the
reference speed of 20 m/s.

Clearly, the above model is conservative as it assumes that T1 will speed up to the
reference speed starting from its current speed. However, in closed-loop, the speed of T1

decreases to that of E. Figure 8.11 shows the scene at t = 14.5 during the experiment. Due
to the conservative predictions, E is restricted from performing a lane change maneuver.
This is seen by the safety region (depicted by the vertical green lines) lying completely
within the right lane for the last 5 time steps of the horizon. On the other hand, in the
previous experiment (Figure 8.10), E had completed the lane change by around t = 10 s. In
summary, this motivates the need for considering interactions in urban driving scenarios in
order to achieve realistic and non-conservative behavior by the autonomous vehicle.
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Figure 8.11: Snapshot of the experiment in which interaction between the target vehicle T1 and
the ego vehicle E is not considered. The notation is the same as that in Figure 8.10.

8.7 Conclusions

In this chapter, we presented approaches for the control design when a probabilistic view of
the uncertainty in the vehicle and environment forecasts is taken. In general autonomous
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driving scenarios, such a view yields a less conservative control policy than a worst-case
characterization of the uncertainty. Two approaches for stochastic model predictive control,
analytical and sampling-based SMPC, are compared and a hybrid approach is proposed
which combines the benefits of both methods from the standpoint of autonomous vehicle
control. Simulation results show the ability of the controller to perform an autonomous
overtaking maneuver. We also discuss the effect of tuning the bound on the constraint
violation probability on the controller’s performance and of using a sampled representation
of environmental uncertainty. Experiments on our prototype vehicle show the real-time
feasibility of the proposed approach.

Integration of previously presented control design methodologies

In the previous chapters, we presented control strategies for various applications including
obstacle avoidance (Chapter 5), electronic stability control (Chapter 6) and autonomous
cruise control (Chapter 7). We would like to conclude with a brief discussion of how these
approaches can be unified with the stochastic MPC strategy presented in this chapter for
application to general autonomous driving scenarios.

Iterative linearization approach

The iterative linearization method of Chapter 5 is a general approach for solving the nonlinear
CFTOC problem and can be used with any vehicle model and safety constraint formulation.
It is particularly suited for the analytical SMPC approach presented in Section 8.2 as the
uncertainty propagation and constraint tightening steps are based on a linearization of the
system dynamics and collision avoidance constraints, respectively. At each time step, a
sequence of QPs can be solved, each refining the solution obtained at the previous iteration.

Safe set for stability control

While the lateral stability controller presented in Chapter 6 assumes the existence a driver in
the loop, the analysis therein readily extends to the autonomous case. In fact, the analysis is
simplified due to the absence of one of the primary sources of uncertainty, that is, the driver.
The analysis in Section 6.4 is a systematic method of computing the set of robustly safe
control inputs in order to prevent the vehicle from drifting out of control. This set can be
augmented to the set U of feasible control inputs for the autonomous navigation applications
in this chapter. As the robust invariant set computations are performed offline and the set
to be used online is polyhedral, the increase in the computational complexity of the resulting
online optimization problem is minimal.

Safe following distances

Finally, the worst-case analysis for the design of the autonomous cruise controller in Chapter
7 can also be applied to the applications involving lateral control in this chapter. It is impor-
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tant to note that the analysis based on the notion of the braking distance results in safety
constraints which are a function not only of the relative distance between the preceding and
ego vehicles but also their longitudinal speeds. This can be viewed as a systematic method
of artificially increasing the dimensions of target vehicles (in the longitudinal direction) to
account for safety. The consequence is that, in scenarios involving lane change and overtak-
ing maneuvers, the ego vehicle would maintain a relative distance to surrounding vehicles
based on the relative speed.
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Appendix A

Experimental Vehicles

This appendix provides an overview of the hardware configurations and physical parameters
of the experimental passenger vehicles used for the results in this dissertation.

A.1 Jaguar S-Type

The prototype Jaguar S-Type vehicle provided by the Ford Motor Company is equipped
with an Active Front Steering (AFS) system and four wheel independent braking. The AFS
allows us to command an additive steering angle to the vehicle which is augmented to the
driver’s steering angle. An Oxford Technical Solutions (OxTS) RT3002 sensing system is
used to measure the position and orientation in the inertial frame, and the vehicle velocities
in the body frame. The OxTS RT3002 system comprises of a differential Global Positioning
System (GPS) and an Inertial Measurement Unit (IMU). A GPS base station is used to pro-
vide differential corrections to the RT3002 unit. The real-time computations are performed
on a dSPACE DS1005 Autobox system which consists of a PowerPC 750GX processor run-
ning at 933 MHz. The aforementioned hardware components communicate via a CAN bus.
Experiments with this vehicle were performed at the Smithers Winter Test Center in Raco,
Michigan, in collaboration with the Ford Motor Company. The physical parameters and ac-
tuator limits are listed in Table A.1. The maximum value of the slip ratio σ is 0 as the engine
throttle cannot be commanded in the test vehicle. This vehicle is used for the experiments
performed in Chapters 5 and 6.

A.2 Hyundai Grandeur

The prototype Hyundai Grandeur vehicle provided by the Hyundai Motor Company is
equipped with the sensors and actuators essential for fully autonomous driving. A pro-
duction grade camera and radar provide estimates of the relative positions and velocities of
vehicles in front of the ego vehicle. In addition, the camera gives an estimate of the lane
geometry in terms of a 3rd-order polynomial fitted to the lane boundaries in the body fixed
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Table A.1: Parameters of the prototype Jaguar S-Type vehicle

Parameter Value Parameter Value

m 2050 kg Iz 3344 kg-m2

lf 1.43 m lr 1.47 m

δfmin
−10 deg δfmax 10 deg

δ̇fmin
−60 deg/s δ̇fmax 60 deg/s

σmin −0.5 σmax 0

Table A.2: Parameters of the prototype Hyundai Grandeur vehicle

Parameter Value Parameter Value

m 1830 kg Iz 3477 kg-m2

lf 1.15 m lr 1.69 m

δfmin
−30 deg δfmax 30 deg

δ̇fmin
−10 deg/s δ̇fmax 10 deg/s

axmin
−4 m/s2 axmax 2 m/s2

τsmin
−7.5 N-m τsmax 7.5 N-m

coordinate frame. The vehicle is retrofitted with six IBEO LUX laser-scanners, each with a
110 degree horizontal field of view and 4 vertical layers with a 3.2 degree vertical field of view.
The point clouds from the sensors are fused by the IBEO Fusion ECU to yield a 360 degree
image of the environment. In addition, the ECU performs clustering and segmentation of
the point cloud to provide the relative positions, velocities and categories (e.g. car, bike,
truck, pedestrian) of surrounding objects.

An Oxford Technical Solutions (OxTS) RT 2002 sensing system, comprising of a global
positioning system (GPS) and an inertial measurement unit (IMU), combined with a GPS
base station are used for localizing the vehicle. Two embedded computing platforms are
available: (i) a dSPACE MicroAutoBox II (900 MHz IBM PowerPC processor), and (ii) a
Speedgoat real-time mobile target machine (2.16 GHz Intel Core 2 Duo processor) based
on Simulink Real-Time. The sensors, actuators and computing platform on the vehicle
communicate via a CAN bus.

The vehicle steering is controlled by means of the overlay torque function of the built-in
Electronic Power Steering (EPS) or Motor Driven Power Steering (MDPS) system. The
torque is additive to that applied by the driver to the steering column. Longitudinal speed
control is achieved by means of a desired acceleration command to the built-in ACC system
on the vehicle. The physical parameters and actuator limits are listed in Table A.2. This
vehicle is used for the experiments performed in Chapters 7 and 8.
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Appendix B

Measurement Uncertainty in
Stochastic Model Predictive Control

The analytical SMPC formulation presented in Section 8.2 assumes full state feedback as
seen by the control policy parameterization in (8.9). In general, the state xvt cannot be
measured directly. Instead, at each time step t, a measurement yvt is assumed to be available
which is related to the state as:

yvt = hv(xvt , w
v
t ), (B.1)

where wvt ∼ N (ŵvt ,Σ
w
t ). A state observer provides an estimate x̃vt of the true state xvt at

time t with an associated variance Σv
t conditioned on the history of measurements yv1:t.

Remark B.1 (Notation). The symbol x̂vt (or x̂v0:T |t) refers to the mean of the true state xvt
(or xv0:T |t). The symbol x̃vt (or x̃v0:T |t) denotes the estimate of the true state xvt (or xv0:T |t) as
computed by the state observer. In closed-loop, x̃vt ≡ x̂vt . However, as will be shown in Section
B.2, the predicted state estimate x̃vk|t is itself an uncertain variable (with an associated mean

and variance) due to the unknown future measurement yvk|t at time t. On the other hand, the

mean x̂vk|t is a point estimate and hence, deterministic. By definition, x̃vt ∼ N (x̂vt , 0).

The consideration of measurement uncertainty is particularly useful in the case where the
physical vehicle parameters such as tire stiffness coefficients are treated as uncertain vari-
ables. As discussed in Section 3.6.3, the physical parameters to be estimated online can be
augmented to the state vector xvt . As these cannot be measured directly by any sensor, a
state observer must be used to obtain an estimate of the mean and variance of the param-
eters. In this case, the measurements yvt correspond to the quantities such as the position,
orientation, yaw rate and velocity. In the absence of parametric uncertainty, the assumption
of full state feedback (Sections 8.2.2–8.2.3) is reasonable in the context of autonomous driv-
ing. The following sections discuss the characterization of the uncertainty over the horizon
based on the approaches presented in [120, 124].



APPENDIX B. MEASUREMENT UNCERTAINTY IN STOCHASTIC MPC 137

B.1 State Estimate Dynamics

In the presence of partial state feedback or measurement noise, the feedback policy (8.9) is
modified as:

uδ,vk = Kkx̃
δ,v
k + cvk, (B.2)

where:

x̃δ,vk = x̃vk − x̄vk. (B.3)

This approach is motivated by the certainty equivalence and separation principles for Linear
Quadratic Gaussian (LQG) systems, that is, systems with linear dynamics and additive
Gaussian disturbances where the goal is to minimize a cost function quadratic in the states
and control inputs [15]. However, no guarantee of optimality can be made due to the presence
of constraints in the SMPC problem.

The formulation in (B.2) necessitates the consideration of the evolution of the state
estimate x̃δ,vk . In order to efficiently propagate the state estimates over the prediction horizon,
a Kalman filter is used along with the LTV dynamics (8.5) and the following linearization
of the measurement model (B.1) around the nominal trajectory:

yδ,vk = Hkx
δ,v
k +Wkw

δ,v
k , (B.4)

where:

yδ,vk = yvk − hv(x̄vk, w̄vk), (B.5a)

wδ,vk = wvk − w̄vk, (B.5b)

Hk = ∇xvk
hv(xvk, w

v
k)|(x̄vk,w̄vk), (B.5c)

Wk = ∇wvk
hv(xvk, w

v
k)|(x̄vk,w̄vk). (B.5d)

The nominal disturbance w̄vk is identically equal to its mean ŵvk. Thus, wδ,vk ∼ N (0,Σw
k ).

The state estimate x̃δ,vk evolves as:

x̃δ,vk+1 = x̃δ,vk+1|k + Lk+1(yδ,vk+1 − ŷδ,vk+1), (B.6)

where:

x̃δ,vk+1|k = Akx̃
δ,v
k +Bku

δ,v
k , (B.7a)

ŷδ,vk+1 = Hk+1x̃
δ,v
k+1|k. (B.7b)

The filter gains {Lk}Tk=1 in (B.6) are computed by the forward recursion in Algorithm B.1.

Remark B.2. The future measurements yδ,v1:T are not known a-priori. This makes the dy-
namics (B.6) of the predicted state estimate x̃δ,vk stochastic. Moreover, due to the feedback

policy in (B.2) and the stochasticity of the state estimate x̃δ,vk , the predicted inputs uδ,vk are
also stochastic.
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Algorithm B.1 Kalman Filter recursion

1: Initialize:
P0 = Σv

0

2: for k = 0 to T − 1:
3: Pk+1|k = AkPkA

T
k +DkΣ

d
kD

T
k

4: Lk+1 = Pk+1|kH
T
k+1(Hk+1Pk+1|kH

T
k+1 +Wk+1Σw

k+1W
T
k+1)−1

5: Pk+1 = (I − Lk+1Hk+1)Pk+1|k

Output: {Lk+1}T−1
k=0

B.2 Uncertainty Propagation

As in Section 8.2.3, we characterize the uncertainty in the predicted states xvk and inputs uvk.
Combining the LTV dynamics (8.5) with the control policy (B.2), we get:

xδ,vk+1 = Akx
δ,v
k +BkKkx̃

δ,v
k +Bkc

v
k +Dkd

δ,v
k . (B.8)

The state estimate update (B.6) can be rewritten as follows (by substituting for uδ,vk and

yδ,vk+1 from (8.9) and (B.4), respectively):

x̃δ,vk+1 = (Ak +BkKk)x̃
δ,v
k +Bkc

v
k+

Lk+1

(
Hk+1(Akx

δ,v
k +Dkd

δ,v
k ) +Wk+1w

δ,v
k −Hk+1Akx̃

δ,v
k

)
. (B.9)

Concisely, the joint dynamics of the true state xδ,vk and its estimate x̃δ,vk are written as:

zvk+1 = Fkz
v
k +Gkc

v
k +Qkq

v
k, (B.10)

where:

zvk =

[
xδ,vk
x̃δ,vk

]
, qvk =

[
dδ,vk
wδ,vk+1

]
∼ N

(
0,Σq

k =

[
Σd
k 0

0 Σw
k+1

])
, (B.11a)

Fk =

[
Ak BkKk

Lk+1Hk+1Ak Ak +BkKk − Lk+1Hk+1Ak

]
, (B.11b)

Gk =

[
Bk

Bk

]
, Qk =

[
Dk 0

Lk+1Hk+1Dk Lk+1Wk+1

]
. (B.11c)

The mean ẑvk and variance Σz
k can now be computed as:

ẑvk+1 = Fkẑ
v
k +Gkc

v
k, (B.12a)

Σz
k+1 = FkΣ

z
kF

T
k +QkΣ

q
kQ

T
k , (B.12b)
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with initial conditions:

ẑv0 = 0, Σz
0 =

[
Σv

0|t 0

0 0

]
. (B.13)

The states xδ,vk and inputs uδ,vk are obtained through the following affine transformation:[
xδ,vk
uδ,vk

]
= Skz

v
k + Tk, (B.14)

with:

Sk =

[
I 0
0 Kk

]
, Tk =

[
0
cvk

]
. (B.15)

Therefore, the joint distribution of xδ,vk and uδ,vk is given by:[
xδ,vk
uδ,vk

]
∼ N

(
Skẑ

v
k + Tk, SkΣ

z
kS

T
k

)
. (B.16)

The distributions xδ,vk ∼ N (x̂δ,vk ,Σ
v
k) and uδ,vk ∼ N (ûδ,vk ,Σ

u
k) can be easily obtained from

(B.16) by marginalizing.
With the above characterization of the uncertainty in the state, the control synthesis

proceeds in the same manner as in the full state feedback case. In particular, the constraint
tightening procedure of Section 8.2.4 can be used to formulate a deterministic CFTOC
problem similar to that in (8.20).
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[77] S. Lefèvre et al. “Comparison of parametric and non-parametric approaches for vehicle
speed prediction”. In: 2014 American Control Conference. IEEE. 2014, pp. 3494–3499.
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