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ELECTRONIC STRUCTURE OF DIAMOND, ZINCBLENDE 
AND CHALCOPYRITE SEMICONDUCTORS 

Carmen Varea De Alvarez 

Inorganic Materials Research Division, Lawrence Berkeley Laboratory 
and Department of Physics; University of California 

Berkeley, California 94720 

ABSTRACT 

The dependence of energy band structure and electronic charge 

density on pseudopotential parameters is investigated for diamond type 

semiconductors. 

The Empirical Pseudopotential Method (EPMl is applied to InSb, 

lnAs, InP and GaP. Spin-orbit interactions are included in the first 

two crystals. The imaginary part of the frequency dependent dielectric 

function, £2(W) is calculated and the reflectivity spectrum R(w) and 

modulated reflectivity R'(w)/R(w) is calculated and compared directly 

with experiment. The agreement for R(W) and R'(W)/R(w) between 

experiment and theory is better than 0.2 eV, for all four crystals, on 

the average. In addition electron char.ge densities for lnAs and InSb are 

calculated. 

The pressure coefficients of the most important gaps for Si and 

InP are calculated and correlated to the properties of the electronic 

Bloch states. 

The chalcopyrite crystal structure and the relation between the 

zincblende Brillouin Zone and the chalcopyrite Brillouin Zone are 

discussed in detail. The energy band structure of ZnGeP2 and ZnGeAs
2 

is calculated along symmetry directions assuming "transferability of 

the pseudopotentials" and compared with those of their "analogs" 
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(GaP andGaAs respectively). A fuli zone calculation of the energy 

bands of ZnGeP2 is presented along with the density of states curve 

D(W), the £2(W) and R(w). A complete critical point analysis enables 

us to identify the prominent structure in the D(w), £2(W) and R(w). 
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I. INTRODUCTION 

Since the concept of the pseudopotential was first introduced, 
,,' 

I,~, the application of the pseudopotential method to calculate physical 

(;; quantities that depend only on the valence electrons of a crystal, has 
rJ 

been highly successful. In a pseudopotential calculation, the crystalline 

potential is assumed to be the combination of spherically symmetric 

pseudopotentials located at the ion sites. Since these pseudopotentials 

are constructed to describe only the valence electrons including 

orthogonalization to the core states in the crystal, the pseudopotential 

is much weaker than the actual potential. 

Pseudopotentials for the elements can be constructed theoretically, 

5 as those of Heine and Animalu, and they can also be obtained by fitting 

to all the relevant experimental information of a given crystal. This 

latter procedure has been called the Empirical Pseudopotential Method 

(EPM). Another, but related way of proceeding is to use of the concept 

of transferability of the pseudopotentials; that is, by assuming that 

the atomic pseudopotentials are independent of crystal structure and 

composition, one can predict the energy band structure or any property 

of the valence electrons of a given crystal provided one knows the 

atomic pseudopotentials of its constituents either by using theoretically 

determined pseudopotentials or by extracting them from an EPM calculation 

on other ,crystal. 

In Chapter II of this work, we briefly review the pseudopotential 

method and the properties of the pseudopotentials for the elements 

in the IV-column of the periodic table, we also study the relationship 
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between the pseudopotential form factors, the energy band structure and 

the electronic charge density in the valence bands of diamond type 

semiconductors via a two parameter model pseudopotential. 

In Chapter ·111, we apply the EPM to obtain the form factors, energy 

band structure, £2(W)' R(w) and R'(W)/R(w) of the zincblende semiconductors 

InSb, lnAs, InP and GaP; our results are compared with experiment. This 

14 comparison, and an analrsis of the Van Hove singularities of our 

calculated €:2(W). allows us to perform a positive identification of 

the electronic transitions responsible for the main structure of the 

experimental reflectivity spectra. 

In Chapter IV, the pressure coefficients of the main gaps in Si 

and InP are calculated, the object of this calculation is three fold: 

1) we want to understand why these crystals transform as they do under 

high hydrostatic stress, 2) we investigate the "Empirical Rule",28 and 

the correlation between a wave function ~~ and the pressure coefficient 

n 
of the energy level Ek for a given wave vector k and a given band n, 

and 3) by fitting our form factors to the experimental pressure coefficient, 

we gain information on the "scaling" of the form factors. 

In Chapter V, we discuss the optical and electronic properties 

of the chalcopyrite compounds of the form A2B4c~. The energy band 

structure, D(W), €:2(W) and R(w) are calculated for ZnGeP
2 

using the 

form factors of its analog GaP and those of Ge; critical point analysis 

on €:2(w) is performed and comparison of our calculated R(w) with 

experiment yields information on the energy gap region of the energy 

band structure. 
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Energy band structures for ZnGeP2 and ZnGeAs2 are calculated along 

symmetry lines, using transferability of the pseudopotentials. The 

results compared with those of their analogs GaP and GaAs. Using the 

identifications of the main structure of our calculated R(w), the results 

for ZnGeP2 and ZnGeAs2 compare well with experiment; of course, only a 

full zone calculation can ascertain this. 
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II. DIAMOND STRUCTURE SEMICONDUCTORS 

A.pseudopoterttialMethod 

For the Empirical Pseudopotential Method (EPM), the crystal is con- w 

sidered as a collection of N spherically synnnetric "ions" located at the \: 
~ 

lattice sites. The ZN valence electrons do not interact with each other 

except in a Hartree sense, and they interact with the ions through a 

weak local pseudopotential v(r). This pseudopotential includes the 

Coulomb attraction with the" ions, -Ze 2 /r and a repulsive term near the 

core arising from the requirement that the valence-electron wavefunctions 

be orthogonal to the core wavefunctions (the highly localized core states 

are not solutions of the pseudopoteritial Schrodinger's equation, so the 

pseudopotential is much weaker near the core region than the actual 

potential). The final contribution to the pseudopotential comes from 

the interaction arising from the valence electrons which can be included 

by using a screening function. 

Once the pseudopotential is fixed, the energy bands and electronic 

charge density can be obtained by solving for the eigenvalues andeigen-

vectors of the one electron Schrodinger equation 

-+ -+ 
E (k) cP -+k(r) n n, 

(1) 

where k is the wavevector, n the band index and the pseudopotential is v ." 
given by 

-~ 

raj) • (2) 
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In Eq. (2), a denotes the different kinds of atoms in the unit cell. 

Crystal symmetry is easily taken into account when this pseudopotential 

is expanded in the reciprocal lattice. In the diamond structure, with 

+ + a 
two atoms per cell at positions ± T where,T = S(l,l,l), a is the lattice 

constant, Eq. (2) becomes 

+ + + + 
VCr) = ~ v(G) COS(G-T) 

G 

with 

+ + 
iG-r 

e (3) 

(4) 

where D is the volume of the primitive cell and G is in units of 2n/a. 

Usually, in EPM calculations only the form factors v (I) , v(I4), v(/8) 

and v( III) are 

for 1"21 = 2 in 

--+ 
allowed to be nonzero but the structure factor cos G.T = 0 

diamond structure materials; therefore, this method uses 

three adjustable parameters to fit the known energy band features. 

The pseudopotential curves v(q) can usually be divided into two 

regions separated by a point where V(qO) = o. qo is related to the 

radius of the atomic core rOo For q < qo' v(q) < 0 and this region 

represents the screened attractive coulomb potential outside the ion cores; 

for the region q > qo' v(q) is positive and approximately represents 

the repulsive part of the potential arising from the orthogonalization 

conditions inside an effective core radius. With this in mind, one would 

expect to obtain all the main properties of the band structure and 

electronic charge density from only two form factors each representing 
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one of the two regions. We have calculated the band structure and 

electronic charge densities as function of position in the unit cell for 

several values of these two form factors. This was done in an attempt 

to understand the relationship between charge density and band structure 

in crystalline ,diamond structure semiconductors. We have found that by 

changing only one parameter in the pseudopotential, we can simulate the 

properties of the column IV semiconductors. 

For other crystal structures (e.g. zincblende), thepseudopotential 

method can be used by taking into account the correct structure factors. 

The details will be given in the appropriate sections. 

B. Diamond Structure Semiconductors and 
Model Pseudopotential Calculations 

The group IV ele1l1ents, carbon, silicon, germanium, gray tin and 

lead form a very interesting series. The four atomic valence electrons 

for these elements are in the S2p2 electronic configuration. For the 

crystalline state, in the cases of Si, Geand Sn (but not Pb), the 

formation of sp3 hybrid orbitals gives the strongest bonding overlap and 

this is the most stable configuration. The Sp3 orbitals give rise to 

four equivalent tetrahedrally coordinated bonds, and this bonding results 

in the diamond structure for these crystals. In this group, the bond 

energy is a decreasing function of the atomic number; carbon has very 

strong bond while gray tin is only stable at low temperatures and under-

goes a phase transformation at 292°K to metallic white tin. Lead 

crystallizes in the fcc structure and is metallic. 

Phillipsl has been able to correlate the bonding properties 

with the average gap between valence and conduction bands in 

~ 
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semiconductors and insulators; the bonding strength being proportional 

to the size of the gap. Another approach which showed similar trends 

was taken by Walter and Cohen
2 

who used the Empirical Pseudopotential 

Method (EPM).3 

Two important features come in when doing an EPM calculation: (1) 

the nearest neighbor distance, which increases in going from C to Pb, and 

(2) the pseudopotential, which depends on the element of interest. These 

features raise an interesting question: is it the change in nearest 

neighbor distance, d, that is responsible for the marked differences 

between these materials, oris it the different effective potential that 

the electrons feel outside the core which produces such differences? A 

partial answer comes from pressure experiments. The application of 

hydrostatic pressure is expected primarily to change d. What one 

observes in this case is an increase in the average direct gap and a 

trend toward metallization. Because these are contradictory, then 

based on pressure data only, changes in d from element to element cannot 

explain the observed trends in the group IV materials. 

To investigate the dependence of the properties on the potentials 

used, we have calculated the band structures and electronic charge 

de.nsities in the diamond structure for three model pseudopotentials using 

only two parameters to specify the pseudopotentials. One of these para-

meters was kept constant while the other was chosen to give the band 

structure of a one eV gap semiconductor like Ge; a zero gap semiconduc-

tor such as Sn; and a band structure with overlapping bands having 

metallic properties. We have also calculated the band structure and 

charge density in the Fermi-Thomas approximation for a pseudopotential 
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appropriate to.Ge. All th~ough this work the lattice constant used was 

that of Ge. 

The EPM uses three adjustable pseudopotential form factors to fit 

the known energy band features of diamond type materials. Since in 

general, the wave vector q which separates the attractive and repulsive 
o 

. 2rr 
parts of the pseudopotential curves is such that q 518--, the para-

o a 

meters we choose are v(v'3) < 0 and v(l8) ~ O. In Fig. 1 we show the 

4 three form factors obtained by Cohen and Bergstresser for Ge together 

with the theoretical pseudopotential of Heine and Animalu5 and the para-

meters used in this work; their actual values are in Ry given below: 

For model potential I: 

v(13) = -0.25, v(l8) = 0.071; 

for model potential II: 

v(v'3) = -0.25, v(l8) = 0.053; 

for model ~oiential rII: 

v(l3) = -0.25, v(l8) = 0.0. 

We have also investigated a Fermi-Thomas model with a cutoff of the 

potential at q = 4~. The resulting form factors are (Ry) 
a 

v(/3) -0.3004, v(l8) = -0.1688, v(iIT) -0.1338. 

For a given set of form factors, the Hamiltonian can be solved for the 

energy eigenvalues and wavefunctions ~n k(r) at many k points in the , 
Brillouin zone. The charge density for each valence band is then given 

by 

.1 
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= E el~ k(r) 12 • 
k n, 

(5) 

In the diamond structure there are a total of eight valence elec-

trons per primitive cell and two valence electrons per energy band. The 

charge density results given in the next section are plotted in the form 

of contour plots in the (1,-1,0) plane, which contains an atom and two 

of its nearest neighbors. The density is plotted in units of (elS?') 

where Sl is the volume of the primitive cell. 

Model potential I. In Figs. 2 and 3 we show the calculated energy 

band structure and electronic charge density, in the valence band, for 

model potential I. 

Table I shows a comparison between the main energy splittings 

obtained by Cohen and Bergstresser4 (CB) using three form factors, the 

present model using two form factors, and the experimental values for 

Ge. The main difference between our results and those of CB occurs in 

the first indirect gap. There are smaller differences in the higher 

conduction bands and even smaller differences in the valence bands. 

This model would predict optical properties close to those obtained by 

a CB potential. 

From the total charge density for the four valence bands (Fig. 3) 

the covalent bonding is apparent. The concentration of charge in the 

2 
bond is a Ii t tIe weaker than that calculated by Walter and Cohen using 

a CB potential. This is not inconsistent with our model since the 

valence to conduction band average energy gap for this model is smaller 



-lO~ 

than the one calculated by CB. Thus a simple model pseudopotential that 

uses only two parameters, one representing the screened Coulomb attrac-

tion to the atoms (V
3
), and another that represents the repulsive ortho­

gonalization requirements (V
S
), describes quite well the energy band 

structure and bonding properties of Ge. 

Model potential II. As the pseudopotential form factor Vs is 

reduced,_ the repulsive part of the atomic potential decreases and the 

s-like levels which are more sensitive to the potential near the atoms 

become more tightly bound. For a value of 0.053 Ry for Vs the energy 

of the r and r
2

, levels becomes equal giving a band structure similar 
25' 

to that of gray tin. 

In Fig. 4 the calculated energy band structure is given and in 

Fig. 5 the total charge density for the four valence bands for our 

second model potential is shown. The energy band structure is actually 

that ofa semimetal with a small overlap of 0.07 eV from r
25

, to L
l

; 

the first direct gap is zero as in the case of ~-tin. Table 1 shows the 

main energy splittings obtained in model II--all the 4-5 splittings are 

smaller than those of model I. In the next paragraph we show how the 

changes of the energy splittings with Vs are easily understood from the 

form of the wave functions at the bottom of the conduction band. 

In part IV of this work, we calculate the charge density for the 

r 2 " Ll and Xl states in the conduction band of Si. Our results are 

as ,follows: 

(1) The charge density for states near r2 ' is highly peaked near 

the atoms and it is very sensitive to changes of the pseudopotential in 

that region in real space. It is therefore very sensitive to changes 
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in V8 " 

(Z) The charge density for states near Ll is more "free like" but 

peaked between the atoms and the antibonding site so they are less 

sensitive to changes in V8 than fZ'" 

(3) The charge density for states near Xl is almost constant so 

that the energy splitting f ZS ' - Xl is very little affected by changes 

in VB" 

Figures 6 and 7 show the charge density contour plots in the first 

valence band for model potential I and II respectively; the reduction of 

V8 from the first to the second model has caused a decrease in the 

repulsive part of the potential near the atoms, and the electronic 

charge tends to pile up closer to the atomic sites; the same effect is 

observed in band Z. Bands 3 and 4 are almost identical for models I 

and II; p-like bands are quite insensitive to the potential near the 

atoms. The only trend we observe in comparing Figs. 5 and 3 is a small 

trend to pile up charge closer to the atoms in model II; this tendency 

is also present in the charge densities of Walter and CohenZ going frl!lll1 

Si to Ge toa-tin. This is mainly caused by the charge density of the 

first two s-like valence bands as already discussed. 

Model potential III. Figures 8 and 9 show the energy band structure 

and total charge density in the valence band for model potential III. 

VB is zero in this model; the energy band structure is that of a semi-

metal and Table I includes the values of the main energy splittings. 

Since VB is now zero, the piling of the charge density closer to 

the atoms is more accentuated as shown in Fig. 9. The charge density 

for valence bands 1 and Z is completely s-like with no overlap at all, 
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while valence band 3 is affected slightly since it includes antibonding 

states near Ll which is now in the valence band. The inclusion of these 

states affects the bonding charge for this band by about 6% compared with 

the third valence band of model I. The charge for valence band 4 is 

again almost unaffected by the change in VS. 

The charge density given in Fig. 9 is not precisely the charge 

density that our model potential would have at OaK. The Fermi level is 

somewhere between the L
3

, and f
25

, levels so that a region around r
25

, 

in the third and fourth bands is unoccupied. Since the wave functions 

near L3 , are very similar to those near f 25 " we do not expect that 

Fermi-level corrections will be very important. 

It is interesting to compare the band structure of lead, assuming 

it could crystallize in the diamond. structure, with the results of 

model III. To do this, we have calculated the band structure using 

the Heine-Animalu pseudopotentialfor lead. The lattice constant is 

chosen so that the nearest neighbor distance, d, in our hypothetical 

phase for Pb is the same as the nearest neighbor distance in its fcc 

phase. The justification for this choice is that when Si and Ge undergo 

a metallic phase transformation under pressure, the nearest neighbor 

distance is almost unchanged. The band structure obtained in this 

manner is similar to that of model III.· 

Fermi-Thomas model. In the Fermi-Thomas approximation, the pseudo-

potential is given by 

v(q) = - = -
k 2 

S 2 -E 
3 F (q2 + k 2) 

S 

.. , 
~ 



- , 
J( 

I' ,J 
r 

I 

-13-

Here ~ is the volume of the primitive cell, Z the number of outer elec-

2 
trons per atom and for Ge 3"EF = 0.57 Ryd. Since the Fermi-Thomas poten-

tial is attractive for regions even close to the cores, (no orthogonali-

zation conditions have been imposed on the valence electrons), the 

electrons tend to pile up in the core region. This is reflected in the 

energy band structure obtained for this model shown in Fig. 10. The 

states in the first two s-like bands are separated by a gap of 20.5 eV 

from the rest of the states in the valence band. These states behave 

essentially like core states and are not available for the formation of 

Sp3 orbitals. The band structure is that of a semimetal (or metal) with 

a large overlap. As in model III we have not computed the effects of 

overlap on the charge density, hence the charge density shown in Fig. 11 

is approximate. Nevertheless, since the charge distribution in the first 

two bands is highly peaked around the atoms, and bands 4 and 5 add an 

almost constant background to the total charge density when compared to 

the first two, we expect that Fermi level corrections would not affect 

appreciably the total charge density. The main point is that the 

repulsive potential is too weak to keep the electrons outside the atoms 

and the formation of Sp3 orbitals is not energetically favored. 

c. Summary and Conclusions for Model Potential 

With a simple two parameter model pseudopotential with one variable 

paramete~ it has been possible to simulate the variations observed in 

the group IV elements. A comparison between our results for model I and 

model II shows how a decrease in the repulsive part of the potential can 

take into account the main differences in band structure and bonding 

properties between Ge and gray Sn. Of course this model is too crude 
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to include all the band structure features of these,elements, but we 

believe that the main trends going from Ge to gray tin are explained by 

a reduction in the contributions from the repulsive orthogona1ization 

requirements (VS) to the pseudopotential. 

Assuming that we could construct two diamond type crystals, one of 

Ge and the other of Pb with the same interatomic distances, the major 

difference in their pseudopotentials apart from screening effects would 

come from the orthogonalization conditions imposed on the pseudowave­

functions from the two different cores of Ge and Pb. That is, the main 

difference in the pseudopotentials would be inside an effective core 

radius rOo This repulsive contribution to the pseudopotential would be 

mostly affected by the form factors V(q) for large q which we have in­

cluded in only one variable parameter VS. As the positive V{q) for 

largeq decreases, the pseudopotential in real space becomes less 

repulsive allowing the electrons to concentrate in a region between the 

real core and our "effective core". If the electrons are too close to 

the cores, there are fewer electrons to form the bond, hence the bonds 

formed when the crystal is constructed are weak and the energy gain in 

the formation of the bonds might be smaller than the energy required to 

promote the electrons from the S2p2 ground state to the Sp3 configura­

tion. The crystal would most likely change to a more stable configura~ 

tion. 

With respect to the band structure and electrical properties, since 

states near fZ' and Ll are concentrated close to the atoms, a decrease 

in the repulsive part of the pseudopotential affects them most. There­

fore, decreasing the repulsive potential would decrease the potential 
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energy of these states. Consequently, the first direct as well as the 

first indirect gap in the band structure would be decreased. 

Because of this study using a two parameter model, which simulates 

the repulsive and attractive parts of the pseudopotential, we can under-

stand and roughly predict the dependence of the total electronic charge 

density on the pseudopotential without going through a calculation of 

the energy band structure. 
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Ill. ZINCBLENDE STRUCTURE SEMICONDUCTORS 

A. Empirical Pseudopotential Method for 
Zincblende Structure Semiconductors 

In applying the pseudopotential method to obtain the electronic 

band structure for zincblende crystals, we have used the pseudopotential 

Harr,iltonian of Section II but we have changed the structure factors to 

-r 
account for the two different atoms in the cell. The potential VCr) is 

expanded in reciprocal lattice vectors and for convenience expressed in 

tent's of a. sYIIJIDetric and antisynunetric part of the potential representing 

the sums and differences of the poteptials of the two atoms in the unit 

cell, 

-r-r 
-r S I I -+ -r A I I -r -r -iG· r VCr) = E[V (~ ) cos G·~ + iV (G) sin G·~]e (6) 

G 

-r 1 
where Z;; ="8 a,(l,l,l), a is the lattice constant. We still make the 

approximation V( I GI) = 0 for G2 
;;;. 12 and the only form factors which 

enter in the calculation are VS (I3), VS (v8), VS (Ill), ~(1:3), ~(2) and 

VA (V'll). These six form factors are determined empirically using the 

reflectivity R(~) and modulated reflectivity R'(w)/R(w) experimental 

6 7 spectra. ' 

Using as our starting point the six form factors given by Cohen and 

4 
Bergstresser, we have calculated the band structure at many points in 

-+ 
the Brillouin zone. With these values of E(k) and the calculated dipole 

matrix elements, we have calculated the imaginary part of the dielectric 

function. This calculation is described by Walter and Cohen,6,7 in 

which £2(<lJ) is obtained at low energies assundng transitions between the 

'!i' 
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three highest valence bands and the six lowest conduction bands. A tail 

function of the form 8w/(w2 + y2)2 is used at high energies to take inte 

account high energy transitions. This tail function starts at 8.3 eV, 

8 is determined from continuity and y = 4.5. From E2(W) the real part 

of the dielectric function is obtained by a Kramers-Kronig transformation 

and from these two functions we obtain the reflectivity R(w) and the 

modulated reflectivity R' (w) /R(Ul). The theoretical R' (w) /R(w) curve 

obtained from Cohen and Bergstresser pseudopotential forn, factors show 

the same main structure as the experimental curves for zincblende semi-

conductors; thus the most important identifications are easily made. 

In order to get better agreement with experiment, the main struc-

ture observed in the reflectivity curve is shifted. The method of 

adjusting the values of the form factors has been described by Walter 

and Cohen. 6, 7 

To determine the transitions responsible for structure in the C2(W) 

curve, we first find the energy of .a particular peak. From our tabulated 

interband contributions to C2(W) we are then able to determine which 

interband transition gives rise to the main contribution to this peak or 

shoulder. Once the interband transition has been identified, we deter-

mine where in the Brillouin zone a critical point appears with the 

required energy difference and large oscillator strength. The final 

proof that our identification is correct is made by varying the form 

factors by a small amount and observing the change in the energy gap, 

because the energy change for the chosen transition should be the same 

as the change in position of the peak. Since the procedure involves 

fitting direct gaps in the band structure to the experimental values, we 
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think that this procedutegives direct transitions which are accurate at 

the important points in the Brillouin zone. ~ 
." .. . 

The crystals under'consideration are InP,GaP; InSb and lnAs. In 

• InSb and InAs, spin orbit interactions are large" apd' easily observable 

in the R(w) 'experimental curves while in InP and GaP the effect is much 

smaller though observable in modulated reflectivity experiments. For 

this reason, 'the spin orbit interaction is included for InSb and InAB 

calculations; the method is that ofWeisz
8 

as modified by Bloom and 

, 9 
Bergstresser. 

Two spin-orbit parameters are used to charaGterizethe spiri-orbit 

. i' 10 l.nteract on. The metallic form factor is allowed to vary from its 

free atomic value, while the non"";metallicparameter is constrained so 

as to maintain a constant ratio between the two parameters ~ This con-

stant ratio is set equal to the ratio ot'the spin-orbit interactions for' 

'" 11 
the two atoms as determined by Herman and Skillman... Using this one 

arbitrary parameter, we ,are able to obtain the experimentally known 

splittings' at r and L to within 0.05 eV. 

',' 4 
Tablerr compares the Cohen and Bergstresser (CB) form factors 

with those used in the present calculation. The pseudopotential form 

factors are changed by less than 0.055 Ry. In theCB calculations, the 

symmetric form factors of rnSb were constrained to be the same as the 

form factors'for Sn; the symmetric form factors for lnAs were constrained 

to be the average of the form factors for Ge and 811; for GaP, CB used a 
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n o 

symmetric potential that is the average of Si and Ge; while for blP, 

the Ge symmetric potential was used. We did not impose this constraint 

in the present calculation. 

B. Results 

The calculated energy bands for lnAs, lnSb, lnP and GaP are given 

in Figs. 12, 13, and 14. These are similar to other energy band calcu­

lations9 ,12,13 for these materials. Using the calculated energy bands 

throughout the Brillouin zone, the imaginary part of the frequency-

3 
dependent dielectric function, £2(W), can be computed. This function 

can then be used to compute the reflectivity, R(w}, and the modulated 

reflectivity, R'(w)/R(w) as shown in reference 3. The sharp structure 

in £2(W), R(w) and R'/R arises from Van Hove14 ,3 singularities in the 

joint density of states between the valence and conduction bands. These 

-+ 
singularities arise when the gradient with respect to k of the energy 

bands E(k) are equal for the conduction and valence bands of interests. 

Th f f i 1 .. . h d· .. 3,14 ere are our types 0 s ngu ar1t1es 1n tree 1menS10ns a minimum 

Mo, a maximum M3 and two saddle points Ml and M2. 

Figures 15, 16 and 17 contain the theoretical imaginary part of 

the frequency dependent dielectric function for InAs, lnSb, InP and GaP. 

The calculated and measured15- l8 reflectivities appear in Figs. 18, 19 

and 20 for these crystals. The calculated and measured22 ,18 modulated 

spectra for lnAs, InSb,InP and GaP appear in Figs. 21, 22, 23 and 24 • 

Tables III, IV, V and VI compare the energies of the prominent structure 

in the calculated and measured curves for lnAs, InSb, InP and GaP. 

These tables also give the origin in the Brillouin zone for the inter-

band transitions which give rise to the optical structure, the critical 
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point (cp) energy, i.e. the interband energy at which a Van. Hove singu­

larity is found, and the symmetry of the associated Van Hove singularity. 

In some cases a cp is not discernible, and the structure arises from 

transitions in a volume of the zone; these are labelled in the tables . 

. The four crystals will be discussed separately. 

InAs 

The fiist direct gap (Fig. 1) is r8 - r6. 19 
The measured gap is 

0.42 ev;20 the f spin-orbit splitting (f7 - f6) is also 0.42 eV. 2l ,22 

The spin-orbit splitting near L(L
6

- L4,L~ is 0.27 eV.
22 

In the calcu­

lated curves the spin-orbit parameter for In was adjusted to give a L 

splitting of 0.27 eVe The calculated splitting at r is 0.40 eVe 

The calculated f8 - r, transitions give rise to the Mo threshold 

in £2(W), (Fig. 15), at 0.46 eVe The r7 - r6 threshold at 0.86 eV is 

hidden in the background. These transitions give rise to a slight bump 

in R(w), (Fig. 18); however, both transitions show up in the calculated 

R'(w)/R(w) spectrum (Fig. 21). 

The first peak in £2(W) occurs at 2.60 eV and is caused by L(4-5) 

and A(4-5) transitions.
19 

The spin-orbit split peak at 2.90 eV is 

caused by L(3-5) and A(3-5) transitions. This structure gives rise to 

peaks in the reflectivity spectrum at 2.58 eV and 2.85 eV which agree 

favorably with the experimental values of 2.61 and 2.88 eVe 

The small shoulder at 4.45 eV on the lower side of the main peak in 

£2(W) is caused by (4-5) transitions at X and along 6(3-5). The corres-

ponding structure in the calculated reflectivity is at 4.47 eV, whereas 

the measured value is 4.58 eVe 6(4-5) and [(4-6) transitions just 

below this energy show up in the experimental R'/R spectra at 4.39 eV 

\i' -
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and correspond to the small structure at 4.37 eV of the theoretical 

R'/R curve at 4.63 eVe Excitonic effects at r may enhance the experi-

mental spectrum • 

The main peak in E2(W) occurs at 4.63 eV and this peak comes from 

~(4-5) transitions at 4.65 eVe Transitions near X(4-5) also add to the 

height of the main peak. The main peak in the calculated reflectivity 

occurs at 4.7 eV; the experimental value is 4.74 eVe On the high energy 

side of the main peak in E2(W), there are two changes in slope at about 

5.32 eV, and at 5.35 eVe The first structure comes from 6(4-6) tran-

sitions at 5.25 eV; this structure is found in the calculated reflec-

tivity at,5.3 eV, close to the experimental value of 5.31 eVe The second 

structure arises mainly from 6(3-6) transitions at 5.39 eVe The peak in 

the calculated reflectivity occurs at 5.57 eV, while the measured value 

is 5.5 eVe 

Critical points at A(4-7) and L(4-7) with energies of 5.91 eV and 

5.96 eV cause the next peak in Ez(W). The peak in the calculated re-

flectivity occurs at 6.05 eVe The experimental value for this peak is 

6.5 eV, and is obtained by correcting the original value of 6.4 eV at 

300 0 K to the low temperature limit, the agreement here is only fair. 

The next small peak in Ez(W) at 6.4 eV is caused by A(3-7) tran-

sitions of 6.23 eVe Its counterpart in the measured reflectivity is a 

broad peak at 6.44 eV, the experimental value for this peak is 6.8 eVe 

The last structure which can be accurately identified is the shoulder 

at 7.1 eV, coming from (4-7) transitions in the energy range near 7.1 eVe 

The peak in the calculated reflectivity occurs at 7.3 eV, the corres-

ponding temperature adjusted experimental value is 7.1 eVe 
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InSb 

The measured splitting of the first direct gap for InSb, ra - r6 

is 0.24 eV;23 the spin-orbit splitting at the top of the valence band 

at r is 0.82 eV24 ,22 and 0.50 eV24 ,22 at L. The calculated band struc-

ture is plotted in Fig. 13; the ra - r6 splitting is 0.23 eVe The spin­

orbit parameter for In is adjusted to give a splitting of 0.82 eV at r 

and the calculated value at L is 0.55 eVe 

The imaginary part of the dielectric function, the calculated re-

flectivityand the calculated modulated reflectivity are given in 

Figs. 16, 19, and 22 respectively. The ra - r6 transitions give rise to 

the threshold in £2(W) at 0.26 eVe The spin-orbit split transition 

r7 - r6 gives a small peak in £2 (w), but'this is largely masked by 

fluctuations inherent in the calculation. Both contributions appear 

clearly in the calculated R'/R curve at 0.26 eV and 0.66 eV respectively. 

The first peak in £2(W) at 1.98 eV is caused by A(4-5) transitions 

at 1.94 eV. The next peak at 2.6 eV is· caused by A(3-5) transitions at 

2.5 eVe Associated with these structures are the spin-orbit split A 

peaks in the reflectivity at 2.03 eV and 2.6 eVe The positions of these 

peaks agree well with the experimental values of 1.98 eV and 2.48 eV. 

The rise at 3.55 eV on the low side of the inain peak in £2(W) 

arises from (4-5) transitions in a volume located near~. At slightly 

higher energies near the main peak, there is a shoulder at 3.8 eV. This 

shoulder is caused by ~(3-5) transitions at 3.83 eVe In the reflectivity 

spectrum, these features give rise to a shoulder at 3.65 eV and a 

shoulder at 3.83 eV. The experimental values are 3.39 eV and 3.78 eVe 

~; ., 
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The main peak in £:z (w) is caused primarily by 2;(4-5) transitions 

at 4.1 eVe This structure gives rise to the peak at 4.01 eV in the 

reflectivity. This peak occurs lower in energy than at the experimental 

value of 4.23 eVe 

l'h~ small structure and peak on the high side of the maln peak in 

EZ(W) at 4.4 and 4.75 eV are caused by (4-6) transitions in a volume of 

k-space at about 4.4 eV and by 6(4-6) transitions 4.75 eVe These are 

related to the two bumps in the reflectivity at 4.48 and 4.73 eV. These 

energies are in good agreement with the experiment. 

The peak at 4.8 eV and the small shoulder at 5.09 eV in the cz(w) 

curve are caused by A(4-6), 6(3-6) and A(3-6) transitions at 4.87 eV, 

4.94 eV and 5.43 eVe The related reflectivity structures are the broad 

peak at 5.3 eV with a highly blurred shoulder at 4.73 eV; the corres-

ponding experimental values are at 5.33 and 4.92 eVe 

The peak in Ez(W) at 5.73 eV arises mainly from A(3-7) transitions 

at 5.69 eVe The peak in R(w) is at 6.01 eV, in good agreement with the 

experimental value of 5.96 eVe 

As f h rC6 rC rC rC d bl 1 f1 or t e - 7, 6 - 8 ou et, e ectrore ectance measure-

25 
ments in n-type lnSb show two peaks at 3.16 and 3.54 eV with a red 

shift response to an increase of the surface potential; this structure 

disappears as the conduction band is depopulated. These two facts 

indicate that these two peaks come from transitions from the top of the 

c c c conduction band (r6 ) to higher conduction bands (r 7 and r 8 ). Since 

these are s-like to p-like transitions, we expect that the oscillator 

strengths for these transitions are strong enough to be observable. 

Our calculated energy differences are 
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c c c C 
f6 - f7 = 2.43 eV; f6 - fa = 3.41 eV 

in fair agreement with the experimental values. 

InP 

The threshold in (2(W) (calculated energies referred to in this 

section correspond to structure in Ez(W) unless otherwise noted) is 

caused by flS- fl transitions at 1.50 eV. If spin-orbit corrections 

were included in our calculation, (t.o = 0.21 eV), we would obtain the 

following energy difference: 

1 
(fa - f6) = (fiS - f 1) - ~o = 1.43 eV 

in good agreement with the measured value
26 

of 1.42 eV. The rise and 

peak in the region near 3.35 eV is caused by L3 - Ll transitions at 

3.2 eV (Ml singularity) and A3 - Al transitions near the point (0.3, , . 

0.3, 0.3) at 3.22 eV (Ml singularity). The main peak in the region of 

4.9 eV is caused primarily by L2 - Ll transitions at (0.7,0.7,0.7) 

in the Brinouin zone (BZ) with an energy splitting of 5.02 eV (M2 

singularity). Some contribution comes from the 4.82 eV shoulder and 

these are attributed to t.s- t.l transitions at 4.7 eV (Mo singularity) 

and Xs - Xl transitions at 4.71 eV (Ml singularity). The small shoulder 

in the calculated (2(W) at 5.35 eVis caused by Xs - X3 4-6 transitions 

haVing an energy difference of 5.29 eV (Mo singularity); this structure 

does not appear in the R(w) curve. The discontinuous structure in 

E2(W) at 5.6 eV arises from a volume effect for transitions between the 

3rd and 6th bands near the point (0.3, 0.1, 0); the reflectivity struc-

ture is at 5.48 eV. The peak at 5.82 eV comes from t.s - t.l transitions 

near the point (0.7, 0, 0) (Ml singularity). Finally, the third 

~/" 
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prominent peak was caused by (4-6) transitions near L at 6.2 eV. Com-

parison of these last three structures with experiment is only fair. 

The experimental reflectivity at 300 0 K is compared in Fig. 20 with 

our theoretical results for SOK. The first peak after the small threshold 

structure in the experimental curve is at 3 eV while we predict a peak 

at 3.30 eV; the experimental shoulder near 4.8 eV corresponds to the 

4.75 eV theoretical shoulder. The main experimental peak at S.05 eV 

has its counterpart in the 5.06 eV calculated peak. Experiment 2 shows 

a small shoulder at 5.6 eV which corresponds to the calculated shoulder 

at 5.48 eV; the larger shoulder at 5.6 eV has its theoretical counter-

part in the small peak at 5.86 eV. The last structure recognized in our 

theoretical calculation is a broad peak at 6.47 eV and this corresponds 

to the 6.57 eV experimental value. Each of the experimental structures 

up to 6.7 eVhas its theoretical counterpart. The agreement in magnitude 

is reasonably good when compared with Cardona's17 data except for the. 

first peak which can be interpreted as excitonic enhancement of the 

experimental curve in this energy region. The difference in position of 

the peaks is due to the temperature difference between the data used for 

our calculation and the temperature of the experimental reflectivity 

curves; the 300 0 K curves shift to lower energy as expected. 

In Fig. 23 we show a comparison between the R'(w)/R(w) theoretical 

curve and the modulated reflectivity of Ref. 18 at 5°K. In this curve 

the agreement in the positioning of the peaks is very good as shown in 

Table V. Referring to these curves, we make two remarks: (1) if spin-

orbit effects were included, the 3.30 eV peak coming from the A3 - Al 

band would split into two peaks at 3.23 eV and 3.37 eV (~I = 0.14 eV) 
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corresponding to the peak and shoulder at 3.24 eV and 3.38 eV in the 

experimental curve; (2) the small shoulder at 5.48 eV of the theoretical 

curve may be associated with the small structure at 5.5 eV of the experi-

mental curve; the structure would be almost unnoticeable in the corres-

ponding reflectivity curve. 

GaP 

In Fig •. 24 we show a .comparison between the calculated modulated 

18 reflectivity curve GaP with experiment. The calculations were done at 

an assumed temperature of 300 oK. The calculated band structure, E2(W), 

and R(w) for GaP also appear in Ref. 4. Identifications of the important 

reflectivity structure is tabulated in Table II. The positions of the 

important reflectivity peaks are given by those zeroes of R'(w)/R(w) at 

which the slope is negative. The other structure appearing in the 

derivative spectrum is much finer; some of tredetails are practically 

imperceptible when seen in the normal reflectivity spectrum. 

The fundamental gap in GaP is the indirect flS - Xl gap. The 

calculated value is 2.19 eV and the experimental value is 2.22 eV, as 

d . d b b . d mbi i d" . 27 eterm1ne y a sorpt10n an reco nat on ra 1at1on exper1ments. The 

smallest direct gap occurs at f at 2.79 eV for theory and at 2.78 eV for 

experiment. The major structure in the 3.4 - 3.9 eV region is a 

reflectivity peak centered at 3.68 eV caused by A(4-5) and A(3-5) tran-

sitions. The theoretical peak in the reflectivity occurs at 3.70 eV, 

giving excellent agreement with experiment. The next major reflectivity 

peak .occurs at 5.31 eV in the experimental measurements and at 5.3 eV in 

the theoretical calculations. This peak is caused by a combination of 

r(4-5), ~(3-5), and ~(4-5) transitions, all with large oscillator 
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6 

strengths. The fine structure in this region consists of a reflectivity 

shoulder at 4.74 eV caused by ~(4-5) and X(4-5) transitions. This' 

shoulder occurs in the calculated reflectivity at about 4.7 eV. 

Most of the above assignments for the four semiconductors studied 

in this work are consistent with those of refs. 3, 22 and 31. 

Indirect Gaps (InP and GaP) 

For GaP as well as InP we have obtained a very good agreement 

between measured and calculated reflectivity and modulated reflectivity. 

The fitting is good enough to indicate that our identifications of the 

important direct transitions in the reflectivity experiments are correct 

and that our band structure is accurate with respect to direct tran-

sitions. 

In GaP the minimum gap is the indirect fls - Xl gap. This tran~ 

sition has been determined experimentally by absorption and recombination 

. 27 
radiation experiments and it is found to be 2.22 eV while our calcu-

lated value is 2.19 eV; in these experiments Zallen and Paul also 

determine the pressure dependence of this gap and of the f 1s - f1 direct 

gap (the experimental value of the fls - fl being 2.78 eV in agreement 

with the calculated value of 2.75 eV). The measured pressure co­

efficients are dE(flS - f1)/dP = 10.7 ± 10% x 10-6 eV/bar and 

dE(fls - Xl)/dP = -1.1 ± 10% x 10-6 eV/bar. We have calculated the 

pressure coefficients for these gaps; our results are as follows: 

dE(r 15 - r 1)/dP = 12.6 x 10-6 eV/bar; dE(f lS - X1)/dP = -1.0 x 10-
6 

eV/bar 

in good agreement with the experimental values. The calculation involves 

the evaluation of the change in energy levels with small changes in 

lattice constant (see part III). The measured compressibility was also 
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used in the calculation. 

For lnP a direct measurement of the r - X indirect transition has 

not been performed. One possibility for obtaining this value arises from 

28 
what Paul calls "the empirical rule" which says that all the gaps in 

lII-Vand II-VI semiconductors have roughly the same pressure dependence. 

The pressure coefficient of the direct gap between the fls valence band 

and the fl conduction band is of the order of 10 x 10-6 eV/bar and the 

-6 pressure coefficient of the r lS - Xl indirect gap is roughly -1 x 10 

eV/bar. Our calculated values for this crystal are: 

-6 . -6 
dE(f lS - f 1)/dP = 9.24x10 eV/bar; dE(r iS - Xl)/dP = -1.26xlO eV/bar. 

At sufficiently high pressure (> 50 k bar) the indirect r lS - Xl gap will 

become the smallest gap and therefore directly observable. 

29 
Another possibility is explored by Hakki et a1.; in these experi-

ments they combine pressure and composition dependence on In-GaP alloys. 

Using Paul's "empirical rule" they are able to identify the smallest gap 

for a given composition as a function of pressure; then from extrapola-

tion, they determine the variation with composition of the r lS - Xl gap 

at zero pressure. A linear extrapolation of the f lS - Xl gap to the 

InP side gives a value of 2 eVe The extrapolated pressure coefficient 

for this gap is -1.1 x 10-6 eV/bar. We think that the conclusions of 

30 
Hakki et a1. are correct; our calculated value for this gap at 5°K is 

2.84 eVe To compare the band structure calculation with experiment for 

the indirect gaps, we have introduced a k 2 dependent term in our band 

structure as shown by the dotted line in Fig. 14. The expression used 

-+ -+ 
is E(k) = EEPM(k) - Yk2

; y is adjusted to give the experimentally 

° determined r 15 - Xl gap, and its value is y = 0.743 ev A. Writing 
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-y = ~2/2m' and l/m* = 11m' + 11m, we find that our correction may be 
e 

thought of as a mass renormalization with m* = 1.22 m . 
e 

c. Electronic Charge Densities for InAs and lnSb 

We have solved the secular equation for the pseudopotential 

Hamiltonian for the wavefunctions 1jJ k(r) on a grid of 3360 points in 
n, 

the Brillouin zone (n is the band index)2l for lnAs and lnSb. From 

these wavefunctions we obtain the charge density in each valence band as 

-+ 
p (r) = 

n 
(7) 

Figures 26 and 27 show the contour maps of the sum over the first four 

valence bands for InAs and lnSb respectively, for the plane (1, -1, 0) 

as shown in Fig. 25. The density is plotted in units of (elm where r.l 

3 
is the volume of the primitive cell, r.l = a 14. 

Our results are consistent with the fact that InAs is a more ionic 

1 cyrstal than lnSb, the charge being more piled up towards the As atom 

in lnAs than towards the Sb atom in InSb. 

The form factors used here for InSb are different from those used 

in ref. 21 and give a much better agreement with the optical data. We 

have calculated the covalent bonding charge Zb as described<in Ref. 21. 

Our result is Zb = 0.083e. When this result is plotted using Phillips and 

Van Vechtenl ionicity scale with earlier results for Sn and CdTe, the 

curve of bonding charge versus ionicity is more linear, but the extrapo-

lated value of the critical ionicity f does not change when compared 
c 

with the results of Walter and Cohen.
2 
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The value for Zb we obtain for InAs is 0 .06ge.· When this is plotted 

vs. the ionicity scale of Phillips and Van Vechten, this point lies very 

near the curve of the Ge family of Walter and Cohen. 



!i~\ 
~ tJ ~~f§ (} , , 

" Ij ~J f;,.) ! " \,i' ,; 

-31-

IV. PRESSURE DEPENDENCE OF ELECTRONIC STATES 

A. Hydrostatic Pressure Dependence of Electronic Properties 
of zb and Diamond Type Crystals (Transferability of the Pseudopotentials) 

A large number of hydrostatic pressure experiments
28 

have been 

carried out on the germanium family; from them, the following rough 

empirical rule is found: the pressure coefficient of the energy differ-

ence between two states of given symmetry is roughly independent of the 

material in which the pressure coefficient is measured. As mentioned 

in Chapter III of this work, this empirical fact tells us, for example, 

that the first absorption edge of GaP at atmospheric pressure is a 

f 15 - Xl transition. Moreover, pressure experiments can give us infor-

mation about transitions that are otherwise rather inaccessible at 

normal pressure conditions. 

Here, we present our theoretical results tor the pressure coefficients 

for some important gaps in the electronic band structures of Si and InP. 

The method used is again the EPM. The application of an external 

pressure modifies the pseudopotential form factors (and through them 

the electronic band structure E (I» in the following ways: 
n 

(1) A change in the lattice parameter a varies the atomic volume 

so that v(G) has to be scaled with inverse volume. 

(2) A change in a varies the value of the reciprocal lattice 

-+ 
vectors G at which v(G) has to be evaluated. 

(3) A change in atomic volume is also expected to affect the 

screening of the valence electrons which in turn affects the functional 

dependence of v(G). This effect is only big for small values of the 

-+ 
wave vector q and of lLit't1e importance for G " O. 
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From I, 2 and 3, we see that in order to study the change in band 

structure with lattice parameters, it is necessary to know the complete 

pseudopotential function v(q). In this paper we used the empirical 

approach to determine the slopes of v(q) at' the reciprocal lattice 

--+ 
vectors G at atmospheric pressure. The procedure is as follows: the 

pseudopotential curves were freehand extrapolated from their known 

values at atmospheric pressure. From the extrapolated curves the values 

of important gaps were obtained at 10 k bars (here we use the known 

compressibility of the semiconductor in question) and small adjustments 

to the extrapolation were made in order to have better agreement with 

experiment (at 10 k bars we are dealing with very small energy changes 

$0.1 eV, thus the results are very sensitive to the scaling). It is 

known that under very high pressures Si undergoes a phase transformation 

to a metallic phase similar to that of white tin while InP undergoes 

a phase transformation to an insulating phase with rock salt structure. 

Thus we are interested to explore whether our simple method predicts a 

trend towards metallization for Si under high pressure and if the charge 

density for InP becomes more ionic as pressure is applied. To do this, 

we adjusted a polynomial curve to the v(q)'s from the known values at 

the reciprocal lattice vectors at atmospheric pressure and at 10 k bars. 

Our results are given separately in the next section for the two crystals. 

In EPM calculations, the importance of pressure experiments rests 

not only in the positive identification of important optical transitions 

in the electronic energy hand structure of semiconductors, it also provides 

information on the scalling of the pseudopotential form factors. It 

is expected that the scaling that reproduces the pressure data for 
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Si will give very good results when used to predict the band structure 

of Si in its wurtzite crystalline phase. 3 If in addition we know how 

to scale P form factors from GaP pressure experiments and Zn form factors 

from ZnS pressure experiments, we are in a position of predicting the 

electronic properties of the chalcopyrite compound ZnSiP2. 

B. Results 

Si 

Silicon is one of the solids for which the electronic band structure 

is best known; in addition, experimental data on Si under pressure
28 

is 

readily available. Our calculated results are summarized in Fig. 28. 

The form factors for Si at 0 and 20 k bar pressure are (in Ry) 

v(3) -.21 v(8) = .04 v(ll) .0800 

and 

v(3) = -.2092 v(8) = .044 v(ll) =.0816 

respectively. In zincblende and diamond crystals, special attention has 

been paid to the study of the pressure coefficients of the first three 

valleys in the conduction band with respect to the top of the valence 

band at r. In Si these three valleys have symmetry, L1, 61 and r1S. 

Our calculated values for these pressure coefficients are in 10-6 ev/bar 

dE
r -L 

dP 
4.4 

dEr_r 
dP "" - 0.7 

dEr_x 

dP = -1.6 

dE
r

_
x 

while the experimental value for dP = -1.5 x 10-6 ev/bar. The 

pressure dependence of the r-L transition is ~5 x 10-6 ev/bar for all 
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zb and diamond crystals measured. According to the empirical rule, the 

pressure coefficient for the r 25' - r 2' transition in zb and diamond 

dE(f ' f ') 6 6 
crystals is 25 - 2 '\, 10 x 10- eV/bar (for Ge is 14 x 10-

dP 
eV/bar) our calculated value is l3~4 x 10-6 eV/bar. 

From the above theoretical and experimental results, it is clear 

that the pressure coefficients are quite sensitive to the symmetry of 

the wave functions. In Fig. 29 we show the absolute value of these wave 

functions as a function of position in the unit cell along the (1, 1, 1) 

direction. From this figure, we notice that the f2' wave function is 

highly peaked near the atoms, the L1 wave function is broader and peaked 

between the atoms and the antibonding site, the f lS wave function is 

concentrated at the antibonding site and the Xl wave function is almost 

constant with a slight build up farther away from the antibonding site. 

As for the pressure coefficients, the f2S' - f2' transition increases in 

energy at a high rate, the f2S' - L1 transition increases at a slower 

rate while the f2S' - r1S and f2S' - Xl transitions decrease at a small 

rate. So there is a correlation between pressure coefficients and the 

quantity 

f r2 Pk(r) d 3 r 
primitive 

cell 

(8) 

wmchmeasures the dispersion of the charge density of the k-state from 
v 

the bonding site. c The pressure coefficient of the transition f2S' - k 

c . 
is a decreasing function of a~, k is a state in the conduction band 

~ 

with wave vector k. 

• r . 
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As for the important direct transitions (the ones that give the 

biggest contribution to the reflectivity spectra), L1-L3 and X4-X1, our 

calculated value for the pressure coefficients are: 

-6 = 5.7 x 10 eV/bar 

= -6 2.1 x 10 eV/bar 

this last coefficient in fair agreement with the experimental value of 

-6 2.9 ± 0.6 x 10 eV/bar for the pressure coefficient of the main E2 

peak in reflectivity spectra. 

The fact that negative pressure coefficients (with respect to the 

top of the valence band) are found for antibonding s-like states (f 1S ) and 

quasi-metallic states (Xd in the conduction band, indicates that the 

total charge density p(r) iri the valence band becomes more metallic as 

hydrostatic pressure is applied. To show this, we calculated the charge 

density in our model for 120 k bars of pressure. The charge density is 

calculated using the representative k-point used by Baldareschi. 51 This 

method is discussed in Appendix A. The charge densities as functions of 

position in the (011) plane for 0 and 120 k bars of pressure are shown 

in Fig. 30. 
2 

The results at 0 pressure are those of Walter and Cohen. 

The bonding charge in Si 120 k bar is about 20% smaller than that at 0 

pressure indicating a definite trend toward metallization. No attempt 

was made to compare them exactly, because Walter and Cohen's results 
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were obtained in a band by band analysis which is not possible using 

a representative k-point in calculating the charge density, mainly 

because the accuracy of the method for individual bands is not as good 

as that for the sum over the valence bands (~3%). 

Results InP 

InP is the only zb semiconductor of the III-V group that transforms 

to a rock-salt structure under hydrostatic pressure. In the Phillips I 

ionicity scale, the value of the ionicity for InP draws a limit between 

tetrahedrally coordinated compounds that transform into a metallic 

phase and those that transform into a NaCl structure, under pressure. 

The flS-f l and fIS-XI coefficinets of InP are relatively well established, 

. 28 29 the exper1mental values are: ' 

dE 
- (f15-f d dP . 

-6 dE -6 
= 8.7 x 10 eV /bar, dP (flS-Xl) = - 1 x 10 eV /bar 

our theoretical results give 

-6 dE -6 
9.24 x 10 eV/bar, dP (fls-XI> = - 1.26 x 10 eV/bar 

Our calculated pressure coefficient for the main reflectivity peak 
v 

XS-XI C is 2.21 x 10-6 eV/bar. The form factors used at 10 k bar are 

v (3) = -.271 
s 

V (8) = .0364 
s 

v (ll) = .044 
s 

.0887 .0306 
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The 0 pressure form factors are those of part II of this work. 

In Figs. 31 and 32 we plot our calculated charge density for InP at 

o and 100 k bar pressure; the only observed trend as pressure is applied 

is that of metallization, contrary to what one would expect from the 

transformation properties of InP under hydrostatic compression. At this 

point, we can only speculate on the various possible explanations for 

this result. 

(a) The scaling of the pseudopotential form factors is not correct; 

in this case more experimental information about the pressure dependence 

of the band structure is needed. 

(b) The local approximation for the pseudopotential of InP breaks 

down. As we pointed out in Section II, a local pseudopotential fails to 

predict the energy of indirect gaps if the empirical rule is correct. 

(c) Assuming that the empirical rule is correct, the fact that the 

pressure dependence of the energy gaps between the fourth valence band 

and the first conduction band is essentially the same for all zb semi-

conductors whether they transform to a metallic or a rock salt crystal-

line structure under pressure,seems to indicate that the bonding proper-

ties of these semiconductors udder pressure are not only associated with 

the pressure properties of £2(W) 
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v. CHALCOPYRITE CRYSTALS 

Recently much , attention has been given to studies of electronic 

and optical properties of ternary compounds wfth cheinical formula 

AN-
1 

B
N+l C~ .... N (N =3,2L Theoretically, the stu,diof the electronic 

, , 

and optical properties of these compounds is a logical extension of 
,',' " ,. ':, , " "N 8-N', " ,,' 

the study of their closest analogs , the B C '(N =3,2) dncblende 

, ,N-l N+l8-N " ' , 
semiconductors. "TheA BC

2 
have ~ny' interesting physical 

.-;' .. 

pr()perties which promise to be useful for studies of the electronic 

, properties of semiconductors in general and for applications in semi­

conductor technology.' 

'-. ," 

In the case N = 3 most of these ternary compoundscrystalize :tn the, 

chalcopyrite stlluct:ure which is a simple generalizat:1onof the, zincblende 

'. crystal structure • We know from the work of' Cohen and 
4 

jergstresser 

and Phillips and Van ·Vechtenthat most of the electronic and optical 

" properties, of the B3C5 ,zincbleride semicCiuductorsare analogous to those 

4' 
of the diamond structure semiconductors (groupB.). ,Some modifications 

exist:when the effects of the anion and cation difference are introduced 

into the band structure and' bondin& properties. In the same way, most 

of the propertie~ of A 2B4c;chalCOpyrite semiconductors can be understood 

. .' . . .; , 

by introducing the effects of thetwocat:lon differences into the band' 

structure of their zincblende analog. In Section A ~f this chapter, ' 

we study the chalcopyrite crystal structure .in detail with emphasis, 

on how systematic, trends in the lattice parameters·gi"e~s information 

about the bonding properties of these crystals. , In: Section B we 

describe in detail the Brillouin zone of the chalcopyrites and its 

relation to the zincblende Brillouin Zone. In Section C we present 

, . 
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our results for the imaginary part of the dielectric function,E2 (W), 

the reflectivity R(w) and the density of states D(w) for the chalcopyrite 

compound ZnGeP2' In concurrence with the analysis of our results for 

this particular semiconductor, we have discussed the common features in 

E2 (W), R(w), and D(w) which are characteristic of many of the A2B4C; 

semiconductors. 

In Section D we present the details of the band structure calculation 

of ZnGeP
2 

and ZnGeAs
2

. 

A. Chalcopyrite Crystal Structure 

The chalcopyrite crystal structure of a compound with formula 

AN-IBN+Ic~-N has a body centered tetragonal unit cell with 8 atoms per 

primitive cell at positions given by: 

A2 at (0,0,0) , (0,a/2,c/4) 

B4 at (0,0,c/2) , (0,a/2, 3 c/4) 

C5 at (au,a/4,c/8) , (a~,3a/4,c/8) , (3a/4,au,7c/8) , 

Ga/4, a~,7c/8) 

12 The space group is the nonsymmorfic group D
2d 

and the unit cell can 

be thought of as composed of two zincblende unit cells stacked and 

compressed along the z-axis. The cation of the zincblende is substituted 

by the two cations of the chalcopyrite is such a way that two kinds of 

chains are formed. A-C-B-C-A chains run along the (1,±1,0) directions 

while A-C-A-C-B-C-B-C-A chains run along the (O,±l,l) and (±1,0,1) 

directions; the presence of A-C-A and B-C~B linkages running along 

the z-axis is responsible for the doubling of the unit cell with respect 

to the zincblende case. 
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The tetragonal compression given by 2 - c/ a= € is always positive 

or zero for the chalcopyrite compounds with N = 3 and runs from a 

value of 0.242 for MgSiP2 to 0 in ZnSnP2 (see Table VII). 

The anion of a chalcopyrite compound is tetrahedrally coordinated to 

two cations of type A and two cations of type Band slightly displaced from 

its original zincblende position towards the smallest pair of cations; 

this displacement can be lIleasured by the parameter a z:: 4u - 1. The 

parameter a can be positive or negative depending on which of the two 

cations is the smallest; the largest measured distortion is for 

CdGeAs
2 

for which a = 0.144; the value of this parameter for the 

ZnSn compounds (ZnSnP 2 and ZnSnAs
2

) is negative (0'= -0.044). 

In Table VII 33 we give the crystal parameters for these compounds; 

from it, several trends can be observed: both the tetragonal distortion 

€ and the displacement of the anion a seem to depend mostly on the 

two cations of these ternary compounds; both E and a are slightly 

larger for the phosphidesthan for the arsenides. In the Zn compounds 

for which the table is more complete, the parameter IE-4al is an 

increasing function of the row number of the second cation. 

To study this trend more closely, let's take the difference between 

the AC and BC bond lengths to first order in E and a: 

D 

2 

/3 
O'a 

+1.+ 
4 

. 2 1/2 

(2~£) I I 
(9) 
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i .. e. , D is a direct measure of the crystal parameter o. 
a 

This explains 

one of the observed trends, if D is very weakly dependent on the anion, 

o should be a decreasing function of lattice constant. It is thus smaller 

for the arsenides than for the phosphides given the same pair of cations • 

In Table VIII we compare the experimental values of 0 with those obtained 

from the additive radii of atoms (when in tetrahedral covalent bonds) of 

Pauling34 and Phillips and Van Vechten. 35 The agreement between the 

experilnental values of 0 with those predicted using Pauling,' s radii is 

better than 25% while those predicted using Phillips and Van Vechten 

are much worse. The difference between the experimental values of 0 

and those predicted using Pauling's radii seems to indicate that, for 

example, the Zn - P bond is more ionic in ZnSiP
2 

than in ZnGeP
2 

and 

that the Sn - As bond is more ionic in ZnSnAs2 than in CdSnAs2 . S. C. 

36' 24 5 Abrahams and J. L. Bernstein have pointed out that in the A B C2 

compounds, the B cations are tetrahedrally coordinated to within 0.3~, 

while the tetrahedral coordination of the A cations may be deformed 

by more than 10° from their studies on ZnSiP
2 

and CdSiP2 • Again, to 

first order in 0 and £, these angles are given by 

cos«CAC) - ~(-l + 

cos« CBC) - ;(-1 + 

a(£ + 40» 

a(£ 40» 
a = 2/3, - 4/3 

So the B cation is perfectly tetrahedrally coordinated if £ - 40 the 

(10) 

trend observed in the Zn compounds in the quantity 1£- 401 only reflects 

what we already know i.e., that Si is more covalent than Ge and the 

latter is more covalent than Sn. The crystal is constructed in such 
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a way that increasing the distortion of the tetrahedral arrangement 

around the A cation tends to decrease the distortion around the B 

cation; the fact that E = 0 for the ZnSn compounds probably indicates 

that both linkages CAC and CBC are equally covalent. 

B. The Relation Between the Zincblende Brillouin Zone and 

the Chalcopyrite Brillouin Zone 

Since the primitive cell of a chalcopyrite crystal is four times 

larger than the primitive cell of a zincblende crystal compressed along 

the z axis, the zincblende.Brillouin zone is four times larger than 

that of the chalcopyrite analog. The two crystal structures are so 

similar, that it is possible to completely fold in the zincblende 

zone four times into the chalcopyrite zone. 

Some of the ternary crystals with composition A2B4c~ (e.g., MgGeP2)' 

lack the segregation of its two cations. The cations are considered 

randomly distributed among the cation position in the Zb analog. Then 

the compound has the zincblende structure, one of the two sites in the 

primitive cell is occupied by the anion and the other by an average of the 

(
A2+B4) 

two cations 2' It is only the ordering of the two cations and 

their different potentials what reduces the Brillouin Zone. In view of 

this, it is expected that the electronic and optical properties of a 

chalcopyrite crystal should be very similar to those of their zincblende 

analog. This is even. more convincing if one takes into account the fact 

that the average cation pseudopotential in a chalcopyrite crystal is 

very close to the pseudopotential of the cation in its zincblende analog. 

In the folding in process of the band structure of azincblende crystal 

into the chalcopyrite Brillouin Zone, singly degenerate states may 
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now be double. triple or quadruple. If the differences in the two cation 

pseudopotential, represented by an antisynnnetric cation potential 
2 4 

V~ = V(A ) ; V (B ) , lifts the degeneracy, simple perturbation theory 

predicts. that these states are going to be the most affected by the 

ordering of the two cations and by the antisynnnetric cation potential. 

In Fig. 38, we show the irreducible part of the chalcopyrite Brillouin 

zone; the labeling of symmetry points and symmetry directions is that 

50 
of Zak. In Figs. 34 and 35 we show the folding in process of the 

zincblende BZ into two different planes of the chalcopyrite BZ. The 

smallest G vectors in the chalcopyrite structure are of the form 

2TI(0,0,2/c), 2TI (0,1/a,1/c) and 2TI (1/a,0,1/c); for c = 2c' where c' is 

the z lattice vector of the compressed zincblende analog, these G 

vectors correspond to the points X, W ,W of the zincblende Brillouin 
x y 

zone. In Fig. 34, the planes k = 0 (Fig. 348), k = +1 (Fig. 34b) and 
z z 

k z = +1 (Fig. 34c) of the zincblende BZ map into the plane k z = 0 of 

the chalcopyrite BZ, the translation vectors are 2TI(0,0,0), 2TI(0,0,1/c'), 

2TI(1/a,0,1/2c') and 2n(0.l/a,1/2c') respectively. The last two translations 

are completely equivalent in this case so that while the points X and 

f that map into r have the same degeneracy as in the zb case, the point 

W now is double degenerate and also maps into f. In what follows k x 

and k are in units of ZTI/a and k in units of 2TI/c': (c = 2c'). 
y z 

Figure 34d shows the k = 0 plane of the chalcopyrite BZ. In 
z 

Fig. 34e we show the planes (Figs. 34a, 34b and 34c) appropriately 

displaced to show the folding in process. The points marked by X in 

Figs. 341, 34b and 34c are those that map into r of Fig. 39d. a 

represents the points of the form (1/2,1/2,0) and 0 points of the form 

(1/2,0,0) of the zb BZ. 



-44-

From Fig. 34d we see that the ~ direction in the chalcopyrite BZ, 

now contains the z: and S directions of the zb analog (r - (J and 
xy 

X~, K ~ 0) and the double degenerate Q direction (W~). The 6 and S 

chalcopyrite directions now contain the original 6 direction plus the 

Z direction (X - W - X ) and the doubly degenerate W - 0 direction z z z 

(along (x,O,1/2». Finally, in this plane, the Y and U directions 

contain the doubly degenerate a to X line (along (1 - x,x,O» and 

the double line L - a along (x,x,1/2). In Fig. 35, we show the folding 

in process for the N plane (k = k ) of the cha1coyprite BZ; Figs. 35a 
x y 

and 35b, show the k E k and 1 - k = k planes of the zb BZ again 
x y x y 

the points marked by X map into r of the chalcopyrite BZ, Fig. 35e 

shows the N plane of the chalcopyrite BZ. In Fig. 35d, the direction 

r - X (along k = k = k , contains the original}. direction of the x y z 

zb BZ together with the lines X - L (along (k ,k ,1 - k » and W - ~ 
x x x 

(along (k ,1 - k ,1/2 - k ». Besides the important high symmetry 
x x x 

point X (with degeneracy 2n, where n is the degeneracy in the zb case), 

there are two interesting points in this plane, the point A (1/2,1/2,1/4) 

whose degeneracy is 4 when the antisymmetric cation potential is zero 

and splits into two doubly degenerate levels when this potential is 

turned on, and the point (1/4,1/4,1/4) that contains singlets and 

triplets (corresponding to (1/4,1/4,1/4) (3/4,1/4,1/4) (1/4,3/4,1/4) 

and (1/4,1/4,3/4) in thezb case) and is the representative k~point 

for charge density for body centered tetragonal structures (see Appendix 

A and references therein). 
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c. Electioni~~? 0Ftical Structure tor the Chalcopy!ites 

In Fig. 36a, we show our calculated band structure for the 

chaloopyrite compound ZnGeP2 and in ~ig. 36b that of its stressed 

analog. This last band struc ture corresponds to that of GaP uniaxially 

stressed along the z direction in such a way that the e'la ratio is 

that of ZnGeP2 and the band structure is folded into the chalcopyrite 

BZ. Here we are interested in showing the ftimilarities and differences 

between the electronic properties of a chalcopyrite compound and 

its analog and the main effects of the ordering of the two cations. 

The method of calculation and choosing of parameters is discussed in 

a following section. In Figs. 37 and 38 we show the theoretical imaginary 

part of the dielectric function and density of states curve obtained 

from a full zone calculation of the band structure of znGeP237 (Fig. 38b). 

The difference between the band structures shown in Figs. 38b and 36a 

is only a slight change in the pseudopotential parameters used. 

Now let us compare the two band structures in Figs. 36a and 

36b. First we point out that as shown in Fig. 36b the effects of 

tetragonal compression on the band structure are very small when 

compared with the effects of the antisymmetric cation potential so 

we will ignore them for now. 

1. Structure of the Valence Band and Density of States 

',J' In the first four valence bands, the main splittings occur at 

the point X and the point A of the chalcopyrite Brillouin zone, In the 

analog, the levels Ll and LI are almost degenerate forming a level 

that is almost four fold degenerate and is split into two degenerate 

levels by about 0.4 eV with symmetry X. The point A which was four 



-46-

fold degenerate in the analog is again split by O.5eV into two 2-fold 

degenerate states with symmetry A! and A
2

• 

The effect of these splittings on the first peak of the density 

of states curve is shown on Fig. 38a. THis peak extends from fICf!) 

to r3 (X1 ) and shows considerably more structure than that of the 

analog. The first structure comes from states near the N point of the 

BZ and along the B direction, this direction contains doubly degenerate 

bands in the analog (1/2,x,I/4) and (1/2,x,3/4) that again are split 

by the antisymmetric cation potential. The second structure contains 

states mostly in the W direction (X~A) and the third broader structure 

comes as in the analog from states along the A(W+X) direction and 

states near XI(LI ). The width of this peak is slightly larger than 

that of the analog. Physically, this peak that represents s-like 

states around the anion is expected to'be split and broadened due to 

the deviations from perfect tetrahedral environment around the anion 

but these effects are expected to be small as shown in the averaged 

density of states curve (dotted line in Fig. 38a). These states 

are deep inside thet,'cation bhus very insensitive to environment. 

The opposite situation occurs for the usual second s-like peak in a 

zincblende crystal. This peak represents a-like states near the cation 

and the difference between the two cationa in the ~halcopyrite analog 

is expected to deeply affect it. In Fig. 38a, we see how this peak 

is now split into three structures, the first two separated from the 

third by a small gap. The first two peaks come from bands 5 and 6 

while the third comes mostly from band 7 (each peak holds approximately 

2 electrons). The first two structures probably represent s-like states 
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" , 

4 around the B cation while the third one corresponds mainly to s-like 

states around the A2· cation. 

In zincblende studies of density of states, the gap between the 

first two s-like states has been correlated to the ionicity of the 

38 
bond. Since we now have two kinds of bonds, one much less ionic 

than that of the analog, the gap between these two structures gets 

reduced by as much as 1.9 eV in our calculated band structure. The 

first structure in this second peak starts at the point f
2

(X
3

,W
l

) and 

the rise and peak is caused from states in the B direction with symmetry 

B2 ; the second structure comes from states in the L and A directions 

(symmetry Ll and ~l) close to fl (WI); for most of the band structure 

a gap develops between bands 6 and 7, the rise of the third peak comes 

from states near the point A2 (in bands 7-8) and the peak is caused by 

the singular point r2 (Xl ,wl ). The mixing of states caused by the 

antisymmetric cation potential is very big for states at the r point in 

bands 5, 6 and 7, the originally doubly degenerate state f
2

(W
I

) + fl(W
l

) 

splits and f
2

(W
I

) then mixes with f
2

(X
3
). Here we can speculate that 

most probably the energy separations between f 3 (Xl ) and the two energy 

levels f
2

(X
3

,W
I

) can be co~related to the ionicities of the two kinds 

of bonds of a chalcopyrite semiconductor. 

The big dip in the density of states plot after the third structure 

in the second s-like region is associated to a point Lmin along the L2 

direction (band 8) near (0.3,0.3,0), corresponding to the same kind of 

structure and origin in the analog; this point marks the high rise of 

bonding orbitals in the density of states curve. The states associated 

with this rise are as in the analog f s (W
2

) states. The broad bonding 
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peak has much more structure than that of the analog. One new interesting 

feature is that it splits into two broad peaks (this effect is more 

noticible in the broaden out density of states curve). The dip between 

these peaks is associated with splittings at the point A of the 

chalcopyrite BZ with symmetryA
2 

(bands 9-10), a gap develops along 

the Land N (x,x,2x) directions due to interactions between two Ll 

lines and two Nl lines. 

At this point of our investigation, we can speculate that this 

splitting is mainly due to the two kinds of bonds A2 - cS and B4 - cS 

in the crystals under consideration. The first peak corresponding 

mainly to electrons concentrated in the B4 - cS bonds while the second 

2 5 corresponds to electrons in the A - C bonds. A charge density plot 

as a function of position for the different bonds and for a few points 

in the BZ is expected to give. the answer to these questions (work is 

in progress along these lines). The top of the valence band is formed 

by the triplet rS + r 4 originating from the r 15 level of the analog. 

2 4 S For most chalcopyrite compounds of the ABC family, the top of the 

valence band has r 4 symmetry. The doubly degenerate level fS is 

separated from r4 by crystal field splitting 6 increasing with larger 
cr . 

tetragonal compression. Shay and co-workers39 and Shileika40 have 

studied extensively the crystal field splittings for most of the 

244 . 
A B C2 type semiconductors. They find that a model that assumes that 

the value of 11 of the ternary compound is equal to the· strain induced 
cr 

splitting of its analog (assuming the same cll a ratios) fits reasonably 

well their ~erimental data. There seems to be an exception to this 

rule, in the chalcopyrite crystal ZnSiP2' the top of the valence band 
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has symmetry r
S

' i.e., 'the crystal field splitting is opposite to that 

41 
of most of the other chalcopyrite crystals. 

Cardona, et al~2 have been able to correlate the deformation 

3 5 potential b =!::. /3 (1 - cll a) of the A B compounds to their iouicity 
cr 

(b decreases with increasing ionicity). K. Dreher
43 

has calculated the 

245 average ionicities of the ABC compounds and finds that it is usually 

larger than ~hose of their analogs, so a reduction of this quantity 

is expected due to an ionicity effect. We find that in addition the 

antisynunetric cation potential tends to reduce further the value of 

a by about 0.02 eV in the case of ZnGeP2' cr 

Since the most reliable data on the structure of the conduction 

band and the structure of the optical gap comes from experimental 

reflectivity spectra (and all the modulation techniques on this spectra) 

let us first describe what are the dominant features of the reflectivity 

245 spectrum of A B C
2 

compounds. 

Due to the folding in the zb BZ into the chalcopyrite BZ,transitions 

between the valence and conduction band of a chalcopyrite crystal have 

been divided by Shay44 into two categories: 

Direct transitions--those originating from direct transitions in a 

zb crystal. 

Pseudodirect 'transitions--those originating from indirect transitions 

in a zb crystal. 

It is of course expected that the reflectivity spectrum of a 

chalcopyrite crystal be richer in structure than that of its zo 

analog; the larger number of structures in the spectrum arises from 

several sources: 
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1) Originally degenerate levels in the cubic case are split under 

the influence of the tetragonal compression and the antisymmetric cation 

potential. 

2) The star of k in chalcopyrite structure does not contain allof 

the star of k in zb structure e.g., the /::,. direction in zb splits into 

the /::,. (k ,0,0), A (O,O,k ) and S (k ,0,2TI/c) directions in chalcopyrite x z x . 
c 

structure. As shown in Fig. 4la, the effects of VA in the original 

direction are quite different along the /::,. and A directions of the 

chalcopyrite BZ. The most iMportant effects corning from the ordering 

of the two cations are observed near points in the band structure, 

where two bands corning from different k points in the zb BZ cross in 

the folding in process and have the same symmetry under the point group 

of the chalcopyrite. The bands that cross with the original/::" bands 

and the points of crossing in k-space are quite different in the /::,. and 

A directions of the chalcopyrite band structure. 

3) At this point of cr,ossing where degenerate perturbation theory 

should be used in a quasi-cubic model, the mixing o;f states is expected 

to be large and as Stokowski
47 

points out, the term "pseudo-direct" 

for transitions that become allowed due to these effects is not 

appropriate. We find that these mixing effects of VC are the most 
A 

important in splitting the reflectivity structure. 

In the past few years, a fair amount of data on the optical spectra 

f A2B4C5 d h d' h lit t 39,40,44,45 o 2 compoun s as 'appeare 1n t e era ure. Although 

the optical spectra of chalcopyrites is much more complicated than those 

of their binary analogs, they show the same general features i.e., the 

spectra can be divided into three main regions! the region E of the 
o 
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first absorption edge, the region El which in zb materials corresponds 

to transitions in the A direction and L point of the BZ, and the E2 

region that in zb corresponds to transitions in the L and I:::. directions. 

In addition to the complexity, these reflectivity spectra will be 

different for light polarized parallel and perpendicular to the c-axis. 

2. Optical Structure in the E Region. 
o 

By the properties of the first absorption edge, chaloopyrite 

compounds can be divided into two groups: those with a pseudo-direct 

gap rS + r4crlS) ~ r 3 (Xl ) and those with a direct gap rS + r4 (r lS ) ~ r l (r l ). 

From a quasi-cubic model, it is expected that chalcopyrite compounds 

with an indirect gap f lS - Xl analog (GaP-like) be pseudo-direct gap 

crystals. Experimentally 40 it has been observed that ZnSiP 2' ZriGeP 2' 

ZnSiP
2 

and CdSiP
2 

have an absorption edge with pressure coefficients 

-6 -1 2 dEg/dP ~ ±lxlO eV kg em, indicating that the first gap in these 

crystals is a pseudo-direct one r 5 + r 4 (r 15) -+ r 3 (Xl) . Electroreflectance 

studies on these materials show very small structure corresponding to 

the first absorption edge followed by three strong peaks corresponding 

to the first direct transitions fS + f
4

Cf
lS

) ~ rlCf l ). The weakness 

c 
of the pseudo-direct transitions, indicates that the mixing of f

3
(X

l
) 

with r~(rl) and the mixing effects of the chalcopyrite potential on 

these levels is very small, not because this potential is small 

40 as Shileika suggests, but because of the symmetry properties 

of the r~ and X~ wave functions. From charge considerations, 

the antil:iymmetric cation potential and the usual antisymmetric potential 

of a A3C5 zb semiconductor should be of the same order of magnitude. 

It is relatively easy to show that states coming from the r and X points 
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in the zb BZ should never mix under the influence of the antisymmetric 

cation potential. In pseudopotential formalism this potential V
C 
a 

can be Written in the form 

--VCe?) = L SC(0 vCCICI) e iCor 
a C a a 

where vaClcl)=l/2CvA2 <lcl) - vB4Clcl». For the particular Gvectors, 

- 2 (n m ,Q,) • h n C = n - -, - ,w1t n, m, and N integers, the structure factors a' a c 

SC M are zero, but these are the only fourier components that can 
a 

mix r-r, f-X, and x-x states to second order in perturbation theory. 

So that the only mixing that can make r-X transitions allowed is a r-W, 

X-W mixing but in zb materials the W energy levels are at least 2 eV 

c c from the r
15

, Xl' fl levels. In view of this it is not surprising 

that a quasi-cubic model explaining the crystal field splitting and 

spin-orbit splitting of the first direct gap works so well. 39 

In this discussion we have omitted the effects of the small 

potential introduced by the displacement of the anion from its ideal 

position, we will show later that structure factors introduced by 

this displacement are of second order in the small parameter a forC 

vectors of the form G
zb 

+ (0,0,1) (G
zb 

are the usual C vectors for 

the zb analog). 

3. Optical Structure in the El Region 

In the El region, corresponding to the two spin-orbit" split 

peaks El and El + 6, of the analog, chalcopyrite compounds show 

a much richer structure. In general, five or more peaks are observed 

. 39 40 45 46 in exper1mental electroreflectance, ' , modulated reflectivity 

and reflectance
47 

in the energy interval of the spectrum corresponding 

i 
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·to the A transitions (El , El + ~) of the analog. These peaks have 

been labeled E1(1), El (2), El (3), El (4) and Ec'bY Stokowski47 and 

El ,E2 , E
3

, E4 and E6 by Shileika.
40 

We shall adopt Stokowski's 

notation here. 

The most important features of these structures will be discussed 

below. The energy separating E
1

(2) - El(l) and El (3) - E
l

(4) are close 

to each other for the most of the A2B4c~ compounds studied. This seems 

to indicate that these transitions come from two spin-orbit split 

doublets in the same region of the Brillouin Zone. The origin of this 

structure has been subject to extensive investigation in the past few 

years. Most interpretations agree in that the El(l) and El (2) structures 

originate from transitions in the N plane along the (x,x,x) direction 

and in terms of a quasi-cubic model equivalent to the A transitions in 

the analog. Our full zone calculations on the reflectivity of ZnGeP
2

, 

show that indeed this is the case and the critical point is near the 

point (0.2,0.2,0.2). A comparison of the band structure of GaP and that of 

ZnGeP
2 

(Fig. 41) shows that near that point the valence bands are almost 

unaffected by the antisymmetric cation potential while the f-L conduction 

band mixes with the W-E conduction bands. Notice that in the analog, 

these are almost degenerate near the point (0.25,0.25,0.25). 

A downshift of the El(l), E
l

(2) structure with respect to the 

El , El + ~ structure in the analog has been observed for most of the 

chalcopyrite crystals studied so far. Since the mixing of the A valence 

bands near the critical point is small, spin-orbit interaction effects 

should be very close to those of the compressed analog. Under this 

47 
assumption, Stokowski estimates values of El (2) - El(l) - ~l in 
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,e 

reasonably good agreement wi,.theXperimente:kce~~fo,rCdstAs2' ,Inclusion 

of.'sPin-orb~tinteraction~ in znGeP2in'our. Ps~udopotent:iaicalCulatiOns 

give a value oJ'bl =0.08 eV incloseagreement,w:ithth~ experimental 

values of'0.06'eV. 

~, " ' , " 

,The'natu):"eof the E
l

(3) and, E
l
(4) st'ruct,ure is subject to controversy. 

KavaliauElkas ,et, aL
45 

suggest that all fourpeaksE~(~) t?E.l (4) come 

"frOm transitions ~t the x point oftheBZinthe>bands l5"';16-d7.2.l8,and 

13-14+17-18. Under·the influence of the 'spin--orbitinteractions" th~ 
, ,,' ',,", . 

fourfold deg~nerate level Xl' splits into two t\vo.~fold degenerate 

levels, Xl-t~I + X4' Xi +x'j.Fromour studies~IlzI1GeP2' 'the splitting 

XI + Xi ,~, Xi + X'jis o. 02eV; , th~~ , it is too ;srii~ll to b~ associated to 
. ' 

L ":,,' _,? 

the energy' separaJ.:lon between El (1), El (3) and El (2). El (4) as 
47 ' , . 

Kavaliauskas ,et a1. suggest. Stokowsky assi&n~ ,the El~3)and El (4) 

peaks to transitions at the X point of ,the BZ. As showninFig.36, 

the top of the valence band at, the point X ~ontains'six states which' 
," "" 

are almostdegenerate~ they corr~spolld toth~ ,two doubly degenerate 
, '"~ "',~ " -' 

levels Xl (L
3

) (L
3 

(1/2 ;-1/2, .... 1/2) arid L3 (~1/2,,1/2:,-1/2» and L(L
1

) 
"'-" 

(Ll(1/2,1/2~O), L1 (-1/2,-1/2,0».Thefact thatthe,L3 andL
l

levels 

are almost 'degenerate is not accidental; Cohen and Betgstresser'sband 

, ..;. 

, .,' , " " 3 5' " , .' 
structures show that this is the case for all of the Be. semiconductors /, 

,..;,. 

they. study. Under these' circumstances, the effects: oftheantisymmetrlc 

cation potential mixing the Ll and L3 levels is exp~cted to be large 

as shown in Fig. 36a. This large interaction and the shUts ofthe. 

Lj to L~ transitions relative to the fl.j'tofl.~ leads'Stokowski to suggest 

that" the El (3), El (4) 'and Ec peaks come from transitions at the :x points 

,:rom bands 15-16, 13-14, 11-12+17-18. -Although all oL,these transitions are " 
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allowed due to the strong L-I mixing in the valence band, we find 

48 
that for all our band structure calculations, that 15-16 + 17-18 

transitions at the X point lay below the A El (I), EI (2) peak. 

In most cases, the Xl + Xl transitions between bands 13-14 + 17-18 

lay too close to the A peak to explain the splitting between the El (1), 

El (3) and El (2), El (4) peaks. 

44 Shay et al. associate the origin of the E
1

(3) and E
1

(4) peaks 

to pseudo-direct transitions from the L line to the L--W line and to a 

pseudo-direct X to r transition. As we have seen, f-X mixing is too 

small to be observed. We find two more pieces of structure above 

El (1) and El (2). These structures which can be associated with El (3) 

and El (4) arise mainly from the strong mixing at the crossing point 

of the I and Q(W-L) lines in the conduction band along the (x,x,O) line. 

This mixing extends into a large region of the N plane (x,x,z) and is still 

very strong near the point (1/4,1/4,1/4) along the (x, x, x) line, 

~ere the mixing is between the f-L line and the W~I line. Unfortunately 

the peak El (3) N2 + Nl originates from a volume effect close to the 

( x, x, x) direction; because of this, a full zone calculation for the 

reflectivity spectra is required to compare it with experiment. 

Contributions from the broad structure caused by the M critical 
o 

point at X (bands 13-14 + 17-18) enhance this structure in the 1 

polarization. 

Another piece of structure in the perpendicular polarization 

spectra, is associated to I 2 (I 2) + Iln:l,Q) transitions. These transitions. 

are responsible for the E
1

(4) peak in ZnGeP2 which for this 

semiconductor appears only in the perpendicular polarized spectra.
46 
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A work of caution is in order here. Reference 46 is the only measurement 

that we know of in which the optical quality of the surface is very good 

and complete perpendicular and parallel polarizations were obtained. 

In all other electroreflectance and reflectance experiments, the parallel 

polarized spectra is only nominal. Even with this problem, thermo-

40 
reflectance data at 120 0 K and the modulated reflectivity experiment at 

5°K agree very closly but electroreflectance data at 300 0 K does not 

(see Table IX). With the above identifications, it is clear that at 

least in the case of ZnGeP2' the structure El (3) and El (4) do not 

come from a, pair of spin-orbit split transitions. Whether this is 

true for all chalcopyrite semiconductors, requires more theoretical 

research. 

245 For some A B C2 semiconductors, it may happen that the strongest 

mixing of the (x,x,z) and the (x,x-l,z-1/2) lines is along the (x,x,x) 

direction, in which case a pair of spin-orbit doublets is expected 

in addition to the L(L) + L(L+Q) peak. From Stokowski's data47 this 

seems to be the case for ZnSiAs
2

, 

We have been able to associate the E structure with transitions 
c 

at the X point Xl (L 2l(3) + Xl (Ll ); this peak is stronger in the parallel 

polarization. Caution has to be taken when identifying this peak, 

since it is caused by an M· singular point, the actual peak is 
- 0 

shifted by about 0.1 eV to higher energies with respect to the 

energy of the transition at the singularity. 
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4. Optical Structure in the E2 Region 

At higher energies in the region corresponding to the E2 peak of the 

reflectivity structure of zb semiconductors, at least five pieces of struc-

2 4 5 
ture are observed in the reflectivity spectra of the A B C2 semiconductors. 

At present it is premature to assign any particular transition to these 

peaks for all the chalcopyrite compounds. Our full zone calculations 

for ZnGeP2 show that as one would expect, most of the contribution 

to the E2 structure comes from direct and mixed transitions in the 

6. and L: directions of the analog. The 6. direction folds into the 6., 

11. and (x,O,l) directions of the chalcopyrite BZ while the L: direction 

is folded into the L:, (x,O,x) and (1-x,0,1-2x) directions. Partial 

summation over k-space in these directions shows that in effect the 

E2 peak is mainly a 6., L: peak. 

The width of the E2 peak in our full zone calculation is about 

0.4 eV while in experimentit is at least 0.8 eV~ This probably means that 

we have underestimated the antisymmetric cation potential for this 

calculation. 

The first peak in the parallel polarization around 4.76 eV comes 

from transitions along the 6. direction 6.(15-l7)at (0.34,0,0). The line 

6.(6.) mixes with the line 6.(1-k,O,l/2) in the valence band and then 

continues into bands (13,14) so transitions (13,14) ~ 17 near 

(0.5,0,0) contribute also to this peak. On the other hand, i\(0,0,k
2

) 

and L transitions are responsible for the first peak in the perpendicular 

polarization at 4.77 eV. The bands involved are 12-13 ~ 18, and 

the critical point is near r5 (X
5

) ~ r3 (Xl) • The main peak in the 
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perpendicular polarization is caused by L transitions near the point 

X of theBZ bands 16-20, indicating the strong mixing near that point 

in the valence bands. The small shoulder at 4.6 eV in the 1 polarization 

is caused by a singular point at (0,0,0.3-) along the I\. direction 

(bands (13 + 17», in this energy region we also find a critical 

point at (0.25,0.25,0) (14 + 17 transitions) coming from the original 

L transitions in the analog. 

The main peak in parallel polarization is caused by a strong 

critical point inside the zone near (0.16,0.05,0.0) bands (14-17). 

Along the (kx,0.5,0) direction one has the C to a, W to a and a to L 

directions of the analog. The critical point is caused by strong mixing 

at the crossing point in the conduction band of the a to L line with 

the C to a line; transitions near this point are stronger in the 

parallel polarization, but they also contribute to the perpendicular 

polarized spectra. The bands involved are 14+17. Near this energy 

region we find two additional pieces of structure caused by a critical 

point at .(0.25,0.25,0.25) in the N plane in bands (13 + 18) and 

(14 + 20). The first one at 5 eV is polarized in: the II direction 
I 

while the second one at 5.11 eV is polarized in the 1 polarization. 

The shoulder at 4.92 eV in the experiment ,in Ref. 46 is associated 

with bo(0.5,0,0) transitions in bands 15-18; our calculated value 

for these transitions is 5.21 eV. 

Table X shows the results of our critical point analysis and a 

comparison with the experiment in Ref. 46. The intensity of the E2 

peak is considerably reduced when compared with th~ intensity of the 

E2 peak for zb crystals in our theoretical calculation, but still .it 
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is higher than the measured peak. For ZnGeP
2 

this peak has the same 

intensity as the El peak in the experiments of Petroff, et ale In 

other respects, their structure is similar to our theoretical predictions. 

In fact, if the entire theoretical spectra were shifted to lower energies 

by around 0.3 eV, the a~reement between theory and experiments for 

almost all optical structure is very good. This is encouraging since 

no experimental data (except for structure constants) for ZnGeP2 were 

used in our calculations. Theoretical and experimental reflectivity 

spectra are shown in Fig. 44. 

Before ending this section, we add the following remarks about the 

identification of the reflectivity peaks. In zincblende semiconductors 

most of the structure in the El and E2 regions comes from transitions 

between the third and fourth valence bands and the fifth and sixth 

conduction bands, this makes the identifications very easy. On the 

other hand, in chalcopyrite semiconductors we have transitions from 8 

valence bands to at least 4 conduction bands contributing to the 

reflectivity spectrum. There also exists band crossing and mixing all 

over the BZ and identifications are extremely difficult.· Since 

identification of critical points that give large contributions to 

the electDwoic density of states is much more Simple and physically 

transparent, experiments that measure this quantity are bound to be 

of great importance in the determination of the band structure of the 

chalcopyrite type semiconductors. 
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D. Pseud~potential Hamiltonian for Chalcopyrite 
Crystals and the Energy Band Structure of ZnGePZ and ZnGeAsZ 

In this section we will discuss: 1. the psuedopotential Hamiltonian 

for semiconductors that crystalize in chalcopyrite structure, Z. the 

determination of the pseudopotential form factors and 3. the results 

obtained for ZnGeP2 and ZnGeAs2 • 

1. Pseudopotential Hamiltonian 

The pseudopotential liamiltonian for an electron in the crystal is: 

2 2 -+-
j( = - (h /2m) V + VCr) (11) 

-+-
where VCr) is the weak crystalline pseudopotential which has the symmetry 

-+­
of the lattice and can be expanded in the reciprocal lattice vectors G. 

For chalcopyrite compounds A2B4c~ with 8 atoms per primitive cell, 

two of kind A, two of kind Band 4 of kind C, the pseudopotential 

V(t) in Eq. (11) can be written in the form 

-+ -+-
(12) 

-+- iG'r = E V(G) e 
G 

where 

-+ --+ 
A 

T1 = (0,0,0) , A 
T2 = (0,a/2,c/4) 

-+ -+ 
B 

(0,0,c/2) 
B (0, a / 2 , 3c /4 ) Tl = , T = 2 

(13) 
-+ -+-

(au,a/4,c/S) , T~ - C (au,3a/4,c/8) , T3 = (3a/4,au,7c/8) 
--. 
C 

T4 = (a/4,a~,7c/8) 
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__ A B C 
and VC' VG and VG are related to the spherically synunetric atomic 

pseudopotentials by: 

~ is the volume of the 
2 

primitive cell, ~ = a c/2. 

Let's define the average cation potential VI (G) by 

VI (G) = (~ + V~)/2 

the antisymmetric cation potential by 

and let us write 

Further, let us separate the Hamiltonian into two parts, one assuming 

that the anion is in its ideal position, the other taking care of 

~ 

the pseudopotential that this displacement ,produces. With this, V(G) 

in Eq. (12) can be written in the form 

-+ 
The symmetric structure factor S (G) in Eq. (18) can be written in 

s 

the form 
~.;. -t-

iC'n 
-+ e 

S (G) = -:--84 
-+ -+ 

C08(n·G) 

iG'n -+ -+ 
e cos(n'G) 

= 0 

-+ 
-+ A 

( 
iG' Tl 

',e + 

-+ -+ 
for G = G

zb 

otherwise 

) ,. , 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 
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-+ -+ -+ -+ 
n = (a/8,a/8,c/16) and G

zb 
are the set of G.,'s that contain only G 

vectors, of the zincb1ende crystal structure (compressed along the 

z-axis)" 
-+ 

Similarly the antisymmetric structure factor SA(G) is 
-+-+ 

SA(G) = eiG"n i si~"~ for 

= 0 otherwise 

The antisymmetric cation structure factor S~(G) can be written in the 

form 

C (lK -+, in this form, it is easy to show that SA UJ = 0 for G s of the form 
-+ -+ -+-+ 
G = Gzb or G = G

zb 
+ (0,0,1)" 

-+ 
S (G) 
u 

-+ 
The anion distortion structure factor S (G) is 

u 
-+ -+ -+ -+ 

d· G I ( i \ . G ) i a· G ( -1£1' G ) = e e - 1 + e· e - 1 + 
-+ -+ -+ -+ 

-+-+ 
[ ( e i E2 "G _ 1 ) 

-+-+ I -i E "G 1)]1 i Y"G + 
iB;G 2 e e-- e 

-+ -+ -+ -+ 

(20) 

(21) 

(22) 

where El = (0/4,0,0), £2 = (0,0/4,0) and Sand rare zincblende lattice 

vectors of the form ~ = (-a/2,a/2,0), Y = (a/2,0,3c/4)" Then for 
-+ -+ 
G = G : zb 

-+ -+ 
For G = Gzb + 

-+ -+ 
For G = G

zb + 

-+-+ 
i2n"G 

S (C) = .;..e __ 
u 4 

(0,0,1) 
-+-+ 

-+ i2n"G e - -

S (G) = 4 u 

(1,0,1/2) 
-+-+ 

~ 
i2n"G e 

S (G) = u 4 

-+ -+ -+-+ 
i(coSE1"G - COSE 2 "G) 

-+ -+ -+-+ 
i(sinE1 "G - sin£2"G) 

(23) 

(24) 

(25) 
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Exchanging cations .A and B has the effect of changing u -+ -u. From 

the above equations S (G) 
u 

= S (G) 
-u 

for G = G
zb 

or G = Gzb 
+ (O,e,l) 

but S (G) 
u 

= -5 (G) 
-u 

for G = Gzb + (1,0,1/2). Typically the nonzero 

structure factors S (G) and SA (G) are of the order of 1, the nonzero 
s 

antisymmetric cation structure factors that under the quasicubic model 

only mix k states with k + (1,0,1/2) states are typically of the order 

of 1/4. S (a) - 0.02 for G = G b or G = G b + (0,0,1) u z . z 

reason why the r-X pseudodi~ect transitions are so weak 

(and this is the 

245 
ill all the' A B C

2 

compounds studied so far) while Su(G) ~ 0.1 for G = Gzb + (1,0,1/2) in 

the region where the pseudopotential form factors are appreciable. 

U suaUy this happens for I GI < 4 (2 rr/ a) • In view of the values of 

the structure factors in Eq. 18, it is clear that the leading term is 

the cubic one given by 

the antisymmetric cation potential 

(27) 

perturbs the cubic band structure mostly at points where k and 

k + (1,0,1/2) states are degenerate or nearly degenerate, and the 

distortion potential 

-+ 
V (G) 

u 
(28) 

which depends only on the anion potential can be considered as only a 

small perturbatiun on the band stru<:ture obtained with Eqs. (26) 

and (27). The fact that Eq. (28) depends only on the anion potential 

seems to indicate that it is the effect of this small perturbation 

what causes the flip over of the ordering of the r
4 

and rS levels at 
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the top of the valence band in ZnSiP2 with respect to the ordering of 

those levels in ZnSiAs2 " 

In the region /G / < 4 (27T/ a) where the pseudopotential form factors. 

are assumed to be different from zero, there are 30 different G vectors, 

With 3 different atoms in the primitive cell, one needs 90 form factors 

to fix the crystalline pseudopotential. Fortunately! this number can 

be greatly reduced by using the symmetric part of the potential VS(G) 

the antisymmetric part of the potential V (G), the antis~etric cation 
A 

pseudopotential V~(G) as in Eq. (18). With this, a total'of 39 parameters 
A 

are needed for the calculation. 

The basis states used to solve the Hamiltonian matrix are plane 
~ ~ ~ + 

waves of wave vector k + G, (G reciprocal lattice vectoEs and k inside 

the first Brillouin zone). The number of plane waves is bounded by 

~ + 2 .. 3 
the relationship (G + k) ~ El and Lowdin perturbation scheme is used 

+ + 2 
for plane waves such that El < (k + G) < E2 • 

For the band structure shown in Fig. 38, for ZnGeP2' El = 7.1 and 

E2 = .18.1 and convergence is better than 0.1 eVe For the band structure 

shown in Figs. 41 and 45, El c 5.1 and E2 ~ 18.1 and convergence is about 

0.1 eV for the top valence bands and bottom conduction bands but about 

0.2 eV for the bottom valenee bands corresponding to more localized 

states. Since we do not have any experimental information on these 

valence bands, we believe that a high accurate but costly calculation 

is not justified at the present time. 
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2. Determination of the Form Factors 

3 Basic to the pseudopotential theory, is the concept of transferability 

of atomic pseudopotentrals, i.e., it is assumed that the atomic 

pseudopotential in real space for the elements is independent of 

crystal structure and composition. Of course, this assumption is 

not an exact one, small screening effects which are included in the 

empirically determined form factors are expected to change with 

environment. In determining the form factors for chalcopyrite compounds 

from the known form factors of zincblende semiconductors, these 

screening effects can be taken into account by noting for example that 

the surroundings of a P atom in ZnGeP
2 

are on the average those of 

GaP while in CdSnP
2 

are those of InP. Then in extracting the P atomic 

pseudopotential for ZnGeP
2 

from GaP and for CdSnP
2 

from InP one is 

accounting correctly for screening effects on the average. In 

addition, since the volume per atom of a chalcopyrite semiconductor 

is very close to the volume per atom in its zincblende analog, problems 

of scaling are minimized for the G vectors with largest structure 
~ ~ 

factors i.e., G = G
zb

' In determining the form factors of ZnGeP2 

we followed two different paths; i~ the first calculation (band 

structure in Fig. 43) we assumed that on the average ZnGePZ is GaP, 

then we used 

= V GaP 
S 

= V GaP 
A 

(29) 
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Assuming these two relations and from the known form factors of Ge4 we 

get 

vC "" V - V = VGaP + vGaP - V (30) A Ga Ge SAGe 

The form factors for GaP used are those of Ref •. 7. The pseudopotential 

curves of GaP and Ge were free hand extrapolated and it is assumed that 

all pseudopotentials are zero for G ~ (4,0,0) 2TI /a and that the 

antisymmetric GaP pseudopotential is zero for G ~ (2/a,2/a,2/c') 2TI, 

and that the symmetric GaP and Ge pseudopotentials at G "" 0 are 

-2/3 ~ while the antisymmetric GaP pseudopotential is zero at zero wave 

vector. The zinc pseudopotential curve extracted in this way follows 

2 2 
a rather strange curve which turns upwards from (G) = 4 to (G) "" 3 

(in units of . 2 (2TI/a». This phenomenon, which is also observed by 

3 Cohen and Heine for the Zn pseudopotential curves extracted from the 

pseudopotential form factors of ZnS and ZnSe was not completely 

understood, although it probably arises from non-local effects. We 

therefore smoothed out the Zri pseudopotential curve. This in. great 

part accounts for the discrepancies of th~ theoretical reflectivity 

spectra calculated with this potentials and the experiment. Our 

results with these pseudopotential form factors for the imaginary part 
f , 

of the dielectric function 8a(W), the reflectivity R(w) and density of 

states curve D(w) are shown in Figs. 37, 39 and 38 respectively and are 

discussed above. 

For the band structure of Fig. 36, the pseudopotential of Zn was 

extracted from ZnS, the one for P from GaP. AIIZnS, GaP and Ge 

4 form factors are those of Cohen and Bergstresser 
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We take 

8n 
V (G) zb V (G) 

cha1 = n
cha1 

zb (31) 

in agreement with the assumption that the real space atomic pseudopotential 

is independent of crystal structure and composition. 

For the scaling of the form factors we assume that the antisymmetric 

form factors of ZnS and GaP are monotonic decreasing functions of wave 

2 2 vector of the form VS(G) = A/Ga + B for G ~ 3(2TI /a) • For the symmetric 

form factors we get the slopes of the pseudopotentia1 curves by assuming 

that a homopo1ar diamond crystal with a symmetri'c pseudopotentia1 equal 

to that of GaP has the same hydrostatic pressure coefficients as Ge. We 

expect this since the GaP and ZnS symmetric C-B form factors are the average 

of the Si and Ge form factors and it is expected that the homopo1ar 

contribution to hydrostatic pressure coefficients in GaP and ZnS be 

close to the pressure coefficients of Si and Ge. With the values of 

the pseudopotentia1s and its slopes at G G
zb 

we fitted a smooth 

po1inomia1 curve such that VS(O) = -2/3 ~ and VS(G
2 = 16) = o. 

Because of the extraneous behavior of the Zn pseudopotentia1 curve 

for low G's, it is very hard 
C -+ 

to estimate VA for G = (l/a,O,l/c) 2TI ., 

the only important parameter 2 2 for G < 3(2TI/a) ,and this, we estimated 

by using the known splitting between the A peak (E1 and E2) and the 

EC peak in ZnGeP2' 

For the band structure of ZnGeAs
2 

shown in Fig. 45, the pseudopotential 

of Zn was extracted from ZnSe, the one for As from GaAs, C-B form 

factors; the extrapolating proceedure is the same as in the case of 
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ZnGeP
2

. V~(c:= (l/a,0,l/c)2n) was again fitted to give the splitting 

of the El , E2 pair with Ec; the data used was that of Shileika. 40 For 

the band structures of compressed GaAs and GaP (Figs. 40b and 36b), 

the same extrapolating proceedure was used. In setting up the Hamiltonian 

matrix it is assumed that the crystal structure is chalcopyrite with 

two equal cations and an ideal u (u = 0.25). The compression is given 

by assuming the cIa ratio equal to that of the chalcopyrite analog. 

The lattice constant is choosen so that the volume of the compressed 

crystal is the same as the volume of the uncompressed crystal to avoid 

hydrostatic pressure components. 

The zincblende component of the crystalline potential for ZnGeP2 

is equal to the crystalline potential of GaP due to the fact that C-B 

symmetric form factors of GaP and ZnSe are equal while the C-B 

antisymmetric form factors of GaP are exactly 1/2 the C-B antisymmetric 

form factors of ZnS. The same assertion is not true for ZnGeAs
2 

and its analog GaAs; in this case the C-B antisymmetric form factors 

of GaAs are not 1/2 the C-B antisymmetric form factors of ZnSe. Then 

all the differences in band structure between GaP and ZnGeP2 can be 

attributed to the chalcopyrite component of the potential while the 

differences between the band structure of GaAs and ZnGeAs2 include 

also the effects of a different zincblende component of the potential. 

The band structures (Figs. 36 and 40) were calculated along the 

A(O,O,k ), L(k ,k ,0), N(k k ,k ), ~(k ,0,0) and W(I/2,1/2,k ) 
z x x x, x x x z 

directions (the k component in units of 2n/a, k' component in units 
x z 

of 2n/c' with c' = e/2, as through all this work). 
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The band structures of ZnGeP2 and ZnGeAs2 should be considered 

only approximate, not only because of the low value of Ei used for this 

calculation, but and most important because the form factors that enter 

into the chalcopyrite potential come only from extrapolated values. 

Let us discuss our results for ZnGeAs
2 

and ZnGeP
2 

(Figs. 36 and 40) 

in more detail: 

ZnGeAs
2 

ZnGeAs2 is a direct gap semiconductor, Shileika40 reports three 

electroreflectance peaks in the region of the absorption edge at 1.15 eV, 

1.19 eV, 1.48 eV (at room tempemature). Removing the spin-orbit splitting, 

39 . with the help of the quasicubic model, these peaks correspond to a 

r
5
7rl transition at 1.29 eV and a r

4
-rl transition at 1.23 eV our 

calculated values are r
5
-rl = 1.4 eV and r4-rl ~ 1.35 in fair agreement 

with experiment. Our calculated value for the crystal field splitting 

b is 6 = 0.05 eV while in experiment is 0.06 eV. The experimental cr cr 

spin-orbit splitting is 0.31 eV and very close to the value of this 

parameter in the analog. 

Using our identifications of the El structure in ZnGeP2 as a guide, 

we predict an El(l), El (2) doublet for ZnGeAs
2 

at 2.37 eV; the mean energy 

of this peak in experiment is at 2.34 eVe Shileika's experiment shows 

only one peak in the El (3), El (4) region at 2.72 eV; the energy of 

the transitions from the r(r) valence band to the point of crossing 

of the r(r,Q) conduction bands is 2.77 eV in our calculated band structure. 

Our calculated interband energies of the X point of the BZ are 

X(15,l6+l7,18) = 1.90 eV.X(13,14~17,18) - 2.37 eV,X(11,12~l7,18) = 3.19 eV, 
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this last transition in close agreement with the experimental value 

of 3.23 eV for the E peak in Shileika's data. . £ 
49 Kwan and Woolley's 

unpolarized data is in close agreement with Shileika's data in the E1 

region, and shows three structures in the E2 region at 3.8 eV, 4.37 eV 

and 4.92 eVe The main peak occurs at 4.37 eV and probably corresponds 

to L, A and b. direct transitions near the reX) point of the BZ. Our 

calculated value for this interband energy is 3.7 eV; the lack of 

agreement between theory and experiment for these transitions can be 

traced back to Cohen and Bergstresser's results that give values for 

the X
5

-Xl transitions that are consistently about 0.5 eV smaller than 

experiment for the Ge, GaAs ZnSe series. Guided from our experience on 

ZnGeP2 we expect that X(a,L) ~ X(a) transitions (bands (15,16+19,20» 

also contribute strongly to the main E2 peak in the perpendicular 

polarized spectra; our interband energies for these transitions are 

3.85 eV.Based on our identifications in ZnGeP2 , we conclude that the 

small shoulder in, Kwan's data at 3.8 eV is caused by A and b. transitions 

around the points (0,0,0.34) and (0.34,0,0), our interband energies at 

these points are 3.55 eV and 3.5 eV respectively. 

Let us now discuss the structure of the valence bands. The first 

four valence bands corresponding tos-1ike states around the As are 

almost unaffected by the chalcopyrite potential, the main splittings 

occur along the W direction (X to A), at the point A of the Bl the 

splitting is 0.88 eVe On the other hand bands 5, 6 and 7 that in the 

analog give most of the contribution to the s-like (around the cation) 

peak of the density of states curve, are completely distorted by the 

chalcopyrite potential. Bands 5 and 6 correspond to s-like states 
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around the Ge atom with Some transfer of charge to the Zn atom in band 

6. A gap develops between bands 6 and 7 in a large region of the BZ 

and band 7 corresponds to s-like states around the Zn atom. The 

most striking feature of the band structure shown in Fig. 40 is that 

the second f 2 (X3 ,Wl ) s-like level is almost degenerate with f
S

(W
2

) 

level so that what we conjecture to be s-like states around the Zn 

will be very hybridized with the p-like bands. The same is not true 

for our calculated band structure of ZnGeP2' A result in this direction 

is somewhat expected if one notices that ZnGeAs
2 

is a more covalent 

crystal than ZnGeP2 " Of course, whether the effect of the chalcopyrite 

potential is as large as we predict or not will come when X-ray 

photoemission spectra or ultraviolet photoemission spectra for ZnGeAs
2 

become available. 

ZnGeP 2 
---

41 
ZnGeP

2 
is a pseudodirect gap semiconductor; Shay etal. report 

two small electroreflectance peaks at 2.0S and 2.11 eV corresponding 

to the spin-orbit pseudodirect transitions fS-f3 in close agreement 

with Shileika's wavelength modulation absorption spectrum for this 

semiconductor at room temperature. Removing the 0.08 eV spin-orbit 

contributions, ,the experimental values correspond to a fS~r3 transition 

at 2.08 eV and a f l -r
3 

transition at 2 eV; our calculated values for 

these transitions are r
S
-f

3 
= 2.09 eV, r

4
-r

3 
= 2.04 eVe The first 

, 
direct transitions f

4
-f

l 
are at 2.47 eV and the f

5
-f

1 
transitions are 

of 2.S5 eV (AS_O removed from Shileika's data at l20 0 K), our calculated 

values for these transitions are f
5
-f

l 
= 2.28 and f

4
-f

1 
= 2.23 in fair 

agreement with experiment. 
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The downshift of the first direct gap when compared with that of 

the antisymmetric cation potential that produces a small mixing of f 

states with W states at the top of the valence band and bottom of the 

conduction band. On the other hand, pseudodirect f-X dipole matrix 

elements are about 100 times smaller than f-f dipole matrix elements 

indicating the smallness of the f-X mixing. N(i\) transitions near 

(0.2,0.3,0.2) (bands 15,16-+18) calculated at 2.93 and 2.98 eV corresponding 

to the El(l) and El (2) peaks of Petroff's 46 data at 3.02 and 3.08 eV. 

The calculated energy of r(r,Q) transitions near the point o~ crossing 

in the conduction band is 3.46 eV in good agreement with the experimenta1
46 

value of 3.41 eV for the E
l

(4) peak. At the X point interband energies 

corresponding to X(L,O) - X(L) transitions are: 2.58 eV (15,16-+17,18) 

3.03 eV (13,14-+17,18) and 3.54 eV (11,12-+17,18). These last transitions 

46 corresponding to the experimental E, peak at 3.74 eV. As we pointed 
c 

out before in this work, we extimate that the actual position of the E 
c 

peak in our calculated band structure is shifted at least 0.1 eV towards 

higher energies from the M, singularity at the X point, improving the 
o 

agreement with experiment. 

At higher energies the A(~), (k ,0,0) transi~ions are split; for 
x 

k > 0.5 bands 14-17 contribute .ostly to the 1 polarization while 
x 

bands 13-17 contribute mostly to the polarization we find a critical 

point near (0.5, 0,0) in bands 14-17 with a 4.19 interband energy 

and a critical point near (0.6,0,0) in bands 13-17 ~ith 4.32 eV 

interband energy. We associate these transitions with the first 

two peaks in the experimental E2 region of the spectrum at 4.17 eV 
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and 4.3 eV; the agreement here is excellent but of course only a full 

zone calculat ion \"ith the present form factors can prove that our 

identification is correct. A(~) 13-17 transitions near ID,O,O.3) which 

we associated with the first structure in the E2 region of the 

perpendicular polarized spectrum in our earlier calculation are now 

at about 4.15 eVe Our calculated energy for the f
S

(X
5

) - f
3

(Xl ) transitions 

1 
is 4.57 eV in close agreement with the 4.46 eV value for the E2 (2) experi-

mental peak. The main peak in the perpendicular polarization labeled 

1 
E2 (3) at 4.79 eV in the experimental spectrum is associated with 

X(O,L) + X(O) transitions, our calculated value is 4.69 eVe 

Using our earlier full zone calculation as a guide, (see Table 10) 

we predict that the main peak in the E2 region E2" (3) at 4.68 eV the 

experimental value for this peak is 4.73 eVe 

Our new value for the A(O.S,O,O) transitions in bands 15-18 is 

4.8 eV in fair agreement with our earlier identification that corresponds 

to the experimental shoulder at 4.92 eVe 
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APPENDIX 
CALCULATIONS OF CHARGE DENSITIES AND WANNIER FUNCTIONS FROM 

A REPRESENTATIVE k POINT IN THE BRILLOUIN ZONE 

In this section we will discuss briefly the method of obtaining 

-+ 
a representative k point in the BZ that gives an approximate total 

charge density for crystals with a fcc lattice. 33 We also construct a 

set of appro~imate Wannier functions using the same representative 

-+ 
k point. 

The Block functions of the system (which are determined up to a phase 

factor) are given in terms of the Wannier functions by 

(A.I) 

where e {k) is any real function of k, n is the band index and T are the 

lattice vectors of the crystal. The band index for a given k is usually 

-+ 
defined in terms of increasing energy i.e., Ek~ < ~k +1 and U (k) ,n,n n,~ 

-+ 
is a unitary matrix for each k. 

-+ -+ 
If U (k) * 6 for every k it is 

~,n ~n 

said that the Wannier functions a~(I) are Composite Wanier functions 

of the V valence bands in the band structure of the crystal. 

From Eq~ (A.l) it is easy to show that 

V _-+ ,....... 

(-7) _ 1 ~ L -ik'£ ie(k) a r-JV - -.- Lo e e 
~ c-+ 

yoN k ~=1 

-+ 
(k) •.. 

and that the total charge density in the V valence bands is 

per) 
v 

= L Pn (7) 

~=1 

v v 

= L f la~(r--r) 12 = L PlJ(-;) 

~=l W=l 

(A.2) 

(A.3) 

Let T be all the transformations of the point group of the crystal, the 

-sum over the valence bands charge density for a given k is given by: 
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I ~e ik·I\ 
a ~-1) * E E L a (F-

N ~ )J ]J 
T lJ 

I r. L P (1) +1.:. 'ik·1" -+ = - f,e L F)J (F,t f) 
N T]J ]J 

N 
]J 

-+ * -+-+ L L a cr+ - t) a (r+ - Tt' - t) 
TT ].I )J 

-+ 
Tt' 

-+ 
- t) 

.... 

-+ 
for U = is for every k , Eq. (A.4) can be decoupled into four 

n,ll n,ll 

equations, one for each band, (see Ref. 51). 

(A.4) 

(A.S) 

If one can minimize the last term on the left-hand side of Eq. (A.4) 

-+ 
for some k, the total change density in the valence band can be approxi-

mated by the term on the left-hand side of Eq. (A.4) (except for 

normalization factors). To do this, Chadi and CohenSI separate the 
-+ ..,.., -+ 

sum over t' into two parts: one containing all Tt' for a given t', 

-+ 
the other containing different sets of ~"s not related by a trans~ 

formation in the point group of the 

of the particular T' in the set TT'. 

crystal; FjJ.{r,9:') is independe~t 

Let n+ _- n+ h h N N SUC t at 
p,g 

T (9: ) = '"t then 
p,g p,g" 

-+~ 

ik·.R; F n:tJ:- = e ].I\L,J<,) ( 
ii1·T ) 

1: Ee p ,g F cr,p) 
p g jJ. 

If the Wannier functions are well localized, FJJ.~'p) is small for 

1- I~ I iit·T large t I; for small R, , Le pg may be minimized choosing 
p,g p,g g 

-+ -+ 
an appropriate k. The k point proposed by Baldareschi is such that 

(A.6) 

this sum is zero for the first two nearest neighbors in fcc structure. 
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. --.+ 27T 
Its coordinates are.k = ~ (0.622, 0.295, 0). 

o a . 

The error involved in this calculation of charge density depends 

~ 

on the localization of a (r) for the sum over the valence bands charge 
n 

density, while for individual bands it depends on the localization of 

-+ 
an(r). Since it is possible to construct composite Wannier functions 

~ 34 
a (r) which are more localized than individual band wannier functions, 
II 

it is to be expected that the approximation is better for the sum over 

the valence band charge density than for individual bands. We estimate 

an error of ±3% for the total charge density of Si, comparing our results 
. 2 

-using the Baldareschi scheme and those of Walter and Cohen at a few 

-+ points in r space. 

We can construct a set of approximate Wannier functions a " (in the sense 
n,o 

that give the same charge density as the Baldereschi point) assuming 

that --ik'r 
= _e__ Unt ("1) (A.7) 

IN o,n 

for it and Tit in the same irreducible part of the BZ. u..... is the 
o Tko 

periodic part of ~T1t. Let I be the irreducible part of the BZ such 
o 

--.+ 
that k El, then: 

o 

~~ 
a (r) 

]J,o 

u~ ~ Tk (r) ... 
o,n 

(A.B) 

It is easy to show that the set of functions a (-;* - 1:) are orthogonal, 
n,o 

have the proper normalization and that 

(A.9) 
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In Figs. 41, 42, 43 and 44 we show the approximateWannier functions 

for Si along the (1,1,1) direction. These wave functions were constructed 

with U = ($ for every k and for simplicity e ian (10 .. ±l the choice 
m,n. m,n 

of sign depends on the band index and on T and gives real synnnetric 

Wannier functions around the origin at the bonding site. 

In Fig. 45, we show the plot of a composite Wannier function 

along the (1,1,1) direction. We have assumed tha t 6 (k) and U (10 
n n,1-' 

-+ 
again, ei6n (k) = ±1 depending on n are only functions of nand T: 

and T. -Along the (1,1,1) direction, the only transformations on k involved 

n in the calculation are of the form Rand IR \\There R = (9
4

) (n=0,1,2,3) 

and I is the inversion operator. For real Wannier functions, 
-+. -+ 

e i8n (k) = ei8n (Ik) and U (n = U (lk) . The Wannier function 
n,1£ n,1£ 

C ~ . m+l • 
shown ·in Fig. 37, a l ~r), is constructed with U l(R )= ±w 

,0 n, n,m 

Comparing Fig. 45 with Figs. 41, 42, 43 and 44, we see that even for 

this simple choice of U ,the composite Wannier function is more n,m . 

localized than the individual band Wannier functions. 
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Table I. Comparison of the main energy gaps between model potentials 
I, II, III and those calculated by Cohen and Bergstresser. 4 

f 25 ,-I'2' f 25 ,-f15 f 25 ,-Ll f 25 '-Xl L3 ,-Ll X4- Xl 

Exp 1.0 1.4 0.8 0.1 2.1 4.3 

CB 1.2 3.5 0.9 1.0 2.0 3.8 

I 1.0 2.1 0.41 0.34 1. 74 3.5 

II 0 2.20 -0.07 0.25 1.24 3.35 

III -3.08 3.4 -1.46 -0.07 -0.19 2.85 



Table II. A comparison of the form factor (Ry) of Cohen and Bergstresser 
(Ref. 2) with the form factors used in the present calculation. 
The lattice constants are also given. 

InAs - InSb InP GaP 

Present Present Present 
C-B* Work C-B* Work C-B* Work C-B* 

Lattice Constant 6.04 A 6.053** 6.48 6.473** 5.86 5.852 5.44 

VS (3) -0.22 Ry -0.2699 -0.20 -0.2547 -0.23 -0.2704 -0.22 

V
s (8) . 0.0 0.0196 0.0 0.0188 0.01 0.0345 0.03 

V
s (11) 0.05 0.0411 0.04· 0.0452 0.06 0.0442 '0.07 

yA(3) 0.08 ··0.0775 0.06 0.0302 0.07 0.0888 0.12 

~(4) I 0.05 0.0384 0.05 0.0012 0.05 0.054 0.07 

Metallic Spin-
0.00137 0.00203 Orbit Parameter 

Non-Metallic 
Spin-Orbit 0~OO109 0.00260 
Parameter 

- -- ---------- -- -- -

* M. 1. Cohen and T. K. Bergstresser, Phys. Rev. 141, 789 (1966). 
** 

Present 
Work 

5.44 

-0.225 

. 0.024 

0.076 

0.128 

0.053 

v. G. Giesecke and H. Pfister, Acta. Cryst. 11,369 (1958). S. I. Novikova, Soviet Physics 
Solid State 2, 2087 (1961). Lattice constants-;ere scaled to a temperature of SDK, except 
in the case of GaP. . 
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Table III. Identification of transitions responsible for the prominent 
theoretical and experimental reflectivity structure in lnAs, 
including location in the Brillouin zone, energy, and 
symmetry of calculated critical points. 

Reflectivity Structure Associated Critical Points (InAs) 

Theory Exper.* Location in Zone 

0.46 eV 0.42 eV** r(4-5)(0,0,0) 

2.58 eV 2.61 eV A(4-5)(0.3,0.3,0.3) 

2.85 eV 2.88 eV 

4.37 eV 4.39 eV 

4.47 eV 

4.7 eV 

5.3 eV 

5.57 eV 

6.05 eV 

6.44 eV 

7.37 eV 

4.58 eV 

4.74 eV 

5.31 eV 

5.5 eV 

6.5 eV-r 

6.8 eVt 

7.1 eVt 

L(4-5)(0.5,0.5,0.5) 

A(3-5)(0.3,0.3,0.3) . 

L(3-5)(0.5,0.5,0.5) 

I:. (4-5) (0.7 ,0, 0) 

r(4-6)(0,0,0) 

X ( 4-5) (1. ° , ° , ° ) 
Vol. near (3-5)(0.7,0,0) 

~(4-5)(0.7,0.7,0) 

1:.(3-6) (0.3,0,0) 

Vol. near A(4-6)(O.7,0,0) 

Vol. near 1:.(3-6)(0.7,0,0) 

L(4-7)(0.5,0.5,0.5) 

A(4-7)(0.4,0.4,0.4) 

L(3-7)(0.5,0.5,0.5) 

A(3-7)(0.4,0.4,0.4) 

Vol. near (4-7)(0.4,0.3,0.1) 

Symmetry c Energy 
p 

0.46 eV 

2.47 eV 

2.48 eV 

2.74 eV 

2.75 eV 

4.3 eV 

4.37 eV 

4.43 eV 

4.43 eV 

4.65 eV 

4.69 eV 

5.25 eV 

5.39 eV 

5.91 eV 

5.96 eV 

6.18 eV 

6.23 eV 

7.05 eV 

* R. R. L. Zucca and Y. R. Shen, Phys. Rev. B1, 2668 (1970), except as 
listed below. 

** 
I. R. Dixon and J. M. Ellis, Phys. Rev. 123, 1560 (1961). 

t --
H. Ehrenreich, H. R. Phillip and J. C. Phillips, Phys. Rev. Lett. !, 

59.(1962). These values have been adjusted to a temperature of SK. 

--------------_.-------------------
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Table IV. Identification of transitions responsible for the 
prominent theoretical and experimental reflectivity 
structure in InSb including location in the 
Brillouin zone, energy and symmetry of the 
calculated critical points. 

Reflectivity Structure Associated Critical Points (InSb) 

Theory Exper.* Location in Zone Symmetry c Energy p 

0.26 eV 0.24 eV** f(4-5) (0,0,0) MO 0.26 eV 

2.03 eV 1. 98 eV A(4~5)(O.3,0~3,0~3) Ml . 1.94 eV 

L(4-5)(O.5,0.5,0.5) M1 2.0 eV 

2.60 eV 2.48 eV A(3-5)(O.3,0.3,0.3) Ml 2.5 eV 

L(3-5)(0.S,0.S,0.5) Ml 2.55 eV 

3.65 eV 3.39 eV ll(4';;'5) (0. 7,0,0) M1 3.65 eV 

3.83 eV 3.78 eV ~(3-5) (0.7,0,0) Ml 3.83 eV 

4.15 eV 4.23 eV ~(3-6)(0.2,0,0) M1 3.95 eV 

L(4-5)(0.7,0.7,0) M --2 4.1 eV 

4.48 eV 4.56 eV vol. near ll(4-6)(O.5,0,0) -- 4.75 eV 
I 

4.1'3 eV 4.75 eV ll(4-6)(O.7,0,0) M3 4.75 eV 

4.95 eV 4.92 eV L(4-6)(O.5,0.5,0.5) MO 4.86 eV 

A(4-6)(0.4,0.4,0.4) M1 4.87 eV 

II (3-6) (0.7,0,0) M3 4.94 eV 

5.3 eV 5.33 eV L(3-6)(O.5,O.5,0.5) M 
0 5.41 eV 

A(3-6)(O.4,O.4,O.4) M ' 1 5.43 eV 

6.01 eV 5.96 eV L(3-7)(0.5,0.5,0.5) MO 5.64 eV 

A(3-7)(0.4,0.4,O.4) Ml 5.69 eV 

* R. R. L. Zucca and Y. R. Shen, Phys. Rev. Bl, 2668 (1970), except for b. 

** H. Ehrenreich, J. App1. Phys. Supp1. 32, 2155 (1961). 
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Table V. Identification of transitions responsible for the prominent 
theoretical and experimental reflectivity structure in InP, 
including location in the Brillouin zone, energy and 
symmetry of calculated critical points (cp).* 

Theory Experiment Locatfon in Zone Symmetry cp Energy 

1.43 eV** 1.42 eV-r r(4-5)(O,O,0) MO 1.5 eV 

3.23 eV** 3.24 eV jL(4-S)(O.s,o.s,o.S) MO 3.2 eV 

3.37 eV** 3.38 eV A(4-5)(0.3,O.3,O.3) M1 3.22 eV 

4.75 eV 4.78 eV fl(4-S)(0.8,O,O) MO 4.7 eV 

X(4-S) (1.0,0,0) Ml 4.71 eV 

Volume near (4-5)(0.3,0,0) -- 4.88 eV 

5.06 eV 5.10 eV k(4-5)(0.7,O,7,0) M2 5.02 eV 
(5.05 eV) 

S.48 eV (5.25 eV) Vol. (3-6)(0.3,0.1,0) -- 5.S eV 

5.86 eV 5.77(5.6) t:.(4-6) (0.7,0,0) Ml 5.77 eV 

6.47 eV (6.57 eV) L(4-6)(O.5,O.S,O.5) MO 6.2 eV 

A(4-6)(0.4,O.4,O.4) Ml 6.28 eV 

* Data in parentheses from Woo1ley-Vishnubhatla, Canad. J. Phys. ~, 1769 
(1968). Other data from this paper's SOK experiment. 

** Corrected to include spin-orbit corrections. 
t W. J. Turner, W. E. Reese and G. D. Pettit, Phys. Rev. 136, A1467 (1964). 
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Table VI. Identification of transitions responsible for the prominent 
theoretical and experimental reflectivity structure in 

Theory 

2.79 eV 

3.70 eV 

4.7 

5.3 

GaP, including location in the Brillouin zone, energy and 
symmetry of calculated critical points (cp). 

Experiment Location in Zone Symmetry c Energy p 

2.78 eV r(4-5) (0,0,0) MO 2.79 eV 

2.86 eV 

3.69 eV L(4-5)(0.5,0.5,0.5) M
O 

3.40· eV 

A(4-5)(0.15,0.15,0.15) Ml 3.76 eV 

4.74 11(4-5)(0.71,0,0) MO 
4.50 eV 

X(4 .. S) (1,0,0) Ml 4.57 eV 

5.31 11(4-5)(0.30,0,0) M3 4.72 eV 

[(4-5)(0.50,0.50,0) M2 5.20 eV 

~ ..... -.. 
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Table VII: 245 Crystal parameters of A B C2 chalcopyrite semiconductors. 

E cr 
Compound a c 2-c/a u 4u-1 IE-4cr/ 

MgSiP2 5.718 10.109 0.232 

ZriSiP 2 5.398 10.434 0.067 0.2691 0.076 0.009 

Z nGeP 2 5.465 10.71 0.040 0.2582 0.033 0.007 

ZnSnP 2 5.6S 11.30 0.000 0.239 -0.044 0.004 

CdSiP
2 

5.678 10.43 0.163 

CdGeP2 5.741 10.776 0.123 0.283 0.132 0.009 

CdSnP2 5.900 10.93 0.148 

ZnSiAs
2 5.606 10.89 0.057 

ZnGeAs2 5.672 11.15 0.034 0.264 0.056 0.022 

ZnSnAs 2 5.852 11.704 0.000 0.239 -0.044 0.044 

CdSiAs2 5.884 10.879 0.151 

CdGeAs2 5.943 11.22 0.112 0.285 0.144 0.032 

CdSnAs2 6.092 11.922 0.043 0.261 0.044 0.001 
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Table VIII. Experimental values of c, and cOlnparison with those 
predicted using Pauling's* additive radii of atoms (when 
in tetrahedral covalent bonds and Phillips and 
VanVechten's** covalent radii for the elements. 

-------"-_.-
a b a 

Compound Experimental Pauling Phillips and VanVechten 

ZnSiP2 
0.076 0.089 0.066 

ZnSiAs 2 0.086 0.061 

ZnCeP
2 0.033 0.057 0.0 

ZnGeAs
2 

0.056 0.055 0.0 

ZnSnP
2 

-0.044 -0.055 -0.110 

ZnSnAs
2 

-0.044 -0.053 -0.107 

* 1- Pauling, The Nature of the Chemical Bond (Cornell University Press, 
N. Y. , 1960). 
** J. A. VanVechten and J. C. Phillips, Phys. Rev. B2, 2160 (1970). 
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Table IX. Energies and Pronounced po1erizations of the 
reflectivity spectra of ZnGeP2' 

Experiment 1 Experiment 2 Experiment 
5°K 120 0 K 320 0 K 300 0 K 

A 2.46 2.39 1/ 2.39 1/ 

B 2.53 2.46 1 2.40 1 

C 2.59 2.52 1 (II ) 2.48 1/ (l") 

E1 (1) 3.02 1/ ,1 3.02 2.97/1(1) 2.87 /I 

2.92 1 

E1 (2) 3.08 1,11 3.15 3.09 1 3.05 II 

E1 (3) 3.2 1 (II ) 3.22 3.13 II 3.32 111 

E1 (4) 3.41 1 3.48 3.41 1 (1/ ) 3.64 1/1 

E 3 . 74 (3 . 72) 1/,1 3.75 3.71 II ,1 3.83 1 c 

E2 (1) 4.17 1 4.14 4.05 1 

Experiment 1. Modulated Reflectivity, Y. Petroff, 
S. Kohn and Y. R. Shen, Paper given at the Inter­
national Conference on Modulation Spectroscopy, 
Tucson, 1972, November 23-26, 1972. 

Experiment 2. Thermoreflectance, A. Raudonis, 
V. S. Grigoreva, V. D. Prochukhan and A. Shi~eika 

Phys. Stat. Solidi (b) 57, 1973. 
Experiment 3. J. L. Shay, B. Tell, E. Baeh1er and 

J. H. Wernick, Phys. Rev. Lett. 30, 983 (1973). 

3 
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Table X. Reflectivity structure of ZnGeP2• 

Theory Experimentt Polarization Peak I Location in Zene Energy (eV) 

2.34** III A ,f- - f-
2 1 2.31* 

2.40** 1 B f- - f-
1 1 2.27* 

2.40** III C f- - r-
2 1 2.40* 

3.04 II El(l) X
I

-X
I

(15,l6-17,18) 
~3.05* 

3.04 3.03* 

3.41 3.02 II ,1 N
I

-N
I

(16-17) (0.2,0.2,0.2) 3.42* 

3.37 1 E1 (2) Xl -Xl (13,14-17,18) 
J3.35* 

3.36 3.37* 

3.41 3.08 1,11 N2-Nl (15-17) (0.2,0.2.0.2) 3.50 

3.6 3.2 1 (II ) El (3) N2-Nl (16-17) (0.3,0.3.0.19) 3.6 

3.9 I 3.41 1 El (4) !2-!1(16-1~)(O.25,O.25,O) 3.95 

4.0 3.74(3.72) II (1) E I Xl-Xl (11,12-17 ,18) 3.9 c 

A(13-l7)(O.O~0.6) 

4.77 4.17 1 ~(1) %(14-17)(0.25,0.25,0) 4.6 

4.76 4.3 II E" (1) 
2 ~(15-l7)(O.34,0,0) 4.76 

4.6 4.46 1 E~(2) r 5- r 2 (13-18) 4.77 

5.05 4.73 II E" (3) 2 (0.16,0.5,0)(14-17) 5.05 

4.96 4.79 1 ~(3) X(16-20) and along 4.96 

5.21 4.92(4.93) II (1 ) E" (4) ~(15-l8)(O.5,O,0) , 2 
i __ 

-Ie 
Spin-orbit included. 

** J. L. Shay, B. Tell, E. Baehler and J. H. tlernick, Phys. Rev. Lett. 30, 983 (1913), 

ty. Petroff, S. Kohn and Y. R. Shen, paper given at the International Conference 
on Modulation Spectroscopy, Tucson, 1972, November 23-26, 1972. Except for ** 
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FIGURE CAPTIONS 

Fig. 1. Pseudopotential parameters used in this work together with the 

Ge pseudopotential parameters of Heine and Animalu5 and Cohen 

4 and Bergstresser. 

Fig. 2. Band structure for model pseudopotential I. 

Fig. 3. Electronic charge density in the (1,-1,0) plane for model I 

(summed over the valence bands). 

Fig. 4. Band structure for model II. 

Fig. 5. Electronic charge density in the (1,-1,0) plane for model II 

(summed over the valence bands). 

Fig. 6. Electronic charge density in the (1,-1,0) plane for the first 

valence band for model I. 

Fig. 7. Electronic charge density in the (1,-1,0) plane for the first 

valence band for model II. 

Fig. 8. Band structure for model III. 

Fig. 9. Electronic charge density in the (1,-1,0) plane (summed over 

the valence bands) for model III. 

Fig. 10. Band structure for the Fermi-Thomas model. 

Fig. 11. Electronic charge density in the (1,-1,0) plane (summed over 

the valence bands) for the Fermi-Thomas model. 

Fig. 12. Electronic band structure of lnAs along the principal symmetry 

directions in the Brillouin zone. Some bands slightly split 

by spin-orbit interaction are drawn as degenerate because of 

the smallness of the splitting. 
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Fig. 13. Electronic band structure of InSb along the principal symmetry 

directions in the Brillouin zone. Some bands slightly split 

by spin-orbIt interaction are drawn as degenerate because 

of the smallDess of the splitting. 

Fig. 14. Electronic band structure of lnP along the principal symmetry 

directions in the Brillouin zone. The dotted line represents 

2 
the corrected band structure E(k) = EEPM(k) - ak . 

Fig. 15. Calculation of the imaginary part of the frequency dependent 

dielectric function for lnAs. 

Fig. 16. Calculation of the imaginary part of the frequency dependent 

dielectric function for lnSb. 

Fig. 17. Calculation of the imaginary part of the frequency dependent 

dielectric function for InP.· 

Fig. 18. Calculation and measured reflectivity for lnAs. Experiment 1 

is H. Ehrenreich, H.- R; Philipp, and J. C. Phillips, Phys. Rev. 

Letters~, 59 (1962). Experiment 2 is S. S. Vishnubhatla 

and J. C. Woolley, Canad. J. Phys. 46, 1769 (1968). 

Fig. 19. Calculated and measured reflectivity for InSb. Experiment 1 

is H. Ehrenreich, H. R. Philipp, J. C. Phillips, Phys. Rev. 

Letters .§.., 59 (1962). Experiment 2 is S. S. Vishnubhatla and 

J. C. Woolley, Canad. J. Phys. 46, 1769 (1968). 

Fig. 20. Calculated and measured reflectivity for InP. Experiment 1 

is M. Cardona in Semiconductors and Semimeta1s, R. W. Wil1ardson 

and A. C. Beer, eds. (Academic Press, N. Y., 1967), 

p. 138. Experiment 2 is S. S. Vishnubhat1a and J. C. Wooley, 

Canad. J. Phys. 46, 1769 (1968); experiment 3, Ref. 18. 
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Fig. 21. Comparison of the theoretical and experimental modulated 

reflectivity spectrum for lnAs. The experimental spectrum 

is from R. R. L. Zucca and Y. R. Shen. Phys. Rev. Bl, 2668 

(1970). Prominent structure is identified. 

Fig. 22. Comparison of the theoretical and experimental modulated 

reflectivity spectrum for InSb. The experimental spectrum 

is from R. R. L. Zucca and Y. R. Shen. Phys. Rev. Bl, 2668 

(1970). Prominent structure is identified. 

Fig. 23. Comparison of the theoretical and experimental modulated 

reflectivity spectrum for lriP. Experimental curve is at 5°K. 

Fig. 24. Comparison of the theoretical (J. P. Walter and M. L. Cohen, 

Phys. Rev. 183, 763 (1970)) and experimental modulated 

reflectivity spectrum for GaP. Experimental curve is at 300oK. 

Fig. 25. Location of atoms in the primitive cells. A section of the 

(1,-1,0) plane is shown bounded by dashed lines. 

Fig. 26. lnAs charge density--sum of valence bands 1-4. 

Fig. 27. lnSb charge density--sum of valence bands 1-4. 

Fig. 28. Pressure dependences of a few important gaps in Si. 

Fig. 29. 
v c 

Electronic charge densities corresponding to the f 25 " f2" 

L~, and x~ as function of position along the (1,1,1) direction. 

Fig. 30. Valence band charge densities as function of position in the 

(1,-1,0) plane for Si at Ok-bar (a) and 120 k-bar (b) of 

pressure. 

Fig. 31. Valence band charge density in the (1,-1,0) plane for InP 

at Ok-bar of pressure. 
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Fig. 32. Valence band charge density in the (1,-1.,0) plane for InP 

at 100 k-bar of pressure. 

Fig. 33. Irreducible part of the chalcopyrite Brillouin zone. Dashed 

Fig. 34. 

Fig. 35. 

lines Eepresent the '~ractical irreducible part of the 

Brillouin zone". 

Planes k = ° (a), k = 1 (b), k = 1/2 (c) of the zincblende z z z 

Brillouin zone and how they map into the plane k = ° of the 
z 

chalcopyrite Brillouin zone (d). Points marked by (x) of 

(a), (b) and (c) map into the point r of (e). 

Planes k = k (a) (1 - k ) = k (b) of the zincblende 
x y' x y 

Brillouin Zone. Figure (c) shows the N plane of the chalcopyrite 

BZ and (d) the folding in process. Points marked by (x) of 

(a) and (b) map into the point r of (c). 

Fig. 36. (a) Band structure of ZnGeP2 , fUl'm factors of Zn extracted 

from ZnS, of P from GaP,for Ge the form factors are 

extrapolated from the Ge C·B forin factors. (b) Band structure 

of GaP stressed along the (0,0,1) axis; the cIa ratio is that 

of ZnGeP
2

. 

Fig. 37. Calculation of the imaginary part of the frequency dependent 

. dielectric function for ZnGeP
2

. The form factors used are 

such that the zincblende component is the same as GaP. The 

chalcopyrite component was extracted from this assumption and 

the known form factors of Ge. 

Fig. 38. Density of states curve for ZnGeP
2 

and corresponding band 

structure. The parameters used in this calculation are the 

same ones as those in Fig. 42. 
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Fig. 39. Theoretical and experimental reflectivity spectra for ZnGeP2. 

The parameters used in this calculation are the same ones 

as those in Fig. 42. 

Fig. 40. (a) Band Structure of ZnGeAs2 , form factors of Zn extracted 

fr9m ZnSe, of As from GaAs, for Ge, the form factors are 

extrapolated from the Ge C-B form factors. (b) Band structure 

of GaAs stressed along the (0,0,1) axis; the cia ratio is 

that of ZnGeAs 2 • 

Fig. 41. Wannier function along the (1,1,1) direction corresponding 

to the first valence band of Si. 

Fig. 42. Wannier function along the (1,1,1) direction corresponding 

to the second valence band of Si. 

Fig. 43. Wannier function along the (1,1,1) direction corresponding 

to the third valence band of Si. 

Fig. 44. Wannier function along the (1,1,1) direction corresponding 

to the fourth valence band of Si. 

Fig. 45. Composite Wannier function along the (1,1,1) direction 

corresponding to the four valence bands of Si. 
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