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ELECTRONIC STRUCTURE OF DIAMOND, ZINCBLENDE '
AND CHALCOPYRITE SEMICONDUCTORS

Carmen Varea De Alvarez
Inorganic Materials Research Division, Lawrence Berkeley Laboratory
and Department of Physics; University of California
"Berkeley, California 94720
ABSTRACT

The dependence of energy band structure and electronic charge
density on pseudopotential parameters is investigated for diamond typé
semiconductors. |

The Empirical Pseudopotential Method (EPM; is applied to InSb,
InAs, InP and GaP. Spin-orbit interactions are included in the first
twd cr&stals. The imaginary part of the frequency dependent dielectric
function, Ez(w) is calculated and the reflectivity'épectrum R(w) and
modulated reflectivity R'(w)/R(w) is calculated and compared directly
with experiment. The agreement for R(W) and R'(Q)/R(w) between
experiment and theory is better than 0.2 eV, for all four crystals, on
the average. In addition electron charge densities fbr InAs and InSb are
calculated.

The pressure coefficients of the most important gaps for Si and
InP are calculated and correlated to the properties of the electronic
Bloch states.

The chalcopyrite crystal structure and the relation between the

~ zincblende Brillouin Zone and the chélcopyrite Brillouin Zone are

discussed in detail. The energy band structure of ZnGeP2 and ZnGeAs2

is calculatedvalong symmetry directions assuming "transferability of

the pseudopotentials" and compared with those of their."analogs"
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(GaP and GaAs respectively). A full zone calculation of the energy

bands of ZnGeP2 is presented along with the density of states curve .

D(w), the 62(w) and R(w). A complete critical point analysis enables

us to identify the prominent structure in the D(w); EZ(M) and R(w). .
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I, INTRODUCTION
Since the concept of the pseudoéotential was first introduced,
the application of the pseudopotential method to calculate physical
quantities that depend only on the valence electrons of_a crystal, has
been highly successful. In‘a pseudopotential ca1Culation, the crystalline
potential is assumed to be the combination of spherically symmetric

pseudopotentials located at the ion sites. Since these pseudopotentials

‘are constructed to describe only the valence electrons including

orthogonalization to the core states in the crystal, the pseudopotential
is much weaker than the actual potential.

Pseudopotentials for the elgments can be constructed theoretically,
as those of Heine and Animalu% and they can also be obtained by fitting
to all the relevant experimental information of a given crystal;' This
latter procedure has been called the Empirical Pseudopotential Method
(EPM). Another, but related way of proceeding is to use of the concept
of transférability of the pseudopotentials; that is, by aésuming that
the atomic pseudopotentials are independent of crys;al structure and
composition,vone can predict the energy band structure or any property
qf the valence electrons of a giveﬁ crystal provided one knows the
atomic pseudopotentials of its constituents eithér by using theoretically
determined pseudopotentials or by extracting them from an EPM calculation
on other crystal.

In Chapter II of this work, we briefly review the pseudopotential
metﬁodaahd'the properties of the pseudopotentials for the elements

in the IV-column of the periodic table, we also study the relationship



between the‘pseudopotential form factors, the energy band structure and
the electronic charge density in the vélence bands.of diamond type
semiconductors via a two parameter model pseudopotential.

In Chapter 1II, we apply the EPM to obtain the form facfors, energy
band structure; Ez(w), R(w) and R'(w)/R(w) of the zincblende semiconductors
InSb, InAs, InP and GaP; our results are comparedlwith experiment., This
comparilson, and an analysis of the Van Hove14 singulariﬁies of our
caléulated Ez(w) allows us to perform a positive idéntification of
the electronic transitions responsible for the main structure of the
experiméntal reflectivity spectra.

In Chapter IV, the pressure coefficients of the main gaps in Si
and InP are calculated, the object of this calculation is three fold:

1) we want to understand why these crystals transform as they do under

‘high hydrostatic stress, 2) we investigate the "Empirical Rule",28 and

the corfelation between a wave function wﬁ and the pressure coefficient

of the energy level Eﬁ fér é given wave ;;;tor k and a given band n,

and 3) by fitting our form factors to the experimental pressure coeffi¢ient,
wevgain information on the "scaling'" of the form faétors.

In Chapter V, we discuss the optical and electronic properties.

2,45

of the chélcopyrite compounds of the form A"B C The energy band e

2° .

structure, D(w), ez(w) and R(W) are calculated for ZnGeP, using the

2
form factors of its analog GaP and those of Ge; critical point analysis
on Ez(w) is performed and comparison of our calculated R(w) with

experiment yields information on the'energy gap region of the energy

band structure.



Energy band structures for ZnGeP2 and ZnGeAs2 are calculated along

symmetry lines, using transferability of the pseudopotentials. The
results compared with those of their analogs GaP and GaAs. Using the
identifications of the main structure of our calculated R(wW), the results

for ZnGeP, and ZnGeAs., compare well with experiment; of course, only a

2 2

full zone calculation can ascertain this,



II. DIAMOND STRUCTURE SEMICONDUCTORS

A. ‘Pseudopotential Method

For the.Empirical Pseudopotential Method (EPM), the crystal is con-
sidered as a collection of N spherically symmetric "ions" located at thé
lattice sites. The ZN valence electrons do not interact with each other
except'in a Hartree sense, and they iﬁteract with the ions through a
weak local pseudopotential v(r). Tﬁis.ﬁseudopOtential includes the

Coulomb attraction with the ions, -Ze?/r and a repulsive term near the

core arising from the requirement that the valence-electron wavefunctions

be orthogoﬁal to the core wavefunctions (the highly localized core states
are not solutiéns of the pseudopotential Schrodinger's equation, so the
pséudopotential is much weaker near the core regién than the éctual
potential). The final contributién to the pseudoﬁotentialbcomes from
the interaction arising from the valence electrons which can bevinclu&ed
: by using a screening function. |

Once the pseudopotential is fixed, the eﬁergy bands and electronic

charge density can be obtained by solving for the éigenvalues and eigen-

vectors of the one electron SchrBdinger equation
o | ‘
p° -> I > > > .
|5+ VD] o, 3 = 5.0 ¢ 3D €

R o
where k is the wavevector, n the band index and the pseudopotential is

given by

v(-1. ). (@

V(r) = ézcells o

v‘ ',.



In Eq. (2), o denotes the different kinds of atoms in the unit cell.
Crystél symme try is easily taken into account when this pseudopotential
is expanded in the reciprocal lattice. In the diamond structure, with

o > > _a . ,
two atoms per cell at positions % T where T = §(l,l,l), a is the lattice

constant, Eq. (2) becomes

VD) = 2 v(@ cos(CeD) 16T (3)
G .
with
v(©) =(-2§)/v(r)eic.r adr (4)

where ! is the volume of the primitive cell and G is in units of 2m/a.
Usually, in EPM calculations only the form factors v(V/3), v(V4), v(/8)
and v(/11) are allowed to be nonzero but the structure factor cos G.T = 0
for 'Ew = 2 in diamond structure materialsj therefére, fhis method uses
three adjustable parameters to fit the known energy band features.
The.pseudopétential curves v(q) can usually bé divided into two
regions separated by a point where V(qo) = 0. 9, is related to the
radius of the atomic core o For q < 9 v(q) < 0 and this region
represents the screened attractive coulomb potenﬁial outside the ion cores;
fér the region q > 4y v(q).is positive and approximately representé
the repulsive part of the potential arising from the orthogonalization
conditions inside an effective core radius. With this in mind, one would

expect to obtain all the main properties of the band structure and

electronic charge density from only two form factors each representing



one of ghe two regions. We have calcuiated the band structure and -
electronié charge densities as function of positioﬁ in the unit cell for
several values of these two form factors. This was done in an attempt
to understand the relationship between charge density and band structure _ ¥
in crystalline diamond structure semiconductors. We have found that-by
changing only one parameter in the pseudopotential, we can simulate the
pfopefties of the column IV semiconductors.

For other crystal structures (e.g. zincblende), the‘pseudopotentiél
method can be used by taking into éccount the correct structure factors.
The details will be giQen in the appropriate sectioms.

B. Diamond Structure Semiconductors and
Model Pseudopotential Calculations

The group IV elements, carbon, silicon, gefmanium, gray tin‘and
lead form a very interesting series. The féur atomic¢ valence electrons
‘for these elements are in the s?p? electronic configuration. For the
crystalline state, in the cases of 8i, Ge and Sn (but-hot Pb), the
formation of sp? hybrid orbitals gives the strongest bonding overlap and -
this is the most stable configuration. The sp3 orbitals give rise to
four equivalent tetrahedrally coordinated bonds, and this bonding fesults
in the diamond structure for these crystals. In this group, the bond
energy is a decreasing function of the atomic number; carbon has very
strong bond while gray tin isionly stable at low températureé and under-
goés a phase transformation at 292°K to metallic white tin. Lgad
crystallizes in the fcc structure.and is metallic.

Phi_llipsl has been able to corrélate‘the bonding properties

with the average gap between valence and conduction bands in-
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semiconductors and insulators; the bonding strength being proportional
to the size of the gaﬁ. Another approach which showed similar trends
was taken by Walter and Cohen2 who used the Empirical Pseudopotential
Method (EPM).3

Two important features come in when doing an EPM calculation: (1)
;he nearest neighbor distance,which increases in going from C to Pb, and
(2) the pseudopotential, which depends on the element of interest. These
feétures raise an interesting question: 1is it the change in nearest
neighbor disfance, d, that is responsible for the marked differences
between these materials, or is it the different effective potential that
the electrons feel outside the core which produces such differences? A
partial answer comes from pressure experiments. The applicatipn of
hydrostatic pressure is expected primarily to change d. What one
observes in this case is ah increase in the average direct gap and a
trend toward metallization. Because these are contradictory, then
based on pressure data only, changes in d from element to element cannot
explain the observed trends in the group IV materials.

To investigate the dependence of the properties on the potentials
used, we have calculated the band structures and electronic charge
densities in the diamond structure for three model pseudopotentials using
only two parameters to specify the pseuaopotentials. One of these para-
meters was kept constant while the other was éhosehvto give the band
structure of a éne eV gap semiconductor like Ge; a zero gap semiconduc-
tor such as.Sn; and a band structure with overlapping bands having
mefallic properties. We have also calculatéd the band structure and

charge density in the Fermi-Thomas approximation for a pseudopotential



approbriate to.Ge. All thwough this work the latfiée constant used was
that of Ge. | |

The EPM uses three adjustable pseudopotent131 form factors té fit
the known eﬁergy band features of diamond type materials. Since in
general, the wave vector q, which separates ‘the attractive and repulsive
parfs of the pseudopotential curves is such that q, < /§.§£’ the para-
meters we choose are v(¥3) < 0 and v(V/8) > 0. 1In Fig. 1 we show the
three form factors obtained by Cohen and Befgstres.éer4 for Ge together
with the theore;ical pseudopotential of Heine and Animalu5 and the para-
meters used in this work; their actual values are in Ry given below:

For model potential I:

v(/3) = -0.25, v(/B) = 0.071;
for model potential II:
v(/3) = -0.25, v(¥B) = 0.053;
.for médel_potential II1: o |
: v(7§) = -0.25, v(v8) = 0.0.

We have also investigated a Fermi-Thomas model with a cutoff of the

potential at q = 422“ The resulting form factors are (Ry)
v(¥3) = -0.3004, v(v¥8) = -0.1688, v(v/II) = -0.1338.

For a given set of form factors, the Hamiltonian can be solved for the
energy eigenvalues and wavefunctions wn'k(r) at many k points in the

- 'n,
Brillouin zone. The charge density for each valence band is then given

by



() [ g { ; {/ v‘.‘,} ag .

Pa() = 2 ey, L 1% - (5)

In the diamond structure there are a total of eight valence elec-
trons per primitive cell and two valence electroné per energy band. The
charge density results given in the next section are:plotted in the form
of contour blots in the (1,-1,0) plane, which contains an atom and two
of its nearest neighbors. The density is plotted in units of (e/{)
where {! is the volume of the primitive cell.

Model potential I. In Figs. 2 and 3 we show the calculated energy

band structure and electronic charge density, in the valence band, for
model potential I.

Table I shows a comparison between the main energy splittings
obtained by Cohen and Bergsfresser4 (CB) using three form factors, fhe
present model using two form factors, and the experimental values for
Ge. The main difference between our results and‘those of CB occurs in
the first indirect gap. There are smallér differences in the higher
conduction bands and even smaller differences'iﬁ.the valence bands.
This model would predict optical properties close té those obtained by
a CB potential.

From the total charge density for the four valence bands (Fig. 3)
the covalent bonding is apparent. The concentration of charge in the
bond is a little weaker than that>calculated by Walter and Cohen2 using
a CB potential. This is not inconsistent.with our model since the

valence to conduction band average energy gap for this model is smaller .
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than the one .calculated by CB. Thus a simple model pseudopofential that

uses only two parameters, one representing the screened Coulomb attrac-

tion to the atoms (V3),_and another that represents the repulsive ortho-

gonalization requirements (V8), describes quite well the energy band
‘structure and bonding properties of Ge.

Model potential II. As the pseudopotential form factor V8 is

reduced, the repulsive part of the atomic potential decreases and the
s-iike levels which are more sensitive to the potential near the atoms
become more tightly bound. For a value of 0.053 Ry for V8 the energyv
of the F25' and Fz, levels becomes equal giving a band structure similar
to that of gray tin. |

In Fig. 4 the calculated energy band structure is given and in
Fig. 5 the total charge‘density for the four valence bands‘for our
second model potential is shown. The energy band structﬁre‘is actuaily
that of a sémimetal withva smail oyerlap of 0.07 eV.from FZS' to Ll;
the first diréct gap-is zero as iﬁ the.caée of O-tin. Table 1 shows the
main energy splittings obtained in model II--all thé'4—5 splittings afe
smaller than those of model I. 1In the nexf paragraph we show how the
chaﬁges of the energy splittings with V8 are easily understood from thev
form of the wave functions at the bottom of the cénduction band.

In part IV of this work, we calculate the qhafge density for the
Tous L, and X, states in the conduction band of Si. Our results are:
as -follows:

(1) The charge density for states near Fz' is_highly peaked near

the atoms and it is very sensitive to changes of the pseudopotential in

that region in real space. It is therefore very sensitive to changes
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in V8.
(2) The charge density for states near L. is more "free like" but

1

peaked between the atoms and the antibonding site ;o they are less
sensitive to changes in Vg than Fz'.

"(3) The charge density for states near Xl is almost constant so
that the energy splitting F25, - Xl is very little affected by changes
in V8'

Figures 6 and 7 show the charge density contour plots in the first
valence band for model potential I and II respectively; the reduction of
V8 from the first to the second model has caused a.decrease in the
repulsive part of the potential near the atoms, and the electromic
charge ténds to pile up closer tp the atomic sites; the same effect is
observed in baﬁd 2. Bands 3 and 4 are almost identical for models I
and II; p-like bands are quite insensitive to the potential near the
atoms. The only trend we observe in comparinngigs. 5 and 3 is a small
trend to pile up charge closer to the atoms in model I1; this tendency
is also present in the charge densities of Waltervaﬁd Cohen2 going from
Si to Ge to'q~tin. This is mainly caused by the charge density of tﬂe

first two s-like valence bands as already discussed.

Model potential 1II. Figures 8 and 9 show the ehergy band structure

and total charge density in the valence band for model potential III.

-V, is zero in this model; the energy band structure is that of a semi-

8

metal and Table I includes the values of the main energy splittings.
Since V8 is now zero, the piling of the charge density closer to
the atoms is more accentuated as shown in Fig. 9. The charge density

for valence bands 1 and 2 is completely s-like with no overlap at all,
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while valence band 3 is affected slightly since it includes antibonding
states near L1 which is now in the valence band.. The inclusion of these
states affects the bondiﬁg charge for this band by about 6% compared with
the third valence band of model I. The charge fbr valence band 4 is
again almdst unaffected by the change in V8.

The charge density given in Fig. 9 is not precisely the charge
density that our model potential would have at 0°K. The Fermi level is
levels so that a region around T .

somewhere between the L and F2

3! 5' 25"
in the third and fourth bands is'unoccupied. Since the‘wave_functions

near L

31 are very similar to those near F25" we do not expect that

Fermi-level corrections will be very important.

it is interesting to compare the bénd sfructure of lead, assuming
it "could crystallizé in the diamond structure, with the results of
model III. To.do this, we have calculated the band structﬁfe usihg
the Heine-Animalu pseudopotential-for lead. The laftice constant is
chosen so that the nearest neighbor distance, d; in.our hypothetical
phasé for Pb is the same as the nearest‘neighbor_distance in its fece
phase. The justification for this choice is that when’Si and‘Ge undergo
a metallic phaée transformation under pressure, the nearest neighbor
distaﬁce is almost unchénged. The band structure obtained in ;his

manner is similar to that of model III.-

Fermi-Thomas model. 1In the Fermi-Thomas approximation, the‘pseudo-
potential is given by

. 8ne?z " k ?
2 s

v(Q) = - ————— = - SE ———

2q® + k) (@® + k *)
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Here Q is the volume of the primitive cell, Z the number of outer elec-
troﬁs per atom and for Ge %E% = 0f57 Ryd. Since the Fermi-Thomas poten-
tial is attractive for regions even close to the cores, (novorthogonali_
zation conditions have been imposed.on the valence eleétrons), the
electfons.tend to pile up in the éore region. This is reflected in the
energy band structure obtained for this model shown in Fig. 10. The
states in the first two s-like bands are separated by a gap of 20.5 eV
from the rest of the states in the valence band. These states behave
essentially like core states and are not available for the formation of
sp3 orbitals. The band structure is that of a semimetal (or metal) with
a large overlap. As in model III we have not computed the effects of
overlap on the charge density, hence the charge density shown in Fig. 11
is approximate. Nevertheless, since the charge distribution in the first
two bands is highly peaked around the atoms, and bands 4 and 5 add an
almost constant background to the total charge density when compared to
the first two, we expect ;hat Fermi level corrections would nét affect
appreciably the total charge density. The main péinﬁ is that.the
repulsive potential is too weak to keep the electrons outside the atoms
and the formation of sp3 orbitals is ﬁot énergetically favored.

C. Summary and Conclusions for Model Potential

With a simple two parameter model pseudopoteﬁtial with one variable
parameter, it has been possible to simulate the variations observed in
the group IV elements. A comparison between our results for model I and
model II shows how a decrease in the repulsive part of the potential can
take inté account the main differences in band structure and bonding

properties between Ge and gray Sn. Of course this model is too crude
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to include all the band structqre features of theéé:elements, bﬁt we
believe that the main trends going from Ge to gray tin are explained by
a reduction in the contributionsvfrom the repulsive orthogonalization
requirements,(VS)‘to the pseudopotential.

~Assuming ﬁhat we could construct two diamond type crystals, one of
Ge and the other of Pb with fhe same interatomic distances, the major
difference in their pseudopotentials apart from screening effects would
come from the orthogonalization conditions imposed on the pseudowave-
functions frém the two different cores 6f Ge and Pb. That is, the main
difference in the pseudopotentials would be inside an effective core
radius ry- This repulsive contribution to the péegdopotential would be
mostly affected by the form factors V(q) for large q which we have in-
cluded in only one variable parameter V8' As the positive V(d) for
large q decreases, the pseudopotential in real space Becomes less
repuléive allowing tﬁe electrons to concentrate in'a region between the
real core and our "effective core". If the electrons are too closé to
the cofes,‘there are fewer electrons to form the Bond, hence the bondsv
formed when the crystal is constructed are weak and:the energy gain in
the formation of the bonds might be smaller than the energy required to
promote the electrons from the s2p? ground state to the sp® configura-
tion. The crystal would most likely change to a more stable configura-

tion.

With respect to the band structure and electrical properties, since

states near T and Ll are concentrated close to the atoms, a decrease

2!

in the repulsive part of the pseudopotential affects them most. There-

fore, decreasing the repulsive potential would decrease the potential
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energy of these states. Consequently, the first direct as well as the
first indirect gap in the band struéture would be decreased.

Because of this study using a two parameter model, which simulates
the repulsive and attractive parts of the pseudopotential, we can under-
stand and roughly predict the dependence of the total electronic charge
density on the pseudopotential without going through a calculation: of

the energy band structure.
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II1. ZINCBLENDE STRUCTURE SEMICONDUCTORS

A. Empirical Pseudopotential Method for
Zincblende Structure Semiconductors

In applying the pseudopotential method to obtain the electronic
band structure for zipcbiende crystais; we have usea the pseudopoténtial
Hariltonian df Secﬁidn II but we have changed thé structure factorsvto
account for the two different atoms in the cell. Tﬁe potential V(;) is
expanded in reciprocal lattiée‘vectors and for conﬁenience expressed in
terms cf a symmet;ic and antisymmetric part of the‘potential representing
the sums and differences of the potentials of the two atoms in the unit

cell,

>
> -iGer

V@) = £1v°(J6]) cos 8T + iv® (|g|) sin &-213 (6)
‘ G | -

where.Z = %’é(l,l,l), a is the lattice cqnstant._ We still make.the‘
approximation V(IGI) = 0 for G* > 12 and the_only form factors which
enter in thé calculation are VS(/§), Vs(/§), Vs(/ii),lvA(/E), VA(2) énd
VA(/IE). ‘These six form factors are determined émpiricallyvusing the
reflectivity’R(Q) and modulated refiectivity R'W) /R (w) experimental
'spectra. ? | | |

Using as our starting point the six form factéfs given by Cohen and
Bergstresser,4 we have calculatéd tﬁe band structure at many points in
the Brillouin zone. With these values of E(E) and the calculated dipole
matrix elemepts, we have calcuiated the imaginary part of the dielectric

6,7

function. This calculation is described by Walter and Cohen, in

which €;(w) is obtained at low energies assuming transitions between the

“3
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three highest valence bands and the six lowest condutﬁion bands. A tail
function of the form Rw/(w? + Yz)z is used at high energies to take intc
account high energy transitions. This tail function starts at 8.3 eV,

B is determined from continuity and Y = 4.5. From €;(w) the real part

of the dielectric function is obtained by a Kramers-Kronig transformation
and from these two functions we obtain the reflectivity R(w) and the

modulated reflectivity R'(w)/R(w). The theoretical R'(w)/R(w) curve

obtained from Cohen and Bergstresser pseudopotential form factors show

the same main structure as the experimental curves for zincblende semi-
conductors; thus the most important identifications are easily made.

In order to get better agreement with experiment, the main struc-
ture observed in the reflectivity curve is shifted. ‘The method of
adjusting the valpes of tﬁe form factors has been described by Walter

and Cohen. ’

To determine the transitions responsible for stfucture in the ez(w)
curve, we first find the energy of a particular pegk. From our tabulated
interband contributions to €;(w) we are then able to determine which
interband transition gives rise to the main contribution to this peak or
shoulder. Once the interband transition has been identified, we deter-
mine where in the Brillouin zone a critical point appears with the
required energy difference and large oscillator strength. The final
prdofvthat our identification is correct is made by varying the form
factors by a small amount and observing the change in the energy gap,
because the energy change for the chosen transition should be the same
as the change in position of.the peak. Since the procedure involves

fitting direct gaps in the band structure to the experimental values, we
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think that‘this'procedure.gives direct transitioﬁs“yhich are ‘accurate at .

the important points in the Brlllouln zone.

The crystals under" cons1derat1on are InP GaP InSb and InAs. In -

InSb and InAs, spln orblt 1nteractions are large and easily observable
in the R(w) experimental curves while in InP and GaP the effect is much
smaller though observable 1n modulated reflectlvity experlments. For
this reason, ‘the Spin orbit-interaction_isfincluded”for_InSb ‘and InAs
caleulatlons;‘the'method is that.ot:Weiszg as mq&lfleo'by Bloom. and
'Bergstresser.g | ' o

Two sp1n—orb1t parameters are used to cﬁaraoterlze the spin-orbit
ipteractionflo Thegmetalllc form‘factor is allowedttofvary‘from its
free atomic value, while:the_noneﬁetallieeparaﬁetertls.coostraihed:so

‘as to maintain a constant ratio between the'two'parametersQ ‘This con-

stant ratio is set equal_to the ratio of the spiﬂ-orbit interactions_forl

the two atoms as,determined'by Herman‘and Skillman.%} Uslné-this_one
arbitrary;paraheter, we_are able to obtain toe egéeriﬁeﬁtally.gnown .
splittings at I and L to witﬂinv0.0S ev. -

Table II comoares‘the Coben ‘and Bergstresseri(CB)iform faetorsé
with those uséd in the present calcolatioo. .Theféeeodopoteotial fofml'
factors are changed by less than 0.055 Ry. lIn.tHeECB calculationssvthé
symmetric tormvfactors of InSb were constrained to be-tﬁe same as the_
form factors‘for Sn; the symmetric form factors for InAs were constrained

/

to bevthé'aVerage of the form factors for Ge andssn;'for GaP, CB used a
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symmetric potential that is the average of Si and Ge; while for InP,
the Ge symmetric potential was used. We did not impose this constraint
in the présent calculation.
B. Results
The calculated energy bands for InAs, InSb, InP and GaP are given
in Figs. 12, 13, and 14. These are similar to ofher energy band calcu-

9,12,13 for these materials. Using the calculated energy bands

-lations
throughout the Brillouin zone, the imaginary part of the frequency-
dependent dielectric function, €;(w), can be computed.3 This function
can then be used to compute the reflectivity, R(w), and the modulated
reflectivity, R'(w)/R(w) as shown in reference 3. The sharp structure

14’3'singulérities in the

in eé(w), R(w) and R'/R arises from Van Hove
joint density of states between the valence and conduction bands. These
singularities arise when the gradient with respect to k of the energy
bands E(k) are equal for the cbnduction and valence bands of interests.

’ a minimum

There are four typés of singularities in three diménéions
‘Mo, a maximum M3 and two saddle points M; and M.
Figures 15, 16 and 17 contain the theo?etical imaginary part of
the frequency depen&ent dielectric function for InAs, InSb, InP and GaP.
The calculated and mf:asuredls-18 reflectivities éppear in Figs. 18, 19
and 20 for these crystals. The calculated and méasﬁredzz’18 modulated
spectra for InAs, InSb, InP and GaP appéar in Figs. 21, 22, 23 and 24.
Tables II1, IV, V'and VI compare the energies of the prominent structuré
in the calculated and measured curves for InAs, InSb, InP and GaP.

These tables also give the origin in the Brillouin zone for the inter-

band transitions which give rise to the optical structure, the critical
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point (cp)'energy, i.e. the interband energy at which a Van. Hove singu-

larity is .found, and the symmetry of the associated Van Hove singulérity.

In some cases a cp is no; discernible, and the strﬁéture'arises from

‘transitions in'a volume of the zone; these are labelled in the tables.
"The four crystals will be discussed separately.

InAs

The first direct gap (Fig. 1) is I's - re. 1% The measured gap is

0.42 eV;ZO_the I' spin-orbit splitting (I'7 - re) is also 0.42 eV.Zl’22
The spin-orbit splitting near L(L6— LA’L§ is.0.27 eV.22 In the calcu-
lated curves the spin-orbit parameter for In was adjusted to give a L
splitting of 0.27 eV. The calculated splitting at T is 0.40 eV.

The éalculated s - I'g transitions give fise'to the My threshold
in €, (w), (Fig. 15), at 0.46 eV. The I'; - I's threshold at 0.86 eV is
hidden in the background. These transitions givev:ise to a slight bump'
in R(w), (Fig. 18); however, both transitions show up in the calculated.
R' (w) /R(w) sbectrum‘(Fig. 21).

The first peak in e, (w) occurs at 2.60 eV ahd'is'caused by L(4-5)
aﬁd A(4-5) trénsitions.19 The spin-orbit split peak at 2.90 eV is
caused by L(3-5) and A(3-5) transitions. Thisvstrﬁctpre gives rise to
peaks in the reflectivity spectrum at 2.58 eV and é.85veV which agree
favorably with the experimental values of 2.61 and 2.88 eV.

The small shoulder at 4.45 eV on the lower side of the main peak in
£€o(w) is caused by (4-5) transitions at X andvalong A(3-5). The corres-
ponding structure in the calcuiated reflectivity is at 4.47 eV, whereas

the measured value is 4.58 eV. A(4=5) and T'(4-6) transitions just

below. this energy show up in the .experimental R'/R spectfa at 4.39 eV
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and correspond to the small structure at 4.37 eV of the theoretical
R'/R curve at 4.63 eV. Excitonic effects at T may enhance the experi-
mental spectrum.

The main peak in €2(w) occurs at 4.63 eV and this peak comes from
Y(4-5) transitions at 4.65 eV. Transitions near X(4-5) also add to the
height of the main peak. The main peak in the calculated reflectivity
occurs at 4.7 eV; the experimental value is.4.74 eV. On the high energy
side of the main peak in €2(w), there are two changes in slope at about
5.32 eV, and at 5.35 eV. The first structure comeé from A(4-6) tran-
sitions at 5.25 eV; this structure is found in the calculated reflec-
tivity at 5.3 eV, close to the experimental value of 5.31 eV. The second
structure arises mainly from A(3-6) transitions at 5.39 eV. The peak in
the calculated reflectivity occurs at 5.57 eV, while the measured value
is 5.5 eV.

Critical points at A(4-7) and L(4-7) with,engrgies of 5.91 eV and
5.96 eV cause the next peak in €3(w). The peak in the calculated re-
flectivity occurs at 6.05 eV. The experimental value_for this peak is
6.5 eV, and is obtained by correcting the originél.value of 6.4 eV at
300°K to the low temperature limit, the agreement here is only fair.

The.nexﬁ small peak in €2(w) at 6.4 eV is céuéed by A(3-7) tran-
sitions of 6.23 eV. 1Its counterpart in the measured reflectivity is a
broad peak at 6.44 eV, the experimental valﬁe for this peak is 6.8 eV.

- The last structure whichvcan.be accurately identified is the shoulder
at 7.1 eV, cbming from (4-7) transitions in the energy range near 7.1 eV,
The peak'in the calculated reflectivity occurs at 7.3 eV, the corres-’

ponding temperature adjusted experimental value is 7.1 eV.
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InSb
The measured splitting of the first direct gap for lnSb, I'g -~ Tg
is 0.24 eV;23 the spin-orbit splitting at the top of the'vélence band
at ' is 0.82 V24 22 and 0.50 eV24’22 at L. The calbplated band struc-
ture is plottéd in Fig. 13; the I's = I's splitting is 6.23 eV. The spin-
orbit parameter for In is adjusted to give a spllttlng of 0.82 eV at T
and the calculated value at L is 0.55 eV. |
The 1mag1nary part of the dielectric function the calculated re-
flectivity and the calculated modulated reflect1v1ty are given in
Figs. 16, 19, and 22 respectively.' The Te - Fs.trahSitions give rise to
the threshold in £, (w) at 0.26 eV. The spin-orbit éﬁlit transition
T'; -~ I'e gives a small peak in e;(w), but this is largely masked by
fluctuations inherent in the calculation. Both contributions appear
clearly in the calculated R'/R curve at 0.26 eV and 0.66 eV respectively.
The first peak in €2(w) at 1.98 eV is caused by A(4~5) transitions
at 1.94 eV. The next peak at 2.6 eV is. caused by A(3-5) transitions at
2.5 eV. Associated with these structures are the spin-orbit split A
peaks in the reflectivity at 2.03 eV and 2.6 eV. The éositions of fhesev
peaks agree well with the experimental values of 1.98 eV and 2.48 eV.
The rise at 3.55 eV on the low side of the main peak iﬁ €2 (W)
arises'froﬁ'(4-5) transitions in a volume located near A. At slightly
higher energies near the main peak, there is a shoulder at 3.8 eV. This
shoulder is caused by A(3-5) transitions at 3.83 eV. In the reflectivity
spectrum, these features give rise to a shoulder at 3.65 eV and a

shoulder at 3.83 eV. The experimental values are 3.39 eV and 3.78 eV.
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The main peak in €,(w) is caused primarily by_Z(&-S) transitions
at 4.1 eV. This s£ructure gives rise.to the peak at 4.01 eV in the
reflectivity. This peak occurs lower in enéfgy than gt the experimental
value of 4.23 eV.

The smuli structure and peak on the high side of the main peak in
€2(w) at 4.4 and 4.75 eV are caused by (4-6) transitions in a volume of
k-space at about 4.4 eV and by A(4-6) transitioné 4.75 eV. These are
related to the two bumps in the reflectivity at 4,48‘and 4.73 eV. These
eﬁergies are in good agreement with the experiment.:.

The peak at 4.8 eV and the small shoulder atv5.09 eV in the ¢, (w)
curve are caused by A(4~6), A(3-6) and A(3-6) transitions at 4.87 eV,
4.94 eV and 5.43 eV. The related reflectivity structures are the broad
peak at 5.3 eV with a highly blurred shoulder at 4.73 eV; the corres-
ponding experimental values are at 5.33 and 4.92 eV.

The peak in €2(w) at 5.73 eV arises mainly from A(3-7) transitions
at 5.69 eV. The peak in R(w) is at 6.01 eV, in good agreement with the
experimental value of 5.96 eV. |

As for the Fg - r? s r§ - r% doublet, electroreflectance measure-
ments in n—typé InSb25 show two peaks at 3.16 and 3.54 eV with a red
shift response to an increase of the surface poteﬁtial; this structure
disappears as the conduction band is depopulated. These two facts
indicate tﬁat these two peaks come from transitions from the top of the
conduction band (Tg) to higher conduction bands (F? and Fg). Since
these are s~-like to p-like transitions, we expect that the oscillator
strengths for these tramsitions are strong enough to be observable.

Our calculated energy differences are
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Te - I'S = 2,43 eV; T - T§ = 3.41 eV
in fair agreement with the experimental values. | .

InP

<

The threshold in €,(w) (calculated energies referred to in this
section cor;espona to structure in £;(w) unless otherwise noted) is
caused by TIi1s- I'1 transitions at 1.50 eV. If spin-orbit corrections
were include& in our calculation, (A = 0.21 eV), we would obtain the
following energy difference:

(To = Te) = (T1s = T1) - 34 = 1.43 eV
in good agfeement with the measured valué26 of 1.42 eV. The rise and
peak in the region near 3.35 eV is caused by L3z - L; transitions at
3.2 eV‘(Ml singularity) and A3 - A transitions.near the point (0.3,
0.3, 0.3) at 3.22 eV (M; singularity). Thé main peak in the region‘of
4.9 eV is caused primarily by X, - I, transitions at (0.7, 0.7, 0.7)
in the Brillouin zone (BZ) with an energy splitting of 5.02 eV (M,
singularity). Some contribution comes from the 4.82 eV shoulder and
these aré attributed to’ As-vAl transitions a£ 4.7 ev (Mp singularity)
and Xs - X; transitions at 4.71 eV (M; singulérity). The small shoulder
in the calculated €, (w) at 5.35 eV is caused by Xs - X3 4-6 transitions
having an energy difference of 5.29 eV (Mg singularify); this structure
does ﬁot appear in the R(w) curve. The discontinﬁohs structure in v
£2(w) at 5.6 eV arises from a volume effect for transitions between the
3rd and 6th bands near the point (0.3, 0.1, 0); the.reflectivity struc-
ture is at 5.48 eV. The peak at 5.82 eV comes from As - A; transitions

near the point (0.7, 0, 0) (M; singularity). Finally, the third
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prominent peak was caused by (4-6) transitions near L at 6.2 eV. Com-
pafison of these last three structures with experiment is only fair.

The experimental reflectivity at 300°K is compared in Fig. 20 with
our theoretical results for 5°K. The first peak aftér the small threshold
structure in the experimental curve is at 3 eV while we predict a peak
at 3.30 eV; the experimental shoulder near 4.8 eV corresponds to the
4.75 eV theoretical shoulder. The main experimental peak at 5.05 eV
has its counterpart in the 5.06 eV calculated peak. Experiment 2 shows
a small shoulder at 5.6 eV which corresponds to the calculated shoulder
at 5.48 eV; the larger shoulder at 5.6 eV has its theoretical counter-
part in fhe small peak at 5.86 eV. The last structure recognized in our
theoretical calculation is a broad peak at 6.47 eV énd this corresponds
to the 6.57 eV experimental value. Each of the experimental structures
up to 6.7 eV has its theoretical counterpart. The agreement in magnitude
is reasonably good when compared with Cardona's17 dafa except for the
first peak which can be interpreted as excitonic enhancement of the
experimental curve in this energy region. The diffefence in position of.
the peaks is due to'the temperature difference between the data used for
6ur calculation and the temperature of the experimental reflectivity
curveé; the 300°K curves shift to lower energy as expected.

In Fig. 23 we show a comparison betweéen the R'(w)/R(w) theoretical
curve and the modulated reflectivity of Ref. 18 at 5°K. In this curve
the agreement in the positioning of the peaks is very good as shown in
Table V. Referring to these curves, we make two remarks: (1) if spin-
orbit effects were included, tﬁé 3.30 eV peak coming from the A3 - Ay

band would split into two peaks at 3.23 eV and 3.37 eV (A; = 0.14 eV)
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correspdnding to the peak and shoulder at 3.24 eV and 3.38 eV in the
experimental curve; (2) the small shoulder at 5.48 eV of the theoretical
curve may be associated with fhe small structure at 5.5 eV of the experi-
mentalvcurve; the structure would be almost unnoticeable in the corres-
ponding reflectivity curve.

GaP

In Fig. 24 we shdw a comparison between the calculated ﬁodulated
reflectivity curve GaP with experiment.18 The caiculétions were done at
an assumed temperature of 300°K. The calculated bapd structure, €2(w),
and R(w) for GaP also appear in Ref. 4. Identifications of the important
réflectivity structure is tabulated in Table II. The positions.of the
important reflectivity peaks are given by.those zeroes of R'(w)/R(w) at
which the slope is negative. The other sttuétufe'appearing in the
derivatiQé spectrum is much finer; some of thedetalls are practically
imperceptible when seen iﬁ the normal reflectivity spectrum.

The fundamental gap in GaP is the indirect I';s ; X1 gaﬁ. The
calculated value is 2.19 eV and the experimental value is 2.22 eV, as
defermined by absorption and recombination radiation_experiments.27 The
smallest direct gap occurs at I at 2.79 eV for theory and at 2.78 eV for
experiment. The major structure in the 3.4 - 3.9 eV region 1s.a
reflectivity peak centered at 3.68 eV caused by A(4—5) and A(3-5) trén—'
sitions. The theoretical peak in the reflectivityvoccufs at 3.70 eV,
giving excellent agreement with experiment. The next major reflectivity
peak_occurs.at 5.31 eV in the éxperimental measurementsland at 5.3 eV in
the theoretical calculations. This peak is caused by a combination of

- I(4-5), A(3-5), and A(4-5) transitions, all with large oscillator
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strengths. The fine structure in this region consists of a reflectivity
shoulder at 4.74 eV caused by A(4-5) and X(4~5) tranéitions. This
shoulder occurs in the calculated reflectivity at‘about 4.7 eV,

Most of the above assignments for the four semiconductors studied
in this work are consistent with those of refs. 3, 22 aﬁd 31.

Indirect Gaps (InP and GaP)

For GaP as well as InP we have obtained a very good agreement
between measured and calculated reflectivity and ﬁodulated reflectivity.
The fitting is good enough to indicate that our identifications of the
important direct transitions in the reflectivity experiments are correct
and that our band structure is accurate with respecg to direct tran-
sitions.

In GaP the minimum gap is the indirect I';s - X; gap. This tran=-
sition has been determined experimentally by absorption and recombination
radiation e#perimenfsz7 and it is found to be 2;22 eV while our calcu-
lated value is 2.19 eV; in these experiménts Zallen and Paul also
determine the pressure dependence of this gap and of the I';j5 - I'; direct
gap (the experimental value of the I';s - I'y being 2.78 eV in agreement

with the calculated value of 2.75 eV). The measured pressure co-

efficients are dE(I'1s5 - I'y)/dP = 10.7 * 10% x 10-.6 eV/bar and

dE(l'ys - X1)/dP = -1.1 = 10% x 10-6 eV/bar. We have calculated the

pressure coefficients for these gaps; our results are as follows:

- dE(Ts - T'y)/dP = 12.6 x 10-6 eV/bar; dE(I'1s - X;)/dP = -1.0 x ].0_6 eV/bar

in good agreement with the experimental values. The calculation involves
the evaluation of the change in energy levels with small changes in

lattice constant (see part III). The measured cdmpressibility was also
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used in the calculation.

For InP a direct measuremént of the I' - X indirect transition has
not been performed. One possibility for obtainiﬁg this value arises from
what Paulz-8 calls "the empirical rule" which says that all the gaps in
III-V ‘and II-VI semiconductors havé roughly the same pressure dependence.
Tﬁe preséure coefficient of the direct gap betweenﬁthe I'ys valence band
and the Fl-COnductionvband is of the order of 10 x.10—6 eV/bar and the
pressure coefficient of the I'ys = X; indirect gap is roughly -1 x 10"6
eV/bar. Our calculated values for this crystal are: |
dE(T1s - rl)/dp = 9.24x10"% eV/bar; dE(T1s - X)) /dP = -1.26x10"5 eV/bar.
At sufficiently high pressufe (> 50 k bar) the indirect I';5 - X; gap will
become the smallest gap and therefore directly observabie.

Another possibility is explored by Hakki et él.%g in these experi-
ments they combine pressure and composition dependenée on In—GaP-allOys.
Using Paul's "empirical rule" they are able to identify the smallest- gap
for a given composition as a function of pressure; then from extrapola-
tion, they determine the variation with composition of the I';s - X; gap
at zero pressure. A linear extrapolation of the I';s - X; gép to the
InP side gives a value of 2 eV. The extrapolated pressufe coefficient
for this gap is -1.1 x 10-6 eV/bar. We think that the conclusions of
Hakki et al. are correct;30 our calculated value for this gap at §°K is
2.84 eV. To compare the band structure calculétion with experiment for
the indirect gaps, we have introduced a k? dependent term in our band
structure as shown by the dotted line in Fig. 14. .The expression used

2

> ->
is E(k) = EEPM(k) - Yk®; Y is adjusted to give the experimentally

. . ©
determined I'1s - X; gap, and its value is y = 0.743 ev A . Writing



i

e,
R

-29-

-y = 4%/2n" and 1/m* = 1/m' + l/me, we find that our correction may be
thought of as a mass renormalization with m* = 1.22 m .

C. Electronic Charge Densities for InAs and InSb

We have solved the secular equation for the pseudopotential
Hamiltonian for the wavefunctions wn k(r) on a grid of 3360 points in
. kY
" the Brillouin zone.(n is the band index)21 for InAs and InSb. From

these wavefunctions we obtain the charge density in each valence band as

0, (B = Zely 2] . » (7

=¥

Figures 26 and 27 show the contour maps of the sum over.the first four
valence bands for InAs and InSb respectively, for the plane (1, -1, 0)
as shown in Fig. 25. The density is plotted in units of (e/f) where §
is the volume of the primitive cell, Q‘= a3/4.

Our results are consistent with the fact that InAs is a more ionic
cyrstal than InSb,l the charge being more piled up towards thevAs-atom
in InAs than towards the Sb atom in InSb.

The form factors used here for InSb are different from those used
in ref. 21 and give a much better agreement with the optical data. We
have calculated the covalent boﬁding charge Zb as describedcin Ref. 21.

Qur result.is Z, = 0.083e. When this result is piotted using Phillips and

b
Van Vechtenl ionicity scale with earlier results for Sn and CdTe, the
curve of bonding charge versus ionicity is more linear, but the extrapo-

lated value of the critical ionicity fC does not change when compared

with the results of Walter and Cohen.2



b

vs. the ionicity scale of Phillips and Van Vechten, this point lies very

The value for Z_we obtain for InAs is 0.069e. When this is plotted

near the curve of the Ge family of Walter and Cohen.



A
Y
.
e
L
¥
[N
o
A

B3
%
LEE.
gn
E
ot i,

~31-

IV. PRESSURE DEPENDENCE OF ELECTRONIC STATES

A. Hydrostatic Pressure Dependence of Electronic Properties
of zb and Diamond Type Crystals (Transferability of the Pseudopotentials)

A large number of hydrostatic pressure experiments28 have been
carried out on the germanium family; from them, the following rough
empirical rule is found: the pressure coefficieht_of the energy differ-
ence between tWo states of given symmetry is roughly independent of the
material in which the pressure coefficient is measured. As mentioned
in Chapter III of this work, this empirical fact_tells'us, for example,
that the first absorption edge of GaP at atmospheric pressure is a
T'ys - X; transition. Moreover, pressure experiments can give us infor-
mation about transitions that are otherwise rather inaccessible at
normal pressure conditions.

Here, we present our theoretical results for the pressure coefficients
for some important gaps in the electronic band structures of Si and InP.
The method used is again the EPM. The application of an external
pressure modifies thé pseudobotential form factors (and through them
the eiectronic band structure En(ﬁ)) in the following ways:

(1) A change in the lattice parameter a varies the atomic volume
so that v(G) has to be scaled with inverse volume.

(2) A change in a varies the value of the reciprocal.lattice
vectors E at which v(G) has to be evaluated.

(3) A change in atomic volume is also expected to affect the
screening of the valence eleétrons which in turn affects the functional
dependence of v(G). This effect is only big for small values of the

wave vector q and of Little importance for E’# 0.
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From 1, 2 and 3,'we see that in order tb study the Ehange in band
structuré with lattice parameters, it is necessary to know the complete
pseudopotential function v(q). In this paper we used the empirical
approach to determine the slopes of v(q) at the reciprocal lattice
vectors E‘at atmospheric pressure. The procedure is as follows: the
pseudopotential curves wére freehand extrapolated from their known
values at atmospheric pressure. From the extrapolatéd curves the values
of important gaps were obtained at 10 k bars (here we use the known
compressibility of the semiconductor in question) an& small adjustments
to the extrapolation were made in order to have better agreement with
experiment (at 10 k bars we are dealing with very small energy changes
<0.1 eV, thus the results are very sensitive to the scaling). It is
known that under very high pressures Si undergoes'a phase transformation
. to a metallic phase similar to that of white tin while InP undergoes
alphase tfansformation to.an insulating plase with rock salt structure.
Thus we éré’interested to explore whether our simple method prédicts a
trend toﬁards metaliization.for Si under high pressure and if the charge
density for InP becomes more ionic as pressure is épplied. To do this,
we adjusted a2 polynomial curve to the v(q)'s from the known values at
the reciprocal lattice vectors at atmospheric pressure and at 10 k bars.
Our results are given seéarately in the next section for the two crystals.

In EPM calculations, the importance of pressure experiments rests
not only in the positive identification of important optical transitions
in the electronic energy bhand structure of semiconducfors, it also provides
information on the scalling of the pseudopotential form factors. It

is expected that the scaling that repfoduées the pressure data for
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Si will give very good results when used to predicf.the band structure

of Si in its wurtzite crystalline phase.3 If in addition we know how
to scale P form factors from GaP pressure experiments and Zn form factors
from ZnS pressure experiments, we afe ih a position of predicting the
electronic properties of the chalcopyrite compound ZnSiP;.

B. Results

Silicon is one of the solids for which the electronic band structure
. . L . By 28 .
is best known; in addition, experimental data on Si under pressure = is
readily available. Our calculated results are summarized in Fig. 28.

The form factors for Si at O and 20 k bar pressure are (in Ry)

v(3)

-.21 v(8) = .04 v(11) = .0800

and

v(3) -.2092 v(8) = .044 v(11l) = .0816

respectively; In zincblende and diémond crystals, special attention has
been paid to the study of the pressure coefficients of the first three
valleys in the conduction band with respect to the top bf the valence

band at I'. In Si these three valleys have symmetry, Li, A; and Tis.

Our calculated values for these pressure coefficients are in 10_6 ev/bar

dE dE dE

-1 _ r-r _ _ r-x _ _
r - 4.4 P 0.7 P 1.6
dEr_x -6
while the experimental value for 3P = -1.5 x 10 ev/bar. The

pressure'dependence of the ['-L transition is "5 x 10-6 ev/bar for all
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zb and diamond crystals measured. According to the empirical rule, the
pressure coefficient for the F25' - F2' transition in 2b and diamond
dE(Tzs' - T2") -6 | -6
» vo10 x 10 eV/bar (for Ge is 14 x 10
dpP

eV/bar) our calculated value is 13.4 x 10.6 eV/bar.

crystals is

From the above theoretical and experimental results, it is clear
thaf the pressure coefficients are quite sensitive to the symmetry of
the wave functions. 1In Fig. 29 Qe show the.abséiute value of these wave
functions as a function of position in the unit cell along the (1, 1, 1)
direction. From this figure,.we notice that thé'Fz' wave function is
highlyvpeaked near the atoms, the L; wave fﬁnction is broader and peaked
between the atoms and the antibonding site, the I';s wave function is
concentrated at the antibonding site and the Xi Qave'function is almost
constant with a slight build up farther away from‘the'antibonding site.
As for the pressure coefficients, the I';5' - I's' transition increases in
energy at a high rate, the I';s' - L) transition increases at a slower
rate whilé the I';5'" - I'ys and T'ys' - X; transitions decrease at a small

rate. So there is a correlation between pressure coefficients and the

quantity

012( = / - p (1) d’r ' (8)
primitive _ ‘ _ '
cell

which measures the dispersion of the charge density of the k-state from
v
the bonding site. The pressure coefficient of the transition Izs' - K

is a decreasing function of o2, k® 1s a state in the conduction band

+
with wave vector k.
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As for the important direct transitions (the ones that give the
biggest contribution to the reflectivity spectra), Li-Ls and X,-Xi, our

calculated value for the pressure coefficients are:

dE (L;-L3)

-6
P = 5.7 x 10 eV/bar

dE (Xy4-X3)

) -6
& = 2.1 x 10 eV/bar

this last coefficient invfair agreement with the ekperimental value of
2.9 * 0.6 x 10“6 eV/bar for the pressure coefficient of the main E;
peak in reflectivity spectra. N

The fact that negative pressure coefficients'(with_respect to the
top of the valence band) are found for antiBonding s~like states (I';5) and
quasi-metallic states (X;) ih the conduction band; indicates that the
total charge density p(r) in the valence band becomes more metallic as
hydrostatic pressuré is applied.» To show this, we calculaﬁed the charge
density in our model for 120 k bars of pressure. The charge density is
‘calculatéd using the representative k-point used by Baldafeschi.51 This
method is discussed in Appendix A. The charge densities aé functions qf
position in the (0l1) plane for O and 120 k bars of pressure are shown
in Fig. 30. The results at O pressure are those éf Walter and Cohen.
The bonding charge in Si 120 k bar is about 20% smaller than that at O
pressure indicating a definite trend toward metallization. No attempt

was made to compare them exactly, because Walter and Cohen's results
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were obtained in a band by band analysis'which is not pquible'using
a representative k-point in calculating the charge density, mainly
because the accuracy of the method for individual bands ié not as good
as that for the sum over the valence bands (Vv3%).
Results InP |

InP is the only zb semiconductor of the III-V group that transforms
to a rock—éalt structure under hydrostatic pressure. In the Phillipsl
ionicity scale, the value of the ionicity for InP dfaws a limit between
tetrahedrally coordinated compounds that transform iﬁto a metallic
phase and those that transform into a NaCl structure, under pressure.
The [';5-T; and I';5-X; coefficinets of InP are relatively well established,

the experimental values are:28’29

f%} (I15-T1) = 8.7 x 10°° &V /bar, f%} (T15-X1) = - 1 x 107° ev/bar -
our theoretical results give
L (rysTy) = 9.24 x 107® ey /bar, g%-(rls—xl) = - 1.26.x 100 &V/bar

Our calculated pressure coefficient for the main reflectivity peak

v
X5~-X1c is 2.21 x 10“6 eV/bar.’ The form factors used at 10 k bar are

it

.044

V. (3) = -.271 V_(8) = .0364 v, (11)

i
fl
I

VA(3) .0887 VA(4) .0887 vVA(ll) f0306
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The 0 pressure form factors are those of part II of this work.

In Figs. 31 and 32 we plot our calculated charge density for InP at
0 and 100 k bar pressure; the only observed trend as pressure is applied
is that of metallization, contrary to what one wouid expect from the
transformation properties of InP under hydrostatic compression. At this
point, we can only speculate on the various possible explanations for
this result.

(a) The scaling of the pseudopotential form factors is not correct;
in this case more experimental information about the pressure dependence
of the band structure is needed.

(b) The local approximation for the pseudopotential of InP breaks
down., As we pointed out in Section II, a local pseudopotential fails to
predict the energy of indirect gaps if the empirical rule is correct.

(¢) Assuming that the empirical rule is correct, the fact that the
pressure dependence Qf the energy gaps between the fourth valence band
and the first conduction band is eseentially the same for all zb semi-
conductors whe;her they transfofm to a metallic or a rock salt crystal-
line structure under pressure,seems to indicate that the bonding proper-
ties of these semiconductors udder pressure are not only associafed with

the pressure properties of €3 (w)
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V. CHALCOPYRITE CRYSTALS f
Recently much attention has been given to studies of electronic

'.and optical properties of ternary compounds with chemical formula-

. AN_1 N+; g . (N ='-"3‘,_2), Theoretically, the study of the electronic

and optical properties of . these compounds is a 1ogica1 extension of

the study of their closest analogs, the BNC8 N (N = 3 2) zincblende :

v.semiconductors.,_Th AN -1 N+l g -N have many interesting physical

'properties which promise to be useful for studies of the electronlc 1::'
f‘_'properties of semiconductorSJin generalsand-for»applications in;semi—iulv

e conductor_technologyrﬂ

v.In'the'case'N 3 most of these ternary compounds crystalize in theth:t.

chaICprrite 'stnucture which 1s a simple generalization of the zincblende
-fcrystal structure. We: know from the work of Cohen and Bergstresserq-“
and Phillips .and Van Vechten that most of the electronic and’ optical

3.5

properties of the B> C zincblende semiconductors are analogous to. those o

~of the diamond structure semiconductors (group B ) Some modifications_"i'

ist when the effects of the anion and cation difference are 1ntroduced ',:i

hinto the band structure and bonding properties.l In the same way, most

: of the properties of A2B4C§

i.by introducing the effects of the two cation differences 1nto the band

chalcopyrite semiconductors can be understood

structure of their zincblende analog ~In Section A of this chapter, 4
we' study the chalcopyrite crystal structure in detail with emphasis

on how systematic trends in the lattice parameters give us 1nformation

. _about the bonding properties of these crystals. In Section B we

4

Ldescribe in detail the Brillouin zone of the chalcopyrites and its

frelation ‘to the zincblende Brillouin Zone. In‘Section C wevpresent‘_
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our results for the imaginary part of the dielectric function,ez(w),
the reflectivity R(w) and the density of states D(w) for the chalcopyrite

compound ZnGeP In concurrence with the analysis of our results for

9
this particular semiconductor, we have discussed the common features in
2.4.5

ez(w), R(w), and D(W) which are characteristic of many of the AB 02
semiconductors.

In Section D we present the details of the band structure calculation
2
A. Chalcopyrite Crystal Structure

of ZnGeP2 and ZnGeAs

The chalcopyrite crystal structure of a compound with formula

AN-—lBN+1Cg—N

primitive cell at positions given byt

has a body centered tetragonal unit cell with 8 atoms per

A% at (0,0,0) , (0,a/2,c/4)

g at'(o,o,c/2) , (0,a/2, 3 c/4)
C5 at (au,a/4,c/8) , (aﬁ,3a/4,c/8) , (3a/4,au,7¢/8) ,
(a/4, au,7¢/8)

2 ahd'the unit celllcan

The space group is the nonsymmorfic¢ group D2dl
be thought of as composed of two zincblende unit cells stacked and
compressed along the z-axis. The cation of the zincblende is substituted
by the two cations of the chalcopyrite‘is such a‘way that.two kinds of
chains are formed. A-C-B-C-A chains run along the (1,%1,0) directions
while A-C-A~C-B-C-B-C-A chains run along the (0,%1,1) and (%#1,0,1)
directions; the presence of A-C-A and B-C-B linkages running along

the z-axis is responsible for the doubling of the unit cell with respect

to the zincblende case,



-40-

The tetragonal compfession given by 2 - c/a)= € 15 always positive
or zero for the chalcopyrite cdmpounds with N = 3 and runs from a

value of 0.242 for MgSiP, to 0 in ZnSnP2 (see Table VII).

, 2
The anion of a chalcopyrite compound is tetrahedrally coordinated to
two cations of type A and two cations of type B and slightly displaced from

its original zincblende position towards the smallést pair of cationms;
this displacement can be measured by the parameter ¢ = 4u - 1. The
parameter O can be positive or megative depending on which of‘the two
cationslis the smallest; the largest measured distortion is for
CdGeAszhfor which 0 = 0.144; the value of this parameter for the
ZnSn compounds (ZnSnPé and ZnSnAsz) is negative (0= -0.044),

In Table VII33 we give the crystal parameters for these compounds;

from it, several tremds can be observed: both the tetragonal distortion

€ and the displacement of the anion O seem to depend mostly on the

two cations of these ternary compounds; both € and U are slightly

larger for the phosphideéthan for the arsenides. In the Zn compounds

for which the table is more complete, the parameter ]8*40| is an

increasing function of the row number of the second cation.

To study this trend more closely, let's take the difference between

the AC and BC bond lengths to first order in € and 0: o
' ' 2.1/2

SRR (ORI N (SRR

(9

»———zzo‘a
3
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i.e., §~is a direct measure of thé crystal parameter 0. This explains
one of the observed trends, if D is very weakly-dependént on the anion,

0 should bé a decreasing function of lattice constant. It is thus smaller
for the arsenides than for the phosphides given the same pair of cations.
In Table VIII we compare the experimental values of 0 with those obtained
from the additive radii of atoms (when in tetrahédfal covalent bonds) of
Pauling34 and Phillips and Van Vechten.>” The agréement between the
experimental values of O with those predicted using Pauling's radii is
better than 25% while those predicted using Phillips and Van Vechten

are much worse. The difference between the ekperimental values of ©

and . those prédicted using Pauling's radii seems to indicate that, for

example, the Zn ~ P bond i1s more ionic in ZnSiP, than in ZnGeP, and

2 2

that the Sn - As bond is more ionic in ZnSnAs2 than in CdSnAsz; S. C.

Abrahams and J. L. Bernstein36 have pointed out that in the AzBécg
compounds, the B cations are tetrahedrally coordinated to within 0.3°,
while the tetrahedral coordinatidn of the A cations may be deformed

by more than 10° from their studies on ZnSiP, and CdsiP,. Again, to

2

first order in O and €, these angles are given by

cos ({ CAC) ~ %{"l + a(e + 40))

a = 2/3, - 4/3 (10).

cos({ CBC) ~ %{-l + (e - 40))

So the B cafion is perfectly tetrahedrally coordinated if € ~ 40 the
trend observed in the Zn compounds in the quantity ]E— 40| only reflects
what we already know i.e., that Si is more covalent than Ge and the

latter is more covalent than Sn. The crystal is constructed in such
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a way that increasing'thé distortion othhe tetrahedrél arrangement
around the A cation tends to decrease the distortion‘around the B
cation; the fact that € = 0 for the ZnSn compounds probably indicates
that both linkages CAC and CBC are equally covaiént.

B. The Relation Between the Zincblende Brillouin Zone and

the Chalcopyrite Brillouin Zone

Since the primitive cell of a chalcopyrite crystal is four times
larger than the primitive cell of.a zincblende cryétal compresséd along
the z axis, the zincblende Brillouin zone is four times larger than
that of the chalcopyrite analog. The two crystal stfuctures‘are SO
»similar, that if is possible to completely fold in the zincblende
zoﬁe four times into the chalcopyrite zone.

2

Some of the ternmary crystals with compositioﬁ A Bécg (e.g., ﬁgGePz),

lack the segregation of its two cations. The cations are considered
. randomly distributed among the cation position in the Zb analog. Then
the compound has the zincblende struéture,'one of the two sites in the

primitive cell is occupied by the anion and the other by an average of the

A2+B4

2

their different potentials what reduces the Brillouin Zone. In view of

two cations ( ) . It is only the ordéring of the two cations and
this, it is expected that the electronic and optiéai properties of a
chalcopyrite crystal should be very similar to those.of their zincblende
analqg. This is even more convincing if one takes into account the fact
that the average cation pseudopotential in a chalcopyritevcrystalvis
very close to the pseudopotential of the cation in its zincblende analog.
In the folding in process of the band structure of a zincblende crystal

into the chalcopyrite Brillouin Zone, singly degenerate states may
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now be double, triple or quadruple. If the differences in the two cation

pseudopotential, represented by an antisymmetric cation potential

- ved - vt
A 2

, lifts the degeneracy, simple perturbation theory

predicts. that these states are going to be the mbst affected by the

ordering of the two cations and by the antis&mmetfic cation potential.
.In Fig. 38, we show the irreducible part of the chalcopyrite Brillouirn

zone; the labeling of symmetry points and syﬁmetry directions is that

of Zak.s0 In Figs. 34 and 35 we show the folding in process of the

zincblende BZ into two different planes of the chalcopyrite BZ. The

smallest G vectors in the chalcopyrite structure are of the form

2m(0,0,2/c), 2m(0,1/a,1/c) and 27(1/a,0,1/c); for ¢ = 2c' where c¢' is

the z lattice vector of the compressed zincblende analog, these G

vectors correspond to the points X, Wx’ Wy of the zincblende Brillouin

zone. In Fig. 34, the planes kz = 0 (Fig. 34a), kz = 41 (Fig. 34b) and

kz = +1 (Fig. 34c) of the zincblende BZ map into the plane kz = 0 of

the chélcopyrite BZ, the translation vectors aré 2m(0,0,0), 2m(0,0,1/c"'),

2m1(1/a,0,1/2c') and 27(0,1/a,1/2c"') respectively. The last two translations

are compietely equivalent in this case so tﬁat while the points X and

I' that map into I' have the same degeneracy as in the zb case, the point

W now is double degenerate and also maps into I'. 'In what follows kx

and ky are in units of 2M/a and kz in units of 2T/c': (c = 2c¢").

Figure 34d shows the kz = 0 plane of the chglcopyrite BZz. In

Fig. 34e we show the planes (Figs. 34a, 24b and 34c) appropriately

displaced to show the folding in process. The points marked by X in

Figs. 34a, 34b and 34c are those that map into [ of Fig. 39d. O©

represents the points of the form (1/2,1/2,0) and & points of the form

(1/2,0,0) of the zb BZ.
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From Fig. 34d we see that the Z direction ih tﬁe chalcopyrite BZ,
now contains the ny_andAS §irections of the zb'analog (T - 0 and
X*U, K * 0) and the double degenerate Q direction (W°L). The A and S
chalcopyrite directions now contain the original A direc£ion plus the
Z direction (XZ - wz - Xz) and the doubly degenerate W - & direction
(along (x,0,1/2)). Finally, in this plane, the Y and U directions
contain the doubly degenerate 0 to X line (along (1 - x,x,0)) and
the double line L - § along (x,x,1/2). 1In Fig. 355vwe show the folding
in process for the N plane (kX = ky) of the chalcoypfite BZ; Figs. 35a
and 35b, show the kx = ky and 1 - kn = ky planes of fhe zb BZ again
the pointé marked by X map into I' of the chalcopyrite BZ, Fig. 35¢
shows the N plane of the chalcopyrite BZ. 1In Fig. 35d, the direction
' -~ X (along kx = ky = kz) contains.the original A direction of the
zb BZ together with the lines X - L (along (kx’kx’l - kx)) and W - X
(along (kx,l - kx’1/2 - kx)). Besides the important high symmetry
point X (with degeneracy 2n, where n is the degénerécy in the zb case),
there are two interesting points in this plane, the point A (1/2,1/2,1/4)
whose degeneracy is 4 when the antisymmetric Catién-potential is zero
and splits into two doubly degenerate levels when this potential is
turned on, and the point (1/4,1/4,1/4) ;hat.contains singlets and
triplets (corresponding to (1/4,1/4,1/4) (3/4,1/4,174) (1/4,3/4,1/4)
and (1/4,1/4,3/4) in the .zb case) and is the representative k-point
for charge density for body centered tet;agonal structures (see Appendix

A and references therein).
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C. Electronic and Optical Structure for the Chalcopyrites

In Fig. 36a, we show our calculated band struci:ure for the
chaloopyrite compound ZnGeP2 and in Fig. 36b that of its stressed |
analog, This last band structure corresponds to that of GaP uniaxially
stressed along the z direction in such a way that the c¢'/a ratio is
that of ZnGeP2 and the band structure is folded into.the chalcopyrite
BZ, Here we are interested in showing the - gimilarities and differences
between the electronic properties of a chalcopyrite‘compound and .
its analog and the main effects of the ordering of the two eations.

The method of calculation and choosing of parameters is discussed in

a following section. In Figs. 37 and 38 we:show the theoretical imaginary
part of the dielectric function and density of states curve obtained

from a full zone calculation of the band struqture of ZnGeP237 (Fig. 38b).
The difference between the band structﬁres shown in Figs. 38b and 36a

is only aislight changé in the pseudépotential parameters used.

Now let us compare the two band structures in Figs. 36a and
36b. First we point out that as shown in Fig. 36b the effects of
tetragonal compression on the band structure are very small when
compared with the effects of the antisymmetric cation potential so
we will ignore them for now.

1. Structure of the Valence Band and Density of States

In the first four valence bands, the main splittings occur at
the point X and the point A of the chalcopyrite Brillouin zone, In the
analog, the levels Ll and Zl are almost degenerate forming a level

that is almost four fold degenerate and is split into two degenerate

levels by about 0.4 eV with symmetry X. The point A which was four
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fold degenerate in the analog is again split by 0.5 eV into two 2-fold-

degenerate states with.symmetry.A1 and A2’ . | 3
The effect of these splittings on the first peak of the density

of states curve is ehown on Fig. 38a. THis peak»extends from Fl(Fl)

to T3(X1) and shows considerably more structure ehen that of the

analog.‘The first structure comes from states near the N point of the

BZ and along the B direction, this direction contains doubly degenerate

bands in the analog (1/2,x,1/4) and (1/2,x,3/4) that again are split

by the antisymmetric cation potential. The second structure contains

states mostly in the W direction (X*A) and the third broader structure .

comes as in the analog from states along the A(W>X) direction and
states near Xl(Ll).b The width of this peak is slightly larger then
that of the analog. Physically, this peak-that'fepresents s~1like
states around-the anion‘is expectéd to be split and.broadened due to
_the deviaﬁions from perfect tetrahedral environmeet'around the anion
but these effects are expecteé to be small as showﬁ in the averaged
density efvstates curve (dotted line in Fig. 38a). These states

are deep inside the:cation bhus very insensitive te environment;

The opposite situation occurs for the usual seeoed s-like peak in a
zincblende cfystal. This peak represents e—likestetes near the cation
and the difference between the two cations in the ehalcoﬁyrite analog
is expected to deeply affect it. In Fig. 38a, we see how this peak

is now spiit into three structures, the first two separated from the
_third by a small gap. The first two peaks come frem bands 5 and 6
while the third comes mostly from band 7 (each peak holds approximately

2 electrons). The first two structures probably represent s~like states

[ 9%
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around the B4 cation while the third one correqunds_mainly to s-like
states around the Azhcation.

In zincblende studies of density of states, the gap between the
first two s~like states has been correlated to the ionicity of the
bond.38 Since we now have two kinds of bonds, one much less ionic
than that of the analog, the gap between these two structures gets
reduced by as much as 1.9 €V in our calculated band structure. The
first structure in this second peak starts atithe point FZCX3,w1) and
the rise and peak is caused from states in the B direction with symmetry
B2; the second structure comes from states in the L and A directions
(symmetry Zl and Al) close to Fl(wl); for most ofAthe band structure
a gap develops between bands 6 and 7, the rise of the third peak comes
from states near the'point.A2 (in‘bands 7-8) and the peak is caused by
the singular point Fz(Xl,Wl). The mixing of statgs caused by the
antisymmetric cation potential is very big for states at the I point in
bands 5, 6 and 7, the originally doubly degenerate state Pz(wl) + Fl(Wl)
splits and Fz(wl) thenvmixes with FZ(X3). Here we can speculate that
most probably the energy sepérations betﬁeen FBCXl) and the two energy
1eV¢ls Fé(XB,wl) can be co?related to the ionicities of the two kinds
.of bonds of a chalcopyrite semiconductor.

The big dip in the density of states plot after the third structure
in the second s-like region is associated to a point Zﬁin along the 22
direction {band 8) near (0.3,0.3,0), corresponding to the same kind of
struéture'and origin in the analog; this point marks the high rise of
bonding orbitals in the density'of states curve. The states associated

with this rise are as in the analog Ts(wz) states. The broad bonding
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peak has much more structure than that of the analog, One new interésting
feature is that it splits into two bfoad peaks (this effect is more
noticible in the broaden out density of states curve). The dip between
these peaks Is associlated with splittings at the point A of the
chalcopyrite BZ with symmetry.A2 (bénds 9-10), a gap developé alpng

the £ and N (x,%,2x) directions due to interactions between twoZ_l

lines and two N1 lines.

At this point of our investigétion, we caﬁ speculate that this
sblitting is mainly due to ﬁhe two kinds of bonds.A-2 - C5 and B4 - C5
in the crystals under consideration. The first peak corresponding
mainly to electrons concentrated in the B4 - C5 bonds while the second
corresponds to electrons in the A2 - C5 bonds. A éharge density plot
as a function of position for the different bonds and for a few points
in the BZ is expected to give.the answer to these questions (work is
in progress along these lines).- The.top of the valence band is formed
by the triplét FS + 1"4 originating from the F15 level of the analog.
For most chalcopyrite compounds of the A2B4C5 family,‘the top of the
valence band has FA symmetry. The doﬁbly degenerate lével FS is
separated from F4 by crystal field splitting Acr ;ncreasing with larger
tetragonal compression. Shay and co—workers39 and Shileik340 have |
studiéd extensively the crystal field splittings for most of the
AZB4C3

the value of Acr of the ternary compound is equal to_thé'strain induced

type semiconductors. They find that a model that assumes that

splitting of its analog (assuming the same c'/a ratios) fits reasonably
well their experimental data. There seems to be an exception to this

rule, in the chalcopyrite cfystal ZnSiPZ, the top of the valence band
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'has symmetry FS’ i.e.,'the crystal field splitting ié opposite to that
of most of the other chalcopyrite c;ystals.4l

Ccardona, et altf2 have been able to correlate the deformation.
potential b = Acr/3(l - ¢'/a) of theAA3B5 compounds to their ipmicity
(b decreases with increasing ionicity). K. Dreher43 has calculated the
average ionicities of the AZBAC5 compounds and finds that it is usually
larger than those of their analogs, so a reduction of this quantity
is expected due to an ionicity effect. We find thaﬁ in addition the
antisymmetric cation potential tends to reduce furtﬁer the value of
Acr by about 0.02 eV in the.case of ZnGePz.

Since the most reliable data on the structure of the conduction
band and the structure of the optical gap comes ffom expefimental
reflectivity spectra (aad all the modulation techniques on this spectra)
let us first describe what are the dominant features of the reflectivity
spectrum of A2B4C2 compounds.

Due to the folding in the zb BZ into the éhalcopyrité BZ, transitions
between the valence and conduction band of a chalcopyrite crystal have
been divided by Shay44 into two categories:

Direct transitions--those originating from direct transitions in a
zb crystal. | |

Pseudodirect transitions~~those originating from indirect transifions
in a zb crystal.

It is of course expected that the reflectivity spectrum of a

chalcopyrite crystal be richer in structure than that of its zb
analog; the larger number of structures in the spectrum arises from

several sources:
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1) Originally degenerate levels in the cubic case are split under
the influence of the te;ragonal compression and the éntisﬁmmetric cation
potential.

2) The star of k in chalcopyrite structure &oes not contain allof
the star of k in zb structure e,g.,, the A direction in zb splits into
the A (kx,0,0), A (0,0,kz) and S (kx,O,Zﬂ/c) direc;ions in chalcopyrite
structure. As shown in Fig, 4la, the effects of:VKIin the origina;
direction ére quite different along'the A and A directions of the
chalcopyrite BZ, FThe most isiportant effects coming from the ordering
of the two catioqs are observed near points in the band structure,
where two bands coming from different k points in the zb BZ cross in
the-folding in process and have the same symmetry under the point group
of the chalcopyrite. The bands that cross with the original A bands
and the points of crossing in k-space are quite aifferent in the 4 and
A directions of the.chalcopyrite band structure.

3) At this point of crossing where degeneraté perturbation theory

should be used in a quasi-cubic model, the mixingvbf states is expécted

to be large and as Stoko%ski47 points out, the term "pseudo-direct"

AY

for transitions that become allowed due to these effects is not

appropriate. We find that these mixing effects of VZ are the most

important in splitting the reflectivity structure.
In the past few years, a fair amount of data on the optical spectra
ova2B4C§ 39,40,44,45

the optical spectra of chalcopyrites is much more complicated than those

compounds has ‘appeared in the literature. Although

of their binary analogs, they show the same general features'i.e., the

spectra can be divided into three main regionmns: thevregion Eo of the
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first absorption edge, the region El which in zb materials corresponds
to transitions in the A direction and L point of the BZ, and the E,
region that in zb correspon&s to transitions in the X and A directions.
In addition to the complexity, these reflectivity'spectra will be
diffgrent for light polarized parallel and perpendicular to the c-axis.

2. Optical Structure in the EU'Region.

By the properties of the first absorption edge, chéloopyrite
comﬁounds can be divided into two groups: those with a pseudo-direct
gap FS + F4(Fls) > F3(Xl) and those with a direct gap FS + F4(F15) - Fl(Fl).
From a quési~cubic model, it is expected that chalcopyrite compounds
with an indirect gap r15 - Xl analog (GaP-like) be pseudo~direct gap
crystals. Experimentallyao it has.been observed that ZnSiPz, ZnGePZ,
ZnSiP2 and CdSiP2 have an absorption edge with ﬁressure coefficients
1 .

6 cmz, indicating that the first gap in these

dEg/dP = +1%10 ° eV kg
crystals is a pseudo-direct one FS + Fa(Fls)-é T3(Xi). Electroreflectance
studies on these matgrials show very small structure cofresponding to
the first absorption edge followed by three stroﬁg beaks corresponding
to the first direct transitions F5 + F4(P15) > Fl(Fl). The weakness
of the pseudo-direct transitions, indicates that the mixing pf Fg(xl)
with Pi(rl) and the mixing effects of the chalcopyrite potential on
these levels is very small, not because this potential is small
as Shileika40 suggests, but because of thé symmetry pfoﬁerties
of the F; and X; wave functions. From charge considerations,
the antisymmetric cation potential and the usual antisymmetric potential

of a A3C5 zb semiconductor should be of the same order of magnitude.

It is relatively easy to show that states coming from the I' and X points
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in the zb BZ should never mix under the influence of the antisymmetric
, ; o . 1 oG

cation potential. In pseudopotential formalism this potential Va

can be written in the form

V@) - 2 vsj(é') vodleh e?G'r

where va(!G|).=1/2(vA2,(]G|) - vB4(|G|)). For the particular'ﬁ'vectors,

- n m £ Lo
G = 2“(35 > E-), with n, m, and % integers, the structure factors

82(63 are zero, but these are the only fourier components that can
mix I'-I', I'-X, and X-X states to second order in perturbation theory.
So that the only mixing that can make I'-X transitions allowed is a I'-W,

X-W mixing but in zb materials the W energy levels are at least 2 eV

from the FlS’ Xi, F; levels. In view of this it is not surprising
that a quaéi—cubic model explaining the crystal field splitting and

spin-orbit splitting of the first direct gap works so well.39

In this discussion we have omitted the effects of the small
potential introduced by the displacemenﬁ 6f-the aﬁioﬁ from its ideal
position, we will show later that structure factoré introduced by‘
"this displacement are of second order invthe small parémeter g for G
vectors of the form sz + (0,0,1) (sz are the usual G vectors for
- the zb analog).v' |

Region

3., Optical Structure in the El

In the E1 region, correspondiﬁg-to'the two spin—orbit'split

peaks E1 and El + A, of the analog, chalcopyrite.compounds show

a much richer structure. In general, five or more peaks are observed -

39,40,45

. . .. ., 46
in experimental electroreflectance, modulated reflectivity

and reflectance47 in the energy interval of the spectrum corresponding
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-to the A transitions (El, E1 + Al) of the analog. These peaks have
been labeled El(l)’ El(2), El(3), E1(4) and Ec‘by Stbkowski47 and

El’EZ’ E3, E4 and E by-Shileika.4O We shall adopt Stokowski's

notation here.

6

The most important feaﬁures of these structures will be discussed
below. The energy separating E1(2) - El(l) and El(j) --El(4) are close
to each éther for the most of the A284C§ compounds studied. This seems
to indicate that these transitions come frém two spin-orbit split
doublets in the same region of the Brillouin Zone. The origin of this
structure has been subject to extensive investigation in the past few
years. Most interpretations agree in that the El(l) and E1(2) structures
originéte from transitions in the N plane along'tﬁe (x,x,x) direction
and in terms of a quasi-cubic model equivalent to the A traﬂsitions in
the analog. Our full zone calculations on the réflectivity of ZnGePZ,
show that indeed this is ;he case and the critical point is near the
point (0.2,0.2,0.2). A comparison of the band structure of GaP and that of
ZnGeP2 (Fig. 41) shows that near that point the valence bands are almost
unaffected by the antisymmetric cation potential while the I'-L conduction
band mixes with the W-I conduction bands. Notice that in the analog,
these are almost degenérate near the point (0.25,0.25,0.25).

A 40wnshift of the El(l), El(Z) structure with respect to the
El’ El + A1 structure in the analog has been observed for most of the
chalcopyrite crystals studied so far. Since the mixing of the A valence

bands near the critical point is small, spin-orbit interaction effects

should be véry close to those of the compressed analog. Under this

assumption, Stokowski47 estimates values of E1(2) - El(l) = Al in



.f'values of O 06 eV

"h:from transitions at the X point of the BZ in the;

: reasonably good agreement with experiment excepj for_CdSiAs2 lnclusionliffl""

of spin—orbit interactions in ZnGeP2 in our pseudopotential calculations

Vgive a value of A 0 08 eV in close agreement with the experimental "i:fs_-;l'7

The nature of the E (3) and E (4) structure is subject to controversy

‘,H-Kavaliauskas, et al.4§ suggest that all four peaks E (l) to E (4) come:

:fands 15- 16+17-18 and -

:.13-1¢+17 18 | Under the influence °f the spin-orbi _nteractions,;the ”[H"

5’four fold degenerate level Xl, splits into two twoufold degenerate

5 X2 + X3 From our studies in ZnGePz,

i ,Xi'+ X X2 + X§ is 0 02 ev; thus, it is too small to be associated to

vthe energy separation between E. (l), E (3) and E (2) E (4) as;

h levels X +X +-X= the splitting

"Kavaliauskas, et al. suggest : Stokowskyl‘7 assigns the E (3) and E (4)
: peaks to transitions at the X point of the BZ : As shown in Fig 36
the top of the valence band at the point X contains six states uhich

'are almost degenerate, they correspond to the two doubly degenerate ]V*J

At ilevels X (L ) (L (1/2 1/2 —1/2) and L ( 1/2 1/2 1/2)) and L(Z )

N (z sz, 1/2; 0, I G 1/2 1/2 0). The fact that the L3:and zl levels ;i“ i

C are almost degenerate is not accidental Cohen and Bergstresser s band

'istructures show that this is the case’ for all of the B3C5 semiconductorsffvf~f

they study Under these circumstances, the effects of the antisymmetric
| cation potential mixing the Z and L3 levels is expected to be large ]7
. as shown in Fig. 36a. This large interaction and the shifts of the
L; to Li transitions relative to the A “to- A leads Stokowski to suggest
lthat the E (3), E. (4) "and E peaks come from transitions at the X points

'1from,bands.15—16, 13-14, 11—12+17-18., Although‘all of .these transitions'are*d



155~

allowed due to the strong L-I mixing in the valence band, we find
that for all our band structure calculations,48 that 15-16 - 17-18
transitions at the X point lay below the A El(l), El(2) peak.
In most cases, the Xl > X1 transitions between bands 13-14 - 17-18
lay too close to the A peak to explain the splitting between the El(l),
El(3) and El(2), El(4) peaks. |

Shay et al.44 assoclate the origin of the El(3) and E1(4) peaks
to pseudo-direct transitions from the £ line to the L-W line and to a
pseudo-direct X to I transition. As we have seen, I'-X mixing is too
small to be observed. We find two more pieces of structure above
El(l) and El(2). These structures which can be associated with E1(3)
and El(é) arise mainly from the strong mixing at the crossing point
of the ¥ and Q(W-L) lines in the conduction band along the (x,x,0) line,
This mixing extends into a large region of the N plane (x,x,z) and is still
very strong near the point (1/4,1/4,1/4) along the ( x, x, x) line,
where the mixing is between the I'-L line and the W~Z line. Unfortunately

the peak El(B) N2 > N, originates from a volume effect close to the

1
( x, X, x) direction; because of this, a full zone éaiculation for the
reflectivity spectra is required to compare it with.experiment.
Contributions from the broad structure caused by the Mb critical
point at X (bands 13-14 + 17-18) enhance this structqre in the 1
polarization, |
Another.piece of structure in the perpendicular polarization

spectra, is associated to 22(2 - Zl(Zl,Q) transitions. These transitions,

2)
are responsible for the E1(4) peak in ZnGeP, which for this

semiconductor appears only in the perpendicular polarized spectra.4
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A work of éaﬁtién is in order here. Reference 46_isvthe only'éeasurement
that we know of in which the optical quality of_the‘Su:facg is very good
and.comple;e perpendicular and parallel polarizations were obtained.

In all other electroreflectance and reflectance experiments, the parallel
poiarized spectra is only nominal. Even with this problem, thermb—
refiectance dataao at 120°K and the modulated reflectivity experiment at
5°K agree very closly but electroreflectance datavat 300°K dées not

(see Table IX). With the above identifications, it is clear that at
least in the case of ZnGePz, the structure E1(3) aﬁd E1(4) do not

come from a‘pair of spin-orbit split transitions. Whether this is

true for all chalcopyrite semiconductors, requires more theoretical
research.

For some A2B4C§ semiconductors, it may happen that the strongest 7
mixing of the»(k,x,z) and the (x,x-1,z-1/2) lines is along the (x,x,x)
direction, in which case a pair of spin-orbit douﬁlets is expected
in addition to the Z(Z) » I(Z+Q) peak. From Stokowski's data47 this

N

seems to.be the case for ZnSiAszi
We have'Been able to associate thé Ec_structuréjﬁitﬁ transitions

at the X point Xl(Zzl(B) - Xl(Ll); this peak is stronger in the parallel

polarization. Caution haé»to be taken when identifying this peak,

vsince it is caused by_an Mb singular point, the actual peak is

shifted by about 0.1 eV to higher energies with respect to the

energy of the transition at the singularity.



.
e
L.
<.
»
L
L
LN
o~
S
R
=,
.
+
s

-57-

4, Optical Structure in the E_-Region

2

At higher energies in the region corresponding to the E2 peak of the
reflectivity structure of zb semiconductors, at least five piéces of struc-
ture are observed in the refleétivity spectra of the AZBACg semiconductors.
At present it is premature to assign any particular transitioq to these
peaks for all the chalcopyrite compounds. Our full zone calculations
for ZnGeP2 show that as one would expect, most of the contribution

to the E, structure comes from direct and mixed transitions in the

2
A and I directions of the analog. The A direction folds into the A,
A and (x;O,l) directions of the chalcopyrite BZ while the I direétion
is folded into the Z, (x,0,x) and (1-x%,0,1-2x) directions. Partial
summation over k—space in these directions shows that in effect the
E2 peak is mainly a A, I peak.

The width of the Ez’peak in our full.zone calculation is about
0.4 eV while in experimentit is at least 0.8 eV. This probably means that
we have underestimated the antisymmetric cation potential for this
calculation.

Thg first peak in the paraliel polarizatioﬁ around 4.76 eV comes
from transitions along the A direction A(15—17)at (0.34,0,0) -+ The line
A(A) mixes with the line A(1-k,;0,1/2) in the valence band and then
continues into bands (13,14) so transitions (13,14) -+ 17 near
(0.5,0,0) contribute also to this peak. On the other hand, A(0,0,kz)
and I transitions are responsible for the first peak in the perpendicular
polarization at 4.77 eV. The bands involved are 12-13 - 18, and

The main peak in the

the critical point is near Ts(xs) *-r3(Xl).
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perpendicular polarization is caused by I transitions neér the point
X of the BZ bands 16-20,‘indicating the strong mixing near that point
in the valenée bands. The small shoulder at 4.6 eV‘in the | polarization
is caused by a singuiar point at (0,0,0.3)'élong the A direction
(bands (13 - 17)), in this energy region we-also find a critical
point at (0.25,0.25,0) (14 -+ 17 transitions) coming from the original
X fransitions in the analog. |

The main peak in parallel polarization.is céﬁéed by a strong
critical point inside the zoné near (0.16,0.05,0.0) bands (14-17).
Along the (kx,0.5,0) direction one has the § to 0, W to 0 and 0 to L
directions of the analog. The critical point is caused by strong mixing
at the crossing point in the conduction band of thé 0 to L line with
the 6 to O line; transitions near this;point are strohger in the
parallel polarization, put they also contribute to the perpendicular
polarized spectra. The bands involved are‘14->i7. Near this energy
region we find two additional pieces of structuretcaﬁsed'by'a critical
point at (0.25,0.25,0.25) in the N plane in bands (13 > 18) and
(14.+ 20) . The first one at SVeV is polariied in the || direction
while the second one at 5.11 eV is polarizgd in thg 1l polarization.
The shoulder at 4.92 eV in the experiment in Ref. 46 is associated
with A(0.5,0,0) transitions in bands 15-18; our calculated value
for these transitions is 5.21 eV.

Table X éhows the fesults of our critical point analysis and a.
: comparison with the experiment in Ref. 46. Thé inténsity of the E2
peak is considerably reduced when compared with the intensity of the

E2 peak for zb crystals in our theoretical calculation, but still it



o
e
e,
P
Y
&
£
~L
-~
L
,
o

;7

~59~

is higher than the measured peak. For ZnGePz'this peak has the same

intensity as the E, peak in the experiments of Petroff, et al. In

1
other respects, their structure is similar to our theoretical predictions.
In fact, if the entire theoretical spectra were shifted to lower energies
by around 0.3 eV, the agreement between theory and experimen;s for
almost all optical strﬁctﬁre is very good. This is encouragingrsince
no experimental data (except for structure constants) for ZnGeP2 were
used in our calculations. 'Theoretical and experimental reflectivity
spectra are shown in Fig. 44.

Before ending this section, we add the following remarks about the
identification of the reflectivity peaks. In zincbiende semiconductors

most of the structure in the E1 and E, regions comes from transitions

2
between the third and fourth valence bands and the fifth and sixth
conduction bands, this makes the identifications wery easy. On the
other hand, in chalcopyrite semi;ondhctors we have transitions from 8

~valence bandé to at least 4 conduction bands contributing to the
reflectivity spectrum. There also exists band crossing and mixing all

~over the BZ and identifications are ektremely difficult.- Since
identification of cri;ical points that give large cbntributions to
the electpwnic density of statés is muchimore siﬁple and physically

.tnansparent, experiments that measure this quantity are bound to be

of great importance in the determination of the band structure of the

chalcopyrite.type semiconductors.
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D.. Pseudopotential Hamiltonian for Chalcopyrite
Crystals and the Energy Band Structure of ZnGePé and ZnGeAs,

In this section we will discuss: 1. the psuedobotential Hamiltonian
for semiconductors that crystalize in chalcopyrite structure, 2. the
determination of the pseudopotential form factors and 3. the results

obtained for ZnGeP, and ZnGeAs

2 2°

1. Pseudopotential Hamiltonian

The pseudopotential Hamiltonian for an electton in the crystal is:

= mZ/m) V2 + v(E@) | . (11)
where V(?) is the weak crystalline pseudopotential which has the symmetry
of the lé;ticexand can be expanded in the reciprocal lattice vectors 5.

For chalqopyrite compounds A2B4CZ with 8 atoms per primitive cell,

two of kind A, two of kind B and 4 of kind C, the pseudopotential

V(?) in Eq. (ll)’can be written in the form

- — . b d

| ig-1 iG-15 ig-1° > >
V(;)=%Z§E e iv2+z e iv2+z e ivgieic-r
G U% .
- i=1 : i=1 i=1 _
L aa a2
= % V(G) elG.r‘.
o o
where
A A ]
= (0,0,0) , T, = (0,a/2,c/4)
B 3
Tl = (0,0,C/Z) s TZ = (Oaa/293c/4)
T? = (au,a/4,c/8) , T, = (au,3a/4,c/8) , T; = (3a/4,au,7c/8) ,
2 _ )
T4 = (a/b,au,7c/8) )
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. and Vé, Vg and Vé are related to the spherically symmetric atomic

pseudopotentials by:

> >
® —iG-
VA,B or C _ 8/9". sB or C () e iG'r d3r (14)
2 is the volume of the primitive cell, = azc/2.

Let's define the average cation potential Vl(G) by

) |
V) = (VYD (s)

the antisymmetric cation potential by

C _ _ B
Vi(©) = (V- VD)/2 (16)
and let us write
o .C _
V,(6) =V (17)

Further, let us separate the Hamiltonian into two parts, one assuming
that the anion is in its ideal position, the other taking care of

—
the pseudopotential that this displacement produces. With this, V(G)

in Eq. (12) can be written in the form

V@ = 5,(0) (V@) + Vy(€))/2 +5,(6) (¥)(6) - V,(€))/2

. (18)
c, 2 .C >
+-SA(G) VA(G) + Su(G) Vz(G) “ e
. . E
The symmetric structure factor SS(G) in Eq. (18) can be written in
the form . N - .
- > »> - -+ >
b iCm 1G-T‘i‘ 1G-1‘; 1(;-rll3 iG-TzB
Ss(G) == cos(N-G) (e + e + e T 4 e
_é ¢ - —r. > >
= et cos(n*G) for G =G (19)

zb

= 0 otherwise
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-> . -> - -+
n= (a/8,a/8,c/16) and Gz are the set of G's that contain only G

b

vectors of the zincblende crystal structure (compressed along the
z-axis).

" Similarly the antisymmetric structure factor SA(G) is

> >
o 5> > > >
s (@) = eiG.n i sing*n for G = Géb

= 0 ) otherwise

A (20)

. . . <C.2 .
The antisymmetric cation structure factor SA(G) can be written in the

form —_—
> B ' .
c,x 1 16°Ty/2 + 3 > A
SA(G) =5e 'sin(G-T1/2) cos(G’Tz/Z) (21)

:} ->
in this form, it is easy to show that SE(G) = 0 for G's of the form

G = sz or G = sz + (0,0,1).
-
The anion distortion structure factor Su(G) is
- e i€ -G i Re -i€ -
Su(G) = e12n G (e _1 - 1) + els G (e 1 - l) +
> > N > > (22)
> >, i€ G > =€ G
elY’G [(e 2 —1) + elﬁ-g le 2 - 1)]‘
> . : > . > > :
where Ei = (0/4,0,0), 62 = (0,0/4,0) and B and Y are zincblende lattice
' ->
vectors of the form % = (-a/2,a/2,0), Y = (a/2,0,3c/4). Then for
> > '
G =‘sz: +.+
) i2n-G '
e -> > -> >
Su(a) = A (cos€l G + cos€2 G -2 (23)
> ->
For G = G+ (0,0,1)
>
- eizﬂ.G, B S > > .
.S (G) = =——— 1i(cosE, G - cosE,*G) ‘ (24)
u 4 1 2
-+ -
= 2
For G = G, + (1,0,1/2) |
- eiZH'G > > > >
S (G) = =————— 1i(sin€,*G - sine,*G) (25)
a 4 1 2
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Exchanging cations A and B has the effect of changing u * -u. From

it

the above equations Su(G) S_u(G) for G = G or G = sz + (0,0,1)

zb

but Su(G) = —S_U(G) for G = sz + (1,0,1/2). Typically the nonzero

structure factors SS(G) and SA(G) are of the order of 1, the nonzero
antisymmetric cation structure factors that under the quasicubic model

only mix k states with k + (1,0,1/2) states are typically of the order

-~

+ (0,0,1) (and thié is the

zb b
reason why the I'=X pseudodirect transitione are so weak in all the'A2B4C§

of 1/4. Su(G) ~ 0.02 for G = G or G = G?

compounds studied so far) while Su(G) < 0.1 for G‘=.sz + (1,0,1/2) in
the region where the pseudopotential form factors ére appreciable.
Usually this happens for IG' < 4 (2r/a). 1In view of the values of
the structure factors in Eq. 18, it is clear that the leading term is

the cubic one given by

-

Voubic @ = 8@ (106 + V,(6))/2 + 5,(6) (V{(6) - V,(G))/2 (26)

the antisymmetric cation potential
' C/ Cz, ,C '
v, @) = s,@ v, @
perturbs the cubic band structure mostly at points where k and
k+ (1,0,1/2)states are degenerate or nearly degenerate, and the
distortion potential

- > )
vu(c) = Su(G) vz(c) (28)

which depends only on the anion potential can be considered as only a
small perfurbatiun on the band strutture obtained with Eqs. (26)
and (27). The fact that Eq. (28) depénds only on the anion potential

seems to indicate that it is the effect of this small perturbation

what causes the flip over of the ordering of the I', and FS levels at

4
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9 with respeét to the ordering of

the top of the valence band in ZnSiP
those levels in ZnSiAsz..

In the region |G| < 4(2ﬁ/a) where the pseudopotential form factors.
are assuméd to be different from zero, there are 30 different G vectors,
With 3 different atoms in the primitive‘cell, one needs 90 form factors
to fix the crystalline pseu@opotential, betunately! this number can
be greatly reduced by using the symmetric part of ﬁhe potential VS(G)
the antisymmetric part of the potential VAFG), the antisymmetric cation
pseudopotential Vﬁ‘G) as in Eq. (18). With this, éltotal'of 39 parameters
are needed for the calculation. |

The basis states used to solve the Hamiltonian matrix are plane
waves of wave vector £-+ 6; (akreciprocal lattice_vectoss and Q.inside
the first Brillouin zone). The number of plane waves is bounded by
the relationship ‘(6 + l-c*)2 < El and LESwdin3 perturbation scheme_ is used

> N2
for plane waves such that E1 <k +6)" < E2.

For the band structure shown in Fig. 38, for ZnGePz, El = 7.1 and
E2 = 18.1 and convergence is better than 0.1 eV. For the‘band sﬁructure
shown in Figs. 41 and 45, E1 = 5.1 and E2 ; 18.1 and convergence is about
0.1 eV for the top valence bands and bottom conduction bands but about
0.2 eV for the bottom valenee bands éorresponding ‘to more localized
states, Since we do not‘haye any experimental 1nfofmation on these

valence bands, we believe that a high accurate but costly calculation

is not justified at the present time.
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2. Determination of the Form Factors

~

Basic to the pseudopotential theory, is the concept of transferability3
of atomic pseudopotentrals, i.e., it is assumed that the atomic
pseudopotential in real space for Fhe elements is independent of
crystal structure and composition. Of course, this assumption is
not an exact one, small screening effects which are included in the
empirically determined form factors are expected to change with
environment. In determining the form factors for chalcopyrite compounds
from the known form factors of zincblende semiconductors,vthese
screening effects can be taken into account by noting for example that

the surroundings of a P atom in ZnGeP, are on the average those of

2

GaP while in CdSnP2 are those of InP. Then in extracting the P atomic

pseudopotential for ZnGeP, from GaP and for CdSnP, from InP one is

2 2

accounting correctly for screening effects on the average. In
addition, since the volume per atom of a chalcopyrite semiconductor

is very close to the volume per atom in its zincblende analog, problems
of scaling are minimized for the G vectors with largest structure

>

>
factors i.e., G = G In determining the form factors of ZnGeP2

zb’
we followed two different paths; in the first calculation (band
structure in Fig. 43) we assumed that on the average ZnGeP2 is GaP,

then we used

GaP

[
<

(29)
_ o GaP
(Vl - Vz)/2 =V
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Assuming these two relations and from the known form factors of Ge4 we

get
vVWoav, v, =y L0 Ly ‘ , (30)

The form factors for GaP used are those of Ref..7. The ﬁseudopotential
curves of GaP and Ge were free hand extrapolated and it is assumed that
all péeudbpotentials are zero for G = (4,0,0) 2T/a and that fhe
antisymmetric GaP pseudopotential is zero for G = (é/a,Z/é,Z/c') 2m,
and that the symmetric GaP and Ge pseudopotentials at G = d are

-2/3 E, while the antisymmetric GaP pseudopotential is zero at zero wave
vector. The zinc pseudopotential curve extracted in this way follows

a ratﬁer strénge curve which turns upwards from (G).2 = 4 to (G)2 =3
(in units of (2ﬂ/a)2). This phenomenon, which is also observed by
Cohen and Heine3 for the Zn pseudopotential curveé extracted froﬁ the
pseudopotential form factors of ZnS and ZnSé was not:completely
'underStbod, alfhough it probably arises from non-local effects; We
therefore émoothed_out fhe Zﬁ pseudopotential curve. This in.éreat
ﬁatt accounts for the discrepancies of the theoretical reflectivity
specfra calgﬁiated with this potentials and the experiment. .Ouf
results with these pséuddpotential form factors for #he imagin;ry part
of the dieléctriclfunction_Gz(w), the reflecti;ity R(w) and deﬁsit& bf
states curve D(Ww) are shown in Figs. 37, 39 and 38 respectively and are -
discussed above.

For the band structure of Fig. 36, the pseudopotential of Zn was

extracted from ZnS, the one for P from GaP. All ZnS, GaP and Ge

form factqrs are those of Cohen and Bergstresser4
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We take
Ssz _ ‘
Vchal(G) Y Vzb(G) . (31)
chal . . :

in agreement with the assumption that the real space atomic pseudopotential

is independent of crystal structure and composition.

For the scaling of the form factors we assume that the antisymmetric

form factors of ZnS and GaP are monotonic decreasing functions of wave

vector of the form VS(G) = A/GO. + B for G2 > 3(2“/a)2. For the symmetric
form factors we get the slopes of the pseudopotential curves by assuming
that a homopolar diamond erystal with a éymmetric pseudopotential equal
to that of GaP has the same hydrostatic pressure coefficients as Ge, We
expect this since the GaP and ZnS symmetric C-B form factbrs are the average
of the Si and Ge form factors and it is expécted that the homopolar
contribution to hydrostatic pressure coefficients in GaP and ZnS be
close to the pressure coefficients of Si and Ge. ‘With the values of
the pseudopotentials and its slopes at G = sz we fitted a smooth
polinomial curve such that Vg(0) = ~2/3 E; and V (G” = 16) = 0.

Because of the extraneous behavior of the Zn pseudopotential curve
for low G's, it is very hard to estimate Vi for E’=-(l/a,0,1/c) 27,
the only important parametef for G2 < 3(2ﬂ/a)2,and'this, we egtimated
by using thé known splitting between the A peak (Ei and’Ez) and the
Ec peak in ZnGePz. " '
| For the band structure of ZnGeAs2 shown in Fig. 45, the pseudopotential

of Zn was extracted from ZnSe, the one for As from GaAs, C-B form

factors; the extrapolating proceedure is the same as in the case of
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C(E'= (1/a,0,1/c)2T) was again fitted to give the splitting

pair with Ec; the data used was that of Shileika.40 For

ZnGePz. VA

of the E', E2
the band structures of compressed GaAsvand GaP (Figs. 40b and 36b),
the same extrapolating p:oceedure was used, In setting up the Hamiltonian
matfix it is assumed that the crystal structure is chalcopyrite with
two equal cations and an ideal u (u = 0.25). The compression is given
by assuming the c/a ratio equal to that of the chalcopyrite analog;
The lattice constant is choosen so that the voluﬁe of the compressed
crystal is the same as the volume of the uncompressed crystal to avoid'
hydrostatic pressure compbnenfs.

The zincblende component of the crystalline potential for ZnGeP2
is equal to the crystalline pofential of GaP due to the fact that C-B
symmetric form factors of GaP and ZnSe are equal while the C-B
antisymmetric form factors of GaP are exactly 1/2 the C-B antiéymmetric
form factors ?f‘ZnS. The same assertion is not true for ZnGeAs2
and its analog GaAs; in this case the C-B antisymmétric forﬁ factors
of GaAs ére not 1/2 the C-B antisymmetric form factors of ZnSe. Then
all the differences in band structure between 8aP and ZnGeP2 can be
attributed to the chalcopyrite component of the potential while the
differences between the band structure of.GaAs and ZnGeAsé include
' also'the effects of a different zincblénde coméonent of the potential.
The band structures (Figs. 36 and 40) were calculated along the
A(0,0,kz), Z(kx,kx,O), N(kx,kx’kx)’ A(kx,0,0) and w(l/2,l/2,kz)

directions (the kx component in units of ZN/a, ki component in units

of 27/c" with ¢’ = ¢/2, as through all this work).
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The band structures of ZnGeP2 and ZnGeAs2 should be considered
only approximate, not qnly because of the low valge of Ei used for this
calculation, but and most important because the forﬁ factors that enter
into the chalcopyrite péténtial come oniy from extrapolated values.

Let ué discuss our results for ZnGeAs2 and ZnGeP2 (Figs. 36 and 40)
in more detail: | A

ZnGeAs2'

ZnGeA32 is a direct gap semiconductor. Shileika40 reports three

electroreflectance peaks in the region of the absorption edge at 1.15 eV,
-1.19 eV, 1.48 eV (at room temperature). Removing the spin-orbit splitting,
. with the help of the quasicubic model,39 these peaks correspond to a

Fsvfl transition at 1.29 eV and a Fé-Fl transition at 1.23 eV our

calculated values are Fs-Fl = 1.4 eV and F4—Fl = 1.35 in fair agreement

with experiment. Our calculated value for the crystal fieid splitting

Acr is Acr= 0.05 eV while in experiment is 0.06 eV. The experimental

spih-ofbit splitting is 0.31 eV and very glose to the value of this

parameter in the analog.

Using our identifications of the E structure in ZnGeP_ as a guide,

2
at 2.37'eV; the mean energy

1
we predict an El(l), El(Z) doublet for ZnGeAs

2
of this peak in experiment ié at 2.34 eV. Shileika's experiment shows
only one peak in the E1(3), El(é) region at'2.72 eV; the eﬁergy of

the transitipns from the £Z(Z) valence band to the point of cressing

bof the Z(Z,Q) conduction bands is 2.77 eV in our calculated band structure.

Our calculated interband energies of the X point of the BZ are

X(15,16+17,18) = 1.90 eV ,X(13,14>17,18) = 2.37 eV,X(11,12+17,18) = 3.19 eV,
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this last transition in close agreement with the-exéeriﬁental value
of 3.23 eV:for the En peak in Shileika's dafa. Kwan and Woolley'é49
unpolarized'data is in close agreement with Shileiké's data in the E1
region, an& shows three strucfures in the E2 regidn at 3.8 eV, 4.37 eV
and 4.92 eV. The main peak dccursvat 4.37 eV and probably correspondé
to L, A and A diréct transitions neér the T(X) péint_of the BZ. Our
calculated value for this interband energy is 3.7 eV; the lack of
agreement between theory and éxperiment for these -transitions can be
‘traced back to Cohen and Bergstresser's results thét give values for
the Xsﬂxl transitions that are consistently about 0.5 ev smalier than
experiment’for the Ge, GaA; ZnSe series. Guided from our experience on
ZnGeP2 we expect that X(O,L) -+ X(9) transitions (bands (15,16+19,20))

also contribute strongly to the main E, peak in the'perpendicular

2
polarized spectra; our interband energies for:these transitions are

3.85 eV.  Ba§ed on our identificafions in ZnGePZ, wevconclude that the
small shoulder in, Kwan's data at 3.8 eV is caused by A and A transitions
around the_points (0,0,0.34) and (0.34,0,0), our intefband energies at
these points are 3.55 eV and 3.5 eV respectiveiy;'rv

| Let us‘now discuss the structure of the valence bands. The first
four valence bands corresponding to's—iike states arbund the As are
almost unaffected by the chaléopyripe potential, the main spiittings
occur along the W direction (X to A), at the point A ofvthe Bi the
splitting is 0.88 eV. On the other hand bands 5, 6 and 7 that in the
analog give most of the contribution to the s-like (around the cation)
peak of the density of states curve, are completely distorted by the

chalcopyrite potential, Bands 5 and 6 correspond to s-like states
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around the Ge atom with éome transfer of charge to the Zn atom in band
6. A gap develops between bénds 6 and 7 in a large region of the BZ
and band 7'corresponds to s-like states around the Zn atom. The

most s;riking feature of the band structure shown in Fig. 40 is that
the second F2(X3,W1) s-1like level is almoét degenerate with FS(WZ)

1evel so_ﬁhat what we cqnjecture to be s-like states around the Zn

will be very hybridized with the p-like bands. Thevsame is not true

for our calculated band structure of ZnGePz. A result in this direction
is somewhat expected if one notices that ZnGeAs ié a more covalent

2

crystal than ZnGeP Of course, whether the effect of the chalcopyrite

2.‘
potential is as large as we predict or not will come when X-ray
photoemission spectra or ultraviolet photoemission spectra for ZnGeAs2

become available.

ZnGeP2

ZnGeP2 is a pseudodirect gap semiconductor; Shay et'al.41 report

two small electroreflectance peaks at 2,05 and 2.11 eV corresponding

to the spin-orbit pseudodirect transitions TS—T "in close agreement

3

with Shileika's wavelength modulation absorption spectrum for this
semiconductor at room temperature. Removing the 0.08 eV spin-orbit
. contributions, the ekperimental values correspond to a FS—F3 transition

at 2.08 eV and a Fl—F3 transition at 2 eV; our caiculated values for

these transitions.are r.-r, =2.09ev, ' ~=I'_. = 2.04 eV. The first

5°3 4 3

direct transitions T4—Fl are at 2.47 eV and the‘FSfF1 transitions are
FY

of 2.55 eV (AS-O removed from Shileika's data at 120°K), our calculated

values for these transitions are FS—F1_= 2.28 and T4~Fl = 2.23 in fair

agreement with experiment.
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The downshifﬁ of the first direct gap when_compéred with that of

the antisymmetric cation potential that produces a émall ﬁixing of T

stafes with W states at the top of the valence band and bottom of the‘
conduction bgnd; dn the dthet hand, pseudodirect I'-X dipole mafrix
elements are about 100 times smaller than '-I' dipole matrix elements
indicating the smallness of the I'-X mixing. N(A) transitions near
(0.2,0.3;0.2) (bands 15,16>18) calculated at 2.93 and 2.98 eV correspondingv

46 jata at 3.02 and 3.08 eV.

to the El(i) and El(2) peaks éf Petroff's
The calculated energy of Z(X,Q) transitions near the point of crossing
in the conduction band is 3.46 eV in good ggreement'with the experimenta146v
value of 3.41 eV for the E1(4) peak. At the X point interband energies
corresponding to X(L,0) -~ X(L) transitions ére: 2.58 eV (15,1617,18)
3.03 eV (i3,l4*i7,18) and 3.54 eV (11,12*i7,18). These last transitions
.corregponding to the experimental46 EC, peak at 3.74 eV. As we'pointed‘
out before in this work, we extimate tha; the actualhposition of the Ec
peak in ourvcalculated band.structure is shifted at least 0.1 eV towards
higher energies from the Mb singularity at the X.point, iﬁproving fhe
agreement with experiment. | |

At higher energies the A(A), (kx,0,0) transiuiqns are split; for
kx‘> 0.5 bands 14-17 contribute mostly to the 1 polafization while
bands 13-17. contribute mostly to the | polarization we find a critical
point near (0.5, 0,0) in bands 14-17 with a 4.19 interband energy |
and a critical point near (0.6,0,0) in bands 13-17 with 4.32 eV
interband energy. We associaté these transitions with the first

two peaks in the experimental E, region of the spectrum at 4.17 eV

2
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and 4.3 eV; the agreement here is excellentlbut of courée only a full
zone calculation with the present form factors can prove that our
identification ié correct. A(A) 13-17 transitions near ©,0,0.3) which
we associated with the first structure in the E2 region of the
perpendicular polarized spectrum in our earlier calculation are now
at about 4.15 eV. Our calculated energy for the FS(XS) - F3(X1) transitions
is 4.57.eV in close agreement with the 4.46 eV value for the Eé(Z) experi-
mental peak. The main peak in the perpendicular pdlarization labeled
E;(3) at 4.79 eV in the expérimental spectrum is associated with
X(O,L) > X(0) transitions, our caléulated value is 4.69 eV.

Using our earlier full zone calculation as a guide, (see Table 10)

i
we predict that the main peak in the E, region E2 (3) at 4.68 eV the

2
experimental value for this peak is 4.73 eV,
Our new value for the 4(0.5,0,0) transitions‘in bands 15-18 is

4.8 eV in fair agreement with our earlier identification that corresponds

to the experimental shoulder at 4.92 eV.
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- APPENDTX
CALCULATIONS OF CHARGE_QFNSITIES AND WANNIER FUNCTIONS FROM
A REPRESENTATIVE k POINT IN THE BRILLOUIN ZONE

In this section we will discuss briefly the method of obtaining
a representative E point in the BZ that gives an approximate total
charge density for crystals with a fcc 1attice.33 We also construct a
set of approximate Wannier functions using the same representative
. v
k point.

The Block functions of the system (which are determined up to a phase

factor) are given in terms of the Wannier functions by

— — —>
i8(k) ik-2 = —
e ‘P-lg?n E a, @D v @ (A.1)
=1
—, —
where 9(k) is any real function of k, n is the band. index and £ are the
lattice vectors of the crystal. The band index for a given k is usually
) —
, ; , <
defined in terms of increasing energy i.e., Ef,n EE:n+l and Un’“(k)
— —, —
is a unitary matrix for each k. If Uu n(k) + GUn for every k it is
’
said that the Wannier functions au(;3 are Composite Wanier functions

of the Vv valence bands in the band structure of the crystal.

From Eq. (A.l1) it is easy to show that

N ~-1KT 16 =
au(r—ﬁ) = =1 e ” wﬁ’n ) U a,u k) ...
u=1 _ (A.2)

and that the total charge density in the v valence bands is
14
-—+ 2 —
Py = E p_(¥) E glw[? (r)l E % la &0 |2 Z P, (r) ...
H=1 R 05 )

Let T be all the transformations of the point group of the crystal, the

sum over the valence bands charge density for a given‘f is given by:
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1 2
Lo (=% L L L ha@-D|°+
nT Tk,n N T T u lay
=y "
1 Y rra@-Dat@- -0
N 2 ru ¥ H
V¢®
1 TTY
-1 130 ® +%]-§e“”Z LE,@IY . (A
T u H ' U . .
with - »
—, - * — -—p
F@L')=LZa(@~-2)aEE-TL -2).... (A.5)
- H T 7 H u v
for U =3 for every E’, Eq. (A.4) can be decoupled into four
n,d . mn,H

equations, one for each band (see Ref. 51).
If one can minimize the last term on the_left—hand side of Eq. (A.4)
for some it'the total change density in the valenée band can be approxi-

mated by the term on the left-hand side of'Eq.‘(A.A)_(except for

normalizatipn factors). To do this, Chadi and Cohen_s1 separate the

e d ' —p - b
sum over L' into two parts: one containing all T2' for a given %',
the other containing different sets of 2''s not related by a trans-

‘ gy
formation in the point group of the crystal; F“(EZQ') is independent

of the particular T in the set TL'. Let £ = L. g'such that

Hd

—p —
T(L = & then
(p,g) p.g"’

—— o
w7 thed
Z :e F @D = Z(Ze P’g> F, (F,p) (A.6)
T%0 P\&
If the Wannier functions are well localized, F#(?ﬂp) is small for

ik L
e

’ —
large llp g]; for small lir |, £ P& may be minimized choosing
b .

o . Ps8 g
an appropriate k. The k point proposed by Baldareschi is such that

this sum is zero for the first two nearest neighbors in fcc structure.
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Its coordinates are }; = gﬂ-(0.622, 0.295, 0),.

The error involved in this calculation of charge densify depends
.on the localization df arx;s for the sum over the valgnce bands charge
density, while for individual bands it depends on the localization of
van(;S. Since it is possible to construct composite Wannier functions
a (;3 which are more 1océlized than individuai band Wannier functions,34
it is to be expected that the approximation is better for the sum over
the valence band charge density than for individual bands. We estimate
an error of i3% for the total charge density of Si, comparing our results

using the Baldareschl scheme and those of Walter and Cohen2 at a few

points in ?’space.

We can construct a set of approximate Wannier functions a. 5 (in the sense
’ n

b

that give the same charge density as the Baldereschi point) assuming
that
) .
ik-r v =,
A _ e 16, (k)
¢Etn<;5 = " Uy @ e . .. | QAa.7)
v _ o,n

for K and TE; in the same irreducible part of the BZ. ufg is the
o .

periodic part of d%k . Let I be the irreducible part of the BZ such
o :

that _k’oeI,' then:

. 1 § 11 ‘:Eﬂ—* + I ie.<E3 3,

a (1) =—_———°3—-——3—2:£ fel rUnu.(k)e n g%
He A @7 Ta | T (A.8)

u g,

Tko,n(r)

It is easy t¢ show that the set of functions a o(r - 13 are orthogonal,
. ) B}

- have the proper normalization and that

ED% =8 % o |2 ... (A.9)
| : |
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In:Figs. 41, 42, 43 and 44 we show the approximate:Wannier funétions
for Si along'the (1,1,1) direction., These wave functions were_éonstructed
with Um,n“% 6m,n for gvery-z'and for sim’pli.cit:y''e‘ien(“123 = +] th¢ choice
of sign:depends on the band index and on T and giveérreal symmetric
Wannier functions around the érigin'at the bonding site. |

In Fig: 45, we show the plot of a composite»Wanﬂier functibn
along the (1,1,1) direction. We have assumed that g (k) and Un,“@'
are only functions of n and T: again, eieﬂ(is = +] depending on n
and T.

Along the (1,1,1) di?ection, the only transférmations on‘irinvolved

in the calculation are of the form R and IR where R = (84)n (n=0,1,2,3)

and I is the inversion operator. For real Wannier functions, -
-

I . I _’ . .
elen(k) = elon(lk) and Un #(ES = Un “(f§3. The Wannier function
) 3 b4

, C ' : mt+1
shown in Fig. 37, al’o(?s, i8 constructed with Un,l(R )= ian,m'

Comparing Fig. 45 with Figs. 41, 42, 43 and 44, we see that even for

this simple choice of Un o’ the composite Wannier function is more
. i

localized than the individual band Wannier functions.
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V. D. Prochukhan and A. Shileika, Phys. Stat. Sol. (b) 53, 745 (1972)
Isee also Ref. 40, 41, 44, 46, 47 and 49]).

Y. Petroff, S. Kohn and Y. R. Shen, Raper given at the International

Conference on Modulation Spectroscopy,vTuesdhg 1972, Noﬁember 23—26,
1972. - | |

S. E. Stokowski, Phys. Rev. B6, 1294 (1972).

C. Varea de Alvaregﬂand M. L, Cohen, toibe:pubiished.

C.‘C. Yx.Kwap énd J. C. Woolley;.Canad. J,lPhys. ﬁg, 2085 (1970.

J. Zak, The Irreducible Representations of Space Groups

(Benjamin, New York, 1969).
A. Baldareschi, Phys. Rev. B 7, 5212 (1973);

D. J. Chadi and M. L. Cohen, Phys. Rev. B 7, 692 (1973).
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Table I. >Comparison of the main energy gaps between model potentials
I, II, III and those calculated by Cohen and Bergstresser.

-L X -X

Fostlar ToseTus Tosrly Tose¥y Lywly X=X
Exp 1.0 3.4 0.8 0.1 ,. 2.1 4.3
cB 1.2 3.5 0.9 1.0 2.0 3.8
1 1.0 2.1 0.41 0.3  1.74 3.5
11 0 2,20 -0.07 0.25 1.24  3.35

IIr -3.08 3.4 -1.46 -0.07 -0.19 2.85




Table II;

A comparison of the form factor (Ry) of Cohen and Bergstresser

(Ref. 2) with the form factors used in the present calculation

The lattice constants are also given.

InAs — InSb‘ InP Gaf
Present Present Present } Present’
C-B* Work C-B* Work C-B* Work C-B* Work

Lattice Constant | 6.04 A | 6.053%%| 6.48 | 6.473%% | 5.86 | 5.852 | 5.44 | 5.44

ve(3) ~0.22 Ry | -0.2699 |-0.20 | -0.2547 | -0.23 | ~0.2704 | -0.22 | -0.225

VS(S) - 0.0 -0.0196 0.0 0.0188 d.Ol 0.0345 | ‘0.03 . 0.024

Vs(ll) 0.05 0.0411 -0.04‘ 0.0452 0.06 0.0442 ~0.07 0.076

VA(3) _ 0.@8 -0.0775 0.06 0.0302 0.07 0.0888 0.12 0.128
: VA(4) . / 0.05 0.0384 0.05. 0.0012 0.05 0.054 0.07 0.053

Orbic Parapeter 0.00137 0.00203

Non—ﬁetallig‘ : C

Spin-Orbit 0.00109 0.00260

Parameter i

*
M. L. Cohen and T. K. Bergstresser, Phys.

Rev. 141, 789 (1966).

H% _ .

V. G. Giesecke and H. Pfister, Acta, Cryst
Solid State 2, 2087 (1961)
in the case of GaP.

.11, 369 (1958). S. I. Novikova, Soviet Physics
Lattice constants were scaled to a temperature of 5°K, except
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Table ITII.  Identification of transitions responsible for the prominent
theoretical and experimental reflectivity structure in InAs,
including location in the Brillouin zone, energy, and
symmetry of calculated critical points.

Reflectivity Structure Assoclated Critical Points (InAs)

Theory Exper.* Location in Zene Symmetry Cp Energy
0.46 eV | 0.42 eV** | T'(4-5)(0,0,0) MO 0.46 eV
2,58 eV | 2.61 eV A (4-5)(0.3,0.3,0.3) Ml 2,47 eV
L(4-5)(0.5,0.5,0.5) M1 2.48 eV

2.85 eV | 2.88 ev A(3-5)(0.3,0.3,0.3) . My 2.74 eV
L(3-5)(0.5,0.5,0.5) Ml 2.75 eV

4.37 eV | 4.39 ev A (4-5)(0.7,0,0) M1 4.3 eV
I'(4-6) (0,0,0) — 4.37 ev

4.47 eV | 4,58 eV X(4-5)(1.0,0,0 Ml 4.43 eV
Vol. near (3-5)(0.7,0,0) - 4.43 eV

4.7 eV | 4.74 eV £(4-5)(0.7,0.7,0) M2 4.65 eV
' 4A(3-6)(0.3,0,0) : Ml 4,69 eV

5.3 eV 5.31 eV Vol. near A(4-6)(0.7,0,0) - 5.25 eV
5.57 eV | 5.5 eV Vol. near A(3-6)(0.7,0,0) -— 5.39 eV
6.05 eV | 6.5 evt L(4-7)(0.5,0.5,0.5) _ M0 5.91 eV
A(4-7)(0.4,0.4,0.4) ' Ml 5.96 eV

6.44 eV | 6.8 eVt L{3-7)(0.5,0.5,0.5) MO 6.18 eV
A(3~7)(0.4,0.4,0.4) : : M1 6.23 ev

7.37 ev 7.1 evt Vol. near (4-7)(0.4,0.3,0.1) - 7.05 eV

*
R. R. L. Zucca and Y. R. Shen, Phys. Rev. Bl, 2668 (1970), except as

listed below.
*%k : . :
I. R. Dixon and J. M. Ellis, Phys. Rev. 123, 1560 (1961).

.f.
- H. Ehrenreich, H. R. Phillip and J.-C. Phillips, Phys. Rev. Lett. 8,
© 59.(1962). These values have been adjusted to a temperature of 5K,
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Table IV. 1Identification of transitions responsible for the
prominent theoretical and experimental reflectivity.
structure in InSb including location in the
Brillouin zone, energy and symmetry of the
calculated critical points.

Reflectivity Structure Associated Critical Points (InSb)

Theory Exper.* Location in Zone 7 'Symmetry cp Energy.
10.26 eV | 0.24 ev** | T(4-5)(0,0,0) | My 1 0.26 eV
2.03 eV | 1.98 eV A(495) (0.3,0.3,0:3) Mg 1.94 eV
| | L(4-5)(0.5,0.5,0.5) | M 2.0 VeV‘
2.60 eV | 2.48 eV A(3—5)(0.3,0.3,0.3) : My 2.5 eV
L(3-5)(0.5,0.5,0.5) M, 2.55 ev
3.65 eV | 3.39 eV A(455)(0.7,0,0) _ . Lo 3.65 eV
3.83 eV | 3.78 eV 'A(3—5)(o.7,o,0) - | M | 3.83 ev
4.15 eV | 4.23 eV |A(3-6)(0.2,0,0) | oM 3.95 ev
| L(4-5)(0.7,0.7,0) N My | 41 ev

4.48 eV | 4.56 eV ; vol. near A(4—6)(0;5,b,0) ' - | 4.75 eV
4.73 eV | 4.75 eV |A(4-6)(0.7,0,0) - M3  4.75 v
4.95 eV | 4.92 eV L(4-6)(0.5,0.5,0.5) | My | 4.86 eV
A(4-6)(0.4,0.4,0.4) oM 4.87 eV

£ (3-6) (0.7,0,0) 1V M, 4.94 eV

5.3 eV | 5.33 ev L(3-6)(0.5,0.5,0.5) N, 5.41 eV
A(3-6) (0.4,0.4,0.4) oM | 5.3 e

6.01 eV | 5.96 eV L(3-7)(0.5,0.5,0.5)  ,M0. 5.64 eV
| A (3-7)(0.4,0.4,0.4) oM 5.69 eV

- .
R. R. L. Zucca and Y. R. Shen, Phys. Rev. Bl, 2668 (1970), except for b.
*%k . , :

H. Ehrenreich, J. Appl. Phys. Suppl. 32, 2155 (1961).




~-87-

Table V. Identification of transitions responsible for the prominent
’ theoretical and experimental reflectivity structure in InP,
including location in the Brillouin zone, energy and
symmetry of calculated critical points (cp).*

Theory .Experimeﬁt Location in Zone ' Symmetry cp Energy
1.43 évg* 1.42 evt I'(4-5) (0,0,0) | Mo 1.5 ev
3.23 eVkx | 3.24 eV L(4-5)(0.5,0.5,0.5) g M, 3.2 eV
3.37 eVxx 3.38 eV A(4-5)(0.3,0.3,0.3) My 3.22 eV
4.75 eV 4.78 eV A (4-5) (0.8,0,0) _ M, 4.7 eV

X(4-5)(1.0,0,0) - M, 4.71 ev
Volume near (4-5)(0.3,0,0) - 4.88 eV
5.06 eV 5.10 eV £(4-5)(0.7,0,7,0) _ M, 5.02 eV
(5.05 eV) . .
5.48 eV (5.25 eV) Vol. (3-6)(0.3,0.1,0) - 5.5 eV
5.86 ¢V | 5.77(5.6) | A(4-6)(0.7,0,0) M, 5.77 ev
6.47 eV (6.57 ev) L(4-6)(0.5,0.5,0.5) : M, 6.2 eV
A(4-6)(0.4,0.4,0.4) My 6.28 eV

*
Data in parentheses from Woolley-Vishnubhatla, Canad. J. Phys. 46, 1769
(1968). Other data from this paper's 5°K experiment.

&%
Corrected to include spin-orbit corrections.

TW. J. Turner, W. E. Reese and G. D. Pettit, Phys. Rev. 136, Al467 (1964).
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Table VI. Identification of transitions responsibie for the promihent
theoretical and experimental reflectivity structure in '
GaP, including location in the Brillouin zone, energy and
symmetry of calculated critical points (cp).
Theory Experimept Location in Zone. Symmetry cP Energy -
2.79 eV 2.78 eV I'(4-5) (0,0,0) My 2.79 eV
| 2.86 eV \
3.70 eV | 3.69 eV | L(4-5)(0.5,0.5,0.5) M, 3.40 eV
A(4-5)(0.15,0.15,0.15) :‘ W 3.76 eV
4.7 4.74 A(4-5) (0.71,0,0) - M, 4.50 eV
| X(4-5)(1,0,0) oM 4.57 eV
5.3 5.31 A (4-5) (0.30,0,0) M3 4,72 ev
Z(4-5) (0.50,0.50,0) M, 5.20 eV




e
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Table VII: Cryétal parameters of Azsch
chalcopyrite semiconductors.
€ o
Compound a c 2-c/a u 4u-1  |e-40]
MgSiP2 5.718 10.109 .232
Z'nSiP2 5.398 10.434 .067 .2691 0.076  0.009
' ZnGeP2 5.465 10.71 .040 .2582  0.033 0.007
ZnSnP2 5.63 11.30 .000 239 -0.044  0.004
CdSiP2 5.678 .10.43 .163 |
CdGeP2 5.741 10.776 .123 .283 0.132 0.009
CdSnP2 5.900 10.93 .148
ZnSiAs2 5.606 10.89 .057
ZnGeAs2 5.672 11.15 .034 .264 °  0.056 0.022
ZnSnAs2 5.852 11.704 .000 .239  ~0.044 | 0.044
CdSiAs_2 5.884 10.879 .151
CdGeAs2 5.943  11.22 112 .285 0.144 0.032
CdSnAs 6.092 11.922 .043 .261 0.044 0.001
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Table VIIT. Experimental values of ¢, and comparison with those
predicted using Pauling's* additive radii of atoms (when
in tetrahedral covalent bonds and Phillips and
VanVechten 's** covalent radii for the elements.

o ) o] B o .

Compoﬁnd - Experimental Pauling Phillips and VanVechten
ZnSiP2 . 0.076 0.089 0.066

ZnSiAs, , | 0.086 | 0.061

ZnGeP2 0.033 0.057 0.0

ZnGeAs,, 0.056 0.055 ; 0.0

ZnSnP,, ~0.044 -0.055  =-0.110

ZnSnAs, -0.044 -0.053 —0.107

2

*
L. Pauling, The Nature of the Chemical Bond (Cornell University Press,
N. Y., 1960). : v

*k : : ' : .
J. A. VanVechten and J. C. Phillips, Phys. Rev. B2, 2160 (1970).
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Table IX. Energies and Pronounced polerizations of the
reflectivity spectra of ZnGePz.

Experiment 1 Experiment 2 Experiment 3
5°K 120°K 320°K 300°K
A 2.46 2.39 10 2.39 I
B 2.53 2.46 1 2.40 1
C 2.59 2.52 L1 2.48 1 (L)
E (1) 3.0210,1 | - 3.02 2.97 1) 2.871
2.92 1
E,(2) 3.08 L, 3.15 3.09 L 3;05 I
E,(3)  3.210D) 3.2 330 33201
E((4) 3.411 3.48  3.411Q1)  3.64 IL
E. 3.74(3.72) I, 3.75  3.710,0  3.83 L
E,(1)  4.17 1 | 4.14 4.05 1

Experiment 1. Modulated Reflectivity, Y. Petroff,
S. Kohn and Y. R. Shen, Paper given at the Inter-
national Conference on Modulation Spectroscopy,
Tucson, 1972, November 23-26, 1972.

Experiment 2. Thermoreflectance, A. Raudonis,
V. S. Grigoreva, V. D. Prochukhan and A. Shileika
Phys. Stat. Solidi (b) 57, 1973.

Experiment 3. J., L. Shay, B. Tell, E. Baehler and
J. H. Wernick, Phys. Rev. Lett. 30, 983 (1973).
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Table X. Reflec;ivity ;truqture of'ZnGePz.
Theory | Experiment?| Polarization | Peak Ldéatiou in Zcne Energy.(eV)
2.34*f L A ~l"§ - l‘i 2.31%
| 2.40%% 1 B -1 2.27%
2.40%+ m < -5 2.40%
_ 3.05%
3.04 I E, (1) | XX, (15,16-17,18) 3.04;3.03*
3.41 3.02 e Nj-N) (16-17)(0.2,0.2,0.2) | 3.42%
. 3.35%
3.37 L E[(2) | X=X (13,14-17,18) 3.36;3'37*
3.41 3.08 n Nl N,-N (15-17)(0.2,0.2,0.2) | 3.50
3.6 3.2 L) E|(3) | N,-N,(16-17)(0.3,0.3,0.19) | 3.6
3.9 3.41 _ L E, (4) 2:2-21(15-13)(0.25,0.25,0) 3.95
4.0 3.74(3.72) i) 'EC X,X; (11,12-17,18) | 3.9
A(13-17)(0,0,0.6)
4.77 4.17 L 1312(1)_ 2(14-17) (0.25,0.25,0) 4.6
4.76 | 4.3 I ED(1) | A(15-17)(0.34,0,0) 4.76
4.6 4.46 1 E, (2) r-T,(13-18) 4.77
5.05 4.73 ! .E';(:*) ' (0.16,0.5,0) (14-17) 5.05
4.96 4.79 1 512(3) X(16-20) and along 4.96
5.21 4.92(4.93) Q) Egm) A(15-18)(0.5,0,0)

%
Spin-orbit included.

*k . _ :
J. L. Shay, B. Tell, E. Baehler and J. H. Vernick, Phys. Rev. Lett. 30, 983 (1973).

fY. Petroff, S.

Kohn and Y. R. Shen, paper given at the International Conference

on Modulation Spectroscopy, Tucson, 1972, November 23-26, 1972. Except for *¥;

-
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FIGURE CAPTIONS-:

Fig. 1. Pseudopotential parameters used in this work together with the
Ge pseudopotential parameters of Heine and Animalu5 and Cohen
and Bergstresser.

Fig. 2. Band structure for model pseudopotential I.

Fig. 3. Electronic charge density in the (1,-1,0) plane for model I
(summed over the valence bands).

Fig. 4. Band structure for model IT,

Fig. 5. Electronic charge density in the (1,-1,0) plane for model II
(summed over the valence bands).

Fig. 6. Electronic charge density in the (1,-1,0) plane for the first
valence band for model I.

Fig. 7. Electronic charge dansity in the (1,-1,0) plane fqr the firsf
valence band for model II.

" Fig. 8. Band structure for model III.

'Fig. 9. Electronic charge density in the (1,-1,0) plane (summed over
the valence bands) for model III.

Fig. 10. Band structure for the Fermi-Thomas model.

Fig. 11. Electronic charge density in the (1,-1,0) piane (summed over
the valence bands) for the Fermi—Thomaé model.

Fig. 12. Electronic band structure of InAs along the principal symmetry
directions in the Brillouin zone. Some bands slightly split
by spin—orbit interaction are drawn és degenerate because of

the smallness of the splitting.



Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

13.

14,

15.

16.

17.

18.

19.

20.
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Electronic band Strﬁcture of inSb along the prinéipal symmetry

directions in the Brillouin zone. Some bands slightly split

. by spin—-orbit interaction are drawn as degenerate because

of the smallmess of the splitting.

Electronic band structure of InP along thé principal symmetry
directions in the Brillouin zone. The aottéd line represents
the corrected band structure E(k) = EEfM(k) - akz;

Calculation 6f the imaginary part of the frequency dependent
dielectric function for InAs.

Calculation of the imaginary part of the frequency dependent
dielectric functibn for InSb.

Calculation of the imaginary part of the frequency dependent -
dielectric fuﬁction for InP.:

Calculation and measured reflectivity for InAs. Experiment 1
is H. Ehrenreich, H. R. Philipp, and J.'C. Phillips, Phys. Rev.
Letters 8, 59 (1962). Experiment 2 is S. S. Vishnubhatla

and J. C. Woolley, Canad. J. Phys. ﬁg,v1769 (1968). |
Calculated and measured reflectivity fof InSb. Experiment 1
is H. Ehrenreich, H. R. Philipp, J; C. Phillips, Phys. Rev.
Letters 8, 59 (1962). Experiment 2 is S. S. Vishnubhétlavaﬁd |
J. C. Woolley, Canad. J. Phys. 46, 1769 (1968).

Calculated and measured reflectivity for InP. Experiment 1

is M. Cardona in Semiconductors and Semimetals, R. W. Willardson

and A. C. Beer, eds. (Academic Press, N. Y., 1967),
p. 138. Experiment 2 is S. S. Vishnubhatla and J. C. Wooley,

Canad. J. Phys. 46, 1769 (1968); experiment 3, Ref. 18.
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Fig. 21. Comparison of the theoretical and experimental modulated
reflectivity spectrum for InAs. The exﬁerimentai spectrum
is from R. R. L. Zucca and Y. R. Shen. Phys. Rev. EL; 2668
(1970). Prominent structure is identified.

Fig. 22. Compérison'of the theoretical and experimental modulated
reflectivity spectrum for InSb. The experimental spectrum
‘is from R. R. L. Zucca and Y. R. Shen. Phys. Rev. Bl, 2668
(1970). Prominent structure is identified.

Fig. 23.  Comparison of the theoretical and éxpérimental modulated
reflectivity spectrum for InP. Experimental curve is at 5°K.

Fig. 24. 'Compariéon of the theoretical (J. P. Walter and M. L. Cohen,
Phys. Rev. 183, 763 (1970)) and experimental modulated
feflectivity spectrum for GaP. Experimental curve is at 300°K.

Fig. 25. Location of atoms in the primitive cells. A section of the

| (1,-1,0) plane is shown bounded by dashéd lines.
Fig. 26. InAs charge density—-sum of valence bands 1-4,
Fig. 27. InSb charge density--sum of valence bands 1-4.

Fig. 28. Pressure dependences of a few important gaps in Si.

Fig. 29. Electronic charge demsities corresponding to the FZS" F;,,
L;, and»Xi as function of position along the (1,1,1) direction.

Fig. 30. ‘Valence band charge densities as function of position in the
, (1,-1,0) plane for Si at OIk—bar (a) and 120 k-bar (b) of
pressure,

Fig. 31. Valence band charge density in the (l;-l,O) plane for InP

at 0 k-bar of pressure.



Fig. 32.°

Fig. 33.

Fig. 34,

Fig. 35.

Fig. 36.

Fig. 37.

Fig. 38.
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Valence band charge density in the (1,-1,0) plane for InP

at 100 k-bar of pressure.

Irreducible part of the chalcopyfite Brillouin zone. Dashed
lines zepresent the "practical irreducible part of the

Brillouin zone".

Planes k_ = 0 (a), k, =1 (b), k= 1/2 (c) of the zincblende

Brillouin zone and how they map into the plane kz = 0 of the

. chalcopyrite Brillouin zone (d). .Points marked by (x) of

(a), (b) and (c) map into the point T of (e).

Planes kx = ky (a), (1 - kx) = ky (b) of the zincblende

- Brillouin Zone. Figure (c) shows the N plane of the chalcopyrite

BZ and (d) the folding in process. Points marked by (x) of

- (a) and (b) map into the point T of (c).

(a) Band structure of ZnGeP form factors of Zn extracted

2’

from ZnS, of P from GaP, for Ge the form factors are

extrapolated from the Ge C+B form factors,t'(b) Band structure
of GaP stressed along the (0,0,1) axis; the c/a ratio is that
of ZnGePZ. |

Calculation of the imaginary part of the frequency dependent

"dielectric function for XnGeP,. The form factors used are

2

such that the zincblende component is the séme as GaP. The
chalcopyrite component was extracted from this assumption and
the known form factors of Ge.

Density of states curve for ZnGeP, and corresponding band

2

structure. The parameters used in this calculation are the

same ones as those in Fig. 42.



Fig. 39.

Fig. 40,

Fig. 41.

Fig. 42,

Fig. 43.

Fig. 44.

Fig. 45.
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Theoretical and experimental reflectivity spectra for ZnGePz.
The parameters used in this calculation are the same ones

as those in Fig. 42.

(a) Band Structure of ZnGeAsz, form factors of Zn extracted
from.ZnSe, of As from GaAs, for Ge, the form factors are
extrapolated from the Ge C-B form factors. (b) Band structure
of GaAs stressed along the (0,0,1) axis; the c/a ratio 1is
that of ZnGeAsz.

Wannier function élong the (1,1,1) direction corresponding
to the first valence band of Si.

Wannier function along the (1,1,1) direction corresponding
to the second valence band of Si.

Wannier function along the (1,1,1) direction corresponding
to tﬁe third valence band of Si.

Wannier function along the (1,1,1) direction corresponding
to the fourth valence band of Si.

Composite Wannier function along the (1,1,1) direction

corresponding to the four valence bands of Si.
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LEGAL NOTICE

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Atomic Energy Commission, nor any of their employees, nor
any of their contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights.




o, e

<

TECHNICAL INFORMATION DIVISION
LAWRENCE BERKELEY LABORATORY
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720





