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Abstract

In human social interactions, decisions are naturally influenced
by both individual needs and the needs of others. However,
it remains unclear whether cognitive robots exhibit similar
needs-guided decision-making characteristics. In this study,
we design a collaborative tracking task to evaluate this phe-
nomenon. Specifically, we develop a needs-guided reinforce-
ment learning framework that enables robots to autonomously
learn and shape behavior by considering both their intrinsic
needs and those of others. Our experiments highlight that the
robots’ inherent needs play a more crucial role in decision-
making than the needs of others. In essence, our model estab-
lishes an interpretable foundation for applications in cognitive
robotics.
Keywords: needs-guided; reinforcement learning; robotic
decision-making

Introduction
Needs play a pervasive role in human social interactions, pro-
viding the foundation for human decision-making. Actually,
individuals navigate their actions and decisions in alignment
with their internal needs (Leont’ev, 1971). Moreover, humans
possess the ability to anticipate the needs of others, enabling
them to seize anticipated opportunities or proactively avoid
predictable trouble (Zhao & Zhao, 2023). Figure 1 exem-
plifies a human interaction scenario where the police aim to
catch the thief. By predicting the thief’s internal needs, the
police can adjust their own actions accordingly.

While decision-making guided by both an individual’s own
needs and the anticipated needs of others, referred to as
needs-guided decision-making (Bancerek M, 2023), is preva-
lent in human interactions, research on needs-guided robotic
decision-making remains limited.

Actually, human needs are a form of their desires, and the
ability to predict the desires of others is commonly referred
to as the theory of mind (Premack & Woodruff, 1978) in cog-
nitive science. A great deal of study has been dedicated to
imbuing robots with cognitive capabilities to enhance their
decision-making capabilities (Wu S A, 2023; Yuan et al.,
2022), exemplified by frameworks such as the Belief-Desire-
Intention paradigm (Georgeff, Pell, Pollack, & Tambe, 1998).
Yet, these efforts often rely on decisions made by black-box
neural networks (Oguntola, Campbell, Stepputtis, & Sycara,
2023; Rabinowitz, Perbet, Song, Zhang, & Eslami, 2018) or
Bayesian theory (Wu, Wang, Evans, Tenenbaum, & Parkes,
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2021), lacking an exploration of robotic intrinsic motiva-
tion. Simultaneously, needs theory is an approach compa-
rable to the theory of mind (Sebastian et al., 2012), highlight-
ing that intrinsic needs drive individuals to take specific ac-
tions (Ivancevich, Matteson, & Konopaske, 1990). Although
some studies (Yang & Parasuraman, 2023; Sorin, 2009) in-
tegrate Maslow’s Hierarchy of Needs (Maslow, 1943) into
robotic tasks, they often fall short of explicitly verifying the
influence of needs on robotic decision-making. Additionally,
these approaches tend to overlook the impact of other robots’
needs on individual decisions. Consequently, it remains un-
clear whether needs, both one’s own and others needs, can
facilitate robotic decision-making tasks.

Figure 1: Example of police catching a thief. Police officers aim
to apprehend the thief promptly, and they predict the thief’s needs
to infer his future behaviour and guide their own actions. Left: The
policeman predicts that the thief will commit theft in the mall, while
the policewoman predicts that he will drive away from the parking
lot. They strategize their actions to apprehend the thief. Right: The
policeman adjusts his actions, anticipating that the thief will head to
the parking lot. Simultaneously, the policewoman observes the thief
attempting to escape and accelerates her pursuit.

To address these gaps, we have developed a novel compu-
tational framework to investigate how competing models of
needs theory can be implemented in robotic decision-making
architectures and how they affect robotic decision-making.

In this study, we propose a needs-guided independent re-
inforcement learning approach designed to address a dy-
namic task which encompasses both cooperation and con-
frontation. Specifically, our experimental scenario involves
an aerial robot and a ground robot jointly tracking a target.
We focus on the integration of robots’ own needs and pre-
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dictions of target needs for decision-making. Through exten-
sive experiments, our collaborative team showcased the abil-
ity to effectively track the target under various constraints.
Furthermore, our experiments highlight the general applica-
bility of needs theory within robotic societies. To the best of
our knowledge, this is the first model that integrates multiple
needs to guide robotic decision-making behaviors.

Related Works
Needs Theory in Psychology
Needs theory is a well-established concept in psychol-
ogy science, validated through extensive human experi-
ence (Ivancevich et al., 1990). Notable theories include
Maslow’s Hierarchy of needs (Maslow, 1943), the ERG
Needs (Alderfer, 1969), Herzberg’s Motivation-Hygiene
Theory (Hall & Williams, 1986), and McClelland’s Needs
(McClelland & Boyatzis, 1982).

Maslow’s Hierarchy of needs Theory is one of the earliest
theories, including physiological, safety, social, esteem, and
self-actualisation needs (Maslow, 1943). Maslow believed
that there is a hierarchy between these needs, and these needs
cannot coexist (Maslow, 1943). However, in reality, humans
may experience multiple needs simultaneously. For instance,
individuals may strive to fulfill both self-actualisation needs
and the basic physiological needs.

Alderfer proposed three fundamental human needs: ex-
istence, relatedness, and growth, named as ERG needs
(Alderfer, 1969). Specifically, existence needs entail ensur-
ing basic human safety, relatedness needs refer to maintain-
ing interpersonal relationships with others, and growth needs
refer to realizing personal aspirations. Unlike Maslow’s the-
ory, Alderfer argued for a range rather than a strict hierar-
chy among these needs. This paper aligns with ERG theory,
considering it to be more congruent with human cognition
(Acquah, Nsiah, & Antie, 2021), and the experiments con-
ducted are grounded in ERG needs.

Other needs theories concentrate on specific areas. For in-
stance, Herzberg’s Theory (Hall & Williams, 1986) focused
on job satisfaction, and McClelland’s Needs (McClelland &
Boyatzis, 1982) proposed developmental needs. These theo-
ries are not generally representative.

Needs Theory in Multi-robot Interactions
While needs theory is extensively applied in human interac-
tions, its application in robotic decision-making has received
relatively less attention. Actually, once humans have set goals
and constraints for robots as their internal needs, robots strive
to fulfill these requirements. Additionally, understanding the
psychological needs of others enables robots to avoid trou-
ble and develop strategies (Zhao & Zhao, 2023), which is
crucial for effective participation in multi-robot collaborative
and competitive interactions.

The high efficiency of needs-driven heterogeneous robot
collaboration has been demonstrated (Yang & Parasuraman,
2020). However, each robot’s needs are treated as inde-

Table 1: Robot settings in the experiment.

Robot
Type

X-axis
speed (m/s)

Y-axis
speed (m/s)

Observable
range (m)

Communication
range (m)

RA -3.5∼3.5 -3.5∼3.5 10 15
RG -2.0∼2.0 -2.0∼2.0 2 15
RT -2.0∼2.0 -2.0∼2.0 2 –

pendent, which does not align with the existing needs the-
ory. In contrast, (Yang & Parasuraman, 2023) takes a step
further by applying Maslow’s Hierarchy of Needs (Maslow,
1943) to control a single robot. However, due to the limita-
tions of Maslow’s theory, it is difficult for a robot to simul-
taneously meet multiple needs at any given moment. This
scenario is unlikely in reality, where robots must prioritize
safety while also fulfilling human tasks. These aforemen-
tioned studies do not explicitly explain the relationship be-
tween needs and robotic decision-making, including both the
robot’s own needs and those of others.

Given the scarcity of robotic decision-making using needs
theory, this paper attempts to answer two fundamental ques-
tions: 1) how ERG-needs theory can be integrated into a robot
decision-making architecture, and 2) the relationship between
needs and robotic decision-making.

Method
Task Description
In the considered task, an aerial robot and a ground vehi-
cle robot collaborate to track an intelligent target, which is
widely applied in the field of public safety in urban cities
(Yu, Han, Chen, Guo, & Yu, 2021). This challenging task
involves both intra-team collaboration among robots in a het-
erogeneous team and team-versus-target confrontation.

Specifically, the heterogeneous team composes of RA (a
UAV) and RG (a UGV). They collaborate to track a dynamic
target RT (a UGV). Due to the limitation of their observable
range, robots cannot obtain global positions when they are
beyond their threshold range. Simultaneously, robots must
avoid collisions with static obstacles as well as other robots.
To synchronize collaboration within the heterogeneous team,
RA and RG need to maintain a certain communication range
to ensure effective interactions. Moreover, each robot makes
decisions independently. The overall goal of RA and RG is
to ensure the target within their observable range, preferably
at close range. RT dynamically adjusts its strategies in real-
time to evade tracking by aerial-ground robots. This makes
the tracking task more challenging.

Our simulation environment is built on Bullet Physics
(Coumans & Bai, 2016), where static square obstacles of
varying heights are systematically distributed, presenting po-
tential impediments to the navigation of both aerial and
ground-based robotic entities. In each episode, aerial-ground
robots start from a free space in the environment randomly,
while the target RT starts around them. RT adopts adversarial
strategies based on real-time situations to evade tracking.
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Agent Modeling
For the considered task, we model it as a decentralized par-
tially observable Markov decision process (Dec-POMDP)
(Oliehoek & Amato, 2016). The whole process is governed
by the tuple < S ,OA,OG,OT ,AA,AG,AT ,rA,rG,rT ,P >,
where S , O, A , r, P denote state space, observation space,
action space, reward function, and environment state transi-
tion probability, respectively. Notably, the settings of each
robot are detailed in Table 1, as we will discuss later. The su-
perscript t ∈ {1,2, ...,T} denotes the time step. At each time
step, robots receive partial observation from the environment
and decide actions based on their policies. Then the state is
updated from the environment state transition probability P .
Meanwhile, each robot receives its immediate rewards from
the environment. The robot RA intends to maximize its ex-
pected return EπA

[
∑

T
t=1 rt

A

]
by learning its policy πA based

on model-free independent reinforcement learning. Formally,
RG and RT have the same objectives as RA.

Robot observations. Similar to (Young & Tian, 2019),
RA has access to a top-down semantic map along with RT ’s
orientation. Each pixel of the semantic map corresponds to
an object category represented as a one-hot vector, including
categories of free space, obstacles, and more. Observations
of RG and RT are similar to RA, but have a smaller observable
range from their front-view.

Robot decision-making level actions. The ground robot
RG and the target RT use Mecanum wheels so that they can be
controlled by a 2-D continuous vector consisting of linear ve-
locity along the x-axis and y-axis. Similarly, the quadcopter
RA employs a 2-D continuous action space to enable omnidi-
rectional movement.

Communication in the heterogeneous robot team. RA
and RG in the heterogeneous robot team can freely exchange
information, including their observations, individual needs,
and predicted target needs, within their communication range.
They collaborate by complementing observational informa-
tion and negotiating to predict needs of the target.

ERG needs and rewards for robots. According to ERG
theory (Alderfer, 1969), existence, relatedness, and growth
are three fundamental needs of humans, serving as intrinsic
factors that drive humans to take specific actions (Caulton,
2012). To verify whether robots with cognitive capabilities
also exhibit needs-guided actions as humans do, we intro-
duce the existence need NEi , the relatedness need NRi , and the
growth need NGi for the robot i based on ERG theory. Specif-
ically, the ERG needs for heterogeneous team members are

NEi =
n

∑
j=1

1 [dist(Ri,obstacles j)< Dcoll ] (1)

NRi =
1 [dist(RA,RG)< Dcomm]

max(dist(RA,RG),dsa f ety)
(2)

NGi = max
(

1−2∗ |dist(Ri,RT )−d∗|
Dobs

,−1
)

(3)

where n represents the number of obstacles in the environ-

ment. 1[·] represents a conditional judgement, returning 1 if
the condition in the brackets is true and 0 otherwise. Dobs is
the maximum observable range of the robot. d∗ is the best
tracking distance from the target. Equation (1) represents
the existence need NEi of robot i, indicating its safety per-
formance at a given moment. NEi ’s value increases when the
robot moves further away from a risky object (e.g., an obsta-
cle, a robot) beyond its safe range Dcoll . The relatedness need
NRi of aerial-ground robots ensures that they can communi-
cate within a communication range Dcomm, which is defined
as Equation (2). The growth need could guide robots to per-
form their assigned tasks to the best of their abilities. The
growth need NGi of aerial-ground robots aims to track the tar-
get as closely as feasible, given by Equation (3). When the
target is within the robot’s field of view (Dobs), we set the
need as a negative linear correlation between their distances.
When the target is outside the robot’s Dobs, the robot’s deci-
sion is meaningless (Zhong, Sun, Luo, Yan, & Wang, 2019),
and the need is set to −1.

The existence need of the target (NET ) is similar to that
of aerial-ground robots, as referred to in Equation (1). The
relatedness need NRT must ensure that the target remains as
far away from being tracked as feasible, and the growth need
NGT aims to get close to the destination to carry out the task.
These needs are defined as follows:

NRT =−
2

∑
i=1

max
(

1−2∗ |dist(Ri,RT )−d∗|
Dobs

,−1
)

(4)

NGT = max
(

1−2∗ |dist(Destination,RT )−d∗|
Dobs

,−1
)

(5)

To avoid being tracked, the target requires to maintain a safety
distance dsa f ety from aerial-ground robots. Consequently,
NRT is defined as Equation (4). The growth need of the target
is to arrive at the destination, defined as Equation (5).

According to ERG theory (Alderfer, 1969), individuals in-
variably aim to maximize the satisfaction of their needs when
making decisions (Machina, 1990). Similarly, reinforcement-
learning-based robots aim to maximize their rewards from the
environment when making action decisions. Consequently, a
correlation can be drawn between ERG needs and rewards,
where ERG needs function as intrinsic rewards for the robot,
motivating it to satisfy its needs. As the robot garners higher
rewards, it experiences increased satisfaction with its needs.
Formally, we state the relationship between rewards and ERG
needs as follows:

rA = µ1NEA + γ1NRA + ε1NGA

rG = µ2NEG + γ2NRG + ε2NFG

(6)

where µ1,µ2,γ2,γ2,ε1,ε2 > 0 are tunable parameters. For the
heterogeneous team, the total reward is rtotal = rA + rG. The
tracking and counter-tracking process between the target and
heterogeneous robots constitutes a zero-sum game, where the
target also makes efforts to meet its own needs. Consequently,
its reward is described as

rT =−rtotal +µ3NET + γ3NRT + ε3NGT (7)
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Figure 2: An overview of our framework. We establish individualized strategies for aerial and ground robots, respectively. They predict the
target needs separately, followed by needs alignment. Each robot make decisions based on both predicted target needs and their own needs.

where µ3,γ3,ε3 > 0 are tunable parameters.

Network Architecture

Figure 2 illustrates an overview of our framework. Each robot
has its own unique model, and heterogeneous robots collabo-
rate efficiently through interactions. Our framework consists
of an observation encoder, a need prediction module, a value
alignment module, and a decision module.

The observation encoder adopts the CNN-LSTM architec-
ture, which comprises two key components. Firstly, a 2-
layer CNN (Convolutional Neural Network) (LeCun, Bottou,
Bengio, & Haffner, 1998) takes visual observations as in-
put, outputting spatial features. Subsequently, these features
merged with orientation observations are fed into a 2-layer
MLP (Multi Layer Perceptron) (LeCun, Touresky, Hinton, &
Sejnowski, 1988) to encode observations. The encoded fea-
tures are passed into a LSTM (Long-Short Term Memory)
(Graves & Graves, 2012) cell to capture temporal informa-
tion about the target.

Understanding the needs of others enables robots to avoid
trouble and develop strategies (Zhao & Zhao, 2023), crucial
for decision-making. Within the heterogeneous team, robots
can communicate about each other’s needs. However, for a
target, aerial-ground robots lack direct communication and
can only predict target needs based on encoded observations.
According to the ERG theory, human needs are not strictly
hierarchical and can be satisfied in any order. Following this
principle, we proposed a non-dependent time-series need pre-
diction module. Specifically, each need predictor receives
both the encoded observation features and the need predicted
by the previous layer of need predictors simultaneously. Sim-
ilar to ERG theory, we focus on predicting the proportion of
the total need that each type of need will account for, rather
than specific need values. These proportions sum up to a need
share of 1. After predicting the ERG needs separately, these
three needs are then merged into a vector n∗i, j. Here, n∗i, j de-

notes the needs of robot j predicted by the robot i.
Due to the huge heterogeneity among aerial-ground robots,

their predictions for target needs may differ. Therefore, it is
indispensable to align them and approximate the true needs
nT . To align the needs between heterogeneous robots, we
introduce a regression task to learn the Needs Alignment Net,
parameterized by θVAN . The loss of this regression task is the
Huber loss function:

LN(θVAN) =


1
2 (n j −n∗i, j)

2
∣∣∣n j −n∗i, j

∣∣∣≤ δ

δ

∣∣∣n j −n∗i, j
∣∣∣− 1

2 δ2 otherwise
(8)

where the tunable parameter δ = 1.5. In accordance with
ERG theory, the air-ground robots all make decisions incor-
porating their own needs, predicted target needs, and encoded
observations. The decision model comprises both Actor and
Critic components, consisting of a 2-layer MLP with 42 units
in the first layer and 100 units in the second layer. The Critic
Network estimates the value of the current observed state,
while the Actor Network generates actions for the robot. The
network architecture of the target is identical to that of the
aerial-ground robot, but it directly predicts the needs of the
aerial-ground robot without the need for value alignment.

Each robot is trained by the Proximal Policy Optimization
(Schulman, Wolski, Dhariwal, Radford, & Klimov, 2017) al-
gorithm with an Adam optimizer (Kingma & Ba, 2014) in an
end-to-end manner. The learning rates were 10−3 and 10−4

for the Actor network and the Critic network respectively. We
used a discount factor of 0.9. Its policy loss is:

LP(θ) = Et
[
min(rt(θ)Ât ,clip(rt(θ),1− ε,1+ ε)Ât)

]
(9)

where At denotes an estimator of the advantage function at
timestep t. The term rt(θ) denotes the probability ratio be-
tween the current stochastic policy and the old stochastic
policy with which an robot collected the experience to learn
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from. The function clip() establishes a bound for the proba-
bility ratio term rt(θ) within the interval [1− ε,1+ ε]. In our
study, ε = 0.2. The total loss of overall network is:

L(θ) = LN(θVAN)+LP(θ) (10)

Results and Discussion
The Benefit of Needs
For a visual illustration of the impact of needs on robotic
decision-making, we plotted the 2D trajectories of robots dur-
ing an episode in testing environments in Figure 3. In this vi-
sual analysis, we maintained one ERG need proportion con-
stant while varying the proportions of the other two ERG
needs. Importantly, to compare the effects of different needs
on robotic decision-making, we evaluate the trajectory trends
of robots under various needs while maintaining a consistent
parameter design and initial values for each experiment.

As depicted in Figure 3a, the trajectories of the robots
change significantly when fixing one need and altering the
share of the other two needs. This demonstrates that different
percentages of others’ ERG needs can exert distinct effects on
robotic decision-making. It is crucial to highlight that while
the contribution of the target needs to the decision-making of
the aerial-ground robot is fixed, the true needs of the target
do not remain constant. Instead, they change dynamically,
leading to a large deviation between the true needs of the tar-
get and the target needs used as decision-making input for the
aerial-ground robot. This dynamic nature of the robot’s own
needs may potentially lead to task failure, as observed in the
case of subgraph R = 0.1,E = 0.5,G = 0.4.

As illustrated in Figure 3b, the robot’s own needs also have
an effect similar to that observed in Figure 3a, exerting a
more substantial impact on robotic decision-making. When
the robot’s own needs are fixed, it struggles to dynamically
assess its own needs in real-time, resulting in occasional sig-
nificant deviations in its trajectory. In addition, it is intrigu-
ing to note that when the robot itself has a disproportionately
high share of a particular need, exemplified by the subgraph
E = 0.1,R = 0.8,G = 0.1, the robot will tend to prioritize sat-
isfying this need more. Since the robot’s own need is fixed in
these scenarios, it will never be satisfied, leading to the offset
trajectories that sometimes occur.

Despite Figure 3 revealing that when robots exhibit diverse
needs, their decisions undergo significant variations, it is cru-
cial to emphasize that fixing a particular need does not guar-
antee effective tracking by heterogeneous robots. Self-needs
and the needs of others, along with interactions within each
need and observations of robots, dynamically change over
time. This dynamic nature makes it challenging for robots
to achieve effective tracking.

Furthermore, it is intriguing to note that our trajectories
align seamlessly with ERG theory. There is no defined hier-
archical order of ERG needs, and lower-level needs are not
a prerequisite for satisfying higher-level needs. For instance,
in the E = 0.1,R = 0.2,G = 0.7 case in Figure 3b, the aerial

robot would prioritise the satisfaction of the growth need over
the existence need, and then it would move fast to its destina-
tion even if there were obstacles.

E=0.1,R=0.2,G=0.7 E=0.1,R=0.5,G=0.4 E=0.1,R=0.8,G=0.1

UAV Traj
UGV Traj
Traget Traj
Obstacles
Task

R=0.1,E=0.2,G=0.7 R=0.1,E=0.5,G=0.4 R=0.1,E=0.8,G=0.1

G=0.1,E=0.2,R=0.7 G=0.1,E=0.5,R=0.4 G=0.1,E=0.8,R=0.1

(a) Fixed Predicted Others Needs

E=0.1,R=0.2,G=0.7 E=0.1,R=0.5,G=0.4 E=0.1,R=0.8,G=0.1

UAV Traj
UGV Traj
Traget Traj
Obstacles
Task

R=0.1,E=0.2,G=0.7 R=0.1,E=0.5,G=0.4 R=0.1,E=0.8,G=0.1

G=0.1,E=0.2,R=0.7 G=0.1,E=0.5,R=0.4 G=0.1,E=0.8,R=0.1

(b) Fixed Own Needs

Figure 3: Qualitative experiments. Initially, we trained the mod-
els for robots individually at various ERG need proportions. Sub-
sequently, as depicted in the individual subfigures, we conducted
separate tests based on the same ERG needs for each trained model.
Notably, we tested the robots’ own needs and others’ needs inde-
pendently, providing a thorough evaluation of their impact on the
robots’ action decisions.

Which Needs Taking Priority
To assess the impact of needs on robotic decision-making, as
illustrated in Figure 4, we compared the cumulative rewards
of the heterogeneous team across several approaches, namely
All-Needs (utilizing both own needs and target needs), None-
Needs (not utilizing needs), Own-Needs (utilizing only own
needs), and Others-Needs (utilizing only target needs). More
precisely, Figure 4a graphically depicts the tracking perfor-
mance of these methods. All-Needs method outperforms
other baselines and converges rapidly. In contrast, the None-
Needs method performs poorly and fails to converge. This
demonstrates the significance of the need for aerial-ground
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Figure 4: Ablation experiments. (a): accumulated rewards in training environments with different forms of needs. (b): robot trajectories for
different needs methods in a test environment. (c): tracking success rate of different formal needs methods in a test environment. The green
dashed line indicate the average success rate of each method over 100 episodes, and the solid black line indicates the median.

collaboration. Comparatively, the Others-Needs method’s
performance rises slowly and is sensitive to random seed.
The own-needs method converges rapidly, but it falls short
of the All-Needs method in terms of final performance. This
demonstrates that the robot’s decision-making prioritizes its
own needs over those of others.

While both the Own-Needs method and the Others-Needs
method can eventually learn the target’s strategy and achieve
convergence based on observations of the target, they are rel-
atively time-consuming. In contrast, the All-Needs method
integrates both its own needs and the target’s needs, captur-
ing the intrinsic motivation of the target and swiftly yielding
excellent tracking results.

To visually demonstrate the tracking performance of these
methods, we plot the trajectory of the robot during the track-
ing process in Figure 4b. The All-Needs method can quickly
track the target, while other methods exhibit poor tracking
performance. Robots without ERG needs struggle to cap-
ture the motivation of the target, leading to the target and
the aerial-ground robot moving in different directions. This
once again proves the positive effect of needs on collabora-
tive robotic decision-making. Additionally, the Others Needs
method, which relies only on the target’s need for decisions,
is not effective enough for the ground robot to capture their
intrinsic motivations due to its smaller field of view. In con-
trast, the own-needs method can track the target more effec-
tively, implying that robots prioritize their own needs over
those of others when making decisions.

We also conducted additional tests to evaluate the tracking
success rate of the aerial-ground team across 100 episodes,
as depicted in Figure 4c. In each episode comprising 100
timesteps, tracking is deemed unsuccessful when the target
exits the field of view of the aerial-ground team. As seen from
Figure 4c, the mean value of the Own-Needs method sur-
passes that of the Other-Needs method, underscoring the sig-
nificance of prioritizing one’s own needs. While each method
achieves a high success rate due to the robot’s observations, it
is undeniable that the integration of needs plays a pivotal role

in facilitating robotic decision-making, especially in scenar-
ios that demand heightened tracking performance.

General Discussion

In this study, we demonstrate the effectiveness of an ERG
needs-guided reinforcement learning approach in enhancing
robotic decision-making and fostering efficient collaboration
among heterogeneous robots in a dynamic tracking task. Our
results demonstrate that the robot’s own needs play a signif-
icant role in shaping its decision-making process, while the
needs of other robots also contribute to the overall decision-
making of the robot. Moreover, our simulation experiments
further validate the general adaptability of the ERG theory
within the robotic society, underscoring the time-independent
nature of various needs.

In terms of the future of cognitive robotics, our exper-
iments demonstrate that configuring the robot with appro-
priate ERG needs proportions enables effective guidance for
successfully completing tasks assigned by humans. Further-
more, our independent needs prediction module serves as a
means for comprehending robots behaviour and providing ex-
planations for robots’ behavioural decisions. Our findings
align with the ERG theory, suggesting that our framework can
serve as a valuable tool for validating needs theories through
computer simulations. In summary, our approach lays the
foundation for further exploration of needs theory and its ap-
plications in robotics.

Despite the key insights gained from our study, there re-
main promising avenues for future research: (1) Additional
investigation into the combinations of ERG needs leading to
specific behavioral actions is required. (2) Explore integrat-
ing diverse needs for producing specific collaborative behav-
iors among multiple robots. Hence, future research will delve
into how to integrate various needs to generate specific col-
laborative behaviours among multiple robots.
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