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Abstract: Metagenomics is a technique for genome-wide profiling of microbiomes; this technique
generates billions of DNA sequences called reads. Given the multiplication of metagenomic projects,
computational tools are necessary to enable the efficient and accurate classification of metagenomic
reads without needing to construct a reference database. The program DL-TODA presented here
aims to classify metagenomic reads using a deep learning model trained on over 3000 bacterial
species. A convolutional neural network architecture originally designed for computer vision was
applied for the modeling of species-specific features. Using synthetic testing data simulated with
2454 genomes from 639 species, DL-TODA was shown to classify nearly 75% of the reads with high
confidence. The classification accuracy of DL-TODA was over 0.98 at taxonomic ranks above the
genus level, making it comparable with Kraken2 and Centrifuge, two state-of-the-art taxonomic
classification tools. DL-TODA also achieved an accuracy of 0.97 at the species level, which is higher
than 0.93 by Kraken2 and 0.85 by Centrifuge on the same test set. Application of DL-TODA to the
human oral and cropland soil metagenomes further demonstrated its use in analyzing microbiomes
from diverse environments. Compared to Centrifuge and Kraken2, DL-TODA predicted distinct
relative abundance rankings and is less biased toward a single taxon.

Keywords: deep learning; DNA sequencing; read classification; metagenomics

1. Introduction

A microbiome defines a community of microorganisms and their activities in a given
environment. This term encompasses the microbial species themselves, but also the col-
lection of molecules they produce such as metagenomes [1,2]. Microbiome studies can be
useful to different fields such as medicine or environmental protection. For example, the
human gut microbiome is being extensively analyzed to uncover how its composition is
linked to various disorders [3], while the ocean microbiome provides information on the
potential impact of climate change on marine biodiversity [4].

The metagenomic study of microbiomes has gained a lot of interest due to the progress
made in DNA sequencing technology. While the history of DNA sequencing started a
decade after many proteins were already sequenced and RNA sequencing was being ap-
prehended [5], it quickly evolved in the late 1970s when Sanger and Gilbert independently
developed methods that allowed sequencing of 50 and 100 nucleotides, respectively [6,7].
The automation of Sanger’s technique combined with the desire to sequence large frag-
ments of DNA brought various improvements that led to the development of efficient
machines able to perform DNA sequencing in a particularly parallel fashion. Current high-
throughput sequencing methods can produce billions of DNA fragments simultaneously
during a single run. In addition, high-throughput sequencing technology offers speed and

Biomolecules 2023, 13, 585. https://doi.org/10.3390/biom13040585 https://www.mdpi.com/journal/biomolecules

https://doi.org/10.3390/biom13040585
https://doi.org/10.3390/biom13040585
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com
https://orcid.org/0000-0002-1974-4603
https://orcid.org/0000-0001-8759-0194
https://doi.org/10.3390/biom13040585
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com/article/10.3390/biom13040585?type=check_update&version=2


Biomolecules 2023, 13, 585 2 of 18

a decrease in cost per base, but also offers high sequencing depth that comes with better
sensitivity. This provides the means to study uncultivable microorganisms and to detect
low abundance microorganisms of a microbial community.

In a typical metagenomic study, the genetic material in all organisms contained in a
given sample is fragmented, and the DNA fragments sequenced are identified as reads. Fol-
lowing sequencing, diverse bioinformatic tools are used to remove low-quality sequences
and to assemble overlapping reads into contiguous DNA segments, also called contigs.
Contigs are then arranged through scaffolding into longer segments to eventually recon-
struct genomes present in the sample. This complex process of de novo sequence assembly
is further challenged when dealing with short-read sequences and the high sequencing
depth that is required to differentiate similar or repetitive sequences. The recent develop-
ment of third-generation sequencing platforms enabled the determination of long-read
sequences. With a length of 10–25 kb [8] from the Pacific Biosciences (PacBio) and 10–100 kb
from Oxford Nanopore Technologies (ONT) platforms, de novo assembly will be greatly
facilitated and improved as it can already be seen [9,10].

A complementary approach to analyze metagenomic data and provide information
on the composition of microbial communities is the taxonomic classification of reads. This
method involves assigning a taxonomic group to every read with the goal of classifying as
many sequences as possible and identifying species present in the sample. One strategy for
taxonomic classification consists of comparing k-mer signatures in metagenomic reads to a
database of categorized k-mers. One of the state-of-the-art tools for metagenomic classifica-
tion is Kraken [11], which relies on a database of k-mers with each k-mer associated with
the lowest common ancestor of all genomes containing that specific k-mer. Kraken has been
criticized for employing a memory-intensive algorithm [12–14], prompting its designers to
release Kraken2, which features a more memory-efficient data structure [15]. An alternative
method to efficiently store and query the database of k-mers is a modified implementation
of the FM-index, employed by Centrifuge [16]. Both Kraken2 and Centrifuge have been
praised in the literature for providing high accuracy and rapid runtimes [13,17].

The rapid development of deep learning techniques has inspired new applications in
the analysis of metagenomic data. Deep learning models rely on artificial neural networks
designed based on the structure and function of neurons in the human brain [18]. Complex
deep learning models containing many layers have the ability to extract relevant features
and find abstract patterns in data, allowing them to achieve high accuracy. For example, the
desire to push forward the capacities of deep neural networks has led to the development
of new techniques and architectures to classify images, which can reach an accuracy of
99.84% [19] on the MNIST handwritten digit classification dataset.

The first study to consider deep learning algorithms in the classification of DNA se-
quences built a convolutional neural network (CNN) to classify 16S small subunit ribosomal
RNA (rRNA) genes which are commonly used for the identification of bacteria [20]. This
study employed the bag of words technique to represent reads simulated from 16S rRNA
reference sequences in terms of k-mer occurrences, thus obtaining sparse matrices as input
vectors for their neural network. A k-mer size of 7 was used to restrict the storage and
computational complexities that occur with sparse input vectors. Despite these limitations,
they reported an accuracy of 91% across 100 bacterial genera on an artificial validation
dataset. Another CNN method was proposed to classify short reads of 16S rRNA genes
across 2768 genera, and achieved better sensitivity compared to Kraken2 at the genus level
on 100 bp and 200 bp synthetic reads generated using 16S rRNA genes as templates [21].
While the tools mentioned above would support a high classification rate with amplicon
sequencing data that targets specific genetic regions such as the 16S rRNA genes, other soft-
ware have been designed to analyze the entire genetic materials sequenced from a sample.
One such method called GeNet shows the improvement of training a CNN model with long
DNA sequences by recording better classification of long metagenomic reads from a mock
community consisting of ten microbial species, with comparable performances with Kraken
and Centrifuge at the species and genus levels [22]. A more recent tool called DeepMicrobes
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targets 2505 bacterial species from the human gut and implements a bidirectional long
short-term memory (LSTM) in addition to a self-attention mechanism [23]. DeepMicrobes
outperforms other traditional taxonomic classification tools at the genus level on mock com-
munities, suggesting the potential of LSTM in metagenomic read classification. However,
LSTM is significantly slower than CNN. Finally, a recent model called BERTax, based on
the state-of-the-art model BERT for natural language processing, classifies DNA sequences
at the superkingdom, phylum, and genus taxonomic levels and shows generalization on
unknown data compared to other approaches mentioned previously [24]. For a more in
depth analysis of the deep learning techniques applied to taxonomic classification, we
recommend a review published recently by [25].

Here, we present DL-TODA, a deep learning model based on CNN that classifies short
metagenomic reads from over 3000 bacterial species. Compared to the aforementioned
tools, DL-TODA is trained with a modified version of the deep neural network AlexNet, a
successful CNN in computer vision. A training dataset containing 250 bp reads simulated
from all complete bacterial genomes available in the NCBI Reference Sequence database
was used for training the DL-TODA model. This enabled the identification of bacteria
originating from a wide range of free-living and host-associated habitats. DL-TODA
classifies each read at the species level and supports the inference of higher-order taxa
based on NCBI or GTDB taxonomy. A probability score is generated for each prediction,
hence permitting the quality control of prediction results based on probability thresholds.

2. Materials and Methods

An overview of all steps involved in the training, validation, and testing of the DL-
TODA model is presented in Figure S1. Below, we provide detailed descriptions of the
corresponding steps.

2.1. Bacterial Genome Selection

A total of 9859 complete bacterial genomes representing 3313 different species isolated
from diverse free-living and host-associated environments were selected from the genome
taxonomy database (GTDB) release 95 and the NCBI RefSeq database, downloaded on
7 March 2020. The genomes selected are not derived from metagenome or environmental
samples and have a size equal to or above 500 kb. For each species, 70% of the genomes
were randomly assigned for model training and the remaining 30% for model testing. In the
cases of species with a single genome, the genome in question was automatically appointed
to the training set. Additionally, all representative genomes from GTDB were automatically
assigned for training. In total, we have 7405 and 2454 genomes assigned for training and
testing, respectively. Table 1 provides a summary of the number of taxa represented at
species, genus, family, order, class and phylum levels in training, validation and testing sets,
and for both GTDB and NCBI taxonomy. A smaller number of taxa are represented in the
NCBI classification due to different assignments with the GTDB classification. For example,
amongst the 537 genomes classified as Escherichia coli by NCBI, 363, 93, 80 and 1 genomes
are assigned by GTDB to Escherichia flexneri, Escherichia coli, Escherichia dysenteriae, and
Escherichia coli_C, respectively. Additionally, 244 genomes lack specific assignments in
at least one of the given taxonomic ranks in the NCBI taxonomy database. For example,
genome GCA_000317655.1 is not assigned a class in the NCBI taxonomy but is assigned to
the class of Cyanobacteria in the GTDB taxonomy.
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Table 1. Taxonomic distribution of training/validation and testing datasets based on the GTDB or
NCBI taxonomy databases.

Training and Validation Sets Testing Sets

Database GTDB NCBI GTDB NCBI

Species 3313 3053 709 639
Genus 1414 1136 331 289
Family 465 387 138 146
Order 224 171 79 77
Class 100 74 38 33

Phylum 45 43 24 19

2.2. Reads Simulation

Paired-end reads of 250 bp were simulated using ART Illumina read simulator (version
2.5.8) [26]. A coverage of 7 and 3 was used for read simulations using training and testing
genomes, respectively. A mean fragment length of 300 bp and a standard deviation of
fragment length of 10 bp were chosen according to ART Illumina usage information. The
built-in error profile of MiSeq v1 (MSv1) was used for simulation. The command for
running ART Illumina is art_illumina -ss ‘MSv1’ -i <input fasta file> -d <reads prefix id>
-na -s <standard deviation of fragment length> -m <mean fragment length> -l <read length>
-f <fold coverage> -p -o <output file>.

2.3. Training, Validation and Testing Sets

Paired-end reads obtained from training genomes were randomly shuffled and split
into 70% for training and 30% for validation. The forward and reverse reads from testing
genomes were treated separately and classified independently. Identical reads between
the training and testing data were identified by clustering the training and testing reads
using Mmseqs2 easy-linclust (version 13.45111) with a minimum sequence identity of 1.0
and a fraction of aligned residues of 1.0. To avoid biases in testing, testing reads that are
identical to the training reads were removed from the testing set. Table 2 summarizes the
final number of reads included in the training, validation and testing sets of this study. The
number of training reads allocated to each species in the NCBI taxonomy had a median
of 80,067 and ranges between 10,359 and 56,838,380 (Figure 1A). The number of testing
reads allocated to each species in the NCBI taxonomy had a median of 56,839 and ranges
between 6455 and 14,223,296 (Figure 1B). The genome coverage represented in the training
data was calculated for each species based on Equation (1), where the “number of training
reads” are the number of reads assigned to a given species label in the training data, and
the “average training genomes size” accounts for the average length of training genomes
of the given species.

genome coverage = 250 ∗ number o f training reads / average training genome size (1)

Table 2. The total number of simulated reads in training, validation and testing datasets.

Dataset Number of Reads

Training 563,434,720
Validation 241,467,730

Testing 109,851,839
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2.4. Deep Learning Neural Network
2.4.1. Reads Representation

DL-TODA represents each read as a vector of k-mers, using a sliding-window of size
12 across the 250 bp read sequence. Reads shorter than 250 bp were padded with 0s before
representation of the k-mers. A vector of 239 integers was then used to represent each read
based on a k-mer size of 12 and an indexed vocabulary of 12-mers (described in the section
below). The read vectors were then stored in TensorflowRecord (TFRecord) files alongside
labels corresponding to the species assignment (i.e., ground truth), and presented to the
embedding layer.

2.4.2. K-mer Embedding

The DL-TODA model embeds each k-mer by choosing only the canonical form in a
pair consisting of the k-mer and its reverse complement. The canonical k-mer corresponds
to the k-mer that appears first, according to the alphabetical order. This strategy allows
us to reduce the vocabulary learned by the neural network and therefore lower the com-
plexity of the model. The number of all possible canonical 12-mers is 8,390,656, defined as
(4k+4(k/2))

2 (k = 12). The vocabulary of DL-TODA included all the canonical 12-mers and
two additional digits, one accounting for unknown 12-mer with characters different from
the four universal bases (i.e., A, T, G, C), and another for padded 0s to the right of sequences
shorter than 250 bp. Following the vocabulary definition, each 12-mer was assigned an
index between 0 and 8,390,657 in order to retrieve a vector of 60 real values from a list.
These vectors were initiated in the Tensorflow embedding layer, with each real value drawn
from the He Normal distribution [27], and were updated during training.
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2.4.3. DL-TODA Neural Network

The deep neural network architecture of DL-TODA is a modified version of AlexNet [28]
(Figure 2) with a trainable embedding layer generating an (8,390,658 × 60) embedding
matrix. The input layer of this neural network is a (239 × 60) matrix consisting of 239 rows
of 12-mers embedded as 60 real value vectors (described above). The input data are then
processed by five convolutional layers, two max pooling layers and three fully connected
layers. The rectified linear unit (ReLU) activation function is applied throughout the neural
network, except in the last layer, in which the softmax function transforms the output from
the fully connected layer to a probability distribution over the 3313 species.
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Figure 2. Convolutional neural network architecture used to build the taxonomic read classifier
DL-TODA. Each read is represented as an input layer (239 × 1 × 60) by embedding 12-mers into
vectors of 60 real values. The input layer is then processed by five convolutional layers, two max
pooling layers and three fully connected layers.

2.4.4. Loss Function and Probability Scores

The following cross entropy loss function (Equation (2)) was used to compute the
difference between the species desired output (0 or 1) and the estimated probability of
correct prediction for a given species for one example.

Cross Entropy Loss = −
3313

∑
i=1

actual value o f Speciesi ∗ log(predicted probability o f Speciesi) (2)

The estimated probability of every species is obtained by applying the softmax func-
tion [29] to an output vector of 3313 real numbers.

2.5. Training and Testing

Data loading to the neural network was performed using the Nvidia Data Loading
Library (DALI). Shuffling was carried out exclusively for the training and validation sets.
Distributed training was executed by dispatching batches of 512 reads to four different
GPUs (global batch size of 2048). Each GPU computed gradient updates independently;
these were then averaged together and finally applied to the model. The accuracy and loss
computed with the training and validation sets were monitored and saved throughout the
training to create learning curves (Figure 3). Additionally, the model was saved at the end
of every epoch. Testing and applications to the oral and soil metagenomes were carried out
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similarly with a batch size per GPU of 512 reads distributed among four GPUs and using
the trained model saved at epoch 14.
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2.6. Evaluation of Model Performance

The performance of DL-TODA was assessed with the overall classification accuracy,
defined in Equation (3), at different taxonomic ranks including species, genus, family, order,
class and phylum.

Accuracy = # reads correctly classi f ied / # reads classi f ied (3)

At the species level, the number of correctly classified reads was directly obtained
from the neural network. At higher taxonomic ranks, the number of correctly classified
reads was calculated with the sum of all reads that were correctly assigned to the species
within each taxon.

The percentage of classified vs. unclassified reads was also examined with the ap-
plication of different thresholds on the predicted probability of species. The selection of
threshold settings was guided by the overall distribution of probability scores among the
correct or incorrect classification in the testing dataset (Figure 4). The eqgamma function
of the R package EnvStats (version 2.7.0) was used for identifying confidence intervals
based on a gamma distribution for the elimination of incorrect predictions. The precision
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(Equation (4)), recall (Equation (5)) and F1-score (Equation (6)) were obtained for each
species. The macro and micro average of each metric (Equations (7)–(12)) were computed
to provide a comparison of the performance between DL-TODA, Kraken2 and Centrifuge.
The number of true positives (TP), false positives (FP) and false negatives (FN) per species
required to compute precision, recall and F1-score were obtained based on the generation
of a confusion matrix.

Precision = TP/(TP + FP) (4)

Recall = TP/(TP + FN) (5)

F1 − score = 2 ∗ Precision ∗ Recall/(Precision + Recall) (6)

Macro average precision = sum o f Precision f or each species/number o f species (7)

Micro average precision = sum o f TP/(sum o f TP + sum o f FP) (8)

Macro average recall = sum o f Recall f or each species/number o f species (9)

Micro average recall = sum o f TP/(sum o f TP + sum o f FN) (10)

Macro average F1 − score = sum o f F1 − score f or each species/number o f species (11)

Micro average F1 − score = sum o f TP/(sum o f TP + 1/2 ∗ (sum o f FN + sum o f FP)) (12)

2.7. Comparison with Kraken2 and Centrifuge

We evaluated the performance of DL-TODA in comparison with Kraken2 version
2.0.8 and Centrifuge version 1.0.3. For both programs, an index was built with the training
genomes as references to classify the simulated reads in the testing set using the default
settings. Given that both Kraken2 and Centrifuge classify reads to the NCBI taxonomy
database, we used the NCBI taxonomy for analyzing the results from DL-TODA. Centrifuge
provides multiple possible predictions per pair of reads or unpaired reads. Here, the top
hit was systematically used as the predicted taxon.

2.8. Classification of Metagenomic Data

The functionality of DL-TODA was determined by classifying metagenomes obtained
from sampling two distinct environments, human oral cavity and cropland soil. The
human oral cavity datasets were identified following [30]. The cropland soil datasets (NCBI
accessions: ERR5004682, ERR5003895, ERR5003204, ERR5001925 and ERR4995171) were
identified from the National Microbiome Data Collaborative (NMCD) data portal [31], using
“soil” as the keyword for ecosystem type and “cropland ecosystem” as the keywords for
broad-scale environmental context. The metagenomic reads were retrieved using the SRA
Toolkit from NCBI, converted to TFRecords and classified by DL-TODA with a probability
score threshold above 0.5 (i.e., reads with probability scores below or equal to 0.5 were
counted as unclassified). The relative abundance of each taxon was measured by dividing
the number of reads classified to that taxon by the total number of reads in the metagenome
(Equation (13)). The DL-TODA classification was compared with Kraken2 and Centrifuge
classifications of the same metagenomes, using the training genomes as references.
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Figure 4. Distribution of probability scores in DL-TODA for correct and incorrect predictions obtained
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Relative Abundance = number o f reads classi f ied to a taxon / total number o f reads (13)

2.9. Computational Requirements

The DL-TODA model was trained and tested on a compute node with 768 GB of High
Performance DDR4 2666 MHz ECC system memory, 48 Intel Xeon Cascade Lake Scalable
Cloud Ready Processor Cores/2.2 GHz processors and four Nvidia A100/40 GB HBM2
Memory GPUs. Kraken2 and Centrifuge were run on a compute node with 24 Intel(R)
Xeon(R) CPU E5-4607 0/2.20 GHz processors and 512 GB of memory. The deep learning
model was implemented with TensorFlow as a Python3 script, Horovod was used to
distribute training across multiple GPUs and the Nvidia DALI was used to load the
TFRecord files.

3. Results
3.1. Model Training and Testing

Training of DL-TODA was conducted on a GPU node with four GPUs and was
terminated when the model had reached 31 epochs, as no improvements in the validation
accuracy were observed (Figure 3A). The model saved at epoch 14 was subsequently
selected to perform testing on the testing set, as the model started memorizing the training
data after that point, as shown by the progressive increase in the validation loss (dashed
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line on Figure 3B). Furthermore, additional testing carried out at other checkpoints did not
show significant accuracy improvement.

DL-TODA is designed to provide a vector of probability scores in the prediction
of every read, with each score corresponding to the probability that the read should be
assigned to a given taxon. A taxon with a score of 0.5 has an equal probability of being
the true or false assignment of the read analyzed, while a score between 0.5 and 1.0 gives
a higher confidence that the read can be truly assigned to the taxon. The DL-TODA
prediction of each testing read was designated as either correct or incorrect based on
whether the highest probability score was assigned to the ground truth taxon. Of the
109,851,839 reads tested, over 82%, 88%, 90%, 92%, 94%, and 96% were correctly assigned
to the corresponding ground truth taxa at the taxonomic ranks of species, genus, family,
order, class, and phylum, respectively. The distributions of probability scores among correct
and incorrect classifications were plotted in Figure 4. The probability scores of incorrect
predictions had median values under 0.5 across all taxonomic ranks, aligning with the
expectation that a probability of 0.5 or lower represents predictions with low confidence.
In contrast, the probability scores of correct predictions had median values above 0.99 for
all taxonomic ranks, and the 25th percentile ranging from 0.82 at the phylum level to
0.96 at the species level. Given the high number of correct taxonomy assignments even
with the simple application of top-ranking probability scores, along with the observed
clear separation of probability score distributions among correct predictions compared
to incorrect predictions, we hypothesize that a decision threshold can be applied on the
top-ranking probability scores to further enhance the prediction accuracy of DL-TODA.

3.2. Optimization of Probability Threshold

To guide the selection of an optimal threshold, we visualized the species-level pre-
cision of DL-TODA predictions in the testing data, given a series of cutoff values. The
probability scores below 0.5, 0.57, 0.66, 0.8 and 0.93 correspond to 60%, 70%, 80%, 90%
and 95% of incorrect predictions, respectively, based on fitting a gamma distribution over
the probability scores of the incorrect assignments. The elimination of low confidence
assignments (by assigning predictions only to reads with probability score higher than a
designated threshold) greatly enhances the overall precision of DL-TODA predictions for
the 639 species tested (Figure 5A). With a threshold of 0.93, the median precision across
all species was 0.98, which is 9% higher than the median precision of 0.89 obtained with
a threshold of 0.5. The higher thresholds, however, could potentially limit the number
of classified reads. Of the thresholds tested, the percentage of classified reads ranged
from 87% under 0.5 to 66% under 0.93 (Figure 5B). To balance the gains of precision on
species-level predictions and the losses on the number of classified reads, we decided to
choose a threshold of 0.8, which gives a median precision of 0.95 across the individual
species while still classifying 73% of all the testing reads with high confidence.

Despite the overall high performance, DL-TODA obtained relatively low precision
scores in the prediction of a small number of species (Figure 5A). A close examination
of these poorly predicted species revealed that each species was represented by only one
or a few genomes in the training data, suggesting a general lack of training depth in
the deep learning model. Figure S2 elucidates the correlations between training genome
coverage and model performance. With genome coverage higher than 55 (∼e4), DL-
TODA consistently reported high precision (e.g., greater than 0.75) in the prediction of
corresponding species. Under lower training coverage, however, the minimum precision
scores were positively correlated with the training coverage. It was also noted that many
species, despite having a training genome coverage of less than 7 (∼e2), achieved high
precision of above 0.9, suggesting that a high coverage is not required for all species in the
DL-TODA training.
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3.3. Comparison with Kraken2 and Centrifuge

Kraken2 and Centrifuge were applied to the same testing set to assess the perfor-
mance of DL-TODA amongst taxonomic classification tools. Both Kraken2 and Centrifuge
require the construction of reference databases. In order to make a fair comparison, all
genomes seen by DL-TODA during training were used to build the indexed reference
database for both tools. The average accuracy obtained on ten subsets of the testing data
is shown in Figure 6. The ten subsets were obtained by randomly shuffling the testing
reads and splitting the testing dataset into nine subsets with 11,000,000 reads and 1 subset
with 10,851,839 reads. Comparable performances were observed among all three tools at
taxonomic ranks above the genus level, with the overall accuracy averaging above 0.98. At
the species level, DL-TODA reached a higher average accuracy of 0.97, compared to 0.93
and 0.85, respectively, achieved with Kraken2 and Centrifuge (Figure 6). The micro average
and macro average of precision, recall and F1-score obtained for the 639 species on the
entire testing set are shown in Table 3. DL-TODA has higher micro average precision, recall
and F1-score, which suggests that DL-TODA makes better overall predictions than Kraken2
and Centrifuge, regardless of the species compared. On the other hand, the macro average
metrics for DL-TODA are lower than the corresponding micro average metrics, indicating
that DL-TODA performs better for some species compared to others, especially with regard
to the performance of recall. For example, with a probability threshold of 0.8, 14 species
obtained a recall of 0 due to the removal of predictions with low probability scores, al-
though the majority of other species were predicted with high precisions (greater than
0.95) and recalls (greater than 0.85) by DL-TODA. As a contrast, Kraken2 and Centrifuge
appear to manifest similar performances for all species, as their macro average metrics are
largely consistent with the corresponding micro average metrics, with the exception that
Centrifuge shows variability across species in terms of the recall.
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Table 3. Micro average and macro average of precision, recall and F1-score obtained for the 639 species
in the testing set for DL-TODA, Kraken2 and Centrifuge. The DL-TODA metrics were calculated
with testing reads classified with a probability score higher than 0.8.

DL-TODA Kraken2 Centrifuge
Micro average

Precision 0.98 0.97 0.97

Recall 0.97 0.93 0.85

F1-score 0.98 0.95 0.90
Macro average

Precision 0.91 0.96 0.97

Recall 0.76 0.92 0.80

F1-score 0.80 0.93 0.82

3.4. Taxonomic Profiling of Metagenomic Data

The performance of DL-TODA on metagenomic data was assessed based on a proba-
bility threshold of greater than 0.5, using two sets of metagenomes. The first dataset was
taken from the human oral microbiome [30] and the second dataset was taken from the soil
microbiome [32], with a total count of 3,417,111,096 and 52,290,557 reads, respectively, for
the two environments. The relative abundance of reads classified by DL-TODA, Kraken2,
and Centrifuge are summarized at the species and genus levels (Table 4). In the oral micro-
biome, a similar percentage of metagenomic reads (20–30%) was classified by all three tools.
While a similar number of taxa was identified by the three tools, DL-TODA identified the
highest number of species (452 species) with a relative abundance above 0.01% over the
entire set of metagenomes. This is in contrast to Centrifuge, which classified the highest
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percentage of reads (33%, largely driven by the assignment of classifications to read pairs)
but identified a lower number of species (114 species) with a relative abundance above
0.01%. Kraken2 assigned a highest percentage of reads to unknown species compared
to the other tools, suggesting a relatively low resolution at the species level. In the soil
microbiome, the percentage of metagenomic reads classified by the three tools differed
greatly, ranging from 20% of total metagenomic reads identified by Centrifuge to merely
4–5% identified by Kraken2. The latter also had the highest percentage of reads assigned
unknown at both species and genus levels; this is similar to what was observed in the
analysis of oral microbiome data. DL-TODA classified around 15% of the reads in the soil
metagenome and identified 283 species with a relative abundance above 0.01%, which is
slightly lower than the Centrifuge predictions but higher than the Kraken2 predictions.

Table 4. Summary of species and genus level classifications made by DL-TODA, Centrifuge and
Kraken2 on the human oral and soil metagenomes. The number (#) of taxa observed with relative
abundances (r.a.%) ≥ 0.01% or <0.01% is reported in the table. Relative abundances represent the
percentage of classified reads over the total number of reads in the metagenomes. Unknown taxa
represent groups at a given taxonomic level that are not named in the NCBI taxonomy.

Tool # Taxa ≥
0.01%

Sum of r.a.%
≥ 0.01%

# Taxa with
r.a. < 0.01%

Sum of r.a.%
< 0.01%

Sum r.a. % of
Classified Reads

Unknown
Taxa r.a%

oral

Species

DL-TODA 452 19.60 2571 3.76 23.35 0.0024

Kraken2 85 20.97 2942 1.32 22.29 2.89

Centrifuge 114 29.19 3066 4.32 33.50 0.036

Genus

DL-TODA 281 21.27 853 1.57 22.84 0.527

Kraken2 47 23.56 1075 0.85 24.41 0.78

Centrifuge 111 31.22 1025 2.07 33.29 0.25

soil

Species

DL-TODA 283 11.80 2648 3.04 14.84 0.012

Kraken2 62 1.13 2941 3.78 4.92 2.60

Centrifuge 697 15.81 2451 4.81 20.63 0.096

Genus

DL-TODA 206 13.11 918 1.57 14.68 0.18

Kraken2 119 3.84 1002 1.66 5.50 2.02

Centrifuge 345 18.65 786 1.81 20.46 0.26

Further examination of the classification results was based on the visualization of
taxonomic compositions at the class rank (Figure 7). A general consistency was observed
in the predicted classes by all three tools in both the oral and soil metagenomes, while
the ranking of each class’s relative abundance may vary among the different tools. The
most abundant classes identified by DL-TODA in the human oral microbiome (Figure 7A)
included Gammaproteobacteria (4.8%), Bacilli (3.9%), Actinomycetia (2.4%) and Clostridia
(2.2%). In comparison, Clostridia was only found in a small percentage of reads (0.4% and
0.14%, respectively) by Centrifuge and Kraken2. The taxa most seen by both Centrifuge
and Kraken2 are Actinomycetia (12.0% and 9.1%), Bacilli (4.9% and 4.3%), Betaproteobac-
teria (4.1% and 3.4%), Gammaproteobacteria (3.3% and 2.4%) and Bacteroidia (2.3% and
2%). The results obtained with the soil metagenome show similar trends. Kraken2 and
Centrifuge manifest similar outcomes with Kraken2 classifying a much lower number of
reads (Figure 7B). Actinomycetia, Alphaproteobacteria, Betaproteobacteria and Gammapro-
teobacteria are amongst the top-ranking classes observed by Kraken2 and Centrifuge, with
relative abundances ranging from 0.6% to 6.6%. These bacterial taxa are also predicted by
DL-TODA with different relative abundances varying between 1.7% and 2.9%. Addition-
ally, DL-TODA identified Coriobacteriia and Clostridia with relative abundances of 1.4%
and 0.9%, respectively, while the relative abundance for Coriobacteriia was 0.08% with
Centrifuge and 0.02% with Kraken2, and the relative abundance for Clostridia was 0.15%
with Centrifuge and 0.05% with Kraken2.
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Figure 7. Taxonomic distribution of metagenomic reads at the class rank based on predictions made
by DL-TODA, Centrifuge and Kraken2 in the human oral (A) and soil (B) metagenomes. The Y-axis
indicates the percentage of reads over the entire metagenome. The two panels are color coded with
the same color pallet so that the same color indicates identical taxa across the different stacked bars.
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4. Discussion

Taxonomic classification of billions of short sequencing reads is an important step
in the analysis of metagenomic data, shedding light into the function and diversity of
microbiomes. Such analysis can be performed by several existing programs but still has
room for improvement. K-mer based approaches, such as Kraken2 and Centrifuge, are the
most common strategies to classify metagenomic data. While both Kraken2 and Centrifuge
rely on the construction of reference databases, the use of a deep learning model in DL-
TODA permits the extraction of features during model construction, hence circumventing
the requirement of a reference database.

An accuracy similar to higher classification was achieved by DL-TODA compared to
Kraken2 and Centrifuge on an independent test set of over a hundred million simulated
metagenomic reads (Figure 6). A look at the precision, recall and F1-score (Table 3) further
demonstrated the better performance of DL-TODA, as it carried a higher micro average
on all three metrics compared to Kraken2 and Centrifuge. However, lower macro than
micro averages were observed in DL-TODA, indicating potential differences in how well it
recognizes different species. In contrast, Kraken2 and Centrifuge appeared to perform more
equally across species, as their macro average metrics are comparable to the corresponding
micro average metrics.

One possible reason why DL-TODA may have performed poorly on some species may
be the lack of sufficient training data. This is supported by the positive correlations between
depth of training genome coverage and minimum precisions observed (Figure S2). For
example, when the coverage is greater than 55 (∼ e4), the precision values are consistently
higher than 0.75, suggesting that a higher and potentially more diverse set of training data
may lead to an enhanced performance of DL-TODA. However, we note that some species,
despite having a low number of training reads, reached high precisions in DL-TODA
predictions. This may indicate that the DL-TODA model is efficient at extracting traits from
these species for label classification. While reaching high performances on a majority of the
species tested (Figure 5), DL-TODA seems to assign low probability scores to reads from a
few species, resulting in low precisions approaching zero for the prediction of these species,
especially when a probability threshold is used. Given the variability in the classification of
different species, the probability threshold may be individually adjusted for each species to
optimize the performance of DL-TODA. A careful selection of the probability threshold may
require more benchmarking efforts to maximize the prediction accuracy while minimizing
the fraction of unclassified data; this may be a topic of future research using diverse test
cases. Future studies that seek to reveal the correlations between different genomic features
(e.g., GC content, tetranucleotide frequency, distribution of mobile genetic elements, etc.)
and the outcomes of read classifications can also help guide the further advancement of
DL-TODA models and enhance their precision across all species.

The application of DL-TODA to the human oral and cropland soil metagenomes sup-
ports a general consensus on the prediction of top-ranking taxa, but distinct predictions on
the relative abundance of different taxonomic groups compared to Kraken2 and Centrifuge
(Figure 7). In the human oral metagenomes, DL-TODA identified a higher proportion of
Clostridia, which is known to be abundant and diverse in the human oral microbiome [33]
compared to Centrifuge and Kraken2. Likewise, in the cropland soil metagenomes, a
higher proportion of Clostridia and Coriobacteriia was identified by DL-TODA compared
to Centrifuge or Kraken2. The abundance of Clostridia and Coriobacteriia, as predicted by
DL-TODA, aligns well with prior studies of diverse agricultural related soil types [34–36].
Due to the lack of ground truth data, it is difficult to fully assess the accuracy of different
tools on the metagenomes. However, the Centrifuge and Kraken2 predictions seem to
be highly skewed towards assigning large proportions to a small number of taxa. For
example, the class Actinomycetia was assigned the highest proportions by both Centrifuge
and Kraken2 in both the oral and soil metagenomes, suggesting the potential biases of
Centrifuge and Kraken2 towards classifying certain taxa. In contrast, the prediction of
DL-TODA is less biased towards a single taxon, and it predicted different rankings of
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the dominant taxa between the human oral cavity and cropland soil, two highly distinct
environments. The total number of reads classified remains low across all three tools, and
the percentage of classified reads varies among the two environments tested (Table 4).
Large differences were observed with Kraken2, which classified over 20% of reads in the
oral metagenome but only around 5% of reads in the soil metagenome. Centrifuge seems
to have classified the highest proportion of reads among all three tools in both the oral
and soil metagenomes. Considering that Centrifuge assigns the same taxa to paired reads,
similar strategies may be employed by DL-TODA to leverage the read pairs for enhancing
the number of classified reads. It is noted that the DL-TODA predictions were based on
a probability threshold higher than 0.5 which was uniformly applied to all taxa. Based
on discussions in the above paragraph, further optimization of the probability threshold,
together with the introduction of more training data, especially for some underrepresented
species, will likely further enhance the number of classified reads in the metagenomes.

Overall, DL-TODA is a new deep learning-based model for the taxonomic classifica-
tion of metagenomic reads. The model showed a high accuracy in classifying synthetic
reads and demonstrated the potential of recognizing a wide range of taxonomic groups
from diverse environments. Besides DL-TODA, several other deep learning models have
recently been created for the classification of metagenomic data, showing varied accuracy
and generalizability, usually at the genus or higher taxonomic levels [23,24]. DL-TODA is
distinct from these deep learning-based read classification tools. It uses a convolutional
neural network designed based on the architecture of AlexNet and classifies metagenomic
reads at the species level. DL-TODA has the ability to classify over 3000 bacterial species,
covering all the phyla represented in the current GTDB and NCBI databases. An additional
advantage of DL-TODA is the possibility to resume training with new data without needing
to reanalyze the previous training sets. This allows the model to be efficiently updated
with newly discovered genomes. DL-TODA also supports the calibration of classification
results based on a probability score associated with each taxonomic assignment. The imple-
mentation of DL-TODA is designed to support high efficiency in processing high volumes
of metagenomic data. By making use of Horovod, DL-TODA distributes the training and
testing tasks across multiple GPUs in parallel, faster than with the data distribution strategy
provided by TensorFlow. This feature, in addition to loading data directly to the GPU
memory using the Nvidia DALI library, creates an efficient pipeline for dealing with large
datasets. Future developments will include investigating solutions to reduce the size and
number of parameters in DL-TODA to further accelerate the training and testing processes.
Given the rapid growth of deep learning applications in metagenomic data analysis, future
benchmarking studies would provide useful guidelines for the application of different deep
learning tools and will likely nurture the engagement of a broader scientific community.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biom13040585/s1, Figure S1: A detailed illustration of the DL-
TODA pipeline; Figure S2: Precision of DL-TODA predictions over 639 species in the testing set
plotted against the depth of training set coverage for each corresponding species.
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