
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Robust Methods for Influencing Strategic Behavior

Permalink
https://escholarship.org/uc/item/8r12b6nn

Author
Brown, Philip Nathaniel

Publication Date
2018
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8r12b6nn
https://escholarship.org
http://www.cdlib.org/


University of California
Santa Barbara

Robust Methods for Influencing Strategic Behavior

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Electrical and Computer Engineering

by

Philip Nathaniel Brown

Committee in charge:

Professor Jason R. Marden, Chair
Professor João P. Hespanha
Professor Ramtin Pedarsani
Professor Noah Friedkin
Professor Timothy Roughgarden, Stanford University

June 2018



The Dissertation of Philip Nathaniel Brown is approved.

Professor João P. Hespanha

Professor Ramtin Pedarsani

Professor Noah Friedkin

Professor Timothy Roughgarden, Stanford University

Professor Jason R. Marden, Committee Chair

May 2018



Robust Methods for Influencing Strategic Behavior

Copyright © 2018

by

Philip Nathaniel Brown

iii



To Patricia and Genevieve

iv



Acknowledgements

Thanks to everyone who walked with me on this PhD journey! First, to my advisor

Jason, you’ve been the best of mentors. You have superbly modeled graduate school as an

apprenticeship: you taught me what it means to be an academic by an expert combination of

showing and telling. From the very beginning when you recruited me to CU, your guidance

and partnership have been keys to my success. Now that I sit at the end of the road looking

back, I cannot imagine a life without the struggles and triumphs that I’ve had in these past

6 years – and I cannot thank you enough for your role in starting, guiding, and keeping me

on this path.

I have been fortunate to be able to immerse myself in two separate sets of faculty at two

separate universities, and I cannot possibly hope to name all of the individuals among them

who have meant something to me over these years. Many thanks go to my committee: João

Hespanha, Ramtin Pedarsani, Noah Friedkin, and Tim Roughgarden – thanks for being part

of this aspect of my PhD. Special thanks also to Behrouz Touri: you have always expressed

more faith in me than I’ve felt like I gave you reason to, and this has been incredibly

encouraging.

To my labmates from CU and UCSB (you know who you are), you were a huge part of

my PhD experience and it wouldn’t have been the same without you. It has been inspiring

to work with peers who hold themselves to such consistently high standards; I’m confident

I wouldn’t have been as successful had you not been around.

As my preparation for this journey began long ago, I want to mention my mentors,

business partners, and friends Mark Mauss and Travis Danner. My time changing the

world (and shoveling chicken fat) alongside you prepared me for graduate school in many

important ways. Your work ethic, intelligence, and love of family is always on my mind.

To Professor Greg Durgin at Georgia Tech, you were my first academic mentor and a large

part of the reason I considered entering graduate school in the first place. To my parents

Greg and Nancy, you always gave me an environment in which my learning could thrive,

v



and you have continued to be an inspiration and an encouragement ever since.

To my wife Patricia, I love you. Our entire married life has been centered on me getting

my PhD, and now we get to embark on a new adventure together. To say that your constant

care and support has been the key to my survival these past years would be the gravest

understatement. Thank you for the beauty and the love that you have so freely brought

into my life!

Finally, to my daughter Genevieve. You are not yet old enough to understand what it

has meant for you that I’ve been pursuing my PhD, but I hope to teach you this for the rest

of your life. May the life of learning that I have embarked upon be a light and inspiration

to your life as well, and let the groundwork I have laid always spur you to challenge the

limits of your own ambition and curiosity.

vi



Curriculum Vitæ
Philip Nathaniel Brown

Education

2018 Ph.D. in Electrical and Computer Engineering (Expected), Univer-
sity of California, Santa Barbara.

2015 M.S. in Electrical Engineering, University of Colorado at Boulder.

2007 B.S. in Electrical Engineering, Georgia Institute of Technology.

Publications

Journal Publications

1. P. N. Brown, H. P. Borowski, and J.R. Marden, “Security Against Impersonation Attacks in
Distributed Systems,” accepted for publication in IEEE Transactions on Control of Network
Systems, 2018. (to appear)

2. P. N. Brown and J.R. Marden, “Optimal Mechanisms for Robust Coordination in Congestion
Games,” accepted for publication in IEEE Transactions on Automatic Control, 2018. (to
appear)

3. P. N. Brown and J.R. Marden, “The Robustness of Marginal-Cost Taxes in Affine Congestion
Games,” in IEEE Transactions on Automatic Control, August 2017.

4. P. N. Brown and J.R. Marden, “Studies on Robust Social Influence Mechanisms: Incentives
for Efficient Network Routing in Uncertain Settings,” in IEEE Control Systems Magazine,
February 2017.

Proceedings of Refereed Conferences

1. P. N. Brown and J.R. Marden, “The Benefit of Perversity in Taxation Mechanisms for
Distributed Routing,” 56th IEEE Conference on Decision and Control, 2017.

2. J.I. Poveda, P. N. Brown, J.R. Marden and A.R Teel, “A Class of Distributed Adaptive
Pricing Mechanisms for Societal Systems with Limited Information,” 56th IEEE Conference
on Decision and Control, 2017. [Best Student Paper Finalist]

3. P. N. Brown and J.R. Marden, “Studies on Mechanisms for Robust Social Influence,” 1st
IEEE Conference on Control Technology and Applications, 2017.

4. P. N. Brown and J.R. Marden, “Fundamental Limits of Locally-Computed Incentives in
Network Routing,” American Control Conference, 2017.

5. P. N. Brown and J.R. Marden, “Avoiding Perverse Incentives in Affine Congestion Games,”
IEEE Conference on Decision and Control, 2016. [Best Student Paper Finalist]

6. P. N. Brown and J.R. Marden, “A Study on Price-Discrimination for Robust Social Coordi-
nation,” American Control Conference, 2016.

7. P. N. Brown and J.R. Marden, “Optimal Mechanisms for Robust Coordination in Congestion
Games,” IEEE Conference on Decision and Control, 2015. (invited paper)

8. P. N. Brown and J.R. Marden, “Social Coordination in Unknown Price-Sensitive Popula-
tions,” IEEE Conference on Decision and Control, 2013.

vii



Patents

1. T. Danner, P. N. Brown, and M. Mauss. “Method of Alcoholysis of Fatty Acids and Fatty
Acid Glycerides,” 2016, U.S. Patent No. 9328054B1. May 3, 2016.

Awards and Honors

1. 2017 Best Student Paper Finalist, 56th IEEE Conference of Decision and Control

2. 2017 Outstanding TA Award, ECE Department, UCSB

3. 2016 Best Student Paper Finalist, 55th IEEE Conference of Decision and Control

4. 2016 Researcher of the term, Center for Control, Dynamical-Systems, and Computation,
UCSB

5. 2016 Best talk in Session Award, American Control Conference, Boston, MA

6. 2012 Chancellor’s Fellowship, University of Colorado.

7. 2007 ECE Senior Scholar Award, Georgia Tech (highest GPA in final year of study)

8. 2007 J.E. McDaniel Award, Georgia Tech (highest GPA among graduating co-op students)

viii



Abstract

Robust Methods for Influencing Strategic Behavior

by

Philip Nathaniel Brown

Today’s world contains many examples of engineered systems that are tightly coupled

with their users and customers. In these settings, the strategic and economic behavior of

users and customers can have a significant impact on the performance of the overall system,

and it may be desirable for an engineer to devise appropriate methods of incentivizing human

behavior to improve system performance. This work seeks to understand the fundamental

tradeoffs involved in designing behavior-influencing mechanisms for complex interconnected

sociotechnical systems. We study several examples and pose them as problems of game

design: a planner chooses appropriate ways to select or modify the utility functions of

individual agents in order to promote desired behavior. In social systems these modifications

take the form of monetary or other incentives, whereas in multiagent engineered systems the

modifications may be algorithmic. Here, we ask questions of sensitivity and robustness: for

example, if the quality of information available to the planner changes, how can we quantify

the impact of this change on the planner’s ability to influence behavior? We propose a

simple overarching framework for studying this, and then apply it to three distinct domains:

incentives for network routing, distributed control design for multiagent engineered systems,

and impersonation attacks in networked systems. We ask the following questions:

• What features of a behavior-influencing mechanism directly confer robustness?

We show weaknesses of several existing methodologies which use pricing for congestion

control in transportation networks. In response to these issues, we propose a universal

taxation mechanism which can incentivize optimal routing in transportation networks,
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requiring no information about network structure or user sensitivities, provided that

it can charge sufficiently large prices. This suggests that large prices have more

robustness than small ones. We also directly compare flow-varying tolls to fixed

tolls, and show that a great deal of robustness can be gained by using a flow-varying

approach.

• How much information does a planner need to be confident that an incentive mecha-

nism will not inadvertently induce pathological behavior?

We show that for simple enough transportation networks (symmetric parallel net-

works are sufficient), a planner can provably avoid perverse incentives by applying a

generalized marginal-cost taxation approach. On the other hand, we show that on

general networks, perverse incentives are always a risk unless the incentive mechanism

is given some information about network structure.

• How can robust games be designed for multiagent coordination?

We investigate a setting of multiagent coordination in which autonomous agents may

suffer from unplanned communication loss events; the planner’s task is to program

agents with a policy (analogous to an incentive mechanism) for updating their utility

functions in response to such events. We show that even when the nominal game

is well-behaved and the communication loss is between weakly-coupled agents, there

exists no utility update policy which can prevent arbitrarily-poor states from emerging.

We also investigate a setting in which an adversary attempts to influence a distributed

system in a robust way; here, by understanding susceptibility to adversarial influence,

we hope to inform the design of more robust network systems.
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Chapter 1

Introduction

Many of today’s engineered systems are tightly interconnected with their users, and system

performance often depends greatly on user behavior [2]. As a result, the traditional lines

between engineering and the social sciences are becoming increasingly blurred. Analytical

tools such as game theory are finding new applications in engineering [3, 4] and concepts

from control theory are being applied to understand the dynamics of social systems [5–7].

It is now often insufficient to judge an engineered system on its technical merits alone, since

strategic user behavior can lead to unpredictable and undesirable results [8]. Of particular

importance to this dissertation are socially-integrated engineering problems in which users’

social and strategic behavior has a significant impact on overall system performance [9,10].

These types of systems appear in a variety of contexts in theory and practice: transporta-

tion networks [11–13], ridesharing applications [14,15], supply-chain management [16], and

electric power grids [17] are immediate examples. A common problem in these settings

is that individual users’ incentives may not be aligned with the objectives of the central

planner. Thus, in addition to the merely-technical challenges they pose, an engineer may

need to consider methods of influencing individual user behavior to effect positive change

on aggregate system performance [18,18–22].

This chapter contains material which is adapted, with permission, from [1], previously published by
IEEE Control Systems. Some portions © 2017 IEEE.
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Introduction Chapter 1

In this context, we are interested in studying methods of indirectly influencing strategic

and economic behavior by appropriately modifying the incentives that users face for their

various decisions. This incentive-modification may take the form of traditional financial

incentives (as considered in Part I), or it may take the more abstract form considered

in Part II which we motivate with a problem of the distributed control of a multi-agent

system. In any case, every behavior-influencing mechanism requires information about the

underlying system and the user population who are to be influenced.

As a simple example, if a system planner desires to price a network resource to encour-

age efficient network usage, it may be desirable to characterize the sensitivity of the user

population to pricing. If this information is difficult to gather or altogether unavailable,

the planner may need to rely on crude estimates of user price-sensitivities, and the pricing

design must take this uncertainty into account. At worst, a misunderstanding of informa-

tional dependencies can lead to “perverse incentives,” or incentives that exacerbate the very

problems they were intended to solve.

Here, a theory of “robust social influence” is an attractive goal: how can behavior-

influencing mechanisms be designed so that they are robust to a variety of mischaracteriza-

tions or variations in models of social behavior or models of the underlying system? Some

natural questions in this context include:

• How robust are existing behavior-influencing methodologies to variations in underlying

system parameters?

• What features of a behavior-influencing mechanism directly confer robustness?

• How much information does a planner need to be confident that an incentive mecha-

nism will not inadvertently induce pathological behavior?

• How can robust games be designed for multiagent coordination?

To address these questions, we begin by asking what elements a theoretical framework

for robust incentive design should include. In essence, what should robust incentives look

2



Introduction Chapter 1

like? One typically imagines a system planner considering a particular instance of a system

and then designing an incentive mechanism for that specific instance. In contrast, the core

approach in this dissertation is to envision a system planner creating a design methodol-

ogy that informs the construction of incentive mechanisms for a family of socio-technical

systems, rather than for a single instance of that family.

1.1 The Robustness Meta-Problem

We now introduce the overarching analytical philosophy of this work. In this disser-

tation, the system planner is typically envisioned to be choosing rules that govern how a

behavior-influencing mechanism is selected as a function of the realized details of a problem

instance. If these rules (which we will frequently refer to as a methodology) are chosen in

such a way that the behavior-influencing mechanism performs well in some sense on prob-

lems drawn from the considered family of problems, then the methodology can be said to

be robust.

Somewhat more formally, let G represent a class (that is, a set) of problems, and let T

be a class of behavior influencing mechanisms. For example, G may represent the class of

all network traffic routing problems with linear latency functions, and T could represent

the class of pricing mechanisms that assign fixed prices to network links. Each T ∈ T can

be thought of as a set of rules for modifying problem instances in some admissible way.

We write T (G) to denote the problem instance G augmented by the behavior-influencing

mechanism T . Using the routing problem example, T (G) could represent the tolls specified

by T for the routing problem instance G.

Given G and T , let W (G,T (G)) represent some measure of the quality of the emergent

behavior resulting from the application of T to G.1 In the context of routing problems,

W (G,T (G)) could mean the social welfare of a Nash equilibrium2 for routing problem G

1Here, we explicitly pass G as an argument to W to underscore the fact that in many settings “perfor-
mance” is measured specifically with respect to the uninfluenced problem.

2Nash equilibrium and other technical details are formally defined in Chapter 2.
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Introduction Chapter 1

under the influence of the tolls T (G). In essence, W is an objective function that the

planner would like to maximize. Nominally, the planner’s problem is to find a T ∈ T which

maximizes W in worst case over G:

sup
T∈T

inf
G∈G

W (G,T (G)). (1.1)

The problem specified in (1.1) models design-time uncertainty by the variability among

members of G; a “larger” G would indicate more uncertainty at design-time.

In (1.1), the entire problem instance G is passed to the mechanism T . Taken at face

value, this implicitly assumes that the only uncertainty is at design-time and that once the

system is in operation, the mechanism T has access to all details of G. In many cases, some

(but not all) of a problem instance’s details are revealed at run-time, and it may be helpful

to have a concise way to model this run-time uncertainty as well. To explicitly model the

information available to mechanism T at run-time, let I denote a projection-like operator on

G which functions as a mask, revealing only certain information about a problem instance to

the associated mechanism T . Then the system planner’s objective is to select a mechanism

T that performs well on problems in G, given the fact that T cannot observe all details of

each problem G ∈ G; we express this meta-objective with the quality measure Q defined as

QG (T , I) := sup
T∈T

inf
G∈G

W (G,T (I(G))) . (1.2)

One of the benefits of this formalism is that it provides an overarching framework

with which a planner can map simple natural-language questions to concise, well-defined

mathematical expressions. For example, consider a situation in which a planner wishes to

know the value of investing in a new set of methodologies or tools. If the current set of

methodologies is specified by T and the new methodologies are specified by T ′, then the

4
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value of incorporating the new methodologies is concisely given by

QG
(
T ∪ T ′, I

)
−QG (T , I) ≥ 0. (1.3)

The value of obtaining new information can be assessed similarly, by comparing QG(T , I)

for different specifications of uncertainty mask I.

This dissertation contains a series of analytical studies on problems of a form inspired

by the meta-problem (1.2). The overarching goal is not merely to provide a series of isolated

answers, but rather to understand the fundamentals of the sensitivity of (1.2) in various

contexts. In each of the studies contained herein, the specific questions being asked can

be mapped to a problem of the form in (1.2). We will generally not provide this mapping

explicitly, but we feel that presenting the meta-problem in this semi-formal way should

help the reader to more quickly grasp the motivation and subtleties of the results. The

remainder of this chapter is as follows: Section 1.2 gives an informal overview of the traffic

routing problems that are studied later in the dissertation, and then Section 1.3 presents an

informal listing of the dissertation’s main results, along with references to specific theorems

and the chapters containing them.

1.2 Selfish Routing as a Testbed for Robust Incentive Design

A classical example of an engineered system whose performance depends heavily on the

choices of its users is that of a transportation network; this is captured in the literature

by a problem known as a non-atomic routing game [23–25]. The basic problem setup is

this: there is a group of travelers who need to be routed through a congestion-sensitive

network in a way that minimizes the average travel time. It is typically straightforward

to compute an optimal routing profile (also called a network flow), but implementing a

particular flow could require that a central planner has the ability to force every driver to

take a specified route. Unfortunately, it is well-known that if each driver chooses her route
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in order to individually minimize her own travel time, the resulting aggregate behavior can

be substantially less efficient than the centrally-computed optimal flow [8].

For concreteness, here we sketch two example problems; these are among the main

canonical routing problems which have received much attention in this domain. Both clearly

demonstrate some of the challenges inherent in selfish routing problems, and set the stage

for attempts to influence behavior to effect positive change.

1.2.1 Pigou’s Example: the Inefficiency of Self-Interest

The first example, depicted in Figure 1.1, illustrates the basic problem that travelers’

individual self-interested choices can lead to over-congested network flows. This illustration

is generally attributed to the economist Arthur Pigou, and remains a centerpiece of work in

this area [26]. The setting is as follows: there is 1 unit of travelers who can choose between

two links connecting a source node and destination node. For simplicity, we assume that

there are infinitely-many travelers, and that each individual is “small” in the sense that

she has no impact on congestion. Each link has a latency function `(f) which captures the

delay experienced by users of the link as a function of mass of users choosing that link.

In our example network, the latency function on link 1 is linear with `1(f1) = f1, and the

latency function on link 2 is constant with `2(f2) = 1. The first link offers a faster journey,

provided that it is not chosen by too many users.

The flow on this network which minimizes the average delay is shown on the left in

Figure 1.1: the traffic is split evenly between the two links, so that a mass of 1/2 experiences

a latency of 1/2 on the top link, and the remaining traffic experiences a latency of 1 on the

lower link, giving a total latency of L(f) = (1/2)2 + 1/2 = 0.75. However, this requires half

the drivers to choose quite a long route; any individual driver on the link 2 has a compelling

incentive to switch to link 1 and arrive at her destination in half the time. Unfortunately, if

all drivers choose the route with the lowest latency, they will all crowd on to the upper link

1 and establish the flow depicted on the right in Figure 1.1. This flow is known as a Nash

6
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© 2017 IEEE

Figure 1.1: Pigou’s Network, illustrating the negative effects of selfish behavior. In this
network, drivers can choose between the upper, congestion-sensitive link and the lower,
constant-latency link. The image on the left depicts a congestion-minimizing routing
profile in which the traffic is split evenly between the two links. However, in this optimal
flow, agents on the lower link experience a latency of 1, and (individually) could decrease
their travel time by switching to the upper link. Unfortunately, this self-interested behavior
can have negative consequences for system performance. The image on the right depicts a
routing profile arising when every driver chooses the path with lowest delay; here, drivers
have crowded on to the upper link, degrading its performance. A central problem is that
no driver has an incentive to choose the lower, more efficient path.

7
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flow or Wardrop equilibrium, defined as a flow in which no traveler can change paths and

strictly decrease her cost. In this Nash flow, the network’s total congestion is 1, a factor of

4/3 greater than the optimal total congestion.

1.2.2 Braess’s Paradox: the Unintended Consequences of Näıve Influence

A second canonical example known as Braess’s Paradox (first noted by Dietrich Braess [27,

28]) illustrates that seemingly-innocuous attempts to influence user behavior can lead to

unexpected and perverse consequences. Consider the network depicted in Figure 1.2(a);

traffic can choose between two paths, each routing through its own intermediate node. As-

is, the total congestion on the network at Nash flow is 1.5, since half the traffic uses the

upper path and half uses the lower path. It is also straightforward to see that this flow is

optimal.

Suppose now that the system planner adds a single zero-cost link to the network con-

necting the two intermediate nodes to one another, as depicted in Figure 1.2(b). Now,

under the old flow in which users split evenly, any user at node (B) would prefer to take the

new zero-cost link rather than continue on the upper path (since this would entail a cost

reduction of 1/2). This increases the lower path’s congestion, causing more users at (A)

to choose the upper path, but those users in turn will choose the new zero-cost link once

they arrive at node (B). Ultimately, equilibrium is reached at the routing profile depicted

in Figure 1.2(b), with a corresponding total congestion of 2. Here, this behavior-influencing

mechanism (augmenting the network with a zero-cost link) backfired and caused a dramatic

increase in total congestion [29]. This prompts the question: how should a system planner

approach the problem of influencing behavior in a principled way?

1.2.3 Can pricing mitigate Braess’s Paradox?

Motivated by the inefficiency resulting from selfish behavior, there has been a great deal

of research on the application of road tolls (or other incentive mechanisms) for the purpose of

8
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© 2017 IEEE

Figure 1.2: Braess’s network, depicting an unintended consequence of attempting to in-
fluence social behavior. The image on the left in (a) depicts a transportation network and
its associated Nash flow. A well-meaning traffic engineer, hoping to improve network con-
gestion, adds a new link to the network connecting the two intermediate nodes. Despite
the fact that this link’s cost is zero, its addition to the network leads to the setting on the
right in (b). Any user at node B can take the new link without increasing his cost, but
in doing so, he increases the cost of the lower path, which in turn leads to more users at
node A choosing the upper path. The ultimate effect of augmenting the network with a
zero-cost link is that every driver’s travel time increases by 33%.
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influencing drivers to make routing choices that result in globally-optimal routing [29–38].

A simple pricing model assumes that a planner assigns each link in a network a pricing

function τ(f), and then a driver on that link experiences a modified cost of `(f) + τ(f).

How might prices be used to mitigate the problems seen in Braess’s network?

One might postulate that the center zero-cost link is the cause of the problem, and so

charge a single fixed price on that link, say a price of 1. This is essentially equivalent to

removing the link from the network, since regardless of what others are doing, any agent at

node (B) now weakly prefers the direct link to the destination (with cost 1) over the path

containing the center link (whose cost is always at least 1).

Why might this be a poor choice? Suppose all of the parameters of this routing problem

are fixed except the overall traffic rate. Rather than a total mass of 1 unit of traffic, suppose

that there are r > 0 units of traffic. On this network, when r < 1/2, the optimal flow has

all of the traffic using the zig-zag path, with a total latency of 2r2. However, the price

on the center link effectively disincentivizes users from choosing this optimal flow, instead

incentivizing an even split between the upper and lower links that has a total latency of

r2 + r, just as in Figure 1.2(a). For this low-r regime, the ratio of the total latency of the

influenced flow and the total latency of the optimal flow is 1
2 + 1

2r , which approaches ∞ as

r → 0.3 In essence, this demonstrates that a fixed price of 1 on the center link in Braess’s

network is not robust to changes in traffic rate.

1.2.4 Robust Incentives for Selfish Routing

If road tolls are designed to incentivize good performance for one instance of a routing

problem, and then some detail of the routing problem changes, it would be desirable for

the original tolls to incentivize good performance on the changed routing problem as well.

In Section 1.2.3 above, the total inflow of traffic changed, but we could consider robustness

against a wide variety of other types of change: for example, a link is “removed” by a traffic

3This particular problem is investigated in considerably more detail in Chapter 3; in particular see
Figure 3.2.
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accident or natural disaster. That is, we would like to know if the performance guarantees

provided by the original tolls are robust to changes or mischaracterizations in the underlying

details of the system (e.g., network structure, traffic rate, user demands).

This goal can naturally be mapped into the robustness framework described by (1.2).

Our typical approach is to select G to represent some class of routing problems (e.g., sym-

metric parallel-network routing problems with heterogeneous price-sensitive users), and then

model the uncertainty of interest using the information mask I. If we wish to understand

robustness to variations in traffic rate, we select I to reveal all aspects of a routing problem

instance other than the traffic rate.

1.3 Informal Overview of Findings

This dissertation is divided into two parts. Part I represents a logical grouping of work

that deals specifically with robust pricing problems for purposes of mitigating congestion

caused by selfish routing as described in Section 1.2. In Part II, we consider a somewhat

more abstract “incentive” design problem motivated by the distributed control of a mul-

tiagent system, both from the perspective of a system designer (Chapter 8) and from the

perspective of an adversary (Chapter 9). Here, we will survey the findings on a chapter-by-

chapter basis.

1.3.1 Chapter 3: The Fragility of Fixed Tolls

Existing research has demonstrated that if a tax-designer has an accurate and detailed

characterization of a routing problem, it is possible to design simple road tolls which incen-

tivize optimal routing [39–41]. These are termed fixed tolls, since they are simple constant

functions of traffic flow. One of the potential benefits of fixed tolls is that a single fixed

price can easily and clearly be communicated to drivers, and this may be preferable to

more complicated variable or contingent prices. However, as shown above in section 1.2.3,

11
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fixed tolls need not be robust to variations of network parameters. We show this more

comprehensively and for more types of parameter variations in Chapter 3:

• Proposition 3.1 shows that if the latency/delay functions of a network are not char-

acterized precisely, fixed tolls cannot guarantee optimal routing on that network.

• In an example depicted in Figure 3.2, we investigate the problem considered in Sec-

tion 1.2.3 and show how fixed tolls can cause unbounded degradation in performance

when the network’s traffic rate changes.

• Finally, Theorem 3.2 shows that not only must fixed tolls depend on network structure

to incentivize optimal flows, but that they must depend on network structure even to

guarantee that they incentivize improvements in network flows.

It is simple to cast these results in the meta-framework of (1.2): each posits a particular

class of routing problems (here, generally selfish routing problems with populations having

homogeneous price-sensitivity), each posits a class of taxation mechanisms T subject to

constraints (here, generally fixed tolls Tfixed), and each posits an information mask I which

specifies the information available to the taxation mechanism. Thus, since these are all

negative results, they imply that even for simple G, we have that for many different I, the

quality given by QG (Tfixed, I) is poor.

1.3.2 Chapter 4: The modest benefits of marginal-cost pricing

Another well-studied taxation mechanism is that of marginal-cost tolls, in which each

network link is assigned a flow-varying tax that is specifically designed to penalize inefficient

congestion. Marginal-cost tolls are known to incentivize optimal network routing in the

special case that all network users are homogeneous in tax-sensitivity (i.e., they all value

time equally) [42,43]. If users are heterogeneous in price-sensitivity (i.e., different users value

their time differently), then marginal-cost pricing can still help, provided that each user is

charged a personalized price that is “tuned” to her particular price-sensitivity [32]. If the

12
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pricing authority lacks access to a detailed characterization of the users’ price-sensitivities

or lacks the ability to charge each user an individualized price, what can be said about the

effectiveness of marginal-cost pricing?

In this chapter, we investigate the robustness of marginal-cost tolls in settings with

price-sensitive and heterogeneous user populations. In summary:

• In an example presented in Figure 4.1, it is demonstrated how marginal-cost tolls

generally fail to incentivize optimal routing when the price-sensitivity of the user

population is not precisely characterized.

• Proposition 4.1 shows, again via an example, that off-the-shelf marginal-cost tolls can

actually degrade routing efficiency when the user population is heterogeneous.

• In contrast to these generally negative results, Theorem 4.2 considers a restricted

problem (parallel networks, linear-affine cost functions, and high traffic) and derives

the optimal scaled marginal-cost toll that minimizes worst-case congestion resulting

from heterogeneous populations.

A message here is that while it is still possible to construct pathological examples on

which marginal-cost tolls perform poorly, they are strictly more robust than the fixed tolls

considered in Chapter 3. Furthermore, by appropriately restricting the class of problems

under consideration, it can be shown (as in Theorem 4.2) that marginal-cost tolls can be

quite robust.

With respect to the meta-problem (1.2), here we investigate the sensitivity of the quality

metric to changes in G, while holding the class of taxation mechanisms T and available

information I constant. That is, the fundamental question of this chapter is on the role of

design-time uncertainty.

13
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1.3.3 Chapter 5: Advanced techniques for toll robustness

In this chapter, we ask if there exist any taxation mechanisms that are robust in the

information-denied environments studied earlier. Fortunately, there are – but we show that

these bring their own drawbacks:

• Theorem 5.1, the cornerstone of the chapter’s results, shows that if tolls can be made

large, there is a universal taxation mechanism that can incentive approximately-

optimal flows without requiring information about the structure of the network or

about the user population’s price-sensitivity.

• Inspired by the fact that Theorem 5.1 prescribes arbitrarily-large tolls, we next con-

sider the effect of placing an upper bound on tolls. Theorem 5.3 considers the same

restricted setting seen in Theorem 4.2 and derives the optimal bounded taxation

mechanism for that setting; interestingly, when latency functions are linear-affine, the

optimal taxation mechanism also must be affine.

• Finally, Theorem 5.4 demonstrates a curious fact that the worst-case inefficiency

due to fixed tolls can actually be expressed as the worst-case inefficiency due to the

bounded tolls of Theorem 5.3 for a very low toll bound. Since efficiency is increasing

in the toll upper bound, this serves as an additional indication that fixed tolls are

considerably less robust than flow-varying tolls.

The work contained in this chapter should be viewed as an initial piece of a larger

research agenda, to understand the relationship between constraints on information (i.e.,

uncertainty) and the constraints on taxation mechanisms, as discussed earlier with the meta-

problem (1.2). In the meta-problem framework of (1.2), this chapter’s primary question

is on the sensitivity of the quality metric to changes in the allowable class of taxation

mechanisms T . Here we hold the class of routing problems G constant, and parameterize

T by an upper bound on taxation functions to show how enlarging the set of available

methodologies can improve performance.
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1.3.4 Chapter 6: Avoiding perverse incentives

The foregoing was largely concerned with comparing the efficiency incentivized by a

taxation mechanism to the efficiency of optimal routing profiles. Alternatively, a pricing

designer may be interested in comparing the flows incentivized by a taxation mechanism

with the uninfluenced flows. In this context, if for some routing problem a taxation mech-

anism incentivizes a Nash flow which is worse than the uninfluenced Nash flow, we call

this mechanism perverse. This chapter formalizes this notion of perverse incentives, and

asks which taxation mechanisms can be said to systematically avoid perverse incentives.

One of the key insights here is that there is a fundamental tradeoff between minimizing

congestion and avoiding perverse incentives; in essence, one goal cannot be accomplished

without making some concession to suboptimality in the other goal.

• First, Theorem 6.1 shows this tradeoff qualitatively: if a taxation mechanism improves

outcomes on any network, it must degrade them on some other network.

• Next, we show in Theorem 6.2 that perverse incentives are not totally ubiquitous.

That is, there exist nontrivial classes of networks (e.g., parallel networks) on which

perverse incentives can always be avoided with nontrivial taxation mechanisms.

• Theorem 6.5 and Proposition 6.6 are a step towards characterizing the perversity

tradeoff quantitatively, on routing games with homogeneous populations. Here we

provide tools that can help a tax designer minimize worst-case congestion while lim-

iting the perversity of the applied mechanism.

• Lastly, we show in Corollary 6.7 that this work on perverse incentives has interesting

implications for the theory of altruistic behavior in congestion games. In partic-

ular, our impossibility result from Theorem 6.1 implies that there exist “altruism

paradoxes”: routing problems for which making a fraction of the population more

altruistic can actually increase aggregate traffic congestion.
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1.3.5 Chapter 7: Price discrimination

In this final chapter on influencing selfish routing, we consider discriminatory pricing;

i.e., pricing mechanisms that charge different prices to different users. One of the motiva-

tions here is to explore some of the consequences of modifying our design constraints.

• Theorem 7.1 is similar in spirit to our previous Theorem 5.1 for large tolls: if price-

discrimination is fine enough (that is, enough distinct prices can be charged to different

types of users), then arbitrarily-efficient Nash flows can be incentivized.

• Theorem 7.2 shows that there is a general equivalence between fine price discrimination

and low variance in price sensitivity among the members of the user population. That

is, fine price-discrimination on a poorly-characterized population gives the same worst-

case performance as no price-discrimination on a well-characterized population.

• In Theorem 7.3, we apply the optimal bounded taxation mechanism from Chapter 5

(as considered in Theorem 5.3) to a discriminatory setting, and show how to compute

the optimal discriminatory prices for any parallel-network routing problem.

1.3.6 Chapter 8: Applying the framework to a distributed control prob-

lem

Until here, the sole application of our work has been to mitigate traffic congestion in

selfish routing problems. In Chapter 8, we turn to quite a different setting: distributed con-

trol of a multiagent system, posed as a problem of game design. Recent years have witnessed

a surge of interest in using game theory to design distributed control laws for multiagent

systems; overviews of some of this work can be found in [4]. In this paradigm, utility func-

tions are assigned to decision-makers in a multiagent system; these utility functions induce

a game between the agents. This paradigm has been proposed to address problems in many

different domains, including sensor networks [44, 45], UAV control [46], and wireless spec-
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trum sharing [47,48]. The agenda in this literature is to develop methodologies for designing

utility functions that use information available from the nominal engineering problem.

One significant open question that remains in this area centers on the networked aspect

of the designed game. The classical results here essentially assume the agents have a full

specification of their utility functions and can accurately observe the action choices of all

other agents at all times or can communicate among each other [49–52]. In other words,

the graph that describes which agents can observe one another is a complete graph with

edges connecting every pair of agents. If the observation graph is not complete, it is not

known how to compute utility functions which induce good Nash equilibria.

Chapter 8 investigates a setting which may provide some insight into general answers

to this open question. Here, we assume that the planner is given a game which is played

on a complete observation graph, and that this game’s Nash equilibria correspond to the

optimizer of an objective function of interest. We then investigate the removal of a single

directed edge from the observation graph; in essence, we are asking if a distributed control

algorithm that is designed for a complete observation graph structure can be “projected”

in a principled way onto a game with a sparser observation graph.

Crucially, when an edge is removed from the observation graph, this prevents some

agent from evaluating its nominal utility function — so a new utility function must be

assigned to that agent. Thus, we are seeking a robust means of assigning that agent a

new utility function under the restriction that the new utility function has no information

about the utility functions of other agents. That is, this problem maps to the robustness

meta-problem of (1.2), with T representing sets of rules that govern the assignment of new

utility functions, and I encoding the above informational restriction.

This chapter presents several negative results, showing that no robust utility reassign-

ment is possible in many situations. Subsequently, we undertake an initial study on how it

may be possible to circumvent these pathologies. In particular:

• Theorems 8.3 and 8.7 are the main negative results of this chapter. Informally, they
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show that nominally well-behaved games (potential games with unique Nash equilib-

ria, or identical-interest games, respectively) can be made arbitrarily bad simply by

the “removal” of a single directed edge in their respective interdependency graphs,

even when that edge corresponds to a pair of agents that are very weakly interdepen-

dent.

• Theorem 8.9 explores a possible path to mitigating some of these pathologies via an

informational paradox. Here, we show specifically for identical-interest games that if

all interdependency connections to a single player are removed, this will essentially

eliminate the harm of the pathologies described in Theorem 8.7.

1.3.7 Chapter 9: Robust influence by an adversary

No study on influencing social behavior would be complete without some mention of

the influence that an adversary might have on behavior. In Chapter 9, we consider a simple

model of coordination in a networked social or engineered system and ask how an adversary

can influence the stable states of the system. In this setting, we assume that the adversary

can introduce a fixed number of counterfeit nodes into the network which each impersonate

a friendly node, effectively modifying the true nodes’ utility functions in an attempt to

indirectly influence their actions.

Our main question here is this: how does the capability of the adversary and the

amount of information available to it affect its ability to influence behavior? Here, we

model capability both by how precisely the adversary can target individual nodes, as well

as how many nodes the adversary can target. In the language of the meta-problem (1.2),

we play the role of the adversary and ask how the network can be influenced robustly. We

posit three distinct possibilities for T (corresponding to static targeting, mobile targeting,

and random targeting) and compute the adversary’s ability to influence as a function of k,

the number of friendly nodes it can target. The main results are

• Theorem 9.2 shows that if an adversary employs random targeting, its long-term
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influence on agent behavior is constant in k – suggesting that randomness is of high

relative value when the adversary cannot influence many agents. This holds for any

graph structure.

• Theorems 9.1 and 9.4 compare fixed and mobile deterministic adversaries for the

special case of ring graphs, and show precise susceptibilities as a function of the

adversaries’ value of k and the size of the graph n. Particularly interesting is that for

ring graphs of size n > 3, a mobile adversary is equally effective with k = 3 as it is

with k = n− 1, starkly demonstrating the value of mobility.

1.3.8 Remarks

In the remainder of this dissertation, we develop the theory surrounding these contribu-

tions. Chapter 2 provides the complete technical details of the traffic routing model that is

studied in Chapters 3–7. When an individual chapter or set of results requires a refinement

or modification to the basic model, we make that refinement in the chapter in question.

Chapter 8 then considers the design of a network game as a type of incentive design prob-

lem in which the “incentive mechanism” is a policy by which an autonomous agent modifies

its utility function in response to the loss of some piece of information. Finally, Chapter 9

considers the impact of adversaries in distributed systems. Here, the adversary is solving

an incentive design problem: by posing as a friendly agent, it can indirectly modify friendly

agents’ behavior. As their models differ significantly from that of the routing problems,

Chapters 8 and 9 are nearly completely self-contained, each with their own complete model

descriptions.
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Robust Incentives for Selfish

Routing
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Chapter 2

Technical Preliminaries for Selfish

Routing

In this chapter, we introduce the key technical details of the selfish routing model that is

studied in Chapters 3–7. When a chapter specifically considers a variation of this model,

we make this variation explicit in the chapter itself.

2.1 The Model

Consider a network routing problem for a network (V,E) comprised of vertex set V and

edge set E. We call a source/destination vertex pair (σc, tc) ∈ (V ×V ) a commodity, and the

set of all such commodities C. For each commodity c ∈ C, there is a mass of traffic rc > 0

that needs to be routed from σc to tc. We write Pc ⊂ 2E to denote the set of paths available

to traffic in commodity c, where each path p ∈ Pc consists of a set of edges connecting σc

to tc. Let P = ∪{Pc}. A network is called symmetric if there is exactly one commodity:

C = {c}; i.e., all traffic routes from a common source σ to a common destination t using a

common path set P. A network is called a parallel network if all commodities share a single

source-destination pair and all paths are disjoint; i.e., for all paths p, p′ ∈ P, p∩p′ = ∅. Note
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that a parallel network need not be symmetric; although all traffic must share a common

source and destination, the various commodities’ path sets Pc may still differ.

We write f cp ≥ 0 to denote the mass of traffic from commodity c using path p, and

fp ,
∑

c∈C f
c
p . A feasible flow f ∈ R|P| is an assignment of traffic to various paths such

that for each c,
∑

p∈Pc f
c
p = rc and

∑
c∈C r

c = r.

Given a flow f , the flow on edge e is given by fe =
∑

p:e∈p fp. To characterize transit

delay as a function of traffic flow, each edge e ∈ E is associated with a specific latency

function `e : [0, r] → [0,∞); `e(fe) denotes the delay experienced by users of edge e when

the edge flow is fe. We adopt the standard assumptions that each latency function is

nondecreasing, convex, and continuously differentiable. We measure the cost of a flow f by

the total latency, given by

L(f) =
∑
e∈E

fe · `e(fe) =
∑
p∈P

fp · `p(f), (2.1)

where `p(f) =
∑

e∈p `e(fe) denotes the latency on path p. We denote the flow that minimizes

the total latency by

f∗ ∈ argmin
f is feasible

L(f). (2.2)

A routing problem is given by G = (V,E, C, {`e}); the shorthand e ∈ G means (e ∈ E :

E ∈ G). We denote classes of routing problems with the calligraphic G, and often write

e ∈ G as a shorthand for (e ∈ G : G ∈ G).

To study the effect of taxes on self-interested behavior, we model the above routing

problem as a non-atomic congestion game. We assign each edge e ∈ E a flow-dependent

taxation function τe : R+ → R. We characterize the taxation sensitivities of the users in

commodity c with a monotone, nondecreasing function sc : [0, rc] → [SL, SU], where each

user x ∈ [0, rc] has a taxation sensitivity scx ∈ [SL, SU] ⊆ R+, where SL ≥ 0 and SU ≤ +∞

are lower and upper sensitivity bounds, respectively. To avoid trivialities, we assume that

in each c, zero measure of traffic has sensitivity exactly equal to 0, or that for all ε > 0,
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scε > 0. If all users have the same sensitivity (i.e., scx = sc
′
y for all c, c′ ∈ C and all x ∈ [0, rc]

and y ∈ [0, rc
′
]), the population is said to be homogeneous; otherwise it is heterogeneous.

Given a flow f , the cost that user x ∈ [0, rc] experiences for using path p̃ ∈ Pc is of the

form

Jcx(f) =
∑
e∈p̃

[`e(fe) + scxτe(fe)] . (2.3)

Thus, for each user x ∈ [0, rc], the sensitivity scx can be viewed as a constant gain on the

toll; a user’s experienced cost is then the sum of the latency and sensitivity-weighted toll.

Note that sensitivity can be interpreted as the reciprocal of an agent’s value-of-time.1 We

assume that each user selects the lowest-cost path from the available source-destination

paths. We call a flow f a Nash flow if all users are individually using minimum-cost paths

given the choices of other users, or if for all commodities c ∈ C and all users x ∈ [0, rc] we

have

Jcx(f) = min
p∈Pc

{∑
e∈p

[`e(fe) + scxτe(fe)]

}
. (2.4)

It is well-known that a Nash flow exists for any non-atomic congestion game of the above

form [54].

In our analysis, we typically assume that each sensitivity distribution function sc is

unknown to the pricing authority; for a given routing problem G and SU ≥ SL ≥ 0 we

define the set of possible sensitivity distributions as the set of monotone, nondecreasing

functions SG = {sc : [0, rc] → [SL, SU]}c∈C . We write s ∈ SG to denote a specific collection

of sensitivity distributions, which we term a population.

2.2 The Robustness of a Taxation Mechanism

It was shown in Section 1.2 how self-interested behavior can lead to poor system per-

formance; in both examples, the fundamental problem was that in an optimal flow, users

1We adopt this formulation from [39]. Note that constant sensitivity is a commonly-studied special case;
alternative formulations are possible [53].
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could decrease their own cost only by imposing a greater cost on those around them. If

users were altruistic, willing to accept a personal degradation of service for the sake of the

greater good, they might be expected to adopt this type of socially-optimal configuration.

One way to influence users to choose this configuration is to charge tolls on over-congested

links, hoping to increase their costs enough that a sufficient number of users will avoid them.

The tolls are put in place essentially to induce an “artificial altruism” in the population;

in fact, there are many parallels between the literature on altruism in congestion games

and the literature on financial incentives in congestion games (some of which we explore

in Chapter 6) [55]. Of course, the toll-designer must take care in choosing the tolls. It

has already been seen in Braess’s Paradox that seemingly-innocuous approaches can have

unexpected consequences, and the toll-designer must be certain not to fall into a similar

trap. If tolls are too high on a particular edge, it may be that too many users will avoid

that edge; if tolls are not properly balanced throughout the network, uneven and inefficient

flow distributions could arise.

2.2.1 A Simple Robustness Taxonomy

It is the goal of robust social influence design to levy tolls that incentivize desirable

behavior irrespective of changes or mischaracterizations of the underlying system. Figure 2.1

depicts several types of system changes which could potentially create problems for taxation

methodologies. In these diagrams, the tolls were designed for the nominal system on the

left, but after the respective change, these same tolls are effectively being applied to different

networks than those for which they were designed. The hope is that the tolls designed for

the original system provide comparable performance guarantees on the “new” systems; to

this end, we will ask if each of several common taxation methodologies is robust to variation

in parameters such as:

1. Network Changes: If tolls are designed to incentivize efficient flows for a particular

network, and the network undergoes some change, do the original tolls still incentivize
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Figure 2.1: Diagram depicting possible network changes a designer may consider in ro-
bustness analysis. Suppose tolls τ1, τ2, andτ3 are designed for the network on the left. To
analyze the robustness of this toll design, the designer may subject the routing problem to
various hypothetical changes: topology (deleting link 3), traffic rate (increasing r above its
original value), and demand structure (restricting half the traffic to the upper two links,
the other half of the traffic to the lower two links), while keeping the tolls designed for
the original network. If the tolls are able to incentivize efficient behavior on the “new”
networks despite having been designed for the original network, they are called robust.

efficient flows for the new, changed network?

2. Traffic Rate: Do tolls designed for one traffic rate (i.e., one value of r) still incentivize

efficient flows if the rate changes?

3. Demand Structure: If some users have access to different paths than others, how does

this impact the design of the correct tolls?

To investigate the robustness of a particular tolling strategy to variations of a parameter,

a system-planner can design tolls for a specific system realization, hold the tolls constant,

and study the effect on Nash total latency of varying the parameter in question. One way

to model perturbations of games is to define a correspondence ΓG(·) that returns games

similar to some nominal game G that have been perturbed in the argument of ΓG. For
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example, ΓG({`, r}) represents the set of routing games that differ from G only in their

latency functions ` and total traffic rate r.

To formally discuss tolling strategies, let a taxation mechanism T be a mapping from

games to edge taxation functions; thus, we write T (G) to denote the edge taxes that T

assigns to game G. We write Lnf(G∗, T (G)) to mean the Nash flow total latency for some

(possibly different) game G∗ induced by tolls generated by T for the nominal game G. A

taxation mechanism T is said to be strongly robust on G if T incentivizes optimal flows for

all allowable perturbations of G. That is, the strong robustness of T to variations in game

parameters X ⊆ {V,E,P, {`e}e∈E , r, s} implies that

Lnf(G∗, T (G)) = L∗(G∗) for all G∗ ∈ ΓG(X). (2.5)

We likewise say that T is strongly robust on a larger class of games G if (2.5) holds for all

G ∈ G.

This may be too strong a condition in some settings (though strongly-robust taxation

mechanisms do exist in some contexts; see Section 2.3.2), so a taxation mechanism is said

to be weakly robust on G if it never incentivizes Nash flows on perturbed networks that are

worse than the un-tolled flows. That is, writing Lnf(G, ∅) to denote the Nash flow total

latency on G without tolls, the weak robustness of T on G to parameters specified by X

implies that

Lnf(G∗, T (G)) ≤ Lnf(G∗, ∅) for all G∗ ∈ ΓG(X). (2.6)

Again, we say that T is weakly robust on a larger class of games G if (2.6) holds for all

G ∈ G. Put differently, if tolls are weakly robust, they will not create perverse incentives.

Thus, by the definitions presented in this section, assigning a toll of 0 to every link is always

a weakly robust taxation mechanism, as it certainly cannot make Nash flows worse.

26



Technical Preliminaries for Selfish Routing Chapter 2

2.2.2 Price of Anarchy

While the strong-weak taxonomy presented above may provide a simple binary check

on the robustness of a mechanism, it is often desirable to measure robustness more quanti-

tatively. One basic optimization objective which lends itself well to this goal is termed the

price of anarchy. Informally, price of anarchy is a measure of how much worse Nash flows

can be than optimal flows. For some class of routing problems G, let Lnf(G) and L∗(G)

denote the total latencies of Nash flows and optimal flows on G ∈ G, respectively. In its

simplest form, the price of anarchy is defined over a class of games G as

PoA(G) = sup
G∈G

Lnf(G)

L∗(G)
. (2.7)

Price of anarchy was introduced in [56] and some of the first comprehensive analysis was

done in the area of selfish routing games in [8,57,58]. Price of anarchy has found far-reaching

applications in fields as diverse as supply-chain management [59], auction theory [60, 61],

telecommunication systems [62], machine scheduling [63], distributed control [64] and a

variety of networking problems [9, 65].

Note the similarity between (2.7) and the inner optimization of the overarching meta-

problem (1.2); because of this similarity, we will use a price-of-anarchy-like object to assess

the robustness of taxation mechanisms.2

For a given routing problem G ∈ G, we gauge the efficacy of a collection of taxation

functions τ = {τe}e∈E by comparing the total latency of the resulting Nash flow and the

total latency associated with the optimal flow, and then performing a worst-case analysis

over all possible user populations. For some routing problem G, let Lnf(G, s, τ) denote the

total latency of the worst-performing Nash flow resulting from taxation functions τ and

population s ∈ SG. To assess the impact of uncertainty on user sensitivities, we often use

2In so doing, we frequently overload the PoA(·) notation; we shall endeavor to explicitly state the meaning
of PoA when not abundantly clear from context.
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the following formulation:

PoA(G, τ) = sup
s∈SG

Lnf (G, s, τ)

L∗(G)
≥ 1. (2.8)

Note that (2.10) considers the cost of routing induced by taxes τ on a specific routing problem

(i.e., fixed network (V,E), commodities C, and latency functions {`}) in the situation that

the sensitivities s of the user population are unknown. Hence, this particular formulation

is assessing the cost associated with not knowing the distribution of user sensitivities; other

formulations are possible and we will introduce them as necessary.

2.2.3 Network-Agnosticity and Perverse Incentives

One type of taxation mechanism which we will consider repeatedly is a network-agnostic

taxation mechanism. This concept was first formalized in [1]; here, each edge’s taxation

function is computed using only locally-available information. That is, τe(fe) depends only

on `e, not on edge e’s location in the network, the network topology, the overall traffic rate,

or the properties of any other edge. A network-agnostic taxation mechanism T is thus a

mapping from latency functions to taxation functions, and the taxation function associated

with latency function `e is given by

τe(·) = T (`e). (2.9)

Network-agnostic taxation mechanisms provide a way to formally study the value of in-

formation about network structure when designing behavior-influencing mechanisms. Here,

if a network-agnostic taxation mechanism performs well, it can be inferred that information

about network structure is not particularly valuable. On the other hand, if all network-

agnostic taxation mechanisms perform poorly, this indicates that information about network

structure is quite valuable indeed.

Here, we are often interested in formulating the price of anarchy in the following way:
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the price of anarchy of a class of games G under the influence of taxes T is defined as

PoA (G, T ) , sup
G∈G

sup
s∈SG

Lnf(G, s, T )

L∗(G)
. (2.10)

However, the price of anarchy itself need not be the only metric of concern. In Chapter 6,

we pose a somewhat different question: rather than measuring how far the influenced flows

are from optimal, it may be desirable to measure how much the taxes help (or hurt) with

respect to the un-influenced flows. Here, we may define a similar metric to that in (2.10),

but with the un-influenced total latency Lnf(G, ∅) in the denominator. We call such a metric

the index of perversity of taxation mechanism T , defined as

PI (G, T ) , sup
G∈G

sup
s∈SG

Lnf(G, s, T )

Lnf(G, ∅)
. (2.11)

Here, if T has a large index of perversity, this means that on some networks, it incen-

tivizes flows that are considerably worse than the un-influenced flows; in other words, it

can create perverse incentives. If a taxation mechanism has a perversity index of 1, we say

that it is non-perverse; otherwise, it is perverse.

Note that it is always true that PI(G, T ) ≤ PoA(G, T ); this is because on any G,

Lnf(G, ∅) ≥ L∗(G). Finally, when these metrics are evaluated only over homogeneous

populations (as opposed to heterogeneous), we write them as PoAhm(G, T ) and PIhm(G, T ),

respectively.

2.3 Survey of Existing Taxation Methodologies

2.3.1 Fixed tolls for designers with detailed information

A simple way to apply tolls for social coordination would simply be to charge all users of

each link a fixed price. Tolls of this form are known as “fixed” tolls, since the tolling function

on each edge is a constant function of edge flow. To see an example of fixed tolls consider
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again Pigou’s Example in Figure 1.1. If all users have a tax-sensitivity equal to 1, one set

of edge tolls that enforces the optimal flow for Pigou’s example is simply τ1(f1) = 0.5, and

τ2(f2) = 0. Under these tolls, the optimal flow of (1/2, 1/2) is a Nash flow, since in it

all users experience a cost of 1. If users are heterogeneous, an optimal fixed toll can still

easily be found by charging the price that would cause the most sensitive half of the users

to deviate to the lower link. This fixed-tolling approach has been studied in general, and

it is known that fixed tolls can be computed to enforce any feasible flow, provided that

the system planner has a complete characterization of the system: network topology, user

demand profile, latency functions, and user sensitivities [40,41].

Note that in the language of the robustness meta-problem, these fixed-toll results essen-

tially allow the class of problems G to be quite large, but then take the information mask

I to be the identity: the taxation mechanism can specify tolls for each routing problem

instance as a function of all relevant details.

2.3.2 Marginal-cost tolls: optimal and network-agnostic

In traffic routing, an agent’s total cost can be viewed as being two-fold: the first compo-

nent is the agent’s own experienced delay, the second is the delay that the agent’s presence

imposes on others. A marginal-cost toll explicitly charges each agent for his imposition

on other agents; in economic language, marginal-cost tolls internalize the agent’s negative

externalities [42,43]. The marginal-cost taxation mechanism Tmc assigns tolls to each edge

e given by

Tmc
e (fe) = fe ·

d

dfe
`e(fe). (2.12)

Note that each edge’s toll depends only on that local edge’s congestion properties and traffic

flow; global information regarding traffic rate and network topology is not used.

It is well-known that for homogeneous user populations, charging marginal-cost tolls
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enforces exactly-optimal network flows [42,43], or

Lnf(G,Tmc(G)) = L∗(G). (2.13)

By construction, these tolls are strongly robust to variations of network topology and overall

traffic rate.

This can be seen for Pigou’s and Braess’s networks in Figures 1.1 and 1.2, where

marginal-cost tolls prescribe tolling functions of τ(f) = f for each of the linear-cost edges.

For homogeneous users, the linear-cost edges have a resulting effective cost of 2f , which in-

centivizes the desired optimal flows. Mapping these tolls to the robustness meta-problem (1.2),

we see that the marginal-cost approach can handle fairly fairly restrictive choices of the un-

certainty mask I: if I hides the overall traffic rate or the network topology, marginal-cost

prices still function optimally. One of the central themes of this dissertation is the question

of whether there exist other taxation mechanisms which can perform well under these same

informational restrictions.

2.3.3 Other Related Work

Recent years have seen a great deal of work on the subject of selfish routing, influencing

user behavior in congestion games, and other types of issues surrounding these problems.

The authors of [12,66] study the “price of risk aversion,” which measures how society’s risk

preferences affect aggregate congestion as compared to ordinary Nash flows. Similarly, [67]

studies the “deviation ratio,” which measures essentially the same quantity for arbitrary

cost function biases. The term Stackelberg Routing describes a setting in which a planner

controls some fraction of traffic and the remainder of the traffic routes selfishly [68]. In

some cases the price of anarchy guaranteed by Stackelberg routing can be shown to be a

lower bound for the price of anarchy of a taxation mechanism [36]. Work on the price of

anarchy resulting from bounded tolls can be found in [69,70]. In [71], the authors propose a
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centralized iterative algorithm whereby a system planner levies tolls on the network, records

the resulting Nash flow, updates the tolls accordingly, and so on – and it is proved that

Nash flows resulting from this sequence of tolls converge to the planner’s target flow even if

the initial latency functions are unknown. The authors of [72] study when networks admit

demand-independent tolls. The impact of including autonomous vehicles in transportation

networks is investigated in [73].
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Chapter 3

The Fragility of Fixed Tolls

As shown in [40, 41], fixed tolls can enforce any feasible flow if chosen properly. How

robust are they to variations in a system’s underlying parameters? Here, we investigate

the robustness of fixed tolls to variations of three parameters: latency functions, overall

traffic rate, and general network changes. All of this analysis of fixed tolls will be in the

simplified context of homogeneous unit-sensitivity populations; thus, any negative results

here can only be worsened by extending to the broader heterogeneous case. This chapter

deals simply with the questions of strong and weak robustness; for a further look at the

price of anarchy associated with fixed tolls, see Theorem 5.4 in Chapter 5.

3.1 Fixed Tolls Cannot Be Strongly Robust

To begin, we ask if fixed tolls can ever be strongly robust to changes in latency func-

tions. One could imagine sudden changes to latency functions arising as a result of traffic

accidents, weather, or natural disasters; strong robustness to these would imply that op-

timal performance would be incentivized regardless of the severity of the disturbance. We

have the following easy fact:

This chapter is adapted, with permission, from [1], previously published by IEEE Control Systems. ©
2017 IEEE.
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Proposition 3.1 Fixed tolls are not strongly robust on G to changes in latency functions.

Put differently, to guarantee optimal routing in general, fixed tolls require detailed charac-

terizations of a network’s latency functions.

Proof: Here, the network topology (V,E), path set P, and total traffic rate r are held

constant while latency functions {`} are varied. Note from (2.5) that to disprove strong

robustness on general networks G, it suffices to exhibit two networks G and G∗ that differ

only in their latency functions for which Lnf(G,T ft(G)) = L∗(G) and Lnf(G∗, T ft(G)) >

L∗(G∗). To achieve this, consider a perturbed version of Pigou’s network. In Pigou’s

network, a fixed toll of 1/2 on the upper congestible link incentivized optimal routing. This

fixed toll was computed for a network whose lower link latency function was given precisely

by `2(f2) = 1; what if, instead of 1, the lower latency function was some unknown constant

b? To be precise, let Gb represent Pigou’s network with `2(f2) = b so that G1 represents

the nominal Pigou network. To ascertain whether fixed tolls can be strongly robust on

Pigou’s network, consider the quantity Lnf(Gb, T
ft(G1)) which represents the total latency

on perturbed network Gb resulting from tolls computed for nominal G1. If fixed tolls T ft

are strongly robust, then for each b, it will be true that Lnf(Gb, T
ft(G1)) = L∗(Gb). Thus,

the robustness of T ft can be checked by varying b in the following price-of-anarchy-like

expression:

PoA(b) ,
Lnf

(
Gb, T

ft(G1)
)

L∗(Gb)
. (3.1)

In Figure 3.1, PoA(b) is plotted as b varies between 0 and 1.5 for two sets of tolls: the

solid curve corresponds to tolls computed for b = 1, and the dashed curve corresponds to

tolls equal to 0. Note that the fixed toll only incentivizes perfectly efficient behavior exactly

at b = 1 (that is, PoA(1) = 1). For all other values, PoA(b) > 1, which means that tolls

lead to worse-than-optimal total latencies for b 6= 1, or Lnf(Gb, T
ft(G1)) > L∗(Gb), showing

that these tolls are not strongly robust. Note that here we only checked the single fixed toll

τ1 = 1/2, but it is easy to show that on this network, this toll is equivalent in all respects
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Figure 3.1: Pigou’s Network: fixed tolls applied to the “wrong” network. Depicted here is
an analysis of the robustness of fixed tolls to variations in latency functions. On the left, a
Pigou-style network has a fixed toll of 1/2 charged to the upper link; this toll incentivizes
optimal behavior when the lower latency function satisfies `(f) = 1. To investigate the
robustness of fixed tolls to network variations, the toll is held constant while the lower-link
latency function b is allowed to vary between 0 and 1.5. For each value of b, the total latency
of tolled and un-tolled Nash flows as well as the optimal total latency for that particular
value of b are recorded. Finally, the price of anarchy curves are generated by dividing the
Nash latencies by the respective optimal latency for each b. Note that the tolled price of
anarchy is only 1 when b = 1; that is, this fixed toll only incentivizes optimal behavior on
the specific network for which it was designed. The fact that the toll does not incentivize
optimal behavior for all networks proves Proposition 3.1, stating that fixed tolls are not
strongly robust to latency function variations.

to any set of tolls for which τ1 − τ2 = 1/2, so assuming that τ2 = 0 is without loss of

generality. Put differently, the optimal fixed tolls for G1 are essentially unique, so we have

shown that there can exist no fixed-toll taxation mechanism on G (and by extension on G)

that is robust to variations of latency functions.

Fixed Tolls and Rate-Dependence

We next investigate the robustness of fixed tolls along a different dimension: overall

traffic rate. To this end, we return to the Braess’s Paradox network of Figure 1.2. Now,

suppose that r, the total amount of traffic on the network, is not fixed at 1, but can take

any value between 0 and 1. Let Gr represent the Braess’s Paradox network with r units of
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traffic, so the canonical version is simply given by G1. Let TBraess(G1) represent a single

fixed toll of 1 on the center zero-latency link.

As for Pigou, the robustness of TBraess can be checked by varying r in the following

price-of-anarchy-like expression:

PoA(r) ,
Lnf

(
Gr, T

Braess(G1)
)

L∗(Gr)
. (3.2)

It has already been shown that for r = 1, the optimal flow has no traffic on the center

zero-cost link, so the proposed fixed toll achieves the goal of enforcing optimal flows. On

the other hand, if r ≤ 0.5, the optimal flow is to send all the traffic on the center zero-cost

link, so that no traffic uses the constant-latency links. Unfortunately, the fixed toll on the

center link is still boldly incentivizing all users to avoid the now-optimal center link. In

Figure 3.2, the price of anarchy from (3.2) is plotted as a function of r with and without

the fixed toll on the center link. Note that the tolled curve in Figure 3.2 increases rapidly

as r approaches 0, driving the price of anarchy above the un-tolled maximum of 4/3; by

setting r low enough, the price of anarchy in this instance can be made arbitrarily high.

This example demonstrates that great care must be taken with fixed tolls when the

total traffic rate is varying or unknown, because fixed tolls designed for one demand profile

can cause arbitrarily poor performance under a different demand profile.

3.2 Weakly Robust Fixed Tolls Must Depend on Network

Structure

A fundamental problem with the fixed tolls applied to an uncertain Pigou network (as

in Figure 3.1) was that the correct toll on the upper edge depended on the latency function

of the lower edge; if the lower latency function was unknown, there was no way to compute

an optimal toll on the upper edge, so fixed tolls could not be strongly robust. This prompts

the question: could weakly robust fixed tolls be designed by letting the tolling function
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Figure 3.2: Braess’ network: perverse incentives piled on top of unintended consequences.
Following on the classical Braess’s paradox (see Figure 1.2), this figure depicts an attempt
to redeem the pathological network augmentation with a simple fixed toll. If a toll of 1
is levied on the link connecting the two intermediate nodes, it is simple to show that no
traffic will ever use that link. Unfortunately, for low traffic rates (particularly when the
total mass of traffic is less than 0.5), it is optimal for traffic to use the center link, but the
fixed toll prevents this. On the right is plotted the price of anarchy as a function of the
total traffic rate; note that under the influence of tolls, the price of anarchy can become
arbitrarily large as traffic approaches 0.
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for edge e depend only on the local latency function `e? Such a taxation mechanism is

called network-agnostic, defined more formally in (2.9). If a taxation mechanism is network-

agnostic, then each edge toll depends only on local information, so any efficiency guarantees

are automatically robust to changes in network structure.

One way to view network-agnosticity is that the toll-designer pre-commits to a tolling

function for each possible latency function without specific knowledge of which latency

functions will appear in the final realization. Thus, the weak-robustness notation of (2.6)

can be simplified by writing Lnf(G,T ) to mean the total latency of a Nash flow on network

G resulting from the tolls generated by taxation mechanism T , and Lnf(G, ∅) to mean the

total latency of a Nash flow on G with no tolls. This leads to the main result about the

lack of robustness of fixed tolls:

Theorem 3.2 The only nonnegative network-agnostic fixed tolls that are weakly robust to

network variations satisfy

τe = 0 (3.3)

for all possible network edges.

Theorem 3.2 shows that positive fixed tolls must in general require some global infor-

mation about network structure (e.g., network topology or latency functions) in order to

ensure that they do not cause harm, even for the simple setting of homogeneous populations.

Theorem 3.2 is proved with a series of simple example networks. This shows that even on

simple networks, fixed tolls lack robustness, suggesting that complex networks could exhibit

even more severe pathologies.

Proof: Let T naft be a network-agnostic taxation mechanism such that for any network

G, Lnf(G,T naft) ≤ Lnf(G, ∅). Write the toll assigned to an edge with latency function ` as

T naft(`).

First, consider the network shown in Figure 3.3(a) in which the latency functions satisfy

`1 + `2 = `3. The flow (1/2, 1/2) is both a Nash flow and an optimal flow; the only tolls

38



The Fragility of Fixed Tolls Chapter 3

© 2017 IEEE

Figure 3.3: Networks used to prove Theorem 3.2, showing that any network-agnostic
fixed-toll taxation mechanism must charge taxes of 0 on every link. The network in (a)
is used to show that network-agnostic fixed-toll taxation mechanism T naft is additive in
latency functions. Next, (b) is used to show in conjunction with (a) that monomial cost
functions of any degree must be assigned a zero toll. Finally, in (c), for any general
latency function `1, it is shown how to create a polynomial latency function `2 which
is more congestible at equilibrium than `1, so that a positive toll charged on `1 would
increase the total latency of the network.

which will always support this must satisfy T naft(`1) + T naft(`2) = T naft(`3). This is the

first condition on T naft:

`1 + `2 = `3 =⇒ T naft(`1) + T naft(`2) = T naft(`3). (3.4)

Next, consider the network shown in Figure 3.3(b), a two-link parallel network with

degree-d monomial cost functions `1(f1) = α(f1)d and `2(f2) = β(f2)d. It can be shown that

the optimal flow on this network is equal to the untolled Nash flow for any α > 0, β > 0,

and d ≥ 1. Thus, the tolls on each link must be equal; otherwise, the tolled flow will

have a strictly higher total latency than the un-tolled flow. That is, all monomials of the

same degree must be charged the same toll, regardless of the scale of the latency function:

T naft
(
αfd

)
= T naft

(
βfd

)
. In particular, letting β = 2α and appealing to (3.4), it holds
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that that 2T naft
(
αfd

)
= T naft

(
2αfd

)
, which implies the second condition on T naft:

for all α > 0 and d ≥ 1, T naft
(
αfd

)
= 0. (3.5)

Using this fact regarding polynomials, positive fixed tolls on any other latency function

can now be ruled out. Refer to Figure 3.3(c), another two-link parallel network. Given

an arbitrary convex latency function ` (with flow derivative `′) on the upper link, it is

possible to design a polynomial latency function for the lower link `2(f2) = α(f2)d to show

that T naft(`) = 0. Let the polynomial degree satisfy d > `(1/2)
2`′(1/2) , and coefficient satisfy

α = 2d`(1/2). Then by design, the un-tolled Nash flow on the network is (1/2, 1/2), and at

this flow, shifting any positive mass of traffic from the upper link to the lower link strictly

increases the total latency on the network. To avoid this, the toll on the upper link must be

zero: T naft(`) = 0. Since ` is an arbitrary convex latency function, the theorem is proved.

Paying for Optimality: A Note on Network-Agnostic Fixed Subsidies

Theorem 3.2 carefully specified that the fixed tolls in question be nonnegative – and this

prompts the question of negative tolls, i.e., subsidies. It turns out that for the special case

of linear-latency networks, strongly robust network-agnostic fixed subsidies do exist. For a

linear latency function of the form `e(fe) = aefe + be, the corresponding network-agnostic

fixed subsidy (represented as a negative toll) is given by

τ subsidy
e = −be

2
. (3.6)

By simply paying users half the constant-term cost on each link, optimal flows can be

incentivized as Nash flows. As a side note, these subsidies are a special case of the “variable

price schemes” of [43] with η̄ = 1.

The cost functions resulting from these subsidies can be related to the cost functions
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resulting from standard marginal-cost tolls τmc (see (2.12)), given in this case by τmc
e = aefe.

Under the homogeneous-user model, the cost functions resulting from τ subsidy are

J subsidy
e (fe) = aefe + be︸ ︷︷ ︸

`e

−be
2︸︷︷︸
τe

= aefe +
be
2
, (3.7)

while the cost functions resulting from marginal-cost tolls are

Jmc
e (fe) = 2aefe + be. (3.8)

Since these two cost functions are related by a constant multiplicative factor for all agents

(i.e., Jmc = 2J subsidy), they induce the same optimal Nash flows, and these subsidies inherit

the strong robustness of marginal-cost tolls. While these strongly robust network-agnostic

fixed subsidies are appealing, it is not clear that the concept generalizes beyond linear cost

functions or homogeneous users.
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Can Marginal-Cost Tolls Help?

This chapter represents a first step towards characterizing the robustness of the popular

taxation mechanism known as “marginal-cost” tolls, as defined in (2.12) [42, 43]. For con-

venience, we repeat the definition here. The marginal-cost taxation mechanism Tmc assigns

tolls to each edge e (with associated latency function `e(fe)) of

Tmc
e (fe) = fe ·

d

dfe
`e(fe). (4.1)

It has long been known that marginal-cost tolls incentivize congestion-minimal flows on

all networks for homogeneous users [42,43], but heretofore the robustness of these prices to

mischaracterization of underlying parameters has been left unstudied.

4.1 Marginal-cost tolls are not strongly robust for price sen-

sitive users

The strong robustness guarantees of marginal-cost tolls have been proved by [42, 43]

in the setting of homogeneous known-sensitivity users; do these guarantees carry over to

Section 4.1 contains material that is adapted, with permission, from [1] and was previously published
by IEEE Control Systems. Section 4.2 is adapted, with permission, from [74] and was previously published
by IEEE Transactions on Automatic Control. © 2017 IEEE
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the more detailed heterogeneous model? As a first step towards studying robust taxation

mechanisms for heterogeneous users, the performance of “off-the-shelf” marginal-cost tolls

is investigated on simple price-sensitive settings.

In Pigou’s network (see Figures 1.1 and 4.1), the marginal-cost taxation mechanism Tmc

assigns a flow-varying toll of τmc
1 (f1) = f1 to the upper link; for homogeneous users, this

incentivizes optimal routing. What if the users’ sensitivities remained homogeneous, but

took on some unknown value other than 1? We can employ a parallel argument to that seen

for fixed tolls in Proposition 3.1: Write Gs to denote Pigou’s network in which all users have

sensitivity s. To ascertain whether marginal-cost tolls can be strongly robust to sensitivity

variations, consider the quantity Lnf(Gs, T
mc(G1)), which represents the total latency on the

perturbed population in Gs resulting from marginal-cost tolls computed for unit-sensitivity

G1. If marginal-cost tolls τmc(G1) are strongly robust, then for each s, it will be true that

Lnf(Gs, T
mc(G1)) = L∗(Gs). Since the optimal flow on a network does not depend on the

user sensitivities, this is simply equivalent to writing Lnf(Gs, T
mc(G1)) = 0.75.

In Figure 4.1, Lnf(Gs, T
mc(G1)) is plotted as s varies between 0 and 2. Note that the

marginal-cost toll only incentivizes perfectly efficient behavior exactly at s = 1. For all

other values, the total latency is strictly greater than the optimal 0.75, showing that these

tolls are not strongly robust. This implies that when considering user price-sensitivity,

marginal-cost tolls are not strongly robust to sensitivity variations, even in the simplified

setting of homogeneous users on Pigou’s network.

Perverse Marginal-Cost Tolls For Heterogeneous Users

Here, we ask a similar question of marginal-cost tolls in the heterogeneous model to

that asked for fixed tolls in the homogeneous model: Despite lacking strong robustness to

user sensitivities, is it at least possible to show that marginal-cost tolls are weakly robust?

Unfortunately, in general settings, it is possible to show that even marginal-cost tolls can

incentivize flows that are strictly worse than their un-tolled counterparts, thus lacking even
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Figure 4.1: A setting in which marginal-cost tolls are shown not to be strongly robust to
variations of user sensitivity. Depicted is the canonical Pigou Network with marginal-cost
toll τmc(f) = f assigned to the top link. If marginal-cost tolls were strongly robust to
variations of user sensitivities, they would incentivize optimal flows for every user sen-
sitivity profile. To check this, tolls are chosen without a priori knowledge of the user
sensitivities, and then the population’s homogeneous sensitivity is swept from 0 to 2 and
the resulting total latency is plotted. The optimal total latency is only obtained when
the user sensitivities are exactly 1; all other sensitivity values incentivize some suboptimal
total latency L(f) > 0.75.
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weak robustness to heterogeneity. Consider the network and demand profile in Figure 4.2.

This is essentially a three-link network; a population of mass 0.5 has access only to the

upper two links, and a population of mass 1 has access only to the lower two links. The

optimal flow has all users from the upper population using the center (congestible) link

and all users from the lower population using the lower link. In the unique un-tolled Nash

flow, half the traffic from the lower link has shifted to the center link so as to equalize the

latencies of those two links.

Note that the un-tolled version bears a strong resemblance to Pigou’s example if the

upper link is ignored: self-interested users from the lower source have over-congested the

center link and degraded its performance. To see how tolls can make things even worse,

suppose that the upper population is toll-sensitive (with sensitivities equal to 1), but the

lower population is not (i.e., they have sensitivities close to 0). The insensitivity of the lower

population effectively fixes the flow on the center link at 1, since this is the flow that equalizes

the latencies of the lower two links. That is, regardless of what the upper population does,

the center link flow will always be 1. Thus, marginal-cost tolls on this network serve only

to force the upper population to choose the upper link, resulting in the flow depicted on the

right in Figure 4.2. This pathological flow has a total latency of 1.75, which corresponds

to a price of anarchy of 1.4. This is greater than the 4/3 guaranteed as a worst-case on

linear-latency networks, demonstrating that marginal-cost tolls lack even weak robustness

for heterogeneous populations. In this case, instead of incentivizing altruism, marginal-cost

tolls simply amplified the selfishness-induced inefficiency that was already present. This

allows us to state the following fact:

Proposition 4.1 Let G denote the class of all routing problems. Marginal-cost tolls (2.12)

are not weakly-robust on G to variations of user sensitivities.

Proof: Let G denote the routing game in Figure 4.2. Per the above analysis, Tmc

induces a Nash total latency of Lnf(G,Tmc(G)) = 1.75, but the un-tolled total latency is

Lnf(G, ∅) = 1.5; since the tolled total latency is strictly worse, Tmc cannot be weakly robust
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Figure 4.2: A network demonstrating that marginal-cost tolls are not weakly robust to
user heterogeneity. This figure depicts a simple two-source network in which 0.5 units of
traffic route from the upper (green) source, and 1 unit of traffic routes from the lower
(orange) source. If traffic from the upper source trades off time and money equally (i.e.,
s ≡ 1), but traffic from the lower source cares only about time (i.e., s ≡ 0), marginal-cost
tolls result in a price of anarchy of 1.4 on this network. The optimal flow here requires all
of the traffic from the lower source to use the lower, constant-latency link. However, only
the traffic from the upper source responds to tolls; when marginal-cost tolls are levied, all
of the upper-source (green traffic) moves to the inefficient upper path, and the lower-source
(orange) traffic moves to replace it on the middle path, as depicted on the right.
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to heterogeneous user sensitivities.

As a side note, the most extreme pathology in this example arises when the lower

population has a sensitivity of 0, but perversities still arise for any low, positive sensitivity.

That is, the poor performance in this example can still occur when every agent has a nonzero

price-sensitivity.

4.2 Scaled marginal-cost tolls offer some robustness

Though Proposition 4.1 showed that off-the-shelf marginal-cost tolls are not weakly-

robust on the class of all networks, this left open the possibility that something like marginal-

cost tolls may yet exhibit some robustness, perhaps on a reduced set of networks.

In this section, we study the efficacy of the scaled marginal-cost taxation mechanism

for parallel networks with linear-affine cost functions and under a particular utilization

condition in situations in which both the number of links and the users’ price-sensitivities

are unknown or time-varying.

In the following, we write G to denote the class of symmetric parallel networks with

linear-affine latency functions of the form `e(fe) = aefe + be. Furthermore, we assume that

the traffic rate on each network in G is such that all edges have positive flow in an un-tolled

Nash flow.1

We study tolls of the following form: for any scalar coefficient κ ≥ 0, the scaled marginal-

cost taxation mechanism, denoted by T smc(κ), assigns taxation functions

τ smc
e (fe;κ) = κ · fe ·

d

dfe
`e(fe) = κaefe, ∀fe ≥ 0. (4.2)

1This is essentially a regularity condition which prevents the creation of badly-designed networks with
artificially-high efficiency losses: For example, consider a network which includes an edge e that has a
constant latency function, i.e., `e(fe) = be, where be is sufficiently large so that fne

e = 0 in the resulting
un-tolled Nash flow. For such scenarios, levying tolls on the alternative edges could cause highly-sensitive
users to deviate to edge e, thereby causing large network inefficiencies. Note that if such an un-used (and
accordingly inefficient) edge does exist, we may levy a very large toll on it (effectively removing it from the
network) and obtain our desired well-behaved situation.
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To formalize a notion of worst-case efficiency guarantees, we define the set of possible

sensitivity distributions for the users as S = {s : [0, 1] → [SL, SU]}. Let L∗(G) denote

the total latency associated with the optimal flow, and Lnf(G, s, τ) denote the total latency

associated with the Nash flow resulting from taxation functions τ and sensitivity distribution

s ∈ S. In this section, we formulate the price of anarchy of the scaled marginal-cost taxation

mechanism with respect to both uncertainity in the underlying network and the users’ price-

sensitivity, i.e.,

PoA(G, S, T smc(κ)) = sup
s∈S,G∈G

{
Lnf(G, s, T smc(κ))

L∗(G)

}
≥ 1. (4.3)

Our main contribution is identifying how the choice of κ impacts the above price of

anarchy, and we identify the optimal κ and the resulting efficiency guarantees.

Theorem 4.2 For any affine-cost parallel network G ∈ G with flow on all edges in an

un-tolled Nash flow, and any s ∈ S, any scaled marginal-cost taxation mechanism reduces

the total latency of any Nash flow when compared to the total latency of any Nash flow

associated with the un-tolled case, i.e., for any κ > 0

Lnf (G, s, T smc(κ)) < Lnf (G, s, ∅) .2 (4.4)

Furthermore, the unique optimal scaled marginal-cost tolling mechanism uses the scale factor

κ∗ =
1√
SLSU

= arg min
κ≥0

{PoA(G, S, T smc(κ))} . (4.5)

Finally, the price of anarchy resulting from the optimal scaled marginal-cost taxation mech-

anism is

PoA (G, S, T smc(κ∗)) =
4

3

1−
√
SL/SU(

1 +
√
SL/SU

)2

≤ 4

3
. (4.6)

2If the un-tolled Nash flow for a particular network is optimal, any Nash flow resulting from marginal-cost
tolls is also optimal. Thus, all results in the section assume that Lnf (G, s, ∅) > L∗(G).
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Figure 4.3: Left: An illustration of the price of anarchy bound from Theorem 4.2, with

optimal toll scalar κ = (SLSU)
−1/2

. Since the bound depends only on SL/SU, this plot
neatly expresses the effect of model uncertainty on toll effectiveness. As expected, we
inherit the canonical price of anarchy of 4/3 when SL/SU = 0 (i.e., we may be entirely
unable to influence behavior). At the other extreme, when SL/SU = 1 (i.e., we know sen-
sitivities perfectly) we inherit the canonical price of anarchy of 1. Our result continuously
bridges the gap between the two extremes. Right: The price of anarchy (with a fixed ratio
of SL/SU = 0.1) with respect to toll scalar κ. Note that the price of anarchy is minimized
at the inverse of the geometric mean of SL and SU.

Note that the optimal scale factor κ∗ is independent of the number of network links and

the agent sensitivity distribution3, so tolls can be computed locally at each edge without

requiring global network information. This low information-dependence places our work in

contrast to many existing results, e.g. [39], that can guarantee higher efficiencies only at

the expense of strict informational requirements. See Figure 4.3 for plots of the price of

anarchy with respect to various parameters.

Theorem 4.2 Proof

We begin with some notation before delving into the proof of Theorem 4.2. Throughout,

it will often be convenient to focus on special classes of sensitivity distributions. To that

end, let Sm ⊆ S denote the set of user sensitivity functions that have a range consisting of

at most m sensitivity values, i.e.,
∣∣∪x∈[0,1]sx

∣∣ ≤ m.

Let F(G, S, T ) ⊂ Rn denote the set of Nash flows associated with all routing games

3This price of anarchy bound is also unchanged by increases in the total mass of traffic flowing through
the network; see Claim 4.2.1.1.
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(G, s, T ) where s ∈ S. Note that we are representing Nash flows anonymously: a particular

fnf ∈ F(G, S, T ) describes merely how many agents are on each edge, not which agents are

on each edge. For brevity, we often express T smc(κ) as merely κ.

The proof of Theorem 4.2 involves proving that the scaling coefficient κ ≥ 0 that

mininizes the price of anarchy for heterogeneous populations can be determined by analyzing

the scaling coefficient that minimizes the price of anarchy for homogeneous populations, a

much smaller class of games. This reduction then facilitates a straightforward computation

of the optimal coefficient. The complete proofs of Lemmas 4.2.1 and 4.2.3 can be found in

Section 4.3.

We often make use of a special Nash flow for a discrete distribution: we call a Nash

flow in which every user is indifferent between at least two edges a minimally-indifferent

Nash flow. We write the set of minimally-indifferent Nash flows for Sm for a given taxation

mechanism T as Fmi(G, Sm, T ). Note that on a network with n links, there are at most

(n− 1) sensitivity types in a minimally-indifferent Nash flow.

First, Lemma 4.2.1 proves that a Nash flow on an n-link network for any heterogeneous

population can be represented as a minimally-indifferent Nash flow for a population with

only (n − 1) sensitivities. Thus, we can assume without loss of generality that any Nash

flow is minimally-indifferent.

Lemma 4.2.1 For any network G ∈ G consisting of n links, with n ≥ 2, and κ ≥ 0,

F (G, S, κ) = Fmi (G, Sn−1, κ) . (4.7)

Second, Lemma 4.2.2 shows that we may further refine our search to the set of homoge-

neous sensitivity distributions. In particular, when κ ≤ 1√
SLSU

, the worst-case total latency

is realized by Nash flows for a homogeneous population with sensitivity SL.
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Lemma 4.2.2 Let κ ≤ 1√
SLSU

. Then for any G ∈ G,

max
s∈S
Lnf (G, s, κ) = Lnf (G,SL, κ) . (4.8)

Proof: This proof hinges on a change of variables which allows us to linearly parame-

terize the set of all Nash flows on a network by a set of (n− 1) sensitivity values.

For any G ∈ G, any minimally-indifferent Nash flow fnf ∈ Fmi (G, Sn−1, κ) with sensi-

tivity values {si}n−1
i=1 satisfies

aif
nf
i − ai+1f

nf
i+1 =

bi+1 − bi
1 + κsi

(4.9)

for each pair of adjacent edges (for details, see (4.32) in the proof of Lemma 4.2.1 in

Section 4.3). Note that the expression in (4.9) is linear in fnf , but nonlinear in {si}.

However, if we define a new variable zi = 1
1+κsi

, and let z = (z1, . . . , zn−1)T , we can

write (4.9) as a linear expression in both fnf and z.

The (n − 1) equations obtained from (4.9) combined with the flow-conservation con-

straint
∑n

i=1 f
nf
i = 1, yield the n-dimensional linear system

Pfnf = r +Qz (4.10)

where P ∈ Rn×n and Q ∈ Rn×n−1 are constant matrices depending only on G, and r ∈ Rn×1

is the unit vector with 1 as the n-th element.

It can easily be verified that P must be full-rank, so we can write a Nash flow as a

function of z by inverting P and defining

fnf(z) = R+Mz, (4.11)
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where R ∈ Rn and M ∈ Rn×n−1 are defined as

R = P−1r, M = P−1Q. (4.12)

The following observations will be helpful to our proof:

Observation 4.2.2.1 The matrices M and R possess the following properties for any G ∈

G:

1TM = 0T, (4.13)

1TR = 1, (4.14)

AR ∈ sp {1} , (4.15)

MTAM1 = −MT b. (4.16)

Observation 4.2.2.2 The total latency L
(
fnf(z)

)
is given by the following convex quadratic

form in z, which we simply write as a function of z:

Lnf(z) = zTMTAMz + zTMT b+ LR, (4.17)

where LR = RTAR + bTR is the total latency associated with the flow that results from

κ→∞. Furthermore, LR is also equal to the zero-toll Nash flow total latency:

Lnf(G, s, 0) = LR. (4.18)

Proof: [Proof of Observation 4.2.2.1]These facts follow algebraically from the fact that

by definition, for any z ∈ Rn−1, fnf(z) satisfies (4.10).

Proof: [Proof of Observation 4.2.2.2]We simply substitute fnf(z) (that is, equation (4.11))
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into (4.27) to obtain

L(fnf(z)) = RTAR+ bTR+ zTMTAMz + bTMz + 2RTAMz.

Consider the last term, 2RTAMz. By (4.15) in Observation 4.2.2.1, ∃α ∈ R such that

RTA = α1T, and by (4.13), 1TM = 0T , so 2RTAMz = 0. Simplifying, we obtain

Lnf(z) = zTMTAMz + zTMT b+ LR,

where we let Lnf(z) = L(fnf(z)) for brevity. Since A is positive semidefinite, Lnf(z) is

convex in z. Finally, note that that for κ = 0, z = 1. Thus, fnf(1) represents the zero-toll

Nash flow on G for any user sensitivity distribution. By (4.16) in Observation 4.2.2.1, we

know that MTAM1 = −MT b, so the zero-toll total latency is given by Lnf(1) = LR.

By focusing on minimally-indifferent Nash flows, we may use (4.11) to parameterize the

set of all Nash flows for any network.

Characterizing the set of Nash flows

To formalize our definition of fnf(z) (given in (4.11)), for any SL ≤ SU and κ ≥ 0, we

define the convex, bounded polytope Z ⊂ Rn−1 as the set of solutions {z ∈ Rn−1} to the

following inequalities:

1

1 + κSL
≥ z1 ≥ · · · ≥ zi ≥ zi+1 ≥ · · · ≥ zn−1 ≥

1

1 + κSU
. (4.19)

By construction, this polytope Z is the domain of fnf(z). In fact, Z is diffeomorphic to

F (G, S, κ): It is clear from (4.10) that any Nash flow can be written as fnf(z) = R + Mz

for some choice of z. Furthermore, for a given κ > 0, any z ∈ Z uniquely defines a set of

sensitivities {si}n−1
i=1 according to the expression zi = 1

1+siκ
, and the resulting sensitivities

are ordered so they uniquely define a minimally-indifferent Nash flow on G. Thus, fnf(z)
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is a continuous bijection between Z and F (G, S, κ).

To complete the proof of Lemma 4.2.2, we argue by the convexity of Z and the properties

of Lnf(z) that when κ ≤ 1√
SLSU

(i.e., tolls are low) the worst Nash flow is one in which all

agents share the same low sensitivity.

Since Z is a bounded convex polytope, by convexity Lnf(z) must take its maximum at

a vertex of Z; it is straightforward to show that a vertex of Z corresponds to a Nash flow in

which every agent lies at one of the extreme ends of the sensitivity range. This means that

for any routing game, there are exactly two homogeneous vertices: one each for SL and SU,

and (n − 2) heterogeneous vertices at which some agents have sensitivity SL and the rest

have SU.

Homogeneous vertices represent worst-case Nash flows

Let zv represent such a heterogeneous vertex; path-ordering dictates that it must be

of this form: zv = [zL, . . . , zL, zU, . . . , zU]T . Thus, if we write the i-th column of M as µi,

and let µL =
∑`−1

i=1 µi and µU =
∑n−1

i=` µi (where ` is the lowest-index link being used by

agents with sensitivity SU), Mzv = zLµL +zUµU. By substituting the expression for a Nash

flow (4.11) into the incentive constraints (4.9), it can be shown via Observation 4.2.2.1 that

the first (` − 1) elements of µU are nonnegative, but elements ` through (n − 1) of µU are

nonpositive. This corresponds to the fact that increases in κ always shift traffic to higher-

index links. Furthermore, this operation implies that the vector (AµU + b) is nonnegative

and ordered nondecreasing. Equation (4.13) implies that µTU1 = 0, so it follows that

µTU (AµU + b) ≤ 0 (4.20)

because (AµU + b) places more weight on the negative elements of µU.

Now, we wish to compute the difference Lnf(zL · 1) − Lnf(zv); a positive difference

indicates that the homogeneous population is worse than the heterogeneous. It can be
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shown that this difference is given by the expression

(zL − zU)µTU [(zL + zU − 1)AµU + (1− 2zL) (AµU + b)] . (4.21)

When κ ≤ 1√
SLSU

, it is true that zL ≥ zU, that zL + zU − 1 ≥ 0, and that 1− 2zL ≤ 0.

A is positive semidefinite, so µTUAµU ≥ 0, and (4.20) shows that the expression in (4.21)

must always be non-negative: Lnf(zL · 1)− Lnf(zv) ≥ 0.

Since (zL · 1) corresponds to the homogeneous sensitivity distribution in which every

agent has a sensitivity of SL, this shows that the total latency of a heterogeneous Nash flow

can never be worse than that of a low-sensitivity homogeneous Nash flow if κ ≤ 1√
SLSU

:

max
s∈S
Lnf(G, s, κ) = Lnf(G,SL, κ).

Thus, for κ ≤ 1√
SLSU

, the worst-case Nash total latency for any population is realized

by a population containing only one type, completing the proof.

Finally, Lemma 4.2.3 gives the unique optimal value of κ for homogeneous populations;

heterogeneous populations ultimately inherit this optimal result.

Lemma 4.2.3 For all G ∈ G, and for all κ 6= 1√
SLSU

= κ∗,

max
s∈S1
Lnf (G, s, κ∗) < max

s∈S1
Lnf (G, s, κ) . (4.22)

Finally, the price of anarchy of T smc(κ∗) for homogeneous populations is given by (4.6).

Proof: [Proof of Theorem 4.2] We combine the inequalities on the price of anarchy

proved in each lemma. Lemma 4.2.1 implies that

PoA (G, S, κ∗) = PoA(G, Sn−1, κ
∗). (4.23)
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Lemma 4.2.2 implies that

PoA(G, Sn−1, κ
∗) = PoA(G, S1, κ

∗) (4.24)

and the worst-case total latency with κ = κ∗ is better than the un-tolled total latency. By

Lemma 4.2.3, we have that for any κ 6= κ∗,

PoA(G, S1, κ
∗) < PoA(G, S1, κ). (4.25)

Since S1 ⊆ S, it is clear that for any κ,

PoA(G, S1, κ) ≤ PoA(G, S, κ). (4.26)

Combining inequalities (4.23), (4.24), (4.25), and (4.26), we have that for any κ 6= κ∗,

PoA(G, S, κ∗) < PoA(G, S, κ).

Thus, (4.6) is valid for heterogeneous populations as well.

4.3 Chapter Proofs

4.3.1 Notation and Terminology

We assume that a network has n ≥ 2 edges. Throughout the proof, we represent

latency function parameters in matrix form: A ∈ Rn×n is defined as the diagonal matrix

with diagonal elements (a1, a2, . . . , an), and column vector b ∈ Rn contains all the constant

coefficients from the edge latency functions. Without loss of generality, we assume that A

has at least (n− 1) non-zero entries and that the edges are indexed such that b is arranged

in ascending order, i.e., bi ≤ bj for all i < j. Using this notation, we write a flow f ∈ Rn as

a column vector, so the vector of edge latencies `(f) ∈ Rn is `(f) = Af + b, and the total
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latency L(f) is given by

L(f) = fTAf + fT b. (4.27)

We write 0 and 1 to denote all-zeros and all-ones column vectors, respectively, and I to

denote the identity matrix.

We express the edge set as E = {e1, e2, . . . , en}, and write the latency function of edge

ei as `i(fi) = aifi + bi.

4.3.2 Proof of Lemma 4.2.1 and Associated Claims

We first prove two intermediate claims. In Claim 4.2.1.1 we show that if every link has

positive flow in an un-tolled Nash flow, then under T smc(κ), every link in that network will

have positive flow in a Nash flow induced by any finite κ > 0.

Claims 4.2.1.1 and 4.2.1.2 use the following definition: for Nash flow fnf ∈ F (G, S, κ),

for each edge ei ∈ E, define s−i and s+
i by the following:

s−i = inf
x∈[0,1]

{
sx : agent x uses edge ei in flow fnf

}
, (4.28)

s+
i = sup

x∈[0,1]

{
sx : agent x uses edge ei in flow fnf

}
. (4.29)

For a particular Nash flow, s−i and s+
i represent the lowest and highest sensitivities of any

agent on edge ei, respectively.

Claim 4.2.1.1 For any network G ∈ G, let fnf ∈ F (G, S, κ) for any κ ≥ 0. Then fnf has

positive flow on every edge.

Proof: To avoid trivialities, we assume that a positive mass of users have non-zero

sensitivity. In an un-tolled Nash flow f , ∀ei, ej ∈ E, it must be that aifi + bi = ajfj + bj .

Suppose there is a tolled Nash flow f t ∈ F (G, S, κ) for κ > 0 in which some edge ek has
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f t
k = 0. Thus, for every edge ei,

(1 + s+
i κ)aif

t
i + bi ≤ bk ≤ aifi + bi. (4.30)

Simplifying (4.30) and summing over edges, we obtain
∑n

i=1 f
t
i ≤

∑n
i=1(fi)/(1+s+

i κ). Since

at least one s+
i is strictly positive, this implies that

∑n
i=1 f

t
i <

∑n
i=1 fi, but this would mean

that the tolled flow has less total traffic than the original un-tolled flow, a contradiction.

Next, in Claim 4.2.1.2 we show that under scaled marginal-cost tolls, heterogeneous

users sort themselves onto the links in a predictable order.

Claim 4.2.1.2 Scaled marginal-cost tolls induce an ordering on the edges of a network: for

any sensitivity distribution s ∈ S and toll scale factor κ > 0, given any two edges ei ∈ E and

ej ∈ E for which bi ≤ bj, the following conditions hold in a Nash flow fnf : (i) aif
nf
i ≥ ajfnf

j ,

and (ii) s+
i ≤ s

−
j .

Proof: Consider edges ei and ei+1 in network G. By hypothesis, bi ≤ bi+1. Consider

a Nash flow fnf ∈ F (G, s, κ) with κ ≥ 0 and s ∈ S. By Claim 4.2.1.1, fnf
i+1 > 0. Take any

user x ∈ [0, 1] on edge ei+1. Since this is a Nash flow, user x must (weakly) prefer edge

ei+1 to edge ei. Since each edge tolling function is τe(fe) = aefe,

(1 + κsx)(aif
nf
i − ai+1f

nf
i+1) ≥ bi+1 − bi ≥ 0.

Thus, aif
nf
i ≥ ai+1f

nf
i+1 ≥ 0, for all i, establishing the first conclusion. A user with sensitivity

s−i+1 would also (weakly) prefer edge ei+1 to edge ei:

(1 + κs−i+1)ai+1f
nf
i+1 + bi+1 ≤ (1 + κs−i+1)aif

nf
i + bi. (4.31)

Since ai+1f
nf
i+1 ≤ aifnf

i , then for any s > s−i+1,

(1 + κs)ai+1f
nf
i+1 + bi+1 ≤ (1 + κs)aif

nf
i + bi.
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Here, we find that any agent with higher sensitivity s > s−i+1 (weakly) prefers edge ei+1

to edge ei, which implies that s ≥ s+
i ; in other words, no agent using edge ei+1 has a lower

sensitivity than any agent using edge ei, or s+
i ≤ s

−
i+1, establishing the second conclusion.4

To complete the proof, we exploit this ordering to construct a minimally-indifferent

Nash flow from a Nash flow for any arbitrary sensitivity distribution, thus showing that

worst-case behavior for arbitrary populations can always be realized by populations with a

finite number of user sensitivities.

Consider edge ei in Nash flow fnf ∈ F (G, s, κ); by Claim 4.2.1.2, s+
i ≤ s−i+1. We may

rearrange (4.31) (and the opposite inequality for s+
i ) to obtain

bi+1 − bi
1 + κs−i+1

≤ aifnf
i − ai+1f

nf
i+1 ≤

bi+1 − bi
1 + κs+

i

.

Now, for each i ≤ (n− 1), let si be the solution to

aif
nf
i − ai+1f

nf
i+1 =

bi+1 − bi
1 + κsi

.

Note that every si ∈ [s+
i , s

−
i+1] and that si ≤ si+1. Now, construct a population of agents5

in which ∀i ∈ {2, . . . , n − 2}, (fnf
i + fnf

i+1)/2 agents have a sensitivity of si;
(
fnf

1 + fnf
2 /2

)
agents have sensitivity s1, and

(
fnf
n−1/2 + fnf

n

)
agents have sensitivity sn−1. Then fnf ∈

Fmi (G, Sn−1, κ); i.e., it is a minimally-indifferent Nash flow for the newly-constructed pop-

ulation containing (n− 1) sensitivity types. That is, for each si, the following is true:

(1 + κsi)aifi + bi = (1 + κsi)ai+1fi+1 + bi+1. (4.32)

Since for any fnf ∈ F (G, S, κ) we have shown that fnf ∈ Fmi (G, Sn−1, κ), it must be

true that F (G, S, κ) ⊆ Fmi (G, Sn−1, κ) . The opposite inclusion is obvious, since Sn−1 ⊆ S,

4Note that if bi = bi+1, all agents are indifferent between edges ei and ei+1 in any Nash flow, so from the
standpoint of edge-ordering, these two edges would behave as a single edge.

5This construction is not unique; there are infinitely-many ways to assign mass to the various sensitivity
types.
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and the desired result is immediate.

4.3.3 Proof of Lemma 4.2.3

The proof of Lemma 4.2.3 is straightforward; we show that for homogeneous populations

with sensitivity s and scale factor κ > 0, the expression for the total latency is a 2nd-order

rational function in (sκ). This function possesses monotonicity properties that lead directly

to the desired result.

For homogeneous s ∈ S1, every element of z is equal since every agent has the same

sensitivity; i.e., for s ∈ [SL, SU] and κ ≥ 0, z = 1
1+sκ · 1. By substituting this into (4.17),

if we write Θ = −1TbTM = 1TMTAM1 ≥ 0 (see Observation 4.2.2.1), we may explicitly

write the total latency of a homogeneous Nash flow as

Lnf(G, s, κ) = LR +
1TMTAM1

(1 + sκ)2 +
bTM1

1 + sκ

= LR −
sκ

(1 + sκ)2 Θ. (4.33)

It is easy to verify that the minimum of (4.33) occurs whenever κ = 1/s, and is equal to

LR−Θ/4. Furthermore, partial derivatives of (4.33) show that the worst-case total latency

is minimized for some unique κ∗ such that Lnf (G,SL, κ
∗) = Lnf (G,SU, κ

∗) . It can easily

be verified from (4.33) that the solution to this equation is

κ∗ =
1√
SLSU

. (4.34)

The partial derivatives of (4.33) with respect to κ also show that for any κ 6= κ∗,

max
s∈S1
Lnf (G, s, κ∗) < max

s∈S1
Lnf (G, s, κ) .

Now we compute the price of anarchy resulting from tolls as defined in (4.34). Since

we know that an un-tolled latency can never be more than 4/3 times an optimal latency,
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from (4.33) we can write

Lnf(G, s, 0)

L∗(G)
=

LR

LR − 1
4Θ
≤ 4

3
. (4.35)

This implies that Θ ≤ LR, and it follows algebraically that for κ∗ as defined in (4.34),

s ∈ [SL, SU], and G, the expression for the price of anarchy is given by (4.6).

Remarks

While this essentially concludes our study on marginal-cost tolls per sé, it should be

noted that the principles applied in this chapter will resurface again several times in coming

chapters. As our study proceeds, we will show that several taxation mechanisms of interest

can be analyzed as simple variations of scaled marginal-cost tolls. As such, several of the

analytical tools in this chapter will find uses for other purposes.
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Chapter 5

The Robustness and Universality

of Large Tolls

In this chapter, we ask if it is possible to compute optimal taxes with minimal information

about the system, and present several results showcasing the relationship between available

tolling methodologies, uncertainty, and achievable performance. We term this goal “robust

coordination,” as we desire to incentivize agents to behave as though they are coordinating

with one another, but we require that our behavior-influencing mechanisms are robust to

mischaracterizations of the system. As discussed in Chapter 2, since price of anarchy is

simply a cost metric in worst-case over some set of unknown information, it lends itself

naturally to quantifying the robustness of taxation mechanisms to unknown information.

Thus, our analysis represents a departure both from the typical descriptive price of anarchy

research as well as from the complete-information assumptions of the taxation literature.

The main contribution here is to derive a universal taxation mechanism that guarantees

arbitrarily-good performance for any routing game while requiring no prior knowledge of

the specific network, user demand profile, or distribution of user sensitivities. That is,

the derived taxes are robust to gross mischaracterizations of the above quantities. This

This chapter is adapted, with permission, from [75], scheduled to be published by IEEE Transactions
on Automatic Control. © 2018 IEEE.
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result holds for networks with general latency functions and any topology, suggesting that

surprisingly-little information is required in principle.

Our next result explores the effect of reducing the designer’s capabilities while main-

taining a high level of uncertainty. To this end, our second contribution is to explore the

effect of placing an upper bound on the allowable tolling functions. This may have practical

value in settings where very large tolls may be impossible (or politically unpalatable) to

implement. For parallel networks with linear-affine latency functions, we derive the optimal

tolling functions that minimize worst-case performance degradation for any unknown distri-

bution of user sensitivities and toll upper bound, requiring no prior knowledge of the number

of network links. These optimal tolls are simple affine functions of flow. We show that for

parallel networks with linear-affine cost functions and simple user demands, the worst-case

performance degradation strictly decreases with the toll upper bound. Our results suggest

that large tolls can compensate for a poor characterization of user sensitivities. Unfortu-

nately, by imposing an upper bound on allowable taxation functions, optimal behavior can

no longer be guaranteed. Thus, this result additionally implies that unbounded tolls are

necessary to enforce optimal flows if both the network topology and user sensitivities are

unknown.

Our results in Section 5.3 explore a further restriction on the designer’s capabilities,

requiring that tolls do not depend on flow (i.e., requiring fixed tolls rather than tolling

functions). This section complements the work on fixed tolls from Chapter 3; here, rather

than studying strong/weak robustness, we compute a lower bound on the price of anarchy

of fixed tolls for heterogeneous price-sensitive users. In this setting, we show that even if

fixed tolls are allowed to depend on the network topology and user demands, they pro-

vide relatively poor performance guarantees when the user sensitivities are unknown. Here,

by reducing the designer’s capability (by disallowing access to flow-varying taxation func-

tions), we dramatically reduce the achievable performance guarantees in the presence of

uncertainty. That is, in support of the results of Chapter 3, we show here that fixed tolls
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are significantly less robust than flow-varying tolls.

5.1 A Universal Taxation Mechanism

In this section, we prove that network- and sensitivity-agnostic tolls exist which can

drive the price of anarchy to 1 for general networks and latency functions. We term these

“universal” because they take the same form and provide the same performance guarantee

regardless of which particular routing scenario they are applied to. Using this taxation

mechanism, we show in Theorem 5.1 that for any network, regardless of network topology,

traffic rates {rc}, or price-sensitivity functions {sc}, the price of anarchy can be made

arbitrarily close to 1 with sufficiently-large edge tolls, indicating that tolls exist which are

robust to mischaracterizations of all the aforementioned system parameters.

Theorem 5.1 Let G be the set of multi-commodity routing games where SU ≥ SL > 0.

For any network edge e ∈ G with convex, nondecreasing, continuously differentiable latency

function `e, define the universal taxation function on edge e with gain parameter κ ≥ 0 as

τu
e (fe;κ) = κ

(
`e(fe) + fe ·

d

dfe
`e(fe)

)
. (5.1)

Then for any routing problem G ∈ G,

lim
κ→∞

PoA
(
G,T gpt(κ)

)
= 1. (5.2)

That is, on any network being used by any population of users, the total latency can

be made arbitrarily close to the optimal latency, and each individual link toll is a simple

continuous function of that link’s flow. The reason for this is that as κ increases, the original

latency function has a smaller and smaller relative effect on the users’ cost functions; in the

large-toll limit, the only cost experienced by the users is the tolling function itself which is

specifically designed to induce optimal Nash flows.
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Proof: Using a sequence of tolls, we construct a sequence of Nash flows that converges

to an optimal flow. Let κn be an unbounded, increasing sequence of tolling coefficients.

For any routing problem G ∈ G and price-sensitivities s ∈ SG, let fn =
(
fnp
)
p∈P denote

the Nash flow resulting from the tolling coefficient κn. For each commodity c, let Pcn ⊆ Pc

denote the set of paths that have positive flow in fn. For any p ∈ Pcn, there must be some

user x ∈ [0, rc] using p with sensitivity scx; the cost experienced by this user is given by

Jcx(fn) =
∑
e∈p

[
`e(fe) + κns

c
x

(
`e(fe) + fe ·

d

dfe
`e(fe)

)]
.

Define γn,x , κnscx
1+κnscx

. Let `∗e(fe) = fe · d
dfe
`e(fe); then for any other path p′ ∈ Pc \ p, user x

must experience a lower cost on p than on p′, or

∑
e∈p

`e(fe)−
∑
e∈p′

`e(fe) ≤ γn,x

∑
e∈p′

`∗e(fe)−
∑
e∈p

`∗e(fe)

. (5.3)

Therefore, for any n ≥ 1, fn must satisfy some set of inequalities defined by (5.3). Note

that for all c ∈ C and any x ∈ [0, rc], limκn→∞ γn,x = 1, so because all the functions in (5.3)

are continuous, fn converges to a set F ∗ of feasible flows that satisfy

∑
e∈p

`e(fe)−
∑
e∈p′

`e(fe) ≤

∑
e∈p′

`∗e(fe)−
∑
e∈p

`∗e(fe)

 (5.4)

for all c, all p ∈ Pc∗, and p′ ∈ Pc, where Pc∗ ⊆ Pc is some subset of paths. But inequal-

ities (5.4) (combined with the feasibility constraints on f) also specify a Nash flow for G

for a unit-sensitivity population with marginal-cost taxes as specified by (2.12). Any such

Nash flow must be optimal [42]; that is, any f ∈ F ∗ is a minimum-latency flow for G. Thus,

since L(f) is a continuous function of f ,

lim
n→∞

L (fn) = L∗ (G) , (5.5)
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obtaining the proof of the theorem.

5.1.1 Price of Anarchy Bounds for Homogeneous Populations

The result in Theorem 5.1 is encouraging since it ensures that no routing game or

user population is so pathological that we cannot enforce optimal routing with sufficiently-

high tolls, but it gives no indication of how high these tolls must be. In our next result

in Proposition 5.2 (which follows from a result in [55]), we state that for homogeneous

price-sensitive populations (i.e., all users have the same non-zero price sensitivity), the

performance degradation is uniformly bounded in all games by a simple expression.

Proposition 5.2 If all users have (unknown) homogeneous price-sensitivity s ≥ SL > 0,

the price of anarchy induced by T gpt(κ) is given by

sup
G∈G

PoA
(
G,T gpt(κ)

)
≤ 1 + κSL

κSL
. (5.6)

Proof: Immediate from Proposition 6.4 of [55].

5.2 Optimal bounded tolls for parallel affine networks

Of course, it may be impractical or politically infeasible to charge extremely high tolls.

For example, if network demand is elastic, very large tolls could induce some users to avoid

travel altogether. Therefore, in Theorem 5.3, we analyze the effect of an upper bound

on the allowable tolling functions. For simplicity, we focus on the same class of parallel

networks that we studied in Section 4.2; additionally, we assume without loss of much (if

any) generality that for each network, the total traffic rate is r = 1. For parallel networks

with affine cost functions in which every edge has positive flow in an un-tolled Nash flow, we

explicitly derive the optimal bounded taxation mechanism, and then provide an expression

for the price of anarchy. These optimal tolls are simple affine functions of flow, and the

price of anarchy is strictly decreasing in the upper bound. Formally, we say a taxation
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mechanism is bounded if all its taxation functions respect some upper bound:

Definition 5.1 Taxation mechanism T is bounded by T on a class of routing problems Ḡ

if for every edge e ∈ Ḡ, T assigns a (possibly flow-varying) tolling function that satisfies

τe : [0, 1]→ [0, T ]. (5.7)

T
(
T, Ḡ

)
denotes the set of mechanisms bounded by T on Ḡ.

For the following results, let Gp ⊆ G represent the class of all single-commodity, parallel-

link routing problems with affine latency functions. That is, for all e ∈ Gp, the latency

function satisfies `e(fe) = aefe + be where ae ≥ 0 and be ≥ 0 are edge-specific constants.

“Single-commodity” implies that all traffic has access to all network edges. Furthermore, we

assume as in Section 4.2 that every edge has positive flow in an un-tolled Nash flow. In order

to meaningfully discuss uniform toll bounds on a broad class of networks, it is necessary

to describe classes of networks with bounded latency functions. To this end, we define

G
(
ā, b̄
)
⊂ Gp as the set of parallel, affine-cost networks such that for every e ∈ G

(
ā, b̄
)
, the

latency function coefficients satisfy ae ≤ ā and be ≤ b̄.

In this chapter we use the following slight refinement of our previous definition of net-

work agnosticity:

Definition 5.2 For every edge e ∈ G with latency function `e a network-agnostic taxation

mechanism is a mapping T na : [0, 1] × {`e}e∈G → {τe} that assigns the following flow-

dependent taxation function to edge e:

τe(fe) = τna (fe; `e) (5.8)
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where τna (f, `) satisfies the following additivity condition:1 for all e, e′ ∈ G and f ∈ [0, 1],

τna (f ; `e + `e′) = τna (f ; `e) + τna (f ; `e′) . (5.9)

Thus, both marginal-cost tolls (2.12) and universal tolls (5.1) are network-agnostic according

to Definition 5.2.

Our goal is to derive the bounded network-agnostic taxation mechanism that minimizes

the worst-case selfish routing on Gp. We define the price of anarchy with respect to class of

problems G and bound T as the best price of anarchy we can achieve on G with a taxation

mechanism bounded by T :

PoAT (G) , inf
T∈T(T,G)

{
sup
G∈G

PoA (G,T )

}
. (5.10)

Theorem 5.3 Let G(ā, b̄) ⊂ Gp be some subset of parallel, affine-cost networks with finite

ā and b̄. For any toll bound T and SU ≥ SL > 0, define the set of universal parameters

by the tuple UT =
(
SL, SU, ā, b̄

)
. Then there exist functions κ1 (UT ) and κ2 (UT ) such that

the optimal network-agnostic taxation mechanism bounded by T on G(ā, b̄) assigns tolling

functions

τe(fe) = κ1(UT )aefe + κ2(UT )be. (5.11)

Furthermore, the price of anarchy PoAT

(
G
(
ā, b̄
))

is given by the following:

4
3

(
1− κ1(UT )SL

(1+κ1(UT )SL)2

)
if κ1(UT ) < 1√

SLSU

4
3

(
1−

(1+κ1(UT )SL)
(
SL
SU

+κ1(UT )SL

)
(

1+2κ1(UT )SL+
SL
SU

)2

)
if κ1(UT ) ≥ 1√

SLSU
.

(5.12)

See Figure 5.1 for a comparison of the price of anarchy afforded by Theorems 5.1 and 5.3.

1The additivity condition in Definition 5.2 requires that two edges connected in series will be assigned
the same taxation function as if they were replaced by a single edge whose latency function is the sum of
the underlying latency functions. It ensures that the incentive design process be independent of network
specifications, isolating the role of network information in the design process.
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Figure 5.1: Price of Anarchy plot contrasting the Universal toll result from Theorem 5.1
(dashed line) with the optimal toll result from Theorem 5.3 (solid line) on the special
case of the two-link network depicted on the left. For both price of anarchy curves, the
user sensitivities satisfy SL = 1 and SU = 10. The price of anarchy of either taxation
mechanism converges to 1 as the toll upper bound increases, but the solid line converges
much more quickly. This is because Theorem 5.3 gives the optimal tolls for a specific class
of networks (parallel networks), but the universal tolls from Theorem 5.1 are designed to
work on all classes of networks.

Note that the tolls of Theorem 5.3 incentivize considerably lower system costs than those

of Theorem 5.1; this is due to the fact that Theorem 5.3 is optimized for a smaller class of

networks.

A closed-form expression for κ2(·) can be found in the proof of Theorem 5.3 as (5.20);

no convenient closed form for κ1(·) appears to exist. Nonetheless, it holds that κ1(·) and

κ2(·) are both nondecreasing and unbounded in T ; among other things, this implies that

limT→∞ PoAT

(
G
(
ā, b̄
))

= 1.

We now proceed with the proof of Theorem 5.3, which relies on two supporting lemmas.

For our first milestone, we restrict attention to simple affine taxation functions:

Lemma 5.3.1 Let TA(κ1, κ2) denote an affine taxation mechanism that assigns tolling

functions τe(fe) = κ1aefe + κ2be. For any κmax ≥ 0, the optimal coefficients κ∗1 and κ∗2

satisfying

(κ∗1, κ
∗
2) ∈ arg min

κ1,κ2≤κmax

{
sup
G∈Gp

PoA
(
G,TA(κ1, κ2)

)}
(5.13)
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are given by

κ∗1 = κmax, (5.14)

κ∗2 = max

{
0,

κ2
maxSLSU − 1

SL + SU + 2κmaxSLSU

}
. (5.15)

Furthermore, for any G ∈ Gp, PoA
(
G,TA(κ∗1, κ

∗
2)
)

is upper-bounded by the following ex-

pression:

4
3

(
1− κmaxSL

(1+κmaxSL)2

)
if κmax <

1√
SLSU

4
3

(
1−

(1+κmaxSL)
(
SL
SU

+κmaxSL

)
(

1+2κmaxSL+
SL
SU

)2

)
if κmax ≥ 1√

SLSU
.

(5.16)

See Section 5.4 for the proof of Lemma 5.3.1.

Next, in Lemma 5.3.2, we investigate the possibility that some other taxation mechanism

could perform better than the affine TA(κ∗1, κ
∗
2) while still respecting the bound T . To that

end, we assume that some arbitrary taxation mechanism outperforms affine tolls, and deduce

various properties of these hypothetical tolls. We show that this hypothetical “better”

taxation mechanism must universally charge higher tolls than our optimal affine tolls.

Lemma 5.3.2 Let T ∗ be any network-agnostic taxation mechanism such that for κmax ≥ 0

sup
G∈Gp

PoA (Gp, T ∗) < sup
G∈Gp

PoA
(
Gp, TA(κ∗1, κ

∗
2)
)
. (5.17)

Then T ∗ must charge strictly higher tolls than TA(κ∗1, κ
∗
2) on every edge in every network:

∀ e ∈ Gp, ∀ fe ∈ (0, 1], τ∗e (fe) > τAe (fe). (5.18)

The proof of Lemma 5.3.2 appears in Section 5.4.

Proof: [Proof of Theorem 5.3] For any non-negative κ1 and κ2, TA(κ1, κ2) is tightly

bounded by
(
κ1ā+ κ2b̄

)
on G

(
ā, b̄
)
. Note that for κ∗1 and κ∗2 as defined in Lemma 5.3.1,(

κ∗1ā+ κ∗2b̄
)

is a strictly increasing, continuous function of κmax. Thus, for any T ≥ 0, there

is a unique κ∗max ≥ 0 for which TA(κ∗1, κ
∗
2) is tightly bounded by T on G

(
ā, b̄
)
. We define
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the function κ1(UT ) as the maximal κ∗max for any T ≥ 0, given SL, SU, ā, and b̄. That is,

κ1(UT ) is defined implicitly as the unique function satisfying

κ1(UT )ā+ max

{
0,

(
κ2

1(UT )SLSU − 1
)
b̄

SL + SU + 2κ1(UT )SLSU

}
= T. (5.19)

We define κ2(UT ) as

κ2(UT ) = max

{
0,

κ2
1(UT )SLSU − 1

SL + SU + 2κ1(UT )SLSU

}
. (5.20)

Let e′ ∈ Ḡ be an edge with latency function `e′(fe′) = āfe′ + b̄. By construction,

the tolling function assigned by TA(κ1(UT ), κ2(UT )) to e′ satisfies bound T with equality:

τAe′ (1) = T .

Now let T ∗ be any taxation mechanism with a strictly lower price of anarchy than

TA(κ1(UT ), κ2(UT )). By Lemma 5.3.2, T ∗ assigns higher tolling functions than TA(κ1(UT ), κ2(UT ))

on every edge for every flow rate. In particular, on edge e′, τ∗e′(1) > τAe′ (1) = T , vio-

lating bound T and proving the optimality of TA (κ1(UT ), κ2(UT )) over the space of all

network-agnostic taxation mechanisms bounded by T . By substituting κ1(UT ) for κmax in

expression (5.16), we obtain the complete price of anarchy expression (5.12).

5.3 Comparing bounded tolls with fixed tolls

Recall that Chapter 3 contained a series of negative results regarding fixed tolls, chief of

which was Theorem 3.2 which showed that no network-agnostic fixed toll mechanism exists

with desirable properties. In light of this, we now ask in Theorem 5.4 what price of anarchy

guarantees are possible with fixed tolls if the tolls are allowed to depend on network struc-

ture, but user sensitivities are unknown. Since we are allowing these fixed tolls to depend

on network structure (e.g., the number of edges in the network), we denote such taxation

functions by T ft(G) = {T ft
e (G)}e∈G. The following theorem demonstrates that any network-
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dependent fixed-toll taxation mechanism generally provides poor performance guarantees

when compared with the optimal bounded taxation mechanism from Theorem 5.3.

Theorem 5.4 Consider any network-dependent fixed-toll taxation mechanism T ft. For any

network G ∈ Gp,

sup
s∈S
Lnf

(
G, s, T ft(G)

)
≥ sup

s∈S
Lnf

(
G, s, TA(1/SU, 0)

)
, (5.21)

with affine tolls TA(·) as defined in Lemma 5.3.1. Thus,

sup
G∈G

PoA
(
G, τ ft

)
≥ sup

G∈Gp
PoA

(
G, τA(1/SU, 0)

)
=

4

3

(
1− SL/SU

(1 + SL/SU)2

)
. (5.22)

We point out that the right-hand side of (5.22) represents the price of anarchy due to

network-agnostic affine tolls for a very low toll upper bound. For example, in the canonical

Pigou network depicted in Figure 5.1, if SU = 10, affine tolls prescribed by τA(1/SU, 0)

imply a toll upper-bound of just 0.1. As shown in Figure 5.1, the price of anarchy for

optimal affine tolls is steeply decreasing in the toll upper-bound, so a designer wishing to

exploit the simplicity of fixed tolls may need to accept lower performance guarantees as a

result.

Furthermore, it is important to note that Theorem 5.4 shows that TA, a network-

agnostic tolling mechanism, provides better performance guarantees (even for moderately

low tolls) than T ft, a network-dependent tolling mechanism. This shows the power of Theo-

rem 5.3’s taxation mechanism: given less information, it performs better than any fixed-toll

taxation mechanism.

See Figure 5.2 for a comparison of the price of anarchy afforded by Theorems 5.3 and 5.4,

and note that fixed tolls only outperform flow-varying affine tolls when both uncertainty

and the toll upper bound are low. In all other situations, optimal affine tolls provide better
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Figure 5.2: Comparison of Price of Anarchy guaranteed by Theorems 5.3 and 5.4. All
plots are for SL = 1 and ā = b̄ = 1. The horizontal axis represents the level of certainty
in price-sensitivity; note that most taxation mechanisms guarantee a price of anarchy of
1 for complete certainty unless they are restricted by a very low upper-bound. The solid
line represents the price of anarchy resulting from fixed tolls (according to (5.22)), and the
marked lines represent the price of anarchy resulting from optimal flow-varying affine tolls
for a given toll bound (according to (5.12)). Note that for a very low toll bound, fixed
tolls slightly outperform affine tolls for well-characterized populations; this is due to the
fact that the fixed tolls are not restricted by the toll upper bound.

performance guarantees.

The proof of Theorem 5.4 first considers homogeneous sensitivity distributions and then

extends to heterogeneous. We write f ft(G, s, τ) and Lnf (G, s, τ) to denote a Nash flow and

its associated total latency induced by fixed tolls τ ∈ Rn on network G, with homogeneous

sensitivity s ∈ [SL, SU]. Similarly, we write the total latency of a Nash flow resulting from

affine tolls τA(κ1, κ2) as Lnf
(
G, s, τA(κ1, κ2)

)
.

Define the optimal fixed tolls τ∗ as

τ∗ ∈ arg min
τ∈Rn

max
s∈[SL,SU]

Lnf(G, s, τ). (5.23)

That is, τ∗ is in the set of edge tolls that minimize the total latency for the worst possible

user sensitivity.

In Lemma 5.4.1, we see that there is a curious relationship between the total latencies

of Nash flows resulting from fixed tolls and those resulting from affine tolls τA(1/SU, 0).
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That is, the optimal fixed tolls guarantee the same worst-case performance as affine tolls

with extremely low coefficients.

Lemma 5.4.1 For any G ∈ Gp, for a homogeneous population, the worst-case total latency

resulting from the optimal fixed tolls τ∗ is equal to the worst-case total latency resulting

from τA(1/SL, 0):

max
s∈[SL,SU]

Lnf (G, s, τ∗) = max
s∈[SL,SU]

Lnf
(
G, s, τA(1/SU, 0)

)
. (5.24)

The proof of Lemma 5.4.1 appears in the appendix.

Proof of Theorem 5.4: Since the set of homogeneous populations is a strict subset of the

set of heterogeneous ones, we can only make things worse by extending from homogeneous

to heterogeneous populations, so the bound in (5.22) must hold. The expression in (5.22)

is obtained by substituting 1/SU in for κmax in the first part of expression (5.16).

5.4 Chapter Proofs

To prove Lemma 5.3.1, we analytically relate the Nash flows induced by affine tolls with

coefficients κ1 and κ2 to the Nash flows induced by marginal-cost tolls scaled by κ1 for some

other sensitivity distribution s′. We can then use techniques from Section 4.2 to derive the

optimal κ1 and κ2.

Proof of Lemma 5.3.1

Let G ∈ Gp and κ1 ≥ κ2 ≥ 0.2 For user x ∈ [0, 1] with sensitivity sx ∈ [SL, SU], the cost

of edge e ∈ G given flow f under affine tolls is given by

Jex(f) = (1 + κ1sx)aefe + (1 + κ2sx)be.

2Here, the requirement that κ1 ≥ κ2 is without loss of generality; later analysis shows that κ2 > κ1 would
always result in a Nash flow with higher congestion than the un-tolled case.
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Note that we may scale Jex(f) by any edge-independent factor without changing the under-

lying preferences of agent x. Thus, without loss of generality, we may write

Jex(f) =
1 + κ1sx
1 + κ2sx

aefe + be. (5.25)

Now, define sensitivity distribution s′ by the following: for any x ∈ [0, 1], s′x satisfies

s′x =
sx(κ1 − κ2)

κ1(1 + κ2sx)
. (5.26)

By a series of algebraic manipulations, we may combine (5.25) and (5.26) to obtain

Jex(f) =
(
1 + κ1s

′
x

)
aefe + be, (5.27)

which is simply the cost resulting from scaled marginal-cost tolls (4.2). Thus, for any sensi-

tivity distribution s, we may model a Nash flow resulting from affine tolls with coefficients

κ1 and κ2 as a Nash flow for sensitivity distribution s′ resulting from scaled marginal-cost

tolls with κ = κ1.

Thus, by Theorem 4.2, assuming first that κmax is sufficiently high, our optimal choice

of κ1 is that which satisfies

κ1 =
1√
S′LS

′
U

, (5.28)

where S′L and S′U are computed according to (5.26).

Combining (5.26) and (5.28) yields the following characterization of the optimal κ2 with

respect to κ1, for κmax ≥ (SLSU)−1/2:

κ2 =
κ2

1SLSU − 1

SL + SU + 2κ1SLSU
. (5.29)

Evaluating (4.6) at q = S′L/S
′
U verifies the second part of (5.16) as the correct expression

for PoA
(
G,TA(κ∗1, κ

∗
2)
)

when κmax is large.

Consider the case when κmax < (SLSU)−1/2. Now, (5.29) would prescribe a negative
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value for κ2, so the optimal choice is to let κ2 saturate at 0. Now, we are precisely applying

scaled marginal-cost tolls with κ = κ1, so we apply the fact shown in Lemma 4.2.2 that

on this class of networks, if κ ≤ (SLSU)−1/2, the worst-case total latency of a Nash flow

always occurs for the extreme low-sensitivity homogeneous sensitivity distribution given by

sx ≡ SL for all x ∈ [0, 1].

The total latency of a Nash flow for a homogeneous population with sensitivity SL is

given by (4.33) as

Lnf(G,SL, κ) = LR −
κSL

(1 + κSL)2 Θ, (5.30)

where LR and Θ are positive constants depending only on G, satisfying Θ ≤ LR. It is

easy to verify that the above expression is minimized on a subset of
[
0, (SLSU)−1/2

]
by

maximizing κ, and using the fact that Θ ≤ LR, we may verify that the price of anarchy for

κmax < (SLSU)−1/2 is given by the first part of (5.16), completing the proof of Lemma 5.3.1.

Proof of Lemma 5.3.2

Here, we derive properties of any taxation mechanism that outperforms TA(κ∗1, κ
∗
2). We

define the set of routing problems G0 as follows: G ∈ G0 is a parallel network consisting of

two edges, with `1(f1) = cf1 and `2(f2) = c.

Let G ∈ G0. For any c, the optimal flow on G is (fopt
1 , fopt

2 ) = (1/2, 1/2) and the

optimal total latency is L∗(G) = 3c/4, but the un-tolled Nash flow has a total latency of

Lnf(G, s, ∅) = c, so the un-tolled price of anarchy is 4/3. It is straightforward to show

furthermore that if SU > SL ≥ 0, for any κmax > 0, this network constitutes a worst-case

example and the price of anarchy bound of this particular network is tight; i.e., it equals

the expression given in (5.16): PoA
(
G,TA(κ∗1, κ

∗
2)
)

= supG∈Gp PoA
(
G,TA(κ∗1, κ

∗
2)
)
. Thus,

if our hypothetical T ∗ outperforms TA in general, it must specifically outperform TA on
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any network G ∈ G0, or

PoA (G,T ∗) < PoA
(
G,TA(κ∗1, κ

∗
2)
)
. (5.31)

Now, we investigate the performance of the hypothetical tolling mechanism T ∗ on net-

works in G0. Given a network G ∈ G0, T ∗ assigns edge tolling functions τ∗1 (f1) and τ∗2 (f2).

Recall that since T ∗ is network-agnostic, there is some function τ∗ (f ; a, b) such that an edge

e ∈ E with latency function `e(fe) = aefe + be is assigned tolling function τ∗(fe; ae, be). By

analyzing networks in G0, we can deduce properties of the function with the 2nd and 3rd

arguments set to 0, since τ∗1 (f1) = τ∗(f1; c, 0) and τ∗2 (f2) = τ∗(f2; 0, c).

Now we show that T ∗ must assign higher tolls than TA(κ∗1, κ
∗
2). Let SU > SL. By design,

the worst-case Nash flows resulting from TA(κ∗1, κ
∗
2) occur for homogeneous populations with

s = SL and s = SU. Since any network G ∈ G0 has only 2 links, we can characterize a

Nash flow simply by the flow on edge 1; accordingly, let fL(c) denote the flow as a function

of c on edge 1 in the Nash flow resulting from sensitivity distribution s = SL, and fH(c)

the corresponding edge 1 flow for s = SU. These flows are the solutions to the following

equations:

cfL(c) (1 + κ∗1SL) = c (1 + κ∗2SL) , (5.32)

cfH(c) (1 + κ∗1SU) = c (1 + κ∗2SU) . (5.33)

Summing (5.32) and (5.33) yields

κ∗1 (fL(c)− fH(c)) =
fH(c)

SU
− fL(c)

SL
+

1

SL
− 1

SU
. (5.34)

It is always true that fH(c) < fL(c). By design, L(fL(c)) = L(fH(c)). Note that L is simply

a concave-up parabola in the flow on edge 1.

Now, let f∗L(c) and f∗H(c) be defined as the Nash flows resulting from T ∗ for a given
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value of c; i.e., the solutions to

cf∗L(c) + τ∗1 (f∗L(c))SL = c+ τ∗2 (1− f∗L(c))SL, (5.35)

cf∗H(c) + τ∗1 (f∗H(c))SU = c+ τ∗2 (1− f∗H(c))SU. (5.36)

Since T ∗ guarantees better performance than TA(κ∗1, κ
∗
2), it must do so in particular for

these homogeneous sensitivity distributions s = SL and s = SU. Since L is a parabola, this

means that for any c, fH(c) < f∗H(c) < f∗L(c) < fL(c).

Define the nondecreasing function ∆∗(f) = τ∗2 (f) − τ∗1 (1 − f) (which is implicitly also

a function of c), so equations (5.35) and (5.36) can be combined and rearranged to show

∆∗(f∗L(c))−∆∗(f∗H(c)) > c

[
fH(c)

SU
− fL(c)

SL
+

1

SL
− 1

SU

]
= κ∗1c (fL(c)− fH(c)) (5.37)

The above inequality can be further loosened by replacing f∗L(c) with fL(c) and f∗H(c) with

fH(c), and substituting from (5.34) and rearranging, we finally obtain

∆∗(fL(c))−∆∗(fH(c))

fL(c)− fH(c)
> κ∗1c. (5.38)

Since this must be true for any c > 0, the average slope of ∆∗(f) must be greater than κ∗1c

for all f > 0. Since τ∗2 (f) ≥ 0 this implies that τ∗1 (f) > κ∗1cf for all f > 0, or that

τ∗(f ; a, 0) > τA(f ; a, 0) (5.39)

for all positive f and a.
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Now consider the following rearrangement of (5.36):

τ∗2 (1− f∗H(c)) = [cf∗H(c) + τ∗1 (f∗H(c))− cSU] · 1

SU

> c [(1 + κ∗1SU) fH(c)− 1] · 1

SU

= κ∗2cSU = τA2 (f). (5.40)

This implies that τ∗2 (f) > κ∗2c for all f > 0, or that

τ∗(f ; 0, b) > τA(f ; 0, b) (5.41)

for all positive f and b.

Finally, note that the additivity assumption of Definition 5.2 implies that τ∗(f ; a, b)

is additive in its second and third arguments. That is, we may add inequalities (5.39)

and (5.41) to conclude that for all nonnegative f , a, and b, it is true that

τ∗(f ; a, b) > κ∗1af + κ∗2b, (5.42)

or that a necessary condition for supG∈Gp PoA(G,T ∗) < supG∈Gp PoA(G,TA) is that T ∗

must charge higher tolls on every edge in every network.

Proof of Lemma 5.4.1

We first derive a simple expression for a Nash flow for a homogeneous population as a

linear function of the tolls τ . Note that in the context of fixed tolls, Nash flows are unique in

cost: for a given routing game, every Nash flow exhibits the same cost on all edges [39,76].

Claim 5.4.1.1 A Nash flow on G ∈ G for sensitivity s ∈ S1 and fixed tolls τ ∈ Rn that has

positive traffic on all links can be described by the following linear function:

f ft(G, s, τ) = R+H(b+ sτ), (5.43)
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where R ∈ Rn and H ∈ Rn×n are constant matrices depending only on G. The total latency

of this flow is given by the following convex quadratic in τ :

Lft(G, s, τ) = LR + sτTHT (2AH + I)b+ s2τTHTAHτ. (5.44)

Proof: Since all users share the same sensitivity, all links have equal cost to all agents

in a Nash flow, so when all network edges have positive flow, for any ei, ej ∈ E,

aifi + bi + sτi = ajfj + bj + sτj .

Similar to the approach in the proof of Lemma 4.2.2 in Section 4.2 (see, for example, (4.10)),

a Nash flow f ft(G, s, τ) is a solution f to the linear system



a1 −a2 · · · 0

0 a2 · · · 0

... 0
. . .

...

1 1 · · · 1


︸ ︷︷ ︸

P

f =



0

...

0

1


︸︷︷︸
r

+



−1 1 · · · 0

0 −1 · · · 0

... 0
. . .

...

0 0 · · · 0


︸ ︷︷ ︸

X

(b+ sτ). (5.45)

P is invertible, so letting H = P−1X and R = P−1r, a Nash flow is given by the linear

equation (5.43).

The following observations will be helpful to our proof:

Observation 5.4.1.1 The matrices H and R satisfy the following properties for any G ∈ G:

1THb = 0T, (5.46)

1TR = 1, (5.47)

AR ∈ sp {1} , (5.48)

bTHTAHb = −MT b. (5.49)
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Finally, every column of (AH + I) is in sp{1}.

These facts follow algebraically from the fact that by definition, f ft(G, s, τ) satisfies (5.45).

Subsutiting (5.43) into (2.1) and simplifying using the facts in Observation 5.4.1.1 yields (5.44).

Next, we establish a necessary condition for a set of fixed tolls to be optimal in the sense

of (5.23).

Claim 5.4.1.2 Fixed tolls τ∗ satisfying (5.23) must also satisfy

H

(
τ∗ +

b

SL + SU

)
= 0. (5.50)

Proof: By (5.44) the total latency due to fixed tolls is a convex parabola in s, so for

any τ , the maximum total latency on [SL, SU] occurs at either SL or SU. Since Lft(G, s, τ)

is continuous and convex in τ , this means that τ∗ must satisfy

Lft(G,SL, τ
∗) = Lft(G,SU, τ

∗). (5.51)

Thus, for any optimal fixed tolls τ∗, Lft(G, s, τ∗) is a parabola centered at s = SL+SU
2 :

argmin
s∈[SL,SU]

Lft(G, s, τ∗) = (SL + SU)/2. (5.52)

Our goal is to find the parabola with minimum as in (5.52) which minimizes the values

in (5.51).

Equation (5.44) implies that for all τ, τ ′ ∈ Rn, Lft(G, 0, τ) = Lft(G, 0, τ ′); that is, the

s = 0 endpoint of the parabola has the same value for all tolls. Thus, for τ satisfying (5.52),

Lft(G,SL, τ
∗) < Lft(G,SL, τ) if and only if Lft

(
G, SL+SU

2 , τ∗
)
< Lft

(
G, SL+SU

2 , τ
)

.

By convexity, any tolls which result in globally optimal routing for s = SL+SU
2 will

also be optimal in the sense of (5.23). It is easily verified that for a known homogeneous
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sensitivity s, any tolls τ which satisfy

H (τ + b/(2s)) = 0 (5.53)

result in globally optimal routing. The proof of this is obtained by substituting (5.53)

into the gradient (with respect to τ) of Lft(G, s, τ) and applying the facts from Observa-

tion 5.4.1.1.

Therefore, any τ which satisfies (5.53) with s = SL+SU
2 will be uncertainty-optimal.

That is, τ∗ satisfies (5.50).

Evaluating (5.43) with tolls satisfying (5.50) yields an expression for a Nash flow induced

by τ∗ as a function of s:

f ft(G, s, τ∗) = R+Hb
SL + SU − s
SL + SU

, (5.54)

implying that (R+Hb) specifies an un-tolled Nash flow. For parallel networks, it is easy to

show that every element of R is non-negative; thus, since α ,
(
SL+SU−s
SL+SU

)
∈ [0, 1], it must

be that (R+Hbα) represents a feasible flow.

There are two possible worst-case flows using fixed toll τ∗: one when the sensitivity is

SU, the other when the sensitivity is SL. In terms of (5.54), we write these flows as:

f ft
− = f ft(G,SL, τ

∗) = R+Hb (SU/(SL + SU)) . (5.55)

f ft
+ = f ft(G,SU, τ

∗) = R+Hb (SL/(SL + SU)) . (5.56)

Next we show that f ft
− and f ft

+ , the worst-case flows for optimal fixed tolls, are actually

exactly equal to worst-case flows achievable with scaled marginal-cost tolls (4.2) with a

particular scalar. The machinery of Claim 5.4.1.1 describes the Nash flows f smc(G, s, κ)

resulting from homogeneous sensitivity s and marginal-cost tolls scaled by κ > 0:
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f smc(G, s, κ) = R+Hb/ (1 + sκ) . (5.57)

The derivation of this is straightforward; it is detailed in Chapter 4.

The worst worst-case flows occur when the sensitivity of the population has been grossly

over- or under-estimated; for example, if a population with sensitivity SU is using a network

with κ = 1/SL (and vice-versa). There are two such flows:

f smc
− = R+

Hb

1 + SL/SU
and f smc

+ = R+
Hb

1 + SU/SL
.

Comparing the above to (5.55) and (5.56), we see that f smc
− = f ft

− and f smc
+ = f ft

+ . Thus,

since

f ft(G,SL, τ
∗) = f smc(G,SL, 1/SU),

f ft(G,SU, τ
∗) = f smc(G,SU, 1/SL),

it must be true that (re-writing now in terms of affine tolls)

Lnf(G,SL, τ
∗) = Lnf(G,SL, τ

A(1/SU, 0)), (5.58)

Lnf(G,SU, τ
∗) = Lnf(G,SU, τ

A(1/SL, 0)). (5.59)

By design, (5.58) equals (5.59), so we have that

max
s∈[SL,SU]

Lnf
(
G, s, τA(1/SU, 0)

)
= max

s∈[SL,SU]
Lnf (G, s, τ∗) .
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Chapter 6

Avoiding Perverse Incentives

In Chapters 4 and 5, our main goal was to derive taxation mechanisms that optimize the

price of anarchy; i.e., reduce the congestion associated with worst-case problem instances.

Marginal-cost tolls and their network-agnosticity appeared to offer some promising ap-

proaches to accomplishing this goal. However, Proposition 4.1 in Chapter 4 showed that

there exist pathological networks and user populations on which marginal-cost tolls actually

increase the congestion of Nash flows as compared to the un-tolled case. The purpose of this

chapter is to investigate this phenomenon more fully, specifically to answer the following

question:

Do there exist network-agnostic taxation mechanisms that improve the price of anarchy

without degrading congestion on any network?

To examine this rigorously, we study a new performance metric that we term the perver-

sity index, formally defined in Section 2.2.3. The perversity index of a taxation mechanism

is defined as the ratio between the performance it incentivizes and the un-influenced per-

formance, taken in worst case over user populations and networks. That is, if a taxation

mechanism has a perversity index strictly greater than 1, this indicates that networks exist

This chapter contains material that is adapted, with permission, from [77–79], previously published in
the proceedings of the 55th and 56th IEEE Conferences on Decision and Control and the 2017 American
Control Conference. © 2016, 2017 IEEE
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on which this mechanism degrades the quality of Nash flows, rather than improves them.

If this is the case, we we say that a taxation mechanism is perverse.

The main result in this chapter is Theorem 6.1, stating that

If networks are sufficiently complex and the user population is sufficiently diverse, every

network-agnostic taxation mechanism is either trivial or perverse.

That is, a network agnostic taxation mechanism improves routing efficiency on some net-

works only if it degrades efficiency on other networks, and that such perverse incentives can

even arise on simple parallel networks.

Nonetheless, we show that there do exist non-trivial classes of networks on which

network-agnostic taxation mechanisms can be guaranteed to improve outcomes; in partic-

ular, parallel networks in which all traffic can use all paths constitute such a well-behaved

network class. In Theorem 6.2 we define the generalized marginal-cost taxation mechanism;

for a network edge e with delay function `e(fe), this mechanism assigns taxation functions

of

τgmc
e (fe) = κ1`e(fe) + κ2fe`

′
e(fe). (6.1)

We show that this is the only non-trivial network-agnostic taxation mechanism that weakly

improves routing efficiency on the class of parallel networks (i.e., that has a perversity index

of 1). Thus, a system planner can apply generalized marginal-cost tolls on any parallel

network without fear of causing perverse incentives.

Following this is a series of characterization results which seeks to understand how the

price of anarchy and perversity index of generalized marginal-cost tolls are related. The

chapter closes with a note on the connections between marginal-cost pricing and altruistic

behavior; in particular, our main impossibility result in Theorem 6.1 implies the existence of

“altruism paradoxes” in congestion games in which increasing the altruism of some members

of society can actually degrade performance.

Unfortunately, it has recently been shown that if the user population is diverse in price-
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sensitivity, the optimality guarantees of marginal-cost tolls vanish [1].

6.1 An Impossibility Theorem

Our first question is this: do there exist network-agnostic taxation mechanisms which

have a perversity index of 1? Example 6.1 shows that at least the marginal-cost taxation

mechanism (2.12) has a perversity index strictly greater than 1; subsequently, Theorem 6.1

shows that this is true for any network-agnostic taxation mechanism.

Example 6.1 Consider the network depicted in Figure 6.1, consisting of the well-known

Braess’s Paradox network [28] in parallel with a single constant-latency edge. Let marginal-

cost tolls be charged on the network according to (2.12); that is, edges e1 and e4 are each

charged a flow-varying toll of τe(fe) = fe. If the user population has 2 units of traffic and

a homogeneous toll sensitivity of s ∈ [0, 1], the unique Nash flow on this network is the one

labeled “Efficient Nash Flow” in Figure 6.1, since all agents are experiencing a cost of 2+s;

deviating to the zig-zag path or to e6 would yield a larger cost of 2 + 2s or 3, respectively.

Since there are 2 units of traffic experiencing a delay of 2 each, the total latency is 2 ·2 = 4.

Now consider a heterogeneous population in which 1 unit of traffic has a sensitivity of

s1 = 0 (the orange traffic in Figure 6.1), and 1 unit of traffic has a sensitivity of s2 = 1. In

this case, a new Nash flow emerges: one in which all the insensitive traffic uses the zig-zag

path, and all the sensitive traffic uses the constant-latency link, labeled “Inefficient Nash

Flow” in Figure 6.1. In this flow, any agent on the zig-zag path has a delay of 2, but any

agent on the constant-latency path has a delay of 3, for a total latency of 2 + 3 = 5, which

is considerably greater than the un-tolled total latency of 4.
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© 2017 IEEE

Figure 6.1: Example 6.1: A network demonstrating that marginal-cost tolls are perverse
on symmetric networks. The user population has mass r = 2, divided equally between
commodities with s = 0 and s = 1. Here, marginal-cost tolls induce more than one Nash
flow; two such flows are exhibited in the figure. On the left, all of the insensitive traffic
(orange) is using the zig-zag path, experiencing a latency of 2; all the sensitive traffic
(green) is using the constant-latency edge, experiencing a latency of 3 – for a total latency
of 5. On the right flow, all traffic is experiencing a latency of 2, for a total latency of 4.
Here, any homogeneous population using this network has the right-hand flow as a unique
Nash flow.
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6.1.1 Perverse incentives are unavoidable if networks are sufficiently com-

plex

Our first theorem shows that the pathology shown for marginal-cost taxes in Exam-

ple 6.1 is generic both for symmetric and for parallel networks; that is, all network-agnostic

taxation mechanisms can create perverse incentives if the class of networks is rich enough.

Theorem 6.1 Let Gp denote the class of all routing problems with parallel networks (not

necessarily symmetric), and let Gs denote the class of all routing problems with symmetric

networks (not necessarily parallel). If SU > SL = 01, every non-trivial network-agnostic

taxation mechanism has a strictly positive perversity index on G ∈ {Gp,Gs}:

PI (G, T ) > 1. (6.2)

A cornerstone of the proof of Theorem 6.1 is the following lemma, which gives a set of

necessary conditions for a network-agnostic taxation mechanism to be non-perverse. The

key insight from Lemma 6.1.1 is that all non-perverse taxation mechanisms are essentially

a generalized form of marginal-cost tolls.

Lemma 6.1.1 Let Gsp denote the class of all routing problems with symmetric parallel

networks. If network-agnostic taxation mechanism T has PI (Gsp, T ) = 1, then for every

edge e, it assigns taxation functions satisfying

τe(fe) = κ1`e(fe) + κ2fe`
′
e(fe), (6.3)

where κ1 > −1/SU, κ2 ≥ 0, and κ2 ≤ κ1 + 1/SU.

The proof of Lemma 6.1.1 appears in Section 6.4.

1Note that SL = 0 can be satisfied even when 0 mass of traffic has 0 sensitivity; SL = 0 simply ensures
that the population’s sensitivity is not bounded away from 0.
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The space of network-agnostic taxation mechanisms is quite large, but Lemma 6.1.1

reduces the search, allowing us to search over just two parameters, κ1 and κ2.

Proof of Theorem 6.1: Here we prove Theorem 6.1 for the case of symmetric networks Gs;

the proof for parallel networks Gp is similar and utilizes the network shown in Figure 4.2.

Lemma 6.1.1 rules out all taxation mechanisms other than those satisfying (6.3), so

suppose we are given a taxation mechanism assigning taxes of τe(fe) = κ1`e(fe)+κ2fe`
′
e(fe),

where κ1 > −1/SU, and κ2 ≤ κ1 + 1/SU. If κ2 = 0, this taxation mechanism is trivial,

so let κ2 > 0. Our task is to create a user population s (that is, a distribution of tax-

sensitivities) and a network G such that Lnf(G, s, T (κ1, κ2)) > Lnf(G, ∅). We will do this

with a population having two sensitivity values s2 > s1 > 0 and a network resembling that

in Figure 6.1. Construct the population as follows: let a unit mass of users have sensitivity

s1 (which we will specify momentarily) and a unit mass have s2 = SU, for a total of 2 units

of traffic. Define γ2 , s2κ2
1+s2κ1

∈ (0, 1], and choose s1 so that γ1 , s1κ2
1+s1κ1

= γ2/8. Then an

agent with sensitivity si ∈ {s1, s2} experiences an effective cost function on edge e of

Je(fe) = `e(fe) + γife`
′
e(fe). (6.4)

Now, let G be the network depicted in Figure 6.1; let the latency functions on edges e2

and e3 be `e2(fe2) = `e3(fe3) = 1+γ2/8 and let the latency function on edge e6 be `e6 (fe6) =

2 + γ2. Enumerate the paths as follows: denote the “zig-zag” path p1 = {e1, e5, e4}, the

remaining two paths in the upper sub-network p2 = {e1, e3} and p3 = {e2, e4}, and the

isolated constant-latency path p4 = {e6}; and denote the path flow of pi by fi. We will

refer to paths p1, p2, and p3 in the upper subnetwork as the “Braess subnetwork.”

On this network, the flow (depicted on the left in Figure 6.1) fperverse , (1, 0, 0, 1) is a

Nash flow for this population, with total latency Lnf(G, s, T ) = 4 + γ2. However, it can be

verified that if tolls are removed, the unique Nash flow is fnf , (γ2/4, 1− γ2/8, 1− γ2/8, 0),
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which has a total latency of Lnf(G, ∅) = 4 + γ2/2, or

Lnf(G, s, T ) > Lnf (G, ∅) (6.5)

and the considered tolls are perverse.

6.1.2 Symmetric parallel networks prevent perverse incentives

Theorem 6.1 shows that it does not take much complexity to render a network-agnostic

taxation mechanism perverse. Does this mean that it is never possible to achieve a perversity

index of 1? Fortunately, the answer is no – and our Theorem 6.2 shows that on symmetric

parallel networks (precisely the intersection of Gs and Gp), the necessary condition from

Lemma 6.1.1 is also sufficient to achieve a perversity index of 1. Thus, Theorem 6.2 gives a

full characterization of non-perverse taxation mechanisms for symmetric parallel networks.

Theorem 6.2 Let Gsp denote the class of routing problems with symmetric parallel net-

works. For any SU ≥ SL ≥ 0, a network-agnostic taxation mechanism T has unity perversity

index on Gsp

PI (Gsp, T ) = 1 (6.6)

if and only if T = T (κ1, κ2), assigning the tolling functions

τe(fe) = κ1`e(fe) + κ2fe`
′
e(fe), (6.7)

with κ1 > −1/SU, κ2 ≥ 0, and κ2 ≤ κ1 + 1/SU.

Note that if κ1 = 0, then for any κ2 ≥ 0, the above corresponds to simple scaled

marginal-cost tolls. In this case, the coefficient constraints reduce to κ2 ∈ [0, 1/SU]; that is,

Theorem 6.2 says that scaled marginal-cost taxes have a perversity of 1 if and only if they

are scaled conservatively, i.e., they are no larger than would be required to induce optimal

flows for a homogeneous population of high sensitivity SU.
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6.1.3 The price of anarchy of non-perverse tolls

Having shown that symmetric parallel networks do admit non-perverse taxation mech-

anisms, we now ask how effective those mechanisms are in reducing worst-case congestion.

Simply because taxes have a perversity index of 1 does not immediately imply that their as-

sociated PoA is small; nonetheless, we show that generalized marginal-cost tolls can provide

modest reductions of worst-case congestion.

Theorem 6.3 Let Gsp
d denote the class of all symmetric parallel networks with polyno-

mial latency functions of degree at most d ≥ 1. For any SU ≥ SL ≥ 0, levy the gen-

eralized marginal-cost taxation mechanism T (κ1, κ2) as defined in (6.7) with coefficients

κ1 ≥ −1/SU, κ2 ≥ 0, and κ2 ≤ κ1 + 1/SU. Let βκ1,κ2 , κ2SL
1+κ1SL

∈ [0, 1]. Then the price of

anarchy associated with these tolls is

PoA
(
Gsp
d , T (κ1, κ2)

)
=

1

1 + dβκ1,κ2 − d
(

1+dβκ1,κ2
1+d

) d+1
d

. (6.8)

We provide a new proof of Theorem 6.3 in Section 6.4 that relies on our arguments for

Theorem 6.2, but note that it is also a consequence of [55, Theorem 7.1], which gives the

price of anarchy associated with heterogeneous, partially-altruistic populations. Though

the two proofs are substantially different, they share the high-level idea that on symmetric

parallel networks, increasing the fraction of players that are merely delay-averse always

leads to worse congestion. This implies (in our model) that the price of anarchy is realized

by a homogeneous population with sensitivity equal to SL, and the expression in (6.8) due

to [80] applies immediately.

Furthermore, this yields the following simple characterization of the PoA-minimizing

coefficients κ1 and κ2, where here we minimize the price of anarchy subject to a constraint

that the tolls are non-perverse. Before stating the result, we point out that worst-case

performance guarantees provided by a taxation mechanism can often be improved by in-
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creasing all edge tolls appropriately (see, e.g., discussion in Chapter 5). In order to make

meaningful statements about congestion-minimizing tolls, it is useful to parameterize tolls

by a stylized upper-bound; the parameter κmax > 0 plays this role in the following result.

Thus, Corollary 6.4 solves the following optimization problem:

(κ∗1, κ
∗
2) ∈ arg inf

κ1,κ2≤κmax

PoA
(
Gsp
d , T (κ1, κ2)

)
. (6.9)

Corollary 6.4 For any d ≥ 1 and taxation coefficient upper bound κmax, the price of

anarchy in (6.9) due to bounded generalized marginal-cost taxes is minimized by setting

κ∗2 = κmax and κ∗1 = κmax − 1/SU. If SU = +∞, then this simplifies to κ∗1 = κ∗2 = κmax.

Proof: The PoA expression in (6.8) is decreasing in βκ1,κ2 , which for any SL, SU and

fixed κmax is maximized by saturating the bounds κ1 ≥ κ2 − 1/SU and κ2 ≤ κmax.

The price of anarchy due to tolls as in Corollary 6.4 is plotted for several values of d in

Figure 6.2. Note that even when d is unbounded (the dotted red curve in Figure 6.2), the

price of anarchy is bounded whenever SL/SU > 0.

In the special case of SU = +∞ (that is, no upper bound on sensitivity is known), the

PoA-minimizing coefficients in Corollary 6.4 reduce to κ1 = κ2 = κmax. Note that this is

identically the universal taxation mechanism from [75], which was developed to serve an

entirely different purpose of optimizing the price of anarchy in the large-κmax limit.

6.2 Quantifying the Tradeoff Between Optimality and Per-

versity

In this section we initiate a study on the tradeoff between optimizing for the perversity

index and optimizing for the PoA. As an initial step, we characterize the price of anarchy for

homogeneous populations associated with the taxation mechanism T (κ1, κ2). Intuitively,

Theorem 6.5 shows that the PoA-minimizing taxation mechanism (for homogeneous pop-
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Figure 6.2: The optimal price of anarchy achievable using non-perverse network-agnostic
tolls, where d indicates the largest degree of polynomial allowed in the considered latency
functions. These values are plotted using the machinery of Theorem 6.3. The PoA is
plotted with respect to SL/SU, which can serve as a proxy for the variance of the price
sensitivities in the user population. On the far left, the price of anarchy resolves to the
un-tolled value; on the right, the price of anarchy is 1. Our result continuously bridges
the space in between.

ulations) is the taxation mechanism that perfectly balances the harm that can be caused

by a homogeneous SL population with the harm that can be caused by a homogeneous SU

population. Crucially, this taxation mechanism has a perversity index equal to the price

of anarchy and strictly greater than 1. That is, the price of anarchy cannot be minimized

without risking perverse incentives. In all the following results, we frequently refer to the

quantity

β(s, (κ1, κ2)) :=
κ2s

1 + κ1s
, (6.10)

since under the influence of T (κ1, κ2), a user with sensitivity s experiences a cost on edge

e equivalent to

`e(fe) + β(s(κ1, κ2))fe`
′
e. (6.11)

That is, β(s, (κ1, κ2)) indicates users’ induced sensitivity to their marginal effect on others:

when β = 1, users interpret their marginal effect on others correctly, as though they were

being charged perfect marginal-cost tolls. When β < 1, users are overly delay-sensitive;

when β > 1, users are not delay-sensitive enough. Note that the non-perverse tolls defined
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in Theorem 6.2 are crafted to guarantee that every user has β ≤ 1.

First, we present the following lemma, which is adapted from [80, Propositions 7.6, 7.7].

Here, we give the price of anarchy for known-sensitivity homogeneous population for fixed

κ1, κ2:

Lemma 6.4.1 (Meir and Parkes, 2015 [80]) Let Gd be the class of routing problems

with polynomial latency functions of degree no more than d ≥ 1, and let G denote the class

of all routing problems with polynomial latency functions. In the following, let κ := (κ1, κ2)

and let β(s, κ) := κ2s
1+κ1s

≥ 0. Then the price of anarchy resulting from T (κ1, κ2) for a

homogeneous population with sensitivity s is

PoA(Gd, s, κ) =


1

1+dβ(s,κ)−d
(
1+dβ(s,κ)

1+d

) d+1
d

if β(s, κ) ≤ 1,

β(s, κ)−d
(

1+dβ(s,κ)
1+d

)d+1
if β(s, κ) > 1.

(6.12)

If d is not known, the PoA is given by

PoA(G, s, κ) =


(β(s, κ)(1− log β(s, κ)))−1 if β(s, κ) ≤ 1,

β(s, κ) exp
(

1
β(s,κ) − 1

)
if β(s, κ) > 1.

(6.13)

Lemma 6.4.1 is a consequence of [80, Propositions 7.6, 7.7], since for a homogeneous popu-

lation with sensitivity s, setting taxation functions equal to τe(fe) = κ1`e(fe) + κ2fe`
′
e(fe)

induces the same subjective costs as charging marginal-cost taxes (2.12) to a homogeneous

population with sensitivity β(s, κ) := κ2s
1+κ1s

. The limit-invariant expressions (6.13) are

found by taking the limit as d → ∞. Given this expression, we are ready to present the

theorem:

Theorem 6.5 Let Gd denote the class of all networks with polynomial latency functions of

degree at most d ≥ 1. For homogeneous populations, for any 0 ≤ SL < SU and taxation
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coefficient upper bound κmax, the PoA-minimizing toll scalars

(κ∗1, κ
∗
2) , inf

κ1,κ2≤κmax

PoAhm (Gd, T (κ1, κ2)) (6.14)

have κ∗2 = κmax, and κ∗1 is the unique solution on the interval (−1/SU, κmax − 1/SU) to

PoA(Gd, SL, (κ
∗
1,M)) = PoA(Gd, SU, (κ

∗
1,M)) , (6.15)

where PoA is defined in (6.12). Its resulting price of anarchy and perversity index for

homogeneous populations are equal and greater than one:

PoAhm (Gd, T (κ∗1, κ
∗
2)) = PIhm (Gd, T (κ∗1, κ

∗
2)) > 1. (6.16)

Before presenting the proof, we wish to compare the optimal price of anarchy from

Theorem 6.5 to the price of anarchy of the non-perverse (conservative) taxation mechanism

from Theorem 6.2; we do this by plotting the ratio of the two in Figure 6.3. Note that even

when d is unbounded, for the plotted parameter values, the conservative PoA is no more

than about 12% worse than the optimal PoA; this suggests that the benefits of perversity

may be rather limited. The following lemma will be instrumental in proving the last part

of Theorem 6.5; its proof appears in Section 6.4.

Lemma 6.5.1 Let Gsp
d denote the class of routing problems with symmetric parallel net-

works and polynomial latency functions of degree no more than d ≥ 1. Given κ2 > 0, when

κ1 ∈ (−1/SU, κ2 − 1/SU), the homogeneous perversity index of T (κ1, κ2) is greater than 1

and equal to the price of anarchy experienced by a population with sensitivity SU:

PIhm
(
Gsp
d , T (κ1, κ2)

)
= PoA(Gd, SU, (κ1, κ2)) . (6.17)

Proof of Theorem 6.5: The restriction to homogeneous populations here allows us to apply
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Lemma 6.4.1 directly, and leverage its monotonicity properties to obtain the result. Consider

the expressions given by (6.12) as a function of β(s, κ). The price of anarchy as a function

of β is bowl-shaped: when β(s, κ) < 1, the price of anarchy is strictly decreasing in β(s, κ),

when β(s, κ) > 1, the price of anarchy is strictly increasing in β(s, κ), and when β(s, κ) = 1,

the price of anarchy is equal to 1. Thus, minimizing the price of anarchy reduces to choosing

κ1 and κ2 such that for all s ∈ [SL, SU], β(s, κ) takes values as “close” to 1 as possible, where

this closeness is measured by the expressions in (6.12). Furthermore, when κ1 > −1/SU

and κ2 ≥ 0, the monotonicity of β(s, κ) ensures that the price of anarchy is achieved by an

extreme sensitivity population with s ∈ {SL, SU}.

For any fixed κ2 > 0 and fixed s ∈ [SL, SU], β(s, κ) is decreasing in κ1 whenever

κ1 > −1/SU; also, when κ1 = κ2 − 1/s, we have β(s, κ) = 1 (thus, the PoA for that s is

1). Combined with the above, this means the price of anarchy is minimized in κ1 on the

interval I := (max{−1/SU, κ2 − 1/SL}, κ2 − 1/SU).

Accordingly, for any κ2, let δ := κmax − κ2. For any κ2 > 0 and κ1 ∈ I, it holds that

β(SL, (κ1, κ2) < β(SL, (κ1 + δ, κ2 + δ)),

and

β(SU, (κ1, κ2) > β(SU, (κ1 + δ, κ2 + δ)).

That is, when κ1 ∈ I, the price of anarchy can be decreased by adding δ to both κ1 and κ2,

showing that κ∗2 = κmax.

Finally, given that κ∗2 = κmax and κ1 ∈ I, note that PoA(Gd, SL, (κ1, κ
∗
2)) is strictly

increasing in κ1, that PoA(Gd, SU, (κ1, κ
∗
2)) is strictly decreasing in κ1, and both are contin-

uous for all κ1. This guarantees that the PoA-minimizing κ∗1 must be the unique solution

to (6.15) on the interval2 (−1/SU, κmax − 1/SU), and (6.16) is an immediate consequence

of Lemma 6.5.1.

2Though our argument considers only the interval I, our uniqueness claim holds on (−1/SU, κmax − 1/SU)
because for κ1 ∈ (−1/SU, κmax − 1/SL), it holds that PoA(Gd, SU, (κ1, κmax)) ≥ PoA(Gd, SL, (κ1, κmax)).
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Figure 6.3: The conservative (non-perverse) PoA divided by the minimum-achievable PoA
as a function of the sensitivity ratio SL/SU. This indicates the cost of avoiding perverse
incentives, in the sense that if perverse incentives are not allowed, the price of anarchy can
be worse by a factor indicated in this plot.

Section 6.2 assumes that minimizing the price of anarchy is the system planner’s sole

design goal, and Theorem 6.5 has shown that this cannot be done without creating perverse

incentives on some networks. Nonetheless, there may be situations in which the planner

wishes to reduce the price of anarchy, but desires to limit perversity as well. To explore the

effect of this additional constraint, here we characterize the space of achievable PoA and

PI. That is, if planner can tolerate perversity no more than some number α, this imposes a

lower bound on the achievable price of anarchy. Proposition 6.6 provides tools to compute

a full characterization of this tradeoff for homogeneous populations on symmetric parallel

networks with polynomial latency functions. Formally, we wish to find

(κα1 , κ
α
2 ) , inf

κ1,κ2≤κmax

PoAhm (Gd, T (κ1, κ2)) , (6.18)

subject to PIhm(Gsp
d , T (κα1 , κ

α
2 )) ≤ α.

Proposition 6.6 Let Gsp
d be the class of symmetric parallel networks with polynomial la-

tency functions of degree no more than d ≥ 1. First, κα2 = κmax. Let κ†1 be the unique
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solution to

PoA
(
Gd, SU, (κ

†
1,M)

)
= α, (6.19)

and let κ∗1 be as defined in Theorem 6.5. Then κα1 = max
{
κ∗1, κ

†
1

}
. The resulting price of

anarchy is achieved by a low-sensitivity population:

PoA(Gsp
d , T (κα1 , κ

α
2 )) = PoA(Gd, SL, T (κα1 , κ

α
2 )) , (6.20)

where PoA is defined in Lemma 6.4.1.

Proof: It is shown in the proof of Theorem 6.5 that the optimal price of anarchy is

achieved with κα2 = κmax; that applies here as well. Lemma 6.5.1 shows that whenever

κ1 < κ2 − 1/SU, the perversity index of T (κ1, κ2) is equal to the price of anarchy for SU;

thus, choosing κ†1 as the solution to (6.19) ensures a perversity index of exactly α. If α is

less than the minimum-achievable price of anarchy for these parameters, then κα1 = κ†1. On

the other hand, if the minimum-achievable PoA is lower than α, then by definition it can

be achieved by setting κα1 = κ∗1. In either case, since the tolls are being applied (weakly)

conservatively, the price of anarchy is realized by a population with sensitivity SL (this can

be verified by the expressions (6.12)).

6.3 Implications for Altruistic Behavior

The foregoing has assumed that users are selfish and act with the sole objective of

minimizing personal cost. However, real users may act altruistically, with the public good

in mind. This is investigated in the α-altruism model, which has no tolls but assigns each

user x an altruism level αx ∈ [0, 1]; a user with α = 0 is totally selfish, whereas a user with

α = 1 is totally altruistic [55]. This is modeled by assuming that on edge e, user x with

altruism level αx experiences cost
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Jxe (fe) = `e(fe) + αxfe`
′
e(fe). (6.21)

In other words, a totally-altruistic user fully accounts for the marginal effects that his

actions have on those around him.

By comparing the cost functions induced by marginal-cost tolls (2.12) with the cost

functions experienced by altruistic players (6.21), it is clear that there is a deep connection

between this model of α-altrusim and the theory of marginal-cost taxation. In essence,

marginal-cost taxes are designed to induce artificial altruism in the user population.

The authors of [55] exhibit two contexts in non-atomic congestion games in which worst-

case performance improves with increasing levels of altruism: the first is in general networks

with homogeneous altruism, and the second is in parallel networks with heterogeneous

altruism. In both cases, if the average level of altruism in the population increases, worst-

case performance improves.

Given the equivalence of marginal-cost taxation and altruism, our Corollary 6.7 strength-

ens the parallel-network result of [55], showing that on any network, the worst-case flows

are realized by a low-altruism homogeneous population. On the other hand, given our

impossibility result in Theorem 6.1, Corollary 6.7 shows that increased altruism does not,

in general, improve performance. That is, on the network in Figure 6.1, a totally-selfish

population is associated with the efficient Nash flow, but a partially-altruistic population is

associated with the inefficient Nash flow.

In the following, Lnf
alt(G,α) denotes the worst-case Nash flow total latency on G for a

given altruism distribution α, where users in α take altruism levels in the interval [AL, AU] ⊆

[0, 1]. A homogeneous altruism distribution in which all users have value AL is denoted αL.

Corollary 6.7 For any G ∈ Gsp,

Lnf
alt(G,α) ≤ Lnf

alt

(
G,αL

)
. (6.22)
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However, there exist G ∈ Gs∪Gp such that there exists an altruism distribution α satisfying

Lnf
alt(G,α) > Lnf

alt

(
G,αL

)
. (6.23)

Proof: Any Nash flow induced by the tolls of Theorem 6.2 is a Nash flow for some

altruism distribution (see, e.g., the argument in the proof of Lemma 6.7.1 in Section 6.4).

Thus, Corollary 6.7 is implied by Theorems 6.1 and 6.2.

6.4 Chapter Proofs

Proof of Lemma 6.1.1: We shall exhibit example networks on which various tolls are per-

verse, thus eliminating all but tolls of the form in (6.7). First, consider the network in

Figure 6.4(a).

This network has two paths in parallel; the first path is a pair of edges in series with

arbitrary latency functions `1 and `2, the second path consists of a single edge with latency

function `3 satisfying `1 + `2 = `3. For any such network, any nominal Nash flow fnf is

optimal; thus, a non-perverse taxation mechanism T would need to incentivize a flow fT

that satisfies fT = fnf = fopt = (r/2, r/2) by charging tolls satisfying τ1(r/2) + τ2(r/2) =

τ3(r/2). That is, T is additive: if `1 + `2 = `3, it is true that T (`1) + T (`2) = T (`1 + `2).

Note that this also implies that T (0) = 0, since any latency function `1 can be written as

`1 + 0.

Next we show that T (`) is constant when ` is constant. Consider again the network

in Figure 6.4(a) when `1(f1) = 0, `2(f2) = b2, and `3(f3) = b3. It is clear that if b2 < b3,

the unique Nash flow routes all traffic on the upper path, and this flow is also optimal.

Writing T (b2)(·) as the tolling function assigned to `2(f2) = b2 by T , it follows that for

all f , T (b2)(f) < T (b3)(0). If this were not the case, there would exist perverse Nash

flows for large r which route a positive mass of traffic on the lower path. Since this must

hold for all b2 and b3, it implies that for all b, T (b)(·) is a nonincreasing function of flow.
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By an opposite argument, it must be that for all f , T (b2)(0) < T (b3)(f), implying that

T (b)(·) must be a nondecreasing (and thus constant) function of flow. Because T is simply

a mapping from R to R for constant functions, its additivity implies linearity:3 T (b) = κ1b.

Finally, for b2 < b3, it must always be true for any possible agent sensitivities s ∈ [SL, SU]

that (1 + κ1s)b2 < (1 + κ1s)b3, or that κ1 > −1/SU.

Next, we show that degree-d monomial latency functions must be assigned degree-d

tolling functions. The network in Figure 6.4(b) has two edges in parallel with latency

functions `1(f1) = α(f1)d and `2(f2) = λα(f2)d, where α > 0, λ > 0, and d ≥ 1. For any

such network, the unique un-influenced Nash flow is optimal; thus, a non-perverse T would

need to induce a flow fT that satisfies fT = fnf = fopt. It can be shown that for any r > 0,

this flow is

fT1 =
(λα)1/dr

(α)1/d + (λα)1/d
, fT2 =

(α)1/dr

(α)1/d + (λα)1/d
.

Since fT is a nominal Nash flow, `1(fT1 ) = `2(fT2 ); and fT = fT implies that τ1(fT1 ) =

τ2(fT2 ). In the following, let r = (α)1/d + (λα)1/d, so for all α, λ, τ1

(
(λα)1/d

)
= τ2

(
(α)1/d

)
.

First let λ = 2, so that `2(f2) = 2`1(f2). Then additivity ensures that τ2(f2) = 2τ1(f2).

That is, τ1

(
(2α)1/d

)
= 2τ1

(
(α)1/d

)
. Since this must hold for any α, it implies either that

τ1(f) ≡ 0, or that τ1(f) = η1f
d for some η1 > 0.

To find η, we need only substitute fT into τ1(fT1 ) = τ2(fT2 ) and solve, yielding η1λ = η2.

Due to the fact that η1 cannot be a function of λ, the above is only satisfied when all tolling

functions are given by Kαe(fe)
d for some K ≥ 0. K is a constant that does not depend on

e (but may depend on d).

To find K, consider Figure 6.4(c). This network has `1(f1) = α(f1)d in parallel with

a constant latency function `2(f2) = 1. Here, if r ≤ (1/(α(d + 1)))1/d, the uninfluenced

Nash and optimal flow on this network is (r, 0). Thus, τ1(f) must be small enough that it

does not incentivize any user to use edge 2 when r is low. Precisely, keeping in mind that

τ1(f1) = Kα(f1)d, we require that for all sensitivities s ∈ [SL, SU], α(f1)d + sKα(f1)d ≤
3Of course, this is provided that we require T to be Lebesgue-measurable.
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Figure 6.4: Example networks used to prove Lemma 6.1.1.

1 + sκ1, or, substituting the appropriate f1, that

α(1 + sK)

((
1

α(d+ 1)

)1/d
)d
≤ 1 + sκ1. (6.24)

This implies that sK ≤ sκ1d + sκ1 + d. This simplifies nicely if we write K = κ1 + κ2d

(where κ2 ∈ R), in which case it follows that κ2 ≤ κ1 + 1/s for all d and s, or that

κ2 ≤ κ1 + 1/SU. Writing τ1(f1) in terms of κ1 and κ2 gives the nice decomposition in terms

of latency function `1 and marginal-cost function f1 · `′1:

τ1(f1) = κ1`1(f1) + κ2f1 · `′1(f1).

Finally, consider the network in Figure 6.4(d). This network has some arbitrary ad-

missible latency function `1 on edge 1 and a monomial latency function `2(f2) = β(f2)d on

edge 2. We will choose `2 such that the optimal and Nash flows coincide on this network

for some r > 1 when f2 = 1. Due to the additivity of T , we can assume without loss of

generality that `1(0) = 0 because any nonzero intercept can be “canceled” by adding an

equal constant term to `2.
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Let β = `1(f1) and d = f1`
′
1(f1)/`1(f1) ≥ 1. Then `1(f1) = `2(1) and f1`

′
1(f1) = `′2(1);

i.e., both the latencies and the marginal costs of the edges are equal, which means that

(f1, 1) is both a Nash and an optimal flow. Since `2 is a monomial, we can write its tolling

function as τ2(f2) = κ1β(f2)d+κ2dβ(f2)d, where κ2 ≤ κ1 +1/SU. Using this, we can simply

derive the first-link tolling function T (`1)(f1) using the following:

`1(f1) + T (`1)(f1) = (β + κ1β + κ2dβ) (f2)d.

Substituting the definitions of β and d and canceling similar terms, we obtain that T (`1)

satisfies (6.7) as desired.

Next, Lemma 6.7.1 shows that Nash flows on parallel networks behave very nicely under

the influence of T gmc. Specifically, Lemma 6.7.1 proves that the worst-case total latency on

a parallel network with T gmc is realized by a low-sensitivity homogeneous population.

Lemma 6.7.1 Let sL denote a homogeneous population in which every user has sensitivity

SL ≥ 0, and denote by T gmc a taxation mechanism satisfying the conditions of Lemma 6.1.1.

For any symmetric parallel network G ∈ Gsp and any heterogeneous population s in which

every user has a sensitivity no less than SL,

Lnf
(
G, sL, T gmc

)
≥ Lnf (G, s, T gmc) . (6.25)

Proof: For every user x, T gmc induces cost functions of the form

Jxe (fe) = (1 + sxκ1)`e(fe) + sxκ2fe`
′
e(fe). (6.26)

Since we can scale these costs functions by any user-specific positive scalar without changing

the underlying Nash flows, these cost functions are equivalent to the following:

Jxe (fe) = `e(fe) +
sxκ2

1 + sxκ1
fe`
′
e(fe). (6.27)
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Given the conditions κ2 ≥ 0 and κ1 ≥ κ2 − 1/SU, the expression sxκ2
1+sxκ1

∈ [0, 1] and is

monotone increasing in sx. Thus, analysis can be simplified by assuming that κ1 = 0,

κ2 = 1 and cost functions are simply given by

Jxe (fe) = `e(fe) + sxfe`
′
e(fe), (6.28)

where sx ∈ [0, 1] for all x.

For convenience, we write `∗e(fe) , fe`
′
e(fe). When describing the cost experienced by

a particular agent whose sensitivity is s ∈ R+, we write

`se(fe) , `e(fe) + s`∗e(fe), (6.29)

and we write `mc
e (fe) , `1e(fe) to denote the marginal-cost function associated with edge e.

The following proposition gives important information about the structure of Nash flows

induced by T gmc.

Proposition 6.8 If fnf is a Nash flow on G ∈ Gsp for population s under the influence of

T gmc, the following facts hold for any two paths satisfying `i(0) ≤ `j(0), fnf
j > 0, and where

a user x is on pi and user y on pj:

1. `mc
i (fnf

i ) ≥ `mc
j (fnf

j )

2. sx ≤ sy.

When `i(0) < `j(0), inequality (1) is strict.

Proof: Order the paths so that `i(0) ≤ `i+1(0) for all i < n, and take two paths pi

and pi+1 such that fnf
i > 0 and fnf

i+1 > 0. Because this is a Nash flow, any agent y using

path pi+1 experiences a (weakly) lower cost than he would on path pi, or

`i(fi) + sy`
∗
i (fi) ≥ `i+1(fi+1) + sy`

∗
i+1(fi+1). (6.30)
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Any latency function can be uniquely decomposed into its 0-flow latency and its flow-varying

part in the following way:

`(f) = ˜̀(f) + `(0). (6.31)

It is always true that f ˜̀′
i(f) = f`′i(f), so (6.30) and `i+1(0)− `i(0) ≥ 0 imply that

sy
(
`∗i (fi)− `∗i+1(fi+1)

)
≥ ˜̀

i+1(fi+1)− ˜̀
i(fi). (6.32)

In the same Nash flow, consider some user x using path pi. For this user, a similar

argument shows that

sx
(
`∗i (fi)− `∗i+1(fi+1)

)
≤ ˜̀

i+1(fi+1)− ˜̀
i(fi). (6.33)

Combining (6.32) and (6.33) yields

0 ≤ (sy − sx)
(
`∗i (fi)− `∗i+1(fi+1)

)
, (6.34)

meaning that sy ≥ sx implies that `∗i (fi) ≥ `∗i+1(fi+1). That is, higher-sensitivity agents

use higher-index paths (paths with higher zero-flow latencies), proving item (2).

This means that for each pair of paths, if we define si as the number satisfying

`i(fi) + si`
∗
i (fi) = `i+1(fi+1) + si`

∗
i+1(fi+1), (6.35)

it will be the case that each si ≤ si+1 and that si ≤ 1. Finally, it follows from `∗i (fi) ≥

`∗i+1(fi+1) and (6.35) that for any si < 1, we have `i(fi) + `∗i (fi) > `i+1(fi+1) + `∗i+1(fi+1),

proving item (1).

The basic proof approach is to exploit this ordering of marginal costs, and show that

reducing agents’ sensitivities (thereby making the population “more homogeneous”) shifts

agents from low marginal-cost paths to high marginal-cost paths, increasing the total la-

tency. Formally, we define a mapping Σ : [0, 1]×S→ S. For any starting population s0 and
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any α, we will define Σ
(
α; s0

)
as a right-shift of s0 by α units. The sensitivity of user x in

population Σ(α, s0) is given by

Σ(α, s0)x =

 s0(0) if x ≤ α

s0(x− α) if x > α.
(6.36)

Because s is defined to be an increasing function, this is equivalent to converting a mass of

α of the most-sensitive users to a mass α of the least-sensitive users.

Proposition 6.8 allows us to assume without loss of generality that any user population

s has a finite number of sensitivity types; to see this, simply note that if users with distinct

sensitivities are using the same path in a Nash flow, one sensitivity may be exchanged for the

other without perturbing either agent’s preferences. To be precise, given a Nash flow fnf ,

we will assume for each path pi ∈ P \p1, each user has the minimally-indifferent sensitivity

which satisfies (6.35).

For notational brevity, we will typically write fnf(α) to represent fnf(Σ(α; s0)). Our

central goal will be to characterize the effect of marginal increases in α on the Nash flow.

We express this marginal effect as ∂
∂αf

nf(α).

The following definition will be helpful in the proof:

Definition 6.1 In a Nash flow fnf , paths pi and pj with i < j are said to be strategically

coupled if si satisfies `sii (fnf
i ) = `sij (fnf

j ). That is, agents on the lower-order path are

indifferent between the two paths. We write Pi(fnf) to denote the set of paths that are

strategically coupled to path pi in fnf .4

First, we show that the primary effect of an increase in α is to shift traffic from Pn to

P1.

Proposition 6.9 For every path pi ∈ P1, ∂
∂αf

nf
i (α) ≥ 0. For every path pj ∈ Pn,

∂
∂αf

nf
j (α) ≤ 0.

4When clear from context, we write Pi(fnf) simply as Pi.
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Proof: Let s1 denote the sensitivity of agents using p1 in fnf . Increasing α changes

the sensitivity of a small fraction of high-sensitivity users to s1. By Definition 6.1 and

Proposition 6.8, these users strictly prefer the paths in P1 to any other paths, so a marginal

increase in α induces a marginal increase in flow on P1. That is, at least one path in pi ∈ P1

has ∂
∂αf

nf
i (α) > 0. An implication of Proposition 6.8 is that all paths in P1 have strictly

flow-varying cost functions, so an increase on flow on pi induces an increase in flow on all

paths in P1, proving the first statement.

Next, let sn denote the sensitivity of agents using pn in fnf ; Definition 6.1 and Proposi-

tion 6.8 shows that these agents weakly prefer Pn. Increasing α shifts some of these users to

P1, so at least one path in pi ∈ Pn has ∂
∂αf

nf
i (α) < 0. If Pn contains a path with a constant

latency function, then this is the path which the flow leaves; otherwise, the flow would

deviate to a non-Nash flow. On the other hand, if all paths in Pn are strictly flow-varying,

then every path flow in Pn must decrease, proving the second statement.

Proposition 6.10 For any α, if pj /∈ P1(α) and pj /∈ Pn(α), it holds that ∂
∂αf

nf
j (α) = 0.

Proof: First, let pi be the lowest-index path such that pi /∈ P1 (that is, pi−1 ∈ P1).

Definition 6.1 means that for any pj ∈ P1, `
sj
j (fj) < `

sj
i (fi). Since the inequality is strict,

the fact from Proposition 6.9 that ∂
∂αf

nf
j (α) ≥ 0 means that marginally no agent on P1 will

switch to pi.

However, since fnf(α) is a Nash flow, it is true that `sij (fj) ≥ `sii (fi). Here, ∂
∂αf

nf
j (α) ≥ 0

implies that `sij (fj) can only increase, so no agent on pi will be incentivized to switch to any

path in P1. Thus, the flow on pi is not influenced by the changes in flow on any lower-index

path; if its flow changes, the influence must come from a higher-index path.

Now, let pi be the highest-index path such that pi /∈ Pn (that is, pi+1 ∈ Pn). Defini-

tion 6.1 means that for any pj ∈ Pn, `sii (fi) < `sij (fj). Since the inequality is strict, the fact

that ∂
∂αf

nf
j (α) ≤ 0 means that (marginally) no agent on pi will be incentivized to switch to

any path in Pn. However, since fnf(α) is a Nash flow, it is true that `
sj
j (fj) ≤ `

sj
i (fi). Here,
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∂
∂αf

nf
j (α) ≤ 0 implies that `

sj
j (fj) can only decrease, so no agent on any path in Pn will be

incentivized to switch to pi. Thus, the flow on pi is not influenced by the changes in flow

on any higher-index path.

This argument may then be repeated with all remaining paths that are not in P1 or Pn

to show that the only path flows that may change in response to α are those in P1 and Pn,

obtaining the proof of the proposition.

Proof of Lemma 6.7.1: We can now quantify the effect of an increase in α on total latency.

In the following, ∇fL(f) represents the gradient vector of L with respect to flow f given

by {`mc
p }p∈P , which by Proposition 6.8 is ordered descending. Let pj be the highest-index

path in P1, and pk be the lowest-index path in Pn:

∂

∂α
L
(
fnf(α)

)
= ∇fL

(
fnf(α)

)
· ∂
∂α

fnf(α)

=
∑

i∈Pi∪Pn

`mc
i

(
fnf
i (α)

) ∂

∂α
fnf
i (α)

≥
[
`mc
j

(
fnf
j (α)

)
− `mc

k

(
fnf
k (α)

)]
≥ 0.

Since at every Nash flow fnf(α) it is true that ∂
∂αL

(
fnf(α)

)
≥ 0, the definition of

Σ (α, s0) implies that for any initial sensitivity distribution s0,

L
(
fnf (Σ (1, s0))

)
≥ L

(
fnf (Σ (0, s0))

)
, (6.37)

or that Lnf
(
G, sL, T gmc

)
≥ Lnf (G, s, T gmc) .

Proof of Theorem 6.2

Let G ∈ Gp be a parallel network, s be any arbitrary sensitivity distribution, sL be a

homogeneous population in which all users have sensitivity SL, and let taxation mechanism

T gmc satisfy (6.7). Lemma 6.7.1 ensures that
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Lnf
(
G, sL, T gmc

)
≥ Lnf (G, s, T gmc) . (6.38)

Let s0 denote a totally-insensitive homogeneous population; that is, all agents have

sensitivity 0. Note that s0 is itself a low-sensitivity homogeneous population and that s is

a population in which all users have sensitivity no less than 0; thus, we may simply apply

Lemma 6.7.1 a second time to obtain

Lnf
(
G, s0, T gmc

)
≥ Lnf

(
G, sL, T gmc

)
. (6.39)

The left-hand side of (6.39) is simply the un-tolled total latency on G, so combining in-

equalitites (6.38) and (6.39), we obtain

Lnf(G, ∅) ≥ Lnf (G, s, T gmc) . (6.40)

Since G and s were arbitrary, this implies that T gmc has perversity index of 1 on Gp.

Proof of Theorem 6.3: Let β(s, (κ1, κ2)) := κ2s
1+κ1s

. The constraints on κ1, κ2 specified in

Theorem 6.2 imply that for all s ∈ [SL, SU], β(s, (κ1, κ2)) ∈ [0, 1]. Lemma 6.7.1 implies

that on any G ∈ Gsp, worst-case routing is achieved by a homogeneous population with

s = SL. Thus, the price of anarchy for heterogeneous populations is equal to that given by

Lemma 6.4.1 for β ≤ 1, proving the theorem.

Proof of Lemma 6.5.1: Let β(s) := κ2s
1+κ1s

. It is a consequence of Lemma 6.7.1 that the

perversity index can never be greater than 1 due to a population with β(s) ≤ 1. When

β(s) > 1, note that it is increasing in s whenever κ2 > 0 and κ1 > −1/SU; this implies that

the price of anarchy due to a population with β(s) > 1 is achieved by one with s = SU. The

lemma is proved if it can be shown that there is a perverse flow for this population whose

perversity equals the corresponding price of anarchy. Accordingly, let β := κ2SU
1+κ1SU

> 1.

Consider the network in Figure 6.4(c) with r = 1 and α = (β(1+d))d

(1+dβ)d+1 ; this network is

borrowed from [80]. The optimal and uninfluenced Nash flow on this network has f1 = 1,
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but the tolled Nash flow for a population with sensitivity SU has a vastly increased total

latency which achieves the β > 1 PoA bound given in (6.12). Thus, the Lemma is proved.
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Chapter 7

Discriminatory Pricing

As Chapters 2–6 have made clear, uninfluenced social systems can exhibit quite poor behav-

ior, and incentive mechanisms to mitigate this are often nontrivial. Every pricing mechanism

considered thus far has charged every agent on each edge the same price. It is almost trivial

to see that a tax-designer with the ability to charge each agent an individualized price could

apply an individualized marginal-cost pricing scheme and and inherit the optimality given

by [42] while avoiding the unbounded tolls of Chapter 5 and the perversity of Chapter 6.

Something like this individualized pricing approach is discussed in [32]. The goal of this

chapter is to investigate the performance of discriminatory pricing schemes along these lines.

It is well-known that a monopolist can maximize profits with “first-degree” (also called

“perfect”) price-discrimination, in which prices are individualized for every customer [82],

provided that goods cannot be re-sold. Another commonly-studied form of price-discrimination

is often termed “second-degree” price discrimination or nonlinear pricing; here, different

prices are charged for different quantities of a good or service [83], essentially inducing cus-

tomers to partition themselves into different sensitivity classes. If a seller lacks direct access

to customers’ sensitivities, it may still be possible to indirectly disaggregate the customer

population: senior, student, and corporate discounts are common means to this end [82].

This chapter is adapted, with permission, from [81], which was previously published in the proceedings
of the 2016 American Control Conference. © 2016 IEEE
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Even in cases such as public utility pricing in which certain kinds of discriminatory pric-

ing are prohibited by law, price-discrimination via volume discounts (known as “nonlinear”

pricing) is a common practice [84]. Price discrimination has also been studied in the context

of cloud computing [85] and the provision of network services [86].

In this chapter, we study a coarse version of first-degree discrimination, under the as-

sumption that perfect price-discrimination is likely to be impractical in a real-world setting.

Here, we partition the users into a small number of groups or “bins” on the basis of their

price-sensitivity and charge a single price to members of each bin. It seems natural to

assume that even coarse price-discrimination could improve the efficiency guarantees, since

each agent would be charged a price that is close to the “correct” price for his particular

price-sensitivity. We assume that the designer has no distributional information about users

within each bin (similar to an approach outlined in [87]), but that each user is correctly

categorized, however coarsely.

First, Theorem 7.1 demonstrates that network flows can be made arbitrarily close to

optimal flows by binning users sufficiently finely. This validates the intuitive concept that

if we charge each user an individualized price, we can enforce any network flow.

However, Theorem 7.1 gives no hint as to how many bins are required to achieve a par-

ticular efficiency target; accordingly, Theorem 7.2 shows a fundamental equivalence between

discriminatory pricing and the tax-designer’s uncertainty regarding the user population’s

price-sensitivity. Here, we show that discriminatory pricing on a poorly-characterized pop-

ulation is essentially identical to simple pricing on a well-characterized population.

Finally, Theorem 7.3 considers the class of affine-cost, parallel-network routing games

and provides a methodology for deriving the optimal binning and bin taxes for any number

of bins. We also prove bounds on the inefficiencies resulting from this congestion-minimizing

binning.
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7.0.1 Price Discrimination Model

Our proposed price-discrimination model is comprised of two components: a collection of

bins represented by a partition of the interval [SL, SU] into m sub-intervals, and a collection

of taxation functions for each group.

The collection of bin boundaries is written {βi}mi=0, β0 = SL, βm = SU, with βi <

βi+1 ∀ i < m. For each edge e, all users in bin i (that is, all users whose sensitivities lie

in the interval [βi−1, βi]) are charged a taxation function τ ie(fe), yielding for each edge e

a collection of m distinct taxation functions {τ ie}mi=1. To make general statements about

binnings as functions of m, we write B to represent a function that maps each m ∈ N to a

particular partition {βi}mi=0 and taxation functions
{
{τ ie}e∈E

}m
i=1

, and write Bm to denote

a binning for a specific value of m. Occasionally, we use the notation B1 to denote a trivial

“binning” in which all users are charged the same price.

The social behavior resulting from an m-binning is modeled as a Nash flow, or a flow f

in which for all users x, where x belongs to commodity c ∈ C and bin i, we have

Jx(f) = min
p∈Pc

{∑
e∈p

[
`e(fe) + scxτ

i
e(fe)

]}
. (7.1)

It is well-known that a Nash flow exists for any non-atomic game of the above form [54].

For a given routing problem G ∈ G, we gauge the efficacy of a binning Bm by comparing

the total latency of the resulting Nash flow and the total latency associated with the optimal

flow, and then performing a worst-case analysis over all possible sensitivity distributions.

Let L∗(G) denote the total latency associated with the optimal flow, and Lnf(G, s,Bm)

denote the total latency of the Nash flow resulting from binning Bm and user population s.

The worst-case efficiency loss associated with this specific instance is captured by the price

of anarchy which takes the general form

PoA(G,SL, SU, B
m) = sup

s∈SG

{
Lnf (G, s,Bm)

L∗(G)

}
≥ 1. (7.2)
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7.1 Universal Discriminatory Pricing

As discussed in the previous section, the state of the art gives us no obvious way to

enforce optimal flows without either significant quantities of information or excessively-

high tolls. In this paper, we show that price-discrimination may provide a third way. We

begin with our most general result, in which we present a family of binnings which enforce

arbitrarily-optimal flows for any routing problem. This optimality is asymptotic in the

number of bins, which implies that it is always possible to enforce Nash flows within ε of

optimal with a finite number of bins.

Theorem 7.1 Define B as the family of binnings whose bin sizes shrink to 0 as m ap-

proaches infinity; for any Bm ∈ B,1

lim
m→∞

(
βmi − βmi−1

)
= 0, (7.3)

and the bin taxation functions of Bm ∈ B satisfy the following: for each bin i choose any

κmi ∈
[

1
βmi
, 1
βmi−1

]
and let edge tolls be given by

τ ie (fe) = κmi fe ·
d

dfe
`e(fe). (7.4)

Then for any G ∈ G and any binning Bm ∈ B,

lim
m→∞

PoA (G,SL, SU, B
m) = 1 (7.5)

and for all m, all tolling functions are bounded by maxe `
′
e(1)/SL.

Note that Bm need not depend on information about user sensitivity distributions or

demands, and may be completely topology-independent.

1For the sake of precision, in this theorem we make explicit the dependence of each bin boundary on m
by writing βmi .
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Proof: For each m ∈ N, let binning Bm be defined with bin boundaries according

to (7.3) and bin tolls according to (7.4), so that Bm ∈ B. For any routing problem G ∈ G

and price-sensitivities s ∈ S, let fm =
(
fmp
)
p∈P denote the Nash flow resulting from the

binning Bm. For each commodity c, let Pmc ⊆ Pc denote the set of paths that have positive

flow in fm. For any p ∈ Pmc , there must be some user x ∈ [0, rc] using p; suppose this user

has sensitivity scx ∈
[
βmi−1, β

m
i

]
, then the cost experienced by this user is given by

Jx (fm) =
∑
e∈p

[
`e(fe) + scxκ

m
i fe ·

d

dfe
`e(fe)

]
.

Write `∗e(fe) = fe · ddfe `e(fe); then for any other path p′ ∈ Pc \ p, user x must experience

a lower cost on p than on p′, or

∑
e∈p

`e(fe)−
∑
e∈p′

`e(fe) ≤ scxκmi

∑
e∈p′

`∗e(fe)−
∑
e∈p

`∗e(fe)

. (7.6)

Therefore, for any m ≥ 1, fm must satisfy some set of inequalities defined by (7.6). By

definition,

βmi−1/β
m
i ≤ scxκmi ≤ βmi /βmi−1,

so (7.3) implies that limm→∞ s
c
xκ

m
i = 1. Thus, because all functions in (7.6) are continuous,

fm converges to a set F ∗ of feasible flows that satisfy

∑
e∈p

`e(fe)−
∑
e∈p′

`e(fe) ≤

∑
e∈p′

`∗e(fe)−
∑
e∈p

`∗e(fe)

 (7.7)

for all c, all p ∈ P∗c , and p′ ∈ Pc, where P∗c ⊆ Pc is some subset of paths. As in the proof

of Theorem 5.1 in Chapter 5, any flow satisfying (7.7) must be optimal, which along with

the continuity of L concludes the proof.
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7.2 General Effect of Discriminatory Pricing

Theorem 7.1 showed that we can enforce low-congestion routing using price discrimi-

nation, but it gave no hint as to how many bins are needed or how the price of anarchy

evolves as a function of m. This is the purview of Theorem 7.2, in which we show that

there is a general equivalence between fine discrimination and well-characterized sensitivity

distributions. Here, we show that the price of anarchy resulting from discriminatory pricing

for a poorly-characterized population is no worse than the price of anarchy resulting from

non-discriminatory pricing for a well-characterized population.

Theorem 7.2 Suppose for routing problem G that some taxation mechanism T (SL, SU) is

known to have price of anarchy PoA (G,SL, SU). For any S′L > 0, let S′U = S′L (SU/SL)1/m,

and define the bin boundaries of Bm by

βi = S
m−i
m

L S
i
m
U . (7.8)

Then if the bin taxes of Bm are given by Ti = S′L/βi−1 · T (S′L, S
′
U), the following holds:

PoA (G,SL, SU, B
m) ≤ PoA

(
G,S′L, S

′
L

(
SU

SL

)1/m

, B1

)
. (7.9)

In particular, we wish to point out two important facts regarding Theorem 7.2. First,

it is natural to evaluate the uncertainty of our user-sensitivity estimate by the sensitivity

ratio SU/SL: the higher the ratio, the less certainty we possess. Theorem 7.2 shows us that

m-binning reduces the effective sensitivity ratio to (SU/SL)1/m. Thus, by applying price

discrimination, we can dramatically reduce our uncertainty regarding the price-sensitivity

of network users.

Second, note that the guarantees of Theorem 7.2 are independent of the specific taxation

mechanism used; thus, this result can be used as a design tool to take any off-the-shelf
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taxation mechanism and apply it to a discriminatory setting.

However, it is important to understand that the price of anarchy provided by Theo-

rem 7.2 need not be optimal in any sense. If a binning is designed more precisely with a

particular taxation methodology in mind, it may be possible to guarantee even better net-

work efficiencies. This is the focus of Theorem 7.3, in which we look at a restricted class of

routing problems and taxation mechanisms and derive the optimal binning in that specific

setting.

Proof: Consider routing problem G and population s; design bin boundaries and

charge taxes according to the theorem statement. Note that for every i, (7.8) implies that

βi
βi−1

=
S′U
S′L

=

(
SU

SU

)1/m

; (7.10)

that is, each bin has the same “width” as the entire emulated population s′ ∈ [S′L, S
′
U].

Consider the cost experienced on any edge e by some agent x who happens to belong to bin

i:

Jx(f) = `e(fe) + κisxτe(fe). (7.11)

Inserting the definition of κi in the above, we obtain

Jx(f) = `e(fe) +
sxS

′
L

βi−1
τe(fe). (7.12)

But sx ∈ [βi−1, βi] implies that

`e(fe) + S′Lτe(fe) ≤ Jx(f) ≤ `e(fe) + S′Uτe(fe), (7.13)

or that agent x sees the exact same cost as he would if he were a member of population

s′. Since this is true of every agent for every edge in every bin, it must be true that every

Nash flow resulting from these binned tolls corresponds exactly to a Nash flow resulting

from the nominal tolls {τ} and some sensitivity distribution in [S′L, S
′
U]. In particular, no
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binned Nash flow can have higher total latency than the worst-case flows for populations in

[S′L, S
′
U]. Since S′U/S

′
L = (SU/SL)1/m, the theorem conclusion follows.

7.3 Optimal Binning for Simple Routing Problems

The principles proved in Theorem 7.2 are compelling, but in general may not result in

optimal binning. That is, when investigating a restricted class of games, it may often be

the case that we can design pricing that significantly outperforms the pricing described by

Theorem 7.2.

In this section, we restrict attention to the class of parallel-network, affine-cost routing

games. For the following results, let Gp ⊆ G represent the class of all single-commodity,

parallel-link routing problems with affine latency functions. That is, for all e ∈ Gp, the

latency function satisfies

`e(fe) = aefe + be (7.14)

where ae and be are non-negative edge-specific constants. “Single-commodity” implies that

all traffic has access to all network edges. Furthermore, we assume that every edge has

positive flow in an un-tolled Nash flow. As in previous work in this dissertation, we study

network-agnostic tolls here. Chapter 5 proved that affine tolls suffice to minimize the price

of anarchy for affine congestion games; accordingly, in this chapter we limit our search to

affine taxation mechanisms.

Definition 7.1 The Bounded Affine Taxation Mechanism assigns tolls of

τe(fe) = κ1aefe + κ2be, (7.15)

where ae and be are the latency function coefficients in (7.14) and κ1 ≤ κmax and κ2 ≤ κmax

are non-negative edge-independent constants upper-bounded by some κmax ≥ 0.

Now, in Theorem 7.3, we show how to compute optimal bin boundaries and affine
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Optimization Problem (P)

Max
{βi}mi=1

γL

s.t. γL ≤
κmax + 1/βi
κmax + 1/βi−1

∀i ∈ {1, . . . ,m} (7.19)

βi−1 ≤ βi ∀i ∈ {1, . . . ,m}
β0 = SL

βm = SU

β1 ≥
1

κ2
maxSL

. (7.20)

Figure 7.1: As proved in Theorem 7.3, the solutions {βi}mi=1 to this optimization problem
are congestion-minimizing bin boundaries for any routing problem.

taxation function coefficients that minimize congestion for any κmax. Furthermore, we derive

an upper bound for the price of anarchy that is independent of the number of network links

and holds for any SU.

Theorem 7.3 For any G ∈ Gp, for any set of bin boundaries {βi}mi=1, the optimal bounded

affine tolling coefficients are given by

κi1 = κmax (7.16)

κi2 = max

{
0,

(
κi1
)2
βi−1βi− 1

βi−1 + βi + 2
(
κi1
)
βi−1βi

}
. (7.17)

Furthermore, the congestion-minimizing bin boundaries {βi}mi=1 can be found by solving

Optimization Problem (P) (see Figure 7.1). Let λ = κmaxSL
1+κmaxSL

. If κmax ≤ 1/SL, let µ =

SLκmax; otherwise, let µ = 1. Then for all SU ∈ [SL,∞] and this binning Bm,

PoA(Gp, SL, SU, B
m) ≤ 4

3

(
1− min{λ1/m, µ}(

1 + min{λ1/m, µ}
)2
)
. (7.18)

A few words are in order regarding the price of anarchy bound in (7.18): First, this

bound is tight for cases when SU =∞; i.e., there is no upper bound on the price-sensitivities
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of the agents. When SU is finite, the tools of Lemmas 7.3.1 and 7.3.2 can be used to

determine an exact price of anarchy once the optimal bin boundaries have been derived.

We are not aware of a convenient closed-form expression for the exact price of anarchy

for finite SU, but in Figure 7.3 we show that even for relatively low values of SU, the gap

between the finite-SU and infinite-SU prices of anarchy is not large.

Second, since we are dealing with bounded tolls, whenever κmax < 1/SL, it is not

possible to guarantee perfectly-optimal network flows, even for arbitrarily-high m. This

is because when κmax is too low, a homogeneous sensitivity distribution with sx ≡ SL

cannot be effectively influenced, and after a point, finer binning cannot remedy this. This

is captured in the theorem statement by the parameter µ, which prevents extremely-fine

binning from improving the price of anarchy when κmax is too low.

See Figure 7.2 for a depiction of the congestion-minimizing bin boundaries for several

values of m. In Figure 7.3, we depict the price of anarchy as a function of m, contrasting

the guarantees provided by Theorems 7.2 and 7.3.

As a first step towards proving Theorem 7.3, we introduce Lemma 7.3.1, in which we

present a powerful tool with which we can analyze the price of anarchy of parallel affine

congestion games under various types of tolls.

Lemma 7.3.1 Suppose that there exists a function γ : [0, 1] → [γL, γU ] with 0 ≤ γL ≤ 1

and γU ≤ 1/γL such that in every G ∈ Gp, the cost function of user x on edge e is given by

Jex(fe) = (1 + γ(x)) aefe + be. (7.21)

Then the price of anarchy of Gp is tightly upper-bounded by

PoA(Gp) ≤ 4

3

(
1− γL

(1 + γL)2

)
. (7.22)

Proof: The simplest proof of this relates (7.21) to the analysis of scaled marginal-cost
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Figure 7.2: Optimal bin boundary locations computed by Optimization Problem (P) for
m ∈ {1, . . . , 10}, with κmax = SL = 1 and SU = 10. These correspond exactly to the price
of anarchy plot shown in Figure 7.3.

tolls presented in Chapter 4. There, in Lemma 4.2.2, we show that for κ ≤ 1/
√
SLSU, of

all the Nash flows induced by edge tolls τe(fe) = κaefe, the worst congestion always occurs

for a homogeneous population in which all users’ sensitivities are equal to SL. To prove

Lemma 7.3.1, we shall compute a virtual sensitivity distribution sv and tolling coefficient

κv which will induce Nash flows that precisely mimic the behavior of Nash flows induced

by γ (that is, Nash flows for cost functions (7.21)).

Given the γ function of the statement of Lemma 7.3.1, let κv = 1, and let svx = γ(x) for

all x ∈ [0, 1]. By this definition, any Nash flow induced by γ has a corresponding marginal-

cost-tolled Nash flow induced by a sensitivity distribution given by sv; we can accordingly

use marginal-cost toll arguments to argue about γ-induced Nash flows. The upper and

lower bounds of our virtual sensitivity distribution are thus given by SvL = γL and SvU = γU ,

respectively. By the properties of γL and γU , it is always true that κv ≤ 1/
√
SvLS

v
U, so the

congestion-maximal Nash flows occur for a virtual homogeneous population with all users’

sensitivities equal to SvL.

This implies that a Nash flow with all cost functions equal to Jex(fe) = (1 + γL) aefe+be

will have higher total congestion than a Nash flow induced by γ, and we can use techniques
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from Chapter 4 (namely, Lemma 4.2.3) to derive (7.22). The tightness of the bound in (7.22)

is due to the constructive nature of the proof of Lemma 4.2.3.

Next, in Lemma 7.3.2, for any arbitrary bin boundaries, we derive specific tolling coef-

ficients which should be charged in each bin.

Lemma 7.3.2 For any G ∈ Gp, for any bin boundaries {βi}, the optimal tolling coefficients

can be obtained for each bin i by choosing

κi1 = κmax (7.23)

κi2 = max

{
0,

(
κi1
)2
βi−1βi− 1

βi−1 + βi + 2
(
κi1
)
βi−1βi

}
. (7.24)

With these coefficients, in the language of Lemma 7.3.1, it holds that

γL = min
i

{
min

{
βi−1κmax,

κmax + 1/βi
κmax + 1/βi−1

}}
. (7.25)

Proof: Since uniform scaling by a constant factor does not change underlying Nash

flows, we can say without loss of generality that the effective cost to agent x ∈ [βi−1, βi] in

bin i for edge e is given by

Jx(fe) =
1 + κi1sx
1 + κi2sx

aefe + be, (7.26)

and when κi1 ≥ κi2, it is evident that2

1 + κi1βi−1

1 + κi2βi−1
aefe + be ≤ Jx(fe) ≤

1 + κi1βi
1 + κi2βi

aefe + be. (7.27)

For each i, for each x ∈ [βi−1, βi], define γ(x) , sx(κi1−κi2)

1+κi2sx
. Then any agent x ∈ [0, 1] has

2In Chapter 5, it is shown that assuming κi1 ≥ κi2 is without loss of generality.
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Figure 7.3: Comparison between the price of anarchy resulting from the generic price-dis-
crimination approach of Therorem 7.2 (dashed line), the specific congestion-minimizing
price-discrimination approach of Theorem 7.3 (solid line), and the general upper-bound
given in Theorem 7.3 (dash-dot line). For the first two curves, we apply affine tolls to the
class of parallel-network, affine-cost congestion games, with κmax = SL = 1 and SU = 10.
The dash-dot line represents the general upper-bound proved in Theorem 7.3 that holds
for this value of κmax and SL, and any SU. Note how close this upper bound is to the
instance-specific solid line for m > 1.

the following cost for edge e:

Jex(fe) = (1 + γ(x)) aefe + be, (7.28)

just as in (7.21). It is evident that in accordance with the assumptions of Lemma 7.3.1 we

have

γ(x) ≥ γL , min
i
{βi−1(κi1 − κi2)/(1 + κi2βi−1)} and

γ(x) ≤ γU , max
i
{βi(κi1 − κi2)/(1 + κi2βi)} (7.29)

Equation (7.22) in Lemma 7.3.1 shows that we minimize the price of anarchy by maxi-

mizing γL, subject to γL ≤ 1/γU.

First, assume we are given a fixed, arbitrary feasible set of bin boundaries {βi}, a
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nonnegative value of κi1 for each bin, and that κi2 can take any real value. Because the

problem is otherwise unconstrained, the constraint γL ≤ 1/γU will bind, or γL = 1/γU.

Suppose γL is maximal with respect to the relevant constraints, and that bin i is the source

of γL; i.e.,

γL =
βi−1(κi1 − κi2)

1 + κi2βi−1
. (7.30)

Simultaneously, κi2 must satisfy the following (the only other constraint on κi2):

βi(κ
i
1 − κi2)

1 + κi2βi
≥ γU. (7.31)

It is clear that γL is decreasing in κi2; if γL is indeed optimal, κi2 must be binding the

constraint in (7.31). Thus, a single bin generates both γL and γU, and since γL = 1/γU, we

have that

βi−1(κi1 − κi2)

1 + κi2βi−1
=
βi(κ

i
1 − κi2)

1 + κi2βi
, (7.32)

which implies that

κi2 =

(
κi1
)2
βi−1βi− 1

βi−1 + βi + 2
(
κi1
)
βi−1βi

(7.33)

Now, if we re-introduce the constraint that κi2 ≥ 0, we find that it may no longer be

possible to satisfy (7.33), but that since γL is decreasing in some κi2, simply saturating κi2

at 0 still yields a maximal γL while respecting γL ≤ 1/γU. Thus, for any binning, choosing

κi2 according to (7.24) is sufficient to ensure an optimal price of anarchy.

Finally, with (7.24), it is simple to show that γL is nondecreasing in each of the κi1

coefficients, so letting κi1 = κmax suffices to minimize the price of anarchy.

Proof of Theorem 7.3

First, note that Optimization Problem (P) is largely a re-statement of Lemmas 7.3.1

and 7.3.2, with the sole exception of constraint (7.20). By the definition of γL in Lemma 7.3.1,

it is clear why we desire to maximize γL. By the fact regarding γL in Lemma 7.3.2, it is
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clear that any optimal binning will satisfy constraint (7.19).

The only curious element of the optimization problem is constraint (7.20), which we show

here does not reduce the optimality of the solutions, even when the constraint is active. This

constraint plays a role in cases when κmax is small, and avoids the non-smoothness of κi2

in (7.24) and γL in (7.25). Let {β∗i } be an optimal solution to the optimization problem

in which constraint (7.20) binds. Then β∗1 = 1/(κ2
maxSL), or κmax = 1/

√
SLβ∗1 . Note that

at this point, according to (7.24), κ1
2 = 0, and this is the precise breakpoint at which the

expression for κ1
2 “switches over” from 0 to the non-constant function of κmax. Thus, the

first effect of constraint (7.20) is that it ensures that κ1
2 will always be a smooth function

of the bin boundaries.

Second, considering (7.25), note that β1 = 1/(κ2
maxSL) is also the precise breakpoint

at which γL “switches over” from βi−1κmax to (κmax + 1/βi)/(κmax + 1/βi−1). Thus, the

second effect of constraint (7.20) is that it ensures that γL itself will always be a consistent

function of the bin boundaries.

To see that including (7.20) does not reduce the optimality of solutions, note that if it

were true that β∗1 < 1/(κ2
maxSL), it would also necessarily be true that the price of anarchy

would simply be determined by γL = SLκmax. Thus, β1 has no impact on the price of

anarchy until it reaches the 1/(κ2
maxSL) threshold.

The essential uniqueness of the solution of (P) follows from the fact that the only way

to increase γL is to raise the lower-boundary of some bin, which simultaneously raises the

upper-boundary of the next-lower bin, serving to decrease γL. If (7.20) is active at an

optimizer of (P), {βi}mi=2 are not unique, but all optimizers yield the same price of anarchy.

To show the price of anarchy bound, first note that for a fixed m and SL, the price

of anarchy will always be increasing in SU, since this represents increasing the sensitivity-

uncertainty of our population. Our arguments thus involve investigating the limiting price

of anarchy as SU →∞.

First, suppose that κmax < 1/SL, so that for some binnings we activate constraint (7.20).
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When (7.20) is active, the price of anarchy is determined only by the lowest-index bin; in

the language of Lemma 7.3.1, γL = SLκmax. This can be considered a worst-case situation,

so we include it in the price of anarchy expression (7.18) via the µ argument.

However, even when κmax < 1/SL, it is possible that constraint (7.20) will not be active,

so we must consider the case when constraint (7.19) is active. In this case, each bin has the

same “width,” or for i = (m− 1), it is true that

γL =
κmax + 1/βm−1

κmax + 1/βm−2
=

κmax + 1/SU

κmax + 1/βm−1
.

In general, closed-form expressions for bin boundaries resulting from this are quite compli-

cated, but considering a high-SU case can simplify things considerably:

lim
SU→∞

γL =
κmax + 1/βm−1

κmax + 1/βm−2
=

κmax

κmax + 1/βm−1
. (7.34)

Since the above is true for any m > 1, we can use it to inductively deduce the structure

of an optimal binning for any positive SL and infinite SU. First, letting m = 2, fixing β1

implies the following unique value for SL:

SL = κmax/
(
(κmax + 1/β1)2 − κ2

max

)
.

Inductively, it can be shown that for arbitrary m and fixed βm−1, the unique implied value

of SL is given by

SL = κm−1
max / ((κmax + 1/βm−1)m − κmmax) .

Solving this for βm−1, we have that for any SL, κmax, m, and infinite SU,

βm−1 =

(
κmax

[(
1 + κmaxSL

κmaxSL

)1/m

− 1

])−1

. (7.35)

This βm−1 represents the highest bin boundary in an optimal binning for an infinite-SU

population. To compute the corresponding γ∞L , we can simply substitute (7.35) into (7.34)
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and simplify:

γ∞L =

(
κmaxSL

1 + κmaxSL

)1/m

, (7.36)

the source of λ in the theorem statement. Any finite SU will yield a better price of anarchy

than an infinite one, so for any game, γL ≥ min{κmaxSL, γ
∞
L }, so by Lemma 7.3.1 the

expression (7.18) is valid for any SU.
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Game Theory for Distributed

Control
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Chapter 8

Informational Fragility in

Distributed Learning

In recent years, game theory has received considerable attention as an overarching frame-

work for the study of multi-agent engineered systems such as distributed power generators

or swarms of autonomous vehicles [4]. A central line of reasoning in this setting involves

posing the problem of interest as a distributed optimization problem, computing appro-

priate utility functions for agents, endowing agents with a simple learning rule, and then

appealing to results in game-theoretic learning to prove that the applied learning rule causes

system-optimal states to emerge [4,22,52,88]. As an example, the associated game may be

designed to be a potential game whose potential function is exactly the main optimization

objective, and thus the system-optimal states are potential-maximizing Nash equilibria of

the associated game [89]. When this is the case, many results from the literature on learning

in games suggest that there exist learning rules which allow the agents to solve the original

problem in a distributed fashion [90–94].

This line of reasoning typically relies on an implicit assumption that the agents have

a full specification of their utility functions and can accurately observe the action choices
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of other agents [49–51].1 As a simple example, for an agent to apply a best-response rule,

the agent must have some means of determining which of her actions maximize her utility

function given the actions of other agents – implicitly requiring that she has sufficient

information about other agents’ actions to do so. In practice, this requirement may not

always be met; how should an agent react on-the-fly to an unexpected loss of information

about other agents’ actions? In this chapter, we ask a question of robustness: if an agent

cannot observe some other (relatively) unimportant agent’s action, is there a way to endow

that agent with a simple adaptation policy such that the learning dynamics would still

converge to (or close to) the nominal system optimum?

To illustrate these concepts concretely, we present the following 3-player, 2-action game,

for some small δ > 0. Note that “players” and “agents” are used interchangeably.

Player 2 Player 2

A B A B

Player 1
A 1− δ, 1 0, 0 A 0, 2δ 2δ, 0

B δ, 0 1, 0 B 3δ, δ δ, 2δ

Player 3 A B

The rows indicate the action choices available to Player 1, the columns indicate the

action choices available to Player 2, and Player 3 selects between the left and right matrices.

Let Player 2 and Player 3 have identical utility functions, so each cell in the matrices depicts

the payoffs for Player 1 and Player 2/3, respectively as a function of joint action choices.

The optimal action profile (measured by the sum of the players’ payoffs) is the upper-

left, and all best-response paths lead to this unique Nash equilibrium.2 If Player 1 does not

know the action of Player 2 (and also does not know Player 2’s utility function), how should

1An alternative approach involves the so-called “payoff-based” learning rules; here, explicit communica-
tion between agents or observation of actions is avoided by the assumption that each agent merely realizes
the output of its utility function as a payoff, and attempts to play actions which are historically correlated
with high payoffs. However, these payoffs are still functions of the actions of other agents [95,96].

2A best-response path is a sequence of unilateral payoff-maximizing action updates by players, formally
defined in Section 8.3.3; a Nash equilibrium is a joint action profile from which no agent can unilaterally
deviate and improve payoff, defined in (8.1).
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Player 1 evaluate her own action choices? In this chapter we assume that Player 1 knows

what payoffs she could receive for any action choice by Player 2; for example, If Player 1

and Player 3 are both playing A, Player 1 knows that her payoff is either 1− δ or 0. Given

this information, Player 1 needs to assign a “proxy payoff” to this situation as a function

of the payoffs she could be receiving; we call such a policy for computing proxy payoffs an

evaluator, formally defined in Definition 8.1 (Section 9.1). One simple evaluator is to choose

the maximum payoff from each row, yielding this effective payoff matrix:

Player 2 Player 2

A B A B

Player 1
A 1− δ, 1 1− δ, 0 A 2δ, 2δ 2δ, 0

B 1, 0 1, 0 B 3δ, δ 3δ, 2δ

Player 3 A B

Note that Player 2 and Player 3’s payoffs are unchanged, but Player 1’s experienced

payoffs are now independent of Player 2’s action. In this modified game, Player 1 now

always prefers action B over action A, and this causes all best-response paths to lead to

the inefficient lower-right action profile. Furthermore, note that this conclusion stands for

many different evaluators chosen by Player 1: if she had chosen the minimum payoff in each

row rather than the maximum, the result is unchanged – and the same holds for mean and

sum.

However, it appears clear from the nominal payoffs that Player 2 was important to

Player 1’s decision-making, and this made it impossible for Player 1 to compute helpful

proxy payoffs when information about Player 2 was lost. Indeed, the communication fail-

ure amounted to a large, essentially-arbitrary perturbation of the payoff matrix, and it

is well-known that emergent behavior in games can be significantly altered by adversarial

manipulation of payoffs [97]. However, if Player 2 had been “inconsequential” to Player 1

in some sense, would that have lessened the harm of the lost information? Our goal is to

explore this issue and determine when and how it is possible to endow agents with policies
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for computing proxy payoffs to protect against losses of information about inconsequential

agents. Specifically, some questions addressed in this chapter are

1. Is there a method of computing proxy payoffs which can provide some guarantee that

emergent behavior is good despite lost information?

2. Are there particular problem structures that confer greater degrees of robustness than

others?

This chapter’s main contribution is to show that regardless of how proxy payoffs are

chosen, in several settings, loss of action information about even weakly-coupled agents can

cause arbitrarily-low-quality states to emerge as various game solution concepts – even for

games that are quite well-behaved nominally. Definition 8.2 formalizes a notion of weak

coupling that we term inconsequentiality : if Player 2 is ε-inconsequential to Player 1 this

means that for any joint action, a unilateral action change by Player 2 can cause no more

than an ε change in Player 1’s payoff (See Definition 8.2). That is, even if Player 2’s action

is unknown, Player 1 can always estimate her own payoff to within ε.3 We call a situation in

which one agent cannot observe another agent’s action choice a communication failure, and

if the unobserved agent is ε-inconsequential to the observing agent, we call it an ε-failure.

We next consider the well-studied class of potential games [100]. It is known that in

any potential game possessing a unique Nash equilibrium, discrete best-response dynamics

converge to that Nash equilibrium (thus maximizing the potential function). However,

Theorem 8.3 here shows that for any ε > 0, there exist games in this class for which an

ε-failure causes best response dynamics to converge to states which essentially minimize the

potential function, regardless of which payoff evaluator is applied. This result holds even if

the payoff evaluator is selected as a function of the full game, and even if the nominal game

possesses a unique equilibrium.

Subsequently, Section 8.2.2 shows via Proposition 8.6 that the class of identical interest

3This notion of inconsequentiality is tightly connected with the notion of influence in [98] and the defi-
nition of a game’s Lipschitz constant in [99].
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games is slightly better-behaved than general potential games, in the sense that even under

a communication failure, every identical interest game always possesses at least one efficient

Nash equilibrium. Next, we appeal to the well-studied stochastic learning rule known as

log-linear learning, which is known to stabilize high-quality states of games in many situ-

ations [94, 101]. Unfortunately, Theorem 8.7 shows that in the presence of ε-failures, noisy

learning dynamics can actually destabilize efficient Nash equilibria and stabilize inefficient

ones. Here, there is no general way to compute proxy payoffs that can prevent inefficient

action profiles from emerging as stochastically stable states of log-linear learning.

Section 8.3 presents a pair of positive results showing features which can limit the harm

of communication failures when agents update their actions stochastically according to log-

linear learning. Theorem 8.9 shows that if every agent loses information about a single

inconsequential agent’s action, identical-interest games retain their desirable properties and

high-quality states remain stochastically stable. Furthermore, we show in Theorem 8.10

that the damage a communication failure can cause in a potential game is limited by the

total number of action profiles in a game.

Lastly, Section 8.3.3 proposes a way to certify whether a set of proxy payoffs is suscepti-

ble to the types of pathologies demonstrated in this chapter. This certificate looks for some

notion of alignment between the chosen proxy payoffs and the nominal potential function of

the game; if these are sufficiently aligned, then losing communication with inconsequential

players can cause no harm.

8.1 Model

8.1.1 Game theoretic preliminaries

We model a multiagent system as a finite strategic-form game with player set I =

{1, . . . , n} where each player i ∈ I selects an action from action set Ai. The preferences

of each player over his actions are encoded by a utility function Ui : A → R where A =
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A1 × · · · × An; that is, each player’s payoff is a function of his own action and the actions

of all other players. A game is specified by the tuple G = (I,A, {Ui}i∈I).

For an action profile a = (a1, a2, . . . , an) ∈ A, let a−i denote the profile of player actions

other than player i; i.e.,

a−i = (a1, . . . , ai−1, ai+1, . . . , an).

Similarly, a−ij denotes the profile of player actions other than players i and j:

a−ij = (a1, . . . , ai−1, ai+1, . . . , aj−1, aj+1, . . . , an).

With this notation, we will sometimes write an action profile a as (ai, a−i). Similarly, we

may write Ui(a) as Ui(ai, a−i). Let A−i = Πj 6=iAj denote the set of possible collective

actions of all players other than player i. We define player i’s best response set for an action

profile a−i ∈ A−i as Bi(a−i) := arg maxai∈Ai Ui (ai, a−i) . An action profile ane ∈ A is

known as a pure Nash equilibrium if for each player i,

ane
i ∈ Bi

(
ane
−i
)
. (8.1)

That is, all players are best-responding to each other. The set of pure Nash equilibria of

game G is denoted PNE(G).

8.1.2 Distributed optimization and game classes

We assume that there is a global welfare function (i.e., objective function) W : A → [0, 1]

that the players are trying to maximize. We assume without loss of generality that at least

one action profile achieves the welfare maximum; i.e., in every game there exists ā ∈ A such

that W (ā) = 1.

A common game-theoretic formulation of distributed optimization problems involves

assigning utility functions to players that are derived from W in some way that ensures

that arg maxaW (a) ⊆ PNE(G). One way to assign utility functions that accomplishes this
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is simply to give each player i the full objective function, or let

Ui(ai, a−i) := W (ai, a−i).

This induces an identical-interest game, or one in which all players have the same utility

function. In this chapter, if a game is stated to be an identical-interest game, it is assumed

that the common utility function is the welfare function W .

A somewhat more nuanced method of assigning player utility functions is known as

“marginal-contribution” utility design [89]. Here, for each player i, arbitrarily select a

baseline action abi ∈ Ai, and assign the player a utility function of

Ui(ai, a−i) := W (ai, a−i)−W (abi , a−i).

Assigning utility functions in this way ensures that in the resulting game, whenever a player

unilaterally changes actions in a way that improves her utility, this improves W by the same

amount. Formally, for every player i ∈ I, for every a−i ∈ A−i, and for every a′i, a
′′
i ∈ Ai,

Ui
(
a′i, a−i

)
− Ui

(
a′′i , a−i

)
= W

(
a′i, a−i

)
−W

(
a′′i , a−i

)
. (8.2)

A game that satisfies (8.2) for some W is known as a potential game with potential

function W [100]. In a potential game, there is a strong notion of alignment between the

interests of the various players, and action profiles which maximize W are always pure

Nash equilibria: arg maxaW (a) ⊆ PNE(G). Further, many distributed learning algorithms

converge in potential games to potential-maximizing action profiles [20].

Throughout this chapter, if a game is stated to be a potential game, it is assumed that

its potential function is equal to the welfare function W . For non-potential games, the

welfare function will be specified as needed.
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8.1.3 Online learning and its associated solution concepts

Once the utility functions have been assigned offline, how should the agents choose

their actions online? In this chapter, we have agents update their actions by stochastic

asynchronous processes that proceed as follows. Starting at some initial joint action a(0),

at each time t ∈ N an agent i (called the updating agent) is selected uniformly at random

from I to choose an action ai(t+1) to play at time t+1, and all other agents simply repeat

their previous action: a−i(t+ 1) = a−i(t).

Asynchronous best reply process

The prototypical learning rule that we will subsequently build upon is the asynchronous

best reply process, where at each time step the updating agent i selects an action from their

best response set uniformly at random. Formally, conditional on agent i being the updating

agent at time t, the probability that agent i selects action a′i in the next time step is given

by

Pr
[
ai(t+ 1) = a′i | a−i(t)

]
=


1

|Bi(a−i(t))| if a′i ∈ Bi(a−i(t)),

0 otherwise.

(8.3)

For any strategic-form game, the asynchronous best reply process defines a Markov

process P br over joint action profiles A; as such, we will frequently refer to a joint action

profile a as a “state” of P br, and denote a sample path of P br as abr(t). A recurrent

class of P br is a set of action profiles A ⊆ A such that if the process is started in A

it remains in A (i.e., if abr(0) ∈ A, then abr(t) ∈ A for all t > 0), and for any states

a, a′ ∈ A, the probability that the process started at a eventually visits a′ is positive:

Pr
[
abr(t) = a′ for some t ≥ 1

∣∣ abr(0) = a
]
> 0. We denote the set of recurrent classes of the

asynchronous best reply process of a game G under P br by ABR(G); since the state space is

finite, ABR(G) is never empty. With a slight abuse of notation, we will occasionally write

a ∈ ABR(G) to mean that a ∈ A for some A ∈ ABR(G).

The recurrent classes ABR(G) fully characterize the long-run behavior of P br in the
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sense that for any initial joint action abr(0), standard Markov results show that the process

eventually enters some recurrent class almost surely. In general, a game may have many

recurrent classes, but if G is a potential game with a unique pure Nash equilibrium ane,

then it holds that {ane} is the unique recurrent class of P br and thus abr(t) converges to ane

almost surely. However, even a potential game may have multiple strict Nash equilibria, in

which case each equilibrium forms its own recurrent class – and it is not possible to predict

a priori which of these will eventually capture the process. Moreover, it is possible for P br

to have a cycle as a recurrent class.

Log-linear learning preliminaries

Motivated in part by this ambiguity, a rich body of literature has developed to study

“noisy” best-reply processes, in which a nominal best-reply process is perturbed by a small

amount of noise to make its associated Markov chain ergodic. The typical setup is that

players are randomly offered opportunities to choose a new action, and with some small

probability, they choose suboptimal actions. In the context of a social system, this “choice

of suboptimal action” is viewed as the player mistakenly choosing an action that is not a

best response; if the game is meant to model an engineered system, the suboptimal action

is used as a means for the agents to explore the state space [90–93,101,102]. One such noisy

update process is the log-linear learning rule [103], defined as follows.4

At time t, updating agent i chooses its next action probabilistically as a function of the

payoffs associated with the current action profile: the probability of choosing some action

a′i in the next time step is given by

Pr
[
ai(t+ 1) = a′i | a−i(t)

]
=

eβUi(a
′
i,a−i(t))∑

ai∈Ai e
βUi(ai,a−i(t))

,

4This chapter investigates log-linear learning in particular for reasons of parsimony and concreteness;
several of our results can be readily extended to more general noisy best-response processes. Formally
making this extension would considerably increase the notational density of the chapter while adding little
substance.
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where β > 0 is a parameter indicating the degree to which agents desire to select their best

response. If β = 0, agents select actions uniformly at random; as β → ∞, the limiting

process is the asynchronous best-reply process of Section 9.1.

For any β > 0, log-linear learning induces an ergodic Markov process on A; denote

its unique stationary distribution by πβ. It is well-known that the limiting distribution

π , limβ→∞ π
β exists, and that it is a stationary distribution of the asynchronous best-

reply process. Let π(a) denote the probability of joint action a ∈ A being played in the

limiting distribution π; if π(a) > 0, then action profile a is said to be stochastically stable

under log-linear learning. It is known that for any game G,

a ∈ SS(G) =⇒ a ∈ ABR(G). (8.4)

Furthermore, existing results give us that in a potential game with potential function W ,

the set of stochastically stable action profiles under log-linear learning is equal to the set of

potential function maximizers [94]:

SS(G) = arg max
a∈A

W (a). (8.5)

8.1.4 Communication failures

We define a communication failure as a situation in which a single player loses access

to information about the action of a single other player; without loss of generality, let

these players be Player 1 and Player 2, respectively. We will commonly say that “Player 2

is hidden from Player 1.” Note that more general formulations are possible, but in this

chapter we investigate this special case as it suffices to highlight several important issues.

Furthermore, it seems likely that allowing more than one communication failure in a game

would worsen our results.

When Player 1 cannot observe Player 2’s action, this means that the utility function U1

138



Informational Fragility in Distributed Learning Chapter 8

must be modified in some way so that it no longer depends on the action choice of Player 2.

That is, Player 1 must adopt a proxy payoff function Ũ1(a1, a−12) that becomes the new

basis for decision-making, but that does not depend on the action choice of Player 2.

Computing Ũ1 means assigning a value to each (a1, a−12), taking into account that the

true utility is a function of the unobservable action of Player 2 as well. That is, the true

utility is some unknown number in the set {U1(a1, a2, a−12) : a2 ∈ A2} . To compute proxy

payoffs, we assign Player 1 an evaluator f , which is a function that for each (a1, a−12), takes

the set of possible payoffs and returns a proxy payoff:

Ũ1 (a1, a−12)) = f ({U1(a1, a2, a−12) : a2 ∈ A2}) . (8.6)

The space of feasible evaluators is large, and we restrict it in only two simple ways, as

indicated by the following definition:

Definition 8.1 An acceptable evaluator f is a mapping from sets of numbers to R satisfy-

ing the following properties. Let S = (si)
k
i=1 and S′ = (s′i)

k
i=1, where S and S′ are assumed

to be ordered increasing:

1. If si > s′i for each i, then f(S) > f(S′),

2. If si = s′i for each i, then f(S) = f(S′).

If an acceptable evaluator further satisfies f(S) ∈ [min(S),max(S)], it is called a bounded

acceptable evaluator.

If Player 1 uses acceptable evaluator f to compute proxy payoffs for the case when

Player 2’s action is unobservable, we say that Player 1 applies f to Player 2. Proposition 8.1

gives a partial list of evaluators which are acceptable by Definition 8.1; its proof is included

in Section 8.4.

Proposition 8.1 The following functions are acceptable evaluators; numbers (2) through

(4) are also bounded:
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1. Sum: fsum(S) =
∑

s∈S s

2. Maximum element: fmax(S) = maxs∈S s

3. Minimum element: fmin(S) = mins∈S s

4. Mean: fmean(S) = 1
|S|
∑

s∈S s

Given a nominal game G and evaluator f , we write Gf to denote the reduced game

generated when Player 1 applies evaluator f to Player 2.

8.1.5 Assessing the quality of an evaluator

We consider an acceptable evaluator f to be effective if for any nominal game G, the

reduced game Gf induced by f is similar to the nominal game, where this similarity is

measured by the welfare of the games’ equilibria. For a game G, let E(G) be some set of

equilibria associated with G; for example, E(G) could represent the set of recurrent classes

of the asynchronous best-reply process for G. In the forthcoming, we write G to denote a

given class of games.

This chapter presents a number of negative and positive results; to show the negative

results, we use an optimistic measure of quality given by

Q−E (G, f) , inf
G∈G

max
a∈E(Gf )

W (a)

min
a∈E(G)

W (a)
. (8.7)

Note that here, by checking the ratio of maximum to minimum welfare, this quality measure

is designed to produce the highest values possible. If (8.7) is close to 0, this indicates

that for some game G ∈ G, the best equilibria induced by f can perform far worse than

the worst equilibria of the nominal game. Accordingly, all of our negative results show

situations in which this form of the quality metric can be close to 0. We sometimes wish to

evaluate (8.7) on an individual game (i.e., a singleton class of games) and denote this with

Q−E (G, f) := Q−E ({G}, f).
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Alternatively, to show the positive results, we use a pessimistic measure of quality given

by

Q+
E (G, f) , inf

G∈G

min
a∈E(Gf )

W (a)

max
a∈E(G)

W (a)
. (8.8)

In contrast to (8.7), here by checking the ratio of minimum to maximum welfare, the quality

measure is designed to produce the lowest values possible. That is, if (8.8) is large (close

to 1), this indicates that for every game in G, the worst equilibria induced by f are nearly

as good as the best equilibria of the nominal game. Accordingly, all of our positive results

show situations in which this form of the quality metric can be close to 1.

We can now state the main goal of this chapter. We wish to find payoff evaluators f

which can ensure that these measures of quality are high for meaningful classes of games.

That is, given some G and E , we wish to find f to maximize Q+
E (G, f).

8.2 Resilience against communication failures is challenging

In multiagent systems, it is an attractive goal to endow agents with local policies which

allow them to react on-the-fly to losses of information about other agents’ actions. Un-

fortunately, the results in this section illustrate that general methods for doing so may be

elusive. Unless otherwise stated, proofs of all theorems appear in Section 8.4.

First, note that if no restriction is placed on which types of game we are considering,

a single communication failure can easily and catastrophically degrade performance. The

following proposition assumes that Player 1 loses information about the action choice of

Player 2, and thus must compute proxy payoffs for the case when Player 2’s action is

unobservable.

Proposition 8.2 Let G be the set of all games. If Player 1 applies any acceptable evaluator

f to Player 2, then for all ε > 0, it holds that

Q−ABR (G, f) ≤ ε. (8.9)
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Here, by showing that the optimistic measure Q−ABR(G, f) is close to 0, we see that in general

games, no evaluator can prevent best-response processes from selecting arbitrarily-inefficient

action profiles.

Proof: This is shown using the game presented in the introduction paired with welfare

function W (a) =
∑

i Ui(a) (normalized to have a range of [0, 1]). In that game, if Player 2

is hidden from Player 1 there exists no acceptable evaluator which can prevent the bottom-

right action profile from being the unique strict Nash equilibrium to which all best-response

paths lead. This is because for any acceptable evaluator f , action B is a strictly dominant

strategy for Player 1. The upper-left action profile has welfare 3 − δ, but the lower-right

action profile has welfare 5δ. Thus, for any ε > 0, letting 0 < δ < 3ε/(5 + ε) yields the

proof.

8.2.1 Results for recurrent classes of the asynchronous best reply process

It is clear from Proposition 8.2 that some structure is needed in order to prevent com-

munication failures from causing harm. Potential games offer a natural starting point for

studying resilience in this context; intuitively, since the payoffs of agents in a potential game

are nicely aligned, this might offer a degree of protection.

Furthermore, we wish to study games in which hidden players are in some sense only

weakly important to the players which cannot observe them. We introduce the following

notion of weak interrelation: we say Player 2 is “inconsequential” to Player 1 if Player 2 can

never cause a large change in Player 1’s payoff by changing actions. We make this notion

precise in Definition 8.2:

Definition 8.2 Player j is ε-inconsequential to player i if for all ai ∈ Ai, all a−ij ∈ A−ij,

and all aj , a
′
j ∈ Aj, ∣∣Ui (ai, aj , a−ij)− Ui

(
ai, a

′
j , a−ij

)∣∣ ≤ ε. (8.10)

Now, let GPG
ε denote the class of potential games for which Player 2 is no more than

ε-incon-sequential to Player 1. Our standing assumption will be that in each game, Player 1
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loses information about the action of Player 2, and thus must apply an acceptable evaluator

to Player 2. That is, for each game G ∈ GPG
ε , we are assured that even if Player 1 cannot

observe Player 2’s action, a unilateral deviation by Player 2 can have only a small impact

on Player 1’s payoff. One might hope that by imposing the additional structure provided

by potential games and inconsequentiality that the severe pathologies of Proposition 8.2

could be avoided. Indeed, it can be readily shown that for the special case of ε = 0, for

any game G ∈ GPG
ε=0, if Player 1 applies any acceptable evaluator f to Player 2 we have that

ABR(G) = ABR (Gf ).

Unfortunately, Theorem 8.3 demonstrates that whenever ε > 0, even a single commu-

nication failure can cause significant harm to emergent behavior in a game. Note that

Theorem 8.3 uses the optimistic form of the quality measure from (8.7) with E = ABR;

that is, it evaluates the best state in any recurrent class (of the best-reply proces) of the

reduced game against the worst state in any recurrent class of the nominal game.

Theorem 8.3 For any ε > 0, let GPG
ε be the set of potential games in which Player 2 is

ε-inconsequential to Player 1. There exists a game G ∈ GPG
ε such that if Player 1 applies

any acceptable evaluator f to Player 2, it holds that

Q−ABR(G, f) ≤ ε. (8.11)

That is, losing information about another agent (even an inconsequential one) can have

devastating consequences. Note that Theorem 8.3 even allows Player 1 to select the eval-

uator f after the pathological game is realized, indicating that even knowledge about the

particular game instance is not sufficient to allow an agent to select an effective evaluator.

Theorem 8.3 leads to the following immediate corollary regarding the performance of the

class of potential games as a whole:

Corollary 8.4 For any ε > 0, let GPG
ε be the set of potential games in which Player 2

is ε-inconsequential to Player 1. For any acceptable evaluator f that Player 1 applies to
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Player 2, it holds that

Q−ABR

(
GPG
ε , f

)
≤ ε. (8.12)

Note that another corollary of this is that log-linear learning is susceptible in potential

games to the same pathologies as asynchronous best-reply processes. In other words, the

following corollary is a consequence of the above and (8.4):

Corollary 8.5 For any ε > 0, let GPG
ε be the set of potential games in which Player 2

is ε-inconsequential to Player 1. For any acceptable evaluator f that Player 1 applies to

Player 2, it holds that

Q−SS

(
GPG
ε , f

)
≤ ε. (8.13)

8.2.2 Identical interest games are also susceptible

Why are potential games subject to such severe pathologies as in Theorem 8.3? This is

partially because in a potential game, each agent’s utility function is only locally aligned with

the global welfare function; it may not give the agent any information about the absolute

quality of a particular action, and gives the agent no information about the utility functions

of other agents. As such, it is relatively easy to construct games in which communication

failures cause Player 1 to make potential-decreasing moves while “believing” she is ascending

the potential function.

However, in identical interest games, this does not appear to be a concern: each player

has access to the full welfare function, and thus knows both the relative quality of each ac-

tion and the utility functions of all other players. Intuitively, it seems that this additional

structure may be enough to prevent pathologies. Proposition 8.6 shows that when consid-

ering the special case of pure Nash equilibria, identical interest games are indeed immune

to the worst of the pathologies of Theorem 8.3, provided that the max evaluator is applied

(see Proposition 8.1). However, we also show that this positive result does not take us far:
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Proposition 8.6 For any ε > 0, let GII be the set of all identical-interest games. For each

G ∈ GII let a∗ ∈ arg maxa∈AW (a). Let fmax denote the max evaluator, and let Player 1

apply fmax to Player 2. Then it is always true that

a∗ ∈ PNE (Gfmax) and PNE (Gfmax) ⊆ PNE(G). (8.14)

The intuition behind (8.14) is simple: the max evaluator can be viewed as an attempt to

be optimistic; Player 1 is assuming that Player 2 is maximizing U1. In an identical interest

game U1 = U2, so this is equivalent to assuming that Player 2 is maximizing her own utility

function U2. Thus, at a pure Nash equilibrium, other players are best-responding to each

others’ actions – and the optimism of max becomes a self-fulfilling prophecy. However,

the positive nature of Proposition 8.6 is tenuous: a game may have many Nash equilibria –

and (8.14) gives no guarantee that these are optimal. Furthermore, the second part of (8.14)

depends strongly on the assumption that only one communication failure occurs; if Player 2

also applies fmax to Player 1, the resulting reduced game may have many more equilibria

that are not present in the nominal game.

8.2.3 Noisy dynamics in identical interest games

Proposition 8.6 showed that when the max evaluator is applied, a reduced identical-

interest game always has at least one good pure Nash equilibrium. Is the optimal equilibrium

always a stochastically-stable state of log-linear learning? Unfortunately, the answer is no.

Theorem 8.7 uses the optimistic form of the quality measure from (8.7); this time, we set

E = SS. That is, for log-linear learning, it evaluates the best stochastically-stable state of

the reduced game against the worst stochastically-stable state of the nominal game.

Theorem 8.7 For any ε > 0, let GII
ε be the set of identical interest games in which Player 2

is ε-inconsequential to Player 1. There exists a game G ∈ GII
ε such that if Player 1 applies
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any acceptable evaluator f to Player 2, it holds that

Q−SS(G, f) ≤ ε. (8.15)

Requiring stochastic stability is now too much – and Theorem 8.7 shows that games

exist for which even inconsequential communication failures induce stochastically-stable

states which are arbitrarily less efficient than those of the nominal game. That is, the high-

quality Nash equilibria guaranteed to exist by Proposition 8.6 need not be stochastically

stable. Once again, we state the following immediate corollary:

Corollary 8.8 For any ε > 0, let GII
ε be the set of identical-interest games in which Player 2

is ε-inconsequential to Player 1. For every acceptable evaluator f that Player 1 applies to

Player 2, it holds that

Q−SS

(
GII
ε , f

)
≤ ε. (8.16)

8.3 Limiting the harm of communication failures

How can a game designer mitigate the pathologies of the previous sections? Nominally

the negative results appear quite formidable, as they appear to rule out several well-behaved

classes of games, as well as learning dynamics that are generally thought to provide good

efficiency guarantees. In this section we investigate more closely what is causing these

pathologies, and show preliminary results on how to avoid them. To do so, we will apply

the equilibrium selection properties of log-linear learning.

8.3.1 Resilience to failures via an informational paradox

Here, we investigate the cause of the identical interest pathologies of Theorem 8.7. In the

example game enabling (8.15), Player 1 essentially needs a third player’s “help” to drive the

system to a low-welfare state (see the proof of Theorem 8.7 and Figure 8.3 in Section 8.4).

However, in an identical interest game, if Player 2 is inconsequential to Player 1, then
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Player 2 is universally inconsequential; that is, also inconsequential to all other players.

This suggests that if Player 1 cannot observe Player 2’s action, then perhaps other players

should not either. Theorem 8.9 confirms this intuition; here we are using the pessimistic

form of the quality metric from (8.8), lending strength to our result showing it can be close

to 1.

Theorem 8.9 For all ε ∈ [0, 1], and let GII
ε be the set of identical-interest games in which

Player 2 is inconsequential to Player 1. Let all players other than Player 2 apply the max

evaluator fmax to Player 2. Then it holds that

Q+
SS

(
GII
ε , fmax)

)
= 1− ε. (8.17)

Note that Theorem 8.9 presents a curious paradox when compared with Theorem 8.7,

showing that performance improves when less communication is allowed. That is, if

Player 2’s action is hidden from every player, the performance can be dramatically bet-

ter than when it is hidden from a single player. Though more study is needed, one possible

implication of this is as follows: suppose in a multiagent system that Agent A has a high risk

of losing communication with Agent B. Theorem 8.9 seems to suggest that if the agents’

utility functions define an identical interest game, it could be desirable to preemptively

sever communications between Agent B and all other agents. Naturally, without a some-

what more detailed investigation, this should not be taken explicitly as design advice – but

nonetheless it seems to warrant more research.

8.3.2 Large games are more susceptible

What drives the negative results of Theorem 8.3 for potential games? In the game

used to prove the foregoing theorems, the number of action profiles was conditioned on

the size of ε (see proof of Theorem 8.3 in Section 8.4). When ε was very close to 0, the

proof of Theorem 8.3 required many action profiles to generate the pathology. Is this
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simply an artifact of the proof technique, or is it indicative of a deeper principle? Here,

we show that there is indeed a connection between the size of a game and the degree

to which communication failures can create pathologies. This is because for small ε, the

game resulting from a bounded evaluator is close to the nominal game in a formal sense

defined in [51], provided that the number of total action profiles is small – and thus log-

linear learning selects action profiles close to the potential-maximizing states of the nominal

game.

To show positive results, here we take the pessimistic form of the quality metric (8.8),

and let E = SS. Recall that this compares the worst stochastically-stable state of the

reduced game with the best of the nominal game, setting the stage for stronger positive

results.

Theorem 8.10 For any ε ≥ 0, let GPk
ε be the set of potential games in which Player 2 is

ε-inconsequential to Player 1 and such that |A| ≤ k. For every bounded acceptable evaluator

f , it holds that

Q+
SS

(
GPk
ε , f

)
≥ max {0, 1− 8ε(k − 1)} . (8.18)

That is, if ε is small relative to the number of action profiles in G, communication failures

cause limited harm.

8.3.3 A safety certificate: coarse potential alignment

Though this work has shown that in general no straightforward method exists for com-

puting good proxy payoffs from the nominal game payoffs, it would be valuable to develop

tools which could certify a set of proxy payoffs as safe for a particular setting. In this section

we propose one such certificate. This section requires the following definition: a best-reply

path is a sequence of action profiles {a1, a2, . . . , am} such that for each k ∈ {1, . . . ,m− 1},

i) ak+1 = (ai, a
k
−i) for some agent i ∈ I with ai 6= aki , and

ii) ak+1
i ∈ Bi(ak).
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That is, each successive action profile differs from the previous in the action of a single agent,

and the updating agent chooses a best response. In a potential game, it is known that all

best-reply paths terminate at a pure Nash equilibrium. A weakly-acyclic game under best

replies is a generalization of a potential game in which for every joint action profile a ∈ A,

there exists a best-reply path {a1, a2, . . . , am} where a1 = a and am is a Nash equilibrium.

Many simple learning rules are known that converge almost surely to Nash equilibria in

weakly-acyclic games under best replies; in particular, this is true of our asynchronous best

reply process defined in Section 9.1. Thus, when one of these games has a unique pure Nash

equilibrium, this equilibrium may be considered highly likely to arise in game play [93,101].

Our certificate pertains to a setting in which the nominal game is a potential game with

a unique pure Nash equilibrium. In these games, pathologies could be constructed because

a single player’s payoffs could be specified so that any proxy payoffs would cause that player

to best-respond against the potential gradient. To rule out such pathologies, proxy payoffs

must be appropriately aligned with the potential function. In the following theorem, we

give one such characterization of “appropriately aligned.”

Suppose that Player 1 cannot know Player 2’s action. Given a potential game G with

potential function W , let the reduced potential function W̃ be

W̃ (a1, a−12) = max
a2∈A2

W (a1, a2, a−12) . (8.19)

That is, W̃ is the nominal potential function with the maximum evaluator applied to

Player 2. Using this definition, we can state the following result, which holds even if we do

not require inconsequentiality.

Proposition 8.11 Let G be a potential game with n ≥ 3 players and a unique pure Nash

equilibrium a∗. If Player 1 is assigned proxy payoff functions Ũ1 : A1×A−12 → R satisfying

arg max
a1∈A1

Ũ1 (a1, a−12) ⊆ arg max
a1∈A1

W̃1 (a1, a−12) , (8.20)
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then the reduced game G̃ associated with Ũ is weakly-acyclic under best replies and has a

unique pure Nash equilibrium a∗.

A consequence of this proposition is that for every potential game with a unique pure

Nash equilibrium, there do exist safe proxy payoffs. However, these proxy payoffs may

not be computable. That is, a player may not have access to the potential function to be

able to compute these proxy payoffs, and in an arbitrary potential game, Player 1’s utility

function need not contain enough information about the potential function for this to be a

valid approach. This highlights a crucial issue: in a potential game, despite the fact that

individual players’ utility functions are locally aligned with the potential function, even

slight perturbations of these utility functions can essentially discard the information that is

required to ascend the potential function.

8.3.4 Fine potential alignment

This second certificate, though more difficult to verify in general, is a guarantee for any

potential game that under any evaluator, the reduced game is an exact potential game with

potential function equal to the nominal potential function. Here, we examine more closely

the intuition behind our notion of inconsequentiality. Note that ε-inconsequentiality implies

the inability to affect another player’s payoffs by more than ε, but it says nothing about the

ability to affect another player’s relative preferences between pairs of actions. For any ε > 0,

it is possible to construct games where a player’s optimal decision is always conditioned on

an “inconsequential” player’s action. Thus, inconsequentiality may not adequately capture

the coupling between relative preferences and actions.

To see the distinction, consider the following identical-interest game:
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Player 2

b1 b2

Player 1
a1 1 ε

a2 1− ε 0

At any action profile, Player 2 can deviate and cause a large change in Player 1’s payoff:

in our parlance, Player 2 is not at all inconsequential to Player 1. Nonetheless, Player 2’s

action is irrelevant to Player 1’s relative preferences, since Player 1 always values a1 exactly

ε more than a2. Thus, if Player 1 applies any linear acceptable evaluator to Player 2, the

resulting proxy payoffs will correctly value a1 over a2. This concept is formalized in the

following proposition.

Proposition 8.12 Let G be a potential game with potential function W and n ≥ 2, and

suppose that Player 1 cannot observe Player 2’s action. If for each pair of actions of

Player 1 (a1, a
′
1), and for each joint action a−12 ∈

∏
i/∈{1,2}Ai, there exists a constant

C(a1, a
′
1, a−12) ∈ R such that for all a2,

U1 (a1, a2, a−12)−U1

(
a′1, a2, a−12

)
= C(a1, a

′
1, a−12), (8.21)

then for any bounded acceptable evaluator f among those specified in Proposition 8.1, Gf

is a potential game with potential function W .

Proof: The conditions of Proposition 8.12 guarantee that the payoff gain (or loss) of

any deviation by Player 1 in G is not conditioned on the action choice of Player 2. Thus,

for any bounded evaluator among those specified in Proposition 8.1, the reduced payoffs

resulting from the evaluator will satisfy

Ũ1(a1, a−12)− Ũ1(a′1, a−12) = C(a1, a
′
1, a−12). (8.22)

Since C(a1, a
′
1, a−12) is equal to Player 1’s payoff gain (or loss) in G as well, this means that
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Gf must be a potential game with the same potential function as G.

This strict condition may be of questionable value in practical settings, particularly

when there are a large number of action profiles. In addition, it is not difficult to show that

straightforward relaxations of this condition allow for the possibility that pathologies can

occur, similar to those studied in Theorems 8.3 and 8.7.

8.4 Chapter Proofs

Proof of Proposition 8.1

To see that each satisfies Definition 8.1, let S ∈ Rk and S′ ∈ Rk satisfy the first

assumption of Definition 8.1. Arrange S and S′ in ascending order and denote the i-th

element of S and S′ as si and s′i, respectively so that mins∈S = s1 and maxs∈S = sk. Thus,

fsum(S) =
∑k

i=1 si >
∑k

i=1 s
′
i > fsum(S′). Since fsum satisfies Definition 8.1, it must

be true that fmean does as well. To see that fmax and fmin satisfy Definition 8.1, simply

note that fmax(S) = sk > s′k = fmax(S′) and fmin(S) = s1 > s′1 = fmin(S′). For these

evaluators, the second axiom of Definition 8.1 is obvious.

Proof of Theorem 8.3

We will construct a potential game G ∈ GPG
ε with a unique Nash equilibrium (and thus

a unique efficient recurrent class of the asynchronous best reply process) and show that for

any f its reduced variant Gf is a weakly-acyclic game under best replies (see Section 8.3.3

for definition) with a unique Nash equilibrium with welfare within ε of 0. Standard results

in learning theory then imply that the Nash equilibrium of the reduced game is the unique

recurrent class of the asynchronous best reply process, completing the proof.

Our constructed game has 3 players. Let M ∈ N be the positive integer satisfying

1/ε− 8 ≤M < 1/ε− 7.5 Player 1 has actions A1 = {0, 1, . . . ,M + 1}; Player 2 has actions

5Strictly, we also require ε < 1/7; for larger ε, similar examples can be constructed to show the same
bound but we omit these for reasons of space and because the result is considerably more interesting for
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A2 = {0, 1, 2}; Player 3 has actions A3 = {0, 1, . . . ,M}. The game is built of M + 1 two-

player games in which the action of Player 3 selects which game is played between Players 1

and 2. We refer to the actions of Players 1, 2, and 3 as “rows,” “columns,” and “levels,”

respectively.

The payoff matrix which comprises Level 0 (that is, a3 = 0) is depicted in Figure 8.1.

The two matrices in Figure 8.1 depict payoffs and potential values resulting from the actions

of Players 1 and 2 when a3 = 0. For each (a1, a2), the upper matrix represents the value of

Player 1’s payoffs U1(·); the lower matrix depicts the value of the potential function W (·).

Let Players 2 and 3 have payoffs equal to W so for any a, U2(a) = U3(a) = W (a). For the

action profiles not depicted for a1 > 2, the payoffs and potential are equal to those when

a1 = 2. That is, for any m > 2, U1(m, a2, 0) = U1(2, a2, 0) and W (m, a2, 0) = W (2, a2, 0).

For a3 > 0, consider the matrices in Figure 8.2. Note that these matrices are similar

to those for a3 = 0; u1(a1, a2, k) = u1(0, a2, 0) for a1 ∈ {k, k + 1} and W (a1, a2, k) =

W (0, a2, 0) − kε. They each contain the additional row k − 1, which is simply the pay-

offs/potential from row k plus ε/2. For both , all rows not depicted are identical to row

k + 2.

In the nominal game, ane = (0, 0, 0) is a unique pure Nash equilibrium with potential

W (ane) = 1. This can be proved by induction; the base case is depicted in Figure 8.1, which

contains only (0, 0, 0) as a Nash equilibrium. If there is another pure Nash equilibrium, it

must be associated with some a3 > 0. For the inductive step, consider a3 = k as in

Figure 8.2. Here, the only possible Nash equilibrium is (k − 1, 0, k). At this action profile,

Player 3 has a payoff of 1 + ε/2− kε, but he can deviate to a3 = k − 1 (i.e., the next-lower

level) to obtain an improved payoff of 1 − kε + ε, so this cannot be a Nash equilibrium.

Therefore, ane = (0, 0, 0) is unique, so all better-reply paths in G terminate at ane.

Now, note that Player 2 is 6ε-inconsequential to Player 1. Let Player 1 apply an

acceptable evaluator f to Player 2 to obtain the reduced game Gf . Considering Fig-

small ε.
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U1(·) Player 2

0 1 2

Player 1

0 1 1− 3ε 1− 6ε

1 1− 2ε 1 + ε 1− 5ε

2 0 4ε −2ε

W (·) Player 2

0 1 2

0 1 1− 7ε 1− 4ε

1 1− 2ε 1− 3ε 1− 3ε

2 0 0 0

Figure 8.1: Left: Player 1 payoff function u1(·) for game used to prove Theorem 8.3.
Right: Potential function W values (and Player 2/3 payoffs) for the same game. Both are
depicted with Player 3 playing action 0. When Player 1 applies an acceptable evaluator
to Player 2, he prefers Action 1 to Action 0. When Player 1 plays action 1, Player 2’s
best response is to play action 0, making (1, 0, 0) the only pure Nash equilibrium in this
simplified game. See Figure 8.2 for a depiction of the game’s payoffs for action profiles
when Player 3 is playing a3 > 0.

ure 8.2, let Sk−1, Sk, Sk+1, and Sk+2 denote the depicted rows in Player 1’s payoff ma-

trix. Order each row nondecreasing and match elements so Definition 8.1 implies that

f(Sk+1) > f(Sk−1) > f(Sk) > f(Sk+2) whenever M < 1/ε − 3. Thus, for any a2 ∈ A2,

Player 1’s reduced payoff function Ũ1(a) satisfies

Ũ1(k + 1, a2, k) > Ũ1(k − 1, a2, k) > Ũ1(k, a2, k).

That is, when Player 3 is playing k, Player 1’s best response is a1 = k + 1, regardless of

the action of Player 2. Then, Player 2’s best response to a1 = k + 1 is to choose a2 = 0, to

obtain the gray-shaded action profile in Figure 8.2.

At this action profile (k + 1, 0, k), Player 3 can improve his payoff from 1 − 2ε − kε

to 1 − ε − kε by deviating to action a3 = k + 1 (i.e., “moving up” one level). Thus, all

action profiles have a best-reply path which terminates at the unique Nash equilibrium

ãne = (M + 1, 0,M), with potential W (ãne) = 1− 2ε−Mε. That is, Gf is a weakly-acyclic

game under best replies. Because M ≥ 1/ε− 8,

W (ãne) ≤ 1− 2ε− (1/ε− 8) ε = 6ε. (8.23)

Since Player 2 is 6ε-inconsequential to Player 1, and the potential maximum is 1, the
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U1(·) Player 2

0 1 2

Pl. 1

k − 1 1 + ε
2 1− 2.5ε 1− 5.5ε

k 1 1− 3ε 1− 6ε

k + 1 1− 2ε 1 + ε 1− 5ε

k + 2 kε 4ε+ kε −2ε+ kε

W (·) Player 2

0 1 2

1 + ε
2 − kε 1− 6.5ε− kε 1− 3.5ε− kε

1− kε 1− 7ε− kε 1− 4ε− kε
1− 2ε− kε 1− 3ε− kε 1− 3ε− kε

0 0 0

Figure 8.2: Left: Player 1 payoff function U1(·) for game used to prove Theorem 8.3.
Right: Potential function W values (and Player 2/3 payoffs) for the same game. Both are
depicted with Player 3 playing action k > 0. All rows not depicted have the same payoffs
(or potential values) as row (k+ 2). Here, given this action of Player 3, the nominal game
has a unique Nash equilibrium at (k−1, 0). When Player 1 applies an acceptable evaluator
to Player 2, he prefers Action k+ 1 to Action k; Player 2’s best response to this is to play
action 0, making the shaded action profile (k + 1, 0, k) the only pure Nash equilibrium in
this simplified game. Because the full game is staggered, at the action profile (k+ 1, 0, k),
Player 3 has an incentive to switch to action k + 1.

theorem is proved.

Proof of Proposition 8.6

Let G be any identical interest game and let f = max so that Gf is the reduced variant.

Let a∗ ∈ arg maxa∈AW (a); this is both the maximum-potential action profile and since

the game is identical-interest, a∗ ∈ PNE(G). First we show that a∗ ∈ PNE(Gf ). Since

W (a∗) ≥ W (a) for any a ∈ A, the fact that f = max implies that for Player 1 and any

a1 ∈ A1,

Ũ1

(
a∗1, a

∗
−1

)
= W (a∗) ≥ Ũ1

(
a1, a

∗
−1

)
, (8.24)

where the inequality stems from the fact that W (a∗) (and thus U1(a∗)) is maximal with

respect to any other action profile. Thus, player 1 cannot unilaterally deviate and improve

utility. Since a∗ is an equilibrium of G, every player j with is already playing a best response

to a∗. Thus, a∗ is a pure Nash equilibrium of Gf , implying (8.14).

Next, let ā ∈ PNE(Gf ); we wish to show that ā ∈ PNE(G). Since all other players
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Figure 8.3: Generic modular block for the identical-interest game described in the proof
of Theorem 8.7, displaying best-reply path resulting when Player 1 applies any acceptable
evaluator to Player 2. If Player 1 applies any acceptable evaluator to Player 2, note that
he will be indifferent between actions 2k and 2k + 1 when Player 3 is playing 2k (i.e., the
left matrix). Thus, there is a best-reply path from every action profile depicted here to

A†k. Once in A†k, a best-response process cannot escape except by Player 3 incrementing
his action to 2k + 2.

j 6= 1 know Player 1’s action, they can best-respond with respect to the true W . Thus,

Ũ1(ā1, ā−1) = U1(ā1, ā−1). (8.25)

Since f = max, for all a′1 6= ā1 we have

Ũ1(a′1, ā−1) ≥ U1(a′1, ā−1). (8.26)

Combining (8.25) and (8.26) with the fact that ā is a Nash equilibrium of Gf , we have for

all a′1 6= ā1 that

U1(ā1, ā−1) ≥ U1(a′1, ā−1). (8.27)

That is, Player 1 has no incentive to deviate from ā in the nominal game. Since every other

has the same payoffs in the nominal game as in the reduced game, ā must be an equilibrium

of the nominal game as well.
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Proof of Theorem 8.7

We shall construct a 3-player game that exhibits the pathology described in Theorem 8.7.

For ε > 0, let M ∈ N be the positive integer satisfying 1/ε − 3 ≤ M < 1/ε − 2.6 In this

game, A1 = {0, 1, . . . , 2M + 2}, A2 = {0, 1}, and A3 = {0, 1, . . . , 2M + 1}.

The game is comprised of M fundamental blocks indexed by k ≤ M , a generic one

of which is depicted in Figure 8.3. Given a block k, Player 3 has two actions: 2k and

2k + 1, depicted in Figure 8.3 as the left and right payoff matrices, respectively. Note that

in each block, the potential-maximizing states are both in the left matrix: (2k, 0, 2k) and

(2k + 1, 1, 2k), each with a potential of 1 − kε. Since these states’ potential are maximal

when k = 0, the potential-maximizing states of the overall game are (0, 0, 0) and (1, 1, 0)

with potential of 1. Thus, these are also the only stochastically-stable states of log-linear

learning in the nominal game.

Player 2 is 2ε-inconsequential to Player 1; let Player 1 apply any acceptable evaluator

f to Player 2. Now, when a3 = 2k (left matrix), Definition (8.1) implies that f(1− kε, 1−

(2 + k)ε) = f(1 − (2 + k)ε, 1 − kε), so Player 1 receives equal payoff for actions 2k and

2k + 1. Nevertheless, when a3 = 2k + 1 (right matrix), Player 1 still strictly prefers action

2k + 2 to action 2k + 1. To prove Theorem 8.7, we will show that for any k ≤ M , there is

a best-reply path from every action profile to the gray-shaded action profiles in Figure 8.3,

but that the only best-reply path leaving those action profiles has Player 3 incrementing

his action to 2k + 2 (thus pushing the system state into the next-higher block, where the

process repeats).

Let k < M , and let the gray-shaded action profiles in Figure 8.3 be denoted A†k =

{(2k + 2, 0, 2k + 1), (2k + 2, 1, 2k + 1)}. Let a be an action profile such that a3 ∈ {2k, 2k+

1} (i.e., a is in block k). If W (a) = 0, note that A†k can be reached in one step; either by

Player 3 deviating to action 2k+ 1 or by Player 1 deviating to action 2k+ 2. On the other

6We also require ε < 1/3. Note that this is without loss of generality: when ε′ > ε, it is true that
ε′-inconsequentiality implies ε-inconsequentiality.
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hand, if W (a) > 0, then a lies on the best-reply path depicted in Figure 8.3. That is, for

every a, there is a best-reply path from a to A†k.

Next, note that a deviation by Player 2 cannot escape A†k, and Player 1 strictly prefers

the states in A†k to any other states that he can reach with a single deviation. Thus, the only

way for a best-reply path to escape A†k is for Player 3 to increment his action to a3 = 2k+2;

when k < M , this can occur when the state is (2k + 1, 1, 2k) ∈ A†k.

Thus, for every action profile in block k < M , there is a best-reply path leading to an

action profile in block k + 1. When k = M , there is a best-reply path leading to an action

profile in A†M , but no best-reply path leaves A†M . This implies that ABR(G) = A†M . We

then apply (8.4) to obtain SS(G) ⊆ A†M . By the definition of M , it follows for any a ∈

SS(G) ⊆ A†M that W (a) ≤ 2ε, proving the theorem (since Player 2 is 2ε-inconsequential).

Proof of Theorem 8.9

Suppose that Player 2 is ε-inconsequential to Player 1; because this is an identical

interest game, this implies that Player 2 is ε-inconsequential to all players I \ {2}. If all

players other than 2 ignore the actions of Player 2 by applying an acceptable evaluator f

to their utility functions, then the action choice of Player 2 has no effect on the decisions of

players other than 2. This means that the reduced game can be analyzed as an (n−1)-player

identical interest game, and Player 2 can be modeled as a simple optimizer.

Let all players I\{2} apply the maximum evaluator f = max, so that the reduced payoff

functions Ũ and corresponding reduced potential function W̃ for each player i ∈ I \{2} are

given by W̃ (a) = Ũi(a) = maxa2∈A2 Ui (a−2, a2) . The reduced game, denoted G̃, will be an

identical-interest game played between all players in I \ {2}.

Let Ã∗ = arg maxa∈A W̃ (a) be the set of potential-maximizing states of G̃; because

G̃ is an identical-interest game, Ã∗ must also be the set of stochastically-stable states of

log-linear learning. All stochastically-stable states for the reduced game Gf must also be

stochastically-stable for G̃; thus, to prove the theorem, it will suffice to establish a tight
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lower bound on potential for states in Ã∗.

Since the players are applying the maximum evaluator, it must be the case for any state

ã ∈ Ã∗ that there exists some a2 such that W (a2, ã−2) = 1. Thus, ε-inconsequentiality

provides the lower bound of W (ã) ≥ W (a2, ã−2) − ε. The game in Figure 8.3 with k = 0

shows the bound to be tight.

Proof of Theorem 8.10

The proof of Theorem 8.10 relies on the following definition:

Definition 8.3 ( [51]) Let G and Ĝ be two games with players I, action set A, and utility

functions {Ui}i∈I and {Ûi}i∈I respectively. Let ∆i(G, Ĝ, a, a
′
i) denote

∣∣∣(Ui(ai, a−i)− Ui(a′i, a−i))− (Ûi(ai, a−i)− Ûi(a′i, a−i))∣∣∣ . (8.28)

The maximum pairwise difference (MPD) between G and Ĝ is defined as

d(G, Ĝ) , max
a∈A, i∈I, a′i∈Ai

∆i(G, Ĝ, a, a
′
i) (8.29)

Let G ∈ GPk
ε , and let f be a bounded acceptable evaluator f generating reduced utility

function Ũ1. Let U∗1 (a1) := U1(a1, a−1). For any a ∈ A and a′i ∈ Ai, we have that

∆i(G,Gf , a, a
′
i) =

∣∣∣U∗i (ai)− U∗i (a′i)− Ũ∗i (ai) + Ũ∗i (a′i)
∣∣∣

≤
∣∣∣U∗i (ai)− Ũ∗i (ai)

∣∣∣+∣∣∣Ũ∗i (a′i)−U∗i (a′i)
∣∣∣ ≤ ε+ ε.

The first inequality is the triangle inequality; the second follows from the ε-inconsequentiality

of Player 2 and the boundedness of f , implying that d(G,Gf ) ≤ 2ε. Corollary 4.3 of [51]

states that the stochastically stable states of Ĝ under log-linear learning are within 4d(G, Ĝ)(|A|−

1) of the potential function maxima of G; applying this completes the proof of the theorem.
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Proof of Proposition 8.11

Let G and G̃ satisfy the assumptions of Proposition 8.11, and let a ∈ A be any action

profile. To show that G̃ is weakly acyclic under best replies, it suffices to construct a

best-reply path from a to a∗ for G̃. Denote this best-reply path by {a1, a2, . . . , am}, where

a1 = a.

First, let Player 1 choose a best response; second, let Player 2 choose a best response.7

Thus, by the definition of Ũ1, a3 satisfies

(
a3

1, a
3
2

)
∈ arg max

a1, a2
W
(
a1, a2, a

1
−12

)
, (8.30)

and it must be true that W (a3) > W (a).

If a3 is a pure Nash equilibrium, we are done. Otherwise, there exists a player j ∈

{3, . . . , n} that can strictly improve its payoff with a best reply; such a deviation strictly

increases the value of the potential function. In this case, let player j deviate, and then

repeat the process with Players 1 and 2 as before. In this way, since there are a finite number

of action profiles and the potential function is strictly increasing along this best-reply path,

it can easily be seen that a best-reply path can be found from a to some Nash equilibrium

am of G̃.

Since am satisfies (8.30), it must also be a Nash equilibrium of G; since G has a unique

equilibrium, it must be that am = a∗ and the proof is obtained.

7Assume without loss of generality that at least one of Player 1 and Player 2 are not already playing a
best response when it is their chance to deviate.
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Chapter 9

Robust Influence by an Adversary

We use graphical coordination games, introduced in [105, 106], to study the impact of

adversarial manipulation. The foundation of a graphical coordination game is a simple two

agent coordination game, where each agent must choose one of two alternatives, {x, y},

with payoffs depicted by the following payoff matrix which we denote by u(·):

x y

x 1 + α, 1 + α 0, 0

y 0, 0 1, 1

(9.1)

Both agents prefer to agree on a convention, i.e., (x, x) or (y, y), than disagree, i.e., (x, y) or

(y, x), with a preference for agreeing on (x, x). The parameter α > 0 indicates that (x, x)

has an intrinsic advantage has over (y, y); we refer to α as the payoff gain. Nonetheless,

unilaterally deviating from (y, y) for an individual agent incurs an immediate payoff loss of 1

to 0; hence, myopic agents may be reluctant to deviate, stabilizing the inefficient equilibrium

(y, y).

This two player coordination game can be extended to an n-player graphical coordination

game [107–109], where the interactions between the agents N = {1, 2, . . . , n} are described

This chapter is adapted, with permission, from [104], scheduled to be published by IEEE Transactions
on Network Control. © 2018 IEEE.
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by an undirected graph G = (N,E), where an edge (i, j) ∈ E for some i 6= j indicates that

agent i is playing the two-player coordination game (9.1) with agent j. An agent’s total

payoff is the sum of payoffs it receives in the two-player games played with its neighbors

Ni = {j ∈ N : (i, j) ∈ E}, i.e., for a joint action a = (a1, . . . , an) ∈ {x, y}n, the utility

function of agent i is

Ui(a1, . . . , an) =
∑
j∈Ni

u(ai, aj), (9.2)

where u(·) is chosen according to payoff matrix (9.1). Joint actions ~x := (x, x, . . . , x) and

~y := (y, y, . . . , y), where either all players choose x or all players choose y, are Nash equilibria

of the game for any graph; other equilibria may also exist depending on the structure of

graph G.

The system operator’s goal is to endow agents with decision-making rules to ensure that

for any realized graph G and payoff gain α, the emergent behavior maximizes the sum of

agents’ utilities. Log-linear learning [91, 110] is one distributed decision making rule that

selects the efficient equilibrium in this setting.

We assume that an adversary wishes to influence agents to play the less efficient Nash

equilibrium ~y. We model the adversary as additional nodes/edges in the graph, where the

new node plays a fixed action y in an effort to influence agents’ utilities and provide them

an additional incentive to play y. Thus, the adversary’s core problem can be thought of as

analogous to more general incentive design problems.

We investigate the tradeoffs between the amount of information available to an adver-

sary, the policies at the adversary’s disposal, and the adversary’s resulting ability to stabilize

the alternative Nash equilibrium ~y. We perform this analysis by specifying three distinct

styles of adversarial behavior:

• Uniformly Random: This type of adversary influences a random subset of agents at

each time step. Uniformly random adversaries have the least amount of information

available, essentially only requiring knowledge of n.
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• Fixed Intelligent : This type of adversary chooses a subset of agents to influence; this

subset is fixed for all time. Fixed intelligent adversaries know the graph structure G.

• Mobile Intelligent : This type of adversary can choose which agents to influence as a

function of the current joint action profile. Thus, mobile intelligent adversaries know

the graph structure, and at each time step, the action choices of all agents.

Our results include an initial study on the influence of uniformly random and fixed in-

telligent agents on general graphs, as well as a complete characterization of each adversary’s

ability to stabilize ~y in a ring graph.

9.1 Model

9.1.1 Model of agent behavior

Suppose agents in N interact according to the graphical coordination game above, spec-

ified by the tuple (G,α), with underlying graph G = (N,E), alternatives {x, y}, and

payoff gain α ∈ R. We denote the joint action space by A = {x, y}n, and we write

(ai, a−i) = (a1, a2, . . . , ai, . . . , an) ∈ A when considering agent i’s action separately from

other agents’ actions.

A special type of graph considered in some of our results is a ring graph, defined as

follows. Let G = (N,E) with N = {1, 2, . . . , n} and E = {{i, j} : j = i+ 1 mod n} , i.e., G

is a ring (or cycle) with n nodes.1 We denote the set of all ring graphs by Gr.

Now, suppose agents in N update their actions according to the log-linear learning

algorithm as specified in Section 8.1.3 in Chapter 8. We take strict stochastic stability as

our solution concept of interest, defined in Section 8.1.3.

Joint action ~x is strictly stochastically stable under log-linear learning for any graphical

coordination game whenever α > 0 [91]. We will investigate conditions when an adversary

can destabilize ~x and stabilize the alternative coordinated equilibrium ~y.

1When considering ring graphs, all addition and subtraction on node indices is assumed to be mod n.
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9.1.2 Model of adversarial influence

Consider the situation where agents in N interact according to the graph G and update

their actions according to log-linear learning, and an adversary seeks to convert as many

agents in N to play action y as possible. At each time t ∈ N the adversary influences a

set of agents S(t) ⊆ N by posing as a friendly agent who always plays action y. Agents’

utilities, Ũ : A× 2N → R, are now a function of adversarial and friendly behavior, defined

by:

Ũi((ai, a−i), S) =



Ui(ai, a−i) if i /∈ S

Ui(ai, a−i) if ai = x

Ui(ai, a−i) + 1 if i ∈ S, ai = y

(9.3)

where (ai, a−i) ∈ A represents friendly agents’ joint action, and influence set S ⊆ N

represents the set of agents influenced by the adversary. If i ∈ S(t), agent i receives an

additional payoff of 1 for coordinating with the adversary at action y at time t ∈ N; that

is, to agents in S(t), the adversary appears to be a neighbor playing action y. By posing as

a player in the game, the adversary can manipulate the utilities of agents belonging to S,

providing an extra incentive to choose the inferior alternative y.

Throughout, we write k to denote the number of friendly agents the adversary can

connect to, called the adversary’s capability. Given k, Sk :=
{
S ∈ 2N , |S| = k

}
denotes

the set of all possible influence sets. In this chapter, we consider three distinct models

of adversarial behavior, which we term fixed intelligent (FI), mobile intelligent (MI), and

uniformly random (UR). To denote a situation in which influence sets S(t) are chosen by

an adversary of type ∈ {FI,MI,UR} for a given k, we write S ∈ type(k).

If an adversary is fixed intelligent (FI), this means that the influence set S is a function

only of the graph structure and α. That is, the adversary must commit to an influence set

S that is fixed for all time (in the following, note that S is always implicitly assumed to be
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a function of G):

S ∈ FI(k) =⇒ S(t) = S. (9.4)

If an adversary is mobile intelligent (MI), this means that the influence set S(a) is a function

of the graph structure, α, and a(t), the state at time t:

S ∈ MI(k) =⇒ S(t) = S(a(t)). (9.5)

Note that type-MI adversaries have the freedom to choose a mapping S : A → Sk, whereas

a type-FI adversary must choose that mapping to be a constant function of state a. Finally,

if the adversary is uniformly random (UR), the influence set S at each time t is chosen

uniformly at random from Sk, independently across time:

S ∈ UR(k) =⇒ S(t) ∼ unif{Sk}. (9.6)

9.1.3 Susceptibility

Given nominal game (G,α), adversary policy S ∈ type(k) for some type and k ≥ 1,

we write the set of stochastically stable states associated with log-linear learning as

SS (G,α, S) . (9.7)

We say a game (G,α) is susceptible to adversarial influence of type(k) if there exists a

policy S ∈ type(k) for which SS(G,α, S) = ~y. A quantity measuring the susceptibility of

a particular graph structure G is then

αsus(G, type(k)) , sup {α : (G,α) is suscep. to type(k)} , (9.8)

so that whenever α < αsus(G, type(k)), then by employing the right policy, a type(k)-

adversary can ensure that ~y is strictly stochastically stable.
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Figure 9.1: Values of α below which each type of adversary can stabilize joint action ~y in
a 10-agent ring graph as a function of adversary capability k. For uniformly random (UR)
adversaries, this shows that k = 1 yields the same susceptibility as k = n− 1, but that for
the intelligent types of adversaries, susceptibility depends strongly on k.

9.2 Comparing Adversary Models

9.2.1 Fixed intelligent adversarial influence

In the fixed intelligent model of adversarial behavior with capability k, the adversary

chooses a fixed subset S ∈ Sk of agents to influence, as in (9.4). In a sense, this is the

type of adversary that is most limited, as the adversary has no ability to react to changing

conditions as the agents update their actions. Nonetheless, as can be seen from Figure 9.1,

fixed intelligent adversaries actually can outperform uniformly-random adversaries if k is

sufficiently large.

Define

[i, j] := {i, i+ 1, . . . , j} ⊆ N,

and recall that in ring graphs, all addition and subtraction on node indices is assumed to
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be mod n. Theorem 9.1 gives the susceptibility of any ring graph influenced by a fixed

intelligent adversary.

Theorem 9.1 Let Gr ∈ Gr be a ring graph that is influenced by a fixed intelligent adversary

with capability k ≤ n. Then

αsus (Gr,FI(k)) =
k

n
. (9.9)

This can be realized by an adversary distributing its influence set S as evenly as possible

around the ring, so that

|S ∩ [i, i+ t]| ≤
⌈
kt

n

⌉
(9.10)

for any set of nodes [i, i+ t] ⊆ N , with i ∈ N , t ≤ n.

The proof of Theorem 9.1 is in Section 9.3.2.

9.2.2 Uniformly random adversarial influence

General graphs

It may be difficult to characterize the exact susceptibility of an arbitrary graph to

random adversarial influence, but the following theorem gives an important piece of the

puzzle. Here, we show perhaps counterintuitively that that the susceptibility of every graph

to a uniformly random adversary is independent of the adversary’s capability k.

Theorem 9.2 Let G be any graph. For any k ∈ {2, . . . , n− 1},

αsus (G,UR(k)) = αsus (G,UR(1)) . (9.11)

The proof of Theorem 9.2 appears in the Section. This result means that each graph has

a universal threshold such that if α falls below this, then even a single uniformly-random

adversary will eventually influence all agents to play ~y. Note that larger k likely allows the
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adversary to achieve ~y more quickly, but that the threshold value itself for α is independent

of k.

Exact susceptibility for ring graphs

When more graph structure is known, it may be possible to derive precise expressions

for αsus. In this section, we consider an adversary which influences a ring graph uniformly

at random according to (9.6).

Theorem 9.3 Let Gr ∈ Gr be a ring graph that is influenced by a uniformly random ad-

versary with capability k ≤ n. The susceptibility is given by

αsus (Gr,UR(k)) =


1
2 if k ∈ {1, . . . , n− 1},

1 if k = n.

(9.12)

Theorem 9.3 is proved in Section 9.3.4.

Consider Theorems 9.1 and 9.3 from the point of view of an adversary, and suppose that

an adversary cannot choose k, but can choose whether to be fixed intelligent or uniformly

random. Theorems 9.1 and 9.3 suggest that if the adversary’s capability is low, it is better

to employ a uniformly-random strategy than a fixed one; on the other hand, the conclusion

is reversed if the capability is high.

9.2.3 Mobile intelligent adversarial influence on ring graphs

Finally we consider type MI(k) adversaries on ring graphs. Recall that mobile intelligent

adversaries choose influence set S as a function of the current state; thus they are always

at least as effective as fixed intelligent adversaries (since any fixed influence set can be

implemented as a mobile adversary’s policy). However, it is not clear a priori how mobile

intelligent adversaries will compare to those of the uniformly random variety. In this section,

we show in Theorem 9.4 that there exist policies which allow mobile intelligent adversaries
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to render ~y strictly stochastically stable much more easily than the other types, even for

relatively low values of k.

Theorem 9.4 Let Gr ∈ Gr be a ring graph that is influenced by a mobile intelligent adver-

sary with capability k ≤ n. Then

αsus (Gr,MI(k)) =



k
k+1 if k ∈ {1, 2},

n−1
n if k ∈ {3, . . . , n− 1},

1 if k = n.

(9.13)

The proof of Theorem 9.4 is included in Section 9.3.5; this section also presents in

Definition 9.2 a family of adversary policies which realize the susceptibilities given in The-

orem 9.4. Recall that a uniformly random adversary with k ≥ 1 can stabilize ~y any time

α < 1/2; an adversary who can intelligently influence a different single agent in N each

day can stabilize ~y under these same conditions. If the mobile intelligent adversary has

capability k ≥ 3, it can stabilize ~y when α < (n − 1)/n, i.e., under the same conditions as

a fixed intelligent adversary with capability k = n− 1.

9.3 Chapter Proofs

9.3.1 Log-linear learning and its underlying Markov process

For each model of adversarial behavior, log-linear learning dynamics define a Markov

chain, Pβ over state space A with transition probabilities parameterized by β > 0 [91].

These transition probabilities can readily be computed according to the definition of log-

linear learning given in Section 8.1.3 in Chapter 8, taking into account the specifics of the

adversarial model in question. Since Pβ is aperiodic and irreducible for any β > 0, it has a

unique stationary distribution, πβ, with πβPβ = πβ.

As β →∞, this converges to a unique limiting distribution π := limβ→∞ πβ. If π(a) = 1,
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then joint action a is strictly stochastically stable [111].

As β → ∞, transition probabilities Pβ(a → a′) of log-linear learning converge to the

transition probabilities, P (a → a′), of a best response process. Distribution π is one of

possibly multiple stationary distributions of a best response process over game G.

9.3.2 Stability in the presence of a fixed intelligent adversary

When a fixed intelligent adversary influences set S, the corresponding influenced graph-

ical coordination game is a potential game [100]. Given action profile a, define Sy(a) = {j ∈

S : aj = y} to denote the set of influenced agents who are playing y in a. Then this game

has potential function

ΦS(ai, a−i) =
1

2

∑
i∈N

(
Ui(ai, a−i) + 2 · 1Sy(a)(i)

)
. (9.14)

It is well known that a ∈ A is strictly stochastically stable if and only if ΦS(a) > ΦS(a′)

for all a′ ∈ A, a′ 6= a [91].

Proof of Theorem 9.1: Suppose α < k /n. Then

ΦS(~y) = n+ k > n+ αn = ΦS(~x)

for any S ⊆ N with |S| = k. Then, to show that ~y is stochastically stable for influenced

set S satisfying (9.10), it remains to show that ΦS(~y) > ΦS(~yT , ~xN\T ) for any T ⊂ N with

T 6= ∅ and T 6= N. Suppose the graph restricted to set T has p components, where p ≥ 1.

Label these components as T1, T2, . . . , Tp and define t := |T | and ti := |Ti|. For any T ⊂ N
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with T 6= N,T 6= ∅, and 0 < t < n,

ΦS(~yT , ~xN\T ) = (1 + α)(n− t− p) + t− p+

p∑
j=1

|S ∩ Tj |

< n+ k

= ΦS(~y),

where the inequality follows from α < k/n and (9.10) combined with the fact that dze ≤ z+1

for any z ∈ R. That is, αsus(G,FI(k)) ≥ k/n. The matching upper bound is given by

manipulations to Theorem 3 in [112] by selecting T = ∅.

9.3.3 Resistance trees for stochastic stability analysis

When graphical coordination game G is influenced by a uniformly-random adversary, it

is no longer a potential game; resistance tree tools defined in this section enable us to deter-

mine stochastically stable states for uniformly-random and mobile intelligent adversaries.

The Markov process Pβ defined by log-linear learning dynamics over a normal form

game is a regular perturbation of a best response process. In particular, log-linear learning

is a regular perturbation of the best response process defined in Section 9.3.1, where the

size of the perturbation is parameterized by ε = e−β. The following definitions and analysis

techniques are taken from [93].

Definition 9.1 (Regular Perturbed Process [93]) A Markov process with transition

matrix Mε defined over state space Ω and parameterized by perturbation ε ∈ (0, a] for some

a > 0 is a regular perturbation of the process M0 if it satisfies:

1. Mε is aperiodic and irreducible for all ε ∈ (0, a].

2. limε→0+ Mε(ξ, ξ
′)→M(ξ, ξ′) for all ξ, ξ′ ∈ Ω.
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3. If Mε(ξ, ξ
′) > 0 for some ε ∈ (0, a] then there exists r(ξ, ξ′) such that

0 < lim
ε→0+

Mε(ξ, ξ
′)

εr(ξ,ξ′)
<∞, (9.15)

where r(ξ, ξ′) is referred to as the resistance of transition ξ → ξ′.

Let Markov processMε be a regular perturbation of processM0 over state space Ω, where

perturbations are parameterized by ε ∈ (0, a] for some a > 0. Define graph Γ = (Ω, E) to

be the directed graph with (ξ, ξ′) ∈ E ⇐⇒ Mε(ξ, ξ
′) > 0 for some ε ∈ (0, a]. Edge

(ξ, ξ′) ∈ E is weighted by the resistance r(ξ, ξ′) defined in (9.15). The resistance of path

p = (e1, e2, . . . , ek) is the sum of the resistances of the associated state transitions:

r(p) :=
k∑
`=1

r(e`). (9.16)

Now let Ω1,Ω2, . . . ,Ωm denote the m ≥ 1 recurrent classes of process M0. In graph G,

these classes satisfy:

1. For all ξ ∈ Ω, there is a zero resistance path in Γ from ξ to Ωi for some i ∈ {1, 2, . . . ,m}.

2. For all i ∈ {1, 2, . . . ,m} and all ξ, ξ′ ∈ Ωi there exists a zero resistance path in Γ from

ξ to ξ′ and from ξ′ to ξ.

3. For all ξ, ξ′ with ξ ∈ Ωi for some i ∈ {1, 2, . . . ,m}, and ξ′ /∈ Ωi, r(ξ, ξ
′) > 0.

Define a second directed graph G = ({Ωi},E) over the m recurrent classes in Ω. This is

a complete graph; i.e., (i, j) ∈ E for all i, j ∈ {1, 2, . . . ,m}, i 6= j. Edge (i, j) is weighted by

R(i, j), the total resistance of the lowest resistance path in Γ starting in Ωi and ending in

Ωj :

R(i, j) := min
i∈Ωi,j∈Ωj

min
p∈P(i→j)

r(p), (9.17)

where P(i→ j) denotes the set of all simple paths in Γ beginning at i and ending at j.
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Let Ti be the set of all spanning trees of G rooted at i. Denote the resistance of tree

T ∈ Ti by R(T ) :=
∑

e∈T R(e), and define

γi := min
T∈Ti

R(T ) (9.18)

to be the stochastic potential of Ωi. We use the following theorem due to [93] in our analysis:

Theorem 9.5 (From [93]) State ξ ∈ Ω is stochastically stable if and only if ξ ∈ Ωi where

γi = min
j∈{1,2,...,m}

γj , (9.19)

i.e., x belongs to a recurrent class with minimal stochastic potential. Furthermore, ξ is

strictly stochastically stable if and only if Ωi = {ξ} and γi < γj , ∀j 6= i.

9.3.4 Stability in the presence of a uniformly random adversary

The following lemma applies to any graphical coordination game in the presence of a

uniformly random adversary with capability k ≤ n− 1. It states that a uniformly random

adversary decreases the resistance of transitions when an agent in N changes its action

from x to y, but does not change the resistance of transitions in the opposite direction.

Intuitively, this means that viewed through the lens of transition resistances, a uniformly-

random adversary spreads y throughout the network optimally, but cannot slow the spread

of x.

Lemma 9.5.1 Suppose agents in N update their actions according to log-linear learning in

the presence of a uniformly random adversary with capability k, where 1 ≤ k ≤ n− 1. Then

the resistance of a transition where agent i ∈ N changes its action from x to y is:

r((x, a−i)→ (y, a−i) = max {Ui(x, a−i)− Ui(y, a−i)− 1, 0} (9.20)
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and the resistance of a transition where agent i ∈ N changes its action from y to x is:

r((y, a−i)→ (x, a−i)) = max {Ui(y, a−i)− Ui(x, a−i), 0} . (9.21)

Here Ui : A → R, defined in (9.2), is the utility function for agent i in the uninfluenced

game, G.

Proof: In the presence of a uniformly random adversary,

Pβ ((x, a−i)→ (y, a−i)) =
1

n

(
k

n
· exp(β(Ui(y, a−i) + 1))

exp(β(Ui(y, a−i) + 1)) + exp(βUi(x, a−i))

+
n− k
n
· exp(βUi(y, a−i))

exp(βUi(y, a−i)) + exp(βUi(x, a−i))

)

Define Pε ((x, a−i)→ (y, a−i)) by making the substitution ε = e−β. Then, in reference

to (9.15), algebraic manipulations yield

0 < lim
ε→0+

Pε ((x, a−i)→ (y, a−i))

εUi(x,a−i)−Ui(y,a−i)−1
<∞,

implying

r((x, a−i)→ (y, a−i)) = max {Ui(x, a−i)− Ui(y, a−i)− 1, 0} .

Equation (9.25) may be similarly verified.

Proof of Theorem 9.2: By Lemma 9.5.1, for any graphical coordination game with graph

G, the resistance graph associated with log linear learning is the same for all k ≤ n − 1.

Thus it follows that the set of stochastically stable states is independent of k, and thus the

susceptibility αsus(G,UR(k)) is as well.

Proof of Theorem 9.3: For any α ∈ (0, 1), we first show that ~x and ~y are the only recurrent

classes of the unperturbed process P . Note that any state transition out of ~x and ~y has

174



Robust Influence by an Adversary Chapter 9

positive resistance: r(~y → a) = 2, and r(~x → a) = 1 + 2α. Next, consider any state

a /∈ {~x, ~y}, and let i be such that ai = x and ai+1 = y. Lemma 9.5.1 gives that the

resistance associated with agent i switching to action y is 0, and also that the resistance

associated with agent i + 1 switching to action x is 0. By repeating this argument, it can

readily be shown that R(a→ ~x) = 0 and R(a→ ~y) = 0.

That is, there is a sequence of 0-resistance transitions from any a /∈ {~x, ~y} to both ~x

and ~y, but every transition out of either ~x or ~y has positive resistance – implying that they

are the only recurrent classes of P . That is, R(~x→ ~y) = 1 + 2α and R(~y → ~x) = 2. Thus,

α < 1/2 =⇒ R(~x→ ~y) < R(~y → ~x) (9.22)

and

α > 1/2 =⇒ R(~x→ ~y) > R(~y → ~x), (9.23)

yielding the proof.

9.3.5 Stability in the presence of a mobile intelligent adversary

Similar to Lemma 9.5.1, in Lemma 9.5.2 we provide a characterization of the resistances

of state transitions in the presence of a mobile intelligent adversary. Naturally, these re-

sistances are a function of the adversary’s policy, and thus unlike the resistances due to a

uniformly random adversary, they do depend implicitly on k.

Lemma 9.5.2 Suppose agents in N update their actions according to log-linear learning in

the presence of a mobile intelligent adversary with capability k ∈ {1, . . . , n − 1} and policy

S : A → Sk. Then the resistance of a transition where agent i ∈ N changes its action from

x to y in the presence of policy S is:

rS((x, a−i)→ (y, a−i)) = max
{
Ũi(x, a−i, S(a))− Ũi(y, a−i, S(a)), 0

}
(9.24)

and the resistance of a transition where agent i ∈ N changes its action from y to x in the
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presence of policy S is:

rS((y, a−i)→ (x, a−i)) = max
{
Ũi(y, a−i, S(a))− Ũi(x, a−iS(a)), 0

}
. (9.25)

Here Ũi : A → R, defined in (9.3), is the utility function for agent i in the influenced game

G̃.

Proof: This proof proceeds in a very similar fashion to that of Lemma 9.5.1. The

main difference lies in the fact that for the UR adversary, for any state a ∈ A and any agent

i ∈ N , there was a positive probability (ex ante, before S is drawn) either that i ∈ S or

that i /∈ S. In contrast, the impact of a MI adversary on agents’ utilities is deterministic

since S is a function of a. Thus, the asymmetry between x→ y and y → x transitions that

appeared in Lemma 9.5.1 vanishes.

For ring graphs, Table 9.1 enumerates several of the key transition resistances experi-

enced under the influence of mobile intelligent adversaries. Next, for the special case of

k = 2, the following lemma fully characterizes the recurrent classes of the unperturbed best

response process P s̄ associated with an arbitrary mobile intelligent adversary’s policy S̄.

Lemma 9.5.3 For any ring graph G ∈ Gr, let k = 2, let S̄ be any adversary policy, and

P S̄ be the unperturbed best response process on G associated with S̄. Every recurrent class

of P S̄ is a singleton. Furthermore, an action profile ā (other than ~x and ~y) is a recurrent

class of P S̄ if and only if the following two conditions are both satisfied:

1. ā has a single contiguous chain of agents [i, j] playing x: āi = āi+1 = · · · = āj = x

such that j − i ∈ [1, n− 3].

2. S̄(ā) = {i− 1, j + 1}.

Proof: At a state ā and policy satisfying 1) and 2), either agent i or j can switch to y

with a resistance of α, or agent i− 1 or j+ 1 can switch to x with a resistance of 1−α. All

other transitions have higher resistance than these; this demonstrates that ā is a singleton
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Table 9.1: Summary of transition resistances derived from Lemma 9.5.2. © 2018 IEEE

# nbrs with aj = ai i ∈ S rS(x→ y) rS(y → x)

0
no 2 + 2α 2

yes 1 + 2α 3

1
no α 0

yes 0 1− α

2
no 0 0

yes 0 0

recurrent class. We will show the contrapositive to complete the proof of 1) and 2). If ā has

more than one contiguous chain of agents playing x, then either there is an agent playing y

with two neighbors playing x, or there is an uninfluenced agent playing y with a neighbor

playing x. Thus, that agent deviating to x is a 0-resistance transition to another state (see

Table 9.1) so ā cannot be a singleton recurrent class. If ā has a unique contiguous chain

of x of length 1 or n − 1, then there is a 0-resistance transition to ~y or ~x, respectively. If

1) is satisfied but 2) is not, then there is an uninfluenced agent playing y with a neighbor

playing x; again a 0-resistance transition to another state.

To see that every recurrent class is a singleton, simply note that any state other than

~x, ~y, or one satisfying 1) can be transformed into either ~x or ~y by a finite sequence of

0-resistance transitions.

Naturally, there are a vast number of policies which a mobile intelligent adversary can

employ; we propose a family of such policies for ring graphs; we say that any policy in this

family is a balanced policy.

Definition 9.2 (Balanced Policy) Let G ∈ Gr be a ring graph with n nodes. For any

state a ∈ A, let [i, j] be the longest chain of agents playing x (break ties lexicographically).

For a type MI(k) agent, policy S : A → Sk is balanced if it satisfies the following condi-

tions.2

1. If j − i > 1, let i ∈ S(a). If additionally k ≥ 3, let {i− 1, i, j + 1} ⊆ S(a).

2Note that Definition 9.2 does not always specify the location of every adversary. Thus, there is a large
family of policies satisfying Definition 9.2.

177



Robust Influence by an Adversary Chapter 9

© 2018 IEEE

Figure 9.2: Graphical depiction of a balanced mobile intelligent adversary policy of Def-
inition 9.2. There are essentially three strategies of adversarial influence: Indeterminate
(gray), Defensive (green), or Attacking (red). For each k depicted above, the upper chain
of agents depicts the special case that a single agent is playing x; the lower depicts the
longest contiguous chain in the graph of agents playing x. Note that for all k ≥ 1, a
balanced policy requires one of the k adversaries to be attacking whenever the longest
chain of x is longer than 1. For k = 2, in the special case that the longest chain of x is
length 1, both adversaries are defensive. For k ≥ 3, there are always enough adversaries
that two can be defensive and one attacking.

2. If k ≥ 2 and j = i, let {i− 1, i+ 1} ⊆ S(a).

Figure 9.2 is a graphical depiction of this policy. The key idea is that there should always be

one adversary “attacking” (red circles in Figure 9.2) an x who has a y neighbor, and if there

are enough adversaries, the longest contiguous chain of x’s should always be surrounded by a

pair of “defensive” adversaries (green circles in Figure 9.2). That is, this policy specifies the

placement of no more than 3 adversaries; the placement of any remaining “indeterminate”

adversaries (dark gray circles in Figure 9.2) is of no importance to the results of Theorem 9.4.

We can now proceed with the proof of the theorem.

Proof of Theorem 9.4: We show that under a balanced policy, if α is less than each of

the susceptibilities shown in (9.13) that ~y is strictly stochastically stable; subsequently, we

show that no policy can outperform a balanced policy. In the following, we write RS(a, a′)

to denote the resistance of a transition from a to a′ in the presence of adversary policy

S : A → Sk.
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Susceptibility to a balanced policy

Let G = (N,E) be a ring graph influenced by a mobile intelligent adversary with capa-

bility k using a balanced policy Sb satisfying Definition 9.2. As in the proof of Theorem 9.3,

only ~x and ~y are recurrent in the unperturbed process PSb , because at every state a ∈ A,

there is a sequence of 0-resistance transitions leading to either ~x or ~y, as can be verified by

the resistances listed in Table 9.1.

First consider RSb(~x→ ~y). We call a state transition an incursion if it is either ~x→ a or

~y → a. Lemma 9.5.2 gives that the incursion of y into state ~x (at an agent being influenced

by an adversary) has resistance rSb(~x→ a) = 1 + 2α. Then, for any state a /∈ {~x, ~y}, there

is always at least one agent playing x who has either two neighbors playing y, or a neighbor

playing y and is connected to an adversary. Thus, there is always a sequence of transitions

from a to ~y with a total resistance of 0, so RSb(~x→ ~y) = 1 + 2α.

Next consider RSb(~y → ~x). Whenever k < n, there is always at least one agent that

is not being influenced by the adversary; thus Lemma 9.5.2 gives that an incursion of x

into ~y has a resistance of 2. If k = 1, a balanced policy does not allow the adversary to

“play defense”; so there is a sequence of subsequent y → x transitions that each have 0

resistance. Thus when k = 1 with a balanced policy, the situation is identical to that of the

uniformly-random adversary, and ~y is strictly stochastically stable whenever α < 1/2.

If k ≥ 2, the first y → x transition after the incursion now has a positive resistance of

at least 1− α. If k = 2, the policy does not allow the adversary to protect against further

spread of x, so we have that RSb(~y → ~x) = 3−α. That is, whenever α < 2/3, we have that

RSb(~x→ ~y) < RSb(~y → ~x) so ~y is strictly stochastically stable.

If k ≥ 3, the policy always defends against further spread of the longest contiguous

chain of agents playing x. Consider the ~y → ~x path given by {1, 2, . . . , n}; under a balanced

policy, this path has resistance 2+ (n−2)(1−α). Note that any alternative ~y → ~x path has

resistance no less than 4, as it would require at least two y → x transitions of agents who

have no neighbors playing x. For any α < 3/2, RSb(~x → ~y) < 4; thus, the only relevant
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situation is when RSb(~y → ~x) = 2 + (n − 2)(1 − α). When this is the case, whenever

α < (n − 1)/n, it follows that RSb(~x → ~y) < RSb(~y → ~x) so ~y is strictly stochastically

stable.

A balanced policy is optimal

Whenever k < n, for any ring graph G, it is clear that αsus(G,MI(k)) ≤ αsus(G,MI(n−

1)) because adding additional adversaries can only decrease R(~x → ~y) and/or increase

R(~y → ~x). Furthermore, it always holds that αsus(G,MI(n − 1)) ≤ αsus(G,FI(n − 1)) =

(n−1)/n. This is because mobile intelligent adversaries are strictly more capable than fixed

intelligent. Thus, the susceptibility in (9.13) is tight for the case of k ≥ 3.

When k = 1, for any adversary policy S1 of type MI(1), the only recurrent classes are

~x and ~y. This is because the adversary does not have enough capability to “play defense”:

at every state a with some agent playing x, then regardless of the adversary’s policy, there

is an agent playing y that can switch to x with 0 resistance (see Table 9.1). That is, there

is a 0-resistance transition to a state with strictly more agents playing x, showing that

RS1(~y → ~x) = RSb(~y → ~x). It has already been shown that RS1(~x → ~y) ≥ RSb(~x → ~y),

and thus it is proved that a balanced policy with k = 1 is optimal.

When k = 2, the situation is more challenging, because there are too few adver-

saries for us to appeal to Theorem 9.1’s upper bound, but enough adversaries that the

unperturbed process may have a multiplicity of recurrent classes. Note that to show that

αsus(G,MI(2)) ≤ 2/3, it suffices to show that when α = 2/3, ~y can never be strictly stochas-

tically stable for any adversary policy.

Let S2 be any adversary policy with k = 2, and suppose there are m states satisfying

both conditions of Lemma 9.5.3 (we call these the “mixed” recurrent classes; in each, some

agents are playing x and some y). When α = 2/3, the minimum-resistance tree rooted at ~x

has total resistance no more than 2 + (m + 1)(1 − α): the resistance of leaving ~y is 2, the

resistance of leaving each of the m mixed recurrent classes is 1− α, and there can be up to
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an additional resistance-1 − α transition from ~y to a state with 2 agents playing x. Thus,

the stochastic potential of ~x as a function of α is

γ~x(α) = 2 + (m+ 1)(1− α). (9.26)

Let ā denote a mixed recurrent class, and with abuse of notation, also the state asso-

ciated with that class. When α = 2/3, for any other state a′ accessible from ā, Table 9.1

gives that rS2(ā→ a′) ≥ 1− α. Thus, for any other recurrent class a†, we have

RS2

(
ā, a†

)
≥ 1− α. (9.27)

Now, let T be the minimum-resistance tree rooted at ~y. For any recurrent class a†,

RS2(~x, a†) ≥ 1 + 2α, so it follows from (9.27) that the stochastic potential of ~y as a function

of α is lower bounded by

γ~y(α) = RS2(T ) ≥ 1 + 2α+m(1− α). (9.28)

It can be readily seen that for all α > 2/3, γ~x(α) < γ~y(α), indicating that ~x is strictly

stochastically stable, and showing that αsus(Gr,MI(2)) ≤ 2/3.
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Chapter 10

Conclusions

In summary, we have presented the following main contributions to the field of robust game

design for sociotechnical systems. Recall the central questions posed in Chapter 1:

1. How robust are existing behavior-influencing methodologies to variations in

underlying system parameters?

In Chapter 3, we show that fixed tolls are not robust in many ways: variations in

latency functions, traffic rate, and network structure can not only prevent fixed tolls from

incentivizing optimal flows, but can also render them perverse. Chapter 4 studies well-

known marginal-cost tolls and shows that they are more robust, but can still create perverse

incentives if a routing problem is sufficiently complex.

2. What features of a behavior-influencing mechanism directly confer robust-

ness?

We show that the universal taxation mechanism of Chapter 5 can incentivize optimal

routing, requiring no information about network structure or user sensitivities, provided

that it can charge very large prices. In this sense, we might say that “large” prices have

more robustness than small ones. Furthermore, Chapter 5 directly compares flow-varying
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tolls to fixed tolls (see Theorem 5.4), and shows that a great deal of robustness can be

gained by using a flow-varying approach.

3. How can a planner systematically avoid perverse incentives?

Our contribution here comes in Chapter 6, where we show that provided the networks

under consideration are simple enough (symmetric parallel networks are sufficient), a plan-

ner can provably avoid perverse incentives by applying a conservative generalized marginal-

cost taxation approach. On the other hand, we show that on general networks, perverse

incentives are always a risk.

4. How does this connect with the literature on the design of strategic games?

We investigate this in Chapter 8, and show a setting where there exists no robust

incentive design which can prevent arbitrarily-poor states from emerging for a distributed

multiagent system. Additionally, Chapter 9 considers the case that an adversary wishes to

influence emergent behavior in a distributed system; the results here may help inform the

design of more resilient distributed systems.

10.1 Open Questions and Future Work

There is much work to be done here. In the area of incentives for selfish routing, a great

deal of our work has focused on the case of so-called network-agnostic tolling functions;

i.e., tolling functions which do not depend on the structure of the overall network. A

recurring theme of this dissertation is that the network-agnostic paradigm is inherently

limiting outside of relatively simple settings. Thus, future work should focus on studying

the exact form of this limitation. Network agnosticity requires that a taxation mechanism

takes the specific form of a mapping from latency functions to taxation functions, and thus

cannot depend on any information about anything elsewhere in the network. However,

suppose a taxation mechanism were allowed to know exactly which latency functions exist
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in a network, but that the mechanism could not observe how the respective edges were

connected. Would this small additional piece of information improve the effectiveness of a

taxation mechanism?

Another area which this dissertation does not consider is knowledge of the latency

functions themselves. What if an edge’s latency function were only known to be a polynomial

with coefficients selected from some known polytope? Would marginal-cost pricing still be

an effective approach, perhaps in some conservative sense?

In the area of distributed control, as considered in Chapter 8, how might the patholo-

gies in this dissertation be avoided? A negative result as shown here can be seen as the

identification of a bottleneck: what additional information or methodologies would widen

the bottleneck? One avenue of investigation here may be to see how allowing limited

information-sharing between agents may mitigate these pathologies.
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