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Abstract

In this paper we are concerned with efficient methods for calculat
ing the success function of replacement policies used to manage very

large fixed size caches. Such problems arise in studying the caching of
files on disk.

We roview earlier work by Coffman and Randell, and Mattson et al.
Wwe characterize a class of replacement policies for which it is possible
to cvaluate the success function for a single cache size in time
Oo(n*log(s)), where n is the number of memory refercnces in the trace
and s is the size of cache. We then construct an algorithm to evaluate
the success function for the Least Recently Used replacement policy in
time O(n*log(s)), for cache sizes smaller than s. This algorithm runs
in bounded memory, O(s). We also show how to modify Bennett and
Kruskal's algorithm to run in bounded space. The two algorithms have
the same asymptotic running times (within a constant factor). Mecasured
running times for the classic LPU algorithm, Bennett and Kruskal's algo
rithm, and our new algorithm are compared.

We consider the impact of variable size segments (files, rather than
fixed sizec pages), and deletions on algorithms for calculating success
functions,
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1. Introduction

l.1. PFile System Storage Hierarchy Management

We wish to study policies which automatically manage the migration
of data within storage hierarchies used to implement file systems. We
shall use the term "virtual memory system" to denote a hierarchy of
storage devices and a set of policies to manage the movement of informa -
tion between the levels of the storage hierarchy 1 fThe effect of such
a virtual memory system is to present the illusion of a single lecvel,
uniformly addressable memory. The user need not concern himself with
the actual location of the information in the storage hierarchy.

The topmost 1level of the storage hierarchy is comprised of fast,
expensive storage devices, such as semiconductor random access memorics
(RAM). Lower levels are built from progressively slower, cheaper
storage devices: magnetic disks and tape drives.,

Classical virtual memory studies have been concerned with the cach -
ing of executing programs.

We are interested in studying two types of caches used to implement
file systems. One such cache keeps fixed size blocks (sometimes called
pages, typically 512 bytes to 4K bytes in size), which normally reside
on disk, in a buffer pool in RAM., We will call this a disk cache. Some
database management systems such as IMS use fairly large ones [Benn7S5].
Another type of cache moves entire files between disk (the cache) and
tape (the secondary store), We will call this a file cache [Smith79,
Stxitt77]). On those occasions where we are indifferent to the nature of
the cache, we shall use the generic term segment to refer to page,
block, or file.

Pile caches are distinguished by the variable size unit of informa-
tion moved between different levels of the storage hierarchy. Deletions
of blocks from disk caches and files from file caches are commonplace,
whereas deletions are nonexistent in most program caches.

It has been observed that programs do not reference memory randomly.
Instead programs exhibit locality of reference, i.e., they tend to
reference memory locations which are > "near" those referenced recently.
If one keeps recently referenced information in the higher levels of the
storage hierarchy, then it is possible to build a storage system whose
average access time is close to that of the topmost (most expensive)
level and yet whose average unit cost is close to that of the bottommost
(cheapest) level,

Below are definitions of some standard terms used in this area
[Coff73]. Consider a two level hierarchy in which fixed size blocks
(pages) are transferred between levels, If a page is referenced which
is not in the top level (the cache) and the cache is {full then a
"replacement policy" decides which page already in the cache should be
evicted ("pushed") to make room for the incoming ("pulled") page. 1If
the page referenced was in the cache we say that a "hit" occurred. If
the page was not in the cache we call the event a “miss" The hit ratio
for a specific size cache, managed by a specific policy for a particular

1 others have used this term to refer specifically to the storage
system used to hold executing programs. We use it here in a generic
sense.




sequence of memory references is simply the ratio of hits to the total
number of memory references. The miss ratio is the ratio of the number
of misses to the total number of memory references. The success func-
tion is simply the hit ratio as a function of cache size.

We would like to investigate how well various policies for managing
the file system caches work and how big a cache is needed to obtain a
specified hit ratio. To answer these questions we would like to have
efficient methods of calculating the success functions of replacement
policies, The traces of memory references (address traces) which we
will use to evaluate various replacement policies are typically several
hundred thousand references longz. Evidence to date suggest that the
traces in question will exhibit poor locality, i.e., that very large

caches are necessary to obtain high hit ratios?, Earlier work studying
caches for holding executing programs typically dealt with cache sizes
of a few dozen pages. Since the running time of the classic methods of
computing success functions depends on the locality of reference in the
address traces the efficiency of the calculations was not as pressing a
problem in the earlier work.

Por the problems we wish to address, both the runhing time and
storage requirements of the evaluation algorithms are important.

In this paper we begin by reviewing a taxonomy of replacement poli-
cies, characterized according to the computational complexity of the
algorithms used to evaluate their success functions. We then report a
new algorithm for evaluating the success function of the Least Recently
Used (LRU) policy. The proper treatment of deletions of files from a
cache, and of references (updates) which alter the size of files in a
cache 1is explained., Pinally we present performance measurements of
various algorithms for calculating LRU success functions.

1.2. Machine Model for Complexity Results

In the next sections, we will examine the running time and storage
requirements of several algorithms both theoretically and empirically.

The theoretical results on computational complexity of the evalua-
tion algorithms will be presented in terms of a machine with a fixed
size random access memory. We shall assume that the usual computer
instructions can be performed on single word operands in constant time,
that the algorithms execute on a word machine, and that the words are of
sufficient size to hold the variables we are interested in: the segment
name and the reference time. Memory requirements are stated in words.
These are conventional assumptions in complexity theory.

2These traces are obtained by processing System Management Facility
traces of file system activities on IBM mainframes, In this paper we
use only synthetic traces to assess the efficiency of various methods of
calculating success functions.

3[Benn75] is concerned with evaluating caches containing several
hundred pages and ([Stritt77) and ([Smith79] are concerned with file
caches containing thousands of files.




2. Stack Policies

In 1970 Mattson, et al. [Matt70] characterized a class of replace-
ment policies, called "stack policies”, for which it is possible to
evaluate the success function for all cache sizes in one pass across the
address trace. All stack policies also have monotone nondecreasing hit
ratios as a function of increasing cache size [Matt70].

A stack policy specifies, each time a page is referenced, a total
ordering on all pages which have been referenced up to the present. This

ordering is called a priority 1ist*, Por a given cache size, the stack
policy will always replace (push out of the cache) the page with the
lowest priority. Mattson et al. showed that this is equivalent to the
requirement that such policies satisfy an inclusion property, The
inclusion property holds if, for all address traces, a given size cache
always includes all of the pages in smaller caches at the same point in
the address trace®.

As a consequence it is possidle to represent the contents of all
size caches (at a specific point in time) by a single stack equal to the
the size of the largest cache. The top n cells of the stack contain the
names of the pages in a cache of size n at a time t in the address
trace. The location of a page in the stack (measured from the top of
the stack) is the minimum memory capacity (MMC) of a cache which would
contain the page referenced, Because of the inclusion property all
larger caches would also contain this page. The hit ratio for a cache
of size S is the fraction of references whose MMC is less than or equal
to S. Hence to evaluate the success function for all cache sizes one
calculates the MMC for each reference, tabulates the the frequencies of
MMC's, normalizes by the total number of references to give a probabil-
ity distribution, and then integrates to yield the cumulative distribu-
tion function of the MMC's (i.e., the success function).

To calculote the MMC's one must update the stack at each memory
reference to reflect the new cache contents. For example, consider the
stack shown in figure 1 and suppose that the next page referenced is
page 3 located fifth from the top in the stack. In this example, small
numbers designate high priorities. Assume that the priority number for

each page Nds been generated by some licy (not LRU) and that it does
HRE VHANRMR Rvept WHEN tHhe  PAYS 4B YR PR YRNWed,

4por example one might order the pages according to the time since
each was last referenced, with least recently used pages having the
lowest priority. -

S5the first-in-first-out (PIPO) replacement policy does not satisfy
the inclusion propexrty and hence is not a stack policy.




stack before Stack after
Stack reference Page reference
Position Page Priority Pushed Page Priority

1) 6 4 6 3 o]
2) 4 1 6 4 1
3) 5 6 5 \ 4
4) 7 3 ) ¥ 3
5) 3 9 none 5 6
6) 8 2 none 8 2
7) 9 5 none 9 5

Pigure 1: Stack before and after reference to page 3,
at staci position 5. Note that 0 = highest priority.
For s..plicity we have assumed that the priorities of
nonreferenced pages remain unchanged.

Clearly the first element: of the stack, page 6, must be pushed ( from
the cache of size 1) to make room for the newly referenced page. The
newly refercnced page 3 will be placed in stack position 1. The page
pushed from the cache of size two will either be the page pushed from
the cache of size one, page 6, or the page which was in the cache of
size two Dbut not size one (i.e., page 4 at stack position 2)., Page 6
has priority 4, while page 4 has priority 1. Since lower numbers desig-
nate higher priorities in this example, page 4 has higher priority.
Hence the lower priority of these two pages, page 6, is pushed out of
the cache of size 2, while the higher priority page, page 4, remains (at
stack location 2). Similarly the page pushed firom the cache of size 3
will either be the page pushed from the cach¢ of size 2 (page 6), or the
page (page 5 at position 3 in the stack) which was in the cache of aize
three but not the cache of size two. Again theé lower priority page (page
5) will be pushed, while the higher priority page (page 6) is kept in
the cache of size three (at stack location 3). The fourth stack posi-
tion holds the page which would be contained in cache of olze four, but
not size three. Here one must either pusn page 5 (prtority 6) which was
pushed out the cache of size three, or page 7?7 (priority 3) at stack
location 4 which was the page missing from a coacihe of sise three but
contained in a cache of size four, Page 5, having the lowar priority,

is pushed from the cache of size four, while jage 7 rem «t stack
location 4., The fifth stack location contains the page \ is con-
tained in a stack of size five, but not a cache of size 4, - ..®s is page

3, the page being referenced. It is now placed at the top of the stack.
The page pushed from the cache of size four, page 5, is placed in stack
location 5, A hit is recorded for MMC 5.

Updating the stack for a memory reference thus amounts to a single
pass of a bubble sort down the stack until one reaches the currently
referenced page [Coff73]). The stack may be implemented either as an
array or as a lirked list., Assuming that one can determine the priority
of a page in constant time this gives a running time of O(n*d), where n
is the number of memory references in the trace and 4 is average dis-
tanca from the top of the stack of the pages referenced.




2.1. Characterization of Stack Policies

In the remainder of the paper we characterize various classes of
stack policies in terms of the computationzl complexity of algorithms
for computing their hit ratios for various size caches. Section 3 con-
cerns policies which can be processed in space proportional to the larg-
est cache size considered. Section 4 concerns policies which are amen-
able to multi-pass hit ratio evaluation algorithme for problems too
large to fit in memory. Section 5 is about policies for which the hit
ratio can be efficiently calculated for a single cache size. Section 6
concerns a very samall class of policies (containing only the Least
Recently Used policy) for which one can efficiently calculate the hit
ratio for all size caches. '

3. Bounded Cache Sizes

Suppose that, given an trace of segment references, one only wants
to evaluate the success function for a stack policy for cache sizes less
than some constant C. One would hope that this could be done in space
o(C). : v

If the policy does not use any information concerning the history of
the segment prior to its most recent reference, there is no difficulty.

Pages pushed from the cache of size U are simply discarded. Pages not
found in the stack are recorded as misses.

But suppose that the policy does use the prior history of the seg-
ment to compute its priority, e.g. the Least Frequently Used (LFU) pol-
icy. Then pushing segments out of the stack of size C renders their
history inaccessible when they are next referenced. This problem can be
dealt with by preprocessing the trace in the manner described below.

Suppose that the replacement policy calculates the priority of a
segment from only a small fixed set of statistics which summarize the
previous history of the segment, and that, as new references occur,
these statistics can be updated in constant time without recourse to any
other information concerning the history of the segment., For example,
the LFU policy would record the time since creation of the segment and
the total number of references to the segment. All practical replace-
ment policies can be so charicterized.

Then one can preprocess the trace as follows. Split the trace by
segment name into sufficient subtraces that the summary statistics for
each subset of segments can be kept in main memory, retaining the chro-
nological ordering within each subtrace, If the segment names are not
contiguous the splitting can be done by calculating a hash function on
the segment name. If the segment references do not already include
timestamps, append timestamps to each segment reference.

Each subtrace is then processed separately as follows. Read through
the subtrace updating a table of summary history statistics for each
segment. Whenever a segment is referenced write out the segment refer-
ence along with the summary statistics calculated at the previous refer-
ence to the segment.

Finally merge all the subtraces of timestamped references (including
the appended summary statistics) back together in chronological order.
We can then process the trace using a stack algorithm for a bounded
cache size, employing the preprocessed summary statistics whenever we
reference a segment we have pushed out of the stack.




The computational complexity of the preprocessing is O(n*log(S/R)),
where n 18 the length of the trace, S is the number of distinct segments
referenced (maxaimum stack size), R is the number of segment histories
which wi1ll fit into main memorys.

A similar technique can be used to evaluate the OPT policy. This
policy has been shown to be optimal if we count all segment faults
equally and ignore the cost of pushing dirty (modified) segments out the
cache ([Bela65],[Matt70). It consists of pushing the segment which will
be referenced furthest in the future. The technique described above can
be applied here by reading the trace in reverse order. This can be done
readily i1f the trace is stored on disk. Otherwise one might have to
sort the trace twice,

4. Multi-pass Stack Algorithms

4.1. The Extension Problem

Now suppose that we want to construct a multi-pass evaluation algo-
rithm which will evaluate the success function for cache sizes too large
to fit the stack in memory. For those segments not found in the stack
on the first pass, we pass the segment being pushed from the stack (with
1ts history), and the segment being pulled to a second pass. In the
second pass we simply continue with our bubble sort, adding the size of
the stack in the first pass to the MMC's we calculate.

This solution to the construction of multi-pass evaluation algo-
rithms was given by Coffman and Randell [Coff71]. They called it the
"extension problem". He was concerned with finding the hit ratio for
cache sizes greater than C, given information only on the occasions of
faults (misses) from the cache of size C. This information (a "reduced
trace” of the faulted segments) is generally much shorter than the ori-~
ginal address trace., Furthermore, in a real system, a segment fault
causes a trap to the operating system. Thus, acquiring a reduced trace
18 much easier than collecting a full trace.

Because the reduced trace is generally much smaller than the origi-
nal trace, the combined space-time product of a two pass evaluation
algorithm may be much better than a one pass algorithm’. (1The stack for
the second pass need only be kept around for a time proportional to the
length of the reduced trace.)

Smith [Smith77] has advocated the use of reduced traces to obtain
approximate resalts for paging policies where the policy under investi-
gation in the second pass is not the same as in the first (reducing)

6 S/R 18 the number of subtraces we split the original trace into,
so that the tables required to preprocess each subtrace will fit .into
memory. If we are constrained (by memory requirements for file buffers)
to split files at most k ways on each pass, then log, (S/R) passes may be
required to completely split the trace, i.e., the height of a merye tree
whoga fan-out is k and which l.as S/R leaves. Hence the splitting would
require time O(n*log(S/R)). The preprocessing for all of the subtraces
can be done in time O(n). Merging the subtraces back together will ve-
quire time O(n*log(S/R)).

7The gpace-time product of a computation is the integral of instan-
taneous nemory usage over the course of the computation.




pass.

4.2. Separable Priorities

In order for multi-pass algorithms to be practical one must bound
the amount of information which must be passed to the second pass at
each segment fault from the first pass cacha. For most policies, such
as LRU or LFU, this is not a problem. The segment priorities in the
saecond pass can be calculated from a fixed set of history statistics
passed along with the segment when it was pushed by the first pass.

But suppose that the priority of the segment does not depend solely
on its own history, but also that of other segments ("precursor seg-
ments” ). Then one might have to pass a new priority list out with every
segment pushed from the first pass. This could grow to enormous size.

In order to obtain practical multi--pass algorithms we will therefore
restrict consideration to policies which have separable priorities,
i.e., priorities which are solely the function of a (small) fixed set of
statistics summarizing the previous history of the segment.

5. Time Invariant Relative (TIR) Priority Policies

We will now consider a class of stack policies for which one can
cfficiently calculate the hit ratio for a single large cache size. This
is the same problem as managing a fixed size cache. Hence these poli-
cies arc practical candidates for managing very large fixed size caches.
Also, by constructing multi-pass evaluation algorithms for these poli-
cies one can evaluate the success function at a small number of points
cfficiently. For example one might be constrained to purchase memory
for the cache in fixed size increments (each disk drive might hold
several hundred megabytes). Alternatively, one might use a single size
evaluation algorithm as the first pass in solving the extension problem.

To calculate the hit ratio for a specific size cache one simply
simulates the management of the cache., For each memory reference, one
must determine whether it is in the cache. 1If it is, one merely updates
its history statistics (which are used in calculating its priority). If
the segment is not in the cache then one must find the lowest priority
segment in the cache and push it out.

Now suppose that the relative priorities are "time invariant", i.e.,
that the relative priorities of two segments do not change unless one is
referenced®. Any policy in which the priority of a segment is a func-
tion solely of the segment‘'s history up to the last reference plus a
constant (identical for all segments) times the time since last refer-
ence to the segment is a "time invariant" policy, e.g., LRU. Thus at
each reference the only change in the priority list is the position of
the currently referenced segment., Hence one can represent the priority
list as a heapg. In a heap one can find the minimum priority segment
and delete it in time O(log C), where C is the number of segments in the
cache. Thus the total computation time would be O(n*log(C)).

8rime invariant priority functions have been used in the context of
processor scheduling by Ruschitzka and Fabry [Rusch77].

91f the relative priorities were not time invariant one would have
to rebuild the heap at each reference, instead of just deleting and
reingerting as single element.




This notion can be extended (as described below) to form a larger

class of replacement policies at a modest increase in the computational
complexity.

One could divide the segments into k classes, with time invariant
relative priorities within each class, The priority of a segment could
thus be a function of the history up to the last reference plus one of k
constants times the time since last reference, e.g. a generalized LRU
with different aging rates for different types of segments. To calcu-
late a hit ratio one now must calculate the minimum of the k minima of
each heap. Thus the running time will be bounded by
O(n*k)+0(nflog(C)).1°

Another possibility would be to construct a composite piecewise time
invariant relative priority function, by switching between several time
invariant relative priority functions a finite number (k) of times as
the time since last reference to a segment grows., This would allow the
priority of a segment to be an arbitrary function of the segment history
up to the last reference plus a piecewise linear function of the time
since last reference. A hit ratio calculation for such a policy has
running time bounded by O(n*k) + O(n*k*log(C)), but the average running
time will depend on the distribution of inter-reference intervals,1?!

Among the class of functions which generate time invariant relative
(TIR) priorities are priority functions of the form p(i,t)=art+b(i),
where p(i,t) is the priority of segment i at time t, a is constant for
all segment and b(i) is an arbitrary number unique to each segment and
invariant between successive references to the file (e.g., it could be a
function of the segment's history up to the time of last reference). In
particular if one let tr £ " time since last reference to the segment,
then p(i,t-t f)-a'(t--t )+b(1i) generates time dinvariant relative
priorities. &ﬁus any linear function of the time since last reference
will generate TIR priorities. Futhermore any monotone transformation of
the linear priority function will generate TIR priorities. In particu-
lar

(ax(t-t )+b(1)+c) (ar(t-t y+c)

P(it-t__ ) = e ref = g(1)*e ref

10 qhe linear term n*k may be insignificant, in terms of the average
running time, because one need only compute the minimum of the k minima
of each heap when a segment fault occurs. PFor large cache sizes this
should not occur very often,

11 qhe distribution of inter-reference intervals determines the
number of times the segment priority will have to be recalculated
between successive references. Note that the priority of the segment
must be recalculated, and the segment deleted from one heap and inserted
in another each time one switches priority functions. In the example
of a piecewise linear priority function of time since last reference one
"gwitches” TIR priority functions whenever the time since last reference
grows beyond the domain of a single linear segment of the piecewise
linear priority function, i.e., at each of the kinks in the priority
function. This accounts for the O(n*k*log(C)) term in the bound on the
running time. However, the minimum of the k minima of each heap need
only be calculated when a segment fault occurs. This accounts for the
O(ntk) term in the bound on the running time.




will generate TIR priorities. Then for k-class or piecewise TIR prior-
ity policies one can choose different constants g(i),a,c for each class.

For example, suppose that our replacement policy ranks segments
according to the hazard rate of each segment's inter-reference time dis-
tribution, i.e., according to the probability that the segment will be
referenced in the next instant. Then one could employ multiple classes
and piecewise TIR priority functions to attempt to fit the empirically
estimated hazard rates for various types of segT%giiii. 3 particular,

the exponential priority function, p(i,t)=g(i)*e ref , represents

a very strict notion of a proportional risk model, wherein g(i)
represents the relative risk. Similar sorts of models have been widely
used in biomedical research and there are techniques for fitting these
models from censored datal3,

6. Least Recently Used Policy

6.1. Time Invariant Stack Positions

Now suppose that the relative ordering of two pages in the stack is
time invariant (i.e., does not change except when one of the pages is
reference: ). For what class of stack policies is this the case? It is
true for only one policy, Least Recently Used. To see this, observe
that for LRU (and only for LRU [Coff73]), the priority ordering and the
stack ordering are identical. Consider any policy for which this is not
true, then the possibility arises that two pages at stack positions i
and i+l would be out of priority order. Thus any reference to a page
further down in the stack would result in a reordering of the stack, but
this violates time invariance of relative stack position.

6.2. Tree Representations

If the ordering of pages in the stack is time invariant, then one
can effectively represent the stack as a binary treel?, Each node of
the tree represents a page and the tree is ordered according to the last
reference time for each page. The ordering used is "inorder" as defined
by ([wirth76)], i.e., a chronological ordering of the nodes in ascending
time of last reference corresponds to visiting the nodes in the wrder of
lett, root, right,.

When a page is referenced one finds it in the tree,ls determines ils
position in the stack (as describnd below), deletes it from the tree,

12por example, one might distinguish segments by whether or not they
were directory segments or file segments, whether the last reference was
a read or a write, etc.

13censored data on inter-reference times arises in file migration
studies, because one can only observe the file system for a finite
period of time. Thus there will be many inter-reference intervals which
must be truncated when one ceases recording references.

141¢ the ordering of the pages on the stack was not time invariant
then one would have to reconstruct the tree after each reference instead
of simply deleting and reinserting the referenced page.

150ne can find it in constant time by constructing a hash table on
the page ID's with pointers into the tree.




and then reinserts it in the tree at the top of stack, i.e., as the
rightmost chilad.

Since the top of stack position is always at one side of the tree,
one would generate a very unbalanced tree unless some effort is made to
rebalance the tree occasionally. We implemented a generalized AVL tree
([Fost73] and [Knuth73]), but other types of balanced trees would also
work. AVL trees guarantee that the height of the tree (the longest dis-
tance of any node to the root) is 0O(log(C)), where C is the number of
nodes in the tree (equal to the number of pages in the largest cache
size considered). Purthermore any node can be inserted or deleted and
the tree balance maintained in time O(log(C)) in the worst case. One
can calculate the position of a page in the stack, delete it, and rein-
sert it in the tree, all in time 0O(log(C)).

To facilitate the determination of the position of a page in the
stack, one stores in each node the number of pages in the subtree rooted
at that nodel®, The tree is ordered on the time of last reference, 8o
that all pages in the righthand subtree of a page have been referenced
more recently than it. Then the set of pages which have been refer—
enced more recently than page p are those which lie in the righthand
subtree of p, contain p in their lefthand subtree, or lie in the right-
hand subtree of a page which contains p in its lefthand subtxee. The
position of a page p in the stack can thus be found by traversing a path

from the page in question to the root of the treel?, whenever one
reaches a node (page) which includes p in its lefthand subtree (i.e.,
has been referenced more recently than p) we add the size of that node's
righthand subtree, plus 1 (for the node itself)., Pinally, one adds the
size of p's righthand subtree. This sum is the position of page p in
the stack. Thus the stack position can be calculated in time O(log(C))
if the tree height is so boundedl®, Purthermore, it is clear that
recalculating the subtree sizes does not increase the complexity of
insertions and deletions of an AVL tree except by a constant factor.

6.3. Bennett and Kruskal‘'s Algoxrithm

In 1975 Bennett and Kruskal [Benn75] described an algorithm for cal-
culating LRU hit ratios. This algorithm was built around the observa-
tion that the LRU minimum memory capacities (MMC'0)19 are simply the
number of distinct pages referenced since the last reference to the page
currently referenced.

They construct a bit vector as long as the address trace. 1Initially
all the bits are set to 0. As each memory reference occurs at time ¢,

bit b(t] is set to 1, and the bit, b[tprev]' corresponding to the time

16 the algorithm for calculating the position of a page in the
linear ordering represented by a the tree is taken from [Knuth73].

17Recall that we obtained a pointer to the node containing the last
reference to page p in constant time (on average) via a hash table.

181f one wished to dispense with the father pointers one could
search the tree from the root to the page in question, using the page's
last reference time (obtained via the hash table) as a key.

194 .e., the LRU hit depths (see section 2).




11

of last reference to the currently referenced page is cleareda??, Thus
at any point t in processing the trace, all the bits are O except those
corresponding to the most recant references of each page. We can calcu-
late the MMC of a reference by counting the number of 1 bits in the
interval between the current time and the last reference to the page.

Bennett and Kruskal contrive ¢to do this counting in time
0O(log(inter-reference time)). They do 80 by constructing a fixed struc-

ture m-aiy tree atop the bit vector?l, The leaves of the tree are the
elements of the bit vector. Each internal node contains the sum of the
counts stored in its children, i.e., the count of number of 1's in the
leaves of the subtree (cf. the partial sum tree in Figure 2).

One can calculate the position of a page in the stack by first look-
ing up the most recent previous reference time (tprev) of the page (in
the table one maintains) and then traversing a" path from the leaf
bt v} to the closest common ancestor in the tree of D[t rev] and
b[tgig. At each node which contains b[t ] in its lefthané?subtree,
we add the size of the righthand aubtreé?ﬁvbpdating the counts can be
done by traversing the same path. One need not ascend higher than the
closest common ancestor, at height O(log(inter-reference time)), because
at that point the increase in subtree caused by setting b[t], and the
decrease occasioned by clearing the bit corresponding to the previous
reference cancel., Note that this does not occur on initial references
to a page, when one must go all the way to the root of the tree. An
example is shown in Figures 2,3 and 4.

20 p» table is maintained containing the most recent reference time
for each page (tprev)‘

21mmat i3, a tree with an arbitrary m way fan out at each noda.
22 pgaume one clock tick per reference.
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Stack:
Page Time last Depth in
referenced stack

6 11 1
8 10 2
1 9 3
7 8 4
9 7 5
5 2 6
2 1 7
Partial sum tree
7
B E R na s ar s SN S
3 4
O e asn e FHttbbb bbb
2 1 4 o
+HHHE +H+b bt +H+ b4 +HbHE444
1 1 ) 1 2 2 ) 0

T S R &= X = N S 2 S 2 S SR & o o
o 1 1 o0 o0 o o 1 1 1 1 1 o0 o0 o0 O

~

!
----last reference to page 2

Pigure 2: Stack and partial sum tree at time 11 prior to re-
ferencing page 2 at time 12, Location of last reference to
page 2 is found via a hash table. The leftmost reference ocC-
curred at time zero.
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Sstack:
Page Time last Depth in
referenced stack

11
10
9
5
7

(S0 SN I
A WwWN e

2

Partial sum tree
6
+4+++++t+ bbb bbb
2 4
++4+++++++4 4444 +4++44+4+4t 444
1l 1 4 0
+++++4444 ++4++++4+4++ +4+4++444+ ++++4+4+++4
0 1 0 1 2 2 (o] 0
+4+++4 ++44+4 +++4++ ++4+4+4 +4++4++ +++++ ++4+4++ ++4+++
0 0 1l (o] 0 (o] (o] 1 1 1 1 1l (o] 0 0 0

Pigure 3: Stack and partial sum tree after page 2 is pulled at
time 12. A hit is recorded with MMC = 7., The leftmost refer-
ence occurred at time zero.
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Stack:
Page Time last Depth in
referenced stack

2 12 1l
6 11 2
8 10 3
1l 9 4
7 8 5
4 7 6
5 2 7
Partial sum tree
7
+++++++++ 4+ttt A A 4
2 5
+ 4+ttt bttt A4t ++ttttt 444
1 1 4 1
+4+4++4+4+++4+ +4+44++ 4444 ++4+444+4 +4+4+t4i
(o} 1 (o] 1 2 2 1l (o]
+++++ +++4+4 +++++ +++4++ +4++++ vttt ++4+++ 4t

o (o] 1 o o C 0o 1 b S b 1 1 1 0 (o] 0

~

most recent reference to page 2 ——--

Pigure 4: Stack and partial sum tree after page 2 i2 pushed
onto stack at time 12. Hash table entry for page 2 is updated
to point to the new most recent reference. The leftmost
reference occurred at time zero.

As described by Bennett and Kruskal the algorithm does not run in
bounded memory for a finite size cache and an arbitrarily long trace.
Suppose one is only interested in caches smaller than C pages. On each
fault from a full cache, clear the bit corresponding to the last refexr-
ence to the pushed page and adjust the tree accordingly. Every C refer-
ences, compress the bit string so that it is contiguous and rebnild the
tree so that it begins with the earliest ¢ 23, qhe algorithm now
rung in bounded szpace O(C). To compress the PETY string and recalculate
the tree requires time O(C), but the event only occurs every C refer-
ences, hence the complexity introduced by periodic compression is only
o(n). The height of the tree is now bounded by O(log(C)). The time for
each reference is thus min[O(log(C)), O(log(inter-reference time))].
The total running time is thus bounded by O(n*log(C)), the same result
we got for the AVL tree algorithm.

23 qme table which used to contain the most recent reference times
for each page (assuming 1 clock tick per reference), which was used to
index into Bennett and Kruskal's bit vector, now simply contains
pointers into the bit vector (not true reference times).
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The similarity in running times is not surprising since both algo-
rithms build similar trees. Bennett and Xruskal's algorithm builds a
fixed structure sparse tree, which is periodically recompressed, whereas
the AVL algorithm maintains a compact tree which is continuously rebal-
anced.

6.4. Tvo-level Linked List Algoritha

In section 2 a linked list algorithm for implemerting stack policy
hit ratio calculations was Adiscussed, with running time O(n*d), where 4
is the average stack depth of referenced segments. The linked 1list
algorithm can be be used to evaluate LRU, a stack policy.

The linked list algorithm can be modified to improve its performance
by exploiting the time invariant relative stack positions generated by
the LRU policy. The modified algorithm is known as Franta's [Fran77]
Two-Level linked list algorithm for maintaining simulation event sets (a
linear ordering with insertions, deletions). This algorithm uses a
second linked list as an index into the primary linked list (hence the
name). If the number of nodes in the index is the square root of the
number of nodes in the primary list, and the index entries are uniformly
spaced over the primary list, then at most sqrt(C) nodes in the index
and 2qrt(C) nodes in ths primary list must be visited to £find, rank,
insert or delete a node in the primary list (where C = number of primary
nodes, i.e., segments in the stack). Hence the running *¢ime for pro-
cessing a trace of n referencea, with a stack size bounded by C segments
is bounded by O(n*sqrt(C)).

This algorithm has been used by Ozalp Babaoglu (Babaso]. It offers
intermediate complexity and performance., It could also be used to
evaluate the hit ratio for a single cache size of a time invariant rela-
tive priority policy (other than LRU).

6.5. Deletions and Variable Segment Sizes

Thus far we have limited the discussion to memory hierarchies in
which one moves fixed-size blocks of information (pages) between various
levels. Furthermore we have ignored the question of how to treat dele-
tions.

The file system replacement policies we wish to investigate move
entire files (segments) of various sizes between levels of the storage
hierarchy. External fragmentation of storage (disks) is not an issue
s:nce most file systems can store files on noncontiguous disk pages.

All of the LRU algorithms discussed can be extended to accommodate
variable size segments, If the size of a given segment never decreases
and segments are never deleted then we merely sum the sizes of the seg-
ments instead of counting pages.

Suppose one were to delete a segment from the stack. Then the MMC's
of all segments further down the stack would decrease, because one cal-
culates the MMC's by summing the sizes of segments higher on the stack.
But this is impossible, because under a demand fetch policy a segment
never moves back into a snaller size cache unless it is referenced. To
be accurate one would have to record the maximum depth in the stack a
segment ever attained since the last reference. Similar problems arise
if one allows segment wvizes to decrease when segments are referenced
(e.g., a file 18 overwritten by a newer smaller version).
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Greenberg [Green74] discussed deletions but did not impleme.t a
correct algorithm. Instead he estimated the error introduced by his

approximate algorithm. Smith 24 suggested a method of dealing with
Geletions which we have incorporated into these LRU algorithms, When-
ever a segment is pulled from the stack (either due to a reference or
deletion) one records a gap at the location in the stack where the file
was. This gap is the same size as the pulled file. Whenever a file is
pushed onto the stack one starts at the top of the stack to squeeze out
as much gap space as the size of the file pushed. Finally whenever one
wishes to calculate the depth of a segment in the stack one sums the
sizes of the segments and gaps above the target segment in the stack.

This modification to the LRU algorithms increases the space require-
ments of each algorithm by at most a constant factor (<2), sincc one can
collapse adjoining gaps so that we have at most one gap per segment in
the stack. Whereas before one only had to keep track of the space occu-
pied by files on the stack, one now must maintain parallel records of
the gaps adjoining each file. In the linked list algorithm one simply
stores the size of the gap (if any) prefixing each segment as an entry
in the corresponding segment descriptor. In both the AVL trees and Ben-
nett and Kruskal partial sum hierarchies each node now contains one
entry for the total space occupied by the files in the subtree and one
entry for the total gap space within the subtree. The parallel data
structures for gap space and occupied space were suggested by the the
work reported in [Eggers8o].

For each pull or deletion one must create (or increase) one gap.
For each push, one squeezes the topmost gaps until che total space
squeezed equals the size of the pushed segment. The average number of
gaps which must be squeezed for each push thus depends on the the dis-
tribution of sizes of pushed segments and the distribution of the sizes
of the gaps (generated by pulls or deletions). If all segment are the
same size (pages), or if segments never change size nor are deleted then
the number of gaps squeezed on a push is one (zero if no gaps exist),
If all segment references (pushes, pulls, and deletions) are drawn from
stationary distributions of segment sizes (typically the same distribu-
tion) then one can construct a bound on the average number of gaps
squeezed per push which independent of both the stack size, and the
length of the trace,

Hence impact of deletions on the running time of the LRU algorithms
hinges on the effort required to find and modify each gap. For the AVL
tree and Bennett and Kruskal's algorithms one can incorporate the gaps
into the same data structures and treat them similarly to the file
gizes. In each the time to arcess or modify the gaps is bounded by
0(log 8), where S is the size (i.e,, cardinality) of the stack, PFor the
AVL algorithm this represents no change in running time. But Bennett
and Xruskal's algorithm has now slowed down to within a constant factor
of the AVL algorithm,

One could proceed in the same fashion for the linked list algo-

rithmzs, storing the size of the preceding gap (if any) with each seg-
ment node on the linked list representing the stack. However, the aver-
age time to perform a push would then be proportional to the average

24 private communication.
25 gee sections 2 and 6.4.
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stack depth of the topmost gaps. Potentially this could be much worse
behaved than the average stack depth of referenced seginents since gaps
are generated by deletions as well as references. While most deletions
in a file system are temporary files (found near the top of the stack)
others are old relics near the bottom of the stack. Furthermore, refer-
ences to temporary files will mostly be be deleted from compressed
traces used for studying long term file migration. Installations ( such
as Lawrence Livermore Lab) which have adopted file system caches have
experienced growing file systems, i.e., users do not bother to delete
old files but treat them as archival backups. In such contexts one
finds more file creations (pushes) than deletions. Hence one would
expect more gaps to be consumed than produced. Such chronic gap defi-
cits mean that deep gaps produced by deleting relics will become topmost
gaps. If such gaps are large, they may be squeezed repeatedly before
they are entirely consumed. Pinding and squeezing such deep gaps may
consume inordinate amounts of time,

We have therefore incorporated a second linked 1list for the gaps,
threaded through those segment descriptor nodes which have prefixed
gaps. This makes finding the topmost gap (at the head of the gap list)
to squeeze out during a push trivial, i.e., a constant time operation.
However, now one must arrange to insert all new gaps into this gap list
(1.e., for every pull or deletion). While traversing the linked list of
segment descriptors constituting the stack to find the position of a
pulled segment, one can record the location of the previous gap, if any.
Inserting the new gap occasioned by the pull can than be done in con-
stant time. Thus the running time of the 1linked 1list algorithm
increases (for pushes and pulls) by at most a constant factor (to accom-
modate the search for the previous gap during a pull).

Deletions could be treated as pulls (searching the segment list from
the top). However, determining the depth of a deleted segment in the
stack is not necessary, since del«tions do not produce cache misses.
Thus instead of searching the segment linked list constituting the stack
from the top to determine the depth of the deleted segment (as one would
for an ordinary pull) one could access the segment node to be deleted
via a hash table index. The hash table access can be done in constant
time, versus time proportional to stack depth for searching the linked
list. If a new gap is created by the deletion (rather than merely
enlarging an adjacent gap) then one must insert the new gap into the gap
list. The appropriate location for the insertion can be found by noting
the last reference time recorded in each segment node inspected while
searching the gap list. The gap list will undoubtedly be much smaller
thar, the segment list in realistic file cache studies (it may even be

emy.7).

6.6. LRU Model Reference Generators

The tree algorithms described above can be used to generate syn-
thetic reference strings from an LRU model., 1Instead of climbing a tree
to its root to calculate the position of a page in stack, one searches
the tree from the root to find the page at the specified position in the
stack. This target stack distance is generated by a pseudo-random number
generator with a specified distribution., The search algorithms are sim-
ple analogues of the distance calculation algorithms. The trees are
maintained in the same manner as for the LRU success function calcula-
tions, Thus the running times for reference generation are identical to
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those for calculating success functions to within a constant factor.

6.7. Performance Mcasurements

We have implemented and timed the three algorithms discussed above
for calculating LRU success functions: the classic linked list algorithm

(L.I.), the AVL tree algorithm (AVL), and the modified Bennett and Kruskal
algorithm (MBK).

All of the algorithms were coded by the author in Pascal and run on
a DEC VAX 11/780 under the VMS operating system. The only differences
between the programs was the code for maintaining the stack data struc-
tures. 1In particular all three programs employ an identical hash table
to check for the presence of the seyment in the stack (so that misses
need not search the entire stack)zs.

All of the codes are capable of handling variable size segments,
deletions and multi-pass operation. However, in these timing experi-

mer:ts only single pass operation of the algorithms was measured 27,
Furthermore all segment sizes were set to one.

The timing measurements record the time required to calculate the
succegn function for various synthetic reference strings (traces) gen-
erated from an LRU model., Before timing for each traces commenced, a
warm start was performed by loading the cache with pages in random
order. All three algorithms were timed on identical sets of traces.

Since the theory predicts that the performance of the linked 1list
algorithm will depend solely on the mean stack depth of accessed seg-
ments, while the performance of the other two algorithms should be a
function primarily of the stack size, we employed synthetic reference
strings generated from an LRU model to control these parameters
separately.

No deletions were generated. However, the code to implement dele-
tions (i.e., to create and squecze out gaps) is exercised by the normal
push-pull sequences. (Deletions for the linked list code were treated
similarly to pulls rather than only searching the gap list.) Further-
more, except for the warm start (omitted from the timing statistics),
all of the references generated wexe to previously referenced pages,
i.e., there were no comple.e misses (references to new pages) generated.

26rhe hash table is also used to provide an index into the trees
maintained by the AVL tree and Bennett and Kruskal algorithms. We use
linear hashing with chained overflow. The chained overflow was adopted
to facilitate deletions from the hash table (required whenever a segment
is pushed out from the stack). The access time to find an entry in the
hash table depends on its position in the overflow chain. Hence the
average access time depends on the average overflow chain length, i.e.,
the loading density of the hash table. The gize of the hash table was
chosen for each of the timing runs so as %o preserve the same loading
density of hash table on all runs, i.e., 1.0 entries/bucket.

27 Multi-pass operation would produce similar results except that
the linked 1ist algorithm would have better performance, since the hash
table index avoids the need to search the linked list for missing seg-
ments and deletions from the linked list are faster than from the AVL or
Bennett and Kruskal trees.

n-—--------l-lll-l-IllllIIlI-lIlIlIIIlIIIllIIIIIIIlIlllIIlIIllE:;lI.I.Illlll.!ll-lll-nu-w1
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The LRU stack distance distributions chosen were discrete analogues
of beta distributions., This family of distributions was chosen, both
because it can generate plausibly shaped distributions (i.e., positive,

highly skewed toward zero)28 and because we could easily generate
pseudo-random variates. The synthetic stack distances were chosen by
generating a standard beta variate x distributed as E(p,q) on the unit

interval (0,1)29. This variate was then multiplied by the stack sice,
truncated, and then added to 1 (i.e., scaled to generate integers
between 1 and the stack size).

The pseudo-random uniform random number generator used is a Pascal
implementation of the standard IMSL multiplicative congruential random
number generator, GGUBS.

The parameters p,q of the beta distribution were chosen in conjunc-
tion with the stack sizes in an attempt to generate an orthogonal exper-
imental design of stack size versus mean stack depth of accessed seg-
ments. Such a design facilitates regression studies. For each stack
size (100,200,400,800,1600) strings were generated from the beta distri-
butions B(1,1), B(3,1), B(7,1), B(15,1), B(31,1). This generates the
following approximate mcan stack depths.

Table of Approximate Mean Stack Depths

Parameters of Beta Distribution
B(1,1) B(3,1) B(7,1) B(15,1) B(31,1)

stack size
100 50 25 12 6 3
200 100 50 25 12 6
400 200 100 50 25 12
800 400 200 100 50 25
1600 800 400 200 100 50

Por each design point (stack size, mean stack depth) 4821 refer-
ences were processed after the warm start. The number of references was
chosen to correspond approximately to an integral number of compactions
for the modified Bennett and Kruskal algorithm employing a buffer twice
the size of the stack. Thus for a stack size of 1600 entries, compac-
tion would occur after 3200 references and 4800 references. Hence the
timings correspond to the 1long xun average for very long reference
strings with many compactions. The number of references was also a
tradeoff between available computer time and minimizing the variance of
the results. Each such experiment was repeated a sccond time.

For each experiment we tabulated the following measurements:
(1) E(t) = the mean processing time per reference (in microseconds).

281py stack distance distributions have commonly been observed to be
highly skewed with most references occurring to recently referenced seg-
ments (i.e., small stack distances).

29 gee [(John70].




20

(2) E(s) = the average stack size.

(3) E(logz(s)) = the average of the log of the stack size.

(4) E(d) = the average stack depth of hits.

(5) E(logz(d)) = the average of the log of the stack depth of hats.

Regression studies were then conducted to estimate the parameters of
models to predict the mean processing time per reference. The results
are given below.

(1) FPor the linked list algorithm, the following model accounted for
99.8% of the variance: :

E(t) = 2,28 X E(d) + 356

(2) For Bennett and Kruskal's algorithm, the following model accounted
for 98.5% of the variance:

E(t) = 71.7 X E( ‘logz(s)‘) + 525

(3) For the AVL tree algorithm with a balance factor of 1 (i.e., height
imbalances of adjacent nodes are constrained to 2 or less) the fol-
lowing model accounted for 83% of the variance:

E(t) = 39.0 X E( ‘1092(5)1) + 429

The poorer fit of the model compared to the Bennett and Kruskal or
linked list algorithms is presumably due to the fact that the stack
size is an imperfect predictor of the depth in the tree at which a
file node will be found. Also differently shaped LRU stack depth
distributions may affect somewhat the amount of rebalancing
required. Neither factor is an issue with the Bennett and XKruskal
or linked list algorithms.

(4) For the AVL tree algorithm with a balance factor of 2 (i.e., height
imbalances of adjacent nodes are constrained to 2 or less) the fol-
lowing model accounted for 93% of the variance:

E(t) = 32,4 X E( ‘1092(0)‘) + 508

Again the poorer fit of the model is presumably due to the fact that
the stack size is an imperfect predictor of the depth in the tree at
which a file node will be found. Also differently shaped LRU stack
depth distributions may affect the zmmount of rebalancing required
(to lesser extent than above because of the relaxed balance con-
straints). )

The reader will note that the AVL tree algorithm outperforms the
modified Bennett and Xruskal algorithm. However, the difference is suf-
ficiently small that it might be reverased by clever coding of the modi-
fied Bennett and Kruskal algorithm. Also interesting is the fact that
permitting greater imbalance in the AVL tree produces faster running
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times for large stacks.

6.8. Summary of LRU Algorithms

Comparison of LRU algorithms

Coding Actual
Algorithm Time Space Difficulty Performance
Linked list o(n*d) o(8s) easy poor
B+ X o(n*log(i)) o(n) medium ————
modified B+K o(n*log(s)) O(s) medium good
AVL tree Oo(n*log(s)) o(s) hard best

Notes: B+K is Bennett and Kruskal's algorithm.

n = length of address trace,

d = average stack depth of references,

8 = largest stack size considered (number of entries),
log(i) = average of log of inter-reference time.

6.9. Efficiency in a Vvirtual Mesory Enviromment

Thus far we have been concerned with the efficiency of computations
executing with real memory. 1In this section we will consider algorithms
appropriate to running in a virtual memory environment (or explicitly
referencing secondary storage),

We will assume that the operating system will replace the least
recantly used page in the computation (leaving aside questions of how
many pages are allocated to the computation).

None of the algorithms as implemented made any attempt to keep logi-
cally contiguous nodes physically contiguous (to enhance locality).

For the Bennett and Kruskal algorithm the tree linearization func-
tion could be modified to map a node and its closest descendents onto a
contiguous page of memory. Unfortunately the compression phase would
still flush the working set from real memory.

In virtual memory one would replace the linked list algorithm with a
two-level algorithm, where the top levei consisted of an linked list
index to pages of nodes, Adjacent half-empty pages would be combined
upon detection. Presumably the index would be small enough to stay in
real memory.

The analogue of AVL trees on gecondary storage is a B-tree
[Comer79]. -B-trees provide access and updating times which are propor-
tional to the log of the tree size, where the radix is the number of
nodes which will fit on a page. Within each page we would probably use
an AVL tree. The resulting code, although somewhat complex, should pro-
vide excellent performance.
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7. Conclusions

In this paper we have given a new algorithm 'AVL) for calculating
LRU success functions efficiently in bounded space. We have shown how
to treat deletions of segments in calculating LRU success functions. We
have also shown how to modify Bennett and Kruskal's algorithm for calcu-
lating LRU success functions to run in bounded space while preserving
its efficiency. Empirically both algorithms perform well.
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