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Abstract
Radiologists today play a central role in making diagnostic decisions and labeling images for training and benchmarking 
artificial intelligence (AI) algorithms. A key concern is low inter-reader reliability (IRR) seen between experts when inter-
preting challenging cases. While team-based decisions are known to outperform individual decisions, inter-personal biases 
often creep up in group interactions which limit nondominant participants from expressing true opinions. To overcome 
the dual problems of low consensus and interpersonal bias, we explored a solution modeled on bee swarms. Two separate 
cohorts, three board-certified radiologists, (cohort 1), and five radiology residents (cohort 2) collaborated on a digital swarm 
platform in real time and in a blinded fashion, grading meniscal lesions on knee MR exams. These consensus votes were 
benchmarked against clinical (arthroscopy) and radiological (senior-most radiologist) standards of reference using Cohen’s 
kappa. The IRR of the consensus votes was then compared to the IRR of the majority and most confident votes of the two 
cohorts. IRR was also calculated for predictions from a meniscal lesion detecting AI algorithm. The attending cohort saw an 
improvement of 23% in IRR of swarm votes (k = 0.34) over majority vote (k = 0.11). Similar improvement of 23% in IRR 
(k = 0.25) in 3-resident swarm votes over majority vote (k = 0.02) was observed. The 5-resident swarm had an even higher 
improvement of 30% in IRR (k = 0.37) over majority vote (k = 0.07). The swarm consensus votes outperformed individual 
and majority vote decision in both the radiologists and resident cohorts. The attending and resident swarms also outperformed 
predictions from a state-of-the-art AI algorithm.

Keywords Swarm intelligence · Inter-rater reliability · Artificial intelligence · Consensus decisions · Workflow tools

Introduction

Consensus among radiologists is key for accurate disease 
diagnosis, patient care, and avoiding inadvertent medi-
cal errors [1]. Guidelines from the National Academy of 
Medicine recommend a team-based diagnosis, considered 
superior to individual interpretation [2]. Obtaining high 

inter-rater reliability among experts can be challenging when 
interpreting complex multifactorial diseases and grading 
lesions on multiclass scales. The phenomenon of variable 
inter-rater reliability has been widely documented across 
imaging subspecialities [3–7] and can result in both missed 
diagnoses and limit appropriate medical intervention at the 
right time [8] (Fig. 1).

Radiologists also perform an important role in training 
and benchmarking machine learning models. They classify 
and grade diseases, annotate lesions, and segment anatomi-
cal volumes on images [9, 10]. Opinion of the radiologists is 
often considered as “ground truth” for training models and 
against which its perfor/mance is measured.

Given that annotation tasks can be time-consuming, 
another approach is to have amateur labeling professionals 
(non-clinicians) annotate bulk of the images, with radiolo-
gists arbitrating discordant cases and performing a qual-
ity check of the dataset. However, the use of nonexperts is 
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fraught with risks and can create noisy labels [11, 12] or 
outright errors [13] which is consequential in high stakes 
artificial intelligence (AI) systems such as in medicine [14]. 
Numerous technical methods have been developed to miti-
gate the effects of label noise. These include techniques for  
label cleaning and denoising [15, 16], modifying loss func-
tions [17, 18], or data re-weighting [19–21]. However,  
none of these methods fully mitigate the underlying cause 
of the noisy labels, which originate from interpersonal sub-
jectivity at the time of label creation.

In both the approaches of expert and amateur data labe-
ling, there is an assumption that the supervising radiologists 
being the experts provide true value but this fails to fac-
tor in the disagreement observed between multiple experts 
themselves.

Some common methods used to decide the consensus 
answer in medicine include the use of majority vote [22, 
23], most confident vote [24], arbitration [25], and the Del-
phi technique [26, 27]. In this study, we investigate a novel 
technique called swarm intelligence, to improve consen-
sus among expert participants. Inspired from observations  
made in birds and insects [28–30], swarm intelligence is a 
method to find the optimal answer in a group of multiple auton-
omous agents, who collaborate in real time. This concept has  
found applications in fields ranging from economic forecast-
ing [31], robotics [31] to imaging AI [32].

Related Work and Key Concepts

Collective intelligence or wisdom of the crowds is defined 
as an emergent property of a quasi-independent multiagent 
system, where aggregated responses from the various agents 
outperforms individual responses [33]. This was perhaps best 
demonstrated by Galton’s experiment demonstrating a crowd’s 
average estimate of an ox’s weight exceeding the best indi-
vidual guess [34]. Multiple studies have demonstrated the 
phenomenon of collective intelligence and the various factors 

affecting it [35]. Individual conviction [36], level of expertise 
[37], cognitive diversity [38], personality traits [39], and social 
interaction [40] can all impact decision-making in groups. We 
describe key concepts of the team-based decision process in 
Table 1, relevant for understanding our study design.

Swarm intelligence (SI) is a specialized form of collec-
tive intelligence used to improve group decision-making in 
a wide range of biological species, from swarming bees and 
schooling fish to flocking birds. In recent years, a technology 
called artificial swarm intelligence (ASI) has been developed 
to enable similar benefits in networked human groups [41, 
42]. A software platform called swarm was used in this study 
to enable networked human agents to make assessments by 
working together using the ASI technology. The software is 
designed to connect human agents with two distinguishing fea-
tures; it requires real-time participation of all agents, and it has 
a closed-loop feedback system which updates and informs the 
agents of the combined group intent at each subsequent time 
step. It thus captures the dynamics of individual conviction, 
collaboration, negotiation, and opinion switching and is not 
simply a post hoc majority or an average vote analysis.

The primary aim of our study was to examine the effect of 
synchronous, blinded nonsocial interaction among clinical 
experts at different levels of expertise (radiologists, radiol-
ogy residents), on a specific task (evaluation of meniscal 
lesion on knee MR) while answering a fixed questionnaire, 
and measure its effect on inter-rater reliability. Our second-
ary aim was to examine the effect of the number of partici-
pants (swarm size) in improving inter-rater reliability.

Methods

Radiographic and Clinical Dataset

The present study was conducted using previously acquired 
knee MRIs and corresponding clinical notes of 36 subjects 

Fig. 1  A Sagittal sequence of 
a knee MR exam evaluated by 
multiple subspeciality trained 
musculoskeletal radiologists 
(arrow pointing to the ambigu-
ous meniscal lesion) had 
discordant impressions of the 
presence and grade of lesions. 
B Swarm platform was used to 
derive consensus for the loca-
tion of lesions, which matched 
with the arthroscopic findings 
considered as a standard of 
reference
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enrolled for a longitudinal research study [43]. Subjects 
were recruited and scanned at one of three medical cent-
ers (UCSF, Mayo Clinic, Hospital for Special Surgery), 
to ensure patient data diversity. All subjects underwent 
arthroscopic evaluation and repair of the affected knee by 
an orthopedic surgeon, who recorded findings in the various 
compartments (meniscus, cartilage, bone, and ligaments) for 
lesions.

Distributions of patient demographics were age = 42.79 
± 14.75 years, BMI = 24.28 ± 3.22 kg/m2, and 64%/36% 
male/female. Study subjects were recruited with age > 18 
years and exclusion criteria being concurrent use of any 
investigational drug, fracture or surgical intervention in the 
study knee, and any contraindications to MR. All subjects 
signed written informed consent approved by the Committee 
on Human Research of the home institution. The study was 
approved by the Institution Review Board.

Study Participants (Radiologists and Radiology 
Residents) and Task

Two cohorts of readers were recruited to evaluate the knee 
scans at multiple timepoints (Fig. 2). All readers examined 
only the sagittal CUBE sequence on the institutional Picture 
Archiving and Communication System (PACS). They were 
asked to answer the same question for each exam: “Select 
the regions of the meniscus where a lesion is observed,” 
where a lesion was defined as Whole Organ Magnetic Reso-
nance Imaging Score (WORMS) > 0 [44]. The six possible 
answer choices given were (1) none, (2–5) any one of the 
four meniscal horns (anterior and posterior; medial and lat-
eral horns) compartments, or(6) more than one compartment 
(Table 2).

Cohort 1 included 3 board-certified musculoskeletal radi-
ology attendings (averaging 19 of experience, range 4-–28) 

who read the MRI scans at two timepoints. First, at baseline, 
they independently graded the scan individually, also giv-
ing a self-reported confidence score for their reads (scale: 
1 to 10). After a 15-day washout period, all 36 exams were 
reassessed by the attendings, while participating simultane-
ously in a swarm session (Unanimous AI, San Francisco), 
in real time.

Cohort 2 included 5 radiology residents (PG year 3–5). 
Similar to the attendings, they too first graded the scans 
independently at baseline with self-reported confidence 
scores. After a 15-day washout period, all 36 scans were 
reassessed by all 5 residents for a second time while par-
ticipating simultaneously in a swarm session. After another 
15-day washout period, 3 of the 5 residents (partial cohort 2) 
reassessed the 36 scans for a third time while participating in 
a second swarm session. This was done to measure the effect 
of swarm size on the inter-rater reliability.

Swarm Platform

To obtain the consensus answer of our participating radiolo-
gists and trainees, we utilized swarm platform (Unanimous 
AI, San Francisco), a platform which is modeled on the 
decision-making process of honeybees [45]. The platform 
allows multiple remotely located participants to collaborate 
in a blinded fashion over the Internet, in real time.

The platform consists of 2 key components: (1) a web-
based application and (2) a cloud-based server that runs the 
proprietary swarm algorithm. Participants log into an online 
swarm session, using a standard web browser, and answer 
questions on the platform’s hexagonal graphical user inter-
face (GUI). The GUI captures real-time inputs from the full 
set of participants and provides immediate feedback based 
on the output generated from the swarm algorithm, essen-
tially creating a closed-loop feedback system (Fig. 3).

Table 1  Key concepts in team-based decision-making. Swarm intelligence requires real-time collaboration of all participants, with constant 
feedback of the group intent. Our study was designed to also be asocial to prevent any interpersonal bias

Key concepts Options in team-based decision-making

Time of participation Agents can participate in the prescribed activity asynchronously and then have results calculated post hoc, e.g., majority 
vote or average vote tabulation. Or agents can participate synchronously, where all participants answer questions at the 
same time, without exception. This is a key feature of the digital swarm platform

Expertise Participating agents can all be domain experts (e.g., radiologists, radiology residents trained in specialized image 
interpretation) or nonexperts who may not possess specialized expertise relevant to the task at hand

Scope of task The scope of the task for answering each question can be broad including multiple tasks (review images, clinical notes, 
and lab reports) or narrow and include a single task (image review) only

Questionnaire The set of questions asked to the agents can be fixed and consistent for each item or can be adaptive based on previous 
responses, as seen in the Delphi technique

Communication Communication can be either social or nonsocial. Social interaction allows agents to assess other’s interests and preferences 
and also influence each other while performing the task at hand. This can lead to various interpersonal biases which can 
negatively impact overall results

In contrast, nonsocial interaction allows agents to know group intent while being blinded to the identity, preferences, and 
level of expertise of other participants

403



Journal of Digital Imaging (2023) 36:401–413

1 3

36 retrospective MR scans 

selected from three study sites 

(UCSF, Mayo Clinic, HSS) 

uploaded to PACS for review. 

Study set: Anonymized 

Sagittal CUBE sequences per 

exam selected for review. 

Findings on arthroscopy 

noted as clinical ground truth.

3 MSK radiologists (cohort 

1) evaluate meniscal lesions 

independently. Senior most 

attending’s reads considered 

radiological ground truth.

5 radiology residents (full 

cohort 2) evaluate 

meniscal lesions 

independently.

General exclusion criteria 

for study- Use of any 

investigational drug, prior 

fracture or surgery on 

study knee, 

contraindications to MR.

3 MSK radiologists (cohort 

1) evaluate meniscal lesions 

simultaneously in swarm 

session. 

5 radiology residents (full 

cohort 2) evaluate meniscal 

lesions simultaneously in 

swarm session.

3 radiology residents (partial 

cohort 2) evaluate meniscal 

lesions simultaneously in 

second swarm session.

(2-week washout period) 

(2-week washout period) 

Model was inferred on same 

set of 36 anonymized knee 

scans to get AI predictions. 

State of the art deep learning 

model trained at UCSF to 

evaluate meniscal lesions, 

was used in this study.  

Fig. 2  Flowchart of various steps in the study. In total, 36 anonymized 
knee scans (sagittal CUBE sequences) were reviewed by a cohort of 
three MSK-trained radiologists and another cohort of five radiology 

residents, independently at first and then in swarm sessions. A deep 
learning model trained to evaluate meniscal lesions also inferred the 
same of 36 knee scans to obtain AI predictions for comparison
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Using this system, both the cohorts answered questions 
in real time by collaboratively moving a graphical puck 
to select among a set of answer options. Each participant 
provided input by moving a graphical magnet to pull on 
the puck, thereby imparting their personal intent on the col-
lective system. The preference is recorded as a continuous 
stream of inputs rather than just as a static vote. The convic-
tion of each individual participant is indicated by distance 
between their magnets and the puck (strong versus weak 
pull). The net pull of all participants on the moves the puck 
in that direction, until a consensus is reached on one of the 
answer choices. The output of the collective answer is there-
fore also updated on the GUI in real time, as observed by 

the changing trajectory of the puck during an active swarm 
session. Because all users adjust their intent continuously in 
real time, the puck moves based on the complex interactions 
among all participants, empowering the group converge in 
synchrony.

Meanwhile, the swarm algorithm evaluates each user’s 
intent at each instant by tracking the direction and strength 
of the pull of their magnets while comparing it with other 
participants. This is then used to (i) compute the consensus 
answer at each time step based on collective preferences 
and (ii) to provide instantaneous feedback to participants 
in the form of an updated puck trajectory, allowing them to 
stay with or switch their original answer choice, given the 

Table 2  Question and option choices to capture participant responses during swarm sessions

Question: Select the regions of the meniscus where a lesion is observed

Option 1: None
Option 2: Anterior horn of the medial meniscus
Option 3: Posterior horn of the medial meniscus
Option 4: Anterior horn of the lateral meniscus
Option 5: Posterior horn of the lateral meniscus
Option 6: More than one region

Fig. 3  A Schematic of the 
swarm platform. Multiple 
remote users are connected to 
each other in real time, via the 
web application. Inputs from 
users (blue arrows) are sent to 
the cloud server which runs the 
swarm algorithm, which then 
sends back continuous a stream 
of output (green arrows) to 
users in a closed-loop system. 
B Setup of the swarm session: 
Participants accessed the knee 
exams on a PACS workstation 
and logged into swarm sessions 
via a separate device. C Early 
time point in a session- multiple 
users pulling central puck in 
opposing directions using virtual 
magnets as seen in the graphical 
interface. D Late time point in 
the same session- users then 
converge onto a single answer 
choice after some negotiation 
and opinion switch
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evolving group decision. The consensus decision computed 
by the swarm algorithm considers various factors such as 
(i) the number of swarm participants, (ii) the participants’ 
initial preferences, (iii) participants’ behavior (consistent 
versus changing in opinion), (iv) level of conviction, and 
(v) type of answer choices (ordinal versus categorical).

Swarm Sessions

Cohort 1 (3 MSK radiologists) participated in a single 
swarm session, after a washout period after the individual 
assessment of the knee scans. Cohort 2 (radiology resi-
dents) participated in two consecutive swarm sessions post 
a washout period after their individual assessment. The first 
resident swarm session had 5 residents. The second resident 
swarm session had 3 residents and was conducted to meas-
ure the effect of the swarm size.

To answer each question during our study, all partici-
pants in both cohorts were allowed 60 s to first review the 
knee scan and then another 60 s to actively participate in 
the swarm session, collaborate, and provide their consensus 
answer. In some instances of strong opposing opinions, a 
swarm may not be able to reach an answer within the time 
allotted to decide, in which case the platform records it as 
a “no consensus.” All the participants in both the cohorts 
were blinded to each other and didn’t communicate during 
the session to prevent any form of bias.

AI Model Inference

To benchmark a state-of-the-art AI model against swarm 
performance of the radiologists and residents, we ran the 
model over the same set of 36 knee MR scans (sagittal 
CUBE sequences only). An AI pipeline for localization and 
classification of meniscus lesions was trained and validated 
on a retrospective study conducted on 1435 knee MRIs 
(n = 294 patients; mean age, 43 ± 15 years; 153 women) 
[46]. The AI pipeline consisted of a V-Net convolutional 
deep learning architecture to generate segmentation masks 
for all four meniscus horns that were used to crop smaller 
sub-volumes containing these regions of interest (ROIs). 
Such sub-volumes were used as input to train and evaluate 
three-dimensional convolutional neural networks (3DCNNs) 
developed to classify meniscus abnormalities. Evaluation 
on the holdout set yielded sensitivity and specificity of 85% 
and 85% respectively on a binary assessment (“lesion” or 
“no lesion”).

Statistical Analysis

All responses were binned into 3 classes (none, one com-
partment, more than 1 compartment) to enable compari-
sons between individual participant votes, swarm votes, 

and AI predictions. Confidence scores of the individual 
responses, among participants of the same cohort, were 
harmonized to evaluate for internal consistency using 
Cronbach’s alpha. Sensitivity, specificity, and Youden 
index (measure of accuracy) were calculated for presence 
or absence of lesions.

The first time point responses were then used to calculate 
the majority vote and choose the most confident voter in 
each cohort. Cohen’s kappa (k) values were tabulated with 
mean, standard deviation, and confidence intervals, boot-
strapped 100 times resampling a full set of cases from the 
observations, to evaluate inter-rater reliability as described 
below.

Attending Inter‑rater Reliability Compared with Clinical 
Standard of Reference (IRRc)

The first set of analyses was conducted comparing attend-
ing (cohort 1) responses to arthroscopic notes considered as 
clinical standard of reference (SOR). IRR of the individual 
attendings, their majority vote, and the most confident vote 
were calculated. The IRR of the attending swarm vote was 
also computed with respect to clinical SOR as well.

Resident Inter‑rater Reliability Compared with Clinical 
Standard of Reference (IRRc)

The second set of analyses was conducted comparing resi-
dents (cohort 2) to the clinical SOR. Inter-rater reliability 
of the individual residents, their majority vote, and the most 
confident vote were calculated. The IRR of the swarm vote 
was also computed with respect to clinical SOR for both the 
5-resident and 3-resident swarm votes.

Resident Inter‑rater Reliability Compared with Radiological 
Standard of Reference (IRRr)

In many cases, clinical ground truth from surgical evalu-
ation of lesions may not be available. Additionally, there 
may be low inter-rater reliability between radiologists and 
surgeons as well. In such instances, the interpretation of an 
experienced radiologist is often considered as standard of 
reference, especially when evaluating trainees.

To evaluate for swarm performance in such scenarios, we 
considered the responses of our senior-most participating 
attending as a radiological standard of reference. IRR of the 
individual residents, their majority vote, and the most con-
fident vote was calculated. The IRR of the swarm vote was 
also compared with radiological SOR for both the 5-resident 
and 3-resident swarm votes.
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Comparing AI Predictions with Clinical and Radiological 
Standards of Reference (IRRc and IRRr)

Similar to the resident and attending cohorts, the predictions 
of the model inference were compared with both the clinical 
and radiological SOR.

Results

The class balance as per clinical standard of reference was as 
follows: normal (15/36 exams), lesion in one compartment 
(13/36 exams), lesions in more than one compartment (8/36 
exams). The class balance as per a radiological standard of 
reference was as follows: normal (8/36 exams), lesion in 
one compartment (8/36 exams), lesions in more than one 
compartment (20/36 exams).

Both the attending and resident cohorts show excellent 
internal consistency with Cronbach’s alpha of 0.91 and 0.92, 
respectively. The sensitivity, specificity, and Youden index 
are described in Table 3. Both the cohorts had high sensitiv-
ity in detecting meniscal lesions, comparable between the 
majority votes, most confident votes, and the swarm votes. 
The swarm votes showed an improvement in specificity in all 
scenarios, and an increase in specificity was also observed 
with an increase in the resident swarm size. The attending 
swarm votes saw specificity improve by 40% (53.3%) over 
the attending majority vote (13.3%). The 3-resident swarm 
demonstrated an improvement in specificity of 20% over the 
majority vote and the most confident vote, for comparisons 
against the clinical SOR. The 3-resident swarm also showed 
an improvement in specificity of 37.5% over the majority 
vote and most confident votes, for comparisons based on 
radiological SOR. Similarly, the 5-resident swarm vote 
showed a specificity of 33% (based on clinical SOR) and 

50% (based on radiological SOR), much higher than either 
the 5-resident majority and most confident vote. This has 
important clinical implications in preventing overdiagnosis 
of lesions.

Bootstrapped Cohen’s kappa of the attending and resi-
dent cohorts’ inter-rater reliability with the clinical and 
radiological standard of reference are mentioned in Table 4, 
with corresponding 95% confidence intervals. The swarm 
consensus votes consistently showed higher IRR than the 
individual voters, their majority vote, and the most confi-
dent voter. Superior IRR of swarm votes was observed for 
both the attending and resident cohorts. More importantly, 
an increase in swarm IRR was seen in both  IRRc and  IRRr. 
The swarm methodology thus improved agreement with 
either standard of reference, indicating its usefulness for 
assessment, even in scenarios when clinical and radiologi-
cal observations may have discordance. An increase in IRR 
was also observed with an increase in resident swarm size. 
Interestingly, the 5-resident swarm  IRRc agreement was at a 
comparable level to the 3-attending swarm  IRRc. While the 
absolute kappa values reported in this study are in the slight 
to fair range, these should be viewed in light of the limited 
imaging exam (single sagittal MR sequence only) which was 
made available for the participants.

1. The IRRc for individual attendings ranged from k = 0.08 
to 0.29. The 3 attending swarm vote IRRc was higher 
compared to the 3 attending majority vote and the 3 
attending most confident vote (Fig. 4). Agreement on 
detecting normal cases increases significantly from 13% 
for majority vote (2/15) to 53% (8/15) for swarm vote. 
Since the senior-most radiologist was part of this cohort, 
no IRRr was calculated for the attendings.

2. IRRc for individual resident responses ranged from k = 
0.01 to 0.19 and was lower compared to the attendings. 

Table 3  Sensitivity, specificity, and Youden’s index for binary out-
puts for the attending and resident cohorts. Swarm consensus votes 
had higher specificity than the majority vote or most confident vote 

for both cohorts in all scenarios. The 5-resident swarm also shows 
higher specificity than that of the 3-resident swarm vote

Clinical standard of reference Radiological standard of reference

Sensitivity Specificity Youden index Sensitivity Specificity Youden index

3 attending majority vote 100% 13.3% 0.13 N/A N/A N/A
3 attending most confident vote 95.2% 33.3% 0.28 N/A N/A N/A
3 attending swarm vote 90.4% 53.3% 0.43 N/A N/A N/A
3-resident majority vote 100% 0 0 100% 0 0
3-resident most confident vote 100% 0 0 100% 0 0
3-resident swarm vote 100% 20% 0.20 100% 37.5% 0.37
5-resident majority vote 100% 0 0 100% 0 0
5-resident most confident vote 95% 6.6% 0.01 96.2% 12.5% 0.08
5-resident swarm vote 95% 33% 0.28 92.5% 50% 0.42
AI prediction 100% 13.3% 0.13 100% 25% 0.25
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The 3-resident swarm vote IRRc was higher compared 
to the 3-resident majority vote and 3-resident most confi-
dent vote (Fig. 5). The majority vote and most confident 
vote failed to identify any normal cases. Agreement on 
detecting normal cases is 20% (3/15) for swarm vote. 
The 5-resident swarm vote IRRc was again higher than 
the 5-resident majority vote and the 5-resident most 
confident vote. The 3-resident majority vote and most 
confident vote failed to identify any normal cases. The 
5-resident majority vote failed to identify any normal 
cases. Agreement on detecting normal cases increases 
by 33% (5/15) for swarm vote.

3. IRRr for individual resident responses vs radiological 
observation ranged from k = 0.09 to 0.22. This was 
higher compared to the resident IRRc, indicating they 
had better agreement with their direct trainers i.e., the 
radiology attendings than with the orthopedic surgeons. 
In line with the earlier findings, both the 3 and 5 resident 
swarm vote IRRr was higher than their respective major-
ity votes and most confident votes (Fig. 6). The major-
ity vote and most confident vote failed to identify any 
normal cases. Agreement on detecting normal cases was 
37.5% (3/8) for swarm vote. The majority vote and most 
confident vote failed to identify any normal cases. The 

Table 4  Cohen’s kappa values 
in various comparisons of 
attendings, residents, and AI 
with clinical and radiological 
standards of reference (SOR). 
For both the attendings and 
residents, the swarm consensus 
vote has better agreement than 
either the majority vote or the 
most confident voter

Mean (std) Kappa 95% CI p value

3 attending majority vote versus clinical SOR 0.11 (0.06) [0.02–0.24] 0.05
3 attending most confident vote versus clinical SOR 0.19 (0.09) [0.02–0.35] 0.02
3 attendings swarm versus clinical SOR 0.34 (0.11) [0.16–0.53] 0.18
3-resident majority voting versus clinical SOR 0.02 (0.04) [−0.07–0.09] 0.16
3-resident most confident vote versus clinical SOR 0.08 (0.04) [0.02–0.17] 0.85
3-resident swarm versus clinical SOR 0.25 (0.09) [0.08–0.47] 0.85
5-resident majority vote versus clinical SOR 0.07 (0.06) [−0.04–0.19] 0.79
5-resident most confident vote versus clinical SOR 0.12 (0.07) [−0.02–0.26] 0.72
5-resident swarm versus clinical SOR 0.37 (0.10) [0.16–0.61] 0.54
3-resident majority vote versus radiological SOR 0.27 (0.10) [0.09–0.49] 0.24
3-resident most confident vote versus radiological SOR 0.15 (0.10) [−0.03–0.37] 0.41
3-resident swarm versus radiological SOR 0.36 (0.14) [0.08–0.63] 0.09
5-resident majority vote versus Radiological SOR 0.32 (0.09) [0.16–0.52] 0.74
5-resident most confident vote versus radiological SOR 0.14 (0.14) [−0.11–0.35] 0.18
5-resident swarm versus radiological SOR 0.39 (0.12) [0.15–0.63] 0.03
AI versus clinical SOR 0.10 (0.09) [−0.11–0.28] 0.001
AI versus radiological SOR 0.15 (0.14) [−0.13–0.45] 0.015

Fig. 4  Attendings grading compared to clinical standard of reference. A Confusion matrix (CM) for 3 attending majority vote (kappa: 0.11). B 
CM for 3 attending most confident vote (kappa: 0.19). C CM for 3 attending swarm vote (kappa: 0.34)
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5-resident majority vote failed to identify any normal 
cases. Agreement on detecting normal cases increased 
for the swarm vote in both size cohorts.

  As opposed to the 3-resident and 3-attending swarms, 
the 5-resident swarm failed to reach a consensus in one 
exam, in the allotted time. This single occurrence was 
not enough to conclusively comment on relationship of 
swarm size and optimal time for decision and was subse-
quently excluded during comparisons with the majority 
and most confident votes.

4. AI predictions from the model inference had an IRRc 
of k = 010 and IRRr of k = 0.15. This is comparable 
to the range of individual resident inter-rater reliability 
(Fig. 7).

Discussion

Multiple studies have reported varying IRR among radiolo-
gists in interpreting meniscal lesions [47]. Differences in 
opinions can occur based on location, zone, tissue quality, 
and severity of lesion. Shah et al. reported prevalence and 
bias-adjusted kappa ranging from poor for medial meniscus 
zone 1(k = 0.22) to excellent for lateral meniscus zone 3 (k = 
0.88) [48]. Some imaging-related factors for the low agree-
ment include limited image resolution, motion artifacts, and 
the limited time afforded to radiologists for image interpreta-
tion under an ever increasing workload [49].

Arthroscopic evaluation is often considered as the clini-
cal standard of reference for evaluating radiological reads 

Fig. 5  Residents grading compared to clinical standard of reference. 
A Confusion matrix (CM) for 3-resident majority vote (kappa: 0.02). 
B CM for 3-resident most confident vote (0.08). C CM for 3-resident 
swarm vote (kappa: 0.25) D) CM for 5-resident majority vote (kappa: 
0.07). E CM for 5-resident most confident vote (0.12). F CM for 

5-resident swarm vote (kappa: 0.37). Note: The 5-resident swarm was 
unable to obtain a consensus in one exam. This exam was excluded 
during inter-rater reliability comparisons of 5-resident majority vote 
and 5-resident most confident vote for parity
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[50]. However, surgeons have a narrower field of view dur-
ing arthroscopy and lack the ability to view the region of 
interest in multiple orientations (sagittal, axial, coronal) 
simultaneously. These factors limit consideration of surgi-
cal observations as reliable clinical ground truth.

Additionally, there may be a lag time of days to weeks 
between imaging and arthroscopy allowing improvement or 
deterioration of lesion and which can further limit agree-
ment with their radiology colleagues. Kim et al. reported 
inter-method reliability (radiology-arthroscopy) kappa val-
ues ranging from 0.40 to 0.71 depending on the laterality 
of lesion and presence of ACL tears [51]. Such differences 
in opinions are problematic for generating clinical consen-
sus and defining ground truth labels for A.I. training. Given 
that the radiologist’s report and arthroscopy evaluations can 
have some disagreement, we examined the use of swarm 

methodology against a radiological standard of reference 
(senior-most radiologist) as well.

Multiple investigators in the past have advocated the use 
of consensus voting to improve medical diagnoses [52] and 
demonstrated superior performance of majority or average 
vote [53]. However, no study till date had compared consen-
sus votes from a real-time blinded collaboration to a post hoc 
majority vote. There have been varying opinions on what 
exactly improves the accuracy in a crowds-based answer, the 
effect of social interaction [54], or pure statistical aggrega-
tion. Social interaction can be further complicated by the 
interpersonal biases which can either improve or worsen 
crowd performance [55, 56]. Thus, it is pertinent to under-
stand the exact influence of these factors especially when 
they are applied to make clinical decisions.

Fig. 6  Residents’ responses compared to radiological standard of  
reference. A Confusion matrix (CM) for 3-resident majority vote 
(kappa: 0.27). B CM for 3-resident most confident vote (0.15). C CM 
for 3-resident swarm vote (kappa: 0.36). D CM for 5-resident majority 
vote (kappa: 0.31). E CM for 5-resident most confident vote (0.14). 

F CM for 5-resident swarm vote (kappa: 0.39). Note: The 5-resident 
swarm was unable to obtain a consensus in one exam. This exam 
was excluded during inter-rater reliability comparisons of 5-resident 
majority vote and 5-resident most confident vote for parity

410



Journal of Digital Imaging (2023) 36:401–413

1 3

Our current study explored these questions by first per-
forming nonsocial interactions between blinded partici-
pants at equal levels of expertise (radiologists or residents’ 
cohorts), in a bias-free environment. Next the resident cohort 
repeated a swarm session with fewer participants, to measure 
the effect of group size on the responses. Our results show 
both the group size and interaction influence performance, 
although conducting negotiations for the optimal answer 
under anonymization was key for resisting peer pressure.

A key aspect of our study was to evaluate the perfor-
mance of an AI model on the same set of 36 knee exams. 
This model had been trained and tested on labels created by 
multiple radiologists and residents at our institution over 
time. The AI  IRRc was k = 0.10 and was comparable to the 
 IRRc of the 3-resident most confident vote. The AI  IRRr 
was k = 0.15, comparable to the  IRRr of the 3-resident most 
confident vote. In other words, the AI performance is already 
as good as its trainers. In both cases, however, the kappa 
was significantly lower than the kappa of either the resi-
dent or the attending swarms. A useful strategy to improve 
model performance beyond its current results would be to 
use swarm votes as labels in the training datasets. Leverag-
ing swarm intelligence for AI training would provide higher 
quality labels which are more accurate, mitigate the prob-
lem of noisy labels, and reduce the need for large training 
datasets as currently needed for most deep learning models.

Swarm voting improved IRR by up to 32% in our study, 
which was based on a specific imaging modality (MR), and 
for a specific task of evaluating meniscal lesions. It would 
be important to investigate the increase in diagnostic yield 
by real-time consensus voting, in other diagnostic imaging 
scenarios across different modalities as well. The swarm 
platform would be a useful tool for expert radiologists to 
collaborate and evaluate complex or ambiguous cases. A 
potential first application would be for imaging workflows 

where multiple reads are already mandated, such as for dou-
ble reads for breast mammograms, as practiced in Europe 
[57].

Our study had a few limitations. While we aimed to simu-
late the regular radiology workflow with the use of PACS, 
it did not capture the entire experience given the time con-
straints to run the swarm sessions. Normally, radiologists 
have access to multiple sequences and views in an MR exam, 
with prior exams and other relevant clinical notes for com-
parison. We speculate the inter-rater reliability in our study 
would have been higher and in line with other reported stud-
ies, with the availability of complete MRI exams.

Given scheduling challenges in the pandemic, we per-
formed only necessary swarm sessions as required for this 
pilot study. While we observed improvements in swarm 
agreement with both the standards of reference, the overall 
dataset in this study was not large enough to power a statisti-
cally significant difference over individual or majority votes.

Though we were able to observe improved inter-rater 
reliability and specificity with an increase in swarm size 
(five- versus three-resident swarm), further investigation 
with additional participants is warranted to estimate opti-
mal group size. Given the limited availability of expert 
radiologists, it will be important to understand if diagnostic 
gains made with larger groups peak at a certain participant 
number.

Conclusion

In conclusion, utilizing a digital swarm platform improved 
consensus among radiologists and allowed participants to 
express judgement-free intent. This novel approach out-
performs traditional consensus methodologies such as a 

Fig. 7  AI prediction compari-
sons. A Confusion matrix for AI 
predictions compared to clinical 
standard of reference (kappa: 
0.10). B Confusion matrix 
for AI predictions compared 
to radiological standard of 
reference (kappa: 0.15). Swarm 
votes of residents outperform AI 
in both sets of comparisons
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majority vote. Future direction of our work includes per-
forming serial swarm sessions to generate more accurate 
labels for AI training. We also aim to explore the swarm 
platform for evaluating trainee performance. Residents at our 
center can self-assess their diagnostic opinions with peers, 
and the training program can assess group performance 
across cohorts over time, in an objective manner.
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