
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Aspects of Symmetries in Quantum Field Theories

Permalink
https://escholarship.org/uc/item/8r1602hw

Author
Sun, Zhengdi

Publication Date
2023
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8r1602hw
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA SAN DIEGO

Aspects of Symmetries in Quantum Field Theories

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in

Physics

by

Zhengdi Sun

Committee in charge:

Professor Kenneth Intriligator, Chair
Professor Daniel Green
Professor Tarun Grover
Professor John McGreevy
Professor James McKernan

2023



Copyright

Zhengdi Sun, 2023

All rights reserved.



The Dissertation of Zhengdi Sun is approved, and it is acceptable in quality and

form for publication on microfilm and electronically.

University of California San Diego

2023

iii



DEDICATION

To my wife, my parents, and my grandparents.

iv



EPIGRAPH

Every science, once it is treated not as an instrument for gaining dominion and power, but as part

of the adventure of knowledge of our species through the ages, may be nothing but that harmony,

more or less rich, more or less grand depending on the times, which unfolds over generations

and centuries through the delicate counterpoint of each of its themes as they appear one by one,

as if summoned forth from the void to join up and intermingle with each other.

Alexander Grothendieck, translated by Roy Lisker
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Chapter 1

Introduction

The central theme in this thesis is the symmetry in quantum field theories. Roughly

speaking, symmetry is an operation S of a given system, under which the the system is unchanged.

The symmetry would then imply relations between observable physical quantities; therefore it

is an important guideline for the study of the physical system. In this thesis, we will discuss

symmetry in the context of quantum field theory (QFT). There, the additional structure leads to a

more refined structure of the symmetry, and several important generalizations of the notion of

symmetry have be made in this context recently. This thesis aims to expand the understanding

of how ordinary symmetries refine physical observables, as well as explore the structure of the

generalized global symmetries and its physical implication.

Given a physical system, let’s consider the set G of all operations that leave the system

invariant. It is expected that G has the mathematical structure of a group. This means that given

two such operations, we can combine the two to a single operation. This corresponds to the

multiplication in the group. Furthermore, a trivial operation to the system will certainly keep

the system unchanged, hence belong to G and correspond to the identity element in the group.

Finally, given any operation g ∈ G, it is expected that we could perform some other operation

to undo the operation g. This corresponds to the each element in a group has an inverse under

multiplication.

In the context of quantum field theory (QFT), the additional structure such as locality
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or spacetime symmetry leads to a more refined structure of the symmetry. Here, the symmetry

group G is realized as extended operators in the QFT. Assuming G acts faithfully, then this

means for every g ∈ G, there is a unitary operator U(g) supported on an equal time slice realizing

the symmetry transformation on the Hilbert space. If G is continuous, then the Noether’s

theorem further allows us to associate a local conserved current jµ(x) satisfying ∂µ jµ(x) = 0 to

a given continuous symmetry, and the unitary operator can be constructed as eiα
∮

Σd−1
∗ j. But we

could alternatively considering the symmetry operator U(g,Σd−1) supported on other codim-1

manifold Σd−1; and instead of global fusion where we put two symmetry operators U(g1,Σd−1)

and U(g2,Σd−1) on top of each other, we can consider the local fusion where we only put part

of the symmetry operators on top of each other. If we have multiple symmetry operators, then

in general there are different ways of doing local fusions; and their difference captures the

additional structure known as the ’t Hooft anomaly of the symmetry G. When G is continuous,

the ’t Hooft anomaly is easier to extract from the correlation functions of jµ(x)’s. The ’t Hooft

anomaly is an important observable of the theory and can be used to constrain the possible IR

phases of a given QFT.

The modern description and generalization of the ordinary symmetry starts from the

two important features of these symmetry operators. First, for any g ∈ G, there is a codim-1

surface operator U(g,Σd−1) supported on the codim-1 manifold Σd−1, and their fusion rules are

governed by the group multiplication law of G. Second, the symmetry operator U(g,Σd−1) is

topological, which means it is invariant under the local deformation of its support Σd−1. For

continuous symmetry, this is guaranteed by the Stoke’s theorem together with the property that

∂µ jµ(x) = 0.

Several generalizations have been made by relaxing some of the properties mentioned

above. For instance, we could generalize the support of the invertible topological operator to be

codim-(p+1) surfaces for p> 0. This leads to the notion of p-form invertible symmetries and the

ordinary symmetry then corresponds to 0-form symmetry. For a p-form symmetry A(p) where p>

0 and A(p) is an Abelian group, there is a topological surface operator U (p)(a,Σd−p−1) for every
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group element a ∈ A(p) supported on a closed codim-(p+1) surface Σd−p−1 in the spacetime.

And the fusion rule of U (p)(a,Σd−p−1) is governed by the group multiplication law of A(p). In the

case where A(p) is continuous, there is a conserved (p+1)-form current ( j(p))µ1···µp+1 satisfying

∂µ1( j(p))µ1···µp+1(x) = 0 and the topological surface operator is constructed as e
iα
∮

Σd−p−1
∗ j(p)

for

some codim-(p+1) surface Σd−p−1. The ordinary 0-form symmetries can interact non-trivially

with the higher form symmetries, and this leads to the structure of higher group symmetries.

Another direction of the generalization is to study the topological surface operator which

does not admit an inverse under the fusion. The study of codim-1 non-invertible topological

operators in 2d conformal field theory (CFT) has a long history, and the most famous example

is the Kramers-Wannier duality line N in the Ising CFT. Together with two lines 1 and η in an

ordinary Z2 symmetry, their fusion rules form the Ising fusion algebra:

ηN = Nη = N, N2 = 1+η . (1.0.1)

These line defects can fuse locally, and the F-symbols characterize the difference between two

distinct ways of locally fusing three line defects. It is convenient to package the fusion algebra

together with the F-symbols as a structure known as the fusion category. Because of this, the

non-invertible symmetries are also known as categorical symmetries. Notice that this framework

is useful even for ordinary invertible 0-form symmetries. Symmetries with the same finite group

G but with different ’t Hooft anomalies will form different fusion categories. Therefore, an

important question in the study of the categorical symmetries in QFTs to understand how to

physically characterize these additional data other than fusion rules in QFTs and derive their

physical implications.

There are two types of non-invertible symmetries. Sometimes, non-invertible symmetries

can be engineered from invertible symmetries by some topological manipulations. Such non-

invertible symmetries are called non-intrinsically non-invertible; otherwise they are called

intrinsically non-invertible.
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ZX with symmetry defects inserted

(d +1)-dim symTFT

dynamical boundary ⟨X | gapped boundary |C⟩

Figure 1.1. The idea of the symmetry TFT. The bulk of the slab is the (d +1)-dim symmetry
TFT, and the right boundary is a topological boundary |C⟩ which characterizes the topological
defects in C , while the left boundary is a non-topological boundary depending only on the theory
X denoted as |X ⟩.

An important tool to study the categorical symmetries is the notion of symmetry TFT.

Consider a d-dimensional QFT X with categorical symmetries C . The corresponding symmetry

TFT is a (d +1)-dimensional topological field theory which allows us to expand the partition

functions of X with topological defects inserted to a (d + 1)-dimensional slab. The bulk of

the slab is the (d + 1)-dim symmetry TFT, and the right boundary is a topological boundary

which characterizes the insertion of the topological defects in C while the left boundary is a

non-topological boundary depending only on the theory X , as depicted in the Figure 1.1. We

will see examples of symmetry TFT and its application in determining whether a non-invertible

symmetry is non-intrinsically non-invertible later in the thesis.

This thesis is organized as follows. We first study that, in 2-dim CFT, how the global

symmetries can be used to refine the well-known Cardy formula, an asymptotic formula for the

density of states derived from modular invariance. We then move on to study the properties of

generalized global symmetries. We will first explore properties and physical implications of

the triality defects in 2-dim CFT. Then we will study when the non-invertible symmetries are

non-intrinsically non-invertible.

In Chapter 2, we prove a 2 dimensional Tauberian theorem in context of 2 dimensional

conformal field theory. The asymptotic density of states with conformal weight (h, h̄)→ (∞,∞)

for any arbitrary spin is derived using the theorem. We further rigorously show that the error

term is controlled by the twist parameter and insensitive to spin. The sensitivity of the leading
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piece towards spin is discussed. We identify a universal piece in microcanonical entropy when

the averaging window is large. An asymptotic spectral gap on (h, h̄) plane, hence the asymptotic

twist gap is derived. We prove an universal inequality stating that in a compact unitary 2D CFT

without any conserved current Ag ≤ π(c−1)r2

24 is satisfied, where g is the twist gap over vacuum

and A is the minimal “areal gap”, generalizing the minimal gap in dimension to (h′, h̄′) plane

and r = 4
√

3
π

≃ 2.21. We investigate density of states in the regime where spin is parametrically

larger than twist with both going to infinity. Moreover, the large central charge regime is studied.

We also probe finite twist, large spin behavior of density of states.

In Chapter 3, we derive Cardy-like formulas for the growth of operators in different

sectors of unitary 2 dimensional CFT in the presence of topological defect lines by putting

an upper and lower bound on the number of states with scaling dimension in the interval

[∆− δ ,∆+ δ ] for large ∆ at fixed δ . Consequently we prove that given any unitary modular

invariant 2D CFT symmetric under finite global symmetry G (acting faithfully), all the irreducible

representations of G appear in the spectra of the untwisted sector; the growth of states is Cardy

like and proportional to the “square” of the dimension of the irrep. In the Schwarzian limit,

the result matches onto that of JT gravity with a bulk gauge theory. If the symmetry is non-

anomalous, the result applies to any sector twisted by a group element. For c > 1, the statements

are true for Virasoro primaries. Furthermore, the results are applicable to large c CFTs. We also

extend our results for the continuous U(1) group.

In Chapter 4, we consider the triality fusion category discovered in the c = 1 Kosterlitz-

Thouless theory [181]. We analyze this fusion category using the tools from the group theoretical

fusion category and compute the simple lines, fusion rules and F-symbols. We then studied the

physical implication of this fusion category including deriving the spin selection rule, computing

the asymptotic density of states of irreducible representations of the fusion category symmetries,

and analyzing its anomaly and constraints under the renormalization group flow. There is another

set of F-symbols for the fusion categories with the same fusion rule known in the literature [179].

We find these two solutions are different as they lead to different spin selection rules. This gives
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a complete list of the fusion categories with the same fusion rule by the classification result in

[117].

Finally, in Chapter 5, we start with noticing that a quantum field theory with a finite

abelian symmetry G admits a non-invertible duality defect if it is invariant under gauging G.

For certain G, duality defects admit an alternative construction where one starts with invertible

symmetries with certain ’t Hooft anomaly, and gauging a non-anomalous subgroup. This special

type of duality defects are termed group theoretical. In this work, we determine when duality

defects are group theoretical, among G = Z(0)
N and Z(1)

N in 2d and 4d quantum field theories,

respectively. We show that a duality defect is group theoretical if and only if its Symmetry TFT

is a Dijkgraaf-Witten theory, which further translates to a stability condition of the topological

boundary conditions of the G gauge theory. By solving the stability condition, we find that a Z(0)
N

duality defect in 2d is group theoretical if and only if N is a perfect square, and under certain

assumptions a Z(1)
N duality defect in 4d is group theoretical if and only if N = L2M where −1 is

a quadratic residue of M. For these subset of N, we construct explicit topological manipulations

that map the non-invertible duality defects to invertible ones. We also comment on the connection

between our results and the recent discussion of obstruction to duality-preserving gapped phases.
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Chapter 2

Tauberian-Cardy formula with spin

2.1 Summary & Discussion

The Cardy formula [42] for the asymptotic density of states has recently been rigorously

derived with an estimate for the error term in [158, 92]. A natural question is to ask whether

one can generalize the formalism so as to make it sensitive to the spin or equivalently to the

conformal weights h, h̄ separately. This necessitates working out a 2 dimensional Tauberian

theorem, which we achieve here. The motivations for investigating Cardy formula on (h′, h̄′)

plane are several. First of all, the notion of infinity on a 2d plane is richer than ∆ → ∞ limit. We

will see that the finer details of the Cardy formula actually depend on how infinity is approached

unless one makes extra assumption about the spectrum. Furthermore, there have been interesting

developments in the direction of lightcone bootstrap in recent times [134, 135, 55, 146, 28], our

analysis puts some of these results on rigorous footing. Another amazing feature is the ability to

investigate the “areal” notion of spectral gap. If we probe the (h′, h̄′) plane with circular areas of

radius R, centered at (h, h̄), then we find the optimal value of R which guarantees that the area

contains at least one state. Again unless we put in extra assumption, the value of R depends on

how infinity is approached and thus showing a richer asymptotic behavior. If we one assumes

existence of twist gap, it turns out that the twist gap is complementary to asymptotic spectral gap

in some sense, which we will make precise in due course.
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The naive Cardy like analysis provides us with an expression for the asymptotic den-

sity of states where h and h̄ are of the same order. One can re-express this as a function of

dimension ∆ and spin J with ∆ ≃ J. Now a natural question is to ask whether the result is valid

when ∆ and J is not of the same order. For example, in the large charge expansion literature

[107, 106, 154, 65, 64, 18, 161, 81, 132, 133], the regime where J ≃ ∆1/n with n > 1 is being

probed. It turns out that only a part of the answer coming from the naive Cardy like analysis is

meaningful while the rest of it is comparable to the error term. We emphasize that the analysis is

only possible because now we have a rigorous estimate of the error term due to the Tauberian

theorem that we prove in this paper.

With our rigorous treatment, it is possible to address issues regarding whether we can

trust the naive Cardy formula when h and h̄ are not of the same order. It turns out that the answer

to this question is intimately connected with the existence of twist gap. We show that we can

trust the naive Cardy formula for all the operators when max(h, h̄) = min(h, h̄)ϒ with 1 ≤ ϒ < 2.

It is also shown that with the assumption of twist gap, the validity of Cardy formula for primaries

for c > 1 CFTs does not require any restriction on ϒ.

The another motivation for taking up a rigorous study of Cardy formula is to be able

to probe the large central charge (c) sector, to be specific, to derive the density of states when

h/c, h̄/c are finite but c is very large. This part is in the spirit of result derived in [100]. A nice

feature that reveals itself through the rigorous treatment is a curious connection between validity

of Cardy regime and the twist gap above the vacuum. These features are important in the context

of holography.

The plan of the paper is to quote the main results here in the beginning and discuss its

consequences in terms of CFT data, such that the current section can be thought of as mostly self

contained. The next section §2.2 gives some intuitive understanding of the technical stuff that
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follows. From §2.3 onwards, we plunge into technical proofs with a healthy relaxing intermission

in §2.6, where we numerically verify our results. For readers going for a really quick ride, we

have highlighted the main equations and results in what follows.

2.1.1 Integrated density of states

We prove a 2 dimensional Tauberian theorem in context of 2 dimensional conformal

field theory. The asymptotic density of states with conformal weight (h, h̄)→ (∞,∞) is derived

using the theorem. We find that the error term is controlled by the twist parameter. We note that

as (h, h̄)→ (∞,∞), the twist also goes to ∞. We remark that the regime of validity depends on

whether we put in the assumption of having a twist gap.

Definition: by finite twist gap, we mean there exists a number τ∗ > 0 such that there

is no operator with twist τ ∈ (0,τ∗) and there are finite number of zero twist operators1 with

dimension less than c/12.

We make two remarks: a) the fact that there are finite number of zero twist operators with

dimension less than c/12 is always true since there are finite number of operators with dimension

less than c/12 for finite central charge, b) Not having any operator with twist τ ∈ (0,τ∗) disallows

having 0 as twist accumulation point.

1Usually, by finite twist gap, it is assumed that there is no zero twist primaries except the Identity. Here we are
using it in a slightly different manner, so one needs to be careful about using bounds on twist gap, such as the one
appearing in [56].
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Main theorems on integrated density of states

No assumption on twist gap:

We show that for finite central charge c, the number of states with conformal weights

less than or equal to some specified large conformal weight h, h̄ is given by:

F(h, h̄)≡
∫ h

0
dh′
∫ h̄

0
dh̄′ρ(h′, h̄′)

=
h/h̄=O(1)
h,h̄→∞

1
4π2

(
36

c2hh̄

)1/4

exp


2π



√

ch
6
+

√
ch̄
6





[
1+O

(
τ
−1/4

)]
.

(2.1.1)

where τ is the twist of the state with h, h̄ and given by τ = 2min{h, h̄}. Here we have assumed

that h/h̄ = O(1) number2. As a result one could have written the error term as O
(

h−1/4
)

or

O
(

h̄−1/4
)

.

Assuming a twist gap:

It turns out that if we assume a finite twist gap, we can trust eq. (2.1.1) even when h and

h̄ are not of the same order but h = h̄υ with 1/2 < υ < 2. In such a scenario, the error term

becomes O(τ
ϒ

4 −1/2), where ϒ = max(υ ,1/υ). The ϒ characterizes how h and h̄ are of different

order asymptotically in a symmetrized fashion, for example, if we approach the infinity along

the curve h = h̄1.1 or h̄ = h1.1, we have ϒ = 1.1. Thus our error estimation is symmetric if we

reflect the line of approach to infinity about h = h̄ line.

2If we say f = O(1), we mean | f |< M for a fixed positive number M.
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We have for 1 ≤ ϒ < 2,

F(h, h̄)≡
∫ h

0
dh′
∫ h̄

0
dh̄′ρ(h′, h̄′)

=
h,h̄→∞

1
2<

logh
log h̄<2

1
4π2

(
36

c2hh̄

)1/4

exp


2π



√

ch
6
+

√
ch̄
6





[
1+O

(
τ

ϒ

4 −1/2
)]

, ϒ < 2 .

(2.1.2)

The eq. (2.1.1) and eq. (2.1.2) are two of the central results obtained in this paper. If h

and h̄ are not of the same order, we basically probe the large spin sector of density of states3,

to be precise, the regime where spin is parametrically larger than the twist but both goes to infinity.

The basic structure of both the eq. (2.1.1) and eq. (2.1.2) is that they have leading

exponential piece multiplied with a subleading polynomial suppression. The error term is then

further suppressed by a polynomial piece. Now if ϒ ≥ 2, one can see the error term in (2.1.2) is

not really suppressed, hence is not in fact an error term. Thus we can not trust the polynomially

suppressed terms. In this regime, we are able to show that

F(h, h̄) =
h,h̄→∞

exp


2π

√
ch
6
+2π

√
ch̄
6


O

(
τ
−3/4

)
, ϒ ≥ 2 . (2.1.3)

We further remark that for CFTs where the partition function nicely factorizes into

holomorphic and antiholomorphic pieces, the leading result directly follows from the analogous

result for large ∆ = h+ h̄, proven in [158], nonetheless the error term in analogues of eq. (2.1.1)

and eq. (2.1.2) goes like O(h−1/2), hence, in such a case, we have more control over the

approximation.

3A cautionary remark is that here in this paper unless otherwise mentioned, the twist is NOT kept finite while
taking this limit. This can be contrasted to the scenario in the usual large spin expansion [6], where one keeps the
twist finite.
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Corollaries of the theorems [Eq. (2.1.1) and Eq. (2.1.2)] on integrated density of states

Below we will digress a bit and touch upon some of the interesting results that can

be extracted from the above before coming back to summazing our main results in the next

subsection §2.1.2.

Rich structure of asymptotic approach:

The integrated density of states show distinct leading behavior depending on how the

asymptotic infinity is approached. In [158], it has been shown that as ∆ → ∞, we have

FMZ(∆)≡
∫

∆

0
d∆

′
ρ(∆′)

=
∆→∞

1
2π

(
3

c∆

)1/4

exp

[
2π

√
c∆

3

][
1+O

(
∆
−1/2

)]
.

(2.1.4)

We remark that in the asymptotic limit, both FMZ(∆ → ∞) and F(h → ∞, h̄ → ∞) count

the total number of operators. But these functions approach infinity in a different manner (see

the figure 2.1). To be concrete, let us choose h = h̄ = ∆/2, thus we have

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

14

Figure 2.1. Approaching to infinity on (h′, h̄′) plane: The number of operators bounded by
the blue lines is counted by FMZ(∆) originally calculated in [158]. The number of operators
bounded by the black lines is counded by F(∆/2,∆/2) calculated in this paper.
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F(∆/2,∆/2) =
∆→∞

1
2π2

(
3

c∆

)1/2

exp

[
2π

√
c∆

3

][
1+O

(
∆
−1/4

)]
. (2.1.5)

So we can see that lim
∆→∞

F(∆/2,∆/2) is power law suppressed compared to lim
∆→∞

FMZ(∆) i.e.

lim
∆→∞

(
F(∆/2,∆/2)

FMZ(∆)

)
= O(∆−1/4) .

We see that the square Sq of size ∆/2 with one vertex at origin and another one at (∆/2,∆/2)

is always contained within the rightangled triangular region T, created by h′ axis, h̄′ axis and

h′+ h̄′ = ∆ line. This is consistent with the observation that leading behavior of F(∆/2,∆/2) is

suppressed compared to FMZ(∆). In fact, one can similarly study the distribution of the operators

in rectangular (or square) areas such that the rectangle is contained within T, and one vertex is

on the line h′+ h̄′ = ∆ (see the figure 2.2). This study reveals that the among such areas, the

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

14

Figure 2.2. (h′, h̄′) plane : asymptotically, the rectangular region (blue shaded) contains expo-
nentially less number of operators compared to square region (red shaded). They are contained
within the rightangled triangle, created by h′ axis, h̄′ axis and h′+ h̄′ = ∆ line. Here ∆ = 12.

square Sq contains the most number of operators while any other rectangular region contains

fewer number of operators, in fact the number is exponentially suppressed compared to that of

the square Sq.
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Spin sensitivity of the asymptotics:

One can make a detailed analysis of spin sensitivity of the above result, which we

expound on §2.5.2.

Windowed entropy with respect to h and h̄:

An immediate consequence of the eq. (2.1.1) is the expression for “windowed” entropy

S
δ ,δ̄ . The windowed entropy is defined as logarithm of number of states within a rectangular

window of side length 2δ and 2δ̄ , centered at (h, h̄). This is analogous to entropy defined as in

microcanonical ensemble by proper “binning”, where the bin size is dictated by δ , δ̄ . As we

take h → ∞, h̄ → ∞, we can keep the bin size δ , δ̄ order one or let them scale like hα and h̄α

respectively. We find that

S
δ ,δ̄ ≡ log

(∫ h+δ

h−δ

dh′
∫ h̄+δ̄

h̄−δ̄

dh̄′ρ(h′, h̄′)

)

=
h,h̄→∞

2π



√

ch
6
+

√
ch̄
6


+

1
4

log
[

c2δ 4δ̄ 4

36h3h̄3

]
+ s(δ , δ̄ ,h, h̄) , (2.1.6)

where for 3/8 < α ≤ 1/2, we have, :





δ ≃ hα

δ̄ ≃ h̄α

s(δ , δ̄ ,h, h̄) = log




sinh
(

π
√ c

6
δ√
h

)

π
√ c

6
δ√
h


+ log




sinh
(

π
√ c

6
δ̄√
h̄

)

π
√ c

6
δ̄√
h̄


+O(τ3/4−2α) ,

(2.1.7)

δ , δ̄ ≃ O(1) s−(δ , δ̄ )≤ s(δ , δ̄ ,h, h̄)≤ s+(δ , δ̄ ) (2.1.8)

where the functions s±(δ , δ̄ ) are determined in the section §2.3, in particular, we have s± ≡

exp(c±), and c± is given by (2.3.25). We remark that when the bin size is large, there is a

universal correction to Cardy formula given by the sinhyperbolic functions. This is analogous to

what is found in [158] from the analysis sensitive to dimension only.
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Windowed entropy with respect to ∆+ J:

One can define a microcanonical entropy with respect to ∆+ J = 2max{h, h̄} (name this

parameter κ) as

Sκ

δ
≡ log [F(κ/2+δ ,κ/2+δ )−F(κ/2−δ ,κ/2−δ )] , (2.1.9)

The asymptotic behavior of Sκ

δ
is given by

Sκ

δ
= 4π

√
cκ

12
+ log

(
2δ

πκ

)
+ s(δ ,κ) , (2.1.10)

where for large enough bin size (δ ≃ κα ) we have

δ ≃ κ
α : s(δ ,τ) = log




sinh
(

2π
√ c

3
δ√
κ

)

2π
√ c

3
δ√
κ


+O

(
κ

1/4−α

)
, 1/4 < α ≤ 1/2 . (2.1.11)

2.1.2 c > 1 CFTs-results specific for primaries

One can make the results in the previous subsection specific to Virasoro primaries only,

in fact do better. This boils down essentially repeating the argument presented in §2.3,§2.4 and

§2.5 with minor modification. The idea of extending the argument from §2.3,§2.4 and §2.5 to

this case is similar in spirit and practice to how [158] obtained the specific results for primary

using methods suitable to study all the operators. The details can be found in §2.3, specifically

eq. (2.3.37) onwards. Without much ado, here is the result: for finite central charge c, we find

the integrated density of states specific for primaries behave like (from now on, we will be using
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the superscript “Vir” to denote the result specific for primaries):

FVir(h, h̄)≡
∫ h

0
dh′
∫ h̄

0
dh̄′ ρ

Vir(h′, h̄′)

=
h,h̄→∞

1
π2

(
3

c−1

)
exp


2π



√

(c−1)h
6

+

√
(c−1)h̄

6





[
1+O

(
τ
−1/4

)]
.

(2.1.12)

The “windowed” entropy (we have considered bin of size 2δ by 2δ̄ just like what we did

for the analysis of all the operators) for Virasoro primaries is given by

SVir
δ ,δ̄

≡ log

(∫ h+δ

h−δ

dh′
∫ h̄+δ̄

h̄−δ̄

dh̄′ρVir(h′, h̄′)

)

=
h,h̄→∞

2π



√

(c−1)h
6

+

√
(c−1)h̄

6


− 1

2
log
[

hh̄
4δ 2δ̄ 2

]
+ sVir(δ , δ̄ ,h, h̄) , (2.1.13)

where for 1/8 < α ≤ 1/2, we have :





δ ≃ hα

δ̄ ≃ h̄α

: sVir(δ , δ̄ ,h, h̄)

= log




sinh
(

π

√
c−1

6
δ√
h

)

π

√
c−1

6
δ√
h


+ log




sinh
(

π

√
c−1

6
δ̄√
h̄

)

π

√
c−1

6
δ̄√
h̄


+O(τ1/4−2α) ,

δ , δ̄ ≃ O(1) : s−(δ , δ̄ )≤ sVir(δ , δ̄ ,h, h̄)≤ s+(δ , δ̄ )
(2.1.14)

where the functions s±(δ , δ̄ ) are the same functions that appear in the analysis for all the

operators.

Large spin, large twist sector for primaries:

If we assume a finite twist gap (as defined in {2.1.1}), the result given in eq. (2.1.12) is

true irrespective of whether h and h̄ are of the order one or not. Thus unlike the case for all the
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operators, here we can trust the polynomially suppressed correction for all values of υ , where

h = h̄υ .

2.1.3 Large spin, finite twist sector

The large spin, finite twist sector is not entirely asymptotic regime since the quantity

knows about low lying spectrum in one of the weights. It turns out we can only put an upper

bound in this case. There is an O(1) error in the estimation. While for the upper bound this does

not cause any trouble, for the lower bound, it makes thing tricky. In particular, the lower bound

on the density of states, appropriately integrated, contains an exponential piece as expected from

extended Cardy formula [134, 135, 146, 28] but it comes with a multiplicative order one number,

which can become negative unless proven otherwise.

Analysis for all the operators:

In what follows, we will keep h finite and let h̄ → ∞, the windowed entropy Sft
δ ,δ̄

is found

to be bounded above by

Sft
δ ,δ̄

≤ Sft
h,δ ,δ̄ ≤ 2π

√
ch̄
6
− 1

4
log
(

h̄3

16δ̄ 4

)
+M , (2.1.15)

where M is an order one number. Here Sft
δ ,δ̄

and Sft
h,δ ,δ̄

are defined as

exp
[
Sft

δ ,δ̄

]
≡
∫ h+δ

h−δ

dh′
∫ h̄+δ̄

h̄−δ̄

dh̄′ ρ(h′, h̄′) , exp
[
Sft

h,δ ,δ̄

]
≡
∫ h+δ

0
dh′
∫ h̄+δ̄

h̄−δ̄

dh̄′ ρ(h′, h̄′) .

The number M is given (or estimated) by

M = 2π

(
h+δ − c

24

)
+ log

[
c+∑

h̃

χh̃(e
−2π)

]
. (2.1.16)
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where χh̃ is the character for the conserved current with weight (h̃,0), h̃ ≥ 0 (including the

Identity) and c± is an order one h, h̄ independent number, defined in §2.7. M is a finite number

as the absolute value of the sum over h̃ is bounded above by the partition function evaluated at

β = β̄ = 2π , which is a finite number.

Analysis for primaries with/without conserved currents:

The above result can also be made specific to primaries:

SVir,ft
δ ,δ̄

≤ SVir,ft
h,δ ,δ̄

≤ 2π

√
(c−1)h̄

6
− 1

2
log
(

h̄
4δ̄ 2

)
+MVir . (2.1.17)

Here SVir,ft
δ ,δ̄

and SVir,ft
h,δ ,δ̄

are defined as

exp
[
SVir,ft

h,δ ,δ̄

]
≡
∫ h+δ

0
dh′
∫ h̄+δ̄

h̄−δ̄

dh̄′ ρ
Vir(h′, h̄′) ,

exp
[
SVir,ft

δ ,δ̄

]
≡
∫ h+δ

h−δ

dh′
∫ h̄+δ̄

h̄−δ̄

dh̄′ ρ
Vir(h′, h̄′) .

and MVir is an order one number, given by

MVir = 2π

(
h+δ − c−1

24

)
+ log

[
c+∑

h̃

e−2π(h̃− c−1
24 )

]
, (2.1.18)

where the zero twist primaries have weight (h̃,0), h̃ ≥ 0 (including the Identity) and c+ is an

order one h, h̄ independent number, defined in §2.7. MVir is a finite number since the sum inside

the log is convergent. This happens because the absolute value of the sum is bounded by the

partition function evaluated at β = β̄ = 2π , which is a finite number.
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Analysis for primaries for CFT with no nontrivial conserved current:

If we assume that there is no nontrivial conserved current i.e the only zero twist primary

is the Identity and there is a finite twist gap (the finite twist gap as defined in {2.1.1}, combined

with the absence of nontrivial conserved current implies the usual twist gap condition used in the

literature, for example in [56]). we show that

SVir,ft
δ ,δ̄

≤ SVir,ft
h,δ ,δ̄

≤ 2π

√
(c−1)h̄

6
− 1

2
log
(

h̄
4δ̄ 2

)
+ log

(√
h+δ − c−1

24

)

+
π2

6
(c−1)

(
h+δ +

c−1
24

)
+ log

(
1− e−4π2(h+δ− c−1

24 )
)
+M′ ,

(2.1.19)

where M′ is an order one h independent number. If we assume that (h+δ − c−1
24 ) is a very small

number compared to 1
c−1 , this matches with the leading result appeared in the lightcone bootstrap

program [134, 135, 55, 146, 28] i.e.

SVir,ft
δ ,δ̄

≤ SVir,ft
h,δ ,δ̄

≤ 2π

√
(c−1)h̄

6
− 1

2
log
(

h̄
4δ̄ 2

)
+

3
2

log
(

h+δ − c−1
24

)
+ M̃′ ,

(2.1.20)

where M̃′ = M+ log(4π2). We remark that the limit is very subtle here. There are several scales.

The scale set by h̄ is the largest one and we are seeking an asymptotic behavior in h̄. Then there

are two fixed parameters h and c. We are probing the regime where (h+δ − c−1
24 ) is a very small

number compared to 1
c−1 . The details of the calculation can be found at the end of §2.7.

2.1.4 Asymptotic spectral gap

The idea about deriving an upper bound on spectral gap comes from binning the states.

If we make the bin size very small, we can not prove a positive lower bound on the number of

states in that bin, because the bin might not have any state at all. As we increase the bin size, the

chances are more that we find such positive lower bound. If we find a positive lower bound for a
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specific bin size centered at some large h, h̄; that would immediately imply existence of an upper

bound on the asymptotic spectral gap.

Probing spectral gap via Circle of order one area

With/without twist gap:

Here we do not put any assumption on twist gap.

Let us consider a square S of side 4
√

3γ

π
+ εg centered at (h, h̄) on (h′, h̄′) plane. Here εg

can be any arbitrarily small positive number. In the limit h → ∞, h̄ → ∞ we have

∫

S
dh′ dh̄′ ρ

Vir(h′, h̄′)> 0 , (2.1.21)

where the asymptotic region is reached along a curve for which max(h, h̄)≃ γ4τ

2 . Thus

the spectral gap along this curve is bounded above by a circle of radius γr√
2

and the best

possible value of r that we find is r = 4
√

3
π

, this being the circle circumscribing the square.

An immediate corollary is that the asymptotic twist gap is upper bounded by 8
√

3γ

π
≃ 4.42γ .

For c > 1, the argument can be made specific for primaries, hence the asymptotic gap. This in

some sense complements the bound on primary twist gap over the vacuum4 [56, 28].

We suspect that either by suitable choice of function or by the better estimate of heavy

sector of the partition function, r and/or length of a side of the bounding square can be made to

1. If this can be done, then the bound becomes optimal for γ = 1, (assuming we always consider

circular/square region) since tensoring chiral Monster CFT with antichiral Monster CFT saturates

the bound. One can see the saturation by circumscribing a square of unit length by a circle of

radius 1√
2

on (h′, h̄′) plane [See the fig. 2.3]. Nonetheless, the optimality along a curve for γ ̸= 1

is not guaranteed. An immediate corollary of finding such a circle is that the asymptotic twist

4In [56], it is mentioned that the argument is due to Tom Hartman.
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gap is upper bounded by 2
√

2 along h = h̄ curve. The same bound holds for asymptotic primary

twist gap. We remark that in terms of twist, the above gap might not be optimal, since if we

tensor chiral Monster CFT with anti-chiral monster CFT, the asymptotic twist gap is 2. If one

can find a bounding square of side length given by 1, that would reproduce the optimal twist gap 2.

Figure 2.3. Operator spectrum of chiral Monster CFT tensored with its antichiral avatar on
(h′, h̄′) plane: each vertex in the lattice represents the presence of operators. Any circle centered
at (h, h̄) and of radius 1√

2
+ εg with εg > 0 would contain at least an operator.

The above result and the conjectures can not be applied to a scenario, where infinity is

approached along a curve where h is of widely different order compared to h̄, in particular, say,

if we want to approach the infinity along the curve hυ = h̄ with υ ̸= 1. To circumnavigate this

issue, we assume existence of twist gap g. We remind the readers that by finite twist gap, we

mean there exists a number τ∗ > 0 such that there is no operator with twist τ ∈ (0,τ∗) and there

are finite number of zero twist operators with dimension less than c/12, and g ≥ τ∗. Moreover,

assuming existence of g helps us to get rid of dependence on γ .

CFT with twist gap g:

Now we assume that the CFT has a twist gap as defined in {2.1.1}.
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For a CFT with twist gap g (as defined in {2.1.1}) and central charge c > 1 , one can have

a bounding circle C specific to primaries having a radius σr√
2
+ εg with εg > 0, where

σ = max

(
1,

√
c−1
12g

)
, r =

4
√

3
π

. (2.1.22)

irrespective of how infinity is approached, such that the bounding circle contains at least

one operator.

Thus for such a scenario there exists h∗ and h̄∗, two order one numbers such that

∫

C
dh′ dh̄′ ρ

Vir(h′, h̄′)> 0 , ∀ h > h∗, h̄ > h̄∗ . (2.1.23)

Again this is obtained by circumscribing the appropriate bounding square [See the fig. 2.4]. The

superscript “Vir” on ρVir denotes that it is density of primary operators as opposed to all the

operators. In a compact unitary 2D CFT without any conserved current, one can use the upper

bound of twist gap due to Hartman, appearing in [56], to deduce

σ = max

(
1,

√
c−1
12g

)
=

√
c−1
12g

. (2.1.24)

Now we will explain the sense in which the minimal gap is complementary to twist gap:
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Figure 2.4. Assuming twist gap g: operator spectrum of chiral Monster CFT tensored with its
antichiral avatar on (h′, h̄′) plane: each vertex in the lattice represents the presence of operators.
Any circle centered at (h, h̄) and of radius κ√

2
+ εg with εg > 0,κ ≥ 1 would contain at least an

operator.

Suppose we consider a 2D compact unitary CFT with twist gap g such that it does not

have any zero twist primaries (conserved currents) except the Identity: if asymptotically

there exists a circle of minimal areaa A on (h′, h̄′) plane such that it does not contain any

operator, we immediately deduce the following inequality

Ag ≤ π(c−1)r2

24
. (2.1.25)

aOne can imagine that operators having conformal weight (h, h̄) are denoted by the point (h, h̄) on
(h′, h̄′) plane. We name this set to be S. Now consider the set Sd ≡ {d(a,b) : a,b ∈ S}, where d(a,b) is
the Euclidean distance on the plane between the points a and b. Existence of a circle with minimal area
means Inf Sd > 0. Asymptotically minimal area means that we look at the plane for h′ > h∗ & h̄′ > h̄∗ and
construct the set Sd and consider its infimum.

This can be thought of as an upper bound on twist gap if the minimal areal gap A is known

(note that minimal areal gap obtained from the full spectra has to be less than or equal to the

asymptotic minimal gap). If one can make r = 1 and show that π

2 < A = kπ

2 then it is possible to

lower the upper bound on twist gap from c−1
12 to c−1

12k with k > 1. This might be of importance for
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proving the proposed upper bound c−1
16 in [28], if it is true. To rephrase, if one can show that the

minimal area A= 2π

3 (thus the diameter of the circle would be 2
√

2
3 ), it would imply the proposed

bound. Similarly, any lower bound on twist gap translates to upper bound on minimal areal gap A.

The similar analysis can be done for all the operators assuming a twist gap. The only

difference is that σ would be given by σ = max
(

1,
√

c
12g

)
. We elucidate on these bounds in the

§2.3.

Probing spectral gap via Strips

Instead of squares , we can think of covering the (h′, h̄′) plane via strips of finite width

and ask what is the minimum width of the strip that guarantees existence of at least one state

(one can make the analysis sensitive to primaries such that the state is Virasoro primary) in the

strip. We can consider three kind of strips (see figure 2.5) :

H1(h)≡ {(h′, h̄′) : h′ ∈ [h−δ1,h+δ1], h̄′ ≥ 0} , (2.1.26)

H2(h̄)≡ {(h′, h̄′) : h̄′ ∈ [h̄−δ2, h̄+δ2] ,h′ ≥ 0}, (2.1.27)

H3(∆)≡ {(h′, h̄′) : h′+ h̄′ ∈ [∆−δ3,∆+δ3],h′, h̄′ ≥ 0} . (2.1.28)

It is shown in [92] that if δ3 >
1
2 , we have

∫

H3(∆→∞)
dh′ dh̄′ ρ

Vir(h′, h̄′)> 0 (2.1.29)

Thus the asymptotic spectral gap is bounded above by 1.

In this work we show that

∫

H1(h→∞)
dh′ dh̄′ ρ

Vir(h′, h̄′)> 0 for δ1 >
1√
2

(2.1.30)

24



Figure 2.5. We consider three kind of strips: the red vertical one is H2(h̄), the blue horizontal
one is H1(h) and the black one is H3(∆). In each cases, we see that there is a minimum width of
the strip such that the strips contain at least one operator.

The same result holds true for the H2 strip with h replaced by h̄, where H1, H2 are defined in

(2.1.26). This comes from putting a positive lower bound on the right hand side of the following

inequality:

∫

H1(h→∞)
dh′ dh̄′ ρ

Vir(h′, h̄′)≥
∫

H1(h→∞)
dh′ dh̄′ ρ

Vir(h′, h̄′)e−β̄ h̄ (2.1.31)

We achieve this as a corollary of the lemma proven in §2.4 (a similar lemma can be proven for

primaries only and then we use the above inequality) . This shows that

Asymptotically on the (h′, h̄′) plane, if the width of the horizontal or vertical strip is bigger

than
√

2, it contains at least one Virasoro primary. This might not be optimal since the

gap we find by tensoring chiral Monster CFT with its anti-chiral avatar is 1.
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2.1.5 Analysis at large central charge

We consider the c → ∞ limit and parametrize the conformal weights in following way:

h = c
(

1
24

+ ε

)
, h̄ = c

(
1

24
+ ε̄

)
; ε, ε̄ fixed . (2.1.32)

Let us define ε∗ = min(ε, ε̄) and ε∗ = max(ε, ε̄).

With/without twist gap:

We show that5

For min
{
(h/c−1/24),(h̄/c−1/24)

}
= ε∗ > 1

6 , the microcanonical entropy for order

one window δ , δ̄ ≃ O(1) is given by

S
δ ,δ̄ ≃

c→∞
2π

(√
c
6

(
h− c

24

)
+

√
c
6

(
h̄− c

24

))
− log(c)+O(1) , (2.1.33)

while for δ , δ̄ ≃ cα with 0 < α ≤ 1, we have

Sδ ≃
c→∞

2π

(√
c
6

(
h+δ − c

24

)
+

√
c
6

(
h̄+ δ̄ − c

24

))
− log(c)+O(1) . (2.1.34)

Assuming finite twist gap:

If we assume a finite twist gap g (as defined in {2.1.1}), then

5It might be possible to extend the region of validity beyond this, in particular, following [100], one might expect
it to be valid for εε̄ > 1

242 !
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The regime of validity of the Cardy result as in (2.1.33) can be extended to

ε∗ >
1
6

[
max

{
1
2
,

(
1− 6g

c

)2
}]

, ε∗ ≡ min
{
(h/c−1/24),(h̄/c−1/24)

}
.

(2.1.35)

Relevant recent work:

There has been recent surge in analyzing the asymptotics of CFT data on a rigorous

footing. The results have been obtained [168, 171] using techniques borrowed from a part of

mathematics literature, which goes by the name of Tauberian theorems. The appendix C of

[69] emphasizes the importance of Ingham theorem [114] in analyzing Cardy’s result [42] for

the asymptotic density of states in 2D CFT. Subsequently, the complex Tauberian theorems, as

appeared originally in [174] is utilized in the work of [157]. A complete rigorous treatment of

Cardy formula appeared in the work [158], where they figured out the density of states in ∆ → ∞

limit with a rigorous optimal estimate of the error term. The improvement of the result along

with a proof of the conjecture made in [158] has been put forward in [92]. An rigorous analysis

of the asymptotics of three point coefficients [130] appeared recently [165] where the main

challenge was to circumnavigate the negativity issue for the analysis of three point coefficients.

2.2 Set up

We consider a 2D CFT with spectrum of operators having conformal weights (h′, h̄′).

We assign different real temperatures β , β̄ to the left-moving and the right-moving sectors

respectively. The partition function Z(β , β̄ ) is given by:

Z(β , β̄ ) = ∑
h′,h̄′

e−β (h′−c/24)−β̄ (h̄′−c/24) . (2.2.1)
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The modular invariance of the partition function yields:

Z(β , β̄ ) = Z(β ′, β̄ ′), β
′ =

4π2

β
, β̄

′ =
4π2

β̄
. (2.2.2)

We further define the following measure

dF(h′, h̄′) = ∑d(hi, h̄i)δ (h′−hi)δ (h̄′− h̄i) , (2.2.3)

where d(hi, h̄i) is the degeneracy of the state with conformal weight (hi, h̄i). Our goal is to

estimate the integral of the measure dF over different regions.

2.2.1 A semi technical glimpse of the subtleties

One of the key step in deriving the Cardy formula is the intuitive understanding that at

high temperature, the partition function is dominated by the heavy states, thus doing an inverse

Laplace transform of the high temperature behavior of the partition function should produce the

asymptotic density of states. Schematically,

Z(β → 0) = Leading Term︸ ︷︷ ︸
Produces asymptotic density of states

+ Error , (2.2.4)

Inverse Laplace [Error] ???
= Error in asymptotic density of states . (2.2.5)

The underlying assumption while doing the above is that the inverse Laplace transform of the

error term is bounded as well, thus producing an error compared to the leading behavior of the

asymptotic density of states. The Tauberian formalism justifies this step by carefully estimating

the error terms. The way it works is following: one bounds the number of states within an

order an window centered at some heavy ∆, from above and below by some convolution (⊛) of

partition function at high temperature (β ) and bandlimited function φ±, schematically this looks
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like

[Z(β + it)⊛φ−(t)]≤ #states in window ≤ [Z(β + it)⊛φ+(t)] . (2.2.6)

Intuitively, at this stage, we know that heavy states contribute to this partition function at

high temperature. Now we implement modular transformation, the partition function at high

temperature becomes partition function at low temperature. Schematically we have

[
Z
(

4π2

β + it

)
⊛φ−(t)

]
≤ #states in window ≤

[
Z
(

4π2

β + it

)
⊛φ+(t)

]
. (2.2.7)

At low temperature, low lying states contribute the most i.e Z
(

4π2

β
→ ∞

)
is dominated by low

lying states. So, following [100], we separate the low lying states from heavy states; the low

lying states constitute the “light” part, while the “heavy” part is complement of that. The “light”

part contains finite number of operators at finite central charge. So we do the inverse Laplace

transform of this “Light” part to get the leading answer ρ∗. Thus ρ∗ reproduces the Z
(

4π2

β
→ ∞

)

behavior upon doing Laplace transformation. We are still left with the “heavy” part contribution

of Z
(

4π2

β+it

)
. This part can be shown to produce a subleading correction to the leading piece

of asymptotic density of states, thus justifying (2.2.5) using the bound proven in [100]. This

requires relating the “heavy” part at temperature β to the “light” part at temperature β ′. The

upshot of this discussion is that we have a full control of the error term and its inverse Laplace

transformation. In practice, we only consider the Identity operator among all the operators in the

“light” region. So one might worry about the error coming from that but since there are finite

number of operators in the “Light” region, one can do inverse Laplace transformation term by

term and show that each of them is exponentially suppressed and hence the finite sum of them.

We emphasize the “finiteness” of finite sum is really very important for this and this is precisely

why we need to treat heavy part separately6. In fact, we remind the readers that in the large

central charge limit, we have infinite number of operators even in the “light” sector, hence we

6One could have imagined doing inverse Laplace transformation term by term including the operators from
“heavy” sector, even if each of them is suppressed, there’s no guarantee that the infinite sum is suppressed.
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need an extra assumption of sparseness, as done in [100].

The immediate generalization of this technique used in the [158] has obstacles because

of the cross terms present in the analysis, for example, say contribution from the states where

h′ is large but h̄′ is not that large. The most obvious way to generalize the argument is to use

the generalized HKS [100] cut: dividing the (h′, h̄′) plane into two regions, where the “light”

region (call it L) contains all the operators with one of h′ or h̄′ being less than c/24 while the

heavy region is the complement of them. It is possible to make a similar statement about this

“heavy” region, relating it to the “light” part using HKS like argument. Nonetheless, one then

stumbles upon the issue of defining ρ∗, which is supposed to reproduce the leading contribution

to the partition function at high temperature (β → 0,β ′ → ∞), to be precise, the light part of

the partition function at temperature β ′. Now the issue is that there are infinite number of

operators in this region L. Unlike the case in [158], we just can not take the Identity operator to

prove that this produces the leading behavior and say the rest are suppressed. In particular, the

previous argument of term by term exponential suppression fails because there are infinite of

them. The take home message is that it is not a priori clear whether just considering the vacuum

to calculate ρ∗ is good enough, because infinite number of other operators might conspire to spoil

the “leading contribution”, even if each one of them is exponentially suppressed. We reemphasize

that [158] did not face this problem, since in their case, the light region was ∆′ < c/12 and the

region has finite number of operators and everything is under control, so in principle their ρ∗ was

defined having contribution from all those states with ∆′ < c/12 and in practice derivable from

the vacuum. To circumnavigate this problem, in §2.3, we use the original HKS cut i.e. we define

the “light” region to be the one where h′+ h̄′ < c/12 and the “heavy” region is the complement

of the light region. See fig. 2.6. The immediate cost for doing this is that we can make comment

only when h and h̄ is of the same order asymptotically. The details depend on how infinity is

approached. But this is expected because intuitively the infinity can be reached several ways on

a plane. This issue persists for the analysis sensitive to primary as well. It turns out that one can
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Figure 2.6. The (h′, h̄′) plane: the light red shaded region contributes to ZL and the complement
of this contributes to ZH . The naive HKS cut makes the union of red and blue shaded region to
be the “Light” region which brings in the problem of having infinite number of operators in the
light region.

bypass this restriction of h and h̄ being of the same order, if one assumes a twist gap (as defined

in {2.1.1} we require finite number of conserved currents with dimension less than c/12 to be

precise). In that scenario, the results in §2.3 holds true even if h and h̄ are not of the same order

asymptotically. The estimation of the “heavy” region becomes really involved in this case and

carried out in details in §2.3. One has to further separate out the “heavy” zero twist operators

and estimate their contribution separately (see the right fig. 2.6).

We further point out that estimating the integrated density of states require us to prove

another lemma, which is special to 2 D Tauberian theorem. We achieve this in §2.4. The lemma

is then fed into the main proof in §2.5. The result for the integrated density of states also requires

an estimate of number of states within an order one area on (h′, h̄′) plane, which is achieved in

§2.3. In §2.6, we verify our results using 2D Ising model. The large spin, finite twist is discussed

in §2.7. The large central charge regime is discussed in §2.8. We conclude with a list of open of

problems along with a brief discussion.
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2.3 O(1) rectangular window

In this section, we study the number of states lying on an order one rectangular/square

area of (h′, h̄′) plane, centered at some large (h, h̄) and having sides of length 2δ and 2δ̄ . We

are interested in h → ∞, h̄ → ∞ limit with δ , δ̄ being fixed order one numbers. We do it in two

ways, in the first subsection, we do it generically without any assumption on twist gap while in

the next subsection, we assume existence of a twist gap. The assumption of the twist gap (as

defined in {2.1.1}) facilitates studying the regime where h is not of the same order as h̄.

2.3.1 Generic analysis: with/without Twist gap

Following [158], let us choose functions Φ±(h, h̄) such that

Φ−(h′, h̄′)≤ Θh,h̄,δ ,δ̄ (h
′, h̄′)≤ Φ+(h′, h̄′), (2.3.1)

where Θh,h̄,δ ,δ ′(h′, h̄′) is the indicator function of the rectangle and defined as

Θh,h̄,δ ,δ ′(h′, h̄′) = θ[h−δ ,h+δ ](h
′)θ[h̄−δ̄ ,h̄+δ̄ ](h̄

′), (2.3.2)

In principle, one can choose the energy window for the microcanonical ensemble to be of a

different shape, for example, a circle. But for now, we consider it to be a rectangle. Now, from

eq. (2.3.1) we obtain

eβ (h−δ )+β̄ (h̄−δ̄ )e−βh′−β̄ h̄′
Φ−(h′, h̄′)≤ Θh,h̄,δ ,δ̄ (h

′, h̄′)≤ eβ (h+δ )+β̄ (h̄+δ̄ )e−βh′−β̄ h̄′
Φ+(h′, h̄′).

(2.3.3)

Multiplying the above by the density of states ρ(h′, h̄′) and integrating yields the following
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inequality:

eβ (h−δ )+β̄ (h̄−δ̄ )
∫

dF(h′, h̄′)e−βh′−β̄ h̄′
Φ−(h′, h̄′)

≤
∫ h+δ

h−δ

∫ h̄+δ̄

h̄−δ̄

dF(h, h̄′)≤

eβ (h+δ )+β̄ (h̄+δ̄ )
∫

dF(h′, h̄′)e−βh′−β̄ h̄′
Φ+(h′, h̄′).

(2.3.4)

At this point, we use the Fourier transform Φ̂±(t, t̄), defined as

Φ±(h′, h̄′)≡
∫

∞

−∞

dt
∫

∞

−∞

dt̄ Φ̂±(t, t̄)e−ih′t−ih̄′t̄ . (2.3.5)

This facilitates us to rewrite the inequality in (2.3.4) as

∫
dh′ dh̄′Lρ(β + it, β̄ + it̄)Φ̂−(t, t̄)

≤
∫ h+δ

h−δ

∫ h̄+δ̄

h̄−δ̄

dF(h, h̄′)≤
∫

dh′ dh̄′Lρ(β + it, β̄ + it̄)Φ̂+(t, t̄) ,

(2.3.6)

where we have

Lρ(β , β̄ )≡
∫

∞

0
dh
∫

∞

0
dh̄ ρ(h, h̄)e−βh−β̄ h̄ . (2.3.7)

Next we need to split Z = ZL +ZH . In [100], for the mixed temperature analysis, the light sector

is chosen to be {(h, h̄)|h < c
24 or h̄ < c

24} and the heavy sector is the complement of that. Here,

we choose a different light sector {(h, h̄)|h+ h̄ < c
12} which has finite size (for large central

charge, this is not true and one needs to have an extra sparseness condition on the low lying

spectra [100, 158]). So at least, in principle, we can choose ρ∗(h, h̄) such that ρ∗ reproduce the

contributions from all operators in the light sector. In practice, we take ρ∗ such that it reproduces

only the vacuum state contribution, that is,
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ρ∗(h, h̄) =
[

π

√
c
6

I1
(
2π
√ c

6(h− c
24)
)

√
h− c

24
θ

(
h− c

24

)
+δ

(
h− c

24

)]
× (h → h̄), (2.3.8)

which has the asymptotic behavior

ρ∗(h, h̄)∼
√

c
96

(
1

h3h̄3

)1/4

e2π

√
ch
6 +2π

√
ch̄
6
[
1+O

(
h−1/2

)
+O

(
h̄−1/2

)]
. (2.3.9)

Then we can write e−(β+it+β̄+it̄)c/24ZL

(
4π2

β+it ,
4π2

β̄+it̄

)
= Lρ∗,L(β + it, β̄ + it̄). So we get

eβ (h−δ )+β̄ (h̄−δ̄ )

(∫
∞

−∞

dt dt̄ Φ̂−(t, t̄)Lρ∗,L(β + it, β̄ + it̄)

−
∣∣∣∣
∫

∞

−∞

dtdt̄ e−(β+it+β̄+it̄)c/24
Φ̂−(t, t̄)ZH

(
4π2

β + it
,

4π2

β̄ + it̄

)∣∣∣∣
)

≤
∫ h+δ

h−δ

∫ h̄+δ̄

h̄−δ̄

dF(h, h̄′)≤

eβ (h+δ )+β̄ (h̄+δ̄ )

(∫
∞

−∞

dt dt̄ Φ̂+(t, t̄)Lρ∗,L(β + it, β̄ + it̄)

+

∣∣∣∣
∫

∞

−∞

dt dt̄ e−(β+it+β̄+it̄)c/24
Φ̂+(t, t̄)ZH

(
4π2

β + it
,

4π2

β̄ + it̄

)∣∣∣∣
)
,

(2.3.10)

Now we can estimate the contribution from the heavy sector using the HKS bound. We choose

Φ± such that Φ̂±(t, t̄) have finite support [−Λ±,Λ±] for t and t̄. A possible choice can be made

via modifying the functions appearing in [158, 92] a little bit. To be concrete, let us make the

following choices:

Φ+(h′, h̄′) =
f+(h−h′) f+(h̄− h̄′)

f+(δ ) f+(δ̄ )
, (2.3.11)

Φ−(h′, h̄′) = f−(h−h′) f−(h̄− h̄′)
(

1−
(

h−h′

δ

)2

−
(

h̄− h̄′

δ̄

)2)
, (2.3.12)
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where we have

f±(x) =
[

sinc
(

Λ±x
4

)]4

. (2.3.13)

We remark that for Φ−, the locus 1− (a/δ )2 − (b/δ̄ )2 = 0 is inside the rectangle region, hence

it is a valid choice conforming to the inequality (2.3.1). Here a = h−h′ and b = h̄− h̄′. At this

point, our aim is to show that

I± = eβ (h±δ )+β̄ (h̄±δ̄ )

∣∣∣∣
∫

∞

−∞

dt dt̄ e−(β+it+β̄+it̄)c/24
Φ̂±(t, t̄)ZH

(
4π2

β + it
,

4π2

β̄ + it̄

)∣∣∣∣ (2.3.14)

is sub-leading. We will make use of the most basic HKS bound [100] for ∆ in a clever way. We

remark that by requiring the saddle of the light sector is located at (h, h̄), we find β = π
√ c

6h <<

1, β̄ = π

√
c

6h̄ << 1, so some terms such as βδ can be dropped from the bounds as it goes to 0

for large h, h̄. Then using the fact that Φ± is a bandlimited function, we have

I± ≤ eβh+β̄ h̄
∫

dt dt̄ ZH

(
4π2β

β 2 + t2 ,
4π2β̄

β̄ 2 + t̄2

)∣∣∣∣Φ̂±(t, t̄)
∣∣∣∣ . (2.3.15)

Now ZH has contribution from states where either h′ or h̄′ is greater than c/24. Since the

contributing states have h′+ h̄′ > c/12, both can not be less than or equal to c
24 . We illustrate the

case for h′ > c/24.

ZH ∋exp
[
− 4π2β

β 2 + t2

(
h′− c

24

)
− 4π2β̄

β̄ 2 + t̄2

(
h̄′− c

24

)]

≤ e
π2c
6β̄ exp

[
− 4π2β

β 2 +Λ2
±

(
h′− c

24

)
− 4π2β̄

β̄ 2 +Λ2
±

h̄′
]

≤ e
π2c
6β̄ e

− π2β∗c
6(β2∗+Λ2±) exp

[
− 4π2β∗

β 2∗ +Λ2
±

(
h′+ h̄′− c

12

)]
,

(2.3.16)
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where β∗ is defined as β∗ = min
(
β , β̄

)
, hence we have (for small enough β and β̄ )

min
(

4π2β

β 2 +Λ2
±
,

4π2β̄

β̄ 2 +Λ2
±

)
=

4π2β∗
β 2∗ +Λ2

±
, (2.3.17)

Thus we have

I± ≤ eβh+β̄ h̄
(

e
π2c
6β̄ + e

π2c
6β

)
e
− π2β∗c

6(β2∗+Λ2±) ZH,∆

(
4π2β∗

β 2∗ +Λ2
±

)
, (2.3.18)

where the last ZH,∆ = ∑∆>c/12 e−β (∆−c/12) is the heavy contribution from the original HKS

bound for ∆. We will be showing that the above term is subleading. There are two pieces, one

with e
π2c
6β and another with e

π2c
6β̄ . Let us illustrate the subleading nature of the term with e

π2c
6β̄ .

The other term can be treated similarly.

In β , β̄ → 0 limit, we have

eβh+β̄ h̄e
π2c
6β̄ e

− π2β∗c
6(β2∗+Λ2±) ZH,∆

(
4π2β∗

β 2∗ +Λ2
±

)
≤ eβh+β̄ h̄e

π2c
6β̄ ZH,∆

(
4π2β∗

β 2∗ +Λ2
±

)

∼ eπ

√
ch
6 +2π

√
ch̄
6 +2π

√
ch∗

6

(
Λ±
2π

)2

≤





h ≥ h̄ : e2π

√
ch
6 +2π

√
ch̄
6 +2π

√
ch
6

((
Λ±
2π

)2
− 1

2

)
.

h < h̄ : eπ

√
ch
6 +2π

√
ch̄
6 +2π

√
ch̄
6

(
Λ±
2π

)2

.

(2.3.19)

where h∗ = max(h, h̄) and τ = 2 min(h, h̄). To make the contribution from the heavy sector

sub-leading, we need

Λ± < min
(

2π√
2
,

2π√
2γ

)
, (2.3.20)
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where τ

2γ4 ≃ h∗ (clearly, γ > 1). This can be achieved by choosing

Λ± <

√
2π

γ
. (2.3.21)

Then at large h, h̄, we have the following bound, starting from (2.3.10) (the second term i.e. the

term with the absolute value in (2.3.10) has already been shown to be subleading and we rewrite

the first term as an integral over h′, h̄′ below):

eβ (h−δ )+β̄ (h̄−δ̄ )
∫

dh′ dh̄′ρ∗(h′, h̄′)Φ−(h′, h̄′)e−βh′−β̄ h̄′

≤
∫ h+δ

h−δ

∫ h̄+δ̄

h̄−δ̄

dF(h, h̄′)≤

eβ (h+δ )+β̄ (h̄+δ̄ )
∫

dh′ dh̄′ρ∗(h′, h̄′)Φ+(h′, h̄′)e−βh′−β̄ h̄′ .

(2.3.22)

We can evaluate this integral by saddle point approximation,

c−ρ∗(h, h̄)≤
1

4δ δ̄

∫ h+δ

h−δ

∫ h̄+δ̄

h̄−δ̄

dF(h, h̄′)≤ c+ρ∗(h, h̄) , (2.3.23)

where c± is defined as

c± =
1
4

∫
dx dy Φ±(h+δx, h̄+ δ̄y) . (2.3.24)

With the previous choice of Φ±, we have

c+ =
16π2

9
1

δ δ̄Λ2
+sinc4(δΛ+/4)sinc4(δ̄Λ+/4)

,

c− =
16π2

9
δ 2δ̄ 2Λ2

−−12δ 2 −12δ̄ 2

δ 3δ̄ 3Λ4
−

.

(2.3.25)

where we must optimize over 0<Λ±<
√

2π

γ
to get the tightest bound while keeping δ , δ̄ arbitrary.
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The condition for the lower bound to be positive is

1
δ 2 +

1
δ̄ 2

<
Λ2
−

12
. (2.3.26)

The allowed region increases as we increase Λ−. And the minimum area such that there has to

be at least one operator is given by 4δ δ̄ = 48γ2

π2 = 4.86γ2 at δ = δ̄ = 2
√

3γ

π
. This analysis can be

made sensitive to primaries only, thus gives an asymptotic gap between primaries. We suspect

that the above does not give the tightest bound for spectral gap (this intuition is coming from the

similar analysis done for the spectral gap in ∆, appearing in [158, 92])!

Next we can keep δ , δ̄ arbitrary and optimize over 0<Λ±<
√

2π

γ
to get the tightest bound.

(a) For lower bound:

1
4δ δ̄

∫ h+δ

h−δ

∫ h̄+δ̄

h̄−δ̄

dF(h, h̄′)≥ π2

27
δ δ̄

δ 2 + δ̄ 2
ρ∗(h, h̄),

√
δ 2 + δ̄ 2

δ δ̄
<

π

2
√

3γ
,

1
4δ δ̄

∫ h+δ

h−δ

∫ h̄+δ̄

h̄−δ̄

dF(h, h̄′)≥ 8π2γ2δ 2δ̄ 2 −48γ4(δ 2 + δ̄ 2)

9π2δ 3δ̄ 3
ρ∗(h, h̄),

√
δ 2 + δ̄ 2

δ δ̄
≥ π

2
√

3γ
.

(2.3.27)

(b) For upper bound:

1
4δ δ̄

∫ h+δ

h−δ

∫ h̄+δ̄

h̄−δ̄

dF(h, h̄′)≤ 16π2

9δ δ̄ (Λ∗
+)

2

ρ∗(h, h̄)

sinc
(δΛ∗

+
4

)4
sinc

( δ̄Λ∗
+

4

)4 , Λ
∗
+ ≤

√
2π

γ
,

1
4δ δ̄

∫ h+δ

h−δ

∫ h̄+δ̄

h̄−δ̄

dF(h, h̄′)≤ 8γ2

9δ δ̄

ρ∗(h, h̄)

sinc
(

δ
√

2π

4γ

)4
sinc

(
δ̄
√

2π

4γ

)4 , Λ
∗
+ >

√
2π

γ
.

(2.3.28)

where Λ∗
+(δ , δ̄ ) is the non-zero least positive solution of

δΛ+ cot
(

δΛ+

4

)
+ δ̄Λ+ cot

(
δ̄Λ+

4

)
= 6. (2.3.29)
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2.3.2 Analysis of O(1) window assuming a twist gap

We have seen that the result proven in the previous subsection holds true when h and h̄ are

of the same order asymptotically. When we make the analysis sensitive to primary, this feature

persists. Nonetheless, we can circumnavigate this issue by assuming an existence of twist gap

(as defined in {2.1.1}). One can also do this for the analysis sensitive to all the operators. The

only catch is that one has to separately treat the zero twist operators with dimension greater than

c/12. We revisit the analysis of suppression of heavy region in the light of the above discussion.

At first, we take up the analysis for all the operators.

We go back to the eq. (2.3.16) and redo the first part of the analysis. We separate out

ZH into two pieces, one with zero twist heavy operators, we name it Z(0)
H , while the other one

contains all the heavy operators with non-zero twist, we name it Z(τ)
H . We start with analyzing

Z(τ)
H , assuming a twist gap. We have two scenarios.

Scenario I: If g ≤ c
12 , we have

Z(τ)
H ∋exp

[
− 4π2β

β 2 + t2

(
h′− c

24

)
− 4π2β̄

β̄ 2 + t̄2

(
h̄′− c

24

)]

≤ e
π2c(1− 12g

c )
6β̄

+
π2c(1− 12g

c )
6β exp

[
− 4π2β

β 2 +Λ2
±

(
h′− g

2

)
− 4π2β̄

β̄ 2 +Λ2
±

(
h̄′− g

2

)]

≤ e
π2c(1− 12g

c )
6β̄

+
π2c(1− 12g

c )
6β exp

[
− 4π2β∗

β 2∗ +Λ2
±

(
h′+ h̄′−g

)]

≤ e
π2c(1− 12g

c )
(

1
β
+ 1

β̄

)

6 exp
[
− 4π2β∗

β 2∗ +Λ2
±

(
h′+ h̄′− c

12

)]
.

(2.3.30)

Here going from the first inequality to the second one, we used 2h′ > g,2h̄′ > g; going from the

second one to the third (last) one, we used g ≤ c/12. The rest of the analysis goes in a similar
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manner, as done subsequently after (2.3.16) and we deduce:

Λ± <

√
2π

σ
, σ

2 ≡
(

c
12g

)
. (2.3.31)

Scenario II: If g ≥ c
12 , we have h′ > c/24 and h̄′ > c/24, leading to

Z(τ)
H ∋exp

[
− 4π2β

β 2 + t2

(
h′− c

24

)
− 4π2β̄

β̄ 2 + t̄2

(
h̄′− c

24

)]

≤ exp
[
− 4π2β∗

β 2∗ +Λ2
±

(
h′+ h̄′− c

12

)]
.

(2.3.32)

The rest of the analysis goes in a similar manner and we deduce:

Λ± <
√

2π . (2.3.33)

Now we come back to analyzing the zero twist heavy sector. For this sector, h∗ = max(h, h̄) =
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∆ > c/12 > c/24, thus we have

Z(0)
H

= ∑
h′

exp
[
− 4π2β

β 2 + t2

(
h′− c

24

)
+

π2β̄c
6(β̄ 2 + t̄2)

]
+∑

h̄′
exp
[

π2βc
6(β 2 + t2)

− 4π2β̄

β̄ 2 + t̄2

(
h̄′− c

24

)]

≤ ∑
h′

exp
[
− 4π2β

β 2 +Λ2

(
∆h′,0 −

c
24

)
+

π2c
6β̄

]
+∑

h̄′
exp
[

π2c
6β

− 4π2β̄

β̄ 2 +Λ2

(
∆0,h̄′ −

c
24

)]

≤ e
π2c
6β̄ ∑

h′
exp
[
− 4π2β

β 2 +Λ2

(
∆h′,0 −

c
24

)]
+ e

π2c
6β ∑

h̄′
exp

[
− 4π2β̄

β̄ 2 +Λ2
±

(
∆0,h̄′ −

c
24

)]

≤ e
π2c
6β̄ ∑

h′
exp
[
− 4π2β

β 2 +Λ2
±

(
∆h′,0 −

c
12

)]
+ e

π2c
6β ∑

h̄′
exp

[
− 4π2β̄

β̄ 2 +Λ2
±

(
∆0,h̄′ −

c
12

)]

≤ e
π2c
6β̄ ∑

h′
exp
[
− 4π2β

β 2 +Λ2
±

(
∆h′,0 −

c
12

)]
+ e

π2c
6β ∑

h̄′
exp

[
− 4π2β̄

β̄ 2 +Λ2
±

(
∆0,h̄′ −

c
12

)]

≤ e
π2c
6β̄ ∑

∆

exp
[
− 4π2β

β 2 +Λ2
±

(
∆− c

12

)]
+∑

∆

e
π2c
6β exp

[
− 4π2β̄

β̄ 2 +Λ2
±

(
∆− c

12

)]

≤ eπ

√
ch̄
6 ZH,∆

(
4π2β

β 2 +Λ2
±

)
+ eπ

√
ch
6 ZH,∆

(
4π2β̄

β̄ 2 +Λ2
±

)
.

(2.3.34)

The subscript on ∆ in the second line denotes the actual conformal weights of the operator and

in the penultimate line, we have extended the sum to all the heavy operators. Now one can see

the zero twist heavy sector is suppressed as long as we choose Λ± <
√

2π . Thus, combining

everything, we have

Λ± <





min
(√

2π,
√

2π

ζ

)
=

√
2π

ζ
, g ≤ c/12

√
2π , g ≥ c/12

(2.3.35)

where ζ 2 = c
12g . We can combine the above to write for all g,

Λ± < min

(
√

2π,

√
2π

ζ

)
. (2.3.36)
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The above has immediate implication in terms of asymptotic gap for all the operators, in particular,

the gap does not depend on the term γ anymore. Nonetheless, as we already know existence of

descendants asymptotically, the asymptotic gap for all the operators is not so illuminating, so we

will not illustrate upon this. Rather we come back to this when we make our analysis sensitive to

primaries and in that scenario, the result about asymptotic gap is indeed illuminating.

Analysis for primaries: twist gap complementary to asymptotic spectral gap:

The analysis for primaries proceeds in a similar manner. We will be estimating the

following object

exp
[
SVir

δ ,δ̄

]
=
∫ h̄+δ̄

h̄−δ̄

∫ h+δ

h−δ

dh′ dh̄′ρVir(h′, h̄′) , (2.3.37)

where ρVir(h′, h̄′) is the density of primaries. Instead of the partition function we consider the

following object (for c > 1, the expansion of this object is universal)

Zprimary(β , β̄ )

≡ η(β )η(β̄ )Z(β ) = eβ
c−1
24 +β̄

c−1
24

[(
1− e−β

)(
1− e−β̄

)
+ ∑

h′ ̸=0,h̄′ ̸=0

dh′,h̄′e
−βh′−β̄ h̄′

]
.

(2.3.38)

Under modular transformation, we have

Zprimary(β , β̄ ) =

√
2π

β

√
2π

β̄
Zprimary

(
4π2

β
,
4π2

β̄

)
. (2.3.39)

Then we define the crossing ρVir
∗ (h′, h̄′) = ρVir

∗ (h′)ρVir
∗ (h̄′) to reproduce the high temperature

behavior of Zprimary(β , β̄ ) i.e we have

∫
∞

0
dh′ e−β(h′− c−1

24 )ρVir
∗ (h′) =

√
2π

β

(
exp
[

π2(c−1)
6β

]
− exp

[
π2(c−25)

6β

])
,

∫
∞

0
dh̄′ e−β̄(h̄′− c−1

24 )ρVir
∗ (h̄′) =

√
2π

β̄

(
exp
[

π2(c−1)
6β

]
− exp

[
π2(c−25)

6β̄

])
.

(2.3.40)
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Explicitly, ρVir
∗ would be given by the following function:

ρ
Vir
∗ (h′) =





0 if h′ < c−1
24

√
2√

h− c−1
24

[
cosh

(
4π

√
(c−1)

24

(
h− c−1

24

))
− cosh

(
4π

√
(c−25)

24

(
h− c−1

24

))]
.

(2.3.41)

The analysis pertaining to the estimation of the heavy part presented before for the analysis of all

the operators can be used as a stepping stone for a similar analysis for primaries for c > 1 CFTs.

We again use bandlimited functions and we deduce that the support Λ± has to satisfy7:

Λ± < min

(√
2π

ζp
,
√

2π

)
, ζ

2
p ≡

(
c−1
12g

)
. (2.3.42)

The leading answer comes out to be

1
2

c−√
h− c−1

24

√
h̄− c−1

24

exp


2π



√

(c−1)h
6

+

√
(c−1)h̄

6






≤ 1
4δ δ̄

exp
[
SVir

δ ,δ̄

]
≤

1
2

c+√
h− c−1

24

√
h̄− c−1

24

exp


2π



√

(c−1)h
6

+

√
(c−1)h̄

6




 ,

(2.3.43)

where c± is defines as in the Eq. (2.3.24).

Asymptotic gap:

Now we come back to our discussion of asymptotic gap of primaries. We use the function

given in Eq. (2.3.12) but now with constraint as given in Eq. (2.3.42). Thus the asymptotic

binding square will have length 4
√

3σ

π
and the binding circle would have radius rσ√

2
+ εg with

7Should we not assume twist gap, we would have Λ± <
√

2π

γ
, just like the analysis for all the operators without

assuming twist gap.
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εg > 0, and σ , r are given by

σ = max
(

1,
c−1
12g

)
, r =

4
√

3
π

. (2.3.44)

If we consider tensoring the chiral Monster CFT with its antichiral avatar, we find g = 4

and our result predicts that the asymptotic spectral gap involves a circle of radius 2
√

6
π

irrespective

of how infinity is approached. This is above the suspected optimal value 1 (see fig. 2.4). In a

unitary compact CFT without conserved currents, there is a bound on twist gap[56]:

g ≤ c−1
12

. (2.3.45)

In that scenario, we have

Λ± < min

(√
2π

ζp
,
√

2π

)
=

√
2π

ζp
, ζ

2
p ≡

(
c−1
12g

)
. (2.3.46)

As a result, we deduce the universal inequality satisfied by the “areal” spectral gap A and

twist gap g:

Ag ≤ π(c−1)r2

12
, (2.3.47)

where we have shown r = 4
√

3
π

≃ 2.21 > 1 and we suspect that it can be made to 1.

2.4 Lemma: density of states on strip of order one width

In this section, we prove a lemma which is going to play a pivotal role in the next section,

where we are going to prove an asymptotic result for the integrated density of states i.e number

of states upto a large (h, h̄) threshold. This also helps us to derive the asymptotic spectral gap via
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strip like regions as defined in {2.1.4}. We start by defining the following functions

Q(h, β̄ )≡
∫ h+δ

h−δ

dh′
∫

∞

0
dh̄′ ρ(h′, h̄′)e−β̄ h̄′ ,

P(h̄,β )≡
∫ h̄+δ̄

h̄−δ̄

dh̄′
∫

∞

0
dh′ ρ(h′, h̄′)e−βh′ .

(2.4.1)

The aim of this section is to prove the following lemma:

eβ̄ h̄Q(h, β̄ ) =
β̄=π

√ c
6h̄

O


h−3/4 exp


2π



√

ch
6
+

√
ch̄
6






 , (2.4.2)

eβhP(h̄,β ) =
β=π

√ c
6h

O


h̄−3/4 exp


2π



√

ch
6
+

√
ch̄
6






 . (2.4.3)

Let us focus on the quantity Q, the argument for P follows in a similar manner. In order

to estimate Q, we write down the master inequality:

eβ (h−δ )
∫

∞

0
dh′

∫
∞

0
dh̄′ ρ(h′, h̄′)φ−(h′)e−βh′−β̄ h̄′

≤ Q(h, β̄ ) (2.4.4)

≤ eβ (h+δ )
∫

∞

0
dh′

∫
∞

0
dh̄′ ρ(h′, h̄′)φ+(h′)e−βh′−β̄ h̄′ ,

where we have used

φ−(h′)≤ Θ
(
h′ ∈ [h−δ ,h+δ ]

)
≤ φ+(h′) . (2.4.5)

Next we note that

∫
∞

0
dh′

∫
∞

0
dh̄′ ρ(h′, h̄′)φ±(h′)e−βh′−β̄ h̄′

= e−βc/24−β̄c/24
∫

∞

−∞

dt e−ıtc/24Z(β + ıt, β̄ )φ̂±(t)

= e−βc/24−β̄c/24
∫

∞

−∞

dt e−ıtc/24Z
(

4π2

β + ıt
,
4π2

β̄

)
φ̂±(t) .

(2.4.6)
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Now we separate the contribution to Z
(

4π2

β+ıt ,
4π2

β̄

)
into two pieces ZL (contribution from

the “light” sector) and ZH (contribution from the “heavy” sector). The inequality in (2.4.4) can

be written as

eβ (h−c/24−δ )−β̄c/24
∫

∞

−∞

dt e−ıtc/24ZL

(
4π2

β + ıt
,
4π2

β̄

)
φ̂−(t)

− eβ (h−c/24−δ )−β̄c/24
∣∣∣∣
∫

∞

−∞

dt e−ıtc/24ZH

(
4π2

β + ıt
,
4π2

β̄

)
φ̂−(t)

∣∣∣∣

≤ Q(h, β̄ )

≤ eβ (h−c/24+δ )−β̄c/24
∫

∞

−∞

dt e−ıtc/24ZL

(
4π2

β + ıt
,
4π2

β̄

)
φ̂+(t)

+ eβ (h−c/24+δ )−β̄c/24
∣∣∣∣
∫

∞

−∞

dt e−ıtc/24ZH

(
4π2

β + ıt
,
4π2

β̄

)
φ̂+(t)

∣∣∣∣

(2.4.7)

For notational simplicity, let us name the terms

I1
± = eβ (h−c/24±δ )−β̄c/24

∫
∞

−∞

dt e−ıtc/24ZL

(
4π2

β + ıt
,
4π2

β̄

)
φ̂±(t) , (2.4.8)

I2
± = eβ (h−c/24±δ )−β̄c/24

∣∣∣∣
∫

∞

−∞

dt e−ıtc/24ZH

(
4π2

β + ıt
,
4π2

β̄

)
φ̂±(t)

∣∣∣∣ . (2.4.9)

The idea is to show that I2
± is subleading with respect to I1

±. The argument closely follows

the argument presented in §2.3. Let us concentrate on I2
± first. We have

I2
± ≤ eβ (h−c/24±δ )−β̄c/24

∫
∞

−∞

dt ZH

(
4π2β

β 2 + t2 ,
4π2

β̄

)∣∣∣∣φ̂±(t)
∣∣∣∣ . (2.4.10)

We notice that (for the heavy sector, h′+ h̄′ > c/12, thus one of them has to be greater
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than c/24)

ZH

(
4π2β

β 2 + t2 ,
4π2

β̄

)
∋ e

− 4π2β

β2+t2
(h′− c

24)− 4π2

β̄
(h̄′− c

24)

≤





e
π2c
6β e

− 4π2β

β2+Λ2±
h′− 4π2β̄

β̄2+Λ2±
(h̄′− c

24)
, h̄′ > c/24

e
π2c
6β̄ e

− 4π2β

β2+Λ2±
(h′− c

24)−
4π2β̄

β̄2+Λ2±
h̄′
, h′ > c/24

≤





e
π2c
6β e

− 4π2β∗
β2∗+Λ2±

h′− 4π2β∗
β2∗+Λ2±

(h̄′− c
24)

, h̄′ > c/24

e
π2c
6β̄ e

− 4π2β∗
β2∗+Λ2±

h′− 4π2β∗
β2∗+Λ2±

(h̄′− c
24)

, h′ > c/24

≤





e
π2c
6β e

−π2cβ∗
6(β2∗+Λ2±) e

− 4π2β∗
β2∗+Λ2±

(h′+h̄′− c
12)

, h̄′ > c/24

e
π2c
6β̄ e

− π2cβ∗
6(β2∗+Λ2±) e

− 4π2β∗
β2∗+Λ2±

(h′+h̄′− c
12)

. h′ > c/24

(2.4.11)

Thus we have

I2
± ≤ eβ (h+c/24±δ )−β̄c/24

∫
∞

−∞

dt ZH

(
4π2β

β 2 + t2 ,
4π2

β̄

)∣∣∣∣φ̂±(t)
∣∣∣∣

≤
β̄ ,β<2π

eβ (h−c/24±δ )−β̄c/24
(

e
π2c
6β̄ + e

π2c
6β

)
e
− π2β∗c

6(β2∗+Λ2±) ZH,∆

(
4π2β∗

β 2∗ +Λ2
±

)∫
∞

−∞

dt
∣∣∣∣φ̂±(t)

∣∣∣∣ .

(2.4.12)

The above analysis is analogous to the one presented in §2.3. Now we choose

β = π

√
c

6h
, β̄ = π

√
c

6h̄
, (2.4.13)

and use the HKS bound [100] to estimate ZH,∆

(
4π2β∗

β 2∗+Λ2
±

)
. This leads to the following inequality:

I2
± ≤ eπ

√
ch
6

(
eπ

√
ch̄
6 + eπ

√
ch
6

)∫
∞

−∞

dt
∣∣∣∣φ̂±(t)

∣∣∣∣





e2π

√
ch
6

Λ2±
4π2 h ≥ h̄

e2π

√
ch̄
6

Λ2±
4π2 h < h̄

, (2.4.14)
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To estimate I1
±, we consider ρ∗(h, h̄), the crossing kernel, defined as

exp
[

π2c
6β

+
π2c
6β̄

]
=
∫

∞

0
dh
∫

∞

0
dh̄ ρ∗(h, h̄)e−β (h−c/24)−β̄ (h̄−c/24) . (2.4.15)

Here ρ∗(h, h̄) = ρ∗(h)ρ∗(h̄), and ρ∗(h),ρ∗(h̄) are given by

ρ∗(x) = π

√
c
6

I1

(
2π

√
c
3

(
x− c

24

))

√
x− c

24
θ

(
x− c

24

)
+δ

(
x− c

24

)
,

=
x→∞

( c
96x3

) 1
4 exp

[
2π

√
cx
6

]
.

(2.4.16)

Hence, we have

I1
± = eπ

√
ch
6

∫
∞

0
dh′

∫
∞

0
dh̄′ ρ∗(h′, h̄′)e

−
√ c

6h h′−
√ c

6h̄ h̄′
φ±(h′)

= 2δc±eπ

√
ch̄
6 ρ∗(h) ,

(2.4.17)

where we have used separability of ρ∗ in the variable h and h̄ and have defined

c± =
1
2

∫
∞

−∞

dx φ±(h+δx) . (2.4.18)

Comparing the inequalities (2.4.17) and (2.4.14), we see that by choosing γΛ± <
√

2π ,

with max(h, h̄) = γ4min(h, h̄); one can make I2
± subleading, consequently in the h, h̄ → ∞ limit

we have

2δc−

(
c

96h̄3

)− 1
4

ρ∗(h, h̄)≤ eπ

√
ch̄
6 Q(h)≤ 2δc+

(
c

96h̄3

)− 1
4

ρ∗(h, h̄) . (2.4.19)

By symmetry we obtain

2δc′−
( c

96h3

)− 1
4

ρ∗(h, h̄)≤ eπ

√
ch
6 P(h̄)≤ 2δc′+

( c
96h3

)− 1
4

ρ∗(h, h̄) . (2.4.20)
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The best possible value of c± (c′±) can be obtained from [92]. For the verification purpose,

here we choose the function given in [158] for estimating Q

φ+(h′) =




sin
(

Λ+δ

4

)

Λ+δ

4




−4


sin
(

Λ+(h−h′)
4

)

Λ+(h−h′)
4




4

, (2.4.21)

φ−(h′) =

(
1−
(

h−h′

δ

)2
)


sin
(

Λ−(h−h′)
4

)

Λ−(h−h′)
4




4

. (2.4.22)

The above function yields almost the same bound as found in [158], except for the fact that

we have to take care of the constraint Λ <
√

2π

γ
. In particular we find the following bounding

function s±(δ ) = logc±:

c+ =





π

3

(
πδ

2
√

2γ

)3(
sin
(

πδ

2
√

2γ

))−4
, δ < γa∗√

2π

2.02 , δ ≥ γa∗√
2π

c− =





2
√

2γ

3πδ 3

(
δ 2 − 6γ2

π2

)
, δ < 6γ√

2π

0.46 , δ ≥ 6γ√
2π

(2.4.23)

where a∗ = 3.38 [158]. We verify the eq. (2.4.19) in the §2.6 using the above values of c± (in

particular, see the fig. 2.11). Similar verification can be done for the eq. (2.4.20) as well.

The analysis with the assumption of twist gap g proceeds as in the end of §2.3. We do

not repeat the analysis here. We just state the result. In that scenario, one obtains

Λ± < min

(√
2π

ζ
,
√

2π

)
, ζ

2 ≡
(

c
12g

)
. (2.4.24)
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If we make it specific for primaries, c 7→ c−1 and we have

Λ± < min

(√
2π

ζp
,
√

2π

)

=

√
2π

ζp
, ζ

2
p ≡

(
c−1
12g

)
≥ 1 .

(2.4.25)

where the second equality follows only if there is no conserved currents because of the bound on

twist gap.

We can use this lemma to prove the result about asymptotic spectral gap in terms of strips,

as mentioned in {2.1.4}. For this purpose, we use the magic function introduced in [92]. We

can let γ = 1 in the above analysis. We have to keep in mind that now the support of the Fourier

transform of φ− satisfies Λ <
√

2π

γ
, thus the minimal value of δ comes out to be 1√

2
in stead of

1/2 as in [92].

2.5 The integrated density of states

2.5.1 The main 2D Tauberian theorem

We prove in this section

F(h, h̄)≡
∫ h

0
dh′
∫ h̄

0
dh̄′ρ(h′, h̄′)

=
h,h̄→∞

1
4π2

(
36

c2hh̄

)1/4

exp


2π



√

ch
6
+

√
ch̄
6





[
1+O

(
τ

ϒ

4 −1/2
)]

.

where τ is the twist of the state with h, h̄ and given by τ = 2min{h, h̄} and h = h̄υ with 1/2 <

υ < 2 and ϒ = max(υ ,1/υ). When ϒ = 1, this reduces to the eq (2.1.1). In order to prove this
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we define

δρ(h, h̄) = ρ(h, h̄)−ρ∗(h, h̄) , (2.5.1)

δL (β , β̄ ) = Lρ(β , β̄ )−Lρ∗(β , β̄ ) . (2.5.2)

Since the leading term is already produced by ρ∗(h, h̄), our job is to show that

∫ h

0
dh′
∫ h̄

0
dh̄′δρ(h′, h̄′)

=
1

4π2

(
36c2

hh̄

)1/4

exp


2π



√

ch
6
+

√
ch̄
6




O

(
τ

ϒ/4−1/2
)
.

(2.5.3)

In particular, we will be showing that

∫ h

0
dh′
∫ h̄

0
dh̄′δρ(h′, h̄′)

=

√
6c

4π2 exp


2π



√

ch
6
+

√
ch̄
6





[
O
(

h−3/4
)
+O

(
h̄−3/4

)]
.

(2.5.4)

Thus if υ ∈ (1/2,2), the error term is suppressed by maximum of h1/4√
h̄

and h̄1/4√
h

, arriving at (2.5.3).

In order to prove the above, we proceed as in [158] and introduce the following kernel:

G(ν) =
1

2πı

∫
β+ıΛ

β−ıΛ

dz
z

Λ2 +(z−β )2

Λ2 +β 2 e−νz , ν = h′−h , (2.5.5)

G(ν̄) =
1

2πı

∫
β̄+ıΛ

β̄−ıΛ

dz̄
z̄

Λ2 +(z̄− β̄ )2

Λ2 + β̄ 2
e−ν̄ z̄ , ν̄ = h̄′− h̄ . (2.5.6)

Here we have done slight abuse of notation. It is implicitly assumed that the function G(ν̄)
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depends on β̄ instead of β . Now it can be shown that [158]:

G(ν)G(ν̄) = [θ(−ν)+G+(ν)θ(ν)+G−(ν)θ(−ν)] [θ(−ν̄)+G+(ν̄)θ(ν̄)+G−(ν̄)θ(−ν̄)] ,

(2.5.7)

where G± is defined exactly like in [158] for both the variable ν and ν̄ . At this point, we use the

kernel given in (2.5.7) and integrate it against δρ(∆). This yields us the following equation

∫ h

0
dh′
∫ h̄

0
dh̄′δρ(h′, h̄′) =

∫
∞

0
dh′
∫

∞

0
dh̄′δρ(h′, h̄′)G(ν)G(ν̄)

+
∫

∞

0
dh′
∫

∞

0
dh̄′δρ(h′, h̄′) [−θ(−ν̄)θ(ν)G+(ν)−θ(−ν̄)θ(−ν)G−(ν)− (ν → ν̄)] (2.5.8)

+
∫

∞

0
dh′
∫

∞

0
dh̄′δρ(h′, h̄′) [−θ(−ν̄)G−(ν̄)θ(ν)G+(ν)−θ(−ν̄)G−(ν̄)θ(−ν)G−(ν)]

(2.5.9)

+
∫

∞

0
dh′
∫

∞

0
dh̄′δρ(h′, h̄′) [−θ(ν̄)G+(ν̄)θ(ν)G+(ν)−θ(ν̄)G+(ν̄)θ(−ν)G−(ν)] . (2.5.10)

Most of the terms can be estimated using techniques from [158]. The new players in the

game are the cross terms, for example the term:

Z =
∫ h

0
dh′
∫ h̄

0
dh̄′δρ(h′, h̄′) [θ(−ν̄)θ(ν)G+(ν)+θ(−ν̄)θ(−ν)G−(ν)+(ν → ν̄)] . (2.5.11)

Below we will illustrate how to handle these terms. We remark that this is what requires us

to prove the lemma in the previous section. For concreteness, consider the following term

θ(−ν̄)θ(ν)G+(ν) and analyze it carefully. The analysis for the other terms in Z goes exactly in

the same manner. In what follows, we will be using the inequalities for β > 0:

θ(−ν̄)≤ e−β̄ ν̄ , (2.5.12)

|G±(ν)| ≤ 2e−βνmin
(
1,(h−h′)−2) , (2.5.13)

|G±(ν̄)| ≤ 2e−β̄ ν̄min
(
1,(h̄− h̄′)−2) . (2.5.14)
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The inequalities (2.5.13) and (2.5.14) have been derived in the appendix of [158].

Consider the term

Z1 =
∫

∞

0
dh′

∫
∞

0
dh̄′ θ(−ν̄)Θ(ν)G(ν)δρ(h′, h̄′) . (2.5.15)

Clearly, we have

|Z1| ≤ 2eβh+β̄ h̄
∫

∞

0
dh′

∫
∞

0
dh̄′ e−βh′−β̄ h̄′ [

ρ(h′, h̄′)+ρ∗(h′, h̄′)
]

min
(
1,(h−h′)−2) . (2.5.16)

For the term with ρ∗(h′, h̄′), the estimation procedure mimics the one presented in the section 5

of [158]. In particular, we have

eβh+β̄ h̄
∫

∞

0
dh′

∫
∞

0
dh̄′ e−βh′−β̄ h̄′

ρ∗(h′, h̄′)min
(
1,(h−h′)−2)

= O

(
h−3/4e

2π

(√
ch
6 +

√
ch̄
6

))
. (2.5.17)

The h′ integral is done via saddle point method, note it is important to have the factor

min
(
1,(h−h′)−2) for the validity of saddle point approximation. This is why, the h̄′ integral

can not be done using saddle, hence does not produce any polynomial suppression in h̄. Now

consider the term

2eβh+β̄ h̄
∫

∞

0
dh′

∫
∞

0
dh̄′ e−βh′−β̄ h̄′

ρ(h′, h̄′)min
(
1,(h−h′)2) ,
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and we divide it into three pieces

a1 = 2eβh+β̄ h̄
∫ h−h3/8

0
dh′

∫
∞

0
dh̄′ e−βh′−β̄ h̄′

ρ(h′, h̄′)min
(
1,(h−h′)−2) , (2.5.18)

a2 = 2eβh+β̄ h̄
∫ h+h3/8

h−h3/8
dh′

∫
∞

0
dh̄′ e−βh′−β̄ h̄′

ρ(h′, h̄′)min
(
1,(h−h′)−2) , (2.5.19)

a3 = 2eβh+β̄ h̄
∫

∞

h+h3/8
dh′

∫
∞

0
dh̄′ e−βh′−β̄ h̄′

ρ(h′, h̄′)min
(
1,(h−h′)−2) . (2.5.20)

The estimate for a1 and a3 again proceeds like in [158] and we obtain

a1 = O

(
h−3/4e

2π

(√
ch
6 +
√

ch̄
6

))
, (2.5.21)

a3 = O

(
h−3/4e

2π

(√
ch
6 +

√
ch̄
6

))
. (2.5.22)

The estimation of the term a2 would require the lemma from the previous section §2.4.

We subdivide a2 into three different parts:

a21 = 2eβh+β̄ h̄
∫ h−1

h−h3/8
dh′

∫
∞

0
dh̄′ e−βh′−β̄ h̄′

ρ(h′, h̄′)min
(
1,(h−h′)−2) , (2.5.23)

a22 = 2eβh+β̄ h̄
∫ h+1

h−1
dh′

∫
∞

0
dh̄′ e−βh′−β̄ h̄′

ρ(h′, h̄′)min
(
1,(h−h′)−2) , (2.5.24)

a23 = 2eβh+β̄ h̄
∫ h+h3/8

h+1
dh′

∫
∞

0
dh̄′ e−βh′−β̄ h̄′

ρ(h′, h̄′)min
(
1,(h−h′)−2) . (2.5.25)

We have already estimated a22 in the previous section §2.4. This is basically order one

window. Since, the estimation of a21 and a23 proceeds in similar manner, we would demonstrate
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the estimation of the term a21.

a21 = 2eβh+β̄ h̄
∫ h−1

h−h3/8
dh′

∫
∞

0
dh̄′ e−βh′−β̄ h̄′

ρ(h′, h̄′)min
(
1,(h−h′)−2)

= 2eβ̄ h̄
h3/8

∑
k=2

∫ h−k+1

h−k
dh′

∫
∞

0
dh̄′ eβ (h−h′)−β̄ h̄′

ρ(h′, h̄′)(h−h′)−2

≤ 2eβ̄ h̄
h3/8

∑
k=2

eβk

(k−1)2

∫ h−k+1

h−k
dh′

∫
∞

0
dh̄′ e−β̄ h̄′

ρ(h′, h̄′)

= O

(
h−3/4e

2π

(√
ch
6 +
√

ch̄
6

)
h3/8

∑
k=2

eβk

(k−1)2

)

= O

(
h−3/4e

2π

(√
ch
6 +
√

ch̄
6

))
,

(2.5.26)

where going from the third line to the fourth line requires use of lemma proven in the previous

section §2.4.

The estimation of the terms in (2.5.9) and (2.5.10) requires us to divide the (h, h̄) plane

into 9 regions (see figure 2.7):

Figure 2.7. The estimation of the terms in (2.5.9) and (2.5.10) requires us to divide the (h, h̄)
plane into 9 regions. In the figure, the horizontal lines are h′ = 0,h−h3/8,h+h3/8,∞ while the
vertical lines are h̄′ = 0, h̄− h̄3/8, h̄+ h̄3/8,∞. The different colors denote the different methods
of treating them.
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R1 =
{
(h′, h̄′) : h′ ∈ [0,h−h3/8], h̄′ ∈ [0, h̄− h̄3/8]

}
,

R2 =
{
(h′, h̄′) : h′ ∈ [0,h−h3/8], h̄′ ∈ [h̄− h̄3/8, h̄+ h̄3/8]

}
,

R3 =
{
(h′, h̄′) : h′ ∈ [0,h−h3/8], h̄′ ∈ [h̄+ h̄3/8,∞]

}
,

R4 =
{
(h′, h̄′) : h′ ∈ [h−h3/8,h+h3/8], h̄′ ∈ [0, h̄− h̄3/8]

}
,

R5 =
{
(h′, h̄′) : h′ ∈ [h−h3/8,h+h3/8], h̄′ ∈ [h̄− h̄3/8, h̄+ h̄3/8]

}
,

R6 =
{
(h′, h̄′) : h′ ∈ [h−h3/8,h+h3/8], h̄′ ∈ [h̄+ h̄3/8,∞]

}
,

R7 =
{
(h′, h̄′) : h′ ∈ [h+h3/8,∞], h̄′ ∈ [0, h̄− h̄3/8]

}
,

R8 =
{
(h′, h̄′) : h′ ∈ [h+h3/8,∞], h̄′ ∈ [h̄− h̄3/8, h̄+ h̄3/8]

}
,

R9 =
{
(h′, h̄′) : h′ ∈ [h+h3/8,∞], h̄′ ∈ [h̄+ h̄3/8,∞]

}
.

(2.5.27)

Basically, we have to estimate ∑i Si where Si is given by

Si =
∫

Ri

dh′ dh̄′|δρ(h′, h̄′)|
[
|G+(ν)G+(ν̄)|+ |G−(ν̄)G+(ν)|+(+↔−)

]

≤ 4(S(1)i +S(2)i ) ,

(2.5.28)

where we have used |δρ| ≤ ρ +ρ∗, |G±(ν)≤ 2e−βνmin
(
1,(h−h′)−2), and

|G±(ν̄)| ≤ 2e−β̄ ν̄min
(
1,(h̄− h̄′)−2). The appearance of 4 is due to the fact that there are 4

terms in the integrand defining Si and each is suppressed in a same manner. Here S(1)i and S(2)i

are defined as

S(1)i = 4
∫

Ri

dh′ dh̄′ρ(h′, h̄′)e−βν−β̄ ν̄min
(
1,(h−h′)−2)min

(
1,(h̄− h̄′)−2) ,

S(2)i = 4
∫

Ri

dh′ dh̄′ρ∗(h′, h̄′)e−βν−β̄ ν̄min
(
1,(h−h′)−2)min

(
1,(h̄− h̄′)−2) .

(2.5.29)
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Now for Ri with i ̸= 4,5,6 we have

1
4

S(1)i ̸=4,5,6 = eβh+β̄ h̄
∫

Ri ̸=4,5,6

dh′ dh̄′ ρ(h′, h̄′)e−βh′−β̄ h̄′min
(
1,(h−h′)−2)min

(
1,(h̄− h̄′)−2)

≤ eβh+β̄ h̄
∫

Ri ̸=4,5,6

dh′ dh̄′ ρ(h′, h̄′)e−βh′−β̄ h̄′min
(
1,(h̄− h̄′)−2)

= O


h̄−3/4 exp


2π



√

ch
6
+

√
ch̄
6






 .

(2.5.30)

For R4 and R6 we observe the following

1
4

S(1)i=4,6 =eβh+β̄ h̄
∫

Ri=4,6

dh′ dh̄′ ρ(h′, h̄′)e−βh′−β̄ h̄′min
(
1,(h−h′)−2)min

(
1,(h̄− h̄′)−2)

≤ eβh+β̄ h̄
∫

Ri=4,6

dh′ dh̄′ ρ(h′, h̄′)e−βh′−β̄ h̄′min
(
1,(h−h′)−2)

≤ eβh+β̄ h̄h̄−3/4
∫

Ri=4,6

dh′ dh̄′ ρ(h′, h̄′)e−βh′−β̄ h̄′

= O


h−3/4 exp


2π



√

ch
6
+

√
ch̄
6






 .

(2.5.31)

For analyzing the region R5, we are required to subdivide it into 9 regions again where

each of the region is Cartesian product of order one interval in h′ and h̄′. Now one can use the

lemma proven in the section §2.3 to show that

1
4

S(1)5 =eβh+β̄ h̄
∫

R5

dh′ dh̄′ ρ(h′, h̄′)e−βh′−β̄ h̄′min
(
1,(h−h′)−2)min

(
1,(h̄− h̄′)−2)

= O


h−3/4h̄−3/4 exp


2π



√

ch
6
+

√
ch̄
6






 .

(2.5.32)
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The estimation for S(2) = ∑i S(2)i can be done by saddle point method:

1
4

S(2) = eβh+β̄ h̄
∫

∞

0

∫
∞

0
dh′ dh̄′ ρ∗(h′, h̄′)e−βh′−β̄ h̄′min

(
1,

1
(h−h′)2

)
min

(
1,

1
(h̄− h̄′)2

)

(2.5.33)

= O


h−3/4h̄−3/4 exp


2π



√

ch
6
+

√
ch̄
6






 . (2.5.34)

We are yet to estimate the following term

m ≡
∫

∞

0
dh′
∫

∞

0
dh̄′δρ(h′, h̄′)G(ν)G(ν̄) . (2.5.35)

which appears in the expression for
∫ h

0 dh′
∫ h̄

0 dh̄′δρ(h′, h̄′). Using the definition of G(ν) and

G(ν̄), we arrive at

m =− 1
4π2

∫
β+ıΛ

β−ıΛ

∫
β̄+ıΛ

β̄−ıΛ

dzdz̄
zz̄

Λ2 +(z−β )2

Λ2 +β 2
Λ2 +(z̄− β̄ )2

Λ2 + β̄ 2
ezh+z̄h̄

δL (z, z̄) . (2.5.36)

Thus we have

|m| ≤ 1
4π2

∫
Λ

−Λ

∫
Λ

−Λ

dtdt̄
|β + ıt||β̄ + ıt̄|

(
Λ2 − t2

Λ2 +β 2

)(
Λ2 − t̄2

Λ2 + β̄ 2

)
eβh+β̄ h̄|δL (z, z̄)| . (2.5.37)

Now we use the inequality

|δL (z, z̄)| ≤ e−(Re[z]+Re[z̄])c/24ZH

(
4π2Re[z]

|z|2 ,
4π2Re[z̄]

|z̄|2
)
, (2.5.38)

and subsequently the method utilized in §2.3 to put a bound by ZH,∆:

|m| ≤ 4Λ6

9ββ̄π2

eβ (h−c/24)eβ̄ (h̄−c/24)e
π2c
6y

(Λ2 +β 2)
(
Λ2 + β̄ 2

) ZH,∆

(
4π2β∗

β 2∗ +Λ2

)
, (2.5.39)

58



where y = β or β̄ . Essentially this is exactly the same argument as in §2.3. Then by choosing

Λ <
√

2π (when h ≃ h̄, otherwise we need to choose γΛ <
√

2π , see the discussion in §2.3) and

using the HKS [100] argument, one can show that the above term is exponentially suppressed

compared to the leading answer coming from ρ∗(h, h̄). When h is not of the order of h̄, we need

to assume existence of twist gap (as defined in {2.1.1}) and proceed like we did in §2.3. This

concludes our analysis and hence the proof of the main theorem.

2.5.2 Sensitivity of Asymptotics towards spin J

The asymptotic formula given in eq. (2.1.1) and derived above can be rewritten in terms

of dimension ∆ = h+ h̄ and spin J = |h− h̄|:

F(h → ∞, h̄ → ∞) =
∫ h

0
dh′
∫ h̄

0
dh̄′ρ(h′, h̄′)

=
1

4π2

(
36

c2 (∆2 − J2)

)1/4

exp

[
2π

(√
c(∆+ J)

12
+

√
c(∆− J)

12

)][
1+O

(
∆
−1/4

)]
,

(2.5.40)

which is true when 1 < ∆

J = O(1). It turns out that even when ∆ and J is not of the same order,

we can do order by order correction to this integrated density of states by spin.

First of all, when J is of order one, we should just ignore J dependence of the eq. (2.5.40).

In fact, J = ∆1/n with n > 4/3, one can ignore J dependence. Thus in this regime, we have

F(∆ → ∞,J = ∆
1/n → ∞) =

∫ h

0
dh′
∫ h̄

0
dh̄′ ρ(h′, h̄′) , 4/3 < n ≤ ∞

=
1

4π2

(
6

c∆

)1/2

e2π

√
c∆

3
[
1+O

(
∆
−1/4

)]
.

(2.5.41)

When 8/7 ≤ n ≤ 4/3, the J dependence is meaningful only within the exponential i.e.
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we have

F(∆ → ∞,J = ∆
1/n → ∞) =

∫ h

0
dh′
∫ h̄

0
dh̄′ ρ(h′, h̄′) , 8/7 ≤ n ≤ 4/3

=
1

4π2

(
6

c∆

)1/2

e2π

√
c∆

3

(
1− J2

8∆2

) [
1+O

(
∆
−1/4

)]
.

(2.5.42)

When 16/15 < n < 8/7 (n can not less than one because of unitarity bound), we have

F(∆ → ∞,J = ∆
1/n → ∞) =

∫ h

0
dh′
∫ h̄

0
dh̄′ ρ(h′, h̄′) , 1 < n < 8/7

=
1

4π2

(
6

c∆

)1/2(
1+

J2

4∆2

)
exp

[
2π

(√
c(∆+ J)

12
+

√
c(∆− J)

12

)][
1+O

(
∆
−1/4

)]
.

(2.5.43)

We remark that not all the term in the exponential are meaningful, we have to do an J/∆ expansion

and the only meaningful terms are of the form exp
(
∆−ℓ
)

with ℓ< 1/4 (since exp
(
∆−ℓ
)
≃ 1+∆−ℓ

becomes comparable to error term for ℓ < 1/4). For example, when n = 15
14 , it is meaningful to

keep the following terms only:

e
2π

(√
c(∆+J)

12 +

√
c(∆−J)

12

)

= e2π

√
c∆

3

(
1− J2

8∆2 − 5J4

128∆4 − 21J6

1024∆6 − 429J8

32768∆8 − 2431J10

262144∆10

) [
1+O

(
∆
−3/10

)]
.

One can generalize the equation (2.5.43) for J = ∆1/n with 2m+3

2m+3−1 < n < 2m+2

2m+2−1 ≤ 8/7

where m ≥ 1 is a fixed integer. We define f (m) = 2m

2m−1 and we have :

F(∆ → ∞,J = ∆
1/n → ∞) =

∫ h

0
dh′
∫ h̄

0
dh̄′ ρ(h′, h̄′) , f (m+3)< n < f (m+2)

=
1

4π2

(
6

c∆

)1/2
(

m

∑
k=0

ak

(
J2

∆2

)k
)

exp

[
2π

(√
c(∆+ J)

12
+

√
c(∆− J)

12

)][
1+O

(
∆
−1/4

)]
.

(2.5.44)

where ak’s are defined as

(
1− J2

∆2

)1/4

=
∞

∑
k=0

ak

(
J2

∆2

)k

, ∆ > J . (2.5.45)
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2.6 Verification: 2D Ising model

We verify the bounds on O(1) correction to entropy associated with order one window

centered at some large h and h̄, proven in §2.3 as shown in the figure 2.8, 2.9 and 2.10. In §2.3,

we have obtained two kinds of bounds, one without assuming any twist gap while the other one

assumes existence of a twist gap. For 2D Ising model, it turns out that the bound coming from

assuming a twist gap (indeed 2D Ising model has a twist gap) is stronger than the one without

using the information about twist gap. Thus in the figures below, we verify the bounds that uses

the information about twist gap. In fact, as we have mentioned in §2.3, the use of twist gap

actually enables us to probe regions where h and h̄ are not of the same order. The figure 2.10

elucidates such a scenario. We verify the lemma proven in §2.4 as shown in the figure 2.11 and

2D Ising,hb=1.1h,δ=1.5,δb=1.7

Upper bound Lower bound

15 20 25 30 35 40
h

-1.5

-1.0

-0.5

0.0

0.5

1.0

s(h,h*1.1,1.5,1.7)

Figure 2.8. Verifying the bounds on O(1) correction to entropy associated with order one
window centered at some large h and h̄ of the same order. The curvy cyan line is the difference
between the actual number of states lying within the window and leading answer coming from
the Cardy formula.

figure 2.12 using 2 dimensional Ising CFT. The partition function for 2 dimensional Ising CFT is

given by

ZIsing(β , β̄ ) =
1
2

(√
θ2(β )

η(β )

√
θ2(β̄ )

η(β̄ )
+

√
θ3(β )

η(β )

√
θ3(β̄ )

η(β̄ )
+

√
θ4(β )

η(β )

√
θ4(β̄ )

η(β̄ )

)
. (2.6.1)
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2D Ising,hb=2h,δ=1.2,δb=1.2 Upper bound

Lower bound

12 14 16 18 20 22 24
h

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

s(h,h*2,1.2,1.2)

Figure 2.9. Verifying the bounds on O(1) correction to entropy associated with order one
window centered at some large h and h̄ of the same order. The curvy cyan line is the difference
between the actual number of states lying within the window and leading answer coming from
the Cardy formula.

2D Ising,hb=h^1.1,δ=1.3,δb=1.3

Upper bound Lower bound

15 20 25 30 35 40 45
h

-1.5

-1.0

-0.5

0.0

0.5

1.0

s(h,h^1.1,1.3,1.3)

Figure 2.10. Verifying the bounds on O(1) correction to entropy associated with order one
window centered at some large h and h̄ of different order. The curvy cyan line is the difference
between the actual number of states lying within the window and leading answer coming from
the Cardy formula.

We verify the main theorem proven in §2.5 in fig. 2.13 and 2.14. We plot the total number

of states upto some (h, h̄) as a function of h. We have considered two different cases where the

asymptote is approached along different curves. We compare it against the asymptotic formula

we derive in §2.5.
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Upper bound Lower bound

5 10 15 20 25 30

h-0.55

2.9

-0.5

0.5

Lemma(1.45,h,h+1.65)

Figure 2.11. The blue dots denotes the values of Lemma(δ ,h, h̄) , here we have δ = 1.45 and
h̄ = h+ 1.65, for different values of h. The blue dots are bounded by an order one i.e. h, h̄
independent number, denoted by the red and the black curve. The values of c± found in §2.4 are
used as the bounds.

Upper bound Lower bound

10 20 30 40 50 60 70

h-1.15

2

-1.5

-1.0

-0.5

0.5

Lemma(0.85,h,1.2(h+0.85)

Figure 2.12. The blue dots denotes the values of Lemma(δ ,h, h̄), where δ = 1.7 and h̄ =
1.2(h+ 0.85), for different values of h. The blue dots are bounded by an order one i.e. h, h̄
independent number, denoted by the red and the black curve. The c± found in the §2.4 are used
as the bounds.

2.7 Finite twist-Large spin

In this section, our aim is to estimate the finite twist and large spin sector of the density

of states. Without loss of generality, we will assume h is finite and h̄ → ∞. We will probe the

following quantity Uh(h̄) in the limit h̄ → ∞:

Uh(h̄) =
∫ h

0
dh′
∫ h̄+δ̄

h̄−δ̄

dh̄′ ρ(h′, h̄′) . (2.7.1)
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2D Ising,h,h+1 Asymptotic formula

10 15 20 25 30 35 40 45 50
h0

5.0×108

1.0×109

1.5×109

F[h,h+1]

2D Ising,h,h+1

20 30 40 50
h

-1.0

-0.5

0.0

0.5

1.0
Error*τ1/4

Figure 2.13. On the left, the black curve is the asymptotic Cardy formula while the red curve is
the actual number of operators till (h, h̄)in the Ising model. Here h = h̄−1. The picture on the
right hand side plot the relative error times h1/4 which is bounded above and below by an order
one number.

2D Ising,h,h^1.1 Asymptotic formula

10 15 20 25 30 35 40
h0

2×108

4×108

6×108

8×108

1×109

F[h,h^1.1]

2D Ising,h,h^1.1

15 20 25 30 35 40
h

-1.0

-0.5

0.0

0.5

1.0
Error*h9/40

Figure 2.14. On the left, the black curve is the asymptotic Cardy formula while the red curve is
the actual number of operators till (h, h̄) in the Ising model. Here h1.1 = h̄. The picture on the
right hand side plot the relative error times h9/40, which is bounded above and below by an order
one number.

This is because we have

∫ h+δ

h−δ

dh′
∫ h̄+δ̄

h̄−δ̄

dh̄′ ρ(h′, h̄′)≤Uh+δ (h̄) . (2.7.2)

Intuitively, it is clear that one can not make both β and β̄ to approach zero while looking at the

partition function, as this would probe the regime h, h̄ → ∞. This suggests that we should let

β̄ → 0 and keep β fixed.

We can prove an upper bound on density of states in this sector. Let us write down the
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following inequality:

Uh(h̄)≤ eβ (h−c/24)
∫

∞

0
dh′
∫ h̄+δ̄

h̄−δ̄

dh̄′ ρ(h′, h̄′)e−β (h′−c/24) , (2.7.3)

from which we can write

Uh(h̄)≤ eβ(h− c
24)+β̄ h̄+β̄ δ̄

∫
∞

0
dh′
∫ h̄+δ̄

h̄−δ̄

dh̄′ ρ(h′, h̄′)φ+(h̄′)e−β(h′− c
24)−β̄ h̄′ . (2.7.4)

At this point we choose

β = 2π , β̄ = π

√
c

6h̄
, h̄ → ∞ . (2.7.5)

Again we separate the partition function into two pieces; the light sector, where the contribution

comes from two kinds of states: a) all the states with conformal weight (h′,0) with h′ ≥ 0 and b)

the states such that h′+ h̄′ < c
12 , and the heavy sector, which is defined to be the complement of

this. We remark the heavy sector does not contain any operator with conformal weight (h′,0).

In the usual asymptotic analysis as done previously, the operators with (h′,0) such that h′ > c
12

is put into the heavy sector, but here we can not do that since β is finite, there is no separation

between light or heavy in the sense of HKS [100] i.e. the operators with (h′,0) contribute on

equal footing as the operator (0,0). The upshot of the above discussion is that one can define a

kernel ρ ft
∗ (“ft” stands for finite twist) such that

∫
∞

0
dh′

∫
∞

0
dh̄′ ρ

ft
∗ (h

′, h̄′)e−β(h′− c
24)−β̄ h̄′ = e

π2c
6β̄ ∑

hi

e−β(hi− c
24) , (2.7.6)

where the sum on the right hand side is over all the states with weight (hi,0) and we have used
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β = 4π2

β
= 2π . As a result ρ ft

∗ is given by

ρ
ft
∗ (h

′, h̄′) = ρ∗(h̄′)∑
hi

δ
(
h′−hi

)
. (2.7.7)

Once we have defined ρ∗, we follow the usual method and our next aim is to show that

the heavy part has a subleading contribution. The estimation of the heavy part is done depending

on whether both h′ and h̄′ is greater than c/24 or one of them is less than c/24. In the later

case, we have to assume existence of twist gap. Last but not the least, we have to estimate the

contribution from the states with (0, h̄′) with h̄′ > c/12. Following the methods in §2.3, we can

show that they are indeed subleading. The leading answer is then given by

Uh(h̄)≤ e2π(h− c
24)+π

√
ch̄
6

∫
dh′
∫

dh̄′ρ ft
∗ (h

′, h̄′)e−2π(h′− c
24)−π

√ c
6h̄ h̄′

Φ+(h̄′) . (2.7.8)

The h̄′ integral can be done using saddle point approximation and we obtain

1
2δ̄

Uh(h̄)≤ e−
πc
12 e2πhc+ρ∗(h̄′)∑

hi

e−2π(hi− c
24) ,

1
2δ̄

Uh(h̄)≤ e−
πc
12 e2πhc+ρ∗(h̄′)χ0(e−2π) .

(2.7.9)

where χ0(q) is the vacuum character and q = e−β where we have assumed that there is no

nontrivial conserved current. Here c+ is defined as

c+ =
∫

∞

−∞

dx Φ+(h̄′+ δ̄x) . (2.7.10)

One can extend this argument to a scenario where we have nontrivial conserved currents, then

we would have a sum over characters for all the conserved currents

1
2δ̄

Uh(h̄)≤ c+ρ∗(h̄′)e2π(h− c
24)∑

h̃

χh̃(e
−2π) . (2.7.11)

66



This sum over h̃ is convergent as the absolute value of the sum is bounded above by partition

function evaluated at β = β̄ = 2π . Similar result applies to h, h̄ getting swapped. Thus for finite

h and h̄ → ∞ limit we have

S
δ ,δ̄ ≤ Sh,δ ,δ̄ ≤ 2π

√
ch̄
6
− 3

4
log
(
h̄
)
+2π

(
h+δ − c

24

)
+ log

[
2c+δ̄ ∑

h̃

χh̃(e
−2π)

]
, (2.7.12)

where χh̃ is the character for the conserved current with weight (h̃,0).

The similar result specific for the primaries with finite h and h̄ → ∞ limit, would read:

SVir
δ ,δ̄

≤ SVir
h,δ ,δ̄ ≤ 2π

√
(c−1)h̄

6
+2π

(
h+δ − c−1

24

)
+ log

[
c+

2δ̄√
h̄
∑
h̃

e−2π(h̃− c−1
24 )

]
,

(2.7.13)

where the zero twist primaries have weight (h̃,0). Here again, the sum over h̃ is convergent as

the absolute value of the sum is bounded above by partition function evaluated at β = β̄ = 2π .

CFT without nontrivial zero twist primary:

In case the CFT does not have any conserved current, we do not need to worry about

(h′,0) operators anymore and we can do much better as it is possible to choose β ̸= 2π and still

define ρ ft-Vir
∗ (h′, h̄′) = ρ ft-Vir

∗ (h′)ρ ft-Vir
∗ (h̄′) as a solution to the following equality:

∫
∞

0
dh̄′ ρ

ft-Vir
∗ (h̄′)e−β̄(h̄′− c−1

24 ) =

√
2π

β̄

(
1− e

− 4π2

β̄

)
. (2.7.14)

This parallels the analysis for Virasoro primary in §2.3 (see (2.3.41)).
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In the present case, using the kernel ρ ft-Vir
∗ (h′, h̄′) the leading answer turns out to be

1
2δ̄

UVir
h (h̄)≤ c+ρ∗(h̄)eβ(h− c−1

24 )e
π2(c−1)

6β

√
2π

β

(
1− e−

4π2
β

)
. (2.7.15)

Now by appropriately choosing β we can recover the “square-root” edge present in the

analysis in [146]. The square root edge in h dependence of the density of states should produce

a factor of (h− (c−1)/24)3/2. In particular, we choose β = 1
(h− c−1

24 )
and let h− c

24 to be very

small8

1
2δ̄

UVir
h (h̄)≤ c+eρ∗(h̄)e

π2(c−1)(h− c−1
24 )

6

√
2π

(
h− c−1

24

)(
1− e−4π2(h− c−1

24 )
)

≃
h−c/24<< 1

c−1

c+
(

4
√

2π
5/2e

)
ρ∗(h̄)

(
h− c−1

24

)3/2

,

(2.7.16)

The above result is consistent with the leading result as reported in [134, 135, 146, 28].

2.8 Holographic CFTs

Holographic CFTs are the ones characterized by a sparse low lying spectrum and large

central charge. The sparseness condition is first derived in [100], then rederived in [158], where it

emerges naturally out of the Tauberian formalism. In the context of asymptotic behavior of OPE

coefficients in large c CFTs, a stronger sparseness condition appears as elucidated in [165, 153].

In this section we will be exploring such CFTs with large central charge and a low lying sparse

spectra. In particular, we derive an expression for the density of states in the limit h, h̄ ∼ c → ∞.

Following [158], we parameterize h, h̄ as

h = c
(

ε +
1

24

)
, h̄ = c

(
ε̄ +

1
24

)
, c → ∞,ε −fixed, ε̄ −fixed. (2.8.1)

8This is analogous to the condition written down in [146] as 0 < h̄− c−1
24 << 1/c, there h̄ is finite and h is let to

infinity.
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In this limit the asymptotic of the vacuum crossing kernel is given by

ρ∗(h, h̄) =

√
6

24
c−1
(

1
εε̄

) 3
4

e2πc
(√

ε

6+
√

ε̄

6

)
θ(ε)θ(ε̄)+ · · · . (2.8.2)

As done in §2.3 we separate out the contribution to the partition function into two pieces: the

light ZL, and the heavy ZH .Here we choose

β =
π√
6ε

, β̄ =
π√
6ε̄

. (2.8.3)

We are required to show that ZH term is sub-leading. ZH term gets contribution whenever h′ or

h̄′ is greater than c/24 and ∆′ > c/12.

It can be shown that ZH contribution is sub-leading (the method is exactly similar as in

§2.3, one has to be careful about e−βc/24−β̄c/24 factor, since c is not finite in the analysis.). The

result of the analysis is summarized below:

Λ
2
± <

(√
2π

γ

)2(
1− γ2

12ε∗

)
, (2.8.4)

where γ4 = ε∗
ε∗

≥ 1,ε∗ = max(ε, ε̄),ε∗ = min(ε, ε̄). The above requires that 1− γ2

12ε∗ > 0, that

is, ε∗ε∗ = εε̄ > 1
122 .

In fact, it turns out that we will be requiring much more stronger condition on ε, ε̄:

ε∗ >
1
6
, ε

∗ > max
(

γ4

6
,

γ2

12

)
=

γ4

6
>

1
6
, (2.8.5)

τ >
5c
12

. (2.8.6)

This condition justifies the assumption that the first term is dominated by the vacuum. We

compare this with the result in [100], where the Cardy formula is reported to be applicable for

ε∗ε∗ = εε̄ > 1
242 . This implies that there is further scope to improve our result and reach the
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HKS threshold rigorously. If we assume existence of a twist gap g, we can push the regime of

validity to following:

ε∗ >
1
6

[
max

{
1
2
,

(
1− 6g

c

)2
}]

. (2.8.7)

We will come back to the derivation of the bound on ε, ε̄ at the end of this section. For now, with

this assumption of vacuum dominance, we find :

e−2πc
(√

ε

6 δ+
√

ε̄

6 δ̄

)
ρ∗(ε, ε̄)c− ≤ 1

4δ δ̄

∫ h+δ

h−δ

∫ h̄+δ̄

h̄−δ̄

dF(h, h̄′)≤ e2πc
(√

ε

6 δ+
√

ε̄

6 δ̄

)
ρ∗(ε, ε̄)c̃+.

(2.8.8)

As a consequence, we find that for fixed δ , δ̄ > δgap,

Sh,h̄(δ , δ̄ ) = 2π

√
c
6

(
h− c

24

)
+2π

√
c
6

(
h̄− c

24

)
− logc+O(1), c → ∞ . (2.8.9)

We can extend the above result to the case where δ , δ̄ ∼ cα where 0 < α < 1 by splitting the

integral domain into squares of unit area:

∫ h+δ

h−δ

∫ h̄+δ̄

h̄−δ̄

dh′ dh̄′ρ(h′, h̄′) =
2δ

∑
m=1

2δ̄

∑
n=1

∫ h−δ+m

h−δ+m−1

∫ h̄−δ̄+n

h̄−δ̄+n−1
dh′ dh̄′ρ(h′, h̄′) , (2.8.10)

and then, using the previous bound, we find

Sh,h̄(δ , δ̄ ) = 2π

√
c
6

(
h+δ − c

24

)
+2π

√
c
6

(
h̄+ δ̄ − c

24

)
− logc+O(1), c → ∞. (2.8.11)

Now we show that the vacuum contribution dominants the contribution from the light

sector. This is straightforward for the sector where hL < c/24 and h̄L < c/24. For this region,

we consider the sum
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A = eβh+β̄ h̄
∑

hL,h̄L≤c/24

∫
dh′ dh̄′ρhL,h̄L

(h′, h̄′)e−βh′−β̄ h̄′
Φ+(h′, h̄′) , (2.8.12)

where the crossing kernel of the operator with conformal dimension (hL, h̄L) is given by

ρhL(h) = 2π

√
c

24 −hL

h− c
24

I1

(
4π

√( c
24

−hL
)(

h− c
24
))

θ

(
h− c

24

)
+δ

(
h− c

24

)
,

ρhL,h̄L
(h, h̄) = ρhL(h)ρh̄L

(h̄),

(2.8.13)

and the above reproduces the contribution of this operator in the dual channel i.e. at high

temperature:
∫

dhdh̄ ρhL,h̄L
(h, h̄) e−βh−β̄ h̄ = e

− 4π2
β

(hL−c/24)− 4π2

β̄
(h̄L−c/24)

. (2.8.14)

The asymptotic of the function ρhL(h) is given by

ρhL(ε)∼
1
2

1
61/4 c−1/2

ε
−3/4

(
1− 24hL

c

)1/4

e2πc
√

ε

6

(
1− 24hL

c

)
. (2.8.15)

Evaluating the each integral by saddle point approximation, we find

A = O
(

c−1e2πc
√

ε

6+2πc
√

ε̄

6 ∑
hL+h̄L≤∆H

e−4π
√

6εhL−4π
√

6ε̄ h̄L

)
. (2.8.16)

Subsequently, using the following sparseness condition

∑
hL+h̄L≤∆H

e−βhL−β̄ h̄L = O(1), β , β̄ > 2π, c → ∞, (2.8.17)

we find that

A ∼ O(ρ∗(h, h̄)). (2.8.18)

where the condition β , β̄ > 2π translates to ε, ε̄ > 1/24. Below we will see that we need to have

a more stronger condition i.e ε, ε̄ > 1/6.
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We are left to investigate the region where either of the hL or h̄L is greater than c/24.

This is basically given by the brown region in fig. 2.15. Without loss of generality, let us look at

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 2.15. The light region is the union of the region colored with pink and the region colored
with brown. The brown regions requires a more careful treatment.

the region where hL > c/24. Now the crossing would be given by

ρhL(h) = 2π

√
−
(

hL − c
24

h− c
24

)
I1

(
4π

√
−
(

hL −
c

24

)(
h− c

24

))
θ

(
h− c

24

)
+δ

(
h− c

24

)
,

ρhL,h̄L
(h, h̄) = ρhL(h)ρh̄L

(h̄),
(2.8.19)

We are going to estimate the following:

B = eβh+β̄ h̄
∫

dh′ dh̄′ ρhL,h̄L
e−βh′−β̄ h̄′

Φ+(h′, h̄′)

= eβ (h−c/24)+β̄ (h̄−c/24)
∫

dh′ dh̄′ ρhL,h̄L
e−β (h′−c/24)−β̄ (h̄′−c/24)

Φ+(h′, h̄′) .
(2.8.20)

The integral over h̄′ proceeds in usual manner since h̄L < c/24. The integral over h̄′

proceeds in usual manner since h̄L < c/24. The integral over h′ requires bit of care. Let us focus
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on ∣∣∣∣eβ (h−c/24)
∫

dh′ρhL(h
′)e−β (h′−c/24)

Φ+(h′, h̄′)
∣∣∣∣

=

∣∣∣∣eβ (h−c/24)
∫

∞

c/24
dh′ρhL(h

′)e−β (h′−c/24)
Φ+(h′, h̄′)

∣∣∣∣

= eβ (h−c/24)
∫

∞

0
dE ′
∣∣∣∣ρhL(h

′)e−βE ′
Φ+(h′, h̄′)

∣∣∣∣

≤ Meπc
√

ε

6

∫
dE ′ 1√

E ′ e
−βE ′

≤ M
√(

hL −
c

24

)
exp
[

πc

√
ε

6

]

≤
c→∞

M

√
1
c

exp
[

2πc

√
ε

6

]
exp
[
−2π

√
6εhL

]
,

(2.8.21)

where in the second line we have used the Θ function present in the expression for ρhL . In

the penultimate line, we have used hL < c/12. The strict inequality is important to make

sure replacing
√(

hL − c
24

)
with 1√

c does not spoil the inequality because of the presence of

exponential term. Now for the rest of the argument, we will require that

min(4ε, ε̄)>
1
6

& min(ε,4ε̄)>
1
6
⇒ ε, ε̄ >

1
6
. (2.8.22)

The above leads to (2.8.5). Now we sum over all the light states in the brown region to obtain

B = O


e2πc

√
ε

6+2πc
√

ε̄

6

c

[
∑

hL>h̄L

e−2π
√

6εhL−4π
√

6ε̄ h̄L + ∑
hL≤h̄L

e−4π
√

6εhL−2π
√

6ε̄ h̄L

]


= O
(
ρ∗(h, h̄)

)
.

(2.8.23)
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Twistgap:

If we assume a finite twist gap g, the (2.8.21) can be revisited in the light of the twist gap:

∣∣∣∣eβ (h−c/24)
∫

dh′ρhL(h
′)e−β (h′−c/24)

Φ+(h′, h̄′)
∣∣∣∣

=

∣∣∣∣eβ (h−c/24)
∫

∞

c/24
dh′ρhL(h

′)e−β (h′−c/24)
Φ+(h′, h̄′)

∣∣∣∣

= eβ (h−c/24)
∫

∞

0
dE ′
∣∣∣∣ρhL(h

′)e−βE ′
Φ+(h′, h̄′)

∣∣∣∣

≤ Meπc
√

ε

6

∫
dE ′ 1√

E ′ e
−βE ′

≤ M
√(

hL −
c

24

)
exp
[

πc

√
ε

6

]

≤
c→∞

M

√
1
c

exp
[

2πc

√
ε

6

]
exp

[
−2
(

1− 6g
c

)−1

π
√

6εhL

]
,

(2.8.24)

where now in the penultimate step we use hL ≤ c/12− g/2. And this leads to the modified

validity regime as given in (2.8.7).

2.9 Open problems

We end with a list of open problems which would be nice to figure out:

1. One can hope to use these techniques to investigate the asymptotic OPE coefficients

[130, 69, 78, 55, ?, 40, 70, 38, 108, 172, 153] and make it spin sensitive. A richer structure

in such scenarios is expected as well.

2. For the large spin, finite twist, we have derived an upper bound on the windowed entropy.

It would be nice to put a lower bound as well and match up to the results of [134, 135, 55,

146, 28]. On a conservative note, we remark that even if one can prove a lower bound, it

seems hard to distinguish the order one error coming from considering a bin of width 2δ

in spin and the dependence of the extended Cardy formula on finite twist. At present, all

our attempts to prove a lower bound provided us with a Cardy like growth multiplied by a
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negative number, which is trivially true, hence we omitted the details of the trivial lower

bound in the text. Furthermore, it would be nice to find out the asymptotic formula for the

integrated version (integrated from spin 0 upto some large spin) of the density of states.

3. It would be nice to have an expression for integrated density of states upto some particular

∆ within a specified range of spin. To be specific, we want to have an estimate of the

following quantity:

∫
∆

0
d∆

′
∫ J2

J1

dJ′ ρ(∆′,J′) , where J1,J2 ∈
[
−∆

′,∆′] . (2.9.1)

4. It would be nice to improve on the value of r and possibly prove that r = 1 (the parameter

appearing in the asymptotic “areal” spectral gap) either by some suitable choice of magic

functions or by better estimate of the heavy sector of the partition function. The naive

generalization from [92] would not suffice. So one needs to be more creative. And this

might shed light on the twist gap and provide a way to expound on the proposed gap in

[28].

Our work should be thought of a part of modular bootstrap program[105, 84, 56, 49, 7,

4, 3, 40, 130, 69, 70, 38, 131, 15, 37, 5]. On a more general ground, it would be interesting to

see whether Tauberian theorems and/or Modular bootstrap program can say anything about the

chaotic, irrational CFTs. An approach borrowing ideas from Tauberian techniques and that of

extremal functionals appearing in [147, 149, 148, 101, ?, ?, ?] might be useful in this regard.

Furthermore, for holographic CFTs, we can only achieve a reduced regime of validity of Cardy

formula compared to what is reported in [100]. It might be possible to improve our result. Albeit,

we remark that if the twist gap is greater than c/12, it is possible to achieve the regime of validity

of Cardy formula as predicted in [100]. We hope to come back to these problems in future.

Chapter 2, in full, is a reprint of the material as it appears in Sridip Pal, Zhengdi Sun,

JHEP 01, 135 (2020). The dissertation author was one of the primary investigator and author of

75



this paper.
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Chapter 3

High Energy Modular Bootstrap, Global
Symmetries and Defects

3.1 Summary & Discussion

Symmetry plays a key role in studying Quantum Field theories (QFT). To study a QFT

admitting a symmetry, we consider irreducible representations (irreps) of the group and declare

that the quantum fields transform as irreps. A very natural and fundamental question is to ask

whether there is any consistency condition telling us existence or absence of particular kind of

irreps. These conditions can come about due to mathematical consistency and/or due to physical

requirements like unitarity. Some of the famous examples in this genre are Coleman Mandula

theorem [54], which roughly implies the impossibility of mixing space-time (Poincare) symmetry

with internal symmetry unless one has supersymmetry; the unitarity bounds in (3+1)-D CFT by

Mack [145], Weinberg-Witten theorem [186], which shows that impossiblity of having massless

particles with higher spin in a theory with Lorentz covariant energy momentum tensor/conserved

current.

In this work, we consider unitary modular invariant 2D conformal field theory. The

consistency condition that we are going to leverage is modular transformation properties of

Torus partition function with/without possible insertion of some operators. A standard result

along this line is the existence of infinite number of Virasoro primaries for c > 1 CFTs [42, 158].

Recently, it has been established that every integer spin has to appear in the bosonic CFT [156] by
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projecting the grand canonical partition function of 2D CFT onto a particular spin and studying

the high temperature behavior of this fixed spin partition function. In a similar spirit, to study

the different sectors of a 2D CFT with global symmetries (more generically with insertion of

topological defect lines), we project the canonical partition function (with/without the insertion

of topological defect lines) onto relevant sectors and study the high temperature behavior to

extract the growth of operators within each sector. Further use of modular crossing equations

can be found in [130, 40, 100, 70, 108, 172, 38, 28, 5, 57, 37, 158, 92, 165, 167, 156] and some

aspects has been made symmetry sensitive in [69, 79, 17, 140].

One of the motivations for undertaking such investigation stems from a related question

in holography. In the context of AdS-CFT, it is widely believed that all the irreps of internal

gauge group appears in the gravity side a.k.a “completeness hypothesis”; on the CFT side, the

gauge symmetry becomes a global symmetry and hence it implies the existence of all the irreps

of the global symmetry modulo some fine prints[170, 19, 97, 99, 98]. To understand it better,

consider the case of U(1). If we know that an operator with minimal charge exists, we can

create black holes of arbitrary charge by collapsing such minimal charged objects in arbitrary

number. On the CFT side, this amounts to taking OPE and generating operators of arbitrary

charge. One of the main challenges is to show that the such minimal charged object exists, i.e.

U(1) acts faithfully. Here we will not be saying anything about faithfulness. Rather given the

faithfulness condition on the CFT side, we will pose the following question of whether one can

generate operators of arbitrary charge with arbitrarily high dimension in the way mentioned

above. On the gravity side this amounts to having black holes with arbitrary charge. By the

OPE argument, one can generate primaries of arbitrary charge and one needs to consider heavy

descendants to answer positively to the above question. Hence, a more refined and nontrivial

question is to ask whether we can say anything about heavy primaries with arbitrary charge and

if possible, whether we can estimate the growth of each irreps. It turns out that in a 2D CFT, one

can investigate this leveraging the modular invariance.

The recent study of partition function of 2-D JT gravity [173] with bulk gauge field
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[124, 112] motivates us as well. It is well appreciated that the genus zero contribution to the

partition function can be obtained by looking at dual quantum mechanical system, which is

known to be the Schwarzian limit of a 2-D CFT[152, 95]. Now considering a bulk gauge field

amounts to having a CFT with a global symmetry and then taking the Schwarzian limit. One

curious feature present in the calculation of [124] is the square of dimension of irrep in the

expression for density of states corresponding to the genus zero partition function of JT gravity

with bulk gauge field. Here we take up a CFT calculation to precisely reproduce this curious

factor.

Given a continuous global symmetry, we can turn on fugacity corresponding to the con-

served current and consider the grand canonical partition function. This idea can be generalized

to discrete symmetries by thinking of inserting topological defect lines (TDL) while doing the

path integral over the relevant manifold to define the grand canonical partition function. In

fact, one can allow non invertible TDLs (which does not correspond any global symmetry in

conventional sense, nonetheless meaningful object, see section 1 of [141]) and define grand

canonical partition functions. In this work, the relevant manifold is square torus, i.e.we consider

2D CFT on a spatial circle of length 2π , at inverse temperature β . If the topological defect line

is inserted along the spatial circle, it is exactly the grand canonical partition function. If the

topological line is inserted along the temporal circle, it creates a defect in the spatial manifold,

thereby defines a “defect” Hilbert space of operators. The partition function constructed out of

operators in the defect Hilbert space is related to the grand canonical partition function by a S

modular transformation. Roughly speaking, a S modular transformation exchanges the spatial

and temporal circle, thereby changes the role of TDLs. Given this set up, we ask following

questions:

• Can we estimate the growth of operators in the defect Hilbert space ? The spectrum of

operators in the defect Hilbert space is not same as the original Hilbert space. On the
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other hand, one might think that introducing a defect only modifies the theory globally by

modifying the boundary conditions of the field, thus one should not expect any change in

asymptotic growth of operators compared to the original Hilbert space. We will confirm

this intuition in part by doing a rigorous calculation in this work. Even though, the spectrum

changes, the averaged behavior remains same (apart from a possible multiplicative factor,

which we explain below in the results) even in the presence of defects.

• Given a 2D CFT with a global symmetry (finite group), do all the irreps of the global

symmetry group appear in the spectra of local operators? The answer turns out to be yes.

• If the symmetry group is non-anomalous, it is possible to group the operators appearing in

the defect Hilbert space into irreps of the group and we ask whether all the irreps of the

global symmetry group appear in the defect spectra. Here also the answer turns out to be

yes.

The basic strategy that we follow to answer these questions is to consider a partition

function of the sector of the CFT which we want to study and then to look at its high temperature

behavior. The relevant sector specific partition function can be obtained by using appropriate

projection operators onto the partition function in appropriate channel. The precise way of

doing this is explained in details in the paper. Below we summarize our results and discuss the

implications.

Results:

1. We consider a CFT on a torus with the topological defect line (TDL) being inserted along

the temporal direction. We estimate the growth of operators in the defect Hilbert space

HL as ∆ → ∞ :

growth of operators in HL ≃ N0ρ0(∆) (3.1.1)

where

ρ0(∆) =
( c

48∆3

) 1
4 exp

[
2π

√
c∆

3

]
. (3.1.2)
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A rigorous statement is made in theorem [1] and in the eq. (3.3.2). The TDL can either

correspond to a Global symmetry or correspond to a non-invertible defect such as duality

defect. Here N0 is “quantum dimension”, obtained from the action of TDL on the ∆ = 0

state. For TDL corresponding to global symmetry the vacuum remains invariant and

N0 = 1, for TDL corresponding to duality defects, N0 may not be 1.

2. We consider a CFT with a finite global symmetry group (acting faithfully). We find that

every irreducible representation has to appear in the spectrum of operators in the untwisted

sector and they have a Cardy like growth as ∆ → ∞. In particular, we have

growth of occurence of particular irrep α ≃ dα |G|−1
ρ0(∆) ,

growth of states in an irrep α ≃ d2
α |G|−1

ρ0(∆) .

(3.1.3)

where ρ0(∆) is defined in eq. (3.1.2). Here |G| is the order of the group and dα is the

dimension of the representation of irrep α . We remark that if we sum over all the irreps,

we get back the usual Cardy like growth for all the operators, i.e.ρ0(∆) . A more rigourous

statement is made in theorem [2] and in eq. (3.4.10). If the symmetry is non-anomalous,

the result is true for any particular twisted sector. The rigorous statement can be found in

theorem [3]. To illustrate, in the example of Z2, α can be even or odd, dα = 1 and |G|= 2.

⋆ A unified version of the above two results is presented in theorem [4] and in eq. (3.5.6).

⋆ Schwarzian sector-JT gravity: 2-D CFT is known to have a schwarzian sector [95],

which is relevant for the study of JT gravity. The partition function corresponding to

the disk topology [173] corresponds to the identity character in some particular limit, as

explained in [152, 95]. Having a global symmetry on the CFT side induces a bulk gauge

field on the gravity side. In the set up [124], the bulk gauge theory is taken to be topological

BF theory. The corresponding partition function has been calculated in [124, 112], the

density of states has been shown to have a d2
α |G|−1 factor multiplied with the seed gravity
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answer without the gauge field. Our result precisely reproduces this factor, since we can

readily take the Schwarzian limit of our answer following [152, 95].

⋆ The factor d2
α as opposed to dα might be surprising because we expect the extra dα -fold

degeneracy due to the symmetry. Intuitively, this comes about due to smearing1. The

growth formula is valid only after smearing over an order one window, and it turns out

that the order one window has dα number of α irreps. This might hint at emergence of

some approximate symmetry. This is exactly similar to the scenario in [124] where they

speculate about emergence of extra approximate symmetry. We discuss this after (3.4.6)

as one of the remarks and we explicitly look at 3-state Potts model (c = 4/5) to back up

our claim.

⋆ The rigorous bounds in theorem [1] and theorem [2] have order one error. Without any

further input, that’s the best order of error that one can achieve. To optimize over the order

one error, we need to use Selberg-Beurling extremizers as elucidated in [156] .

3. All of the above estimates can be made in the limit c → ∞ and ∆ = c
( 1

12 + ε
)

for ε > 1
12

following [100, 158]. We use ∆− c
12 instead of ∆ everywhere in the above formulas.

4. All of the above estimates can be made sensitive to Virasoro primaries for c > 1 following

[158]. Instead of ρ0(∆) we will have

ρ
Vir
0 (∆) =

(
c−1

3
∆

) 1
4

exp

[
2π

√
(c−1)∆

3

]
.

5. We find the analogous result for continuous group U(1) (acting faithfully). Under a

technical assumption, we show that every charged state has to appear in the spectrum and

they do have a Cardy like growth at large ∆ given by
√ c

3k
1
∆

exp
[

2π

√
c∆

3

]
. The rigorous

statement can be found in eq. (3.4.24). Again one can generalize this to Virasoro primaries

for c > 1 in one hand and on the other hand to the large central charge regime.
1We thank Raghu Mahajan for discussion along this line.
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• Application and future avenues:

We have already mentioned one application of our result upon taking the Schwarzian limit

and making contact with the results of JT gravity with a bulk gauge field. Here we list out few

more applications. For example, we can consider the following table 3.1. A similar one appears

in [109]. Same is explored in the context of Z2 symmetry of Monster CFT in [141]. We consider

a theory A with a non-anomalous Z2. The untwisted sectors can be divided into two pieces: even

and odd, named as P and Q. This is obtained when the TDL corresponding to the Z2 symmetry

is extended along the spatial direction. The twisted sector is obtained by keeping the TDL along

the time direction, thereby creating a defect. Since, Z2 is non-anomalous, one can have even

and odd states in the twisted sector as well, we call them R and S respectively. Gauging this Z2

symmetry lands us onto the theory D. Both the theory A and D can be fermionized to theory F

and F̃ . The effect of this amounts to permuting and relabelling the different sectors P,Q,R,S.

Using our result, we can estimate the growth of operators for each of the sector P,Q,R,S. All of

them have a Cardy like growth given by 1
2ρ0(∆) (corresponding to dα = 1 and |G|= 2) for large

∆.

Figure 3.1. The theory A and D are related by orbifolding by Z2. The theory A and F are related
by Bosonization-Fermionization and so are D and F̃ .

One can think of further applications of these ideas generalizing the results appearing

in [130, 70, 108, 172, 38]. Moreover, one can also make all of the above results spin-sensitive

following [156]. It would also be interesting to explore other aspects of modular bootstrap for

example bounding the dimension of lowest nontrivial Virasoro primary, constructing the extremal

functionals [105, 56, 49, 16, 148, 149, 4, 101, 15] in presence of TDLs.
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As a technique, we generalize the application of Tauberian formalism in context of CFT

beyond S modular invariant partition functions. In particular, the method can be applied to

vector valued modular functions as elucidated in § 3.5. One immediate application would be

generalizing the results of [70] for LL′H-squared for two different operators using the Tauberian

technique. Note that the positivity is guaranteed in one of the channels while in other channel, it

is not there. This scenario is reminiscent of the partition function of the defect Hilbert space,

where positivity is guaranteed but in the S transformed channel, positivity is not guaranteed.

• Organization

The paper is organized in following manner. The § 3.2 reviews the idea of TDLs

as generalization of global symmetry. A nice and brief exposition can also be found in the

introduction of [141]. In § 3.3, we study the defect Hilbert space. In § 3.4 we study the growth

of operators within an irrep. The § 3.4.1 expounds on a simple example of Z2 symmetry, which

we generalize and make rigorous in § 3.4.2. The similar question relevant to U(1) symmetry

is analyzed in § 3.4.3. The § 3.5 encapsulates the gist of applying the Tauberian technique to

the vector valued modular functions. In § A.1, we provide some numerics on known models to

cross-check our results. In § A.2, we review the derivation of spin selection rule for anomalous

global symmetry.

3.2 Lightning review of Topological defect line

Given any continuous global symmetry, one can define Noether’s current jµ and the

charge Q is given by Q =
∫

dd−1x j0, an integral of jµ over a codimension one surface, here the

surface is given by x0 = constant. In general, one can define an operator, supported on any codim-

1 surface Σ and given by exp(ıθ
∫

Σ
⋆ j). The statement that the charge conservation, d⋆ j = 0

boils down to the statement that the operator is invariant under continuous small deformation Σ.
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We also note that here the charge Q is a scalar, we name it 0 form symmetry. Now instead of

codimension 1 surface, one can in general consider topological surface operator of codim-(q+1)

and define q-form global symmetries [90]. For a 0 form symmetry, when the surface Σ is chosen

to be the full spatial slice, this operator is exactly the symmetry operator acting on the Hilbert

space; while if one of the direction of Σ is the time direction, then this operator creates a codim-1

defect in the space–any local operator undergoes a twisting when crossing the defect. For this

reason, topological surface operators are sometimes called the topological defects.

In 2-dim, ordinary 0-form symmetries correspond to topological defects lines (TDL).

A natural question to ask if whether converse is true. The answer is generically no for the

following reason. The fusion of the TDLs associated with global symmetries must respect the

group multiplication. Therefore, for any TDL corresponding to an group, there must exist an

inverse TDL; in fact, the inverse line can be obtained by simply reversing the orientation of the

line. However, there do exist the so-called non-invertible line operators which don’t have an

inverse, (e.g. the duality line N in the Ising CFT or Monster CFT [140, 141]).

As in the general dimension space-time, we can place the TDL L along the time direction

on Rt × S1, which amounts to imposing the twisted boundary condition on S1. The resulting

Hilbert space is called the defect Hilbert space HL whose states can be labelled by the usual

weights (h,h). This is possible because the energy momentum tensor commutes with TDL. Via

state-operator correspondence, a state in H corresponds to an operator, sitting at the end of the

L . A particular important question for our analysis is whether there’s a state with conformal

weight (0,0) in the defect Hilbert space. As in [140], if we require that the global symmetry acts

faithfully on the Hilbert space of local operators, that is, the only line operator that commutes

with every local operators is the identity line, then the defect Hilbert space HL contains no

weight-(0,0) state. Otherwise, the existence of such state would allow line L to connect to the

identity line via the corresponding operator, thus it would commute with every local operator,

violating our requirement (see fig. 3.2). As we will see, this makes sure the leading result in our

analysis is universal in the sense that it only depends on the central charge c and the symmetry
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group G. We also remark here if the symmetry is anomalous (if one can not define action

of the symmetry in the defect Hilbert space consistently), then the ground state in the defect

Hilbert space has ∆ > 0. This follows from the spin selection rule [140]. We review it in the

appendix §A.2.

Figure 3.2. Lg denotes the g symmetry TDL; dashed line denotes the trivial line; O is arbitrary
local operator; and φ(0,0) is the operator correspond to the weight (0,0) state in HLg . The
existence of φ(0,0) allows us to open the TDL to show that the Lg commutes with every local
operator O .

On the other hand, if we place the TDL along the spatial direction, then it acts as a group

element on the Hilbert space of local operators. Instead of Rt ×S1, one can consider S1 ×S1 and

generalize the above story. Since the modular transformation exchanges two cycles of S1 ×S1,

the configuration of TDL along the spatial circle must be related to the configuration of TDL

along the temporal circle. This brings us to the key property of the partition function of defect

Hilbert space, that is, it is related to the partition function with the insertion of the corresponding

charge operator (see fig. 3.3) along the spatial cycle. To be concrete, we define

ZL (β ,g) := TrHLg
(qL0−c/24qL−c/24),

ZL (β ,g) := TrH (ĝ qL0−c/24qL−c/24),

(3.2.1)
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and modular transformation tells us that

ZL (β ,g) = ZL

(
4π2

β
,g
)
. (3.2.2)

Figure 3.3. The partition function of the defect Hilbert space (the left figure, which we will
denote ZL (β ,g)) is related to the partition function with the insertion of the corresponding
charge operator (the right figure, which we will denote ZL (β ,g)).

We end this section by making a crucial remark that the low temperature expansion

coefficient of ZL (β ,g) is positive, hence falls under the purview of Tauberian formalism whereas

in the dual channel, positivity is not guaranteed. One needs to keep this in mind while expecting

whether a Cardy like statement is true or not. For example, whereas we can hope to prove the

asymptotic growth of low temperature expansion coefficient of ZL (β ,g), the same is not true for

ZL (β ,g) without any further assumption because the positivity is not guaranteed in this channel.

3.3 Charting Defect Hilbert Space HL associated with TDL
L

In the usual Cardy formula, the asymptotic growth of operators is controlled by the low

temperature limit of the partition function in the dual (S transformed) channel. As explained

in the previous section § 3.2, the dual channel corresponding to the partition function of a

defect Hilbert space (ZL (β ,g)) is the partition function evaluated on the original Hilbert space

with an insertion of group element g, which we call ZL
(

4π2

β
,g
)

. The leading behavior (low

temperature) in the later channel is controlled by the vacuum operator. Thus one can expect a
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Cardy like growth for operators in the original channel i.e in the defect Hilbert space.

ZL (β → 0,g) = ZL

(
4π2

β
→ 0,g

)
≃ e

π2c
3β (3.3.1)

and hence we expect the growth of the operators in the defect Hilbert space is given by inverse

Laplace of e
π2c
3β , which is ρ0(∆). In what follows, we will be making this idea rigorous using

Tauberian techniques.

3.3.1 Cardy Formula for Defect Hilbert Space

Theorem 1. Given a TDL L , the asymptotic behavior (∆ → ∞) of the growth of states in an

order one window of width 2δ , centered at ∆ in the defect Hilbert space HL is given by

c−N0ρ0(∆)≤
1

2δ

∫
∆+δ

∆−δ

d∆
′
ρHL

(∆′)≤ c+N0ρ0(∆) (3.3.2)

where N0 = 1 if the TDL is associated with a global symmetry, i.e. invertible one, otherwise it

is taken to be a positive number as defined below and ρ0(∆) is defined in eq. (3.1.2). Here c±

order one positive numbers. These numbers can be determined using the extremal functionals

appearing in [156]. In particular, we have c± = 1±1/2δ . The above statement is true under

the following technical assumptions:

• The action of L on the states are uniformly bounded, i.e.|⟨∆|L |∆⟩| ≤ N for all ∆ in the

physical spectra. For example, if we consider Zn then, |⟨∆|L |∆⟩| ≤ 1, since the matrix

element is always a phase. In fact, this is true for any TDL associated with a finite group.

For non invertible TDLs, i.e.the ones which are not associated with global symmetry, we

take this as an assumption, which is true for a wide class of non invertible TDLs.

• The vacuum is invariant under any topological defect line associated with global symmetry.

Thus we have

L |0⟩= |0⟩, (3.3.3)
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• The action of a non-invertible topological defect line L (such as duality defects, not

associated with any global symmetry) on the vacuum state is given by:

L |0⟩= N0|0⟩, N0 > 0. (3.3.4)

For example, in Ising model, we have duality defect line N̂ and N̂|0⟩=
√

2|0⟩.

The basic structure of the proof is similar to the one appeared in [158, 167, 156], though

the deatils are different as we will see. This comment applies to theorems proven in subsequent

sections as well. We start by considering two functions φ±(∆) whose Fourier transformation has

finite support [−Λ,Λ] and they majorise and minorise the characteristic function for the interval

[∆−δ ,∆+δ ]:

φ−(∆′)≤ θ[∆−δ ,∆+δ ](∆
′)≤ φ+(∆

′) . (3.3.5)

From the above it follows that

eβ (∆−δ )e−β∆′
φ−(∆′)≤ θ[∆−δ ,∆+δ ](∆

′)≤ eβ (∆+δ )e−β∆′
φ+(∆

′) . (3.3.6)

Multiplying both sides by the density of states of the twisted Hilbert space ρHL
and integrating

from 0 to ∞, we find

eβ (∆−δ )
∫

∞

0
dF(∆′)e−β∆′

φ−(∆′)≤
∫

∆+δ

∆−δ

dF(∆′)≤ eβ (∆+δ )
∫

∞

0
dF(∆′)e−β∆′

φ+(∆
′) , (3.3.7)

where dF(∆′) = ρHL
(∆′)d∆′. We emphasize β ,δ are free parameters. We consider the Fourier

transformation of φ±(∆) =
∫

∞

−∞
dt φ̂±(t)−ı∆t , such that in Fourier domain the above inequality
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becomes
eβ (∆−δ )

∫
∞

−∞

dt φ̂−(t)ZL (β + ıt)e−(β+ıt)c/12

≤
∫

∆+δ

∆−δ

dF(∆′)≤

eβ (∆+δ )
∫

∞

−∞

dt φ̂+(t)ZL (β + ıt)e−(β+ıt)c/12.

(3.3.8)

The modular property implies

ZL (β + ıt) = ZL

(
4π2

β + ıt

)
. (3.3.9)

Thus in the dual channel we have an expression in terms of the original Hilbert space. We split

this original Hilbert space H into light part and heavy part:

ZL

(
4π2

β + ıt

)
= ZL

L

(
4π2

β + ıt

)
+ZL

H

(
4π2

β + ıt

)
. (3.3.10)

Notice that the contribution from the light sector ZL
L is not necessary real if it contains

operators arbitrarily charged under global symmetry group G. For example, if we consider the

Z3 symmetry, then the TDL L can act on a state such the state picks up a phase of e2πı/3. One

can circumnavigate this by assuming charge conjugation invariance.

(∫
∞

−∞

dt φ̂±(t)ZL (β + ıt)e−(β+ıt)c/12
)
=

(∫
∞

−∞

dt φ̂±(t)ZL

(
4π2

β + ıt

)
e−(β+ıt)c/12

)
∈ R

(3.3.11)

Then we can split it as

∫
∞

−∞

dt φ̂±(t)ZL

(
4π2

β + ıt

)
e−(β+ıt)c/12

=
∫

∞

−∞

dt φ̂±(t)ZL
L

(
4π2

β + ıt

)
e−(β+ıt)c/12 +

∫
∞

−∞

dt φ̂±(t)ZL
H

(
4π2

β + ıt

)
e−(β+ıt)c/12.

(3.3.12)
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At first, we consider the light sector where ∆ ≤ c/12 choose a ρL
0 (∆) such that

∫
∞

0
d∆ ρ

L
0 (∆)e−β (∆−c/12) = ZL

L

(
4π2

β

)
. (3.3.13)

As a result, the contribution from the light sector can be written as

eβ (∆±δ )
∫

∞

−∞

dt φ̂±(t)ZL
L

(
4π2

β + ıt

)
e−(β+ıt)c/12 = eβ (∆±δ )

∫
∞

0
d∆

′
ρ

L
0 (∆′)φ±(∆′)e−β∆′

.

(3.3.14)

Notice that, in general, the light sector contains all the states with ∆ ≤ c/12. ρL
0 (∆)

contains more than just contribution from the vacuum state N0ρ0(∆) where ρ0(∆) is the crossing

kernel of the vacuum state. The extra light operators would give exponentially suppressed

corrections and are not universal (model dependent). Since there are finite number of operators

below c/12, so that sum of the contribution coming from each of the extra light operators is still

suppressed. In the following, we shall only consider the vacuum contribution.

Next, we treat contribution from the heavy sector and show they are suppressed in

magnitude, hence can be dropped from both the lower and the upper bound.

eβ (∆±δ )

∣∣∣∣
∫

∞

−∞

dt φ̂±(t)ZL
H

(
4π2

β + ıt

)
e−(β+ıt)c/12

∣∣∣∣≤ eβ (∆−c/12±δ )
∫

∞

−∞

dt
∣∣∣∣ZL

H

(
4π2

β + ıt

)∣∣∣∣|φ̂±(t)|

(3.3.15)

Now we do the following estimation

∣∣∣∣ZL
H

(
4π2

β + ıt

)∣∣∣∣=
∣∣∣∣ ∑

∆>c/12
N∆ exp

[
− 4π2

β + ıt

(
∆− c

12

)]∣∣∣∣

≤ N ∑
∆>c/12

exp
[
− 4π2β

β 2 + t2

(
∆− c

12

)]

= NZH

[
4π2β

β 2 + t2

]
≤ NZH

[
4π2β

β 2 +Λ2
±

]
for t2 ≤ Λ

2
±

(3.3.16)
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where N∆ denote the action of L on a state with conformal dimension ∆ and N denote the

upper bound of all N∆’s. We use this bound in (3.3.15) and the fact that φ̂±(t) has finite support

[−Λ±,Λ±] to have the following inequality

eβ (∆−δ )

[ ∫
∞

0
d∆

′
ρ

L
0 (∆′)e−β∆′

φ−(∆′)−Ne−βc/12ZH

(
4π2β

β 2 +Λ2
−

)∫
Λ−

−Λ−
dt |φ̂−(t)|

]

≤
∫

∆+δ

∆−δ

dF(∆′)≤

eβ (∆+δ )

[ ∫
∞

0
d∆

′
ρ

L
0 (∆′)e−β∆′

φ+(∆
′)+Ne−βc/12ZH

(
4π2β

β 2 +Λ2
+

)∫
Λ+

−Λ+

dt |φ̂+(t)|
]
.

(3.3.17)

The bounds get greatly simplified once we consider the large ∆ region. Indeed, as in

[158] using HKS bound, one can show

eβ∆ZH

(
4π2β

β 2 +Λ2
±

)
∼ eβ∆e

π2c
3β

(
Λ±
2π

)2

∼ ρ
L
0 (∆)1+ 1

2

((
Λ2±
2π

)
−1
)
, (3.3.18)

where we choose β = π
√ c

3∆
<< 1. Therefore the contribution from ZH is sub-leading once

we choose Λ± < 2π . Then the upper bound at large ∆ (the lower bound is similar φ+ → φ−)

simplifies to
∫

∆+δ

∆−δ

d∆
′
ρHL

(∆′)≤ eβ∆

∫
∞

0
d∆

′N0ρ0(∆
′)φ+(∆′)e−β∆′

. (3.3.19)

Upon doing integrals by the saddle point approximation, we have in the ∆ → ∞ limit

N0c−ρ0(∆)≤
1

2δ

∫
∆+δ

∆−δ

dF(∆′)≤ N0c+ρ0(∆) , where c± =
π

δ
φ̂±(0) . (3.3.20)

This concludes the proof of the theorem. For c > 1 CFTs, the analysis can be made

sensitive to primaries only. We end this subsection with two remarks.

• As in [92, 156], we can derive a spectral gap for the defect Hilbert HL . The upper bound

on the gap is found to be 1. This is the optimal gap as one can consider the Monster CFT

with insertion of Identity line; now the defect Hilbert space is same as the original Hilbert
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space, as a result the gap is exactly 1. For further discussion related to optimality, we refer

the readers to [156].

• Following [158], we can also derive a global approximation of the number of states FL (∆)

in the defect Hilbert space HL valid for large ∆:

FL (∆)≡
∫

∆

0
d∆

′
ρL (∆′) =

N0

2π

(
3

c∆

)1/4

e2π
√ c

3 ∆
[
1+O(∆−1/2)

]
, ∆ → ∞. (3.3.21)

3.4 Charting Hilbert Space H L associated with invertible
TDL L

In this section we consider invertible TDLs associated with a global symmetry G. In

particular, we will be focussing on the case where the symmetry group is finite. The primary

goal is to focus on the untwisted sector (we are imposing periodic boundary condition along the

spatial circle) estimate the growth of operators which transforms under a particular irreducible

representation of the group G. Later on we will generalize our result to a given twisted sector,

where another TDL is inserted along the temporal direction if the symmetry is non-anomalous.

3.4.1 Warm up: G = Z2

The symmetry group Z2 has two elements: identity e and the element p, which squares

to Identity. We set up the following notation for any group element g ∈ G:

ZL (β ,g) = Tr
(

ge−β(L0+L̄0− c
12)
)
. (3.4.1)

Thus for g = e we have the usual partition function while for g = p we have

ZL (β , p) = Zeven(β )−Zodd(β ) , (3.4.2)

where Zeven (Zodd) is the partition function for all the even (odd) operators. Clearly, Zeven(β )+
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Zodd(β ) = ZL (β ,e). In the usual Cardy formula, we want to have an estimate of partition

function at high temperature. Similarly, we want to have an expression for Zeven(β ) and Zodd(β )

in the β → 0 limit.

We have

Zeven(β ) =
1
2

(
ZL (β ,e)+ZL (β , p)

)
=

dim(even)
|G| ∑

g
χ
∗
even(g)Z

L (β ,g) ,

Zodd(β ) =
1
2

(
ZL (β ,e)−ZL (β , p)

)
=

dim(odd)
|G| ∑

g
χ
∗
odd(g)Z

L (β ,g) .
(3.4.3)

We remark that 1
|G| ∑g χ∗

α(g)Z
L (β ,g) calculates the number (weighted by e−β (∆−c/12), where ∆

is the conformal weight) of times the irrep α is appearing, and the number of states is obtained

by multiplying the dimension of irrep to the quantity. We briefly review the representation theory

of finite group in § A.3. For any Abelian group, the dimension of irrep is 1 always, so it is

simpler in that scenario. The reason we wrote it in terms of characters χ is that they immediately

generalize to any finite group. For Z2 the trivial representation is the one where χeven(g) = 1 for

all g ∈ G = Z2. The nontrivial irrep is the one where we have χodd(e) = 1 and χodd(p) = −1.

For G = Z2, we have |G|= 2, the order of the finite group.

Before delving into the rigorous Tauberian formalism, let us gain some intuition by

doing usual Cardy like analysis. For brevity, let us write Z+ ≡ Zeven, Z− ≡ Zodd and similarly

χeven ≡ χ+, χodd ≡ χ−; dim(even)≡ d+, dim(odd)≡ d−. Now in the dual channel, we have

Z±(β → 0) =
d±
|G|
[
χ
∗
±(e)ZL (β ′ → ∞,e)+χ

∗
±(p)ZL (β ′ → ∞, p)

]
, β

′ =
4π2

β

=
1
2
[
ZL (β ′ → ∞,e)±ZL (β ′ → ∞, p)

]
, β

′ =
4π2

β
.

(3.4.4)

Here ZL (β ′,e) is the usual partition function evaluated at the dual temperature β ′. The quantity

ZL (β ′, p) is obtained by doing modular transformation on ZL (β , p). Now ZL (β , p) is not
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modular invariant, because it has an insertion of TDL along spatial direction. Under S modular

transformation, cycles of the torus get exchanged, thus we have a torus configuration where the

TDL is along the time direction. We can interpret this as having a defect in the spatial circle.

Thus ZL (β ′, p) is the partition function for the defect Hilbert space.

If the ground state in the defect Hilbert space (corresponding to g ̸= e) has ∆ > 0, we

have

Z±(β → 0) =
d±
|G|χ

∗
±(e)ZL (β ′ → ∞,e) =

d2
±

|G| exp
[

π2c
3β

]
=

1
2

exp
[

π2c
3β

]
. (3.4.5)

Let us pause for a moment and discuss when we can ensure that ∆ > 0 in the defect

Hilbert space. According to [140], if the Z2 is anomalous, then the spin is constrained to be

of the form 1
4 +Z/2, thus excludes the possibility of having ∆ = 0 state. Similar argument is

true for anomalous Zn for any n. Since any finite group has a subgroup Zm for some m ∈ Z+, if

the subgroup is anomalous, the argument applies and we can not have ∆ = 0 state in the defect

Hilbert space corresponding to that subgroup. If Z2 is non-anomalous, then we can not apply this

argument. Nonetheless, we can gauge the Z2 group in such scenario to obtain the orbifold theory.

We note that ∆ = 0 states is an even state, so it will be in the even sector of the defect Hilbert

space if it is there in defect Hilbert space to begin with. The orbifolded theory has even operators

from the usual Hilbert space (untwisted sector) and the even operators from the defect Hilbert

space (twisted sector). Now if we assume the uniqueness of the ∆ = 0 state in the orbifolded

theory, the defect Hilbert space can not have any ∆ = 0 state.The another way to phrase the

statement is to demand that the action of symmetry group is faithful, thus the only TDL which

commutes with all the operators is the Identity line as explained in the § 3.2. In what follows, we

will assume this as a generic condition that in the defect Hilbert space ∆ > 0. We mention that

the assumption is true for the Ising model.
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From (3.4.5), we immediately derive the growth of operators in even and odd sector:

ρ±(∆) ≃
∆→∞

1
2

( c
48∆3

) 1
4 exp

[
2π

√
c∆

3

]
, (3.4.6)

where ρ± stands for density of states for even and odd operators respectively.

We make some remarks below:

⋆ Smearing turns dα into d2
α : Presence of symmetry predicts an extra-fold degeneracy

of dα where dα is the dimension of α irrep. Thus it is somewhat surprising to find d2
α in the

expression for density of states. But as we will show in the next subsection, the expression for

the density of states is true only after smearing over an order one window. This smearing2 allows

for an effective extra-fold degeneracy of d2
α . This becomes particularly clear if we examine the

3-state Potts model (c= 4/5), which has S3 symmetry (See [46] for a quick and nice exposition of

this theory with an emphasis on TDLs). S3 is a generated by two elements: one element generates

the Z3 symmetry, while the other element acts as Z3 charge conjugation. There are two doublet

of primaries in this CFT sitting in the nontrivial 2 dimensional S3 representation. Each of the

doublet contains a primary of Z3 charge ω and a primary of Z3 charge ω∗ = ω2. One doublet has

dimension 2/15 while the other one has dimension 4/3. All the descendants of these primaries

sit in the same representation. If we consider a window of width 2δ ⪆ 1, it contains descendants

of both the doublets. Thus it gives a factor of 22 = 4. Should we able to resolve the actual

density of states, we would have found degeneracy of 2 as predicted by the actual symmetry.

Furthermore, note that for S3, we have |G|= 6, thus we have a growth of 4/6ρ0 for the doublet

irrep. From the perspective of Z3, we are counting all the operators with charge ω and ω2, thus

we should have a growth of (1+1)/3ρ0, lo and behold 4/6 = 2/3. Roughly speaking, the irrep

α has to appear dα times in a window of width 2δ → 1+, this might hint at some approximate

2We thank Raghu Mahajan for discussion along this line.
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symmetry which emerges only because we smear. The scenario is very much similar to the one

present in the calculation of disk partition function of JT gravity and bulk gauge field theory [124].

⋆ It might seem very tempting to discuss the growth of ρ+−ρ−. Naively, asymptotic

growth of ρ+−ρ− is controlled by inverse Laplace transformation of ZL (β → 0, p) = ZL (β ′ →

∞, p) [140]. Nonetheless this argument does not pass the rigorous treatment of Tauberian since

the positivity of ρ+−ρ− is not guaranteed, in fact it can in principle widely oscillate. Nonetheless,

it is also possible to prove the following as a corollary of the theorem proven in the next section.

∣∣∣∣
∫

∆+δ

∆−δ

d∆
′ [

ρ+(∆
′)−ρ−(∆′)

]∣∣∣∣≤
( c

48∆3

) 1
4 exp

[
2π

√
c∆

3

]
(3.4.7)

where we have used the extremal functions appearing in [156] to fix the order one number.

⋆ For c > 1, the analysis can be made sensitive to Virasoro primaries only. In the

following section, we will be generalizing the idea to arbitrary finite group G using the notion of

character as well as we will make our analysis rigorous using Tauberian formalism [158, 92, 167].

3.4.2 Arbitrary finite group G ala Tauberian

Untwisted sector

The partition function for the operators transforming under particular irreducible repre-

sentation α is given by

ZL
α (β ) =

dα

|G| ∑
g∈G

ZL (β ,g)χ∗
α(g)≡

∫
∞

0
d∆

′
ρα(∆

′) (3.4.8)

where dα is the dimension of the irrep α . Under S modular transformation we have

ZL
α (β )→

S
ZL α(β

′) =
dα

|G| ∑
g∈G

ZL (β ′,g)χ∗
α(g) (3.4.9)
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where β ′ = 4π2

β
. Our objective is to establish the following theorem:

Theorem 2. We consider untwisted sector of a CFT admitting a global symmetry under a finite

group G. The states transforming under the irreducible representation α , has an asymptotic

growth, which is given by:

c−d2
α

|G| ρ0(∆)≤
1

2δ

∫
∆+δ

∆−δ

d∆
′
ρα(∆

′)≤ c+d2
α

|G| ρ0(∆) (3.4.10)

Here ρ0(∆) is defined in (3.1.2) and c± are order one positive numbers. These numbers can

be determined using the extremal functionals appearing in [156]. In particular, we have

c± = 1±1/2δ . The above statement is true under the assumption that HL (g) does not contain

∆ = 0 state for g not equal to the identity (e) element. This ensures that the sum defining ZL α(β
′)

in eq. (3.4.9) is dominated by the ∆ = 0 state coming from the original Hilbert space, i.e.from

ZL (β ′,e).

The proof of the theorem closely resembles the one in the previous section. The leading

answer comes from inverse Laplace transformation of dα

|G|ZL (β ′,e)χ∗
α(e) =

d2
α

|G|Z(β
′). The only

non-trivial part is to show the suppression of the heavy part of ZL α(4π2/(β + ıt)). Now we have

two ingredients, the character and the heavy part of the defect partition function. Like before, the

absolute value of the heavy part is dominated by |t|= Λ. Then we can use the following chain of

inequality

ZL H

(
4π2β

β 2 +Λ2 ,g
)
≤ ZL

(
4π2β

β 2 +Λ2 ,g
)
= ZL

(
β 2 +Λ2

β
,g
)
≤ NZ

(
β 2 +Λ2

β

)
≃

β→0
Ne

Λ2
β .

On the other hand, the character can be bound using

|χ∗
α(g)|2 ≤

(
∑
g
|χ∗

α(g)|2
)

= |G| ⇒ 1
G
|χ∗

α(g)| ≤
1

|G|1/2 . (3.4.11)
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Using the above two, we estimate the heavy part integrand for |t| ≤ Λ

∣∣∣∣
dα

|G| ∑
g∈G

ZL H(β
′,g)χ∗

α(g)
∣∣∣∣≤

dα

|G|1/2 ∑
g

ZL H

(
4π2β

β 2 +Λ2 ,g
)

≤
β→0

N|G|1/2dα exp
[

Λ2

β

]

(3.4.12)

Thus we have

∣∣∣∣heavy part
∣∣∣∣≤ N|G|1/2dα exp

[
Λ2

β

]∫
Λ

−Λ

dt |φ̂±(t)| (3.4.13)

Again we use the bandlimited functions φ± and choose the support of φ̂± to be [−Λ,Λ] with

Λ = 2π . One can choose Λ < 2π . In fact by careful treatment, it is possible to choose Λ = 2π

and the extremal functions appearing in [156] to deduce the value of order one numbers c±

appearing in the theorem.

Twisted sector

One can consider the twisted sector by introducing the TDL corresponding to the global

symmetry G along temporal direction. This is what we called defect Hilbert space. Now if

the symmetry is non-anomalous G, we can insert another TDL along the spatial direction and

unambiguously resolve the crossing of two TDLs. Within a twisted sector (twisted by a given

element g ∈ G) one can estimate the growth of operators transforming under particular irrep of

G.

Here we use slightly different notations because now we have to deal insertion of two

TDLs. By ZL (β ,g0,g) we mean the partition function evaluated with TDL corresponding to g0

inserted along temporal direction and TDL corresponding to g inserted along spatial direction.

We also put in g0 as argument of density of states to remind ourselves that we are dealing with

the twisted sector. Thus the partition function Z(α)
L (β ,g0) for the operators in the α irrep in the

99



twisted sector is given by

Z(α)
L (β ,g0)≡

dα

|G| ∑
g∈G

ZL (β ,g0,g)χ∗
α(g)≡

∫
∞

0
d∆

′
ρα(g0,∆

′) (3.4.14)

where dα is the dimension of the irrep α . Under S modular transformation3 we have

Z(α)
L (β ,g0)→

S

dα

|G| ∑
g∈G

ZL (β ′,g,g−1
0 )χ∗

α(g) , where β
′ =

4π2

β
. (3.4.15)

The final result is again given by eq. (3.4.10). In particular we have

Theorem 3. We consider twisted sector (twisted by the g0 ∈ G) of a CFT admitting a symmetry

(non-anomalous) under a group G. The (3.4.10) holds true for the growth of operators in this

sector. The assumptions are same as the one in theorem [2].

3.4.3 TDL associated with continuous symmetry U(1)

The idea presented above for the finite group can be generalized to continuous group as

well. The tricky part is to determine the behavior of ZLg(β → 0,α) = ZLg(β
′ → ∞,α). Earlier

knowing that for g ̸= e, the defect Hilbert space has states with ∆ > 0 only sufficed because we

have a sum over group elements. But here we have an integral over the group manifold and as

g → e, the ground state of the defect Hilbert space goes to 0. Thus we need to know the behavior

of the ground state of the defect Hilbert space as g → e, to say something concrete.

In what follows, we can consider the compact U(1) group, which is generated by

J ≡ J0 − J̄0, coming from the Kac-Moody algebra. For a nice discussion related to compact vs

non compact we refer the readers to [29]. The partition function is given by

ZLg(β ,ν , ν̄) = ∑
n,J

e−β(∆n− c
12)e2πıνJ (3.4.16)

3When g and g0 are both non-identity elements, under S modular transformation, the relative orientation of the
TDLs corresponding to them changes. Hence in the dual channel we have g−1

0 inserted along the spatial direction.
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where g = e2πıν ∈ G =U(1) and ν ∈ (−1/2,1/2]. Usually we think of this as partition function

for Grand Canonical ensemble. Alternatively, we can think of this as a partition function

evaluated on Torus with insertion of TDLs corresponding to U(1).

We wish to estimate asymptotic growth of states with a definite J. We write down a

partition function for a fixed J ≡ Q:

ZLg
Q (β ) =

∫ 1/2

−1/2
dν e−2πıνQZLg(τ) = ∑

n
dn,Qe−β(∆n− c

12) (3.4.17)

We pause here to comment about the integral range of ν , i.e. ν ∈ (−1/2,1/2]. This implies that

we are considering “single” cover of U(1) and all the charges are integer. We further assume that

this action is faithful. Thus we exclude scenarios like where all the charges are even. Instead of

“single” cover, we can also consider N ∈ Z+ cover , so that possible charges are of the form q
N

with N −1 > |q| ∈ N; in that scenario the ν integral would have been from −N/2 to N/2 with a

multiplicative factor of 1
N for correct normalization. In this way of thinking, the scenario, where

all the charges are even can be treated as effectively making N = 1
2 . In what follows, we will

be considering N = 1 case. Without loss of generality, we also assume the spectra is invariant

under Q →−Q as they correspond to taking ν →−ν . As an example, readers might keep in

mind compact boson with level k = 1 and radius R = 2, where the charge under J0 is e
R + mR

2 and

the charge under J̄0 is e
R − mR

2 with e,m ∈ Z.

Modular transformation of ZLg(β ) gives us the partition function of the defect Hilbert

space and we have

ZLgQ

(
4π2

β

)
=
∫ 1/2

−1/2
dν e−2πıνQZLg

(
4π2

β

)

= ∑
n,q,q̄

dn,q,q̄

∫ 1/2

−1/2
dν e−2πıνQe−

4π2
β
(∆n− c

12+kν2−ν(q+q̄)) ,

(3.4.18)

where k is a parameter coming from the Kac-Moody algebra, q,q̄ are the charge under J0 and J̄0.
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We want to evaluate this integral in the β → 0 limit.

ZLgQ

(
4π2

β

)
≃
√

β

4πk ∑
∆̂n

|q+q̄|≤′k

d
∆̂n,q,q̄

e−
4π2

β
(∆̂n− c

12)−β
Q2
4k −ıπ Q(q+q̄)

k
(3.4.19)

where ∆̂n =
(

∆n − (q+q̄)2

4k

)
. The prime over ≤ indicates whenever q+ q̄ becomes ±k, there is a

factor of 1
2 associated with the ν integral. The crucial point is to observe that the states in the

defect Hilbert space has dimension ∆̂+(ν − q+q̄
2k )2. Thus in the β → 0 limit, the ν integral can

contribute only if (ν − q+q̄
2k ) = 0 for some ν ∈ (−1/2,1/2]. Thus the sum over q, q̄ is restricted.

Thus the leading piece is given by ∆̂ = 0 states. Of course ∆ = q = q̄ = 0 would contribute. We

observe that the unitarity bound tells us that

∆ ≥ q2 + q̄2

2k
≥ (q+ q̄)2

4k
, (3.4.20)

where the saturation of the second inequality can happen only if q = q̄. Thus the states that

would contribute to the leading order is given by ∆̂ = 0,q = q̄, |q| ≤′ k
4 . Hence we have

ZLg

Q,Q̄(β → 0)≃ N0

√
β

4πk
e

π2c
3β (3.4.21)

where N0 = ∑q=q̄,|q|≤′k/2 w(q)e−
2πıqQ

k and w(q) = 1 if |q|< k/2 and w(q) = 1
2 if |q|= k

2 . Since

we have assumed q →−q symmetry, N0 is a real number. N0 = 1 if only such state is the vacuum.

In what follows, we will assume that this is the case4 and N0 = 1. Strictly speaking, in the

Tauberian analysis, we would require the above argument to hold for complex β + ıt.

The next step is to split up the Hilbert space into the light and the heavy sector. Now

we divide the Hilbert space using the quantity ∆̂ ≡ ∆− q2+q̄2

4k . The light sector is defined as

4We note that if the action of U(1) is not faithful, for example, if all the charges are even, then for odd charges,
the asymptotic expression should give 0, as a result N0 should have been equal to 0, in those cases the phases in the
sum defining N0 play a key role.
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∆̂+(ν − q
2k)

2 ≤ c/12 while the heavy sector is the one with ∆̂+(ν − q
2k)

2 > c/12. Thereafter,

we restrict our attention to the heavy sector and show it is suppressed. Recall the quantity related

to the heavy sector that appears in the Tauberian analysis is following:

I ≡ eβ (∆±δ−c/12)
∣∣∣∣
∫

Λ

−Λ

dt e−ıtc/12
φ̂(t) ∑

n,q,q̄
dn,q,q̄

∫ 1/2

−1/2
dν e−2πıνQe−

4π2
β+ıt (∆n− c

12+kν2+ν(q+q̄))
∣∣∣∣ .

Now we pull in the absolute value inside the integral and notice the exponential is

maximized for |t|= Λ. Thus we have

I ≤ eβ (∆±δ−c/12)
∫ 1/2

−1/2
dν ∑

n,q,q̄
heavy

dn,q,q̄ e
− 4π2β

β2+Λ2 (∆n− c
12+kν2+ν(q+q̄))

∫
Λ

−Λ

dt |φ̂(t)|

≤ eβ (∆±δ−c/12)
∫ 1/2

−1/2
dν ZLg

(
4π2β

β 2 +Λ2

)∫
Λ

−Λ

dt |φ̂(t)|

= eβ (∆±δ−c/12)
∫ 1/2

−1/2
dν ZLg

(
β 2 +Λ2

β
,ν

)∫
Λ

−Λ

dt |φ̂(t)|

≤ eβ (∆±δ−c/12)
∫ 1/2

−1/2
dν ZLg

(
β 2 +Λ2

β
,ν = 0

)∫
Λ

−Λ

dt |φ̂(t)|

≃
β→0

eβ (∆±δ−c/12)e
π2c
3β

Λ2

4π2

∫
Λ

−Λ

dt |φ̂(t)| ≃
β=π

√ c
3∆

exp

[
Λ2

4π2 2π

√
c∆

3

]

(3.4.22)

We will see that the suppression requires Λ < 2π . The light sector produces the leading Cardy

like behavior for density of states ρQ,Q̄(∆
′) of operators with fixed order one charge Q, Q̄ and

large conformal dimension ∆. This can be obtained by doing the following integral and realizing

that the integral is dominated by t = 0 in the β → 0 limit:

eβ (∆±δ−c/12)
∫

Λ

−Λ

e−ıtc/12

√
β + ıt
4πk

exp
[

π2c
3(β + ıt)

]
φ̂±(t)

= eβ (∆±δ−c/12)
φ̂±(0)exp

[
π2c
3β

]√
β

4πk

(
3

πc

)1/2

β
3/2

= 2πφ̂(0)

√
1
k

(
1

4∆

√
c
3

exp

[
2π

√
c∆

3

])
(3.4.23)
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where the factor ( 3
πc)

1/2β 3/2 comes from the integrating over the fluctuation around the saddle

at t = 0. Thus we have following estimate:

c−

√
c

48k∆2 exp

[
2π

√
c∆

3

]
≤ 1

2δ

∫
∆+δ

∆−δ

d∆
′
ρQ(∆

′)≤ c+

√
c

48k∆2 exp

[
2π

√
c∆

3

]
.

(3.4.24)

Here c± = 2π

2δ
φ̂±(0) is order one positive number.

We conclude this section with two final remarks that one can generalize the analysis for

Virasoro primaries for CFT with c > 1 and one can generalize this to large central charge.

3.5 Tauberian for Vector-valued modular function

The results for the finite group can nicely be encapsulated in terms of something known

as vector valued modular function. The vector-valued modular function Z obeys the following

transformation law under S modular transformation:

Z
(

4π2

β + ıt

)
= F ·Z(β + ıt) (3.5.1)

where Z is a column vector consisting of bunch of functions and F is a constant (β independent)

matrix. The condition S2 = I boils down to F2 = I.

• In the example of CFT with Z2 symmetry we can consider

Z = (Z+,Z−,Zp)
T ,

where Z± are the partition functions for even and odd operator and Zp is the defect Hilbert space
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with insertion of non-identity Z2 TDL. The matrix F, in this case, is given by

F =
1
2




1 1 1

1 1 −1

2 −2 0




(3.5.2)

and F2 is indeed identity.

• For a generic compact group G, the vector Z will have 2k−1 entry , where k is the

number of conjugacy classes of the group G. The k entries correspond to k different irreps (recall

the number of conjugacy class is equal to number of irreps) and k−1 entries correspond to the

partition function for the defect Hilbert space with insertion of non-identity element. It suffices

to consider one representative element from each conjugacy class as the partition function with

insertion of TDL along spatial direction is sensitive to conjugacy class only. For Zn, we have n

different conjugacy classes, i.e. n irreps.

To estimate the growth of operators in each of the sectors, we define a vector valued

density of states ρ⃗(∆). The upper bound (the lower bound is similar) on the integral of ρ⃗(∆) is

given by a matrix inequality

∫
∆+δ

∆−δ

d∆
′
ρ⃗(∆′)≤ eβ (∆+δ )

∫
Λ

−Λ

dt F ·
[

Z
(

4π2

β + ıt

)]
e−ıtc/12

φ+(t) (3.5.3)

Thus we need to estimate the integrals of the form

eβ (∆+δ )
∫

Λ

−Λ

dt F ·
[

Z
(

4π2

β + ıt

)]
e−ıtc/12

φ+(t)

in the β → 0 limit.

At this point, we separate out the light contribution and the heavy contribution in the

usual way. If we further assume that ∆ = 0 state appears in one and only one of the sectors,
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without loss of generality we can keep it as first entry. Then the light sector Z(L) will give

∫
∆+δ

∆−δ

d∆
′
ρ⃗(∆′)≤ eβ (∆+δ )

∫
Λ

−Λ

dt F ·
[

Z(L)
(

4π2

β + ıt

)]
e−ıtc/12

φ+(t) = 2πφ̂+(0)ρ0(∆)⃗F1 ,

where F⃗1 is the first column of the F matrix. This determines the parameter N0 (or d2
α ) appearing

previously.

We still need to show that the heavy sector Z(H) gives a suppressed contribution in

magnitude. In order to achieve that we will use that |Fi j|< Ki. This is true for all the calculations

done previously and generically true because F is finite matrix and F2 = I. A more mathematical

way to saying this is that

||F||∞ = Maxi

{
∑

j
|Fi j|

}
is finite .

We note that for |t| ≤ Λ,

∣∣∣∣
(

F ·
[

Z(H)

(
4π2

β + ıt

)])

i

∣∣∣∣≤ ∑
j
|Fi j|

∣∣∣∣Z
(H)
j

(
4π2

β + ıt

)∣∣∣∣≤ ||F||∞ ∑
j

Z(H)
j

(
4π2β

β 2 +Λ2

)
. (3.5.4)

To estimate the sum appearing in the rightmost, we observe that

∑
j

Z(H)
j

(
4π2β

β 2 +Λ2

)
≤ ∑

j
Z j

(
4π2β

β 2 +Λ2

)
= ∑

j
F ·
[

Z
(

Λ2 +β 2

β

)]
. (3.5.5)

Again we use the fact that ∆ = 0 appears in one and only one sector to have

∑
j

F ·
[

Z
(

Λ2 +β 2

β

)]
≃ Z1

(
Λ2 +β 2

β

)
∑

j
F j1 ≃ e

Λ2c
12β .

Choosing Λ < 2π suppress the heavy part. Thus we arrive at our general theorem.

Theorem 4. We consider vector valued modular function as defined in (3.5.1). Each entry in the
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column vector Z denotes different sector of the CFT. The growth of operators in each of these

sectors obey the following inequality:

c−ρ0(∆)F j1 ≤
1

2δ

∫
∆+δ

∆−δ

d∆
′
ρ j(∆

′)≤ c+ρ0(∆)F j1 , (3.5.6)

where c± are order one numbers. These numbers can be determined using the extremal function-

als appearing in [156]. In particular, we have c± = 1±1/2δ .

One can further apply similar technique to any rational CFT where characters are indeed

vector-valued modular functions, this would facilitate estimation of growth of descendants for

each primary (primary of the full chiral algebra). For c < 1, one can apply this to Minimal

models and estimate the growth of descendants of each Virasoro primary.

Chapter 3, in full, is a reprint of the marterial as it appears in Sridip Pal, Zhengdi Sun,

JHEP 08, 064 (2020). The dissertation author was one of the primary investigator and author of

this paper.
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Chapter 4

On Triality Defects in 2d CFT

4.1 Introduction

Global symmetry is an important guideline for constructing and analyzing quantum field

theories. In modern language, the global symmetries, whether continuous or discrete, can be

represented as invertible topological operators supported on a codimensions-1 (codim-1) surface.

Any correlation functions with the topological surface operator insertion are invariant under

the small deformation of the codim-1 surface where the topological operator is supported. As

the result, the topological operator commute with the stress-energy tensor. For a continuous

symmetry given by a conserved current jµ(x), the corresponding topological surface operator is

constructed as eiα
∮

Σd−1
dd−1xnµ (x) jµ (x) and the invariance under the small deformation then follows

from the conservation equation ∂µ jµ(x) = 0.

Several generalizations have been made from this point of view, which leads to the

concept of generalized global symmetries [90]. For instance, the support of the invertible

topological operator can be generalized to codim-p surfaces for p > 1, and the corresponding

symmetries are called (p− 1)-form symmetries [90, 125]. The standard 0-form symmetries

can interact non-trivially with the 1-form symmetries, and this leads to the structure of 2-group

symmetries [60, 61, 62]. Another direction of generalization is to study the topological operators

which are not invertible. For instance, the non-invertible 0-form symmetries in 2-dimensional

field theory can be described by the fusion categories, and the topological operators correspond
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to the objects in the fusion categories. Therefore, these non-invertible symmetries are also called

categorical symmetries. There is a lot of progress in the study of non-invertible symmetries in

dimension d ≥ 3 recently [14, 102, 52, 63, 25, 68, 67, 123]. Of course, the categorical 0-form

symmetries can interact non-trivially with the categorical higher form symmetries, this leads to

the concept of higher categorical symmetries [30].

For a more detailed review and a more complete list of references on the development of

the generalized global symmetries and their applications from the high energy physics perspective

and the condensed matter physics perspective, we refer the readers to the two reviews [62, 150].

There are two classes of non-invertible symmetries [123, 122]. Consider a field theory T

with non-invertible symmetries C , if there exists some topological manipulation φ such as finite

gauging on the theory T such that the theory φ(T ) contains only invertible symmetries φ(C )

and the constraints on the RG flows of the theory T from the non-invertible symmetries C can

be completely determined from the constraints on the RG flows from the invertible symmetries

φ(C ) of the theory φ(T ), we refer the non-invertible symmetries C as non-intrinsic [118].

Otherwise, the non-invertible symmetries are called intrinsic. A simple example of non-intrinsic

invertible symmetries is the Rep(S3) symmetries in the 2-dimensional field theory, acquired from

the topological manipulation of gauging the S3 global symmetries. (For example, see [36].)

The study of codim-1 non-invertible topological operators (also known as topological

defect lines, or TDLs) in 2-dimensional CFT has a long history [41, 163, 162, 169, 85, 86, 87,

88, 82], focusing on their connection to boundary CFT, twisted partition function on various

2-manifold, orbifolds and symmetry TFT. Recent studies not only focus on searching for

interesting non-invertible TDLs [39, 180, 181, 45, 111, 44], but also extending the applications

of the TDLs, including their lattice construction [2, 1], constraints for 2d modular bootstrap

[141, 142, 166, 58, 119, 136], constraints on the RG flow [180, 46, 126, 127], gauging non-

invertible symmetries [36, 20] etc.

Perhaps the most well-studied non-invertible TDL is the duality line N under the Z2

gauging. The duality line N and two lines 1,η in the Z2 symmetries form the Ising fusion
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category with the fusion rule

ηN = Nη = N, N2 = I +η . (4.1.1)

The Ising fusion category has been extensively studied in the literature [39, 91, 141, 2, 1, 163,

162, 180, 181]. The existence of the duality line N implies the conformal field theory is invariant

under the Z2 gauging. One possible generalization is of course to consider the duality line

N under A-gauging where A is a finite Abelian group. The corresponding fusion category is

known as the Tambara-Yamagami Fusion category T (A,χ,ε) [177, 176] where χ is a symmetric

bicharacter of the group A and ε =±1 is the Frobenius-Schur indicator. The T (A,χ,ε) with

the same A but different χ and ε satisfies the same fusion rules, yet they are different fusion

categories distinguished by the F-symbols (also known as the crossing kernels K in [46]), which

measures the difference between two different ways of resolving the crossing of two TDLs. The

F-symbols reduce to the familiar group anomaly measured by H3(G,U(1)) when considering

only invertible TDLs. For instance, there are two types of Ising fusion categories with different

FS indicators ε =±1 and they can also be distinguished from the so-called spin selection rules

[46]. The studies of the Tambara-Yamagami fusion category symmetries in the physics literature

include [39, 141, 46, 180, 181].

Another generalization of the Ising fusion category is the triality fusion category and

recently is studied in [180, 181]. The simple TDLs contain symmetry operators which generate

Z2×Z2 global symmetries, as well as a triality line LQ and its orientation reversal LQ, satisfying

the fusion rule 1 generalizing (4.1.1)

LQ×LQ = ∑
g∈Z2×Z2

g, LQ×LQ = 2LQ, g×LQ =LQ×g=LQ, g∈Z2×Z2. (4.1.2)

1In general, the invertible symmetries in a triality fusion category does not have to be Z2 ×Z2. For simplicity,
however, the notion of the triality fusion category would specifically mean the case where the invertible symmetries
are Z2 ×Z2.
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The triality fusion category is obtained by gauging the Z2 global symmetry in A4 global symmetry

of the SU(2)1 theory. In general, consider a 2-dimensional theory T with the global symmetry G

and anomaly ω ∈ H3(G,U(1)). One can gauge a non-anomalous subgroup H ⊂ G and additional

data which is the discrete torsion ψ ∈ H2(H,U(1)) needs to be specified in this gauging process.

The fusion category that describes the categorical symmetries of the gauged theory T /H is

called the group theoretical fusion category, and it is denoted by C (G,ω,H,ψ). In this language,

the triality fusion category in the KT theory is C (A4,1,Z2,1).

In this paper, we study this triality fusion category using the tools from the group

theoretical fusion category. We compute the spectrum of simple TDLs, their fusion rules, and

the F-symbols by using the description of the group theoretical fusion category in terms of

bimodules [164].

We then study the physical implication of the triality fusion category. We derive the spin

selection rules from the F-symbols we acquire. We also derive the Cardy formula for densities

of states using the result in [166]. Since these triality fusion categories are group-theoretical, its

constraint on the RG flow can be determined by the group G and the anomaly ω . In general, this

means that finite non-intrinsic non-invertible 0-form symmetries are completely characterized

by group theoretical fusion categories in a 2-dimensional bosonic theory. We then consider the

c = 1 KT theory as an example, and compute its twisted partition function explicitly and show

the result indeed agree with our general analysis.

It is a natural question to ask if there are more allowed F-symbols with the same

fusion relations. Just like the TY-categories characterizing the duality can have distinct FS

indicators with ε =±1, the possible FS indicators of the triality fusion category are given by

α = e2πik/3 ∈ Z3 with k = 0,1,2. One can see this from the fact that there are Z3 phase rotations

of the F-symbols which preserve the pentagon equations and are not gauge transformations.

Physically, this means one can construct triality fusion category with different FS indicator α ′

from a known with α by taking the theory T with the triality defect LQ, staking a decoupled

theory T ′ with an anomalous Z3 global symmetry generated by η , and defining a new triality
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line L ′
Q ≡ LQη . From the group theoretical fusion category point of view, to acquire triality

fusion categories with the FS indicator α = e2πik/3 means we are gauging the non-anomalous

Z2 symmetries in A4 but now with non-trivial ’t Hooft anomaly for A4. The anomaly for A4

is classified by H3(A4,U(1)) ≃ Z6 and let’s denote its generator as ω0. The triality fusion

categories with different FS indicators are C (A4,ω
2k
0 ,Z2,1) for k = 0,1,2.

However, just taking into account the FS indicators does not enumerate all the possible

triality fusion categories. Indeed, another set of F-symbols is computed in the condensed matter

literature [179] and it is natural to ask if these F-symbols lead to the same fusion categories as

ours. We show that the two sets of fusion categories are different and can be distinguished using

spin selection rules. Then this enumerates all the possible inequivalent F-symbols for the triality

fusion categories according to the classification result in [117].

4.1.1 Outline of the Paper

The goal of the paper is to provide a description of group theoretical triality fusion

categories C (A4,ω
2k
0 ,Z2,1) in terms of the bimodules of the Z2 group algebra, and use it to

compute the fusion rule and F-symbols. The simplicity of the group theoretical fusion category

is that the objects naturally have a C-vector spaces structure, therefore every data we need can be

described using linear algebras.2 We also pointed out there are triality fusion categories that are

not group theoretical, therefore are intrinsic. We show that whether the triality fusion category

is intrinsic or non-intrinsic can be determined from the spins of the defect Hilbert space of the

triality line.

In section 4.2, we briefly review the TDLs in CFT. In section 4.2.1, we introduce the

basic notions relate to the TDLs in 2d CFT. In section 4.2.2, we review the modular bootstrap

program, and describe how to relate the twisted partition function computes the action of TDL

2Notice that there is no C-vector spaces structure on objects in a generic fusion category C . For finite 0-form
symmetries in a bosonic theory, non-intrinsic non-invertible symmetries form group theoretical fusion categories.
This means non-intrinsic non-invertible symmetries naturally have C-vector space structure while the intrinsic non-
invertible symmetries do not. It would be interesting to check if there’s any physical understanding or implication of
this difference.
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L on Hilbert space H and to the twisted partition function computes the states of the defect

Hilbert space HL . Then, in section 4.2.3, we briefly review the result in [166] on the asymptotic

density of states in various Hilbert spaces, which will be useful for us later.

In section 4.3, we describe how to understand the triality fusion categories discovered

in [180, 181] as group theoretical fusion category C (A4,1,Z2,1). In section 4.3.1, we briefly

review the triality fusion category, which is acquired from gauging Z2 subgroup in A4. Then, we

introduce the notion of group theoretical fusion category in section 4.3.2 and show the triality

fusion category in the KT theory can be described as C (A4,1,Z2,1). We then begin to describe

the data of this triality fusion category from the C (A4,1,Z2,1) using the language of bimodules.

In the rest of this section, we give an explicit calculation of the spectrum of simple TDLs, their

fusion rules, and the F-symbols for C (A4,ω
2k
0 ,Z2,1) using bimodules.

In section 4.4, we use the above result to derive physical consequences. In section 4.4.1,

we compute the spin selection rules following the techniques in [46]. Since C (A4,ω
2k
0 ,Z2,1) is

acquired from gauging the Z2 subgroup in a theory with global symmetry A4, we can match the

irreducible representations (irreps) of the fusion ring of C (A4,ω
2k
0 ,Z2,1) to different sectors in

T . This allows us to derive the Cardy-like formulas for different irreps of C (A4,ω
2k
0 ,Z2,1) in

the section 4.4.2. Finally in the section 4.4.3, we show that the anomaly of the group theoretical

fusion categories C (G,ω,H,ψ) is equivalent to the group anomaly ω of G, in the sense that the

symmetric gapped phases of C (G,ω,H,ψ) are equivalent to the symmetric gapped phases of

Vecω
G ≡ C (G,ω,Z1,1). This means that the finite non-intrinsic non-invertible symmetries are

completely characterized by group theoretical fusion categories for 2-dimensional bosonic field

theory.

In section 4.5, we first review the Kosterlitz-Thouless (KT) theory and its triality fusion

categories discovered in [180, 181]. We then compute the twisted partition function of the triality

defect and show the spins in the defect Hilbert space HLQ indeed match the spin selection

rules in the section 4.5.2. Since the KT theory has Z3 ×Z3 ⊂ (U(1)θ̃ ×U(1)φ̃ )⋊Z2 global

symmetries, it is interesting to check if one can construct new triality line via LQη , where η
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generates the one of the Z3 symmetry. We show explicitly this is not possible by checking that

the line LQη does not satisfy the fusion rule in the section 4.5.3.

In section 4.6, we consider other triality fusion categories. We first review the classifi-

cation of the triality fusion categories in [117] in the section 4.6.1. We then list the F-symbols

for the intrinsic triality fusion categories computed in [179] in the section 4.6.2. In the section

4.6.3, We then compute the spin selection for the triality line LQ for the intrinsic triality fusion

categories and show that the triality fusion categories can be distinguished by the spins of the

states in the HLQ . We conclude the paper with a comment on when the spin selection rules

should be saturated.

4.1.2 Future Directions

We outline some of the future directions to explore.

Exploring generic group theoretical fusion categories

In this paper, we mainly focus on describing the group theoretical fusion categories

C (A4,1,Zσ
2 ,1). Since our approach can be easily generalized to other group theoretical fusion

categories, it would be interesting to systematically explore the group theoretical fusion categories

using Mathematica, for example, computing the simple TDLs, their fusion rules, and the F-

symbols, as well as the physical implications such as the spin selection rules, classification of

C -symmetric gapped phases, and solutions of general modular bootstrap equations, etc. Group

theoretical fusion categories provide a systematic way of constructing N-ality fusion categories

in 2-dimension. Some of these will be done in the upcoming work by the authors [144].

Intrinsic triality defects

In this paper, we only study the spin selection rules of the intrinsic triality fusion cat-

egories, which is sufficient to distinguish them from the non-intrinsic ones. Unlike the group

theoretical fusion category symmetries, it’s harder to find examples of CFT with non-intrinsic tri-

ality symmetries. A possible candidate is the bosonization of the theory of 8 Majorana fermions
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discussed in [183]. Furthermore, it would be interesting to understand the anomaly and in

general, the possible symmetric gapped phases, which are described to module categories M

over the fusion category C . This can be done using the techniques developed in [151]. More

generally, a class of intrinsic N-ality fusion categories is constructed in [117] and it would be

interesting to answer the above questions for these as well.

Note added: By the time we are about to post this paper, a nice paper [139] generalizing

the result in [166] appears and their general result can be used to produce our results in the

section 4.4.2. Also, the three papers [138, 35, 21] appear on the arXiv the same day as the authors

post the first version of the draft on arXiv, which generalizes the idea of gauging non-normal or

non-Abelian subgroup will lead to non-invertible symmetries to higher form and higher group

symmetries in higher dimensions.3

4.2 Review on TDLs and their applications in 2d CFT

In this section, we give a brief review of TDLs in 2d CFT to fix the convention, and

readers who are interested in a more detailed review should look at [46, 36]. We also review

results on modular bootstraps and Cardy-like formulas which will be useful later.

4.2.1 TDLs in 2d CFT

In 2-dimensional conformal field theory, the symmetry defects of the ordinary symmetry

are line operators and they are the very first examples of TDLs. For symmetry G of a CFT, the

corresponding TDLs are denoted as Lg,g ∈ G. The juxtaposition of two such TDLs satisfies the

group algebra, Lg ×Lh = Lgh. The TDL corresponds to the identity 1 in the group G is the

identity line which we will also denote as 1≡ L1. Since every group element has its inverse,

3For understanding the non-invertible symmetries from holographic point of view, see recent papers [10, 93,
104, 8].
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these TDLs also have their inverse in the sense that there exists another line such that they fuse

into a single identity line 1, i.e. they are invertible TDLs.

However, TDLs are ubiquitous in the CFT, and the way they fuse is beyond the group

algebra, more generally satisfying the fusion algebra. These TDLs then generate the non-

invertible symmetries or the fusion category symmetries, since the TDLs may not have their

inverse. The Kramer-Wannier duality line in the Ising CFT and most of the Verlinde lines in

rational CFT are examples of the non-invertible TDLs.

The TDL L can be deformed locally without changing the correlation functions ⟨L · · · ⟩

where · · · denotes any other operator insertions. The topological nature of these TDLs imply that

they commute with stress energy tensor, therefore can be algebraically expressed as,

[Ln,La] = [L̄n,La] = 0, (4.2.1)

where Ln, L̄n are the generators of the Virasoro algebra. When the TDL La acts on a state |φ⟩ in

Hilbert space H , the resulting state La |φ⟩ is still in H .

When two TDLs are brought close to each other, their juxtaposition satisfies the fusion

rule,

La ×Lb =
⊕

c
Nc

abLc (4.2.2)

where Nc
ab is the fusion multiplicity which can only be non-negative integers. More specifically,

the TDLs can join at the point-like junction, which is equipped with a Hilbert space. For

example, the fusion of TDLs L1,L2 into L3 corresponds to a vector space with dimension

depending on the fusion multiplicity, we dub the vector space as fusion space and denote by

V L3
L1,L2

. Correspondingly, the TDL L3 can split into L1,L2, whose vector space is split space

and denoted by V L1,L2
L3

.

More complicated fusion/split process can be decomposed into the fusion/split space with

3 TDLs. However, the decomposition is not unique but under the isomorphism,
⊕

L5
V L1,L2

L5
⊗
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ℒ1 ℒ2

ℒ3

∈ Vℒ1 ℒ2

ℒ3

ℒ2ℒ1

ℒ3

∈ Vℒ3

ℒ1 ℒ2

Figure 4.1. The fusion vertex of TDLs L1,L2 fuse into L3 and split vertex of TDLs L3 splits
into L1,L2. The red cross marks the last leg, which determines the ordering of each vertex.

V L5,L3
L4

∼=⊕L6
V L2,L3

L6
⊗V L1,L6

L4
. This is called F-move and can be written diagrammatically

as shown in Figure 4.2. Notice that here we use the notion of F-symbol, which is same as the

crossing kernels K in [46] up to the flipping of some of the orientation of the TDLs.

ℒ1 ℒ2 ℒ3

ℒ4

ℒ5

α

β

= 
(ℒ6,μ,ν)

[Fℒ4

ℒ1ℒ2ℒ3](ℒ5,α,β) (ℒ6,μ,ν)

ℒ1 ℒ2 ℒ3

ℒ4

ℒ6

μ

ν

Figure 4.2. The fusion of three TDLs has two different ways, but they are related by the F-move
and characterized by the F-symbol defined in this diagram.

The F-symbols are constrained by the self-consistent conditions when applying F-moves

to the split process with 5 TDLs. Two sequences of F-moves start with the same state and end

with the same state should be equivalent. These consistent conditions diagrammatically shown

in Figure 4.3 yield the pentagon equations on the F-symbols,

∑
δ

[
F f cd

e

]
(g,β ,γ)(l,ν ,δ )

[
Fabl

e

]
( f ,α,δ )(k,µ,λ )

= ∑
h,σ ,ψ,ρ

[
Fabc

g

]
( f ,α,β )(h,ψ,σ)

[
Fahd

e

]
(g,σ ,γ)(k,ρ,λ )

[
Fbcd

k

]
(h,ψ,ρ)(l,ν ,µ)

. (4.2.3)

For example, the invertible symmetry G with anomaly ω is described by the category of G-

graded vector spaces, denoted by Vecω
G . The simple objects are 1−dimensional C-vector space

labeled by g ∈ G, and physically they correspond to the TDLs which generates the g-action. The
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F F

F

F F

Figure 4.3. The upper 2 F-moves and the lower 3 F-moves yield the same diagram, which gives
the pentagon equation in (4.2.3).

fusion rule is Lg ×Lh = Lgh. The F-symbols of this category are U(1) phase factors (rather

than generic complex numbers in order to preserve the normalization), ω(g,h,k)≡ FLg,Lh,Lk
Lghk

for L1,2,3 = Lg,h,k as in Figure 4.2. These U(1) phase factors satisfy the pentagon equations,

ω(g,h,kl)ω(gh,k, l) = ω(h,k, l)ω(g,hk, l)ω(g,h,k), (4.2.4)

which is the cocycle condition for the 3-cocycle ω : G×G×G →U(1).

Notice that one can consider shifting the basis in V g,h
gh by a phase β (g,h), which is an

element in C2(G,U(1)). This basis change does not change the physics and should be understood

as a gauge transformation of the F-symbols. The F-symbol changes as

ω(g,h,k)→ ω(g,h,k)
β (g,hk)β (h,k)
β (g,h)β (gh,k)

, (4.2.5)

and is interpreted as changing ω by an exact element in the set of 3-coboundaries Z3(G,U(1))⊂

C3(G,U(1)). Therefore, inequivalent Vecω
G’s are labelled by a finite group G and its anomaly

ω ∈ H3(G,U(1)) =C3(G,U(1))/Z3(G,U(1)).
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4.2.2 Modular bootstrap with TDLs

By utilizing the modular transformation properties of the partition functions or correlation

functions of a CFT on a torus with complex structure τ , one can extract many useful information

of the CFT [43, 40, 167, 166, 141, 142, 58, 119, 136, 159, 156]. Here, we are interested in

studying the modular properties of the CFT partition functions with networks of TDLs inserted on

the torus, which is called the twisted partition function on the torus. We will adopt the convention

from [181] on the twisted partition function over torus, as in Figure 4.4. To reveal the physical

µ

ν
L2

L3

L1

:= ZL3,µ,ν
L1L2

(τ, τ) = trHL1
(L̂2)L3,µ,νq

L0− c
24qL0− c

24

Figure 4.4. Convention on the twisted partition function ZL3
L1L2

(τ,τ).

meaning of ZL3,µ,ν
L1,L2

(τ,τ), we first consider the simple case where L2 = 1 and L3 = L1 = L .

For convenience, we will sometimes abbreviate this partition function as ZL (τ,τ). Because the

topological defect L is inserted along the time direction, it should be interpreted as a defect

along the spatial direction, leading to a different Hilbert space on the spatial circle S1, and we

will denote this Hilbert space as the defect Hilbert space HL .

ZL (τ,τ) = ZL ,1,1
L ,1 (τ,τ) = TrHL

qL0− c
24 qL0− c

24 . (4.2.6)

For instance, if L is a Z2 symmetry defect η , then the defect Hilbert space HL is the Z2 twisted

Hilbert space acquired by imposing the twisted boundary condition.

As an another simple example, let’s consider instead L1 = I and L2 = L3 = L . Simi-

larly, we will sometimes abbreviate this partition function as ZL (τ,τ). In this configuration, the
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L3

L2

L1

S−→

L2

L3

L1
=

∑
L4,ρ,σ

[
FL2L1L2

L1

]
(L3,µ,ν),(L4,ρ,σ)

µ

ν

µ

ν
L1

L2

L4

ρ

σ

Figure 4.5. Generalized modular bootstrap equations from S modular transformation of the
twisted partition function ZL3,µ,ν

L1,L2
(τ,τ).

TDL L is inserted on an equal time slice, therefore should be interpreted as a quantum operator

L̂ on the Hilbert space H :

ZL (τ,τ)≡ ZL ,1,1
1,L (τ,τ) = TrH L̂ qL0− c

24 qL0− c
24 . (4.2.7)

More generally, if we consider the twisted partition function ZL3,µ,ν
L1,L2

(τ,τ), we should interpret

L2 as a quantum operator (L̂2)L3,µ,ν acting on the defect Hilbert space HL1 , where the subscript

(L3,µ,ν) indicates that for different intermediate lines L3 and different vertex labels µ,ν when

the fusion multiplicities are greater than 1, we will have a different operator in general.

ZL3,µ,ν
L1,L2

(τ,τ) = TrHL1
(L̂2)L3,µ,νqL0− c

24 qL0− c
24 . (4.2.8)

Under the modular transformation, the twisted partition function ZL3,µ,ν
L1,L2

(τ,τ) transforms as the

Figure 4.5,

ZL3,µ,ν
L1,L2

(
−1

τ
,−1

τ

)
= ∑

L4,ρ,σ

[
FL2L1L 2

L1

]
(L3,µ,ν),(L 4,ρ,σ)

ZL4,σ ,ρ

L2,L 1
(τ,τ). (4.2.9)

As a simple example, we may consider taking L1 to be the identity line. Then the

F-symbol is always trivial in this case (for example, see [46]) and µ,ν = 1 as the fusion is
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always one dimensional. Then we have

ZL

(
−1

τ
,−1

τ

)
≡ ZL ,1,1

1,L

(
−1

τ
,−1

τ

)
= ZL

L ,1(τ,τ)≡ ZL (τ,τ). (4.2.10)

As one can see, the S modular transformation relates the partition functions that count states the

defect Hilbert space HL to the partition functions that compute the action of the TDL L on the

Hilbert space H . This allows us to derive interesting Cardy-like formula which we will now

review in the next subsection.

4.2.3 Asymptotic density of states

As an application of the modular bootstrap reviewed above, one can derive the asymptotic

density of states of a CFT [43, 159]. Intuitively, the modular bootstrap equation,

ZL

(
−1

τ
,−1

τ

)
= ZL (τ,τ), (4.2.11)

relates the high-temperature limit of the partition function ZL which computes the action of

the TDL L on H to the low-temperature limit of the partition function ZL which computes

the spectrum of the defect Hilbert space HL and vice versa. Since in the low-temperature

limit, the partition function is always dominated by the ground state, (4.2.11) essentially allows

us to determine the partition function ZL and ZL in the high-temperature limit. In the high-

temperature limit, states with different energy would contribute equally to the partition sum,

knowing ZL in such limit would allow us to derive an approximation of the density of states for

the defect Hilbert space HL . This idea is made into a rigorous mathematical statement in [166]

using the techniques in [159], and we will only mention the result below.

Let FL (∆) denote the total number of states with scaling dimension ∆′ < ∆ in the defect

Hilbert space. By asymptotic density of states, we mean a continuous function ρ0,L (∆) which
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approximates the actual density of states in the sense that

FL (∆) =
∫

∆

0
d∆

′
ρ0,L (∆′)+O(∆−1/2), ∆ → ∞. (4.2.12)

Let

ρ0(∆) =
( c

48∆3

)1/4
exp

[
2π

√
c∆

3

]
, (4.2.13)

it is shown in [166] that the asymptotic density of states ρ0,L of the defect Hilbert space HL is

simply given by

ρ0,L (∆) = ⟨0|L |0⟩ρ0(∆), (4.2.14)

where |0⟩ is the ground state and ⟨0|L |0⟩ is the quantum dimension of the TDL L .

Furthermore, let’s consider the theory with finite global symmetry G. Then the states in

the Hilbert space will organize into irreducible representations of G. For simplicity, we assume

G acts faithfully. Recall that a particular type of irreducible representation α can be counted by

1
|G| ∑g∈G χα(g)∗Trg in a reducible representation of G where χα(g) is the character function of

the irrep α and |G| is the order of the group, then the partition function counts the number of

irrep α in the Hilbert space is given by

1
|G| ∑

g∈G
χα(g)∗Zg(τ,τ), (4.2.15)

whose high-temperature limit is known since each Zg’s high-temperature limit is known. More-

over, the assumption that G acts faithfully implies that the ground state in the defect Hilbert space

has h+ h > 0, therefore (4.2.15) is dominated by Z1(τ,τ) = Z(τ,τ) in the high temperature

limit. This allows us to derive the following result. Every irreducible representation has to appear

in the Hilbert space H and they also have a Cardy-like growth. Specifically, we can consider

the asymptotic growth ρ0,α(∆) of the occurrence of a particular irrep α of G as a function of the
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scaling dimension ∆ takes the form,

ρ0,α(∆) =
dα

|G|ρ0(∆). (4.2.16)

This result will be useful for us later.

4.3 Non-intrinsic triality fusion category as group theoreti-
cal fusion category

As pointed out in [181], the origin of the triality fusion rule in the KT theory arises from

gauging Z2 subgroup of A4 ⊂ SO(4) in the SU(2)1 theory. Generically, gauging a subgroup

H which is not normal in G or not Abelian leads to non-invertible symmetries [160]. In this

section, we first review the construction of triality acquired in [180, 181]. We then discuss

how to understand the group theoretical triality fusion category using the mathematical tools of

bimodule categories in [164]. Specifically, we describe how to understand and compute simple

TDLs, fusion rules and F-symbols.

4.3.1 A brief review of the triality category discovered in [180, 181]

The origin of the triality fusion category discovered in [180, 181] is a result of gauging

Z2 subgroup in a theory with A4 global symmetry. Notice that A4 is an order 12 group and can

be presented as

A4 = ⟨σ ,η ,q|q3 = σ
2 = η

2,qσq−1 = ση = ησ ,qηq−1 = σ⟩. (4.3.1)

This means we can think of A4 containing a Zσ
2 ×Zη

2 subgroup, and the conjugation by the Zq
3

generator q will permute the three Z2 generators in Zσ
2 ×Zη

2 . After gauging the Zσ
2 symmetry,

the Zη

2 subgroup will survive since it commutes with the Zσ
2 subgroup, together with the quantum

Z2 which we will denote as Zσ̂
2 , they form the Zσ̂

2 ×Zη

2 invertible symmetries in the gauged

123



theory. The symmetry operator q does not commute with σ , therefore is not gauge invariant, and

will not appear as a genuine topological line operator in the gauged theory. However, the linear

combination

q+σqσ (4.3.2)

does commute with σ and will survive as a genuine topological line operator in the gauged theory,

which we will denote as LQ. However, this operator is not invertible, as it has quantum dimension

2. Similarly, its orientation reversal LQ relates to the gauge-invariant linear combination

q−1 +σq−1σ . It is pointed out in [180, 181] that LQ,LQ together with the Zσ̂
2 ×Zη

2 forms the

triality fusion categories with the fusion rules,

g×LQ = LQ ×g = LQ, g×LQ = LQ ×g = LQ,

LQ ×LQ = 2LQ, LQ ×LQ = 2LQ, LQ ×LQ = LQ ×LQ = ∑
g∈Zσ̂

2 ×Zη

2

g.
(4.3.3)

The existence of the triality fusion category implies the theory is invariant under the Zσ̂
2 ×Zη

2

gauging, but Zσ̂
2 ×Zη

2 charge assignments will be permuted. This can be understood as the

following. Gauging the Zσ̂
2 quantum symmetry gives back the original theory with A4 symmetry,

then gauging Zη

2 symmetry will give the same theory acquired from gauging the Zσ
2 symmetry,

since Zη

2 and Zσ
2 are related by the conjugation of q. However, this will change the Z2 ×Z2

charge assignment in the gauged theory since we are gauging different but equivalent Z2’s.

4.3.2 Group theoretical fusion category

Let’s consider the fusion category Vecω
G , where G is a finite group and ω ∈ H3(G,U(1)).

Physically, this fusion category describes the global symmetry G with anomaly ω for 2-

dimensional field theory. The simple elements are labeled by group element g ∈ G and the

fusion rule is simply the product of the group elements. The F-symbols are given by

Fghk
l = ω(g,h,k). (4.3.4)
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If we consider a finite subgroup H in G, then the anomaly-free condition for H is that ω as a

function from G3 to U(1) restricting to H3 is trivial, that is,

ω(h1,h2,h3) = 1, ∀hi ∈ H. (4.3.5)

When H is anomaly free, we can consider gauging the subgroup H and we have to choose a

discrete torsion ψ ∈ H2(G,U(1)). The resulting fusion category which describes the global

symmetry in the gauged theory is denoted as C (G,ω,H,ψ) and this class of fusion category is

called the group theoretical fusion category. In particular, Vecω
G = C (G,ω,Z1,1).

Generically, when H is not a normal subgroup of G or is not Abelian, then the resulting

group theoretical fusion category is not of the form Vecω
G , meaning it contains non-invertible

simple lines. For example, gauging the Z2 symmetry of S3 with ω = 1 leads to the fusion

category Rep(S3) [36] and gauging the Z2 symmetry of A4 with ω = 1 leads to the triality fusion

category [180, 181].

Below, we will describe how to understand and compute the simple TDLs, fusion rules,

and F-symbols of the triality fusion category from the data of the group theoretical fusion

category. It would be helpful to point out that although the F-symbols for the group theoretical

fusion category can be computed by the more general method given in [20] by considering the

tube algebra TubC (M ), it is more convenient to compute the F-symbols using our approach. For

instance, the calculation of the F-symbol for C (A4,1,Z2,1) using [20] requires to construct an

explicit Artin-Wedderburn isomorphism from the tube algebra TubVecA4
(M ) to a direct sum of

several matrix algebras, but since the tube algebra TubVecA4
(M ) has a very large dimension 432

in this case, it’s computationally hard to explicitly construct the Artin-Wedderburn isomorphism.

4.3.3 Simple lines

As pointed out in [164], the simple TDLs in the gauged theory are described by indecom-

posable A−A bimodules in Vecω
G , where A is the group algebra of H twisted by some 2-cocycle
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of ψ ∈ H2(H,U(1)), corresponding to a choice of discrete torsion. In the case of SU(2)1 theory,

we take G = A4 and G is anomaly free so that ω = 1 ∈ H3(G,U(1)). H = Z2 ⊂ G and there’s

no non-trivial discrete torsion for Z2, so we can choose ψ to be trivial as well. Hence, A is

simply the group algebra of Z2, namely a 2-dimensional vector space over C with a basis {1,σ}

equipped with multiplication 12 = σ2 = 1 and σ1 = 1σ = σ which is the group multiplication

of Z2.

In the special case of group-theoretical fusion category, by A−A bimodule M, we mean a

C-vector space M together a left multiplication A×M → M denoted as am for a ∈ A,m ∈ M and

a right multiplication M×A → M denoted as ma for a ∈ A,m ∈ M such that ∀ai ∈ A and m ∈ M:

a1(a2m) = (a1a2)m ≡ a1a2m, (ma1)a2 = m(a1a2)≡ ma1a2, (a1m)a2 = a1(ma2)≡ a1ma2.

(4.3.6)

The indecomposable A−A bimodule M is of the following form. Consider a double coset HgH

of H in G, and let Hg denote the little group of HgH:

Hg = {h ∈ H|∃h′ ∈ H s.t.hgh′ = g} ⊂ H. (4.3.7)

As one can check from the above definition, the little group Hg′ does not depend on the choice

of representative g′ ∈ HgH up to isomorphism.

Each indecomposable A−A bimodule is labelled by a double coset HgH and an irre-

ducible representation ρ (potentially twisted by some 2-cocycle of the little group) of the little

group of an arbitrary element in the double coset HgH. More specifically, given (HgH,ρ), an

indecomposable A−A bimodule Mρ

HgH is a vector space over C such that

Mρ

HgH =
⊕

g′∈HgH

Mρ

g′. (4.3.8)

To describe the action of A on Mρ

HgH , we only need to describe the action of the basis {h}h∈H
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on Mρ

HgH . And multiplication of h on the left induces an isomorphism from Mρ

g′ to Mρ

hg′ while

the multiplication of h on the right induces an isomorphism from Mρ

g′ to Mρ

g′h. This implies

Mρ

g′’s are isomorphic to each other. Consider Mρ
g and we find for h ∈ Hg, multiplying h on the

left and multiplying the corresponding h′ on the right leads to an isomorphism between Mρ
g

and itself (since hgh′ = g), this is why Hg is called the little group. Mρ
g is the vector space of

the irreducible representation ρ of Hg. Notice that in the case where the group algebra A is

twisted by non-trivial 2-cocycle ψ , the composition of two left(right) multiplications on Mρ
g can

composite non-trivially. But in the case of the gauging Z2 symmetry in A4 with no anomaly, such

data is trivial. The fusion of the TDLs in the gauged theory is described by the tensor product of

A−A bimodule over the algebra A.

We now list the indecomposable bimodule in C (A4,1,Zσ
2 ,1) and compute its fusion rule,

and show indeed we reproduce the fusion rule of the triality fusion category. There are 4 double

cosets of H = Z2 = {(),(12)(34)} ≡ {1,σ} in A4:4

I = {(),(12)(34)} ≡ {1,σ}, J = {(13)(24),(14)(23)} ≡ {η ,ησ},

Q = {(143),(124),(132),(234)}, Q = {(134),(142),(123),(243)}.
(4.3.9)

The little group for the first two double cosets is H itself while for the last two double cosets are

trivial. Hence, for the first two double cosets I,J, we need to label the irreducible representation

± of H = Z2 as well. Hence, we find the following 6 indecomposable A−A bimodules,

M±
I = M±

1 ⊕M±
σ , M±

J = M±
η ⊕M±

ση ,

MQ = M(143)⊕M(124)⊕M(132)⊕M(234),

MQ = M(134)⊕M(142)⊕M(123)⊕M(243).

(4.3.10)

Notice that each Mρ
g appears in the direct sum is a 1-dimensional vector space, so we will choose

4The q used in (4.3.1) is the cycle (143).
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a basis vector mρ
g for each Mρ

g . We choose the action of h ∈ A on mρ
g ’s as,

1mρ
g = mρ

g 1 = mρ
g , σm±

g =±m±
σg, m±

g σ = m±
gσ . (4.3.11)

As one can check, for M−
I and M−

J , the multiplication of σ on left and right simultaneously

does generate non-trivial action of Z2 on M−
g for g ∈ I,J. The bimodules M±

I correspond to the

quantum Z2 symmetry in the gauged theory, while M+
J generates the unbroken Z2 symmetry in

A4. Together they form the Z2 ×Z2 symmetry in the gauged theory. MQ and MQ are identified

with the triality line LQ and LQ.

To conclude, we point it out there is a natural dual module HomA(M
ρ

HgH ,A) for each

bimodule Mρ

HgH , which is isomorphic to Mρ†

Hg−1H .5 Physically this corresponds to taking the

orientation reversal of the TDL.

4.3.4 Fusion rules

The fusion of the TDLs in the gauged theory corresponds to the tensor product of

bimodules over the algebra A. Generically, let M and N be A−A bimodules, then

M⊗A N = M⊗N/∼ (4.3.12)

where the first tensor product is the tensor product of vector spaces and ∼ is the equivalence

relation

(ma)⊗n ∼ m⊗ (an), a ∈ A,m ∈ M,n ∈ N. (4.3.13)

The M⊗A N is naturally an A−A bimodule and we can then decompose it as a direct sum over

indecomposable A−A bimodules.

Using this, one can compute the tensor product of bimodules explicitly and acquire the

5Generically, for an A−B bimodule M, one can either consider the dual being HomA(M,A) or HomB(M,B),
which are both B−A bimodules. Here, since we are considering A−A bimodule, we can consider either choice and
the results should be isomorphic.

128



fusion rule. There is an additional rule one needs to know is that the grading of Mρ
g ⊗A Mρ ′

g′ is

gg′.

We will not list all the calculations but provide several examples to help the reader

understand the procedure.

To start, let’s consider the fusion between M+
I with a generic Mρ

HgH . The tensor product

M+
I ⊗Mρ

HgH has a basis {m+
1 ⊗mρ

g′,m
+
σ ⊗mρ

g′}g′∈HgH . After the identification with the equiva-

lence relation, we denote the equivalence class as m+
1 ⊗A mρ

g′ = ρ(σ)m+
σ ⊗A mρ

σg′ . The resulting

bimodule M+
I ⊗A Mρ

g is isomorphic to Mρ
g itself where m+

1 ⊗A mρ
g ≃ mρ

g . We can check the left

action of σ on m+
1 ⊗A mρ

g gives the correct sign for ρ =−:

σ(m+
1 ⊗A mρ

g ) = (σm+
1 )⊗A mρ

g = (m+
1 σ)⊗A mρ

g = m+
1 ⊗A (σmρ

g ) = ρ(σ)m+
1 ⊗A mρ

σg, (4.3.14)

where ρ(g) will produce the desired sign when ρ =−. Hence, we find the fusion rule M+
I ⊗A

Mρ

HgH = Mρ

HgH .

As another example, let’s consider the fusion between MQ and MQ. There are 16 basis

vectors in MQ ⊗MQ and after modding out the equivalence relation we are left with 8 basis

vectors. The grading suggests there are two copies of MQ and we take them to be

m(143)⊗A m(143) ≃ m(134),1, m(143)⊗A m(124) ≃ m(123),1,

m(132)⊗A m(143) ≃ m(142),1, m(132)⊗A m(124) ≃ m(243),1,

m(134)⊗A m(234) ≃ m(142),2, m(143)⊗A m(132) ≃ m(243),2,

m(132)⊗A m(132) ≃ m(123),2, m(132)⊗A m(234) ≃ m(134),2,

(4.3.15)

where the subscript mg,i, i = 1,2 indicates which copies of MQ.

As the final example, let’s consider the fusion between MQ and MQ. There are 16 basis

vectors in MQ ⊗MQ and after modding out the equivalence relation there are only 8 left. After

rewrite them as different linear combinations, we find they generate M+
I ⊕M−

I ⊕M+
J ⊕M−

J
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where

m(132)⊗A m(123)+m(143)⊗A m(134)√
2

≃ m+
1 ,

m(132)⊗A m(134)+m(143)⊗A m(123)√
2

≃ m+
σ ,

m(132)⊗A m(123)−m(143)⊗A m(134)√
2

≃ m−
1 ,

m(132)⊗A m(134)−m(143)⊗A m(123)√
2

≃ m−
σ ,

m(132)⊗A m(243)+m(143)⊗A m(142)√
2

≃ m+
η ,

m(132)⊗A m(142)+m(143)⊗A m(243)√
2

≃ m+
ση ,

m(132)⊗A m(243)−m(143)⊗A m(142)√
2

≃ m−
η ,

m(132)⊗A m(142)−m(143)⊗A m(243)√
2

≃ m−
ση .

(4.3.16)

One can check the above identification is consistent with the action of σ . For instance,

σm−
1 ≃ σ

m(132)⊗A m(123)−m(143)⊗A m(134)√
2

=
m(143)⊗A m(123)−m(132)⊗A m(134)√

2
≃−m−

σ .

(4.3.17)

Table 4.1. Result of tensor product of A−A bimodules.

⊗A M+
I M−

I M+
J M−

J MQ MQ
M+

I M+
I M−

I M+
J M−

J MQ MQ
M−

I M−
I M+

I M−
J M+

J MQ MQ
M+

J M+
J M−

J M+
I M−

I MQ MQ
M−

J M−
J M+

J M−
I M+

I MQ MQ
MQ MQ MQ MQ MQ MQ ⊕MQ M+

I ⊕M−
I ⊕M+

J ⊕N−
J

MQ MQ MQ MQ MQ M+
I ⊕M−

I ⊕M+
J ⊕N−

J MQ ⊕MQ

The rest of the tensor products can be computed as above and we list the result in Tab. 4.1.

With the identifications between bimodules and TDLs given previously, we reproduce the fusion

rule of the triality fusion category.

4.3.5 F-symbols

The advantage of the description using bimodules is that we can easily compute the

F-symbols for the resulting fusion category. The local fusion of two TDLs labeled by bimodules

M,N into the TDL labeled by bimodule L can be identified as the vector space of bimodule
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homomorphism from M⊗A N to L:

HomA−A(M⊗A N,L). (4.3.18)

Here, a A−A bimodule homomorphism φ ∈ HomA−A(M,N) from A−A bimodule M to A−A

bimodule N is a C-linear map from M to N such that

aφ(m)a′ = φ(ama′), ∀a,a′ ∈ A,m ∈ M. (4.3.19)

We can then consider choose a basis for each vector space HomA−A(M ⊗A N,L) and use the

Greek letter µ,ν , · · ·= 1,2, · · · to label the basis vectors.

For instance, let’s consider the fusion M+
1 ⊗A Mρ

g studied previously. Since M+
1 ⊗A Mρ

g ≃

Mρ
g , there is only one fusion channel and HomA−A(M ⊗A N,L) is a 1-dim vector space. The

isomorphism

m+
1 ⊗A mρ

g ≃ mρ
g (4.3.20)

is a basis vector for HomA−A(M⊗A N,L).

As an another example, let’s consider MQ ⊗A MQ ≃ MQ ⊕MQ. In this case, MQ appears

twice in the direct sum, therefore HomA−A(MQ⊗A MQ,MQ) would be 2-dimensional. The choice

of identifications in (4.3.15) leads a basis in HomA−A(MQ ⊗A MQ,MQ), which are given by two

A−A bimodule homomorphism φ1,φ2 from MQ ⊗A MQ → MQ :

φ1 :




m(143)⊗A m(143)

m(143)⊗A m(124)

m(132)⊗A m(124)

m(132)⊗A m(143)




7→




m(134)

m(123)

m(243)

m(142)



, (4.3.21)
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and,

φ2 :




m(143)⊗A m(234)

m(143)⊗A m(132)

m(132)⊗A m(132)

m(132)⊗A m(234)




7→




m(142)

m(243)

m(123)

m(134)



. (4.3.22)

Finally, let’s consider the fusion MQ⊗A MQ ≃ M+
I ⊕M−

I ⊕M+
J ⊕M−

J . Since there are 4 modules

that appear in the direct sum and each only appears once, there are 4 Hom spaces and each

has dimension 1. For instance, HomA−A(MQ ×A MQ,M
−
I ) is the space of projection maps

from MQ ⊗A MQ to M−
I . Our identification in (4.3.16) also determines a basis vector (which

is a projection map) in HomA−A(MQ ×A MQ,M
−
I ), given by the following A − A bimodule

homomorphism,




m(132)⊗A m(123) ≃ m(234)⊗A m(243)

m(143)⊗A m(134) ≃ m(124)⊗A m(142)

m(143)⊗A m(123) ≃ m(124)⊗A m(243)

m(132)⊗A m(134) ≃ m(234)⊗A m(142)




7→




1√
2
m−

1

− 1√
2
m−

1

− 1√
2
m−

σ

1√
2
m−

σ




(4.3.23)

where unlisted elements are mapped to 0.

Let’s consider the F-symbol. The local fusions of the diagrams on both sides of the

diagram give A−A bimodule homomorphisms from M⊗A N ⊗A L to G in HomA−A(M⊗A N ⊗A

L,G), and the F-symbol can be interpreted as the matrix elements of the linear transformation

between two sets of elements in HomA−A(M⊗A N ⊗A L,G).

With a choice of basis for each HomA(M⊗A N,P), we can acquire F-symbols which are

the matrix elements of the above transformation. Practically, let’s consider the fixed bimodule

M,N,L,G and choose basis vectors φM⊗AN→P,µ ∈ HomA(M ⊗A N,L) for every junction space

HomA(M ⊗A N,L), then the diagram on the left hand side leads to an element φP⊗AL→G,ν ◦
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φM⊗AN→P,µ ∈ HomA−A(M⊗A N ⊗A L,G):

φP⊗AL→G,ν ◦φM⊗AN→P,µ : m⊗A n⊗A l 7→ φP⊗AL→G,ν(φM⊗AN,µ(m⊗A n)⊗A l). (4.3.24)

Similarly, φM⊗AQ→G,µ ◦φN⊗AL→Q,ν ∈ HomA−A(M⊗A N ⊗A L,G) is defined as

φM⊗AQ→G,µ ◦φN⊗AL→Q,ν : m⊗A n⊗A l 7→ φM⊗AQ→G,µ(m⊗A φN⊗AL→Q,ν(n⊗A l)). (4.3.25)

The F-symbols are just C-numbers such that the following equations of A−A bimodule homo-

morphisms from M⊗A N ⊗A L to G hold

φP⊗AL→G,ν ◦φM⊗AN→P,µ = ∑
Q,α,β

[
FMNL

G
]
(P,µ,ν),(Q,α,β )

φM⊗AQ→G,β ◦φN⊗AL→Q,α . (4.3.26)

To solve the above equation, we only need to evaluate the A-homomorphism on basis vectors of

M⊗A N ⊗A L → G, which will produce a set of linear equations and can be solved quite easily.

As an example, let’s consider taking M = N = Q = MQ,L = M−
1 ,P = G = MQ. This

would compute the F-symbol
[
FLQLQσ̂

LQ

]
(LQ,µ,1),(LQ,1,β )

, that is, we want to solve,

φMQ⊗AM−
1 →MQ,1

◦φMQ⊗AMQ→MQ,µ

= ∑
β=1,2

[
FLQLQσ̂

LQ

]
(LQ,µ,1),(LQ,1,β )

φMQ⊗AMQ→MQ,β
◦φMQ⊗AM−

1 →MQ,1.
(4.3.27)

We consider evaluate the above equation on m(143)⊗A m(143)⊗A m−
1 and m(132)⊗A m(132)⊗A m−

1 .
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As an example, we do this for m(143)⊗A m(143)⊗A m−
1 . On the left-hand side, we have,

φMQ⊗AM−
1 →MQ,1

◦φMQ⊗AMQ→MQ,µ
(m(143)⊗A m(143)⊗A m−

1 )

=φMQ⊗AM−
1 →MQ,1

(φMQ⊗AMQ→MQ,µ
(m(143)⊗A m(143))⊗A m−

1 )

=φMQ⊗AM−
1 →MQ,1

(δµ,1m(134)⊗A m−
1 )

=δµ,1m(134),

(4.3.28)

and on the right-hand side, we have,

φMQ⊗AMQ→MQ,β
◦φMQ⊗AM−

1 →MQ,1(m(143)⊗A m(143)⊗A m−
1 )

=φMQ⊗AMQ→MQ,β
(m(143)⊗A φMQ⊗AM−

1 →MQ,1(m(143)⊗A m−
1 ))

=φMQ⊗AMQ→MQ,β
(m(143)⊗A m(143))

=δβ ,1m(134).

(4.3.29)

Hence, we get the following 2 linear equations,

1 =
[
FLQLQσ̂

LQ

]
(LQ,1,1),(LQ,1,1)

, 0 =
[
FLQLQσ̂

LQ

]
(LQ,2,1),(LQ,1,1)

. (4.3.30)

Similarly, we get another two equations when evaluating on m(132)⊗A m(132)⊗A m−
1 :

0 =
[
FLQLQσ̂

LQ

]
(LQ,1,1),(LQ,1,2)

, −1 =
[
FLQLQσ̂

LQ

]
(LQ,2,1),(LQ,1,2)

. (4.3.31)

Solving the four equations, we found,

[
FLQLQσ̂

LQ

]
(LQ,µ,1),(LQ,1,β )

=




1 0

0 −1


= σ

3. (4.3.32)

One can solve the rest of the F-symbols in a similar way.
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Just as the Ising fusion category containing duality line N is determined up to the FS

indicator ε ∈ H2(Z2,U(1)), the fusion category containing triality defect also has a FS indicator

α ∈ H3(Z3,U(1)). From the F-symbol point of view, given a solution of F-symbols for the

pentagon equations of the triality fusion categories, one can generate a new set of solutions [179]

by

F
LQLQLQ

LQ
→ e2πmi/3F

LQLQLQ

LQ
, F

LQLQLQ
LQ

→ e−2πmi/3F
LQLQLQ
LQ

,

F
LQLQLQ
LQ

→ e−2πmi/3F
LQLQLQ
LQ

, F
LQLQLQ

LQ
→ e2πmi/3F

LQLQLQ

LQ
,

F
LQLQLQ

LQ
→ e2πmi/3F

LQLQLQ

LQ
, F

LQLQLQ
g → e−2πmi/3F

LQLQLQ
g .

(4.3.33)

Alternatively, given a triality fusion category, we can construct the triality fusion category with

different FS indicator by stacking the theory with another theory with anomalous Z3 symmetry

η̃ and identify the new triality line as L̃Q = LQη̃ . If we gauge the quantum Z2 symmetry,

then we would recover the theory with Ã4 symmetry but now the Ã4 symmetry has an anomaly

due to the anomaly of Z3. This implies the triality fusion category with different FS indicators

can be realized by Z2 gauging of the A4 global symmetry with different anomalies. Indeed,

H3(A4,U(1)) = Z6 and let ω0 denote the generator of H3(A4,U(1)). The Z2 ×Z2 subgroup

of A4 is anomaly free only when the anomaly of A4 is ω2k
0 for k = 0,1,2 (where we use the

multiplicative notation for Z6), and gauging one of the Z2 subgroup leads to the triality fusion

category with FS indicator α = e2πki/3. 6

6Notice that k = 0 (i.e. the anomaly of A4 is trivial) always leads to the trivial FS indicator α = 1. We choose
the generator ω0 such that C (A4,ω

2k
0 ,Zσ

2 ,1) has FS indicator α = e2π ik/3.
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Let α = e2π i/3 ∈U(1), and we list the F-symbols below.

FLQg,h
LQ

= F
LQLQg
h =

(1 1 1 1
1 1 1 1
1 −1 1 −1
1 −1 1 −1

)
, FgLQh

LQ
= F

gLQh
LQ

= F
LQgLQ

h =

(1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

)
,

Fg,h,LQ
LQ

= F
LQ,g,h
LQ

=

(1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

)
, F

LQLQg
h = F

gLQLQ
h =

( 1 1 1 1
−1 −1 −1 −1
1 1 1 1
−1 −1 −1 −1

)
,

F
g,h,LQ
LQ

=

(1 1 1 1
1 1 −1 −1
1 1 1 1
1 1 −1 −1

)
,F

gLQLQ

h =

( 1 1 1 1
1 1 −1 −1
1 1 1 1
−1 −1 1 1

)
,F

LQgLQ
h =

( 1 1 1 1
1 1 −1 −1
1 −1 1 −1
−1 1 1 −1

)
,

[
F

LQLQLQ

LQ

]
g,h

=
α

2

(
1 1 1 −1
−1 −1 1 −1
1 −1 1 1
−1 1 1 1

)
,
[
F

LQLQLQ
LQ

]
g,h

=
α−1

2

(1 −1 1 −1
1 −1 −1 1
1 1 1 1
1 1 −1 −1

)
.

(4.3.34)

The rest of the F-symbols are listed in Table 4.2.

Table 4.2. The F-symbols of triality fusion categories C (A4,ω
2k
0 ,Zσ

2 ,1) for fusion multiplicity
2 where α = e2πki/3. The σ i denotes the Pauli i matrix and σ0 is the 2×2 identity matrix.

g 1 σ̂ η ησ̂

[FLQLQg
LQ

](LQ,µ,1),(LQ,1,ν) σ0 σ3 σ1 iσ2

[FLQgLQ
LQ

](LQ,1,µ),(LQ,1,ν) σ0 σ3 σ1 −iσ2

[FgLQLQ
LQ

](LQ,1,µ),(LQ,ν ,1)
σ0 σ3 σ1 −σ2

[F
LQLQg
LQ

](LQ,µ,1),(LQ,1,ν)
σ0 σ3 σ1 iσ2

[F
LQgLQ
LQ

](LQ,1,µ),(LQ,1,ν)
σ0 σ3 σ1 iσ2

[F
gLQLQ
LQ

](LQ,1,µ),(LQ,ν ,1) σ0 σ3 σ1 −iσ2

[FLQLQLQ
g ](LQ,µ,1),(LQ,ν ,1)

σ0 −σ3 σ1 iσ2

[F
LQLQLQ
g ](LQ,µ,1),(LQ,ν ,1) α−1σ0 −α−1σ3 α−1σ1 iα−1σ2

[F
LQLQLQ
LQ

](LQ,µ,ν),(g,1,1)
1√
2
σ0 −1√

2
σ3 1√

2
σ1 −i√

2
σ2

[F
LQLQLQ

LQ
](LQ,µ,ν),(g,1,1)

α√
2
σ0 α√

2
σ3 α√

2
σ1 −iα√

2
σ2

[F
LQLQLQ

LQ
](g,1,1),(LQ,µ,ν)

α√
2
σ0 α√

2
σ3 α√

2
σ1 iα√

2
σ2

[F
LQLQLQ
LQ

](g,1,1),(LQ,µ,ν)
α−1√

2
σ0 −α−1√

2
σ3 α−1√

2
σ1 −iα−1√

2
σ2
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4.4 Physical implication of the group theoretical triality
fusion categories

In this section, we derive the physical implication of the group theoretical triality fusion

categories C (A4,ω
2k
0 ,Zσ

2 ,1). We first derive the spin selection rules for the triality defect. Then

we show how to match the states in the Hilbert space which transforms in different irreducible

representations of the fusion category symmetry C (A4,ω
2k
0 ,Zσ

2 ,1) of the theory T /Zσ
2 with the

states in the Hilbert space H or the defect Hilbert space Hσ of the theory T . This allows us to

derive the asymptotic density of states in H transforms in different irreducible representations

of C (A4,ω
2k
0 ,Zσ

2 ,1) by applying the result in [166]. Finally, we show that the constraint on the

RG flow from the fusion category symmetry C (A4,ω
2k
0 ,Zσ

2 ,1) is equivalent to the constraint on

the RG flow of Vecω2k
0

A4
.

4.4.1 Spin selection rules

We now derive the spin selection rules for using the F-symbols computed in section

4.3.5.

To do this, we first consider the action of g ∈ Z2 ×Z2 on the defect Hilbert space HLQ .

Following in the convention in (4.2.8) and suppressing the 1,1 indices for the fusion channel

(since the multiplicity is just 1 in this case), we denote the operator as ĝLQ . This is depicted in

Figure 4.6.

LQ

g

Figure 4.6. Symmetry operator g ∈ Z2 ×Z2 acts on the defect Hilbert space HLQ , which we
denote as ĝLQ .
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Notice that the action of Z2×Z2 on HLQ can be twisted by 2-cocycle γ(g,h) ∈ Z2(Z2×

Z2,U(1)) such that

ĥLQ · ĝLQ = γ(h,g)ĥgLQ
. (4.4.1)

We can compute γ from the F-symbols via following configuration shown in the Figure 4.7.

g

h

= g

h

F
gLQg
LQ

= F
LQhg
LQ

F
gLQg
LQ

=

LQ LQ

LQ

g

h gh

g

h

gh

LQ

(
F

gLQ(gh)
LQ

)−1
F

LQhg
LQ

F
gLQg
LQ

=
LQ

gh
gh

g

h

(
F

ghLQ

LQ

)−1 (
F

gLQ(gh)
LQ

)−1
F

LQhg
LQ

F
gLQg
LQ

=
LQ

gh (
F

ghLQ

LQ

)−1 (
F

gLQ(gh)
LQ

)−1
F

LQhg
LQ

F
gLQg
LQ

Figure 4.7. The calculation of the product of ĝLQ and ĥLQ using F-moves.

Under a sequence of F-move, we relate the phase γ(g,h) to products of F-symbols as
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following

γ(h,g) =
(

FghLQ
LQ

)−1(
FgLQ(gh)

LQ

)−1
FLQhg

LQ
FgLQg

LQ
=




1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1



. (4.4.2)

We list the eigenvalues of allowed irreducible representations as the following

(1,1,1,−1), (1,1,−1,1), (1,−1,1,1), (1,−1,−1,−1). (4.4.3)

Notice that the 2-cocycle γ above is cohomologically trivial in the group cohomology, which is

consistent with the fact that we have 4 1-dimensional irreducible representations.7 Yet we will

see its importance when deriving the spin selection rule for the intrinsic triality defects in later

sections.

Next, to derive the spin selection rules, we consider twisted partition function ZLQ(τ)

and apply T modular transformation three times, see Figure 4.8. This amounts to inserting e6πis

in the trace over the defect Hilbert space HLQ where s is the spin of the state.

T 3

LQ

LQ

Figure 4.8. Applying T 3 to the twisted partition function ZLQ(τ). This is equivalent to insert
e6πis in the trace over HLQ .

7Z2 ×Z2 only has a single 2-dimensional irreducible representation when twisted by the cohomologically
non-trivial 2-cocycle.
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We then apply a sequence of F-moves to relate ZLQ(τ + 3) to the action of the symmetry

g ∈ Z2 ×Z2 on the defect Hilbert space HLQ , as shown in Figure 4.9. We find the following

relation:

ZLQ(τ +3) = ∑
µ,ν=1,2,
g∈Z2×Z2

[
F

LQLQLQ

LQ

]
(1,0,0)(LQ,µ,ν)

[
F

LQLQLQ
LQ

]
(LQ,µ,ν)(g,0,0)

ZLQ
LQg(τ)

= αZLQ
LQ1

(τ).

(4.4.4)

This implies the spin s of the states in defect Hilbert space HLQ satisfies the following relation:

e6π is = α, (4.4.5)

which implies,

e2π is =





e
2π ik

3 , k = 0,1,2, when α = 1

e
2π ik

3 + 2π i
9 , k = 0,1,2, when α = e2π i/3,

e
2π ik

3 − 2π i
9 , k = 0,1,2, when α = e−2π i/3.

(4.4.6)

Now, we provide an alternative derivation of the same spin selection rule by constructing the

twisted partition function from the ungauged theory. Consider a CFT T with A4 global symmetry

with the anomaly parameterized by ω2k
0 ∈ H3(A4,U(1))≃ Z6 where k = 0,1,2. The Zσ

2 ×Zη

2 is

free of anomaly but the Z3 subgroup generated by q has ’t Hooft anomaly. As pointed out before,

by gauging a Z2 symmetry, we get the non-intrinsic triality fusion category with FS indicator

α = e2π ik/3. By the fusion rule of the triality defect LQ,

LQ ×LQ ×LQ = LQ ×LQ ×LQ = 2 ∑
g∈Z2×Z2

g. (4.4.7)

In the gauged theory T /Z2, the twisted sector is odd under the quantum Z2-symmetry, hence
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the entire twisted sector is annihilated by the triality defects LQ or LQ. Then, we can construct

the twisted partition function ZLQ
1,LQ

(τ) of the gauged theory from the twisted partition function

of the original theory as follows,

(ZT /Z2)
LQ
1,LQ

(τ)

=TrHT /Z2
(LQqL0−1/24qL0−1/24)

=TrHT /Z2,untwisted
(LQqL0−1/24qL0−1/24)

=TrHT
((q+σqσ)

1+σ

2
qL0−1/24qL0−1/24)

=
(ZT )q(τ)+(ZT )σq(τ)+(ZT )qσ (τ)+(ZT )σqσ (τ)

2

=(ZT )q(τ)+(ZT )σq(τ),

(4.4.8)

where we used the above twisted partition function only depending on the conjugacy class.

Applying the S-modular transformation on both sides, we find

(ZT /Z2)
LQ
LQ,1

(τ) = (ZT )q(τ)+(ZT )σq(τ). (4.4.9)

Then, the spin selection rules of the triality defect LQ are the same as the symmetry defect q and

σq which generates Z3 symmetries in A4. The spin selection rules of Z3-symmetry defect has

been derived in [46], which takes the form

s ∈ 1
3
Z+

k
9
. (4.4.10)

We then find agreement between (4.4.6) and (4.4.10).

4.4.2 Asymptotic density of states

In this subsection, we derive several asymptotic density of states for different sectors in

the Hilbert space H for a theory with the group theoretical triality category symmetries.
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LQ =
∑

µ,ν=1,2

[
F

LQLQLQ

LQ

]
(1,1,1)(LQ,µ,ν)ν

LQ

µ
LQ

LQ

LQ LQ

LQ

=
∑

µ,ν=1,2

LQ LQ

LQ

LQ

LQ

[
F

LQLQLQ

LQ

]
(1,1,1)(LQ,µ,ν)

[
F

LQLQLQ

LQ

]
(1,1,1)(LQ,µ,ν)

ν

µ

=
∑

µ,ν=1,2,
g∈Z2×Z2

LQ LQ

LQ

LQ

g

[
F

LQLQLQ

LQ

]
(1,1,1)(LQ,µ,ν)

[
F

LQLQLQ

LQ

]
(LQ,µ,ν)(g,1,1)

=
∑

µ,ν=1,2,
g∈Z2×Z2

LQ

g
[
F

LQLQLQ

LQ

]
(1,1,1)(LQ,µ,ν)

[
F

LQLQLQ

LQ

]
(LQ,µ,ν)(g,1,1)

Figure 4.9. Here, we start with the configuration which computes the e6πis. Under sequence of
F-moves, we relate it to the action of g ∈ Z2 ×Z2 on the defect Hilbert space HLQ .
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When acting on the Hilbert space H , the 6 simple lines in the triality fusion category

I, σ̂ ,η , σ̂η ,LQ,LQ correspond to 6 operators whose product satisfies the fusion rule (4.6.1),

from which we learn they all commute with each other, hence can be simultaneously diagonalized.

We enumerate eigenvalues for all 6 possible 1-dim irreducible representations as follows,

(1,1,1,1,2,2), (1,1,1,1,2ω,2ω2), (1,1,1,1,2ω2,2ω),

(1,1,−1,−1,0,0), (1,−1,1,−1,0,0), (1,−1,1,−1,0,0).
(4.4.11)

We now derive a formula of the asymptotic density of states for all the 6 irreps by relating the

above 6 irreps to representations of finite group symmetries in the ungauged theory and utilizing

the result in [166], which we reviewed in section 4.2.3. Notice that since the asymptotic density

of states for different irreps of H only depends on the fusion ring structure of the fusion category,

we can derive the asymptotic density of states from the simplest case when the fusion category is

acquired from gauging Zσ
2 subgroup of A4 with the trivial anomaly. Then, by relating the above 6

irreps to the representation of the A4 in the ungauged theory, we can use the result in [166] to get

the result. Let’s first consider the twisted sector in the gauged theory T /Zσ
2 , which is odd under

the quantum symmetry σ̂ . In the ungauged theory T , these states correspond to the Zσ
2 -even

states in the defect Hilbert space HT ,σ . Since there’s no mixed ’t Hooft anomaly between Zσ
2

and Zη

2 , there are well-defined Zη

2 charges for states in the defect Hilbert space HT ,σ , which

are the Zη

2 charges for states in the gauged theory.

Next, let’s consider the untwisted sector from the Zσ
2 gauging. This sector is given by the

Zσ
2 even states in the ungauged theory with the global A4 symmetry. Here, we can use the fact

that the triality line acts on the untwisted sector as q+σqσ . We will relate the eigenvalues of

q+σqσ of the states in the Zσ
2 -invariant space in each irreducible representation of A4. This

group has 4 irreducible representation, labelled by the dimension 1,1A,1B,3, where 1 is the

trivial irrep and 1A and 1B are two irreps where σ ,η acts as trivially and q has eigenvalues ω

and ω2 respectively, which means the states in these two irreps are invariant under the Zσ
2 and
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have eigenvalues 2ω and 2ω2 under LQ ≃ q+σqσ respectively. For the three-dimensional

representation 3, the representation matrices are given by

U3(σ) =




1 0 0

0 −1 0

0 0 −1



, U3(η) =




−1 0 0

0 1 0

0 0 −1



, U3(q) =




0 1 0

0 0 1

1 0 0



. (4.4.12)

As one can check, Zσ
2 -invariant space is 1-dimensional, and the operator LQ ≃ q+σqσ annihi-

lates this state.

We summarize the results in the Tab. 4.3.

Table 4.3. Relating the states in different irreps of the group-theoretical triality fusion category
C (A4,1,Zσ

2 ,1) in T /Zσ
2 to states in the ungauged theory T .

Irrep in HT /Zσ
2

in the gauged theory T /Z2 Corresponding states in the theory T

(1,1,1,1,2,2) the irrep 1 of A4 in HT

(1,1,1,1,2ω,2ω) the irrep 1A of A4 in HT

(1,1,1,1,2ω2,2ω2) the irrep 1B of A4 in HT

(1,1,−1,−1,0,0) the Zσ
2 -even state in the 3 of A4 in HT

(1,−1,1,−1,0,0) Zη

2 -even, Zσ
2 -even states in HT ,σ

(1,−1,−1,1,0,0) Zη

2 -odd, Zσ
2 -even states in HT ,σ

The last 3 irreps of C (A4,1,Zσ
2 ,1) corresponds to the 3 irreps of Zσ̂

2 ×Zη

2 in the gauged

theory T /Zσ
2 , therefore, we can directly apply the result in [166] in the gauged theory and find

the asymptotic density of states to be

ρ0,(1,1,−1,−1,0,0)(∆) = ρ0,(1,−1,1,−1,0,0)(∆) = ρ0,(1,−1,−1,1,0,0)(∆) =
1
4

ρ0(∆), (4.4.13)

where ρ0(∆) is defined in (4.2.13). To determine the asymptotic density of states in irreps

(1,1,1,1,2ωk,2ω−k) we can simply use the relation in Table 4.3 and apply the result in [166].

144



We then find

ρ0,(1,1,1,1,2ωk,2ω−k)(∆) =
1

12
ρ0(∆), k = 0,1,2. (4.4.14)

4.4.3 Constraints on RG flow

To study the constraints on the RG flow, we want to determine if the fusion category

symmetry C is anomalous, in the sense that if it obstructs a C -symmetric trivially gapped phase.

As pointed out in [180], module categories M of C are in bijection with C symmetric gapped

phases such that the ground-states are in bijection with the simple objects in M . Therefore, to

check whether a fusion category symmetry C has a trivially gapped phase is to check if it has a

module category M with a single simple object. Equivalently, one can check if C admits a fiber

functor.

In general, this is not an easy problem. For the case of the group-theoretic fusion category,

this is relatively easy because the module categories over C and over the dual module C ∗
M are

in the canonical bijection as pointed out in [164]. Since the group theoretical fusion category

C (G,ω,H,ψ) is the dual module of C (G,ω,Z1,1)≃ Vecω
G , the anomaly of C (G,ω,H,ψ) is

equivalent to the anomaly of Vecω
G .

Physically, this can be seen as follows. Let’s consider a relevant operator O(x) in a

CFT T /H which preserves the fusion category symmetries C (G,ω,H,ψ). We then consider

gauging the quantum symmetry Rep(H) to get back the theory T with global symmetry Vecω
G .

The relevant operator O(x) remains a local operator in the CFT T . This operator will trigger

the RG flow in T . If the theory T /H flows to the trivially gapped phase after perturbing by

the operator O(x), then this means the theory T would also flow to the trivially gapped phase

after perturbing by the operator O(x). However, we would run into contradiction if the 3-cocycle

ω characterizes the G-anomaly is not trivial. Hence, we conclude the theory with the group

theoretical fusion category symmetries C (G,ω,H,ψ) can not flow to a trivially gapped phase

when the anomaly ω ̸= 1.
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4.5 Example: c = 1 Compact boson at Kosterlitz-Thouless
point

In this section, we consider the example of c= 1 compact boson at the Kosterlitz-Thouless

(KT) point and compute the twisted partition functions of triality defect in the c = 1 compact

boson at the KT point. We match the spin selection rule and also show one can not construct a

new triality fusion category by combining the triality defect LQ with another generator η of the

Z3 symmetry in the KT theory.

4.5.1 A lightning review of c = 1 compact boson and the triality defect

We first briefly review the c = 1 compact boson following the convention in [181]. The

theory is described by a scalar field X with period 2πR,

X ≃ X +2πR. (4.5.1)

It is convenient to define 2π-periodic field θ and 2π-periodic conjugate momentum φ and

introduce the left and right moving fields XL,R,

θ = R−1(XL +XR), φ = R(XL −XR)/2. (4.5.2)

The global symmetry at a generic radius R is

Gbos = (U(1)θ ×U(1)φ )⋊ZC
2 , (4.5.3)

where U(1)θ and U(1)φ are the shifting symmetry of θ and φ respectively, and the charge

conjugation C flips the sign of θ and φ simultaneously.
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At a generic radius R, the primary local operators in this theory contain vertex operators,

Vn,w = ei( n
R+

wR
2 )XLei( n

R−wR
2 )XR = einθ eiwφ , n,w ∈ Z (4.5.4)

with the scaling dimension,

(h,h) =

(
1
2

(
n
R
+

wR
2

)2

,
1
2

(
n
R
− wR

2

)2
)
, (4.5.5)

together with the normal ordered Schur symmetric polynomials in the U(1) currents j1 = ∂XL

and j1 = ∂XR and their derivatives, denoted as,

jn2 jm2 (h,h) = (n2,m2). (4.5.6)

The spectrum can also be seen from the partition function,

Z(R) =
1

|η(τ)|2 ∑
n,m∈Z

q
1
2(

n
R+

wR
2 )

2

q
1
2(

n
R−wR

2 ). (4.5.7)

For c = 1 CFT, there are null states in the descendent states when the Virasoro primary state has

scaling dimension h = n2

4 for n ∈ Z. For a generic h, there is no null states in the descendent

states of a Virasoro primary state and the Virasoro character is given by,

χh(τ) =
qh

η(τ)
. (4.5.8)

For the primary state with h = n2

4 with n ∈ Z, because of the null states, its character takes the

form,

χ
h=( n

2)
2(τ) =

q(
n
2)

2

−q(
n
2+1)

2

η(τ)
. (4.5.9)

At a generic point of the moduli space, terms with n ̸= 0 or m ̸= 0 correspond to characters with

primaries Vn,m’s containing no null states. However, the term 1
η(τ)η(τ) with n = m = 0 cannot be
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a character of Virasoro primary (the identity operator) due to the appearance of null states, but

should correspond to the sum of characters of primary states and can be seen via the following

rewriting:
1

η(τ)η(τ)
=

1
η(τ)η(τ)

∞

∑
n,m=0

(qn2 −q(n+1)2
)(qm2 −q(m+1)2

), (4.5.10)

where each term in the sum is a character for the primary operator with scaling dimension

(h,h) = (n2,m2), corresponding to the primary operator jn2 jm2 mentioned above.

It is worth mentioning at the special radius R =
√

2, the theory becomes SU(2)1, and

the global symmetry is enhanced to SO(4) = SU(2)L×SU(2)R
Z2

. We can represent this SO(4) in its

vector representation, where the basis is given by 4 operators (sinθ ,cosθ ,sinφ ,cosφ) [181].

The charge conjugation is represented as,

C =




−1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1



. (4.5.11)

Similarly, the U(1)θ and U(1)φ can be represented as,

Rθ (α) =




cosα −sinα 0 0

sinα cosα 0 0

0 0 1 0

0 0 0 1



, Rφ (α) =




1 0 0 0

0 1 0 0

0 0 cosα −sinα

0 0 sinα cosα



. (4.5.12)

The spectrum of primary operators of the SU(2)1 theory can be derived by decomposing the

partition function in terms of characters (4.5.9) of irreducible representations of the Virasoro

algebra [74, 89], and the details are presented in the Appendix B.1. The SU(2)1 Hilbert space
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decomposes as,

HSU(2)1 =
⊕

j, j∈ 1
2Z≥0,

j+ j∈Z

Vj ⊗Vj ⊗HVir
j2 ⊗HVir

j2
, (4.5.13)

where by Vj (V j) we denote the spin- j(spin- j) representation of SU(2)L (SU(2)R) and by HVir
j2

we denote the Virasoro representation with h = j2. Notice that here j and j label the irrep of

SU(2)L and SU(2)R symmetry rather than the affine SU(2)L or SU(2)R, therefore the affine

cut-off of j or j is not at presence. It is clear from this decomposition that how the SU(2)L×SU(2)R
Z2

acts on the HSU(2)1 .

The ZC
2 symmetry is free of anomaly, so one could consider gauging it. The resulting

theories are a class of theories also parameterized by the radius R of the compact boson, and

we call the resulting theories the orbifold branch. The spectrum of Virasoro primaries on the

c = 1 orbifold branch consists of two sectors, the untwisted sector which contains ZC
2 invariant

operators of the corresponding compact boson theory, and the twisted sector which contains the

ZC
2 invariant non-local operators ending on the C defect line in the compact boson theory.

The ZC
2 -invariant twisted sector is constructed by acting on the two ground states

∣∣ 1
16 ,

1
16

〉
i

i = 1,2 with even powers of the operators α−n and α−n′ (where now n,n′ ∈ 1
2 +Z≥0) appearing

in the mode expansion of the compact boson φ with twisted boundary condition [96],

Horbifold, twisted =

{
α−n1 · · ·α−nl α−nl+1 · · ·α−n2k

∣∣∣∣
1

16
,

1
16

〉

j
: ni ∈

1
2
+Z≥0

}
. (4.5.14)

The two ground states
∣∣ 1

16 ,
1
16

〉
i are denoted as σi where i = 1,2.8 The first two excited states are

primary states given by α− 1
2
α− 1

2

∣∣ 1
16 ,

1
16

〉
i which both have scaling dimensions ( 9

16 ,
9

16) and we

will denote the two as τi where i = 1,2.

8We abuse the notation slightly here. These σi should be distinguished from σ appear in the previous section,
which denotes an element of the A4 group. The readers should be able to distinguish the two based on context.
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The untwisted sector contains,

V+
n,w =

Vn,w +V−n,−w√
2

(4.5.15)

which are invariant under the ZC
2 , as well as the ZC

2 invariant normal-ordered Schur polynomials

which are given by,

jn2 jm2, with m−n ∈ 2Z. (4.5.16)

At a generic point of the orbifold branch, there is a D8 = ⟨s,r|s2 = r4 = (rs)2 = 1⟩ global

symmetry, acting on the untwisted sector as,

r : (θ ,φ)→ (θ +π,φ +π), s : (θ ,φ)→ (θ ,φ +π). (4.5.17)

For the operators in the twisted sector, D8 acts as follows. The generator s exchanges two ground

states σi while r acts as

r : (σ1,σ2) 7→ (iσ1,−iσ2) (4.5.18)

and

r : α−n 7→ −α−n, r : α−m 7→ −α−m, n,m ∈ Z≥0 +
1
2
. (4.5.19)

This implies r : (τ1,τ2) 7→ (iτ1,−iτ2). There are two important D4 subgroups of D8:

DA
4 ≡ ⟨r2,s⟩, DB

4 ≡ ⟨r2,sr⟩. (4.5.20)

An important result we will use later to determine the action of the triality line LQ on the twisted

sector HKT,twisted is that the action of r2 acts as −1 on the entire twisted sector, which can be

seen from (4.5.14)(4.5.18)(4.5.19). Furthermore, since r2 acts trivially on the entire untwisted

sector and acts as −1 on the entire twisted sector, we identify as the generator Ĉ of the quantum

Z2 symmetry from the ZC
2 gauging.
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4.5.2 Spectrum of triality defect and twisted partition functions on torus

The KT theory can be acquired by gauging the ZC
2 symmetry of the SU(2)1 theory, which

locates at the intersection point between the circle branch and the orbifold branch. And in [181],

the triality defect LQ has been identified with the element Q ∈ SU(2)L×SU(2)R
Z2

global symmetries

of the SU(2)1 theory. In the representation of SO(4) we used above, Q can be represented as

Q =




0 1 0 0

0 0 −1 0

−1 0 0 0

0 0 0 1



. (4.5.21)

However, the symmetry operator Q does not commute with C, therefore, in the gauged theory,

the reminiscent of the symmetry operator Q is given by the triality line LQ, related to Q as

LQ = Q+CQC, (4.5.22)

with the fusion rule [181]

LQ ×LQ = 2LQ, LQ ×LQ = ∑
g∈D4B

g. (4.5.23)

As one can see, the charge conjugation C corresponds to σ ∈ A4 and Q corresponds to q ∈ A4

discussed previously and as one can check using the matrix representation above the minimal

subgroup of SO(4) containing C and Q is indeed A4.

From the above fusion rule and the irreducible representations of D4 = Z2 ×Z2 given by

(1,1,1,1), (1,1,−1,−1), (1,−1,1,−1) (1,−1,−1,1), (4.5.24)

we find the action of LQ on a state |ψ⟩ in the KT theory are non-trivial only if |ψ⟩ transforms in
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the trivial representation of D4.

Now, we determine the action of the triality line LQ on the states in the KT theory. For

the states in twisted sector, all twisted sector states transform non-trivially under Z2 = ⟨r2⟩, thus

non-trivially under D4B as well. Hence, by the fusion rule (4.5.23), the triality operator LQ must

annihilate all the states in the twisted sector.

The action of LQ on the untwisted sector can be determined by (4.5.22). We simply need

to construct the representation matrices of C and Q for ( j, j) irreducible representation of SO(4)

global symmetry in the SU(2)1 theory. And the action of LQ on the untwisted sector is simply

given by Q+CQC restricted on the ZC
2 -invariant sector of each ( j, j) irreducible representation

of SO(4).

Knowing the action of LQ on the KT theory Hilbert space HKT allows us to compute the

twisted partition function (ZKT )
LQ . Since LQ annihilates the twisted sector, the twisted partition

function (ZKT )
LQ = TrHKT (LQqL0−1/24qL0−1/24) can be reduced to the untwisted sector and

expressed as the following sum of the twisted partition function of the SU(2)1 theory,

(ZKT )
LQ = TrHKT (LQqL0−1/24qL−1/24)

= TrHKT,untwisted(LQqL0−1/24qL−1/24)

= TrHSU(2)1
((Q+CQC)

1+C
2

qL0−1/24qL0−1/24)

=
(ZSU(2)1)

Q +(ZSU(2))
CQ +(ZSU(2)1)

QC +(ZSU(2)1)
CQC)

2
.

(4.5.25)

To evaluate the twisted partition function in SU(2)1 theories, we must first rewrite the partition

function in terms of irreps of SU(2)L×SU(2)R
Z2

global symmetries, as in [74, 89]. As shown in the

Appendix B.1, this is given by,

ZSU(2)1(τ,τ) = ∑
j, j∈ 1

2Z≥0,

j+ j∈Z

(2 j+1)(2 j+1)χ j2(τ)χ j2
(τ). (4.5.26)
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Since TDL commutes with the stress energy tensor T (z) and T (z), we only need to study its

action on the Vj ⊗V j. For this purpose, we can represent the group element Q,C ∈ SO(4) =
SU(2)L×SU(2)R

2 as the tensor product of representations of SU(2)L and SU(2)R, that is,

Q = QL ⊗QR, C =CL ⊗CR, (4.5.27)

where QL,CL are matrices of a spin- j representation of SU(2)L and QR,CR are matrices of a

spin- j representation of SU(2)R. This allows us to compute trace easily since the generic form

of the character of SU(2) is well-known. Following the calculation in Appendix B.2, we find,

TrV j⊗V j
Q = TrV j⊗V j

(CQC) = (TrV jQL)(TrV j
QR) =

sin((2 j+1)π/3)
sin(π/3)

sin((2 j+1)π/3)
sin(π/3)

,

TrV j⊗V j
CQ = TrV j⊗V j

(QC) = (TrV jQLCL)(TrV j
QRCR)

=
sin((2 j+1)2π/3)

sin(2π/3)
sin((2 j+1)2π/3)

sin(2π/3)

=
sin((2 j+1)π/3)

sin(π/3)
sin((2 j+1)π/3)

sin(π/3)
, for ( j, j) ∈ (Z≥0 ⊕Z≥0)∪

(
(
1
2
+Z≥0)⊕ (

1
2
+Z≥0)

)
.

(4.5.28)

The twisted partition function is therefore given by,

(ZKT )
LQ =

8
3|η(τ)|2 ∑

j, j∈ 1
2Z≥0,

j+ j∈Z

sin(
π(2 j+1)

3
)sin(

π(2 j+1)
3

)(q j2 −q( j+1)2
)(q j2 −q( j+1)2

).

(4.5.29)

We can then rewrite the partition function over the familiar sum over the Narain lattice,

(ZKT )
LQ(τ,τ) =

1
|η(τ)|2 ∑

n,w∈Z

(
cos(

2πn
3

)+ cos(
2πw

3
)

)
q(

n+w
2 )2

q(
n−w

2 )2
. (4.5.30)

Using the S-modular transformation, we find,

(ZKT )LQ(τ,τ) =
1

|η(τ)|2 ∑
n,w∈Z

q
(n+w+ 1

3 )
2

4 q
(n−w+ 1

3 )
2

4 +q
(n+w− 1

3 )
2

4 q
(n−w+ 1

3 )
2

4 . (4.5.31)
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This twisted partition function computes the states in the defect Hilbert space HKT,LQ and is

consistent as it has integer coefficients in the q and q expansion.

Then applying T -transformation, we find

(ZKT )
I
LQ,LQ

(τ)

=(ZKT )LQ(τ +1)

=
1

|η(τ)|2 ∑
n,w∈Z

e
2πiw

3 q
(n+w+ 1

3 )
2

4 q
(n−w+ 1

3 )
2

4 + e
−2πin

3 q
(n+w− 1

3 )
2

4 q
(n−w+ 1

3 )
2

4 .

(4.5.32)

This twisted partition function computes the spin of the twisted Hilbert space HKT,LQ , which is

given by the phase in front of the q of q expansion. And the result is consistent with the spin

selection rule derived in (4.4.6) for the case where the FS indicator α = 1.

Next, we move to compute the twisted partition function of LQ. By the fusion rule

LQ = LQ ×LQ, LQ annihilates the twisted sector in the KT theory and therefore to compute

(ZKT )
LQ , we only need to focus on the untwisted sector. There are two ways to represent the

actions of LQ on the untwisted sector. The first is to consider the action of

LQ = Q2 +CQ2C (4.5.33)

on the C-invariant subspace of HSU(2)1 . Alternatively, we may consider using the fusion rule and

compute the action of L 2
Q on the C-invariant subspace of HSU(2)1 . As a consistency check, one

can show the two approaches agree with each other.

The twisted partition function is given,

(ZKT )
LQ =

2
|η(τ)|2 ∑

j, j∈ 1
2Z≥0,

j+ j∈Z

sin( (2 j+1)2π

3 )

sin 2π

3

sin( (2 j+1)2π

3 )

sin 2π

3

(q j2 −q( j+1)2
)(q j2 −q( j+1)2

),

(4.5.34)
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and can be written as a sum over the Narain lattice where j = n+w
2 , j = n−w

2 ,

(ZKT )
LQ(τ,τ) =

1
|η(τ)|2 ∑

n,w∈Z

(
cos(

2πn
3

)+ cos(
2πw

3
)

)
q(

n+w
2 )2

q(
n−w

2 )2
(4.5.35)

taken the same form as (ZKT )
LQ(τ,τ).

4.5.3 Constructing more triality lines from the known ones

Now we explore the possibility of constructing more triality line L ′
Q from the known

one via combining the known triality line LQ with the global symmetry Gbos at the KT point.

The most apparent strategy is to take the generator η of some Z3 ⊂ Gbos ≡ (U(1)θ̃ ×

U(1)φ̃ )⋊ZC̃
2 , and attempt to construct the line operator,

L ′
Q = LQη , L ′

Q = ηLQ, (4.5.36)

which has been considered in [181, 180, 46] to construct the duality line N with different FS

indicator. However, for this to preserve the fusion rule in general, LQ×LQ×LQ = 2∑g∈Z2×Z2 g,

η has to commute with LQ. Indeed, the construction used in [181, 180, 46] is to tensor product

one theory with duality line N and another theory with anomalous Z2 global symmetry η , and

consider the operator Nη , where the duality line N in one theory apparently commutes with

the operator η in another theory. As we will see, however, the candidate Z3 subgroups are the

Z3 subgroups of U(1)×U(1), which does not commute with LQ, therefore fusion LQ with

generators of Z3 will not lead to new triality lines.

To see this is the case, we consider the action of LQη or ηLQ on the untwisted sector

HKT,untwisted and check whether (LQη)3 or (ηLQ) only has eigenvalues 0,8 or not.

For that, we need to understand the origin of the U(1)θ̃ ×U(1)φ̃ in the KT theory from

the SU(2)1 theory. Under the ZC
2 -gauging, the subgroup of the SO(4) global symmetry commute

with the ZC
2 would survive the gauging and remain as the global symmetry of the resulting KT
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theory. Since the charge conjugation C in the adjoint representation of SO(4) is given by (4.5.11),

the commutant of ZC
2 therefore contains

R1(α) =




cosα 0 sinα 0

0 1 0 0

−sinα 0 cosα 0

0 0 0 1



, R2(β ) =




1 0 0 0

0 cosβ 0 sinβ

0 0 1 0

0 −sinβ 0 cosβ



. (4.5.37)

Notice that C is identified as the π-rotation R1(π). Hence, gauging ZC
2 would half the radius of

R1(α) which we identify as U(1)
θ̃

(that is, R1(π) acts trivially on every state in the KT theory)

and double the radius of R2(α) which we identify as U(1)
φ̃

(that is R2(2π) acts non-trivially on

the twisted sector in the KT theory).

To check the fusion rule, we only need to consider the action of ηLQ or LQη on the

untwisted sector, as ηLQ or LQη automatically annihilates the twisted sector therefore satisfies

the fusion rule when acting on the twisted sector. The Zθ̃
3 ⊂U(1)θ̃ is generated by either R1(π/3)

or R1(2π/3) while the Zφ̃

3 ⊂U(1)φ̃ is generated by either R2(8π/3) = R2(2π/3) or R2(4π/3)

when acting on the untwisted sector. For convenience, we take the generator η
θ̃

of Zθ̃
3 to be

R1(2π/3) and the generator of η
φ̃

of Zφ̃

3 to be R2(2π/3) as well.

We can check explicitly that on the ( j, j) = (3/2,3/2) irrep of SO(4) that LQ does not

commute with η and their product LQη does not lead to triality line. Following the convention

in Appendix B.2, we construct the matrix of Q+CQC as well as η and diagonalize it using C

eigenstates as a basis. For ( j, j) = (3/2,3/2) irrep, the dimension of C invariant states is 5 and
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project Q+CQC to this subspace we find,

Q+CQC =




0 0 0 0 0 0 0 0

0 1
2 0 −

√
3

2 −3
2 0

√
3

2 0

0 0 0 0 0 0 0 0

0
√

3
2 0 1

2

√
3

2 0 3
2 0

0 −3
2 0 −

√
3

2
1
2 0

√
3

2 0

0 0 0 0 0 0 0 0

0 −
√

3
2 0 3

2 −
√

3
2 0 1

2 0

0 0 0 0 0 0 0 0




, (4.5.38)
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and the generator η
θ̃

of Zθ̃
3 ⊂U(1)θ̃ and the generator η

φ̃
of Zφ̃

3 ⊂U(1)φ̃ are

η
θ̃
=




7
16

3
8

3
√

3
16 0 −3

8 − 9
16 0 −3

√
3

16

−3
8

1
16

√
3

4
3
√

3
16

9
16 −3

8 −3
√

3
16 0

3
√

3
16 −

√
3

4
1

16
3
8 0 3

√
3

16 −3
8 − 9

16

0 3
√

3
16 −3

8
7

16
3
√

3
16 0 9

16 −3
8

3
8

9
16 0 3

√
3

16
1
16

3
8 −3

√
3

16

√
3

4

− 9
16

3
8

3
√

3
16 0 −3

8
7
16 0 −3

√
3

16

0 −3
√

3
16

3
8

9
16 −3

√
3

16 0 7
16

3
8

−3
√

3
16 0 − 9

16
3
8 −

√
3

4 −3
√

3
16 −3

8
1
16




,

η
φ̃
=




−13
32

15
32 −3

√
3

32
3
√

3
32

15
32 − 9

32
9
√

3
32

3
√

3
32

−15
32 − 7

32
7
√

3
32 −3

√
3

32
9
32 − 3

32 −9
√

3
32

9
√

3
32

−3
√

3
32 −7

√
3

32 − 7
32

15
32

9
√

3
32

9
√

3
32 − 3

32 − 9
32

−3
√

3
32 −3

√
3

32 −15
32 −13

32 −3
√

3
32

9
√

3
32

9
32

15
32

−15
32

9
32 −9

√
3

32 −3
√

3
32 − 7

32 − 3
32 −9

√
3

32 −7
√

3
32

− 9
32

3
32

9
√

3
32 −9

√
3

32
3
32

11
32

5
√

3
32 −9

√
3

32

−9
√

3
32 −9

√
3

32
3
32

9
32 −9

√
3

32 −5
√

3
32

11
32 − 3

32

3
√

3
32 −9

√
3

32 − 9
32 −15

32
7
√

3
32 −9

√
3

32
3
32 − 7

32




,

(4.5.39)

and the possible η = η i
αη

j
β

where (i, j) ̸= (0,0). As one can check explicitly, the product LQη

or ηLQ does not lead to new duality line, as (LQη)3 or (ηLQ)
3 does not have eigenvalues

which are either 0 or 8. Hence, we conclude we can’t build new triality out of the known one

LQ from this procedure.

Since the generator η of Z3 and, in fact, elements of U(1)×U(1) in general, does not

commute with LQ, we can consider another possible construction, namely to conjugate LQ by

an element h ∈U(1)×U(1),

L ′
Q = h−1LQh (4.5.40)
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with the fusion rule,

L ′
Q ×L ′

Q ×L ′
Q = 2 ∑

g∈Z2×Z2

h−1gh, (4.5.41)

and L ′
Q
= h−1LQh. Notice that we do get a ”new” triality category under this procedure, since

(h−1gh)2 = 1. However, this ”new” triality defect should be Morita equivalent to the old one.

4.6 More Triality Fusion Categories

One might wonder if there exist more fusion categories besides the ones described

previously satisfying the same fusion rule. Indeed, there are another set of F-symbols that have

been computed in the condensed matter literature [179]. It is natural to ask if their F-symbols

give the same fusion categories as ours and if there are more inequivalent F-symbols. We will

answer these questions in this section.

4.6.1 The classification of triality fusion category

We first review the result in [117] which classifies the fusion category whose simple

objects containing g ∈ Z2 ×Z2, LQ and LQ. They satisfy the following fusion relations,

g×LQ = LQ ×g = LQ, g×LQ = LQ ×g = LQ,

LQ ×LQ = 2LQ, LQ ×LQ = 2LQ,

LQ ×LQ = LQ ×LQ = ∑
g∈Z2×Z2

g.

(4.6.1)

Theorem 1.4 in [117] then implies there are 6 inequivalent fusion categories with the simple

objects satisfying the above fusion relations. Since the Frobenius-Schur indicator is given by an

element in H3(Z3,U(1)) = Z3, the 6 inequivalent fusion categories organize into 2 classes each

containing 3 related by choosing different FS indicator.

Theorem 1.1 in [117] further describes the two classes of fusion categories. The first

one is the group theoretic fusion category with different FS indicator α (which are the ones we
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studied in section 4.3) while the second class is constructed explicitly in [117] in terms of the

classification data (but the F-symbols are not explicitly given). We will argue the F-symbols

computed in [179] correspond to the second class as they lead to different fusion categories

from ours. Since the second class is not group theoretical fusion category, these triality fusion

categories are intrinsic non-invertible in the sense of [123].

4.6.2 F-symbols of intrinsic triality fusion category

We follow [179] to list the F-symbols of the triality category. Recall that the triality line

satisfies,

LQ ×LQ = 2LQ, LQ ×LQ = ∑
g∈Z2×Z2

g. (4.6.2)

and invertible symmetry lines g satisfy the fusion rule of VecZ2×Z2 . We represent invert-

ible symmetry line g by Z2-valued vectors {(0,0),(1,0),(0,1),(1,1)} (which corresponds to

(1, σ̂ ,η , σ̂η) in previous notation). In this representation, the triality symmetry is also a Z2-

valued matrix,

Λ3 =




0 −1

1 −1


=




0 1

1 1


 . (4.6.3)

The R-symbols between different invertible symmetry lines are,

Rg,h = (−1)g⊺σ1Λ2
3h, g,h ∈ Z2 ×Z2, (4.6.4)

where σ i are the Pauli i matrices. The braiding phase is DS g,h = Rg,hRh,g = (−1)g⊺σ1h. The

F-symbols can be understood as a representation of the double cover of A4. We choose the 2-d

representations as,

A(0,0) = σ
0, A(1,0) = iσ1, A(0,1) =−iσ2, A(1,1) = iσ3. (4.6.5)
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The F-symbols consist of a free parameter α = e2πki/3,k = 0,1,2 which is the Frobenius-Schur

indicator. The list of F-symbols is given by,

Fghk
g+h+k = 1, g,h,k ∈ Z2 ×Z2 (4.6.6)

FLQgh
LQ

= Rg,(Λ3h), FghLQ
LQ

= Rh,(Λ2
3g), FgLQh

LQ
= DS (Λ3g),h, (4.6.7)

F
LQLQg
h = Rg,Λ2

3h, F
gLQLQ
h = Rg×h,Λ2

3g, F
LQgLQ
h = DS g,Λ3hRg,Λ3g. (4.6.8)

When exchanging LQ ↔ LQ, the F-symbols are obtained by replacing Λ3 ↔ Λ2
3,

F
LQgh
LQ

= Rg,(Λ2
3h), F

ghLQ
LQ

= Rh,(Λ3g), F
gLQh
LQ

= DS (Λ2
3g),h, (4.6.9)

F
LQLQg
h = Rg,Λ3h, F

gLQLQ

h = Rg×h,Λ3g, F
LQgLQ

h = DS g,Λ2
3hRg,Λ2

3g, (4.6.10)

and

[F
LQLQLQ

LQ
]g,h =−α

2
DS Λ3g,hRh,Λ3h, [F

LQLQLQ
LQ

]g,h =−α−1

2
DS

Λ2
3g,hRh,Λ2

3h. (4.6.11)

Other F-symbols are listed in Tab. 4.4.

4.6.3 Spin selection rules

We now derive the spin selection rules from the above F-symbols. Repeating the same

calculation in section 4.4.1, we find,

γ(h,g) =




1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1



, (4.6.12)
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Table 4.4. The rest of F-symbols computed in [179] where σsym = exp(π

3
Asym√

3
) and Asym =

∑g={(1,0),(0,1),(1,1)}Ag. α = ei2πk/3 is the FS indicator.

g 1 σ̂ η σ̂η

[FLQLQg
LQ

](LQ,µ,1),(LQ,1,ν) σ0 −iσ1 iσ2 −iσ3

[FLQgLQ
LQ

](LQ,1,µ),(LQ,1,ν) σ0 iσ2 −iσ3 −iσ1

[FgLQLQ
LQ

](LQ,1,µ),(LQ,ν ,1)
σ0 iσ3 iσ1 −iσ2

[F
LQLQg
LQ

](LQ,µ,1),(LQ,1,ν)
σ0 −iσ1 iσ2 −iσ3

[F
LQgLQ
LQ

](LQ,1,µ),(LQ,1,ν)
σ0 iσ3 iσ1 −iσ2

[F
gLQLQ
LQ

](LQ,1,µ),(LQ,ν ,1) σ0 −iσ2 iσ3 iσ1

[FLQLQLQ
g ](LQ,µ,1),(LQ,ν ,1)

α−1σsym iα−1σ1σsym −iα−1σ2σsym iα−1σ3σsym

[F
LQLQLQ
g ](LQ,µ,1),(LQ,ν ,1) ασ−1

sym iασ1σ−1
sym −iασ2σ−1

sym iασ3σ−1
sym

[F
LQLQLQ
LQ

](LQ,µ,ν),(g,1,1)
1√
2
iσsymσ1 1√

2
σsymσ0 − 1√

2
iσsymσ3 − 1√

2
iσsymσ2

[F
LQLQLQ

LQ
](LQ,µ,ν),(g,1,1)

α√
2
iσ−1

symσ3 − α√
2
iσ−1

symσ2 − α√
2
iσ−1

symσ1 − α√
2
σ−1

symσ0

[F
LQLQLQ

LQ
](g,1,1),(LQ,µ,ν)

iα−1σ2√
2

−α−1σ0√
2

−iα−1σ1√
2

iα−1σ3√
2

[F
LQLQLQ
LQ

](g,1,1),(LQ,µ,ν)
iσ2√

2
−iσ1√

2
iσ3√

2
−σ0√

2
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with the same four 1-dimensional irreducible representations as in the non-intrinsic or group-

theoretical case,

(1,1,1,−1), (1,1,−1,1), (1,−1,1,1), (1,−1,−1,−1). (4.6.13)

Then, consider the same calculation in Figure 4.9 and plug in the F-symbols for the intrinsic

triality defects, we find,

ZLQ(τ +3) = ∑
µ,ν=1,2,
g∈Z2×Z2

[
F

LQLQLQ

LQ

]
(1,1,1)(LQ,µ,ν)

[
F

LQLQLQ
LQ

]
(LQ,µ,ν)(g,1,1)

ZLQ
LQg(τ)

=
α

2 ∑
g∈Z2×Z2

ZLQ
LQg(τ).

(4.6.14)

where α = e2π ik/3,k = 0,1,2 is the FS indicator. This implies,

e6π is =
α

2 ∑
g∈Z2×Z2

ĝLQ. (4.6.15)

Using the eigenvalues of the irreducible representations of Z2 ×Z2 with phase γ(g,h) given by

(4.6.13), we have,

e6π is =±α. (4.6.16)

Notice that 2-cocycle γ(g,h) ensures the eigenvalues lead to consistent result in (4.6.14), as the

result on the right-hand side has to be a phase, which is not true for the eigenvalues of the usual

irreducible representations of Z2 ×Z2. We find the allowed spin is given by,

e2π is =





ekπ i/3, k = 0,1,2,3,4,5, α = 1,

e
2π i
9 + kπ i

3 , k = 0,1,2,3,4,5, α = e2π i/3,

e−
2π i
9 + kπ i

3 , k = 0,1,2,3,4,5, α = e4π i/3.

(4.6.17)
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Determine the triality fusion category from spin selection rules

We now argue that one can determine the triality fusion category from the spins of the

defect Hilbert space HLQ . It is clear that we can determine the FS indicator from the spins that

appear in HLQ .

We now argue that we can distinguish between intrinsic and non-intrinsic triality fusion

categories from the spins. For example, considering the case when the FS indicator α = 1, then

the allowed spin s for the non-intrinsic triality fusion categories satisfies s ∈ 1
3Z while the allowed

spin s for the intrinsic triality fusion categories satisfies s ∈
(1

3Z
)
∪
(1

3Z+ 1
2

)
. To distinguish the

two cases, we only need to show the additional spin where s ∈ 1
3Z+ 1

2 must appear.

To see this, we can show all the allowed irreducible representations of Z2×Z2 in (4.6.13)

has to appear using the technique in [166]. Specifically, consider the following partition function

1
4 ∑

g∈Z2×Z2

χα(g)Z
LQ
LQ,g

(τ = iβ ) (4.6.18)

where χα is the character associated with the irreducible representation α , which can be seen from

(4.6.13). For each choice of χα , we keep only the contribution from the particular irreducible

representation α . We only need to show this is non-zero for any α .

For this, we consider applying the S-modular transformation and get,

1
4 ∑

g∈Z2×Z2

χα(g)Z
LQ
LQ,g

(τ = iβ ) =
1
4 ∑

g∈Z2×Z2

χα(g)TrHg

(
L̂Q

)
g,+

e−
4π2

β
(H− c

12). (4.6.19)

Considering the high-temperature limit β → 0, we can see in the dual channel on the right-hand

side, the partition sum is dominated by the ground state in each defect Hilbert space Hg. As

long as the Z2 ×Z2 acts faithfully in the theory, the ground state in Hg for g ̸= 1 has positive

energy, hence the R.H.S. is dominated by the vacuum state in H1, which implies

1
4 ∑

g∈Z2×Z2

χα(g)Z
LQ
LQ,g

(τ = iβ )
β→0−−−→ 1

2
e

3π2c
β > 0, (4.6.20)
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where in the last step we used χα(1) = 1 for every α as in (4.6.13) and LQ acts on vacuum

state as its quantum dimension 2. Since in the high-temperature limit the partition sum over a

particular fixed irreducible representation is positive, we know each irreducible representation

must appear. This then implies the spin s such that s ∈ 1
3Z+ 1

2 has to appear since it comes from

the states with irreducible representation (1,−1,−1,−1).

Hence, we can distinguish the different triality fusion categories by the spins that appeared

in the defect Hilbert space HLQ .

To conclude this subsection, we briefly comment on when the spin selection rule should

be saturated.9 For illustration, let’s consider the three-state Potts model. This RCFT contains

two Z3 self-duality lines N,N′ [46] with the fusion rules:

N2 = (N′)2 = I +η +η , (4.6.21)

where η generates the Z3 global symmetries. The spins of the defect Hilbert space satisfy,

HN : s ∈ 1
2
Z+

{
1
8
,− 1

24

}
, HN′ : s ∈ Z

2
+

{
−1

8
,

1
24

}
. (4.6.22)

The spin selection rule is derived in [46] from the relation,

e4π is⟨ψ ′|ψ⟩= 1√
3
⟨ψ ′|1+ η̂−+ ˆ̄η−|ψ⟩= 1+ωa +ωb

√
3

(4.6.23)

by requiring that 1+ωa+ωb√
3

where a,b = 0,1,2 and ω = e2π i/3 is a phase which takes the form,

s ∈ 1
2
Z±

{
1
24

,
1
8

}
. (4.6.24)

At first glance, the spin selection rule is not saturated. This is because the spin selection rule is

not derived from the eigenvalues of the (projective) representation. For instance, let’s consider

9The authors thank Yifan Wang for mentioning this example which leads to this discussion.
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the irrep of Z2 ×Z2 which leads to e4π is = e−
2π i
12 in the defect Hilbert space HN , say (1,ω2,1).

From this, we can derive the 2-cocycle γ(g,h),

γ(g,h) =




1 1 1

1 ω ω2

1 ω2 ω



. (4.6.25)

The allowed irreducible representations twisted by this 2-cocycle are given by,

(1,ω2,1), (1,1,ω2), (1,ω,ω), (4.6.26)

where the first two lead to spin such that e4π is = e−
2π i
12 and the last one leads to the spin such that

e4π is = e
2π i
4 . By the same argument, each irreducible representation has to appear and this spin

selection rule must be saturated, which indeed is the case. Similarly, if we consider the defect

Hilbert space of HN ′ , the 2-cocycle γ ′(g,h) is now given by

γ
′(g,h) =




1 1 1

1 ω2 ω

1 ω ω2




(4.6.27)

and the allowed irreducible representations are given by

(1,ω,1), (1,1,ω), (1,ω2,ω2), (4.6.28)

where the first two leads to spin such that e4π is = e2π i/12 and the last one leads to spin such that

e4π is = e−2π i/4. Similarly, this spin selection rule is also saturated. One might wonder why there

could be two different 2-cocycles arising from the same Z3-duality category. This is because

when deriving the crossing kernels, even after fixing the FS-indicator ε = 1, one needs to choose

the ω to be either e2π i/3 or e−2π i/3. Two different choices relate to each other by relabeling η
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as η . Such relabelling will change γ(g,h) to γ ′(g,h) as well. In the case of two duality lines

N and N′, both form a Z3-duality category with the same Z3 symmetry, hence there’s no way

we can relabel the η in one Z3 fusion category without doing the same relabeling for the other.

Therefore, the choices of ω = e±2π is/3 matter here.

Chapter 4, in full, is a reprint of the material as it appears in Da-Chuan Lu, Zhengdi Sun,

JHEP 02, 173 (2023). The dissertation author was the primary investigator and author of this

paper.
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Chapter 5

When are Duality Defects
Group-Theoretical?

5.1 Introduction and summary

5.1.1 The problem

Duality defects:

A d-dimensional quantum field theory (QFT) X with a finite, non-anomalous, p-form

abelian global symmetry G(p) has a non-invertible duality symmetry when X is invariant under

gauging G(p) [50, 51],

X = X /G(p). (5.1.1)

This in particular requires p = d
2 −1, so that the gauged theory X /G(p) also has the same G(p)

global symmetry.1 Each finite symmetry is associated with a topological defect [90], and in

the present case the duality defect. The duality defect can be constructed by gauging G(p) on

half-space and imposing the Dirichlet boundary condition for G(p) at the defect locus. It has

1For simplicity, we only consider the symmetry of a single form-degree. One can also consider symmetries
with multiple form-degrees, say, a p-form symmetry and a q-form symmetry. The theory can also be self-dual
under gauging both symmetries if d −2 = p+q. See e.g. [121, 72] for such examples. More generally, a finite
invertible symmetry in d dimensional quantum field theory is described by a higher-group, and gauging it leads
to the higher representation category of a higher group. Self-duality under gauging the higher group requires its
higher representation category coincides with itself. See [30, 35, 83, 34, 22, 32, 33, 24, 23, 59, 31] for the recent
developments of higher categorical theory description of global symmetries.
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been shown that the duality defect satisfies non-invertible fusion rule [50, 51]. By construction,

duality defect implements gauging G(p). Note that there are additional data specifying the

duality defects, such as the (symmetric and non-degenerate) bicharacter and the Frobenius-Schur

indicator. Different QFT X satisfying (5.1.1) may yield duality defects with different choices

of such additional data. Throughout this work, for simplicity, we will denote the duality defect

associated with gauging G(p) as G(p) duality defect, to emphasize the underlying invertible

symmetry, and leave the dependence of additional data implicit.

A generic G(p) symmetric QFT does not satisfy (5.1.1). However, there are some well-

known examples satisfying (5.1.1), including compact scalars in 2d with Z(0)
N symmetry [115, 50],

Maxwell theories in 4d with Z(1)
N symmetry [50], N = 4 super Yang-Mills theories in 4d with

Z(1)
N symmetry [121], etc. For these theories, showing (5.1.1) often requires a T-duality in 2d or

S-duality in 4d,2 and these dualities are usually found only in highly fine-tuned theories. Thus it

is highly non-trivial and interesting to find deformations preserving the duality symmetry, i.e. the

relation (5.1.1). See [66] for recent discussions on duality-preserving deformation of the N = 4

super Yang-Mills theory.

An alternative construction:

In [121], an alternative construction of theories with duality symmetry was proposed for

certain G(p). See also [30, 31] for further generalizations. The idea is to start with a theory Y

with invertible symmetries only, and a mixed anomaly. Gauging a non-anomalous subgroup

of Y yields another theory X , and the mixed anomaly in Y enforces the existence of duality

symmetry in X .

Let’s illustrate the idea by an example. Take a 4d QFT Y with global symmetry

G(1)×H(0) = Z(1)
2 ×Z(0)

4 . We also assume a mixed anomaly characterized by the 5d anomaly

2One should distinguish the T or S-dualities from the duality transformation associated with gauging G(p).
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theory3

π

∫

X5

A(1)∪ P(B(2))

2
. (5.1.2)

The anomaly means that the partition function of Y obeys

ZY [B(2)] = ZY [B(2)]eiπ
∫

X4
P(B(2))/2

. (5.1.3)

In particular, when eiπ
∫

X4
P(B(2))/2 evaluates to be a non-trivial phase, the partition function

ZY [B(2)] vanishes (for example due to the presence of zero modes). Next, we construct the

theory X by gauging G(1) = Z(1)
2 of Y and then stacking an Z(1)

2 SPT,4

ZX [B(2)] = ∑
b(2)∈H2(X4,Z2)

ZY [b(2)]eiπ
∫

X4
b(2)B(2)+iπ

∫
X4

P(B(2))/2
. (5.1.4)

Combining with (5.1.3), it is straightforward to check that X = X /Z(1)
2 , i.e.

ZX [B(2)] = ∑
b(2)∈H2(X4,Z2)

ZX [b(2)]eiπ
∫

X4
b(2)B(2)

. (5.1.5)

The associated duality defect can be obtained using half-gauging. Hence we have found an

alternative, yet systematic, way to construct theories with duality symmetry associated with

gauging Z(1)
2 , as well as the Z(1)

2 duality defect.

It is useful to know that the duality symmetry associated with gauging Z(1)
2 admits

the above alternative construction. Note that this construction does not require any detailed

dynamical information of Y (such as whether Y is a CFT or a free field theory). Any Y , as

long as it has the requested symmetry and anomaly can be fed into the construction. In particular,

3Only Z(0)
2 normal subgroup of Z(0)

4 is anomalous. But rigorously speaking, (5.1.2) is well-defined only when
A(1) belongs to H1(X5,Z4) (rather than H1(X5,Z2)) due to the 1/2 factor.

4We suppress the overall normalization throughout the paper. Please refer to [50, 122] for systematic discussions
of the overall normalizations.
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because only the invertible symmetries of the theory Y play a role in the construction, it is easy

to turn on perturbations leaving the symmetry and anomaly unchanged. After gauging Z(1)
2 , such

symmetric perturbation in Y becomes a duality-symmetry preserving perturbation in X . Hence

it is easy to turn on duality-preserving deformations, and allows one to study the consequence

of duality symmetry along the RG flow. Moreover, this alternative construction allows one to

uncover new duality defects in gauge theories. For instance, this construction can be used to show

the presence of duality defects in a large class of gauge theories, including non-invertible time

reversal symmetries in the 4d Yang-Mills theories [121, 30, 53], non-invertible axial symmetries

in 4d QED and QCD [52, 63, 184], etc.

It turns out that for an arbitrary G(p), such an alternative construction may or may not

exist. It is therefore useful to ask for which G(p) such an alternative construction exists. When

it exists, the non-invertible duality defect in QFT X can be mapped to an invertible defect in

QFT Y under a topological manipulation ξ , which includes gauging a non-anomalous subgroup

and stacking an SPT etc, and such duality defect was named non-intrinsically non-invertible

[123]. Conversely, a duality defect which does not admit the alternative construction will be

called intrinsically non-invertible.

On the other hand, for 2d QFTs with a generic finite Abelian symmetry G(0), the condition

of when the alternative construction exists has been classified in mathematical literatures [94].

The duality defect was named group theoretical if the alternative construction exists. In this

work, we will follow the math notation and determine for which G(p) the duality defect is group

theoretical.

As the answer in 2d is known, we will first review the results in [94], and the goal is to

present the discussion there using a more physical language, and pave the way for generalization

to higher dimensions. For concreteness, we focus on the Z(0)
N symmetry, although generalization

to more complicated Abelian symmetries is possible.

We then generalize the 2d discussion and proceed to determine when duality defects

associated with gauging Z(1)
N in 4d QFTs are group theoretical. A partial list of group theoretical
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duality defects have been identified in [51, 26]. Our results not only reproduce the known

ones in [51], but also uncover new ones. As a systematic theory of higher category is less

well-established than those in lower dimensions, we are unable to fully generalize the proofs

in [94] to higher dimensions. Hence the completeness of our list of group theoretical duality

defects only holds under certain assumptions which we will specify in Sec. 5.2.

5.1.2 Main results

The key idea to find the group theoretical duality defect is to use the Symmetry Topological

Field Theory (SymTFT) [122, 11, 83, 128, 116, 91, 39, 33, 139, 129].5 A d-dimensional QFT

with a global symmetry described by a (higher) fusion category C is equivalent to a (d + 1)-

dimensional “sandwich” where in the bulk is a SymTFT describing the Drinfeld center of C ,

the left d-dimensional boundary condition is a canonical/Dirichlet boundary condition where

the defects labeled by C are supported, and the right boundary condition is a non-topological

boundary condition encoding all the dynamical information of the QFT. Since the bulk is

topological, one can shrink the sandwich by colliding the left and right boundaries to recover the

d-dimensional QFT.

One of the advantages of the sandwich construction is that it automatically encodes

the additional data of the duality defect mentioned in Sec. 5.1.1, i.e. the bicharacters and the

Frobenius-Schur indicator, while they are not explicit from (5.1.1).

The sandwich construction also enjoys two interesting properties [122, 11, 83]. First,

when the symmetry of the QFT is invertible, the SymTFT is a gauged anomaly theory, i.e. a

Dijkgraaf-Witten theory, whose partition function is

Z = ∑
g∈G

eiω(g) (5.1.6)

where G is the finite (higher) gauge group of the Dijkgraaf-Witten theory, g is a (higher form)

5See also [113, 33, 24, 143, 120, 189, 155, 185, 47, 12, 10, 9] for applications of the SymTFT to the dynamics
of QFTs, lattice models and string/M-theories.
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gauge field valued in G,6 and ω(g) is the twist term which specifies the G-anomaly.7 Second,

because all the symmetry defects (or background fields when the symmetry is invertible) are

supported on the left topological boundary, topological manipulations (including gauging and

stacking an invertible phase) do not change the SymTFT. Combining these two properties, we

conclude that a duality defect is group theoretical if and only if its SymTFT is a Dijkgraaf-Witten

theory.

The SymTFT of a duality defect associated with gauging G(p) admits a convenient

construction [122, 189]. One starts with the SymTFT of G(p) symmetry (without a duality

defect), which is simply a G(p) (p+1)-form gauge theory in 2p+3 dimensions. Such a theory

admits an electro-magnetic (EM) exchange symmetry whose order depends the parity of p.

The SymTFT of the duality defect (including G(p) symmetry) is obtained by gauging the EM

exchange symmetry of the G(p) (p+1)-form gauge theory. As we will review in Sec. 5.2, such

SymTFT is a Dijkgraaf-Witten theory amounts to the existence of an EM stable topological

boundary condition of the G(p) (p+1)-form gauge theory. This latter condition will be explicitly

checked in the following sections.

In this paper, we focus on the duality defects associated with gauging G(p) = Z(0)
N in 2d,

and G(p) = Z(1)
N in 4d. We determine for which N together with the choice of bicharacters and

the Frobenius-Schur indicator, the duality defect is group theoretical by examining when the EM

stable topological boundary condition of Z(0)
N (or Z(1)

N ) gauge theory exists in 3d (or 5d). We find

the following results:

Z(0)
N duality defects in 2d:

The Z(0)
N duality defect is group theoretical if and only if N is a perfect square.

6For simplicity we use g ∈ G to represent a g gauge field taking value in G, although a more appropriate way is
to write g ∈ H∗(Xd+1,G). We hope this simplified notation does not lead to confusion.

7There are more restricted definition of the Dijkgraaf-Witten in the literature, where G is an ordinary group.
For more general G, e.g. G is a 2-group, the corresponding 4d TFT is called Yetter TFT [187]. See [113] for a
review of various TFTs in higher dimensions. Here we denote the G gauge theory with any finite (higher) group G
as Dijkgraaf-Witten.
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Z(1)
N duality defects in 4d:

On spin manifolds, the Z(1)
N duality defect is group theoretical if and only if N = L2M

where −1 is a quadratic residue of M.

The above conclusion holds for arbitrary choices of additional data, including the bicharac-

ters and the Frobenius-Schur indicators.

The 2d results were already proven in a mathematics reference [94]. In the main text, for

both 2d and 4d cases, we will show the if direction by explicitly demonstrating the SymTFT to

be a Dijkgraaf-Witten, and also working out the explicit topological manipulation. In particular,

the special case of L = 1 in 4d was known in [51], and our result shows that there are new cases

for L > 1. However, unlike the 2d case where the only if direction is proven,8 for the 4d case the

only if direction remains a conjecture.

We also note that the question of whether a duality defect is group theoretical has also

been extensively discussed in the context of string/M-theories. See [103, 137, 12]. In particular,

in [12] whether the Z(1)
N duality defect is group theoretical was phrased in terms of Hanany-

Witten transition between strings and 7-branes in the holographic IIB setup, and the authors

found the same sequence of N for N ≤ 29.9

Note that we assumed the 4d spacetime to be a spin manifold. On non-spin manifolds,

the criteria for odd N remains the same. However, for even N, the situation is more complicated,

and we will comment on them in the main text.

The organization of the paper is as follows. In Sec. 5.2, we discuss the general strategy

to determine when a duality defect is group theoretical. This section is largely based on [94],

presented in a way that applies to higher dimensions as well. Sec. 5.3 and Sec. 5.4 are in parallel,

8In [122], the authors used the SymTFT to give a physical derivation of the only if direction in 2d. The
observation there is that the SymTFT of the duality defect has line operators of quantum dimension

√
N. Note

that all line operators in any bosonic Dijkgraaf-Witten theory are of integer quantum dimension [110, 75, 71], the
SymTFT can be Dijkgraaf-Witten only if N is a perfect square.

9After our preprint appeared on arXiv, we were informed by Fabio Apruzzi that [12] contains overlapping results
with the present work.
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which discuss the group theoretical duality defects in 2d and 4d respectively. In both sections, we

first identify the group theoretical N’s using the stable topological boundary condition following

the strategy of Sec. 5.2. Then for each N, we explicitly demonstrate that the SymTFT is a

Dijkgraaf-Witten theory, and also propose the explicit topological manipulation which maps the

duality defect to the invertible defect. In Sec. 5.5, we comment on the relation between group

theoretical duality defects and obstructions to duality preserving gapped phases.

5.2 Criteria of group-theoretical duality defects

In this section, we study in general when the duality defects are group theoretical. A

rigorous mathematical discussion of this problem in 2d was already available in [94]. The goal

of this section is to translate the discussion to a more physicist-friendly language. We also try to

present the discussion in a way applicable to 4d.

5.2.1 Symmetry TFT of duality defects

As reviewed in the introduction, the SymTFT is a useful tool to identify whether a fusion

category is group theoretical. We thus first review the properties of the SymTFT of duality

defects, focusing on Z(d/2−1)
N symmetry in d dimensions, for d = 2,4. We will follow the

discussion in [122].

Consider a d dimensional QFT X with a non-anomalous Z(d/2−1)
N symmetry. Let’s

denote its partition function as ZX [B(d/2)]. Any such theory can be expanded into a d + 1

dimensional slab, as shown in Fig. 5.1. In the bulk of the slab, there is a d +1 dimensional ZN

d/2-form gauge theory, whose Lagrangian is

L =
2π

N
b̂(d/2)

δb(d/2). (5.2.1)

This is the SymTFT of the Z(d/2−1)
N symmetry. On the left boundary, there is a Dirichlet

topological boundary condition/state obtained by setting the electric field b(d/2) to background
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ZX [B(d/2)]

ZN d/2-form
gauge theory

⟨Dir(B(d/2))| |X ⟩

Figure 5.1. A d dimensional QFT X with a non-anomalous Z(d/2−1)
N symmetry can be expanded

into a d + 1 dimensional slab, where the bulk of the slab is the SymTFT of the Z(d/2−1)
N

symmetry—ZN d/2-form gauge theory.

value,

⟨Dir(B(d/2))|= ∑
b(d/2)∈Hd/2(Xd ,ZN)

δ (b(d/2)−B(d/2))⟨b(d/2)| . (5.2.2)

On the right boundary, there is a dynamical boundary encoding all the information of the QFT

X , where the boundary state is

|X ⟩= ∑
b(d/2)∈Hd/2(Xd ,ZN)

ZX [b(d/2)] |b(d/2)⟩ . (5.2.3)

Shrinking the slab amounts to colliding the boundary states (5.2.1) and (5.2.2), which reproduces

the partition function ZX [B(d/2)].

We further require the QFT X to be invariant under gauging Z(d/2−1)
N , i.e. X =

X /Z(d/2−1)
N , so that the symmetry of X contains not only Z(d/2−1)

N but also self-duality. To

obtain the SymTFT of the full symmetry, we start with the ZN d/2-form gauge theory in d +1

dimensions and gauge the electro-magnetic (EM) exchange symmetry. This symmetry basically

exchanges b(d/2) and b̂(d/2), to be more precise,

b(d/2) → ub̂(d/2), b̂(d/2) → (−1)d/2+1vb(d/2), (5.2.4)

where uv = 1 mod N. By Chinese Remainder Theorem, both u and v are coprime with N.
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The minus sign means that the EM exchange symmetry is Zem
2 when d = 2 mod 4, and is Zem

4

when d = 0 mod 4.10 Below for simplicity the EM symmetry will be denoted as Zem
χ , with

χ = 4/2[d/2]2 . Note that when gauging Zem
χ , there is a freedom of choosing the discrete theta term

labeled by ε ∈ Hd+1(Zem
χ ,U(1)). When d = 2, different choices of u (and hence v) correspond

to bicharacters of the Tambara-Yamagami fusion category TY(Z(0)
N ,u,ε), while different choices

of the discrete theta term ε correspond to the Frobenius-Schur indicator [178, 189, 180]. For

simplicity, we will adopt the same notation in d = 4 as well. In short,

SymTFT of duality symmetry = ZN d/2-form gauge theory/(Zem
χ )u,ε . (5.2.5)

5.2.2 Criteria for group-theoretical duality defects

We proceed to use the SymTFT to determine when the Z(d/2−1)
N duality defect is group

theoretical. The schematic idea is shown in Fig. 5.2. We first recall, as discussed in the

introduction, that a duality defect is group theoretical if and only if its SymTFT is a Dijkgraaf-

Witten theory. Using (5.2.5), the problem boils down to showing that the ZN d/2-form gauge

theory /(Zem
χ )u,ε is a Dijkgraaf-Witten theory. This completes the first two arrows on the top of

Fig. 5.2.

Below, we argue for the remaining arrows. Sec. 5.2.2 establishes the two arrows in the

middle of Fig. 5.2. Sec. 5.2.2 and Sec. 5.2.2 discusses the upward and dashed downward arrow

at the bottom, respectively.

Dijkgraaf-Witten = existence of Lagrangian subcategory

Let’s start with the observation that a SymTFT (5.2.5) is Dijkgraaf-Witten if and only if

there exist a set of topological operators Sα ’s such that

1. Sα ’s form a (higher) representation category of some symmetry group G, and for simplicity

we schematically denote them as Rep(G). 11

10When N = 2 and d = 0 mod 4, the EM exchange symmetry is still Z(0)
2 because b(d/2) =−b(d/2) mod 2.

11The higher representation category, e.g. 2Rep(G), has been discussed recently in the context of generalized
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Z(d/2−1)
N duality defect is group theoretical

ZN d/2-form gauge theory/(Zem
χ )u,ε is Dijkgraaf-Witten

∃ Lagrangian subcategory S in ZN
d/2-form gauge theory/(Zem

χ )u,ε

∃Zem
χ stable Lagrangian subgroup

Spre in ZN d/2-form gauge theory

Figure 5.2. Idea of determining when a Z(d/2−1)
N duality defect is group theoretical. We will

argue (at the physics level of rigor) for the solid arrows, while for the dashed arrow, our argument
is based on an assumption that is only proved in d = 2.

2. Sα ’s are gaugable and gauging them leads to an invertible theory. 12

Let’s denote the subcategory whose objects are Sα as the Lagrangian subcategory S . One

direction of this claim is obvious: in the Dijkgraaf-Witten theory with gauge group G and cocycle

ω , obviously the set of Wilson operators form Rep(G). Hence the first property is satisfied.

Furthermore, Rep(G) is gaugable because it is the quantum symmetry from gauging G of the G

symmetric invertible theory (i.e. G-SPT) ω . This further means that gauging Rep(G) leads to an

invertible theory. This shows the second property, and completes the only if direction, i.e. the ↓

in the middle of Fig. 5.2.

For the if direction, suppose a SymTFT has a set of gaugable topological operators

symmetries and generalized charges in [21, 35, 23, 32, 22, 31, 33]. In this section, we will schematically denote
both the ordinary and higher representation categories as Rep(G).

12Gauging S amounts to first form a algebra object A from Sα ’s, and insert a mesh of A in the path integral.
For 3d TFT, an algebra such that after gauging it leads to an invertible theory is known as Lagrangian algebra, which
is shown to be a gaugable algebra, whose quantum dimension is the total quantum dimension of the TFT. In higher
dimension, the theory of Lagrangian algebra is less well established, and we will simply define the Lagrangian
algebra to be gaugable (i.e. can consistently insert a mesh of it) and has the property that gauging it would lead
to an invertible theory. See [191] for a recent discussion of the Lagrangian algebra of 4d TFTs. Mathematically
rigorous discussions on gauging a fusion 2-category can be found in [73, 72].
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labelled by Rep(G) and gauging them leads to an invertible theory whose partition function is a

phase eiω , then the quantum symmetry is G and we can gauge G to recover the original SymTFT.

This ensures the original SymTFT is Dijkgraaf-Witten. This completes the if direction, i.e. the ↑

in the middle of Fig. 5.2.

The above definition of the “Lagrangian subcategory” was motivated by the results of 3d

TFT. In the context of 3d TFT, the set of anyons satisfying the above conditions form a fusion

subcategory known as the Lagrangian subcategory L [94, 76]. It satisfies the following two

conditions

1. L is of the form Rep(G) equipped with the standard symmetric braiding for some finite

group G. The subcategory of this form is called Tannakian.

2. L = L′ where L′ is the centralizer defined as the fusion subcategory (of the entire braided

modular tensor category of the 3d TFT) which contains all the anyon a having trivial

braiding with every anyon in L.

Notice that the first condition ensures the 1-form symmetries generated by Rep(G) is gaugable,

and to gauge it we can consider condensing the algebra AG which is the regular representation

in Rep(G). The second condition implies every line operator outside L is charged non-trivially

under the 1-form symmetry generated by the lines in L, hence condensing L would project

out every line operator and end up with an invertible theory. In other words, the algebra AG

is Lagrangian. We reformulate the second condition such that the statement works for higher

dimension as well. For this reason, we will also name the higher dimensional generalization of

L, i.e. S , as the Lagrangian subcategory.

Given a Lagrangian algebra AG as the regular representation in Rep(G), we can consider

half-gauging it to engineer a gapped boundary for the SymTFT. In the half space with invertible

theory, there’s apparently a quantum G symmetry whose symmetry defects can terminate on the

gapped boundary and the intersections are the G-symmetry defects on the gapped boundary.
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Up arrow at the bottom of Fig. 5.2

We proceed to argue for the up arrow at the bottom of Fig. 5.2, i.e.

∃ Lagrangian subcategory S in ZN

d/2-form gauge theory/(Zem
χ )u,ε

∃Zem
χ stable Lagrangian subgroup

Spre in ZN d/2-form gauge theory
(5.2.6)

Here we denote the Lagrangian subgroup of the ZN d/2-form gauge theory (without gauging

Zem
χ ) as Spre, where the subscript pre is to distinguish it from the Lagrangian subcategory S

of the Zem
χ gauged theory (5.2.5). Since ZN d/2-form gauge theory is an abelian TQFT, its

boundary condition is specified by the Lagrangian (higher) subgroup [48]. The operators in the

Lagrangian subgroup automatically form a d/2 representation category, i.e. Spre = Rep(G), for

certain finite group G. Thus the Lagrangian subgroup is automatically a Lagrangian subcategory.

For this reason, we will use the Lagrangian subgroup to denote the Lagrangian subcategory of

an Abelian TQFT throughout this paper.

A Lagrangian subgroup Spre is Zem
χ stable means that Zem

χ is a group endomorphism of

Spre, i.e. under Zem
χ , Spre is mapped to Spre itself, while each object in Spre might transform

non-trivially. Suppose Spre is Zem
χ stable, we can recover a Zρ

χ automorphism acting the group

G itself from this. In the Zem
χ gauged theory, we can then construct a fusion subcategory of the

form Rep(G⋊ρ Zχ), generated by Zχ orbit of Rep(G) and the quantum Zχ symmetry defect

K. Indeed, an irreducible representation in G⋊ρ Zχ is either constructed as a direct sum of

two irreducible representations of G related by Zχ , or a tensor product between a Zχ -invariant

irreducible representation of G and a representation of the Zρ

χ .

It remains to show that S ′ = Rep(G⋊ρ Zχ) is gaugable and that gauging it leads to an
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invertible theory. This is the case because gauging the entire Rep(G⋊ρ Zχ) can be achieved

by sequential gauging where we first gauge Z(d−2)
χ generated by the quantum Zχ defect K to

recover Rep(G) and then gauge the anomaly free Rep(G) which will leads to the trivial theory.

Hence Rep(G⋊ρ Zχ) is the Lagrangian subcategory of the Zem
χ gauged theory. This completes

the proof.

We comment that the Zem
χ stable Lagrangian subgroup is equivalent to Zem

χ stable bound-

ary condition or state of the ZN d/2-form gauge theory. Given a Lagrangian subgroup consisting

of the operators Sα , where α ∈ I and I is the index set labeling the simple object in Spre,

the topological boundary state |ψI ⟩ is determined via Sα |ψ⟩= |ψ⟩ for all α ∈ I . Note that

the boundary state is unique, and can be constructed by gauging the Lagrangian subgroup on

half space. Denote the symmetry operator of Zem
χ as U , stable Lagrangian subcategory means

USαU−1 = Sβ where β ∈ I . It follows that

SβU |ψ⟩=USαU−1U |ψ⟩=USα |ψ⟩=U |ψ⟩ (5.2.7)

meaning that U |ψ⟩ is stabilized by the same Lagrangian subgroup. By uniqueness, we have

U |ψ⟩= |ψ⟩, which means the boundary state |ψ⟩ is also Zem
χ stable.

In Sec. 5.3 and Sec. 5.4, we will enumerate all the Lagrangian subgroups of the ZN d/2-

form gauge theory and classify when they are Zem
χ stable. When there exist stable Lagrangian

subgroups, we will explicitly show that gauging the Zem
χ symmetry leads to Dijkgraaf-Witten

theory, and also find explicit topological manipulations that map the duality defect to an invertible

defect. Such an explicit construction gives a practical proof of the up arrows, from the bottom to

the top, in Fig. 5.2.
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Dashed down arrow at the bottom of Fig. 5.2

We proceed to show the dashed down arrow at the bottom of Fig. 5.2, i.e.

∃ Lagrangian subcategory S in ZN

d/2-form gauge theory/(Zem
χ )u,ε

∃Zem
χ stable Lagrangian subgroup

Spre in ZN d/2-form gauge theory
(5.2.8)

We use the dashed arrow to emphasize that it is proven only in d = 2 [94], while for higher d,

we are only able to generalize the results in [94] under an assumption which we specify below.

Suppose the ZN d/2-form gauge theory /(Zem
χ )u,v,ε contains a Lagrangian subcategory

S = Rep(G). Since the theory comes from gauging Zem
χ , there must be an Zem

χ bosonic

topological line operator K corresponding to the quantum Zχ (d − 1)-form symmetry of the

gauged theory. Clearly, the subcategory generated by K is of the form Rep(ZK
χ ). Below we will

make a key assumption:

Key assumption:

Rep(ZK
χ ) is a subcategory of S = Rep(G).

Since K obeys the Zχ fusion rule, it must be labelled by an order χ representation of G.

Equivalently, we can describe K as a surjective homomorphism G → Zχ , and denote the kernel

of this homomorphism as H then we have the following short exact sequence:

0 → H → G → Zχ → 0. (5.2.9)
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After gauging ZK
χ by condensing the K-line, the Lagrangian subcategory Rep(G) then becomes

Rep(H). To see Rep(H) is Lagrangian, notice that gauging H is the second step in the sequential

gauging, which corresponds to gauge Rep(G) in the original theory. Therefore, gauging Rep(H)

must lead to an invertible theory and Rep(H) is Lagrangian. It is also clear that Rep(H) must be

stable under the 0-form Zem
χ symmetry from condensing K. Hence, up to the assumption that

the Lagrangian subcategory Rep(G) contains Rep(ZK
χ ) as a subcategory, we argued that (5.2.8)

holds.

When d = 2, however, there is a theorem guarantees that the key assumption is true: we

can always find a Rep(G) such that it contains the K-line[77, 80]. Given a Tannakian subcategory

Rep(H),13 in general it may be contained as a subcategory in another Tannakian subcategory

Rep(H ′). A Tannakian subcategory which is not properly14 contained in another Tannakian

subcategory is called maximal [77, 80]. Notice that a Lagrangian subcategory is automatically

a maximal Tannakian subcategory. Since a Tannakian subcategory describes gaugable 1-form

symmetries, one can consider condense those anyons to get a smaller TFT. In [77, 80], it was

shown that condensing maximal Tannakian subcategory would lead to equivalent TFT which

doesn’t depend on the choice of the maximal Tannakian subcategory.15 Using this, we can start

with the Tannakian subcategory Rep(ZK
2 ) and find the maximal Tannakian subcategory Rep(G)

containing it. Then, by the above theorem, condensing Rep(G) would lead to trivial theory and

therefore Rep(G) is Lagrangian. This completes the proof for the necessary condition for d = 2.

For higher dimensions, we do not know if the analog of such theorem exists, so (5.2.8) is only a

conjecture.

13Note that H here is a generic group and should not be confused with the H in (5.2.9).
14Given two categories C and D , D is properly contained in C if D is a subcategory of C but D is not the same

as C .
15The TFT acquired from the gauging is called the core of the original TFT, which seems to give a measure on

the intrinsically non-invertibleness of a symmetry TFT.
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5.3 Group theoretical duality defects in 2d

The SymTFT of Z(0)
N duality defects is a 3d ZN gauge theory with Zem

2 symmetry

gauged. It has been shown in [94], which we revisited in Sec. 5.2, that the duality defect is

group theoretical if and only if the 3d ZN gauge theory admits Zem
2 stable topological boundary

condition. In this section, we first review the topological boundary condition of the 3d ZN gauge

theories, and determine when a Zem
2 stable topological boundary condition is allowed. We then

explicitly show that for those allowed N the SymTFT is a Dijkgraaf-Witten theory, and find

explicit topological manipulations under which the duality defects are mapped to invertible

defects.

5.3.1 Lagrangian subgroups of 3d ZN gauge theory

The action of the ZN gauge theory is

L =
2π

N
âδa (5.3.1)

where â,a are both ZN cochains. It has a Zem
2 exchange symmetry

a → uâ, â → va, (5.3.2)

with uv = 1 mod N. The topological lines are

L(e,m)(γ) = e
2πie

N
∮

γ
ae

2πim
N
∮

γ
â. (5.3.3)

The topological boundary conditions of an Abelian TQFT are classified by the Lagrangian

subgroups. The Lagrangian subgroup A consists of N topological line operators L(e,m) with the

following conditions,

1. L(e,m) has trivial topological spin, i.e. ei2πem/N = 1.
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2. Any two lines L(e,m) and L(e′,m′) in the Lagrangian subgroup A have trivial mutual braiding,

i.e. e2πi(em′+e′m)/N = 1.

3. Any other line operator that does not belong to A braids non-trivially with at least one

line in A .

We remark that the first condition automatically implies the second condition, since the mutual

braiding phase B(e,m),(e′,m′) between two lines L(e,m) and L(e′,m′) is determined by their self

spins θ(e,m) as B(e,m),(e′,m′) = θ(e+e′,m+m′)/(θ(e,m)θ(e′,m′)). However, in order to contrast with the

analogue condition in higher dimensions, we still present the second property explicitly. The

third property is guaranteed by the fact that there are N lines in A , which we will verify at the

end of this subsection.

To enumerate all possible Lagrangian subgroups, we first assume that a particular line

L(e,m) belongs to A , hence L(ke,km) also belongs to A due to group structure, for any k ∈ Z.

The trivial topological spin means e and m can not be simultaneously coprime with N.

This means that there must exist a k < N such that L(ke,km) is a purely electric line L(p′,0) or

purely magnetic line L(0,q′). So any Lagrangian subgroup contains at least one non-trivial purely

electric or magnetic line. Without loss of generality, we assume that a electric line L(p′,0) belongs

to A , where 1 < p′ < N. Under multiplication, L(p,0) also belongs to A , where p = gcd(p′,N).

Note that L(p,0) is the purely electric line with the smallest electric charge. For convenience, we

also denote q = N/p. Summarizing the above, we have shown that A contains q purely electric

lines among N lines in total

L(kp,0), k = 0,1, ...,q−1. (5.3.4)

Suppose L(e,m) also belongs to A (which is independent of the L(e,m) in the previous

paragraph), with m ̸= 0 mod N. Trivial mutual braiding with purely electric lines requires pm = 0
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mod N, or equivalently

m = sq (5.3.5)

for certain s ∈Z. Denoting t = gcd(s, p), it follows that under multiplication, L(e′,tq) also belongs

to A , for certain e′. Trivial topological spin of L(e′,tq) requires

te′ = 0 mod p. (5.3.6)

Note that tq is the minimal magnetic charge mod N in the orbit L(ke,ksq) for different k ∈ Z.

Supplementing L(e′,tq) to the set (5.3.4), we find the following lines in the Lagrangian subgroup

A ,

L(kp+k′e′,k′tq), k = 0,1, ...,q−1, k′ = 0,1, ..., p/t −1. (5.3.7)

Thus we find qp/t = N/t lines in the Lagrangian subgroup. Since the Lagrangian subgroup

contains N lines, unless t = 1, the above set does not contain enough lines to form a Lagrangian

subgroup. However, since the charge lattice is two dimensional, any missing line should be

generated by the two generators L(p,0) and L(e′,tq) (note that they are not linearly dependently

when t > 1), which is a contradiction. This implies that t = 1, and by (5.3.6), e′ = 0 mod p.16 In

conclusion, the Lagrangian subgroup is completely specified by p where p|N, which is generated

16Another way to see t = 1 is as follows. We prove by contradiction. Assume t > 1, and we would like to find an
operator that is not generated by L(p,0) and L(e′,tq). By (5.3.6), e′ = (p/t)x for x ∈ Z. When x = 0 mod t, e′ = 0 mod
p, and one can compose L(e′,tq) with L(p,0) to get L(0,tq). Clearly, the generator L(0,q) can not be generated by L(p,0)
and L(0,tq). When x ̸= 0 mod t, we can assume 0 < x < t, i.e. 0 < e′ < p without loss of generality. We can then
consider L(0,tq), which has the trivial topological spin and the trivial mutual braiding with both L(p,0) and L(e′,tq)
thanks to (5.3.6). Because 0 < e′ < p, L(0,tq) is not generated by L(p,0) and L(e′,tq). In both cases, we find at least
one operator that can be added into the Lagrangian subgroup, showing that L(p,0) and L(e′,tq) do not generate the full
Lagrangian subgroup. When t = 1 however, (5.3.6) shows e′ = 0 mod p, and clearly L(p,0) and L(e′,q) generate the
entire Lagrangian subgroup.
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by L(p,0) and L(0,N/p), i.e.

Ap = {L(xp,yN/p)|x ∈ ZN/p,y ∈ Zp}. (5.3.8)

Finally, we show the third property of the Lagrangian subgroup, that for any line L(e,m) not

within Ap, it must braid non-trivially with at least one element in Ap. We prove by contradiction.

Suppose there exists L(e,m) /∈Ap which braids trivially with every element in Ap. The assumption

implies eyN/p+mxp = 0 mod N for any x,y. We first take y = 0, then mxp = 0 mod N for any

x implies m = 0 mod N/p. Similarly, by taking x = 0, then eyN/p = 0 mod N for any y implies

e = 0 mod p. Thus L(e,m) ∈ Ap, which contradicts with the assumption. This completes the

proof.

5.3.2 Zem
2 stable Lagrangian subgroup

We further classify which topological boundary condition is Zem
2 stable. The Zem

2

symmetry (5.3.2) maps the charges (e,m) to (vm,ue). The generators of the Lagrangian subgroup

Ap are mapped to

L(p,0) → L(0,up), L(0,N/p) → L(vN/p,0). (5.3.9)

Zem
2 stability implies the above Zem

2 of the generators also belong to Ap, i.e.

L(0,up) = L(xp,yN/p), L(vN/p,0) = L(zp,wN/p). (5.3.10)

The above implies x ∈ (N/p)Z, w ∈ pZ, and

up = yN/p mod N, vN/p = zp mod N. (5.3.11)
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Combining the two conditions, we find zy = 1 mod p as well as zy = 1 mod N/p. This in

particular implies y and z are coprime with both p and N/p. On the other hand, the first condition

in (5.3.11) implies p = (vy+ pα)N/p for certain integer α . However, because y is coprime

with p and v is coprime with N (hence p), (vy+ pα) is also coprime with p. So this condition

can be satisfied only when (N/p)|p. Similarly, the second equality in (5.3.11) implies p|(N/p).

Combining the two conditions, we find

p = N/p (5.3.12)

which means N = p2 is a perfect square. By the results in Sec. 5.2, we conclude that the Z(0)
N

duality defect is group theoretical if and only if N is a perfect square, for any choice of u,v (i.e.

the bicharacter). Since the choice of the Frobenius-Schur indicator ε does not enter the above

discussion, the group-theoretical condition is also independent of ε as well. We emphasize that

this result has been already proven in [94], and hope that our discussion is more accessible to

physicists.

5.3.3 SymTFT as a Dijkgraaf-Witten theory

In Sec. 5.3.2, we showed that a ZN duality defect is group theoretical if and only if N is a

perfect square, for any choice of u,v,ε . In this section, we would like to explicitly show that the

SymTFT for a perfect square N is indeed a Dijkgraaf-Witten theory.

Since N = p2, the ZN cochains a, â can be rewritten as

a = pb̂+ c′, â = pĉ+b′ (5.3.13)

where ĉ, b̂ are Zp cochains, and b′, c′ are ZN cochains. In terms of these new variables, (5.3.1) is
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rewritten as

L =
2π

N
(pĉ+b′)δ (pb̂+ c′) =

2π

p
bδ b̂+

2π

p
ĉδc+

2π

N
b′δc′. (5.3.14)

In the second equality, we dropped 2π b̂δ ĉ since it belongs to 2πZ. On the right hand side, the

first two terms are the standard BF couplings where b = b′ mod p and c = c′ mod p, while the

last term is the DW twist term. Thus the ZN gauge theory without a DW term is equivalent to

Zp ×Zp gauge theory with a DW term.

The advantage of recasting (5.3.1) into (5.3.14) is that the electric-magnetic exchange

symmetry exchanging a and â becomes a symmetry that only exchanges among the electric fields

b,c, and among the magnetic fields b̂, ĉ, separately. But the electric and magnetic fields do not

mix under Zem
2 . Concretely, the (5.3.2) acts on the Zp cochains via

b → vc, c → ub, b̂ → uĉ, ĉ → vb̂. (5.3.15)

Thus gauging (5.3.2) of (5.3.1) is equivalent to gauging (5.3.15) of (5.3.14). From the latter, it is

almost by definition that the gauged theory is Dijkgraaf-Witten, where the definition is reviewed

in Sec. 5.1.2.

We remark that the new variables introduced in (5.3.13) is motivated from the Lagrangian

subgroup derived in Sec. 5.3.2. The Lagrangian subgroup is generated by e
2πi
N p

∮
a = e

2πi
p
∮

c and

e
2πi
N p

∮
â = e

2πi
p
∮

b, and we require that these operators are closed under Zem
2 transformation. This

is obvious from (5.3.15).

Let’s derive the Lagrangian from gauging (5.3.15) of (5.3.14). The first step is to couple

to the Zem
2 background field x, and sum over all the flat configuration of x, i.e. gauge Zem

2 .

Coupling to the Zem
2 background field amounts to changing the ordinary differential operator δ

to the twisted differential operator δx, and ordinary cup product ∪ to twisted cup product ∪x. See

[27, App. A] for a review of twisted cochains, differentials and cup products. In components, the
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Zem
2 gauged Lagrangian on a 3-simplex (i jkl) is

L gauged
i jkl =

2π

p
b̂T

i jK
xi j
(
Kx jkbkl −b jl +b jk

)
+

π

N
b′T

i jσ
xKxi j

(
Kx jkb′

kl −b′
jl +b′

jk

)
+πεxi jx jkxkl

(5.3.16)

where

K =




0 v

u 0


 , b =




b

c


 , b′ =




b′

c′


 (5.3.17)

and x is the dynamical, flat, Zem
2 gauge field. The last term is the twist one can add upon gauging

Z2, whose coefficient ε is related to the FS indicator (−1)ε . The action is invariant under the

gauge transformations

bi j → K−γi(bi j +Kxi jβ j −βi), b̂i j → (KT )−γi(b̂i j +Kxi j β̂ j − β̂i), xi j → xi j + γ j − γi.

(5.3.18)

Summing over b̂ constrains b to be a twisted cocycle (i.e. it is twisted-flat), in components,

(δxb) jkl = Kx jkbkl −b jl +b jk = 0 mod p. Thus the partition function is independent of how the

Zp fields b are lifted to ZN fields b′. The full partition function is

Zgauged = ∑
(b,x)

∏
i jkl

exp
(

πi
N

bT
i jσ

xKxi j
(
Kx jkbkl −b jl +b jk

)
+πiεxi jx jkxkl

)
. (5.3.19)

The pair (b,x) with the above flatness condition is the gauge field for the gauge group (Zp ×

Zp)⋊Z2, with the Z2 exchanging the two Zp’s.17 The partition function is clearly of the form

of DW, for any choice of u,v,ε .

17The special case of N = 4, p = 2 was discussed in a lattice model in [190].
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5.3.4 Explicit topological manipulation

We finally proceed to find an explicit topological manipulation that maps the duality

defect to an invertible defect.

Suppose a 2d QFT X is self-dual. This means

ZX [A] = ∑
a∈ZN

ZX [a]e
2πiv

N
∫

M2
aA
. (5.3.20)

The summation a ∈ ZN means summing over 1-cochain a valued in ZN , with flatness condition

δa = 0 mod N, modulo gauge transformations. The parameter v (which is coprime with N)

paramaterizes different ways of gauging ZN . By gauging ZN on half of the spacetime, we get a

duality defect N .

To motivate the topological manipulation, we first note that the QFT X corresponds the

SymTFT being ZN gauge theory and Dirichlet boundary condition of a. Under the decomposition

(5.3.13), the Dirichlet boundary condition of a translates to the Dirichlet boundary condition of

c and Dirichlet boundary condition of b̂. Given a Dijkgraaf-Witten theory as the SymTFT, the

invertible symmetry corresponds to the Dirichlet boundary condition of electric fields i.e. b,c

only, so the topological manipulation should transform the above topological boundary condition

to the Dirichlet boundary condition of both b and c. Concretely, in terms of the boundary states

defined in Sec. 5.2.1,

⟨A| → ∑
b̂∈Zp

⟨pb̂+C|e
2πi
N
∫

X2
b̂B (5.3.21)

where ⟨A| is the Dirichlet boundary state with ZN = Zp2 background field A, the second factor

on the RHS is the boundary term coming from the integration by parts of the first term in

(5.3.14), so that it has the standard BF coupling 2π

p b̂δb. We also set the electric fields b,c in the

SymTFT (5.3.14) to background fields B,C respectively. Taking the inner product between the

new topological boundary state (5.3.21) and the dynamical boundary state (5.2.3), we get the
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new partition function

Z
X̃
[B,C] = ∑

b̂∈Zp,δ b̂=−βC

ZX [pb̂+C]e
2πi
p
∫

M2
b̂B
. (5.3.22)

The summation is over all b̂ with the constraint δ b̂ =−βC, modulo gauge transformations.18

The constraint comes from the flatness condition of A before topological manipulation, which

descends to the flatness condition of pb̂+C. The constraint also enforces that the exponent

2πi
p
∫

M2
b̂B is not gauge invariant, and one way to make it gauge invariant is to introduce a 3d

bulk[175],

2πi
p

∫

M3

BβC. (5.3.23)

This shows that after gauging, there is a mixed anomaly between two Zp symmetries.

We claim that (5.3.22) defines the desired topological manipulation mapping the self

duality under gauging ZN to an invertible symmetry. To see this, we perform a self-duality

transformation on the right hand side of (5.3.22). Concretely, we substitute (5.3.20) to the right

hand side of (5.3.22), and get

Z
X̃
[B,C] = ∑

a∈ZN ,b̂∈Zp,

δ b̂=−βC

ZX [a]e
2πi
N
∫

M2
pb̂B+va(pb̂+C)

.
(5.3.24)

Summing over b̂ enforces a = uB mod p, which is equivalent to a = pc+ uB mod N. The

flatness condition of a enforces δc =−uβB. Substituting this solution to the partition function,

the exponent becomes 2πi
N
∫

M2
v(pc+ uB)C = 2πi

p
∫

M2
vcC+ 2πi

N BC. The last term is a counter

term, which can be absorbed to the bulk anomaly SPT action (5.3.23) by exchanging B ↔C, i.e.

18β is the Bockstein homomorphism β : H1(M2,Zp)→ H2(M2,Zp).
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2πi
N
∫

M2
BC+ 2πi

p
∫

M3
BβC = 2πi

p
∫

M3
CβB. Combining the above, (5.3.24) finally becomes

Z
X̃
[B,C] = ∑

c∈Zp,δc=−uβB
ZX [pc+uB]e

2πi
p
∫

M2
vcC

= Z
X̃
[vC,uB]. (5.3.25)

This shows that the self duality symmetry in X is mapped to an invertible Z2 symmetry that

simply maps the background fields as

B → vC, C → uB (5.3.26)

which is indeed consistent with the transformation (5.3.15) in the SymTFT.

5.4 Group theoretical duality defects in 4d

We generalize the discussion of duality defects in 2d to duality defects in 4d. The

discussion is overall in parallel with Sec. 5.3, but there are additional subtleties which we

highlight.

5.4.1 Lagrangian subgroups of 5d ZN 2-form gauge theory

The action of the ZN 2-form gauge theory is

L =
2π

N
b̂δb, (5.4.1)

where b, b̂ are both ZN 2-cochains. It has a Zem
4 exchange symmetry

b → ub̂, b̂ →−vb, (5.4.2)

where uv = 1 mod N. Comparing with (5.3.2), the additional minus sign comes from the change

of form degree of the gauge fields, which consequently makes the exchange symmetry to be
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order four, rather than order two.19 The topological surfaces are

S(e,m)(σ) = e
2πie

N
∮

σ
be

2πim
N
∮

σ
b̂. (5.4.3)

One significance is that the topological surface operator can be modified by a local counter term

e
2πik
2N P(σ) for even N, and e

2πi
N

N+1
2 ⟨σ ,σ⟩ for odd N, where we P(σ) is the Pontryagin square of

σ ∈ H2(X ,ZN). In the absence of such counter term, the surface operators are not closed under

fusion, S(e,m)(σ)S(e′,m′)(σ) = e
2πi
N me′⟨σ ,σ⟩S(e+e′,m+m′)(σ).

A full classification of topological boundary conditions of a generic 5d TQFT is still under

development. However, for 5d ZN 2-form gauge theory, its topological boundary conditions are

expected to be classified by the Lagrangian subgroup of its surface operators, with additional

data specifying the topological refinements [48]. We will take this as an assumption throughout

the rest of the paper. In particular, the surface operators within the Lagrangian subgroup are

closed under fusion.20 The Lagrangian subgroup A consists of N topological surface operators

S(e,m) with the following conditions,

1. S(e,m) has trivial topological spin. This is automatically satisfied for any (e,m) [48].

2. Any two surfaces S(e,m) and S(e′,m′) in the Lagrangian subgroup A have trivial mutual

braiding, i.e. e
2πi
N (em′−me′) = 1.

3. Any other surface operator that does not belong to A braids non-trivially with at least one

line in A .
19When N = 2, due to b =−b mod 2, Zem

4 reduces to Zem
2 .

20One way to understand the closedness under fusion is as follows. Assuming two operators S̃(e,m) and S̃(e′,m′) are
within the Lagrangian subalgebra, where S̃(e,m) is related to S(e,m) by stacking a counter term specified in the previous
paragraph. This means that the associated boundary state |B⟩ is stabilized by both of them. S̃(e,m) |B⟩ = |B⟩,
S̃(e′,m′) |B⟩= |B⟩. This means that their product S̃(e,m)S̃(e′,m′) also stabilizes the boundary state |B⟩, hence belongs
to the Lagrangian subalgebra. Now, let (e+ e′,m+m′) = (0,0) mod N, hence S̃(e,m)S̃(e′,m′) is at most a phase
specified by the counter term. If the counter term is non-trivial, the boundary state must vanish. Thus we should
carefully choose the counter term such that S̃(e,m)S̃(e′,m′) = 1 whenever (e+ e′,m+m′) = (0,0) mod N. This is
ensured if we demand the operators S̃(e,m) are closed under fusion for arbitrary (e,m), i.e. S̃(e,m)S̃(e′,m′) = S̃(e+e′,m+m′).
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Since the trivial self-braiding condition is automatically satisfied, the Lagrangian subgroup in 5d

is less constrained than that in 3d, hence the structure of A is richer. For example, we will see

that the Lagrangian subgroups can be generated by an arbitrary single surface S̃(e,m) as long as

gcd(e,m,N) = 1, while in the 3d ZN gauge theory we should further require it to be a self-boson

em = 0 mod N which is much more constraining.

Like in 3d ZN gauge theory, the third condition is guaranteed when there are N topological

surface operators in A . We will verify this at the end of this subsection.

Below, we classify the topological boundary condition of ZN 2-form gauge theory by

classifying its Lagrangian subgroups. We first derive the classification at the level of charges in

Sec. 5.4.1, by assuming that the surface operators within it are closed fusion, i.e.

S̃(e,m)(σ)S̃(e,m)(σ
′) = S̃(e,m)(σ +σ

′), (5.4.4)

S̃(e,m)(σ)S̃(e′,m′)(σ) = S̃(e+e′,m+m′)(σ), (5.4.5)

where S̃(e,m) = S(e,m)eiKe,m⟨σ ,σ⟩ with Ke,m determined by the closeness under fusion. We then

discuss the phase factors in Sec. 5.4.1, where we will find for each charge (e,m) there can be

distinct topological refinements, as emphasized in [48].

Classifying Lagrangian subgroup: charges

We first classify the charges of the surface operators in the Lagrangian subgroup, fol-

lowing the discussion in Sec. 5.3.1. In App. C.1 we provide an alternative derivation of the

Lagrangian subgroups.

Suppose there are pure electric surface operators in the Lagrangian subgroup, and

the one with minimal electric charge is S̃(p,0), where p|N and 1 ≤ p ≤ N.21 It is clear that

there are additional operators S̃(ℓ′,sN/p) having trivial mutual braiding with S̃(p,0), hence can be

supplemented into the Lagrangian subgroup. Denoting t = gcd(s, p), it follows that S̃(ℓ,tN/p) also

21When p = N, there is no pure electric operator.
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belongs to the Lagrangian subgroup, where ℓ= xℓ′ mod p and sx = t mod p.

We proceed to show that t = 1 for S̃(p,0) and S̃(ℓ,tN/p) to generate the entire Lagrangian

subgroup. To see this, we denote gcd(t, ℓ) = ℓ̃. It follows that S̃(ℓ/ℓ̃,tN/pℓ̃) also has trivial braiding

with the above two generators, and should belong to the Lagrangian subgroup, meaning that

it can be expended by the generators. This is possible only when ℓ̃ = 1, meaning t and ℓ are

coprime. Then we fuse p/t copies of the second generator to get S̃(ℓp/t,0), hence should be

generated by the first generator, i.e. ℓp/t = px for an integer x. This means ℓ= xt, in other words,

gcd(ℓ, t) = t = 1, as desired. When t = 1, indeed S̃(p,0) and S̃(ℓ,N/p) generate (N/p)× p = N

surfaces, which is the size of the Lagrangian subgroup. In summary, Lagrangian subgroups are

specified by (ℓ, p), generated by S̃(p,0) and S̃(ℓ,N/p), i.e.

A(ℓ,p) = {S̃(xp+yℓ,yN/p)|x ∈ ZN/p,y ∈ Zp}. (5.4.6)

We finally verify the third property of the Lagrangian subgroup, that for any surface

S(e,m) not within A(ℓ,p), it must braid non-trivially with at least one element in A(ℓ,p). We again

prove by contradiction. Suppose there exists S(e,m) /∈ A(ℓ,p) which braids trivially with every

element in A(ℓ,p). The assumption means

ey
N
p
−m(xp+ yℓ) = 0 mod N, ∀x ∈ ZN/p,y ∈ Zp. (5.4.7)

Setting y = 0, we get mxp = 0 mod N for any x ∈ ZN/p, which means m = 0 mod N/p. Let’s

denote m = m̂N/p. We can alternatively set x = 0, then (eN/p−mℓ)y = 0 mod N for any y,

meaning e− m̂ℓ= 0 mod p. Let’s then denote e = pê+ ℓm̂. So

(e,m) = (pê+ ℓm̂, m̂N/p) = (p,0)ê+(ℓ,N/p)m̂ ∈ A(ℓ,p). (5.4.8)

This contradicts with the assumption that (e,m) is not within A(ℓ,p). Hence the third property in

the Lagrangian subgroup is verified.
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Classifying Lagrangian subgroup: including phases

In Sec. 5.4.1, we have determined the charges in the Lagrangian subgroups. In this

section, we explicitly construct the surface operators, in particular specify the counter terms

within S̃(e,m). The most general ansatz is

S̃(e,m)(σ) = S(e,0)(σ)S(0,m)(σ)eiKe,m⟨σ ,σ⟩. (5.4.9)

Closedness under fusion requires (5.4.4) and (5.4.5). In the above, (e,m) belongs to k(p,q) for

one generator case, and (px+ ℓy,yN/p) for two generators case. We discuss these two cases

separately.

We substitute (e,m) = (xp+ yℓ,yN/p) with x = 0,1, ...,N/p−1 and y = 0,1, ..., p−1.

Similarly, (e′,m′) = (x′p+ y′ℓ,y′N/p). However, (e+ e′,m+m′) = ((x+ x′)p+(y+ y′)ℓ,(y+

y′)N/p) should be more precisely written as

(e′,m′) = [x+ x′+(y+ y′− [y+ y′]p)
ℓ

p
]N/p(p,0)+ [y+ y′]p(ℓ,N/p), (5.4.10)

where by [x]p is the mod p function taking value in 0, · · · , p−1. Then (5.4.4) yields

Kxp+yLr,yN/p =





2π

N
N+1

2 (xp+ yℓ)yN/p mod 2π, N odd

2π

2N (xp+ yℓ)yN/p+πJx,y mod 2π, N even
. (5.4.11)

Substituting (5.4.11) into (5.4.5), we find that for odd N (5.4.11) is automatically satisfied, while

for even N, Jx,y should satisfy

ℓ

p
((y+ y′)2 − [y+ y′]2p)+ xy+ x′y′− [x+ x′+(y+ y′− [y+ y′]p)ℓ/p]N/p[y+ y′]p

= J[x+x′+(y+y′−[y+y′]p)ℓ/p]N/p,[y+y′]p − Jx,y − Jx′,y′ mod 2.
(5.4.12)

It is not straightforward to explicitly solve for Jx,y analytically. However, by numerically
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solving (5.4.12) for N ≤ 100, we confirmed that the solution exist for all even N’s: there are

four solutions when p,N/p, ℓ are all even, and two solutions otherwise. In particular, from

the numerical results, we find that when p,N/p, ℓ are all even, the four solutions are of the

form Jx,y = xy+ c1x+ c2y mod 2, where c1,c2 = 0,1 parameterize the four solutions. Another

situation where we are able to solve Jx,y is when the Lagrangian subgroup is generated by only

one surface operator, which we will discuss in App. C.2.

The situation significantly simplifies when we restrict the 4d boundary of the 5d SymTFT

to be spin manifolds. In this case, the πJx,y term in (5.4.11) can be ignored due to ⟨σ ,σ⟩= 0

mod 2.

5.4.2 Zem
4 stable Lagrangian subgroup

We proceed to examine when the Lagrangian subalgebra is stable under Zem
4 . Recall that

under Zem
4 , the gauge field transforms as (5.4.2). So S(e,0)(σ)→ S(0,ue)(σ), and S(0,m)(σ)→

S(−vm,0)(σ).

When the 4d spacetime X4 is a spin manifold, the counter terms for even and odd N

are given by (5.4.11) with Jx,y = 0. Under Zem
4 , the generators S̃(p,0) and S̃(ℓ,N/p) are mapped

to S̃(0,up) and S̃(−vN/p,uℓ) respectively for both even and odd N. Stability under Zem
4 implies

(0,up) = (xp+ yℓ,yN/p) mod N, and (−vN/p,uℓ) = (zp+wℓ,wN/p) mod N. In components,

we have

xp+ yℓ = 0 mod N, (5.4.13)

yN/p = up mod N, (5.4.14)

zp+wℓ = −vN/p mod N, (5.4.15)

wN/p = uℓ mod N. (5.4.16)

Once the Zem
4 images of the generators are within the Lagrangian subgroup, it is not hard to show

that the Zem
4 images of all other surface operators in the Lagrangian subgroup are all within the
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Lagrangian subgroup as well.

Given N,u,v, can we find p, ℓ,x,y,z,w such that (5.4.13)∼(5.4.16) are satisfied? Below,

we provide an equivalent but simpler-looking criteria of N for which the solutions exists.22 First,

multiplying p on both sides of (5.4.14) yields p2 = 0 mod N (note that u,v are coprime with N).

This means

p2 = NM (5.4.17)

for some integer M. As a consequence, we have p = (N/p)M, which means

L := gcd(p,N/p) = N/p, (5.4.18)

hence we write p = ML. Substituting this into (5.4.17), we have (ML)2 = NM, which gives rise

to

N = L2M. (5.4.19)

So far, we only used (5.4.14). To see the condition of M, we multiply ℓ on both sides of (5.4.16),

ℓ2 = vwℓN/p = v(−vN/p− zp)N/p =−(vN/p)2 =−v2L2 mod N (5.4.20)

where in the second equality we used (5.4.15). Multiplying u2 and dividing L2 on both sides, we

find

(uℓ/L)2 =−1 mod M. (5.4.21)

In other words, ℓ = Lrv with r2 = −1 mod M. Finally, we note that (5.4.13) does not impose

22We are grateful to Justin Kaidi for discussing the following proof.
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Table 5.1. N’s that admit Zem
4 stable Lagrangian subgroups, i.e. N = L2M labeled by colors.

The red and blue ones are the N’s with L = 1 and L > 1 respectively. They correspond to the
Lagrangian subgroups that are generated by one and two generators.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

further constraints and can be solved by x =−r and y = uM.

So far, we have shown that (5.4.13)∼(5.4.16) imply N = L2M where −1 is a quadratic

residue of M. To show the converse is also true, we simply take

(N,x,y,z,w, p, ℓ) = (L2M,−r,uM,−vλ ,r,LM,Lrv) (5.4.22)

where r satisfies r2 + 1 = λM, and it is straightforward to check that (5.4.13)∼(5.4.16) are

satisfied. In summary, we have the criteria:

Stability criteria:

When the 4d spacetime is a spin manifold, a Zem
4 stable Lagrangian subgroup exists if

and only if N = L2M and for every choice of bicharacter labeled by u,v with uv = 1 mod N,

where −1 is a quadratic residue of M. We enumerate such N’s in Tab. 5.1.

Let’s make several comments.

1. Combining the above criteria with the general discussion in Sec. 5.2, we claim that the

duality defect associated with gauging Z(1)
N is group theoretical if and only if N = L2M

where −1 is a quadratic residue of M. The if direction is proven in Sec. 5.2, and will be

further supported by explicitly showing the SymTFT is a Dijkgraaf-Witten theory and also

explicitly constructing the topological manipulation for every such N. The condition is also

independent of the choice of bicharacters u,v and the higher dimensional generalization of

the Frobenius-Schur indicator ε , which will be further discussed in Sec. 5.4.3. However
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the only if direction is less solid, and remains a conjecture.

2. On non-spin manifolds, the criteria for odd N remains the same. For even N, we don’t

have the full classification of stable Lagrangian subgroups, but let’s comment on two

special cases. The first case is when the Lagrangian subgroup is generated by one surface

operator, then we are able to show that the stable Lagrangian subgroup does not exist. We

present the details in App. C.2. The second case is when N = L2 is a perfect square so that

(p,N/p, ℓ) = (L,L,0) are all even for even L. On top of the stability condition on charges

(5.4.13)∼(5.4.16) whose solution is (N,x,y,z,w, p, ℓ) = (L2,0,u,−v,0,L,0) for even L,

there are additional stability conditions on the topological refinements Jx,y = xy+c1x+c2y

mod 2 enforcing c1 = c2 mod 2. In Sec. 5.4.4 we will comment on the explicit topological

manipulation on non-spin manifold corresponding to this special case.

3. When L = 1, there is only one generator S̃(r,1), with (vr)2 =−1 mod N. This is precisely

the condition found in [53, App. C], as well as in [26] for prime N’s, for the Z(1)
N duality

defect to be group theoretical on spin manifolds.

4. In [12], the problem of determining group theoretical-ness was phrased in terms of Hanany-

Witten transition between strings and 7-branes in the holographic IIB setup. In particular,

the main result, summarized in Tab. 5 of [12], coincides with Tab. 5.1 of the current work

for N ≤ 29.

5. It is intriguing to note that the same series N = L2M (with −1 being a quadratic residue of

M) was found in a completely different context in [13], where the authors showed that a

(spin) TQFT with Z(1)
N symmetry N satisfies exactly the same condition. In Sec. 5.5, we

explain such a coincidence.

5.4.3 SymTFT as a Dijkgraaf-Witten theory

In this subsection, we show explicitly that the SymTFT for the entire ZN duality symmetry

is a Dijkgraaf-Witten theory when the Zem
4 stable Lagrangian subgroup exists. From Sec. 5.3.3,
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we learned that for the SymTFT obtained from gauging the electric-magnetic exchange symmetry

of the ZN gauge theory to be a Dijkgraaf-Witten theory, we should rewrite the original ZN gauge

theory in terms of a set of new gauge fields so that the em exchange symmetry acts on the electric

and magnetic gauge fields separately, and does not exchange them. We will find below how this

can be achieved for 5d ZN 2-form gauge theory.

Odd N:

From Sec. 5.4.2, we found that the Zem
4 stable Lagrangian subgroup is generated by

surface operators S̃(LM,0) and S̃(Lrv,L) with the constraints that r2 +1 = λM for some integer λ .

Inspired by the discussion in Sec. 5.3.3, we decompose the ZN 2-form gauge fields into new

ones as follows

(b̂,b) = (LM,0)â+(Lrv,L)ĉ− (λ ,0)c− (rv,1)a (5.4.23)

where (â, ĉ,a,c) are (ZL,ZLM,ZN ,ZN) cochains respectively. We again label the magnetic fields

by hatted letters, while the electric fields by unhatted letters. Under Zem
4 , (5.4.2) implies

(b̂,b)→ (−vb,ub̂) = (0,uLM)â+(−vL,Lr)ĉ− (0,uλ )c− (−v,r)a

= [−(LM,0)r+(Lrv,L)Mu]â+[−(LM,0)λv+(Lrv,L)r]ĉ

− [−(λ ,0)r+(vr,1)λu]c− [−(λ ,0)Mv+(vr,1)r]a

(5.4.24)
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where in the second line we used (5.4.13)∼(5.4.16). Comparing (5.4.23) and (5.4.24), we find

the transformation of new gauge fields as23

â →−râ−λvĉ,

ĉ → uMâ+ rĉ,

a → ra+uλc,

c →−Mva− rc,

(5.4.25)

where the electric and magnetic fields do not mix under Zem
4 . Indeed, the generators of the

Lagrangian subgroup e
2πip

N
∮

b = e−
2πi
L
∮

a and e
2πi
N
∮

Lrvb+Lb̂ = e−
2πiλ
LM

∮
c are all written in terms of

the electric fields, hence their generating set is stable under Zem
4 . The Lagrangian of the ZN

2-form gauge theory can be rewritten in terms of the new gauge fields as

2π

N
b̂δb

=− 2π

L
âδa+

2πλ

LM
ĉδc+

2πλ

L2M
aδc+

2π

L2M
δ (−λLĉc+

N +1
2

L2rvĉĉ−Lrvaĉ+
N +1

2
rvaa)

=− 2π

L
âδa+

2πλ

LM
ĉδc+

2πλ

L2M
aδc+Lbdy.

(5.4.26)

In the second line, the first two terms are the BF terms that couple electric fields (a,c) to the

magnetic fields (â, ĉ), while the third term is the mixed coupling (Dijkgraaf-Witten twist term)

that only depends on the electric fields a,c. The last term Lbdy is the boundary term which

does not play any role in this subsection, while it will be crucial in Sec. 5.4.4. Because the Zem
4

only exchanges among the electric fields and the magnetic fields separately, we conclude that

after gauging Zem
4 , the theory is still a Dijkgraaf-Witten. The explicit form the Dijkgraaf-Witten

can be analogously constructed as in Sec. 5.3.3. See also [122]. Concretely, after gauging Zem
4 ,

we introduce the Zem
4 cocycle x as a dynamical gauge field. Denote the two component 2-form

23The coefficient of a and c in (5.4.24) is designed to ensure that a,c transform in a conjugate way as â, ĉ and
also (â,a) and (ĉ,c) appear as conjugate fields in the Lagrangian.

203



gauge field

a =




a

c


 , â =




â

ĉ


 . (5.4.27)

The gauged ZN 2-form gauge theory becomes

L gauged
i jklmn =

2π

LM
âT

i jkWKxik(Kxkl almn −akmn +akln −aklm)

+
πλ

N
aT

i jkV Kxik(Kxkl almn −akmn +akln −aklm)+
πε

2
xi j(βx) jkl(βx)lmn

(5.4.28)

where

K =




r uλ

−Mv −r


 , K̂ =



−r −λv

uM r


 , W =



−M 0

0 λ


 , V =




0 1

−1 0


(5.4.29)

and (βx) jkl := 1
4(δx) jkl =

1
4(xkl − x jl + x jk) is always an integer valued since x is a Z4 cocycle.

The gauged theory is invariant under gauge transformations

ai jk → K−γi(ai jk +Kxi jα jk −αik +αi j),

âi jk → K̂−γi(âi jk + K̂xi j α̂ jk − α̂ik + α̂i j),

xi j → xi j + γ j − γi,

(5.4.30)

thanks to the identities K̂TWK = W and KTV K = V . Summing over â constrains a to be a

twisted cocycle, i.e. a is twisted-flat. In components, W (Kxkl almn −akmn +akln −aklm) = 0 mod

LM. This means that a,x form a non-trivial 2-group. The full partition function is

Zgauged =∑
a,x

∏
i jklmn

exp
(

iπλ

N
aT

i jkV Kxik(Kxkl almn −akmn +akln −aklm)+
iπε

2
xi j(βx) jkl(βx)lmn

)

(5.4.31)
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where we only sum over the gauge fields a,x with the twisted-flatness condition. The partition

function is obviously of the form of Dijkgraaf-Witten (see Eq. (5.1.6)).

Even N:

When the 4d spacetime is a spin manifold, the discussion is almost the same as above,

such as (5.4.23), (5.4.24) and (5.4.25). The only modification is to replace the factor N+1
2 in

the Lagrangian (5.4.26) by 1
2 , and the self pairing e.g. aa by the Pontryagin square of a, i.e.

P(a). When the 4d spacetime is a non-spin manifold, in the special case where the Lagrangian

subgroup has only a single generator, we find in App. C.2 that there is no stable Lagrangian

subgroup, hence the SymTFT obtained by gauging Zem
4 can not be a Dijkgraaf-Witten. When

there are two generators, we do not solve the stability condition in this paper.

In summary, for all the cases where the stable Lagrangian subgroup exist, we showed

that the SymTFT for the duality symmetry is a Dijkgraaf-Witten theory.

5.4.4 Explicit topological manipulations

We finally proceed to find explicit topological manipulations that map the duality defect

to an invertible defect.

Suppose a 4d QFT with Z(1)
N one-form symmetry is self-dual under gauging Z(1)

N . This

means

ZX [B] = ∑
b∈ZN

ZX [b]e−
2πi
N
∫

M4
vbB

. (5.4.32)

The summation b ∈ ZN means summing over 2-cochain b valued in ZN with flatness condition

δb = 0 mod N, modulo gauge transformations. The idea of identifying the topological manip-

ulation which maps the duality defect to an invertible defect is the same as in Sec. 5.3.4. The

self-dual theory X corresponds to Dirichlet boundary condition of b. The desired topological

manipulation should map such boundary condition to a new topological boundary condition

205



where all the new electric fields have Dirichlet boundary conditions. In the meantime, the

discrete theta terms should be introduced coming from the boundary terms of the SymTFT Lbdy

in (5.4.26).

Odd N:

In this case, N has the form N = L2M where −1 is a quadratic residue of M. The

topological manipulation should map the Dirichlet boundary condition of b to the Dirichlet

boundary conditions of a,c defined via (5.4.23). Denoting the background field for the former as

B, and those for the latter as A and C, we have

⟨B| → ∑
ĉ∈ZLM

⟨Lĉ−A|e−
2πi
LM
∫

M4
(λC+rvA)ĉ+ 2πi

N
N+1

2
∫

M4
(L2rvĉĉ+rvAA)

. (5.4.33)

The phase factor on the RHS is the Lbdy in (5.4.26). This implies that the new partition function

obtained by topological manipulation is

Z
X̃
[A,C] = ∑

ĉ∈ZLM

ZX [Lĉ−A]e−
2πi
LM
∫

M4
(λC+rvA)ĉ+ 2πi

N
N+1

2
∫

M4
(L2rvĉĉ+rvAA)

. (5.4.34)

Notice that we start with taking the background gauge field A,C to be ZN gauge field for

convenience. However, the action (5.4.34) is invariant up to terms containing only background

fields under the following transformation:

A → A+LX , C →C+LMY, ĉ → ĉ+X , (5.4.35)

where X ,Y ∈ ZN . Eq. (5.4.35) shows that A is actually a ZL background field and C is a ZLM

background field.

We proceed to check what does the duality symmetry of X is mapped to in X̃ . Substi-
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tuting (5.4.32) into (5.4.34), we find

Z
X̃
[A,C] = ∑

ĉ∈ZLM ,b∈ZN

ZX [b]e−
2πi
N
∫

M4
vb(Lĉ−A)− 2πi

LM
∫

M4
(λC+rvA)ĉ+ 2πi

N
N+1

2
∫

M4
(L2rvĉĉ+rvAA)

.

(5.4.36)

We first sum over ĉ, where the relevant terms are ∑ĉ∈ZLM e−
2πi
LM
∫

M4
(vb+λC+rvA)ĉ+ 2πi

M
N+1

2 rv
∫

M4
ĉĉ.

This sum is non-vanishing only when vb+λC+ rvA can be divided by L. 24 We thus define

b = Lb′−u(λC+ rvA). Substituting this into (5.4.36) and summing over ĉ, we get

Z
X̃
[A,C] = ∑

ĉ,b′∈ZLM

ZX [Lb′−u(λC+ rvA)]e−
2πi
N
∫

M4
(−vLb′+λC+rvA)A+ 2πi

N
N+1

2
∫

M4
rvAA+L2rvb′b′

= Z
X̃
[uλC+ rA,−vMA− rC]e−

2πi
N

N+1
2 λ

∫
M4

(2λMAC+ruλCC+rvMAA)
.

(5.4.37)

Therefore we have shown that the duality symmetry of X becomes an invertible symmetry

mapping on the background fields of the new theory X̃ as

A → uλC+ rA mod L, C →−vMA− rC mod ML. (5.4.38)

This agrees with (5.4.25).

Even N:

When the 4d spacetime is a spin manifold, the discussion is almost identical to the odd

N case. The only modifications are to replace N+1
2 by 1

2 , and self pairing, e.g. BB, by P(B) in

(5.4.33), (5.4.34), (5.4.36), (5.4.37). The duality symmetry (5.4.32) is mapped to an invertible

symmetry (5.4.38).

When the 4d spacetime is a non-spin manifold, we haven’t classified all the solutions.

However, as mentioned in Sec. 5.4.2, when N = L2 for even L, there is a stable Lagrangian sub-
24This can be seen by replacing ĉ with ĉ+ s where s is an integer valued cochain, and demand the sum does not

change as ĉ is a dummy variable.
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group. Inspired by a similar discussion in Sec. 5.3.4, we claim that the topological manipulation

is simply gauging the Z(1)
L subgroup, i.e. X̃ = X /Z(1)

L . Concretely,

Z
X̃
[A,C] = ∑

a∈ZL

ZX [Lĉ−A]e−
2πi
L
∫

X4
ĉC (5.4.39)

where A,C are both ZL 2-form gauge fields. Substituting (5.4.32) into (5.4.39), we find the

background fields A,C are mapped as

A → uC mod L, C →−vA mod L . (5.4.40)

Hence when the 4d spacetime is a non-spin manifold, we have at least confirmed a spacial case

where N = L2 such that the Z(1)
N duality defect is group theoretical.

In summary, for all the cases where the stable Lagrangian subgroup exist (on spin

manifolds), we have constructed explicit topological manipulation which maps the duality

symmetry to an invertible symmetry.

5.5 Connection with obstruction to duality-preserving
gapped phases

We have observed in the above that for the Z(d/2−1)
N duality defect to be group theoretical,

some number-theoretic condition should be satisfied, and exactly the same condition has appeared

in other contexts, including whether there exists an SPT or TQFT invariant under gauging

Z(d/2−1)
N [50, 51, 13, 189]. In this section, we comment on the relation between them.

5.5.1 Duality defects, gauging, and SPT

Given a finite abelian group Z(d/2−1)
N and an integer u coprime with N which specifies

how to gauge Z(d/2−1)
N , one may look for Z(d/2−1)

N SPTs in d dimensions satisfying the one of

the following closely related properties:
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(a) The Z(d/2−1)
N SPT is equipped with a Z(d/2−1)

N duality defect with an unspecified Frobenius-

Schur indicator (labeled by ε). Note that the bicharacter is specified by u. Equivalently,

the Z(d/2−1)
N SPT is invariant under gauging Z(d/2−1)

N ;

(b) The Z(d/2−1)
N SPT is equipped with a Z(d/2−1)

N duality defect with a given Frobenius-Schur

indicator (labeled by ε).

A Z(d/2−1)
N -SPT satisfying property (b) automatically satisfies property (a) since Z(d/2−1)

N duality

defect implements gauging Z(d/2−1)
N . However, the converse is not true: it is possible that for a

given coprime pair (N,u), the duality defect with certain ε may not be realized by any Z(d/2−1)
N

SPT, or equivalently, the duality defect may be anomalous for some choice of ε . See [180] for

the general criteria of the anomaly in 2d.

In [50, 51, 13, 122, 180], the authors discussed the G-SPTs with property (a). It was

found that

1. in 2d and among all N’s, the only Z(0)
N SPT is a trivial SPT with partition function Z = 1.

Furthermore, the trivial SPT is not invariant under gauging Z(0)
N for any coprime pair

(N,u);

2. in 4d and among all N’s, an Z(1)
N SPT is classified by

2πk
N

N +1
2

∫

X4

B(2)B(2), k ∈ ZN , X4 = spin or non-spin,

2πk
2N

∫

X4

P(B(2)),





k ∈ Z2N , X4 = non-spin,

k ∈ ZN , X4 = spin,

(5.5.1)

and there exists an Z(1)
N SPT invariant under gauging Z(1)

N for a given u if and only if there
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is an integer r solving the following equation25

r2 =−1 mod





N, odd N on spin and non-spin X4,

N, even N on spin X4,

2N, even N on non-spin X4.

(5.5.2)

Solving (b) is harder. In 2d, for general G, a classification of G SPTs equipped with a

G duality defect was achieved in [180], see also [189]. In 3d, some related recent works on the

anomaly of fusion 2-categories can be found in [73, 72].

5.5.2 Duality defects, gauging, TQFT, and relation with group theoreti-
cal duality defects

Given an abelian group Z(1)
N and an integer u coprime with N which specifies how to

gauge Z(1)
N , one may look for Z(1)

N symmetric 4d TQFTs26 satisfying the one of the following

closely related properties:

(a’) The Z(1)
N symmetric TQFT (with one ground state on S3 spatial manifold) is equipped with

a Z(1)
N duality defect with an unspecified Frobenius-Schur indicator (labeled by ε). Note

that the bicharacter is specified by u. Equivalently, the Z(1)
N symmetric TQFT is invariant

under gauging Z(1)
N ;

(b’) The Z(1)
N symmetric TQFT (with one ground state on S3 spatial manifold) is equipped with

a Z(1)
N duality defect with a given Frobenius-Schur indicator (labeled by ε).

The requirement of one ground state on S3 spatial manifold ensures that the Z(1)
N duality symmetry

is not spontaneously broken, however, the Z(1)
N symmetry is allowed to be spontaneously broken

since we don’t require one ground state on other spatial manifolds such as T 3. Similar to the
25In [50] only the case u = 1 was discussed. But it is straightforward to check that the same condition holds for

any u coprime with N.
26In this subsection, we constrain our discussion to duality defects in 4d. The reason is that in 2d, the TQFTs

with one ground state on S1 spatial manifold is always an SPT, hence the discussion reduces to Sec. 5.5.1.
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SPT = SPT/Z(0)
N

(a)

Group theoretical
Z(0)

N duality defect

Figure 5.3. For 2d theory: space of N where group theoretical Z(0)
N duality defects exist

(bounded by orange circle and contains N being a perfect square), and where there exists a
Z(0)

N -SPT invariant under gauging Z(0)
N (bounded by blue circle and contains only N = 1).

discussion in Sec. 5.5.1, a Z(1)
N symmetric TQFT satisfying property (b’) automatically satisfies

property (a’). However, the converse is not true.

In [13], a classification for (a’), when the 4d manifold is spin, has been achieved. It was

found that a 4d (spin) TQFT is invariant under gauging Z(1)
N if and only if N has the form

N = L2M, L ∈ Z, and ∃ an integer r solving r2 =−1 mod M. (5.5.3)

This is precisely the condition for the Z(1)
N duality defects to be group theoretical.

To understand why there is such a coincidence, we again use the SymTFT. It turns out

that the SymTFT is a natural set up in discussing 4d TQFTs with the property (a’) or (b’). Any 4d

TQFT with a non-anomalous Z(1)
N global symmetry can be expanded into a 5d slab where in the

5d bulk is a ZN 2-form gauge theory (5.2.1), the left boundary is the Dirichlet boundary condition

(5.2.2), and the right boundary is another topological boundary condition (5.2.3) specified by

the 4d TQFT. Since the SymTFT does not contain genuinue line or point operator, it is clear

that after shrinking the 5d slab to get a genuine 4d theory, there isn’t any non-trivial topological

local operator, neither directly coming from point operator in the bulk nor from compactifying
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SPT = SPT/Z(1)
N

(a)

∃ TQFT equipped with Z(1)
N duality

defect with given ε (b’)

TQFT = TQFT/Z(1)
N

(a’)
=

Group theoretical
Z(1)

N duality defect

Figure 5.4. The Venn diagram captures the result for 4d theory: the orange circle bounds N
satisfying (a′), the red circle bounds the N satisfying (b′) while the blue circle bounds the N
satisfying (a).

line operators along the shrinked direction. Hence the only topological local operator is the

trivial identity, and the unique ground state on S3 is guaranteed. Furthermore, it is also known

[122, 83, 33, 189, 8] that gauging Z(1)
N of the 4d TQFT can be equivalently achieved by fusing

a Zem
4 symmetry defect (constructed as a condensation defect in [122, 8]) of the 5d Z(1)

N gauge

theory to either of the topological boundary. Requiring (a’), i.e. the TQFT to be invariant under

gauging Z(1)
N , amounts to requiring the right topological boundary state (5.2.3) to be invariant

under fusing with the Zem
4 symmetry defect. This is precisely the stability condition in Sec. 5.4.2,

from where we derived the same condition as (5.5.3).

Solving (b’) is again harder. To achieve a full classification of TQFTs equipped with

a duality defect, we need to consider the SymTFT of the duality symmetry, i.e. Z(1)
N 2-form

gauge theory with Zem
4 gauged, as in (5.2.5). Note that the resulting SymTFT depends on both

the choice of bicharacters (see the discussion below (5.2.5)), as well as the choice of a discrete

theta term of the Zem
4 gauge field x. The choice of discrete theta term can be understood as a

higher dimensional generalization of the Frobenius Schur indicator as discussed in Sec. 5.4.3.

There is a topological line operator K = e
iπ
2
∮

x, which by construction topologically terminates

212



on the left topological boundary, just as the electric surface operator e
2πi
N
∮

b does. To ensure that

the duality symmetry is not spontaneously broken (or equivalently there is one ground state on

S3), we should demand that the K-line can not topologically terminate on the right topological

boundary. This imposes additional constraints for (b’), which will be left for future study.

We summarize the main results of Z(0)
N duality defects in 2d in Fig. 5.3, and those of Z(1)

N

duality defects in 4d in Fig. 5.4. 27

Chapter 5, in full, is currently being prepared for submission for publication of the

material. Zhengdi Sun, Yunqin Zheng, arXiv:2307.14428 [hep-th]. The dissertation author was

one of the primary investigator and author of this material.

27We thank Philip Boyle Smith for the discussions on the Venn diagrams.
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Appendix A

High Energy Modular Bootstrap, Global
Symmetries and Defects

A.1 Verification

A.1.1 Ising CFT with Z2 symmetry

The Ising model has three primaries: I,ε,σ . Under the Z2 symmetry, I (with h = h̄ = 0)

and ε (with h = h̄ = 1
2 ) are even while the σ (with h = h̄ = 1

16 ) is odd. The central charge is given

by c = 1
2 . Let us denote the characters corresponding to I,ε,σ as χ0,χ1/2,χ1/16 respectively. A

nice exposition of the Ising model in context of TDLs can be found in [140]. Here we briefly

recapitulate the necessary ingredients for verifying our formulas (3.4.10) and (3.3.2) against the

Ising model.

The partition function of the Ising model with TDL (name it η) corresponding to Z2

group element (the identity element e and the non-identity element p) inserted along the spatial

direction is given by

Zη(β ,e) = Z(β ) = |χ0|2 + |χ1/2|2 + |χ1/16|2 ,

Zη(β , p) = |χ0|2 + |χ1/2|2 −|χ1/16|2 .
(A.1.1)

• Irreps: The growth of the even and the odd operators (denoted by ρ± respectively) are
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controlled by 1
2 (Z

η(β ,e)±Zη(β , p)) in the β → 0 limit. From eq. (3.4.10), we have

s−(δ )≤ log
[

1
2δ

∫
∆+δ

∆−δ

d∆
′
ρ±(∆′)

]
−2π

√
∆

6
− 1

4
log
(

1
96∆3

)
+ log(2)≤ s+(δ ) (A.1.2)

where s± = log(c±). We use the value of c± presented in [92]. We verify the above inequality in

fig. A.1.

ISING CFT Z2 even,δ=1.1 Upper bound Lower bound

100 200 300 400 500
Δ

-0.6

-0.4

-0.2

0.0

0.2

0.4

s(1.1,Δ)

ISING CFT Z2 odd,δ=1.1 Upper bound Lower bound

100 200 300 400 500
Δ

-0.6

-0.4

-0.2

0.0

0.2

0.4

s(1.1,Δ)

Figure A.1. The estimate of the number of even and odd operators (under Z2) in Ising CFT. We
plot the logarithm of the ratio of actual number of operators in the interval of size 2δ = 2.2 and
the leading prediction from Tauberian-Cardy analysis.

• Defect Hilbert space: The partition function corresponding to the defect Hilbert space

is given by the S modular transformation of Zη(β , p):

Zη(β ) = χ0χ̄1/2 +χ1/2χ̄0 + |χ1/16|2 . (A.1.3)

The Virasoro primaries have weights (0,1/2), (1/2,0) and (1/16,1/16). We note that there is

no ∆ = 0 state in the defect Hilbert space. The states with ∆ = 1/2 corresponds to Fermions. We

can verify following estimate of the growth of number of operators in the defect Hilbert space

(defect corresponding to Z2, here the TDL is extended along the time direction) of the Ising CFT:

s−(δ )≤ log
[

1
2δ

∫
∆+δ

∆−δ

d∆
′
ρHη

(∆′)
]
−2π

√
∆

6
− 1

4
log
(

1
96∆3

)
≤ s+(δ ) (A.1.4)

where s± = log(c±). The above follows from eq. (3.3.2). Again we use the value of c± presented

in [92] and verify the inequality in fig. A.2.
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ISING CFT Z2 defect Hilbert,δ=1.1

Upper bound Lower bound

100 200 300 400 500
Δ

-0.6

-0.4

-0.2

0.0

0.2

0.4

s(1.1,Δ)

Figure A.2. The estimate of the number of operators in the defect Hilbert space corresponding to
Z2 in Ising CFT. We plot the logarithm of the ratio of actual number of operators in the interval
of size 2δ = 2.2 and the leading prediction from Tauberian-Cardy analysis.

The Ising model also has a duality defect line N̂. This is non invertible TDL. The fusion

rule is given by N̂ × N̂ = I+η , thus the action of N̂ is given by

N̂|even⟩=
√

2|even⟩ , N̂|odd⟩= 0⟩ .

The growth of the operators in the defect Hilbert space corresponding to the duality line

can be estimated via eq. (3.3.2):

s−(δ )≤ log
[

1
2δ

∫
∆+δ

∆−δ

d∆
′
ρHN̂

(∆′)
]
−2π

√
∆

6
− 1

4
log
(

1
96∆3

)
− 1

2
log(2)≤ s+(δ ) , (A.1.5)

which we verify in the fig. A.3.
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ISING CFT duality defect Hilbert,δ=1.1

Upper bound Lower bound
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Δ
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0.2

0.4

s(1.1,Δ)

Figure A.3. The estimate of the number of operators in the defect Hilbert space of the duality
defect line N̂ in the Ising CFT. We plot the logarithm of the ratio of actual number of operators
in the interval of size 2δ = 2.2 and the leading prediction from Tauberian-Cardy analysis.

A.1.2 Compact Boson at R = 1
2 with U(1) symmetry

For compact Boson at radius R = 1
2 , the U(1) generated by J0 − J̄0 acts faithfully. The

partition function for the charge Q is given by

ZQ(q) = q
m2
4 − 1

12

[
θ3(q)

η2

]
= q

m2
4 − 1

12
(
1+4q+9q2 +20q3 +O(q4)

)
. (A.1.6)

For compact boson k = 1, thus the growth of operators with charge Q is given by

s−(δ )≤ log
[

1
2δ

∫
∆+δ

∆−δ

d∆
′
ρHη

(∆′)
]
−2π

√
∆

3
− log

(
1

4∆

)
+

1
2

log(3k)≤ s+(δ ) , (A.1.7)

which follows from eq. (3.4.24). This is verified in fig. A.4.
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Compact Boson charge 0,δ=1.1

Upper bound Lower bound
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Compact Boson charge 1,δ=1.1
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Figure A.4. The estimate of the number of operators with charge Q = 0,1 of the U(1) symmetry
in compact boson at R = 1

2 . We plot the logarithm of the ratio of actual number of operators in
the interval of size 2δ = 2.2 and the leading prediction from Tauberian-Cardy analysis.

A.2 Spin selection rule for anomalous symmetry

The defect Hilbert space is defined by having a TDL along the time like direction. Now

if we want to define the action of the symmetry in the defect Hilbert space, we need to introduce

another TDL along the spatial direction. Since, the two TDLs cross each other, we need to

resolve the crossing. And this is how the global symmetry can turn out to have ’t Hooft anomaly,

which is related to the ambiguity in locally resolving the crossing configuration of two TDL (see

fig. A.5). Two different ways of resolution leads to defining two operators L± acting on the

states in the defect Hilbert space. Relationship between these two different ways of resolving

ambiguity leads to the “crossing relations”, which naturally generalize to the any TDLs (not only

the one corresponding to the global symmetry). We will see that such ’t Hooft anomaly of global

symmetry will impose spin selection rules on the defect Hilbert space (see fig. A.7).
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Figure A.5. Here, we consider the Z2 symmetry line on a torus. There are two ways to resolve
the crossing configuration on the top, which are related by α = 1 for non-anomalous Z2 and
α =−1 is for the anomalous Z2. We note the left configuration as L̂+ and the right configuration
as L̂−.

We will focus on the group Z2 for rest of the appendix. Following [140], to derive a spin

selection rule, we first determine the action of L̂± on the defect Hilbert space and then consider

a specific configuration which relates the action of L̂± to the spin of the state. We consider the

fig. A.6 to derive α2 = 1.

Figure A.6. Here we consider two L̂+ on the left figure and show it is equal to α acting on
states in the defect Hilbert space.

On the other hand, we have

(L̂+)
2|h,h⟩= α|h,h⟩ ⇒ L̂+|h,h⟩ =±

√
α|h,h⟩ . (A.2.1)

For the next step, we consider mapping L̂+|h,h⟩ from Rt ×S1 to R2 and unwind the L +
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to deduce

L̂±|h,h⟩= e±2πıs|h,h⟩. (A.2.2)

Figure A.7. Here, we consider the action of L̂+ acting on the state |h,h⟩ on Rt ×S1 and maps to
R2 via the operator-state correspondence map. Then unwinding L̂+ shows L̂+|h,h⟩= e2πıs|h,h⟩.

Combining the previous results, we find:

• in the non-anomalous case where α = 1, we have

s ∈





Z if L̂+ acts as +1,

1
2 +Z if L̂+ acts as −1;

(A.2.3)

• in the anomalous case where α =−1, we have

s ∈





+1
4 +Z if L̂+ acts as + i,

−1
4 +Z if L̂+ acts as − i.

(A.2.4)

Analogously, one can generalize the above result to Zn [46]. Thus the spin selection rule

automatically rules out the existence of ∆ = 0 states in the defect Hilbert space if the symmetry

is anomalous. For completeness, we remark here that if the symmetry is non-anomalous, we can

rule out the existence of ∆ = 0 state by requiring that that symmetry group acts faithfully on the

Hilbert space.
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A.3 Review of Representation Theory for Finite Group

We review some basic notions and results in the representation theory for finite group.

For a more detailed exposition including proofs and jokes, see II.1 and II.2 of [188].

Given a finite group G and a unitary (reducible or irreducible) representation r of G given

by matrices D(r)(g), we define the character χ(r)(g) to be

χ
(r)(g)≡ trD(r)(g). (A.3.1)

The Great Orthogonality Theorem together with one of its corollary states that, given

two irreducible representation r,s,

∑
g

D(r)†(g)i
jD(s)(g)k

l =
|G|
dr

δ
rs

δ
i
lδ

k
j (A.3.2)

where |G| is the order of the group, dr is the dimension of the irrep r, and δ rs = 1 if two irreps

are the same and δ rs = 0 otherwise. For a proof of this result, see II.2 of [188].

From the above result, one can derive the so-called character orthogonality. By taking

trace, we find

∑
g
(χ(r)(g))∗χ

(s)(g) = |G|δ rs. (A.3.3)

We can use the character orthogonality to count how many times a given irrep r appears

in a reducible representation. First, notice that if a reducible representation R can be decompose

into a direct sum of irreps ri, then

χ
(R)(g) =

N

∑
i=1

χ
(ri)(g). (A.3.4)
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Applying the character orthogonality, we find

1
|G|∑g

(χ(r)(g))∗χ
(R)(g) = No of times irrep “r” appears . (A.3.5)

In context of conformal field theory, the finite symmetry group G commutes with the Vi-

rasoro algebra, thus the states with the same scaling dimension ∆ form a reducible representation

of G. Therefore,

1
|G|∑g

χ
α(g)∗ZL (β ,g) =

1
|G|∑g

χ
α(g)∗Tr

(
ĝqL0−c/24qL0−c/24

)

=
1
|G|∑g

∑
∆

χ
α(g)∗(TrH∆

ĝ)e−β (∆−c/12)

= ∑
∆

Nα,∆e−β (∆−c/12)

(A.3.6)

where Nα,∆ is the number of irrep α with scaling dimension ∆. We used this basic fact in the

statements below (3.4.3).
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Appendix B

On Triality Defects in 2d CFT

B.1 Details on the compact boson partition function

We show that the compact boson partition function, which is derived using (4.5.13), can

be rewritten as the familiar sum over lattice. We start with breaking ZSU(2)1 into the partition

sum over irreps with integer spins j, j denoted as ZSU(2)1,I and the partition sum over irreps with

half-integer spins j, j denoted as ZSU(2)1,II .

|η(τ)|2ZSU(2)1,I

= ∑
j=0,1,···
j=0,1,···

(2 j+1)(2 j+1)(q j2 −q( j+1)2
)(q j2

−q( j+1)2
)

= ∑
j=0,1,···
j=0,1,···

[
(2 j+1)(2 j+1)q j2

q j2]
−
(

∑
j=0,1,··· ,
j=0,1,···

[
(2 j+1)(2 j−1)q j2

q j2]
− ∑

j=0,1,···
(2 j+1)(−1)q j2

)

−
(

∑
j=0,1,···
j=0,1,···

[
(2 j−1)(2 j+1)q j2

q j2]
− ∑

j=0,1,···
(2 j+1)(−1)q j2

)

+

(
∑

j=0,1,··· ,
j=0,1,···

[(2 j−1)(2 j−1)q j2
q j2

]− ∑
j=0,1,···

[
(2 j−1)(−1)q j2]− ∑

j=0,1,···

[
(2 j−1)(−1)q j2]

+1
)

=

(
∑

j=0,1,··· ,
j=0,1,···

4q j2
q j2
)
−
(

∑
j=0,1,···

2q j2
)
−
(

∑
j=0,1,···

2q j2
)
+1

(B.1.1)
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and similarly,

|η(τ)|2ZSU(2)1,II = ∑
j= 1

2 ,
3
2 ,··· ,

j= 1
2 ,

3
2 ,···

4q j2q j2. (B.1.2)

It is then straightforward to see from the above that summing over two parts lead to the familiar

sum over 2d Narain lattice,

|η(τ)|2(ZSU(2)1,I +ZSU(2)1,II) = ∑
n,w∈Z

q(
n+w

2 )2
q(

n−w
2 )2

. (B.1.3)

The twisted partition functions (4.5.29) and (4.5.34) can be rewritten as a sum over Narain lattice

(4.5.30) and (4.5.35) using the same method.

B.2 Group theory convention

We normalize the generators T i (i = 1,2,3) of su(2) Lie algebra such that,

[T i,T j] = ε
i jkT k. (B.2.1)

We match the generators of the vector representation of SO(4) with SU(2)L ×SU(2)R as,

T 1
L =




0 0 0 1
2

0 0 1
2 0

0 −1
2 0 0

−1
2 0 0 0



, T 2

L =




0 0 1
2 0

0 0 0 −1
2

−1
2 0 0 0

0 1
2 0 0



, T 3

L =




0 1
2 0 0

−1
2 0 0 0

0 0 0 1
2

0 0 −1
2 0



,

(B.2.2)
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and,

T 1
R =




0 0 0 1
2

0 0 −1
2 0

0 1
2 0 0

−1
2 0 0 0



, T 2

R =




0 0 −1
2 0

0 0 0 −1
2

1
2 0 0 0

0 1
2 0 0



, T 3

R =




0 1
2 0 0

−1
2 0 0 0

0 0 0 −1
2

0 0 1
2 0



.

(B.2.3)

The symmetry operator Q ∈ SO(4) can be written as,

Q = Rθ

(
π

2

)
Rφ ′
(

π

2

)
=




0 1 0 0

0 0 −1 0

−1 0 0 0

0 0 0 1



, (B.2.4)

where,

Rθ

(
π

2

)
=




0 1 0 0

−1 0 0 0

0 0 1 0

0 0 0 1



, Rφ ′

(
π

2

)
=




0 0 1 0

0 1 0 0

−1 0 0 0

0 0 0 1



. (B.2.5)

Notice that we can write,

Rθ

(
π

2

)
= exp

(
π

2
(T 3

L +T 3
R )

)
, Rφ ′

(
π

2

)
= exp

(
π

2
(T 2

L −T 2
R )

)
. (B.2.6)
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This allows us to break Q into tensor product of QL ∈ SU(2)L and QR ∈ SU(2)R where,

QL = exp(
π

2
t3
L)exp(

π

2
t2
L) =




e−
iπ
4√
2

−e−
iπ
4√
2

e
iπ
4√
2

e
iπ
4√
2


 ,

QR = exp(
π

2
t3
R)exp(−π

2
t2
R) =




e−
iπ
4√
2

e−
iπ
4√
2

−e
iπ
4√
2

e
iπ
4√
2


 ,

(B.2.7)

where in the adjoint representation of SU(2), t i =− i
2σ i satisfying [t i, t j] = ε i jktk.

The charge conjugation C of c = 1 compact boson is chosen to be Rφ ′
(π) which can also

be written as a tensor product C =CL ⊗CR where,

CL =−CR =−iσ2. (B.2.8)

Notice that since QL,QR,CL,CR are all SU(2) elements, their trace over a spin− j representation

is nothing but the character χ j(φ) of SU(2) for some φ , given by,

χ j(φ) =
sin((2 j+1)φ)

sinφ
. (B.2.9)

And the φ can be solved by matching the j = 1
2 result known from the above representation. We

find,

TrV j(QL) =
sin((2 j+1)π/3)

sin(π/3)
, TrV j(QLCL) =

sin((2 j+1)2π/3)
sin(2π/3)

,

TrV j
(QR) =

sin((2 j+1)π/3)
sin(π/3)

, TrV j
(QRCR) =

sin((2 j+1)2π/3)
sin(2π/3)

.

(B.2.10)

Next, we list the group theory result for Q = Q2. The decomposition is given by,

QL =




−1
2 − i

2 −1
2 +

i
2

1
2 +

i
2 −1

2 +
i
2


 , QR =




−1
2 − i

2
1
2 − i

2

−1
2 − i

2 −1
2 +

i
2


 . (B.2.11)
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We then have,

TrV j(QL) = TrV j(QLCL) =
sin((2 j+1)2π/3)

sin(2π/3)
,

TrV j
(QR) = TrV j

(QRCR) =
sin((2 j+1)2π/3)

sin(2π/3)
.

(B.2.12)

We will also need to construct the representation matrices of the group SO(4) on the ( j, j)

irrep as well, which can be done via the tensor product of the representation matrices of the

group SU(2)L and SU(2)R. The spin- j representation matrices of the SU(2) can be acquired by

exponentiate the generators Si
( j) where j labels the spin and i = 1, · · · ,3. The Si

( j) is constructed

from,

[S+( j)]mn = δm+1,n
√

j( j+1)− ( j+1−m)( j−m), (B.2.13)

and,

S1
( j) =

S+
( j)+(S+

( j))
†

2i
, S2

( j) =−
S+
( j)− (S+

( j))
†

2
, S3

( j) = [S1
( j),S

2
( j)]. (B.2.14)

As one can check,

[Sk
( j),S

l
( j)] = ε

klmSm
( j). (B.2.15)

B.3 Detail on the basis in HomA(M⊗A N,L)

In this section, we list our choices of basis in HomA(M ⊗A N,L). Notice that if φ ∈

HomA(M⊗A N,L), then,

a1φ(m⊗A n)a2 = φ((a1m)⊗A (na2)), ∀ai ∈ A,m ∈ M,n ∈ N. (B.3.1)

Let’s consider the example HA(M−
η ⊗A MQ,MQ). If we choose,

φM−
η ⊗AMQ→MQ

(m−
η ⊗A m(134)) = m(243), (B.3.2)
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then acting σ on left or right or both side on φM−
η ⊗AMQ→MQ

(m−
η ⊗A m(134)) allows us to determine,

φM−
η ⊗AMQ→MQ

:




m−
η ⊗A m(134)

m−
η ⊗A m(123)

m−
η ⊗A m(142)

m−
η ⊗A m(243)




7→




m(243)

m(142)

−m(123)

−m(134)



. (B.3.3)

Hence, we will only list the action of φ ∈ HomA(M⊗A N,L) on a single element which allows

one to determine its action on the rest of the elements as follows,

φM+
I ⊗AMρ

HgH→Mρ

HgH
: m+

1 ⊗A mρ
g 7→ mρ

g , φMρ

HgH⊗AM+
1 →Mρ

HgH
: mρ

g ⊗A m+
1 7→ mρ

g ,

φM−
I ⊗AM+

J →M−
J

: m−
1 ⊗A m+

µ 7→ m−
µ , φM−

I ⊗AM−
J →M+

J
: m−

1 ⊗A m−
µ 7→ m+

µ ,

φM+
J ⊗AM+

J →M+
I

: m+
η ⊗A m+

η 7→ m+
1 , φM−

J ⊗AM+
J →M−

I
: m−

η ⊗A m+
η 7→ m−

1 ,

φM+
J ⊗AM−

J →M−
I

: m+
η ⊗A m−

η 7→ m−
1 , φM−

J ⊗AM−
J →M−

I
: m−

η ⊗A m−
η 7→ m+

1 ,

φMQ⊗AM−
I →MQ

: m(143)⊗A m−
1 7→ m(143), φM−

I ⊗AMQ→MQ
: m−

1 ⊗A m(143) 7→ m(143),

φMQ⊗AM+
J →MQ

: m(143)⊗A m+
η 7→ m(234), φM+

J ⊗AMQ→MQ
: m+

η ⊗A m(143) 7→ m(124),

φMQ⊗AM−
J →MQ

: m(143)⊗A m−
η 7→ m(234), φM−

J ⊗AMQ→MQ
: m−

η ⊗A m(143) 7→ m(124),

φMQ⊗AM−
I →MQ

: m(134)⊗A m−
1 7→ m(134), φM−

I ⊗AMQ→MQ
: m−

1 ⊗A m(134) 7→ m(134),

φMQ⊗AM+
J →MQ

: m(134)⊗A m+
η 7→ m(142), φM+

J ⊗AMQ→MQ
: m+

η ⊗A m(134) 7→ m(243),

φMQ⊗AM−
J →MQ

: m(134)⊗A m−
η 7→ m(142), φM−

J ⊗AMQ→MQ
: m−

η ⊗A m(134) 7→ m(243),

(B.3.4)
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and,

φMQ⊗AMQ→MQ,1 : m(143)⊗A m(143) 7→ m(134), φMQ⊗AMQ→MQ,2 : m(143)⊗A m(234) 7→ m(142),

φMQ⊗AMQ→MQ,1 : m(134)⊗A m(134) 7→ m(143), φMQ⊗AMQ→MQ,2 : m(134)⊗A m(142) 7→ m(234),

φMQ⊗AMQ→M+
I

: m(132)⊗A m(123) 7→
1√
2

m+
1 , φMQ⊗AMQ→M−

I
: m(132)⊗A m(123) 7→

1√
2

m−
1 ,

φMQ⊗AMQ→M+
J

: m(132)⊗A m(243) 7→
1√
2

m+
η , φMQ⊗AMQ→M−

J
: m(132)⊗A m(243) 7→

1√
2

m−
η ,

φMQ⊗AMQ→M+
I

: m(134)⊗A m(143) 7→
1√
2

m+
1 , φMQ⊗AMQ→M−

I
: m(134)⊗A m(143) 7→

1√
2

m−
1 ,

φMQ⊗AMQ→M+
J

: m(142)⊗m(132) 7→
1√
2

m+
η , φMQ⊗AMQ→M−

J
: m(142)⊗m(132) 7→

1√
2

m−
η .

(B.3.5)

The φ(m⊗A n)’s which can not be determined using (B.3.1) are set to zero.
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Appendix C

When are Duality Defects
Group-Theoretical?

C.1 Lagrangian subgroup for ZN 2-form gauge theory in 5d

In this appendix, we provide an alternative derivation of the Lagrangian subgroups for ZN

2-form gauge theory in 5d. Recall the Lagrangian subgroup consists of maximal number of pairs

(e,m) such that any two pairs (e,m) and (e′,m′) satisfy e−
2πi
N (em′−me′)⟨σ ,σ ′⟩ = 1. The maximal

condition ensures that if we condense all the surface operators in the Lagrangian subgroup, every

surface operator outside the Lagrangian subgroup braids non-trivially with at least one surface

operator in the Lagrangian subgroup, and hence is projected out.

To proceed, we quote a theorem from [182, Sec. 4.2], which claims that the Lagrangian

subgroups are classified by a subgroup Q of H = ZN and a symmetric bilinear form Ψ on Q, that

is, Ψ : Q×Q →U(1) where

Ψ(h1,h2) = Ψ(h2,h1), Ψ(h1h2,h3) = Ψ(h1,h3)Ψ(h2,h3). (C.1.1)

In this case, Q = Zp for some integer p dividing N. To see all symmetric bilinear forms Ψ on

Zp, let η denote the generator of Zp, and from (C.1.1) we find

Ψ(ηm,ηn) = Ψ(η ,η)mn. (C.1.2)
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Hence, Ψ is completely determined by Ψ(η ,η). First note that Ψ(η ,1) = Ψ(1,η) = 1.1 Taking

m = p and n = 1 in the above equation, we find Ψ(η ,η) = e
2πiℓ

p where ℓ= 0,1, · · · , p−1. Hence,

we will use the Ψp,ℓ to denote the symmetric bilinear form such that

Ψp,ℓ(η ,η) = e
2πi
p ℓ. (C.1.3)

The Ref. [182, Sec. 4.2] also specifies how the elements in the Lagrangian subgroup can

be constructed from (Q,Ψp,ℓ). Denote an arbitrary operator with electric and magnetic charge

(x,y) as αxβ y, with y ∈ ZN and x ∈ Hom(ZN ,U(1))≃ ZN . We also define the standard pairing

α(β ) = e
2πi
N . The key statement is that αxβ y belongs to the Lagrangian subgroup specified by

(Q,Ψp,ℓ) if

• the magnetic charge takes value in Q, i.e. y = N
p y′ with y′ ∈ Q;

• the electric charge is constrained by the pairing relation: αz(β y) = Ψp,ℓ(by,bz) for any

z = N
p z′ with z′ ∈ Q = Zp.

By definition, αz(β y) = e
2πi
N

N
p z′x. Using (C.1.3), the above condition gives

z′(x− ℓy′) = 0 mod p, ∀z′ ∈ Zp. (C.1.4)

This enforces x = ℓy′+ px′ with x′ ∈ ZN/p. Thus the charges are

(x,y) = (ℓy′+ px′,y′N/p) = x′(p,0)+ y′(ℓ,N/p), x′ ∈ ZN/p, y′ ∈ Zp. (C.1.5)

In other words, the charges in the Lagrangian subgroup are generated by

(ℓ,N/p) , (p,0) . (C.1.6)

1This follows from the second condition in (C.1.1), where h1 = h2 = 1 and h3 = η .
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Notice that the two generators could be linearly dependent in general, but they nevertheless

generated the full Lagrangian algebra.

C.2 Lagrangian subgroup with one generator

In this appendix, we focus on the case where the Lagrangian subgroup of 5d ZN 2-

form gauge theory is generated by a single surface operator S̃(p,q), with the coprime condition

gcd(p,q,N) = 1. This special case has been explored in [48].

A(p,q) = {S̃(kp,kq)|k ∈ ZN ,gcd(p,q,N) = 1}. (C.2.1)

Because of the coprime condition, it generates N distinct operators S̃(kp,kq) with k = 0,1, ...,N−1.

The trivial mutual braiding condition is clearly satisfied. Different pairs (p,q) may generate

the same Lagrangian subgroup, for instance when N = 5, (p,q) = (1,1) and (p′,q′) = (3,3)

generate the same Lagrangian subgroup {S̃(k,k)|k ∈ Z5}. Such redundancy will not be a problem

for our purposes.

To determine the counter term within S̃(kp,kq), we substitute (e,m) = k(p,q) in (5.4.4),

and find

Kkp,kq =





2π

N
N+1

2 k2 pq mod 2π, odd N

2π

2N k2 pq+πJk mod 2π, even N
. (C.2.2)

Substituting (C.2.2) into (5.4.5), we find that for odd N (5.4.5) is automatically satisfied, while

for even N, Jk should satisfy

Jk = kJ mod 2 (C.2.3)

where J = 0 or 1. These two solutions are precisely the topological refinement discussed

extensively in [48].

232



For even N, it is useful to extend the range of charges from ZN to Z2N , so that shifting

the topological refinement J → J+1 can be replaced by shifting the electric or magnetic charge

by N. For simplicity, take k = 1. Since gcd(p,q,N) = 1, p,q can not be both even. Suppose p is

odd. Then J → J+1 can be achieved by shifting q → q+N.

In summary, when there is a single generator, the Lagrangian subgroup of 5d ZN 2-form

gauge theory is generated by the surface operator

S̃(p,q)(σ) =





S(p,0)(σ)S(0,q)(σ)e
2πi
N

N+1
2 pq⟨σ ,σ⟩, odd N

S(p,0)(σ)S(0,q)(σ)e
2πi
2N pqP(σ)+iπJ⟨σ ,σ⟩, even N

(C.2.4)

where J = 0,1 specifies the topological refinement in [48] on 4d non-spin spacetime manifold.

When the 4d spacetime manifold is spin, the J dependence is trivialized.

Zem
4 stable Lagrangian subgroup for odd N:

Under Zem
4 , it is mapped to S̃(−vq,up)(σ), which should also belong to the Lagrangian

subalgebra, if stable. So stable Lagrangian subalgebra implies that there exists k, such that

k(p,q) = (−vq,up) mod N. (C.2.5)

Given (C.2.5), the Zem
4 image of any other element a(p,q) is also within the Lagrangian subal-

gebra, a(−vq,up) = ka(p,q) mod N. So the Lagrangian subalgebra is Zem
4 stable if and only if

(C.2.5) is satisfied.

For which N,u,v do there exist k, p,q such that (C.2.5) holds? We first note that (C.2.5)

implies

(k2 +1)p = 0 mod N, (k2 +1)q = 0 mod N. (C.2.6)

Further combining with gcd(p,q,N) = 1, we have xp+ yq = 1 mod N. Multiplying x and y to
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the above two equations in (C.2.6), we find k2 = −1 mod N. Conversely, given k satisfying

k2 =−1 mod N, we simply take (p,q)= (vk,u) such that gcd(p,q,N)= 1 and (C.2.5) is satisfied.

Thus we have shown that (C.2.5) holds if and only if

k2 +1 = 0 mod N (C.2.7)

holds, for any u,v. This corresponds to the special case L = 1 in Sec. 5.4.2. As commented there,

(C.2.7) is precisely the condition where the Z(1)
N duality defect in 4d with odd N can be mapped

to an invertible defect discussed in [51, App.C], and also in [26] for prime N. Such odd N’s

belong to the red series listed in Tab. 5.1.

Zem
4 stable Lagrangian subgroup for even N:

As pointed out in Sec. 5.4.1, the generator also depends on the choice of topological

refinement J = 0,1, and different choices can be packaged by extending the range of electric and

magnetic charges from ZN to Z2N , hence we take p,q ∈ Z2N below for convenience. Under Zem
4 ,

the generator S̃(p,q)(σ) is mapped to

S̃(p,q)(σ)→ S̃(−vq,up)(σ), (C.2.8)

and the Lagrangian subgroup is Zem
4 stable if and only if there exists k such that

(−vq,up) = k(p,q) mod 2N. (C.2.9)

By applying the same argument as for (C.2.7), we find that (C.2.9) is again equivalent to

k2 =−1 mod 2N. (C.2.10)

There is no solution to this for any even N. However, if we restrict to 4d spin manifolds,

different topological refinements are trivialized and the electric and magnetic charges obey
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p ∼ p+N and q ∼ q+N, i.e. the charges are back to ZN valued. Thus (C.2.9) reduces to

(−vq,up) = k(p,q) mod N, which is equivalent to k2 =−1 mod N. This again reproduces the

special case L = 1 in Sec. 5.4.2 as well as the results in [51, App. C].

235



Bibliography

[1] David Aasen, Paul Fendley, and Roger S. K. Mong. Topological Defects on the Lattice:
Dualities and Degeneracies. 8 2020.

[2] David Aasen, Roger S. K. Mong, and Paul Fendley. Topological Defects on the Lattice I:
The Ising model. J. Phys. A, 49(35):354001, 2016.

[3] Nima Afkhami-Jeddi, Kale Colville, Thomas Hartman, Alexander Maloney, and Eric
Perlmutter. Constraints on higher spin CFT2. JHEP, 05:092, 2018.

[4] Nima Afkhami-Jeddi, Thomas Hartman, and Amirhossein Tajdini. Fast Conformal
Bootstrap and Constraints on 3d Gravity. JHEP, 05:087, 2019.

[5] Luis F. Alday and Jin-Beom Bae. Rademacher Expansions and the Spectrum of 2d CFT.
2019.

[6] Luis F. Alday and Juan Martin Maldacena. Comments on operators with large spin. JHEP,
11:019, 2007.

[7] Tarek Anous, Raghu Mahajan, and Edgar Shaghoulian. Parity and the modular bootstrap.
SciPost Phys., 5(3):022, 2018.

[8] Andrea Antinucci, Francesco Benini, Christian Copetti, Giovanni Galati, and Giovanni
Rizi. The holography of non-invertible self-duality symmetries. 10 2022.

[9] Fabio Apruzzi. Higher form symmetries TFT in 6d. JHEP, 11:050, 2022.

[10] Fabio Apruzzi, Ibrahima Bah, Federico Bonetti, and Sakura Schafer-Nameki. Non-
Invertible Symmetries from Holography and Branes. 8 2022.
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