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ORIGINAL RESEARCH

Purpose:  To develop and evaluate a system to prescribe imaging planes for cardiac MRI based on deep learning (DL)−based localization 
of key anatomic landmarks.

Materials and Methods:  Annotated landmarks on 892 long-axis (LAX) and 493 short-axis (SAX) cine steady-state free precession series 
from cardiac MR images were retrospectively collected between February 2012 and June 2017. U-Net−based heatmap regression was 
used for localization of cardiac landmarks, which were used to compute cardiac MRI planes. Performance was evaluated by compar-
ing localization distances and plane angle differences between DL predictions and ground truth. The plane angulations from DL were 
compared with those prescribed by the technologist at the original time of acquisition. Data were split into 80% for training and 20% 
for testing, and results confirmed with fivefold cross-validation.

Results:  On LAX images, DL localized the apex within mean 12.56 mm ± 19.11 (standard deviation) and the mitral valve (MV) 
within 7.68 mm ± 6.91. On SAX images, DL localized the aortic valve within 5.78 mm ± 5.68, MV within 5.90 mm ± 5.24, pulmo-
nary valve within 6.55 mm ± 6.39, and tricuspid valve within 6.39 mm ± 5.89. On the basis of these localizations, average angle bias 
and mean error of DL-predicted imaging planes relative to ground truth annotations were as follows: SAX, −1.27° ± 6.81 and 4.93° ± 
4.86; four chambers, 0.38° ± 6.45 and 5.16° ± 3.80; three chambers, 0.13° ± 12.70 and 9.02° ± 8.83; and two chamber, 0.25° ± 9.08 
and 6.53° ± 6.28, respectively.

Conclusion:  DL-based anatomic localization is a feasible strategy for planning cardiac MRI planes. This approach can produce imaging 
planes comparable to those defined by ground truth landmarks.

Supplemental material is available for this article.

© RSNA, 2019

Cardiac MRI is the standard for quantification of 
cardiac volumetry, function, and blood flow (1). 

Cardiac MRI can be performed as a series of sequen-
tial image acquisitions, in which earlier images inform 
the prescription of subsequent planes. This approach is 
typically composed of multiple acquisitions, including 
a short-axis (SAX) stack and multiple long-axis (LAX) 
planes, requiring multiple breath holds by the patient. 
A key component of acquiring these images is the iden-
tification of specific cardiac structural landmarks by a 
physician or trained technologist. Proficient acquisition 
of high-quality images therefore requires extensive ana-
tomic and technical expertise (2,3). Cardiac MRI has 
been predominantly limited to use in major academic 
institutions and subspecialty centers, which to some 
extent may be related to the availability of specialized 
expertise (4–6).

Prior attempts to help automate the prescription of 
cardiac imaging planes predominantly used traditional 
machine learning−based approaches for image analy-
sis. Previously, Jackson et al (7) proposed a semiau-
tomated approach with expectation maximization for 
planning cardiac MRI planes. However, part of this 

approach required the technologist to manually label 
blood pools. This method was developed and tested in 
50 healthy patients but was not validated in a clinical 
population that may have had greater variation in ana-
tomic structure. Another approach used a mesh-based 
segmentation model based on canonical geometry or 
an anatomic atlas (8,9). However, these approaches 
used an additional volumetric image not typically ac-
quired at cardiac MRI.

Deep learning (DL) techniques have recently gained 
popularity for a variety of computer vision tasks in med-
ical imaging ranging from disease risk stratification, seg-
mentation of anatomic structures, and quantification of 
imaging features (10–13). DL has also been used for an-
atomic localization (14,15). For example, this method 
has been used previously to localize bony structures on 
radiographic and MR images of the hand (16). We hy-
pothesize that this technique may be advantageously ap-
plied to localize key anatomic landmarks that define the 
cardiac imaging planes. Furthermore, we hypothesize 
that DL-based localizations of these landmarks may be 
sufficiently accurate to prescribe each of the cardiac im-
aging planes.
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SAX Landmark Localization
SAX stack landmark localization was decomposed into multiple 
two-dimensional problems (Fig 2). First, we identified the MV 
slice (MVS) by using an MVS localization model. Second, we 
created a bounding box around the heart to reduce the search 
space for the anatomic landmarks. Third, we created a final 
localization network for fine-grain anatomic localization of the 
aortic valve, MV, pulmonary valve, and tricuspid valve.

To identify the MVS, we used a previously described method 
with a 2.5-dimensional VGG-19/LSTM ensemble network 
(18–20). This redefined the MVS localization as a classification 
task to reduce the difficulties that arise from imbalanced data 
(Fig E2 [supplement]) (21,22). The MVS model was trained to 
classify proposal slices as either atrial or ventricular to the ground 
truth−labeled MVS. Spatial context was provided by adding two 
slices atrial and two slices ventricular to each target slice for a 
total of five channels. Within a given SAX stack of images, the 
first ventricular slice in the sorted stack was marked as the pre-
dicted MVS.

To reduce the localization search space, we implemented a 
2.5-dimensional U-Net to perform a rough in-plane bound-
ing box around the heart by using all slices of the SAX stack. 
Bounding box labels were defined by identifying the minimum 
rectangles that surround a 20-pixel in-plane border that encom-
passed the aortic valve, MV, pulmonary valve, and tricuspid 
valve landmarks.

The output of the MVS model was combined with the out-
put of the in-plane bounding box to serve as inputs for a final 
localization model (Fig 2). This final localization model was 
implemented as a 2.5-dimensional heatmap regression model.

Plane Prescription
On the basis of the vertical LAX view, the SAX plane angle was 
defined as the plane orthogonal to the line between the apex 
and the MV landmarks (Fig E1 [supplement]). A SAX stack 
may therefore be prescribed at regularly spaced intervals along 
that line. On the basis of the SAX stack, the four-chamber 
plane was defined as the plane intersecting the tricuspid valve 
and MV, the three-chamber plane was defined as the plane in-
tersecting the aortic valve and MV, and the two-chamber plane 
was defined as the plane bisecting the four-and three-chamber 
planes.

Model Training
DL models were each independently trained by the first author 
(K.B.) on a workstation running Ubuntu 16.04 and equipped 
with four Titan X graphics card (NVIDIA, Mountain View, 
Calif ). We performed all DL experiments by using Keras 
(Keras: The Python Deep Learning Library https://keras.io/) 
with TensorFlow (https://www.tensorflow.org/) backend. Hy-
perparameters for the final models are described in Table E1 
(supplement).

Model Analysis and Statistics
To assess localization accuracy, we compared ground truth ex-
pert annotation localizations with those predicted by DL, and 

Materials and Methods

Patients and Data Description
With Health Insurance Portability and Accountability Act 
compliance and institutional review board approval, we retro-
spectively collected 482 cardiac MRI studies performed with 
a 1.5-T MRI system between February 2012 and June 2017. 
Within these studies there were 892 LAX cine steady-state 
free precession series (including 257 four-chamber, 207 three-
chamber, 197 two-chamber, and 231 other LAX views) and 
493 SAX cine steady-state free precession series. Of these 482 
patient studies, 303 (62.86%) were in male patients and 179 
(37.14%) were in female patients (age range, 12−90 years). A 
typical imaging protocol from our institution is in Figure E1 
(supplement).

Radiology resident (T.R.) was trained by a board-certi-
fied cardiac radiologist (A.H., with 10 years of experience) 
to identify and annotate cardiac landmarks on each MRI 
series. A.H. had final approval of all ground truth annota-
tions. LAX images were annotated for mitral valve (MV) and 
apex, whereas SAX stacks were annotated for aortic valve, 
MV, pulmonic valve, and tricuspid valve. Cine steady-state 
free precession images were acquired on a 1.5-T MRI system 
with the following parameters: mean flip angle, 54° (range, 
45°−60°); 256 × 200 matrix; mean field of view, 351 mm 
(range, 290−440 mm); slice thickness, 8 mm (range, 5−10 
mm); mean repetition time msec/echo time msec, 3.96/1 
(repetition time range, 3.14−4.45 msec); and SAX stack im-
ages were acquired in intervals of 10 mm (range, 5−13 mm).

LAX Landmark Localization
To localize the LAX landmarks (apex and MV), we imple-
mented a two-dimensional U-Net modified for heatmap regres-
sion (16,17), trained on a variety of LAX images (Fig 1). The 
final convolutional layer was replaced with a linear activation 
and a kernel size of 1 by using L2 loss. Channel-by-channel 
isotropic Gaussian heatmaps centered at each localization (rep-
resenting probability densities of landmark localization) were 
created for the apex and MV (15). DL-predicted localizations 
were defined by the maximal index of the predicted heatmaps.

Abbreviations
DL = deep learning, LAX = long-axis, MV = mitral valve, MVS = 
MV slice, SAX = short-axis

Summary
Deep learning−based localization is a feasible strategy for planning 
cardiac MRI planes.

Key Points
nn Deep learning−based approaches may improve the quality and ac-

cessibility of MRI by simplifying the imaging workflow.
nn Complex examinations that require precise placement of multiple 

double oblique imaging planes, like cardiac MRI, may benefit 
from deep learning−based anatomic localization and plane pre-
scription.
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studies. Differences in localization error and angulation error 
were compared by using the t test in statistical software (R; R 
Foundation for Statistical Computing, Vienna, Austria) with a 
type I error threshold (a) of .05.

Results

Landmark Localization Performance
To assess localization accuracy on LAX images, we measured 
the distance between ground truth annotation and DL-pre-
dicted localizations. For LAX images, the mean DL localiza-
tion was within 12.56 mm ± 19.11 (standard deviation) for the 
apex and 7.69 mm ± 6.91 for the MV (Fig 3, A). Because of the 
importance of vertical LAX accuracy for subsequent derivation 
of the SAX stack, we examined the localizations for the vertical 
LAX. For vertical LAX images, mean predicted localizations 

the results were confirmed by using fivefold cross validation. 
For each cross-validation step, we reinitialized a blank model 
and independently trained it with 80% of examinations by us-
ing the remaining 20% of examinations as independent test 
data. Cross validation is a commonly used strategy to ensure 
that proposed machine learning algorithms are not dependent 
on the subset of training data used.

To assess plane angulation accuracy, we calculated the angle 
difference between DL planes and ground truth planes. As a 
secondary assessment of performance, we also calculated the 
difference between DL planes and the retrospectively identi-
fied plane prescribed by the MRI technologist at the time of 
image acquisition. Finally, we compared these calculated angle 
differences against previously reported strategies for automated 
plane prescription. This last comparative analysis was per-
formed by using summary statistics reported in the previous 

Figure 1:  Input data used to train the long-axis (LAX) localization (Loc) model. Vertical LAX (VLAX), four-chamber, three-chamber, and 
two-chamber views were aggregated to train the LAX model for localization of the mitral valve and apex.
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3.79 compared with 12.13 mm ± 14.46 (P = .02), pulmonary 
valve was within 6.08 mm ± 4.99 compared with 14.03 mm ± 
15.73 (P = .01), and tricuspid valve was within 5.81 mm ± 3.69 
compared with 15.96 mm ± 17.19 (P < .01).

Plane Prescription Performance
To assess the performance of landmark localizations obtained 
from DL, we computed plane angulations defined by these 
landmarks. SAX imaging planes were prescribed by using DL 
predictions on vertical LAX images. These plane predictions 
were compared against expert ground truth. For SAX plane 
prescription, the mean angle bias was −1.27° ± 6.81 and mean 
absolute angle difference was 4.93° ± 4.86 (Fig 4, A, Table 1). 
Similarly, LAX planes were computed from DL predictions on 
SAX images. For LAX plane prescription, the mean angle bias 
and mean absolute angle difference for the four-chamber plane 
were 0.38° ± 6.45 and 5.16° ± 3.80, for the three-chamber 
plane were 0.13° ± 12.70 and 9.02° ± 8.83, and for the two-
chamber plane were 0.25° ± 9.08 and 6.53° ± 6.28. Represen-
tative images of plane prescriptions and their frequency are in 
Figure E3 (supplement).

To further validate our approach of planning cardiac MRI 
planes by using DL-predicted landmarks, the DL planes were 
compared with those prescribed by a technologist at the time of 
acquisition (Fig 4, B, Table 1). For SAX plane prescription, the 
mean angle bias and mean absolute angle difference were 0.40° 
± 7.20 and 5.56° ± 4.60. For LAX plane prescriptions, the mean 
angle bias and mean angle difference for the four-chamber plane 
were −2.67° ± 7.01 and 5.49° ± 5.06; for the three-chamber plane 
they were 4.29° ± 7.68 and 7.19° ± 4.97; and for the two-cham-
ber plane they were −2.36° ± 9.83 and 8.00° ± 6.03. There was 
greater agreement and consistency between the DL prediction 

were within 10.20 mm ± 13.58 for the apex and 8.21 mm ± 
10.71 for the MV.

As a first step toward SAX localization, we first identified 
the MVS. The average distance between ground truth and pre-
dicted MVS localization was within 4.87 mm ± 8.35 on aver-
age within the 10-mm spacing between slices typically used for 
planar cardiac MRI at our institution. Most predicted MVS 
localizations (465 of 493; 94.32%) were within one slice of the 
labeled MVS. The second neural network was used to identify 
an in-plane bounding box around the heart on SAX images. 
These predicted segmentations had an average Dice score of 
0.91 ± 0.05, relative to ground truth bounding boxes. Of these 
predicted bounding boxes, all (493 of 493; 100%) contained 
the aortic valve, 492 of 493 (99.8%) contained the MV, 490 of 
493 (99.39%) contained the pulmonary valve, and 491 of 493 
(99.59%) contained the tricuspid valve. After standardizing 
bounding boxes to native resolution, there was only one image 
in which the pulmonary valve and tricuspid valve localization 
were not contained within the input image for SAX localiza-
tion. The results of the MVS localization and bounding box 
were then combined to create the SAX localization model. The 
average localization for SAX landmarks was 5.78 mm ± 5.68 
for aortic valve, 5.90 mm ± 5.24 for MV, 6.55 mm ± 6.39 for 
pulmonary valve, and 6.39 mm ± 5.89 for tricuspid valve (Fig 
3, B).

To further assess SAX landmark localizations, we compared 
slices that were within a single-slice error of the ground truth 
label (465 of 493; 94.32%), and sections that were two or more 
slices away (28 of 493; 5.78%). For SAX series within a single 
slice, average localization was as follows: aortic valve was within 
5.24 mm ± 3.33 compared with 14.60 mm ± 17.66 (P < .01) 
for an error of two or more slices, MV was within 5.01 mm ± 

Figure 2:  Input data used to train short-axis (SAX) localization (Loc) models. The SAX stack images are used as inputs to train the mitral valve slice (MVS) and the bound-
ing box (BB) models. The slice localization and BB outputs are then used to train the SAX model for localization of aortic valve (AV), mitral valve (MV), pulmonary valve (PV), 
and tricuspid valve (TV).
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angulation relative to ground truths compared with previous 
methods. In addition, three-chamber and two-chamber angula-
tions also appear improved compared with results from Lu et al.

Discussion
Our study demonstrated the feasibility of using DL to local-
ize cardiac landmarks for prescription of SAX, four-chamber, 
three-chamber, and two-chamber view planes. For LAX im-

and technologist for the four-chamber than for the two-chamber 
plane. The performance of three-chamber plane prescription was 
in between the other LAX views. Example plane prescriptions are 
in Figure 5.

We also compared our method against recently described 
strategies by Frick et al (8) and Lu et al (9), and the results are in 
Table 2. Although our studies do not share common reference 
datasets, we found statistically improved SAX and four-chamber 

Figure 3:  Distances between predicted and ground truth for the, A, long-axis and, B, short-axis localization models. Each independent iteration of cross-validation is 
shown in a corresponding color. AV = atrial valve, MV = mitral valve, PV = pulmonary valve, TV = tricuspid valve.

Figure 4:  Comparison of plane prescriptions against, A, expert ground truth planes and, B, retrospectively matched technologist planes used during examination. Each 
independent cross-validation iteration is shown in a corresponding color.
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ages, this was readily accomplished with a single two-dimen-
sional U-Net modified for in-plane heatmap regression. For 
localization of a SAX stack, we applied a cascaded system of 
neural networks to localize key anatomic landmarks by first 
identifying the basal slice at the plane of the MV. We found 
that the MVS localization model correctly localized the MVS 
within a single slice in nearly all images (465 of 493; 94.32% of 
SAX inputs). More importantly, these localizations yielded im-
aging planes similar to those marked by a radiologist or those 
prescribed by a technologist at the time of image acquisition.

Previous view planning systems have been proposed for car-
diac MRI. Lelieveldt et al (23) proposed planning a SAX plane 
by using MRI of the entire thorax. By using a deformable atlas, 
these authors identified the organ landmarks (including lungs, 
ventricles, and heart) to prescribe the SAX plane. This approach 
was validated by showing that clinical measurements, including 
ventricular mass and ejection volume, were not markedly differ-
ent between acquisition approaches. However, the authors did 
not identify the essential four-chamber, three-chamber, and two-
chamber LAX imaging planes that are necessary for the assess-
ment of wall motion and valve function (24,25). More recently, 
other studies have used mesh segmentation−based approaches to 
plan sequences of view planes from a single three-dimensional 
cardiac MRI acquisition (8,9). Although promising, these ap-
proaches were developed by using a more limited test population 
with the use of an additional acquisition that is not typically used 
in many cardiac MRI workflows. Recent works have shown that 
DL-based approaches may benefit from the wider generalizabil-
ity to other modalities and image contrasts than typically seen 
with traditional methods of machine learning (26). Addy et al 
recently presented the use of a DL-based method to plan cardiac 
MRI views similar to a strategy proposed by Le et al (27,28). 
Unlike previous efforts, we chose to assess whether we could de-
velop a system of convolutional neural networks that could be 
seamlessly integrated into a typical workflow of cardiac MRI, 
covering the heterogeneity of heart morphologic causes and dis-
ease states seen in clinical practice.

Our study had limitations. Our study is a proof-of-concept 
feasibility study showing the performance of a system of neural 
networks for landmark localization at planar MRI. Many poten-
tial approaches exist for applying deep neural networks to solve 

this plane prescription problem, and it appears that DL-based 
landmark localization may be a feasible approach. Although the 
performance of this prototype system is promising, it is still rela-
tively early in development. Room exists for further optimiza-
tion and refinement of this overall strategy. In addition, there is 
variability in the performance of different imaging planes, with 
greater consistency between DL and technologists for the four-
chamber view than the two-chamber view. This finding may be 
related to exact angle bisections done for the DL prescription, 
which are only visually approximated by the technologist. How-
ever, DL appears to produce planes with greater agreement with 
ground truth than previous methods. Future work may be re-
quired to assess the performance of such a system prospectively 
within a clinical workflow and determine an acceptable error 
range for plane prescription. To implement this strategy in prac-
tice, there are multiple additional steps that need to be imple-
mented. For example, a SAX stack may be optimally prescribed 
not just from one LAX view, but perhaps two. Achieving the first 
LAX prescription may require additional localization on an axial 
or sagittal stack. Prescription of these additional acquisitions 
may require further development before a fully comprehensive 
workflow could be tested.

An important factor for overall generalizability of machine 
learning algorithms is the scope of the problem to be solved and 
the data that are ultimately used to train and test algorithm per-
formance. We demonstrated that in a contiguous retrospective 
cohort of MR images from a single vendor and field strength this 
strategy is generally effective with few exceptions and outliers in 
performance. It is not yet clear whether the system will achieve 
similar performance on images from other MRI vendors or at 
3.0 T, in which blood pool to myocardial contrast enhancement 
may not be relatively weaker or off-resonance banding artifacts 
may be present. Moreover, further work may be needed to evalu-
ate performance of the algorithm on nongated or single-shot im-
ages, rather than the cine steady-state free precession images that 
were included in this study. Incorporation of these data into fur-
ther training may be necessary to further generalize this method.

Nevertheless, in this study, we demonstrated that a DL-
based localization approach is adequate for cardiac MRI plane 
prescription. It is possible that the SAX and LAX localizations 
may be used to sequentially optimize imaging planes, as can be 

Table 1: Accuracy of Imaging Planes Prescribed by Deep Learning Compared with Expert 
Ground Truth and Retrospectively Matched Planes Prescribed by the MRI Technologist

Comparison 

Prescription Plane

SAX Four Chamber Three Chamber Two Chamber

Expert ground truth
  Angle bias −1.27 ± 6.81 0.38 ± 6.45 0.13 ± 12.70 0.25 ± 9.08
  Angle difference 4.93 ± 4.86 5.16 ± 3.80 9.02 ± 8.83 6.53 ± 6.28
Technologist
  Angle bias 0.40 ± 7.20 −2.67 ± 7.01 4.29 ± 7.68 −2.36 ± 9.83
  Angle difference 5.56 ± 4.60 5.49 ± 5.06 7.19 ± 4.97 8.00 ± 6.03

Note.—Data are mean degrees ± standard deviation. SAX = short axis.



Radiology: Artificial Intelligence Volume 1: Number 6—2019  n  radiology-ai.rsna.org� 7

Blansit et al

performed by skilled technologists or physicians. Future work 
may help determine whether such a system may fully automate 
prescription of cardiac imaging planes. Because specialty tech-
nologist and physician training is currently a limiting factor for 
the availability of cardiac MRI, we believe that further develop-
ment of this approach may alleviate this current barrier to access 
of this essential imaging modality.
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Table 2: Accuracy of Imaging Planes Prescribed by Deep Learning Compared 
with Two Recently Described Strategies

Comparison

Prescription Plane

SAX Four Chamber Three Chamber Two Chamber
Deep learning 

method
4.93 ± 4.86 5.16 ± 3.80 9.02 ± 8.83 6.53 ± 6.28

Frick et al (8) 6.7 ± 3.6* 7.7 ± 6.1* 9.1 ± 6.3 7.1 ± 3.6
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Note.— Data are mean degrees ± standard deviation; absolute angle differences are shown. 
SAX = short axis.
* P < .05.
† P < .01.
‡ P < .001.
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