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The cGAS-STING Pathway: Novel
Perspectives in Liver Diseases
Dongwei Xu1,2†, Yizhu Tian1†, Qiang Xia2 and Bibo Ke1*

1 The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen
School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States, 2 Department of Liver Surgery,
Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China

Liver diseases represent a major global health burden accounting for approximately 2
million deaths per year worldwide. The liver functions as a primary immune organ that is
largely enriched with various innate immune cells, including macrophages, dendritic cells,
neutrophils, NK cells, and NKT cells. Activation of these cells orchestrates the innate
immune response and initiates liver inflammation in response to the danger signal from
pathogens or injured cells and tissues. The cyclic GMP-AMP synthase (cGAS)-stimulator
of interferon genes (STING) pathway is a crucial signaling cascade of the innate immune
system activated by cytosol DNA. Recognizing DNA as an immune-stimulatory molecule
is an evolutionarily preserved mechanism in initiating rapid innate immune responses
against microbial pathogens. The cGAS is a cytosolic DNA sensor eliciting robust
immunity via the production of cyclic GMP-AMPs that bind and activate STING.
Although the cGAS-STING pathway has been previously considered to have essential
roles in innate immunity and host defense, recent advances have extended the role of the
cGAS-STING pathway to liver diseases. Emerging evidence indicates that overactivation
of cGAS-STING may contribute to the development of liver disorders, implying that the
cGAS-STING pathway is a promising therapeutic target. Here, we review and discuss the
role of the cGAS-STING DNA-sensing signaling pathway in a variety of liver diseases,
including viral hepatitis, nonalcoholic fatty liver disease (NAFLD), alcoholic liver disease
(ALD), primary hepatocellular cancer (HCC), and hepatic ischemia-reperfusion injury (IRI),
with highlights on currently available therapeutic options.

Keywords: DNA sensor, cyclic GMPAMP synthase, stimulator of interferon genes, Innate immunity, inflammation,
liver diseases
Abbreviations: ALD, alcoholic liver disease; cGAMP-AMP, cyclic guanosine monophosphate-adenosine monophosphate;
cGAS, cyclic GMP-AMP synthase; DAMPs, damage-associated molecular patterns; dsDNA, double-stranded DNA; ER,
endoplasmic reticulum; HCC, hepatocellular cancer; IFNs, type I interferons; IRF3, IFN regulatory factor 3; IRI, ischemia/
reperfusion injury; NAFLD, nonalcoholic fatty liver disease; NASH, nonalcoholic steatohepatitis; PAMPs, pathogen-associated
molecular patterns; RIG-1, retinoic acid-inducible gene I; ROS – reactive oxygen species; STING, stimulator of interferon
genes; TBK1, TANK-binding kinase 1; IKK, IkB kinase; NF-kB, nuclear factor-kB.
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INTRODUCTION

Liver disease presents a globally recognized health threat with
a mortality rate of 2 million deaths per year worldwide (1). It often
occurs in response to hepatocyte injury causedmainly by the hepatitis
B and C virus, alcohol abuse, bile duct damage, nonalcoholic fatty
liver disease (NAFLD) or nonalcoholic steatohepatitis (NASH) (2–4).
Hepatic inflammation is a critical player in triggering liver diseases.
During the initial event of hepatic inflammation, innate immune cells,
such as macrophages, neutrophils, natural killer (NK) cells, and NKT
cells recognize cell damage or invading pathogens with intracellular-
expressed pattern recognition receptors (PRRs) at the cell surface.
PRRs detect distinct evolutionarily conserved structures on
pathogens, termed pathogen-associated molecular patterns
(PAMPs), and trigger innate inflammatory responses by activating
a multitude of intracellular signaling pathways (5). Indeed, the innate
immune system depends on PRRs, including the cyclic GMP-AMP
(cGAMP) synthase (cGAS) and its downstream effector stimulator of
interferon genes (STING), inflammasomes, and Toll-like receptors
(TLRs) that recognize PAMPs and coordinate antimicrobial defense
(6–9). PRRs also recognize a plethora of damage-associatedmolecular
patterns (DAMPs), such as nucleic acids of uncontrolled death of host
cells, to further activate the innate immune system, contributing to
inflammatory diseases and cancer (10, 11). Therefore, aberrant
nucleic acid recognition has emerged as a critical host defense
mechanism mediated by cytosolic nucleic acid sensors.

DNA generally resides within the nucleus and mitochondria of
eukaryotic cells. Aberrant presence of DNA in the cytoplasm from
cellular damage or infection elicits robust immunity leading to
activation of type I interferon-stimulated genes (ISGs) that confer
increased susceptibility to the pathogens and promote host survival
(12). The most robust response following DNA stimulation is
initiated by cyclic GMP-AMP (cGAMP) synthase (cGAS), which
is activated upon binding to double-stranded DNA (dsDNA) (13).
cGAS is a critical cytosolic DNA sensor that catalyzes the synthesis
of cGAMP from ATP and GTP and activates type I interferons
(IFNs) through the endoplasmic reticulum (ER)-resident adaptor
protein STING (13, 14), which subsequently activates the
transcription factors NF-kB and IFN regulatory factor (IRF) 3 via
the TANK-binding kinase 1 (TBK1) (13, 14). Besides, the binding of
cGAS to DNA is irrespective of DNA sequence (15). Thus, self-
DNA from the mitochondria or nucleus could also act as the cGAS
ligand to activate the cGAS-STING pathway in triggering
inflammatory responses (16). Recent studies suggested that
endogenous cGAS was tightly tethered in the nucleus and
prevented its autoreactivity against self-DNA (17–19). The
structural basis for inhibiting cGAS by chromatin was verified via
cryo-electronmicroscopy by other studies (20, 21). Moreover, cGAS
was reported to inhibit homologous recombination-mediated DNA
repair and promote genome destabilization, micronucleus
generation, and cell death under conditions of genomic stress via
a STING-independent manner (18). These findings indicate that
activation of the cGAS-STING pathway by exogenous or
endogenous DNA may contribute to the development of various
human diseases. Here, we provide an overview of the cGAS-STING
pathway in immunity. Moreover, we summarize and discuss the
role of the cGAS-STINGDNA pathway in a variety of liver diseases.
Frontiers in Immunology | www.frontiersin.org 2
Finally, we highlight current or prospective therapeutic strategies
targeting the pathway.
ACTIVATION OF THE cGAS-STING
PATHWAY

DNA is a crucial DAMP that is recognized by innate immune
receptors and triggers intracellular signaling cascades (22). dsDNA
is primed by damaged mitochondria, dying cells, DNA damage,
genomic instability, bacteria, DNA viruses, and retroviruses (12, 23,
24). DNA viruses can induce type I interferon production through
activation of the STING pathway (25). Emerging evidence
demonstrated that cGAS was required to trigger innate immune
response during HIV and other retrovirus infections (26). The
cGAS consists of a critical catalytic domain, C-terminal
nucleotidyltransferase (NTase) domain, which is composed of
two structural lobes with the active site (7). dsDNA activates
cGAS by forming 2:2 cGAS-dsDNA complexes (27, 28). The
stabilized structure modulates the catalytic domain ’s
rearrangement to transform GTP and ATP to cGAMP through
induction of a conformational change in the C-terminal domain
(13, 27, 28). cGAMP is an endogenous second messenger with a
high affinity for STING (29). The binding of cGAMP to STING
promotes STING translocation to the Golgi apparatus and activates
TBK1, which phosphorylates STING and IRF3 transcription factor
(13). The activated IRF3 enters the nucleus and triggers the
production of type I IFNs, leading to the expression of IFN-
stimulated genes (7, 30). STING can also recruit IkB kinase
(IKK), which in turn catalyzes the phosphorylation of the nuclear
factor-kB (NF-kB) inhibitor IkBa. IkBa phosphorylation
accelerates nucleus translocation of NF-kB to promote
transcription of target inflammatory cytokines (16). In addition,
the N-terminal domain is also responsible for the maintenance of
the liquid phase dsDNA and cGAS (31, 32). DNA binding to cGAS
promotes the formation of liquid-like droplets, which facilitates
cGAS activation via augmented cGAS liquid phase separation and
enzyme activity (31). These findings demonstrate the multivalent
interactions between DNA and the binding domain of cGAS in
activating innate immune signaling (Figure 1).
THE cGAS-STING PATHWAY IN
VIRAL HEPATITIS

Hepatitis B virus (HBV) and Hepatitis C virus (HCV) infections
remains a major public health problem in the 21st century with over
300 million people worldwide affected, despite the implementation
of various therapeutics (33, 34). HBV is an enveloped partially
double-stranded DNA virus (35). HBV infection of human
hepatocytes leads to acute and chronic hepatitis, which
remarkably increases the risk of liver cirrhosis and hepatocellular
carcinoma (HCC) (33, 36). The role of innate immune
response in the HBV natural infection process remains unclear
and controversial (37, 38). Accumulating data suggested that HBV
can escape from recognition by the innate system (39–42). Lacking
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strong innate immune responses may also account for the
convenient transformation of HBV infections to chronic HBV
hepatitis (43). Other studies have identified that HBV-derived
dsDNA fragments (44), viral genomic relaxed circular (RC) DNA
(45), and naked HBV genome (46) could activate the innate
antiviral immune responses. As a critical DNA cytosolic DNA
sensor, the role of the cGAS-STING pathway during HBV infection
has been investigated by several research groups (42, 44, 46–48).
Recent studies demonstrated that both primary murine hepatocytes
and primary human hepatocytes (PHH) failed to produce type I
IFN in response to the foreign DNA in the cytosol or HBV infection
due to the lack of STING expression in these hepatocytes (42).
However, the hepatoma cell line HepG2 showed an innate immune
response after HBV infection since STING expression was observed
(42). The lack of DNA-sensing signaling impaired the hepatocytes’
ability to control HBV but induction of STING in vivo reduced viral
gene expression and replication in hepatocytes (42), suggesting that
the absence of the intracellular DNA-sensing pathway dampens the
Frontiers in Immunology | www.frontiersin.org 3
innate immune response against HBV infection in hepatocytes.
These results were further validated by another in vitro study, which
showed that increased STING expression exhibited resistance to
HBV infection whereas disruption of STING expression depressed
IFN response and enhanced HBV transcription activity in human
immortalized hepatocyte NKNT-3 cells (49). Thus, the STING
pathway is essential for modulating susceptibility to HBV.

Interestingly, another study suggested that the packaged HBV
genome evaded recognition by innate immune cells during
natural infection, while naked HBV genomic rcDNA was
sensed in a cGAS-dependent manner in human hepatoma cell
line HepG2-NTCP (46). Moreover, HBV infection could inhibit
the cGAS expression and function in cell culture and humanized
liver chimeric mice by downregulating the cGAS-related gene
MB21D1, a classic member of IFN-stimulated genes (ISGs) (46).
However, HBV-derived dsDNA can also induce the innate
immune response by expressing high levels of cGAS in human
hepatoma Li23 cells (44). Activation of the cGAS-STING
FIGURE 1 | The cytosolic DNA-sensing cGAS-STING pathway in innate immunity. Cyclic GMP-AMP synthase (cGAS) is a protein, which detects various cytosolic
dsDNA, including viral DNA, damaged self-DNA released by dying cells, micronuclei, and mitochondrial origins. dsDNA activates cGAS via forming cGAS-dsDNA in
2:2 complexes. Mitochondrial damage and the release of mitochondrial DNA (mtDNA) in the cytosol also activates cGAS. The interactions of cGAS with DNA induce
the formation of the liquid droplets through a phase transition, in which cGAS exerts its catalytic role to create the second messenger cGAMP that stimulates the
stimulator of interferon genes (STING) at the endoplasmic reticulum (ER). STING then translocates from the ER to Golgi compartments and recruits kinases such as
TANK-binding kinase 1 (TBK1) and IkB kinase (IKK), which in turn catalyzes the phosphorylation of IFN regulatory factor 3 (IRF3) and the nuclear factor-kB (NF-kB)
inhibitor IkBa. Phosphorylated IRF3 translocates to the nucleus to activate transcription of genes encoding type I interferons and other inflammatory genes. IkBa
phosphorylation accelerates nucleus translocation of NF-kB to promote transcription of target inflammatory cytokines, leading to activating inflammatory responses.
April 2021 | Volume 12 | Article 682736
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pathway induced ISG56, one of the antiviral genes mediated by
type I IFNs, and inhibited HBV assembly (44). Moreover,
activation of the cGAS-STING pathway by dsDNA or cGAMP
significantly depressed HBV replication in vitro and in vivo (48).
A recent study revealed that HBV DNAs but not RNAs in the
viral particles were immunostimulatory and sensed by the cGAS-
STING pathway in HepG2 cells (47). HBV rcDNA triggered the
hepatocyte response, whereas HBV infection did not suppress
the DNA-sensing pathway but can evade the surveillance of the
cGAS-STING mediated immune response (47). Indeed,
activation of cGAS or STING with pharmaceutical treatment
induced IFN response and inhibited viral replication in HBV-
infected human hepatoma cells and immortalized mouse
hepatocytes (50, 51). As an essential part of the innate immune
system, Kupffer cells, which are macrophages residing in the
liver, may also contribute to detecting foreign DNA and
induction of inflammatory response by phagocytosis during
HBV infection. Unlike PHH, the Kupffer cells certainly have
intact DNA-sensor signaling, as they exhibit significantly
enhanced cGAS-STING pathway levels after HBV infection
(41, 42). Pharmaceutical activation of STING by 5,6-
dimethylxanthenone-4-acetic acid (DMXAA) in macrophages
could remarkably inhibit hepatocyte HBV replication in mice
(50). Although Kupffer cells are positive regulators of antiviral
immunity during HBV infection (37), the HBV core has been
known to activate TLR2 on Kupffer cells leading to inhibition of
HBV-specific T cell response by producing IL-10 (52). Genetic
knocking out of TLR2 or pharmaceutical depletion of Kupffer
cells resulted in a stronger antiviral immune response (52).
Another study suggested that instead of promoting liver
inflammation, Kupffer cells can inhibit immune response by
removing apoptotic hepatocytes during HBV infection (53).
These conflicting results on the role of the cGAS-STING
pathway in hepatocytes and Kupffer cells during HBV
infection suggest that more investigation is needed to clarify
the underlying mechanism. Thus, it would be interesting to
explore the cGAS-STING signaling role in other innate
immune cell types in HBV infection.

HCV infection, followed by liver failure, liver cirrhosis, and
HCC, is considered one of the most common causes of liver
transplantation in Western countries (54). Evading innate and
adaptive immune responses is the primary mechanism for HCV
to defeat host immune surveillance and responses. The
mechanism underlying HCV regulaton of host interferon
response has been investigated for years. Several studies
revealed that casein kinase II (CK2) was required for HCV
core protein-mediated modulation (55) and served as a critical
regulator in controlling IFN response. Activation of CK2
inhibited retinoic acid-inducible gene I (RIG-I)-mediated
immune response, whereas disruption of CK2 promoted
STING-mediated TBK1 activation and triggered IFN-b
immune defense against HCV infection (56, 57). In addition,
the hepatitis C virus non-structural 4B (HCV-NS4B) protein, an
essential component of viral replication, was found to directly
and specifically bind to STING and block the STING-Cardif
interaction, contributing to potent inhibition of RIG-I-
Frontiers in Immunology | www.frontiersin.org 4
medicated IRF-3 phosphorylation and IFN-b (58). HCV-NS4B
was also found to impair the interaction of STING and TBK1
(59, 60). These findings suggest that the STING-mediated
immune defense mechanism contributes to host antiviral
immune response.

Recently, it was reported that the delivery of synthetic
cGAMP agonist for activation of the cGAS-STING pathway
remarkably inhibited the HBV replication by inducing IFN
production in the HBV-infected mouse model (48). The
therapeutic drugs combined with an effective vaccine have
shown high efficacy in eliminating viral hepatitis (61). As an
HBV or HCV vaccine adjuvant, administration of STING
agonists can induce a robust immune response via up-
regulation of cytokines and chemokines, which may restrain
tolerance in patients with chronic viral hepatitis (62, 63).
Collectively, the interaction between the cGAS-STING pathway
mediated innate immune response and HBV in hepatocytes and
macrophages during natural infection is still elusive and
controversial. Much more work is needed to investigate the
molecular mechanisms underlying the role of the cGAS-
STING pathway in HBV and HCV infection. These studies
may provide a novel therapeutic approach for viral hepatitis.
THE cGAS-STING PATHWAY IN
NONALCOHOLIC FATTY LIVER DISEASE/
NONALCOHOLIC STEATOHEPATITIS, AND
ALCOHOLIC LIVER DISEASE

Nonalcoholic fatty liver disease (NAFLD) is characterized by a
series of diseases ranging from simple steatosis to nonalcoholic
steatohepatitis (NASH), subsequent cirrhosis, and even
hepatocellular carcinoma. Currently, NAFLD is increasing
globally, and the prevalence of NAFLD is about 25% (64).
NAFLD is becoming the most common cause of chronic liver
disease and the leading cause of liver failure requiring liver
transplantation in western countries (65). However, there is no
safe and effective therapy for patients with NASH due to the
pathogenesis of NASH not being fully understood.

It is well known that the innate immune system, especially
macrophages, plays an essential role in the development of
hepatic steatosis to NASH (66). During the past years,
numerous reports have identified the vital role of the cGAS-
STING signaling pathway in NASH progression by regulating
innate immune activation. Metabolic stress, such as a high-fat
diet (HFD), could activate cGAS and the STING-IRF3-mediated
inflammatory response (67). By contrast, STING deficiency
mitigated HFD-induced adipose tissue inflammation, obesity,
insulin resistance, and glucose intolerance (67). Disruption of
either STING or IRF3 significantly attenuated free fatty acid
(FFA)-induced inflammatory response, lipid accumulation, and
hepatocellular apoptosis through regulation of the nuclear factor
kB (NF-kB) signaling pathway (68). As lipotoxicity appears to be
the central driver in NASH progression by oxidative stress and
ER stress (69), lipotoxic activation of TBK1, a downstream of
April 2021 | Volume 12 | Article 682736
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cGAS-STING kinase, is also crucial for the control of the NASH
development (70). Recently, mitochondrial DNA (mtDNA)
released from injured hepatocytes has been recognized as an
endogenous DAMP, which activates the cGAS-STING pathway
and promotes hepatic inflammation through release of cytokines
in NASH (71), suggesting that cytosolic mtDNA sensed by the
cGAS-STING signaling is key to trigger innate immune response
in NASH progression. Several studies have indicated that human
and murine hepatocytes did not express STING protein (42, 71,
72). However, increased STING expression was observed in
Kupffer cells in patients with NASH (72). Myeloid-specific
STING induced TGF-b1 and activated hepatic stellate cells
(HSCs), which promoted NASH progression, whereas
disruption of myeloid STING alleviated hepatic inflammation,
steatosis, and liver fibrosis in a mouse model of HFD or
methionine and choline-deficient diet (MCD)-induced NASH
(72), suggesting that activation of STING regulates macrophage
function and augments hepatic lipid accumulation, profibrotic
gene expression, and proinflammatory responses in NASH
(Figure 2). Moreover, a study in liver samples from 98 patients
with NAFLD revealed that STING expression in Kupffer cells
and monocyte-derived macrophages (MoMFs) was correlated
with hepatic inflammation and fibrosis in human NAFLD (73).
These findings indicate that activation of the cGAS-STING
pathway in macrophages is critical in NASH progression.

The hepatic inflammatory response has a fundamental role in
NASH progression. Activation of STING induces the IRF3 and NF-
kB pathways, and produces various inflammatory cytokines (74). It
was reported that global knockout (KO) of IRF3 were significantly
reduced liver injury, steatosis, and inflammation (75). However,
another study showed that disrupted IRF3 resulted in increased
insulin resistance and liver inflammation in HFD-induced NAFLD
(76). Indeed, STING activated the innate immune response and
contributed to the NASH progression in an NF-kB dependent
manner (71). Moreover, IRF3 KO mice showed higher fasting
glycemia and higher body weight (76), which was not consistent
with the model of HFD-fed STING-deficient mice (71). STING
might regulate glucose levels but not body weight in an IRF3-
dependent manner. Further studies are needed to elucidate the
underlying mechanism. Therefore, targeting STING to inhibit
innate immune activation could provide a novel approach to
managing NAFLD and NASH in patients.

Alcohol-related liver disease (ALD) affects more than 150
million people worldwide. It is the second most common
indication for liver transplantation due to ALD-induced cirrhosis
(77). Liver failure by ALD accounts for approximately half of liver
cirrhosis-associated deaths in the United States (78). A previous
study found that ER stress-induced IRF3 activation in the liver was
associated with ER adaptor protein STING in the acute ALDmodel
(79). IRF3 deficiency ameliorated hepatocyte apoptosis and the
inflammatory responses in an ethanol-feeding mouse model (79).
Alcohol-feeding remarkably increased cytoplasmic mtDNA release,
resulting in activating the cGAS-IRF3 signaling (80). Activation of
IRF3 by cGAS drove liver inflammation and injury in both alcohol-
exposed hepatocytes and the neighboring parenchyma through a
gap junction intracellular communication pathway (80). RNA-seq
Frontiers in Immunology | www.frontiersin.org 5
analysis of ALD patients showed that the cGAS-IRF3 pathway was
positively associated with disease severity (80). Thus, cGAS, STING,
and IRF3 are crucial determinants in the pathogenesis of ALD and
potential therapeutic targets in ALD (Figure 3).
THE cGAS-STING PATHWAY IN
HEPATOCELLULAR CARCINOMA

Hepatocellular carcinoma (HCC) is themost common primary liver
cancer and is the second leading cause of cancer-related death in the
world (81). Despite the availability of multiple therapeutic
approaches for the early stage of HCCs, including surgical liver
resection, liver transplantation, and percutaneous ablation, most
patients are diagnosed at relatively advanced stages with
fewer treatment options and a poor prognosis (82). Recently,
cancer immunotherapy has emerged as an effective therapy
for various types of cancers (83). Accumulating evidence
demonstrates the vital role of the innate immune system in liver
cancer immunosurveillance and immunotherapy (84). During
tumorigenesis, tumor cell death and genome instability could lead
to abnormal localization of genomic DNA in the cytosol and
micronuclei formation (16, 85). As a solid tumor, the hypoxic
microenvironment inside the HCC tumor can also induce cancer
cell necrosis, which promotes the release of mitochondrial DNA
(mtDNA) (86, 87). These exogenous and endogenous cytosolic
DNA are subsequently recognized by the immune cells, resulting in
activation of the innate immune response. Emerging studies show
that cGAS also detects tumor-derived DNA, initiating antitumor
immunity in some cancers (88). Indeed, the cGAS-STING pathway
plays an essential role in HCC progression. It was reported that low
levels of STING in tumor tissues were associated with poor
prognosis in HCC patients (89). Activation of the cGAS-STING
pathway augmented immune cell infiltration in HCC tissues (90).
The cGAS-STING pathway members also displayed strong
associations with immune markers involved in clinical stages,
pathological grades, and overall survival in patients with HCC
(90), suggesting that the cGAS-STING pathway members could
be used as potential prognostic biomarkers in patients with HCC. In
a mouse model of mutagen-induced HCC, STING deficiency
reduced phosphorylated-STAT1, autophagy, and cleaved caspase
3 levels but accelerated tumor progression, with increased numbers
of large tumors at advanced stages. In contrast, treatment with a
cyclic dinucleotide (CDN) STING agonist promoted cell death,
autophagy, and IFN responses in HCC (91). Notably, CDN
treatment markedly reduced tumor size and the number of HCC
in mice (91). These findings indicate STING is a promising
therapeutic target for the treatment of HCC.

Immunotherapy has been rapidly expanded as a novel option in
the treatment of advancedHCC. Data from the early stage of clinical
trials with PD-1/PD-L1 therapy have suggested promising results
with encouraging survival and safety data in HCC patients (92).
While some therapeutic benefits have been reported with immune
checkpoint blockade therapy, the low efficacy of immunotherapy
remains a significant challenge in HCC treatment. Several studies
have revealed that STING-deficient mice are less responsive to
April 2021 | Volume 12 | Article 682736
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immunotherapy (93, 94). A combination treatment of cGAMP with
PD-L1 inhibitor has shown a more potent antitumor effect in a
xenograft model (95), indicating that stimulation of the cGAS-
STING pathway may improve immunotherapeutic efficacy for the
treatment of HCC. Further studies are needed to elucidate the
crosstalk between the cGAS-STING and PD-1/PD-L1 pathway in
antitumor immunity against HCC.
THE cGAS-STING PATHWAY IN LIVER
ISCHEMIA AND REPERFUSION INJURY

Liver ischemia-reperfusion injury (IRI), an innate immunity-
dominated local sterile inflammatory response (96), is a
Frontiers in Immunology | www.frontiersin.org 6
significant cause of hepatic dysfunction and failure in liver
transplantation (97). Oxidative and ER stress are important
factors in the pathogenesis of hepatic IRI. IR-induced stress
activates liver macrophages (Kupffer cells) to generate reactive
oxygen species (ROS), leading to sterile inflammation in the liver
(98). ROS, an endogenous ‘danger’ signal released from necrotic
and stressed cells, triggers toll-like receptor 4 (TLR4) or NLRP3
inflammasome-driven innate immune response in ischemic
livers (98–101). ROS can induce oxidative mitochondrial
damage, resulting in mtDNA leaks into the cytosol (102). The
mtDNA is recognized by the DNA sensor cGAS and activates
STING, which triggers an innate immune response (103). Recent
studies showed that mtDNA release from hepatocytes was
significantly increased during liver IRI (104). Increased
FIGURE 2 | The cGAS-STING pathway in nonalcoholic fatty liver disease. A high-fat diet (HFD) causes steatosis, which induces mitochondrial stress damage in
hepatocytes and subsequent releases of mitochondrial DNA (mtDNA) into the cytosol. Cytosolic mtDNA is recognized as an endogenous DAMP, which activates the
cGAS-STING pathway and induces the IRF3 signaling to promote transcription of type I IFNs. Activation of the cGAS-STING pathway also induces the NF-kB
signaling to produce proinflammatory cytokines, which triggers hepatic inflammatory responses. Moreover, proinflammatory cytokines activate macrophage function
and produce TGF-b1, which activates hepatic stellate cells (HSCs) and promotes liver fibrosis in NASH.
April 2021 | Volume 12 | Article 682736
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mtDNA induced STING activation in macrophages after liver
IRI, whereas disruption of STING reduced NLRP3 activation and
proinflammatory mediators in mtDNA-stimulated macrophages
from aged mice (105).

Moreover, another study showed that IR-induced stress in
hepatocytes promoted cGAS expression but they did not express
STING under oxidative stress conditions (106). Interestingly,
cGAS global knockout (KO) mice displayed increased IR-
induced liver injury compared to the wild-type or STING-
deficient mice. Disruption of cGAS in hepatocytes augmented
cell death and apoptosis but reduced autophagy induction in
response to oxidative stress (106), suggesting that cGAS regulates
hepatic autophagy in a STING-independent manner during liver
IRI. Indeed, the tissue-specific roles and regulatory mechanisms
of the cGAS-STING pathway remain mostly elusive. As liver
macrophages, including resident Kupffer cells and infiltrated
Frontiers in Immunology | www.frontiersin.org 7
bone marrow-derived macrophages, are a major player in
innate immune responses in the pathogenesis of liver IRI (98,
99, 107), it is also unclear how the cGAS-STING pathway
influences the interplay between hepatocytes and innate
immune cells in liver IRI. Further studies will be needed to
elucidate the coordination and orchestration of these IR-stressed
cells regulated by the cGAS-STING pathway.
CONCLUDING REMARKS AND
FUTURE PERSPECTIVES

It is now clear that innate immunity plays a central role in the
pathogenesis of liver diseases. The innate immune response may
drive the progression of liver disease and contribute to liver
FIGURE 3 | The cGAS-STING pathway in alcohol-related liver disease. Alcohol-induced ER stress and mtDNA release activate the STING pathway. STING facilitates
IRF3 phosphorylation by TBK1, which results in the translocation of IRF3 into the nucleus, where it induces transcription of type I IFNs. A gap junction intracellular
communication pathway between alcohol-exposed hepatocytes and the neighboring parenchyma also contributes to the IRF3 activation by cGAS. Activation of IRF3
could trigger hepatocyte apoptosis, type I IFN response and produce proinflammatory cytokines, leading to hepatic inflammation and injury.
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damage, fibrosis, cirrhosis, and even HCC. The cGAS-STING
pathway functions as a direct innate immune sensor of cytosolic
DNA. While self-DNA sensor cGAS can recognize cellular or
tissue damages, excessive activation of the cGAS-STING
pathway triggers liver inflammation and subsequent disease.
Studies on the cGAS-STING pathway in liver diseases have led
to a better understanding of the role of the innate immune
response in the development of liver inflammation and injury.
New findings involved in regulating the cGAS–STING pathway
will allow us to identify the essential molecules as potential
therapeutic targets for liver diseases. Indeed, the cGAS–STING
pathway is a dual-edged sword. Transient activation of this
pathway shows an antitumor and antiviral effect, but persistent
activation may promote inflammation-driven tumorigenesis
(108). cGAS-STING dependent DNA-sensing of micronuclei in
tumor cells can stimulate tumor metastasis due to chromosomal
instability (109). However, tumor-derived cGAMP triggered
natural killer (NK) cell response and inhibited tumor growth
by activating the STING pathway (110). Although the STING
agonists have shown promising results in HBV/HCV infection
and HCC therapy in disease models (50, 51, 91, 111), more
preclinical studies and early-stage clinical trials are needed to
verify these encouraging survival and safety data.
Frontiers in Immunology | www.frontiersin.org 8
The current research on the cGAS-STING signaling pathway
in liver diseases has revealed only ‘tip of the iceberg’. Further
studies on tissue-specific roles of the cGAS-STING pathway with
other DNA sensing pathways in liver inflammation and injury
are critical. They may provide new insights into the mechanism
of therapy for liver diseases.
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