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Abstract
Two contingency judgment experiments are reported where
one predictive cue was present on every trial of the task. This
constant cue was paired with a second variable cue that was
either positively correlated (Experiment 1) or negatively
correlated with the outcome event (Experiment 2). Outcome
base rate was independently varied in both experiments.
Probabilistic contrasts could be calculated for the variable cue
but not for the constant cue since the probability of the
outcome occurring in the absence of the constant cue was
undefined. Cheng & Holyoak's (1995) probabilistic contrast
model therefore cannot uniquely specify the way in which the
constant cue will be judged. In contrast, judgments of the
constant cue were systematically influenced by the variable
cue's contingency as well as by the outcome base rate.

Specifically, judgments of the constant cue 1) were

discounted when the variable cue was a positive predictor of

the outcome but were enhanced when the variable cue was a

negative predictor of the outcome, and 2) were proportional to

the outcome base rate. These effects were anticipated by a

connectionist network using the Rescorla-Wagner learning

rule.
Introduction

In situations where little is known about the causal structure
underlying the occurrence of a predictor event followed by
the occurrence of an outcome event, their covariation serves
as an important cue that informs a reasoner’s judgment of
their contingency. A measure of covariation is provided by
the difference between the conditional probabilities of the
occurrence of the outcome in the presence of the predictor,
p(O | P), and in its absence, p(O | no P), a measure termed
AP,

Two classes of models, namely statistical and associative,
have been developed to explain people’s ability to judge
inter-event contingency. The probabilistic contrast model
(henceforth PCM) is the statistical model that has recently
received the most attention (Cheng & Holyoak, 1995). In a
judgment task that involves only one predictor event and
one outcome, the PCM reduces to AP. That is, it postulates
that reasoners explicitly consider the difference between the
conditional probabilities p(O | P) and p(O | no P). In
situations where two predictors (A and B) signal a common
outcome the PCM specifies that the derivation of the
conditional probabilities for any given cue must itself be
conditional on the presence or absence of another cue. Such
a conditionalizing cue may be any cue that covaries with the
outcome. Thus, if the outcome is judged to be contingent on
B, B may be a conditionalizing cue for A. A’s contingency
with the outcome is then assessed by calculating a pair of
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contrasts, namely its contingency in the presence of B, or
APAR (i€, p(OI A & B) - p(O | no A & B)] and its
contingency in the absence of B or AP pAjpop [i.6., p(O1A
& no B) - p(O I no A & no B)]. If B is perfectly correlated
with the outcome, i.e., the outcome always occurs in B's
presence but never in its absence, each contrast for A will
equal 0, namely {[p(OI A& B)=1]-[p(OIno A & B)=1]
=0} and {[p(OIA & noB)=0] - [p(OIno A & no B) =0]
= 0)}. In this situation, the conditionalized probabilistic
contrasts dictate that A should not be attributed causal
importance; it is a redundant cause. And as many have
reported (e.g., Baker, Mercier, Vallée-Tourangeau, Frank, &
Pan, 1993; Price & Yates, 1993) in judgment tasks where
A’s contingency is moderately positive but B’s contingency
is perfectly positive, subjects discount the causal importance
of A and rate its contingency near zero.

Associative models do not postulate that reasoners derive
conditional probabilities and compute probabilistic contrasts
in order to formulate a judgment of contingency. Rather
they assume that a reasoner’s contingency intuitions reflect
the associative strength between a predictor and an outcome
that develops on the basis of the contiguiry between the two
events. An associative model commonly discussed is the
Rescorla and Wagner (1972; henceforth RW) model of
learning which is a single layer localist connectionist
network where the input nodes correspond to the predictor
events and the output node corresponds to the outcome
event. The weights between each predictor and the outcome
reflect the strength of the hypothesized association. On any
given learning trial, the weight connecting predictor j and
the outcome is modified following a delta rule of the form,

Awj = 0§B (A -Zwy)
which is the weighted difference between the target
activation value of the output node A (which equals 1 when
the outcome is present and 0 when it is absent) and the sum
of the weights of the k predictors present on that trial (o and
B are learning parameters coding for the associability of
predictor j and the outcome respectively). This learning rule
constrains the nature of the connection weights in two
important ways: 1. The connection weight of a given
predictor is influenced by the weights of the accompanying
predictors and 2. their sum is bounded by A since when Zwy
> A, (A — Zwy) is negative resulting in a negative
adjustment of the weights. The predictions of the RW model
are derived by training the network with event frequencies
that correspond to the contingencies experienced by human
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subjects in a given judgment task and comparing the
magnitude, order, and polarity of the weights of each
predictor with the magnitude, order, and polarity of the
judgments of the contingency for these same predictors.

In many judgment tasks the predictions of the PCM and
the RW model are identical (Baker, Murphy, & Vallée-
Tourangeau, in press; Spellman, in press). For example, in
the situation described above where A is a moderate
predictor of the outcome but B is a perfect one, the RW
model predicts discounting: with training the weight of the
perfect predictor B approximates A, and the moderately
correlated cue A develops a connection weight that
asymptotes at or near zero.

Judgment tasks that involve a constant cue offer an
interesting forum to assess the merit of both models. When a
cuc is present on every trial of the task, and if the
experimental trials make up the set of focal instances over
which contrasts are calculated, then probabilistic contrasts
cannot be calculated for that cue. There is no
conditionalizing cue whose presence or absence identifies a
focal set of trials where the conditional probability of the
outcome occurring in the absence of a constant cue can be
calculated. “Accordingly, subjects will have no positive
evidence that any constant cue is causal” (Melz, Cheng,

Holyoak, & Waldmann, 1993, p. 1404)!. Consequently, the
PCM is unable to specify uniquely how people will judge
the influence of a cue present on every trial of a judgment
task. The power equations in Cheng, Park, Yarlas, and
Holyoak (in press; e.g., Eq. 3) suffer the same fate since
some of their terms are undefined. In turn, the RW model is
able to formulate predictions about how people will judge
relationships involving constant cues since the mechanism
underlying the predictions is driven by the contiguity
between the predictor and the outcome (and not their
contingency) as well as by the magnitude of the weights of
the accompanying predictors.

The judgment task designed for this study involved two
predictor variables and one outcome variable. One of the
two predictors (called X) was present on every trial whereas
the second (A) was present on some trials and absent on
others. In Experiment 1, predictor A was either positively
correlated with the outcome, p(O | A) > p(O | no A), or was
not correlated with the outcome, p(O | A) = p(O I no A). In
Experiment 2, predictor A was either negatively correlated
with the outcome, p(O | A) < p(O | no A) or was not
correlated. The RW model predicts that judgments of
predictor X, the constant cue, will be systematically
influenced by the nature of A’s contingency. Specifically, in
Experiment 1 judgments of X should be lower when A’s
contingency is positive than when it is zero; in other words,
X will have a weaker association with the outcome when
A’s contingency is positive. In Experiment 2 judgments of
X should be greater when A's contingency is negative than
when it is zero; that is, X will have a stronger association
with the outcome when A's contingency is negative. These
predictions hinge on the fact that the weight of predictor A

1 In fact, even if such a constant cue is part of a known physical
mechanism involving the effect, it is understood to be an “enabling
condition” and not a “cause” (Cheng & Novick, 1992).
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is proportional to its contingency, and that the weight of the
constant cue X is inversely proportional to the weight of A,
When A’s contingency is greater than zero, Zwy will be

larger than when A's contingency equals zero. Consequently
the weight of X will be smaller when A’s contingency is
positive than when it is zero. In turn, when A's contingency
is smaller than zero, Zwy will be smaller than when A’s

contingency equals zero. Consequently the weight of X will
be larger when A’s contingency is negative than when it is
zero. Thus while the RW model can formulate predictions
about how judgments of X should be influenced by the
presence of a variable predictor, the PCM is unable to
formulate any prediction about the judgment of a constant
cue since the probabilistic contrasts pertaining to X are
undefined.

In both experiments, the outcome base rate, namely the
proportion of trials where the outcome is present, was
manipulated independently of the contingency of the
variable predictor. Three different base rates were created:
.25, .5, and .75. The RW model predicts that as the outcome
base rate increases, judgment of the constant cue X should
increase since X's contiguity with the outcome is directly
proportional to the outcome base rate. Once again, the PCM
is unable to advance predictions on the effect of outcome
density on the judgments of a constant cue.

Method for Experiments 1 and 2

Task Scenario and Procedure

Subjects were asked to evaluate the relationships between
each of two viruses with a certain disease in six samples of
forty fictitious patients. Each sample showed new viruses
and a new disease. For each sample the record of each
patient was presented on a monitor one at a time informing
the subjects of the presence or absence of the two viruses.
Subjects were prompted for a diagnosis and then were told
whether or not the disease was present. One of the two
viruses (X) was present for all patients and the other (A) was
sometimes present and sometimes absent. In each sample
subjects were asked to rate the relationship between each
virus and the disease, using a scale from -100 to 100, after
20 and 40 patients; the analyses reported below were
conducted only on the terminal estimates. A virus could be
negatively correlated with a disease since, as subject read in
the instructions, "some viruses could afford immunity
against a disease. The more negative the rating, the greater
the immunity."

Design

Each sample of patients corresponded to one of six
conditions derived from a 2 by 3 factorial design. The first
independent variable was the contingency of the variable
virus A and had two values, namely .5 and 0 in Experiment
1, and -.5 and 0 in Experiment 2. The second independent
variable was the disease base rate in the sample which could
take three values: .25, .5, and .75. The three conditions
where A had a zero contingency were designed in both
experiments: in the Low Density Zero condition p(O | A) =
p(O 1 no A) = .25; in the Even Density Zero condition p(O |



A) = p(Ol no A) = .5; and in the High Density Zero
condition p(O | A) = p(O | no A) =.75.

In Experiment 1 the remaining three conditions were the
three samples where virus A had a contingency of .5. In the
Low Density .5 condition p(O | A)=.5 and p(O I no A) = .0;
in the Even Density .5 condition p(O | A) =.75 and p(O I no
A) = 25; and in the High Density .5 condition p(O | A) =1
and p(O | no A) = .5, In Experiment 2, the remaining

base rate. A two-factor repeated measures analysis of
variance (ANOVA) supported these observations (a .05
rejection criterion was used in all analyses). The main effect
of contingency was reliable, F(1, 22) = 12.6, as was the
main effect of outcome base rate, F(2, 44) = 11.9; the
interaction was not reliable [F < 1].

The nature of the judgments of the constant predictor
seemed clearly determined by the contingency of A as well

Experiment 1
Low Density Even Density High Density Low Density Even Density High Density
Trial Type Zero Zero Zero Positive .5 Positive .5 Positive .5
AX—-0 5 10 15 10 15 20
AX 5 NoO 15 10 5 10 5 0
X0 5 10 15 0 5 10
X —-NoO 15 10 5 20 15 10
Experiment 2
Low Density Even Density High Density Low Density Even Density High Density
Trial Type Zero Zero Zero Negative .5 Negative .5 Negative .5
AX 530 5 10 15 0 5 10
AX = NoO 15 10 5 20 15 10
X -0 5 10 15 10 15 20
X 5NoO 15 10 5 10 5 0
A = Variable Cue; X= Constant Cue; O = Outcome

Table 1. Event frequencies in the six conditions of Experiments 1 and 2. Frequencies add up to 40 in each
condition corresponding to the number of fictitious patients.

conditions were the negative image of these three
conditions. Thus, in the Low Density -.5 condition p(O | A)
=0and p(O | no A) = .5; in the Even Density -.5 condition
p(O 1 A) =.25and p(O | no A) = .75; and in the High
Density -.5 condition p(O | A) = .5 and p(O Ino A) = 1. The
frequencies of the different kinds of trials in the six
conditions of both experiments are shown in Table 1.

The order in which these conditions were presented to the
subjects was randomized within each experiment. The labels
assigned to the pairs of viruses and the six diseases were
counterbalanced.

Subjects

Two different groups of 24 undergraduates from the
University of Hertfordshire received course credits for their
participation in Experiments 1 and 2. Data from one subject
in each experiment were only partially recorded due to a
computer malfunction. These subjects were not included in
the analyses.

Experiment 1 Results
The mean terminal estimates of the variable predictor (A)
and of the constant predictor (X) are plotted in the top left
and top right quadrants of Figure 1. The effects of the two
independent variables can be clearly observed in both
panels. Starting with the judgments of the variable predictor,
1) judgments of A were greater when A’s contingency was
.5 than when it was zero, and 2) judgments in both
contingency conditions were greater the higher the outcome

449

as the outcome density. Thus, judgments of X were lower
when A's contingency was .5 than when it was zero and
judgments of X in all conditions were ordered as a function
of the outcome base rate. A two factor repeated measures
ANOVA confirmed these impressions. The main effect of
A’s contingency was reliable, F(1, 22) = 11.9, as was the
main effect of base rate, F(2, 44) = 39.2; the interaction was
not reliable [F < 1] .

Experiment 2 Results

The bottom two quadrants of Figure 1 show the mean
terminal estimates for the variable predictor (left) and the
constant predictor (right) in Experiment 2. Judgments of the
variable predictor were again determined by the actual
contingency and the outcome base rate. Judgments of A's
contingency were more negative when the contingency was
-.5 than when it was 0 and judgments in all conditions were
greater the higher the base rate. A two-factor repeated
measure ANOVA confirmed these impressions: the main
effect of contingency was reliable, F(1, 22) = 121, as was
the main effect of outcome base rate, F(2, 44) = 13.4; the
interaction was not reliable [F < 1].

The judgments of the constant predictor in Experiment 2
were the mirror image of the judgments of the constant
predictor in Experiment 1. That is, whereas A’s positive
contingency lowered the judgments of the constant cue in
Experiment 1, A's negative contingency increased the
judgments of the constant cue in Experiment 2. Again, in all
conditions judgments were greater the higher the outcome



base rate. Statistical analyses again yielded reliable main
effects of A's contingency, F(1,22) = 25.5, and of base rate,
F(2, 44) = 64.1; the interaction was not reliable [F(2, 44) =
1.86].

Cue A Cue X
100
75 - DPA=0 =—O— :'
50 — o
[ ]
25+ 3,
= 3
g 2 o
o -25- 3
E 504 ppa-0 —O— N
g '75-DF"A: 5 =—g— DPA =5 —
35 -100
100
€ 45 ]OPA=0 —{— m
o DPA = -5 —— Lo
= 50 o
s / X
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-25—1 3
-50 DPA=0 —O—
75 = DPA=-5 —e—|™
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25 .50 .75 .25 .50 .75
Qutcome Base Rate

Figure 1. Mean contingency judgments for the variable
cue A and the constant cue X in Experiment 1 (top left and
top right) and in Experiment 2 (bottom left and bottom
right). DPA = Delta P of cue A, or p(O | A) - p(O | no A).

Discussion
In two contingency judgment experiments, a predictor
variable was present on every trial. In the first experiment,
the constant predictor was paired with a second predictor
that had either a positive or a zero correlation with the
outcome, and in the second experiment it was paired with a
predictor that had either a negative or a zero correlation with
the outcome. In spite of the constant cue’s identical
probability of being paired with the outcome in each
outcome base rate condition, judgments of the constant cue
were systematically influenced by the nature of the
correlation between the second predictor and the outcome.
Specifically, judgments of the constant cue were attenuated
when the second predictor was positively correlated with the
outcome but were enhanced when the second predictor was
negatively correlated with the outcome. This is a novel
finding and establishes that judgments of constant cues can
be discounted or potentiated in the same way as the
judgments of variable cues (e.g., Baker et al., 1993).
Subjects could have ignored the constant cue and rated its
relationship with the outcome as zero, but they did not.
Furthermore, in both experiments, judgments of the constant
cue were determined by the base rate of the outcome: the
more prevalent the outcome, the more positive the
judgments of the constant cue. Thus, the participants in
these experiments had no difficulty evaluating the nature of
a relationship between a constant cue and an outcome even
if probabilistic contrasts could not be computed.
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Importantly, the dual influences of the contingency of the
accompanying cue and of the outcome base rate were
anticipated by the RW model.

To account for the judgments of the constant cue the PCM
must postulate a focal set of instances whose nature is not
constrained by the trials of the task, thereby enabling the
derivation of the probability of the outcome in the absence
of the constant cue, p(O | no X). The difficulty, however, is
that due to the nature of the judgment task and the fictitious
diseases, it is hard to conceive the kinds of life experiences
subjects may recruit to define the probability of any of the
fictitious diseases in the absence of the constant cues. For
example, to use one set of virus-disease labels employed
here, what experiences outside the laboratory could subjects
use to define the probability of the occurrence of the disease
Ork’s Complex in the absence of Threbbagia? Let's assume
that for some subjects Ork’s Complex reminded them of a
real world disease (and that these subjects might have
assumed also that in those real world cases Threbbagia was
absent), the probability (Ork's Complex | No Threbbagia) is
no longer undefined. The disease labels used in these
experiments (Ork's Complex, Nachmose A, Grympox,
Melastraz, Trachtosis, Voldusis) may have reminded
different subjects to different degrees of real world diseases,
thereby producing focal sets, for some diseases, which
defined the probability of the disease in the absence of the
constant cue. However, one might predict that subjects
would produce highly variable judgments of the constant
cue given their variable backgrounds; yet systematic
patterns were observed.

More generally, it might be argued that people use an
abstract reasoning schema which by default sets the
probability of a disease in the absence of a virus to zero.
This would correspond to the common understanding of the
pathogenic quality of viruses. But subjects would have been
ill-served by this reasoning schema since in these
experiments some viruses could grant immunity and indeed
in the High Density -.5 condition of Experiment 2, the
probability of the disease in the absence of virus A equalled
1! Evidently subjects were aware of the different kinds of
viruses in this judgment task since they experienced no
difficulty rating some virus-disease relationships negatively.
It is thus unlikely that they assumed by default that the
probability of the disease in the absence of a virus was zero.

Baker, Murphy, and Vallée-Tourangeau (in press) have
pointed out that the PCM’s difficulties with undefined
contrasts may be alleviated by including the inter-trial
intervals (ITT) in the calculation of conditional probabilities
such as p(O | no X). For example, the time separating the
presentation of each patient’s record could be segmented in
discrete time intervals where nothing is happening, that is
where none of the viruses are present and where the disease
is absent as well. When such ITI segments are included in
the calculations, the probability of the outcome in the
absence of the constant cue is no longer undefined and
equals zero. Following this strategy, the probabilistic
contrasts for the constant cue in the six conditions of both
experiments account partly for the judgment of the constant
cue. This can be assessed in Table 2 where the ordering of
the mean judgments of X parallels loosely the ordering of



APX|no A. This auxiliary assumption, however, is not
without problems. One may question of course the
plausibility of arguing that subjects consciously considered
the inter-trial interval when evaluating the constant cuc's
effectiveness. More importantly, the medical context in
which the task is couched means that the probability of a
disease can only be defined with respect to patients that
either have it or not, and such patients were absent during
the ITL.

While it can be argued that the RW model better accounts
for the patterns of judgments of the constant cue, neither
model fares well in explaining the strong effect of outcome
base rate on judgments of the variable predictor (see the left
half of Fig. 1). Probabilistic contrasts are impervious to
differences in outcome densities if these densities do not

Experiment 1 and the three -.5 conditions of Experiment 2
were 53.8 and -38.3 respectively. However, the asymmetry
was not statistically significant: The absolute magnitude of
the overall means did not differ reliably (2(136) = 1.73).
Furthermore, symmetric judgments of positive and negative
contingencies are routinely observed in similar tasks (e.g.,
Vallée-Tourangeau, Baker, & Mercier, 1994).

Associative models, in turn, usually predict some effect of
outcome density on learning as this changes the contiguity
between the predictor and the outcome as well as the
associative strength of the context in which learning takes
place. Specifically, the RW model predicts that for a
positively correlated predictor, lower base rates yield larger
positive connection weights, and for a negatively correlated
predictor, lower base rates yield more negative connection

Experiment 1
p(OIX&noA) | p(OlnoX&no A) APXino A Mean Judgments
Conditions
HD 0 0.75 0.00 0.75 60.2
HD.5 0.50 0.00 0.50 36.0
ED 0 0.50 0.00 0.50 21.1
ED.S 0.25 0.00 0.25 -3.3
LD O 0.25 0.00 0.25 -39.7
LD.5 0.00 0.00 0.00 -64.8
Experiment 2
pOIX&noA) | pOlnoX &no A) APXino A Mean Judgments
Conditions
HD -5 1.00 0.00 1.00 92.4
ED -.5 0.75 0.00 0.75 79.2
HD 0 0.75 0.00 0.75 78.7
EDO 0.50 0.00 0.50 40.7
LD-5 0.50 0.00 0.50 19.9
1.DO 0.25 0.00 0.25 -104
HD = High Density; ED = Even Density; LD = Low Density

Table 2. Comparisons of the predictions of the PCM given by including the inter-trial
interval in the focal set for the constant cue X and the ordering of the mean judgments for
X (Experiment 1, top half; Experiment 2 bottom half).

affect the overall contingencies. Again, the PCM can resort
to including the ITI in calculating A’s contingencies (the
conditionalizing cue for A is no longer the constant cue X):
counting time segments where nothing happens increases
frequency of “no A” observations. The greater the number
of ITI observations included in the calculations of p(O | no
A), the smaller p(O | no A), and the more proportional to
p(O 1 A) A’s contingency becomes. In this way, the higher
p(O | A), the higher the judgments. And this is certainly
what was observed (assuming that the same number of ITI
observations were included in the devaluation of p(O Ino A)
in the positive, negative and zero conditions). With this
auxiliary assumption however, the PCM is committed to
predict an overall positive bias in the estimates of A across
both experiments, namely the .5 contingencies in
Experiment 1 should be judged more positive than the -.5
contingencies of Experiment 2 should be judged negative.
Such an asymmetry was observed: The overall judgment
means of the variable cue in the three .5 conditions of
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weights (Wasserman , Elek, Chatlosh, & Baker, 1993) ; for
a non-correlated predictor, the weights, at asymptote, should
equal zero regardless of the base rates. Ostensibly, the
ratings of the varying cue exhibited none of these predicted
effects. However, judgments of the varying cue might have
been influenced by the associative strength of the constant
cue. In an animal conditioning preparation, learning
supported by a conditioned stimulus may be better
determined on test trials conducted in a test context that is
different from the training context. Analogously, subtracting
the constant cue ratings from the ratings of the varying cue
would yield estimates of the varying cue "freed" of the
influence of the constant cue. These adjusted ratings of the
varying cue in the two contingency conditions of
Experiment 1 and Experiment 2 are shown in Figure 2 (left
and right panel respectively). The adjusted ratings of the
varying cue in the positive contingency conditions of
Experiment 1 show the predicted effect of outcome base
rates: they are more positive with smaller base rates.



However, this pattern holds for the two zero contingency
conditions as well as for the negative contingency condition
of Experiment 2. The effects in the noncontingent
conditions are in fact preasymptotic predictions of the
model, but not in the negative contingency condition. Thus,
while the RW model can formulate predictions about the
influence of base rates on the judgments of the varying cue,
and that these predictions have often been confirmed (e.g.,
Wasserman et al., 1993, Fig. 5), they were only partially
observed in these experiments. Base rate effects on
contingency judgments have important implications and
future research should aim to elucidate the conditions under
which they are and are not observed.

8 08 —@— Negalive
s 50 -\.\. + Zero (Ez’
R N
- -50
E -100 - Positive —f— [ -
& Zero (1) —LF—
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25 .50 .75 .25 .50 a9

Outcome Base Rate

Figure 2. Mean difference between ratings of the
varying cue A and the constant cue X for the two
contingency conditions in Experiment 1 (left
panel) and in Experiment 2 (right panel) as a
function of outcome base rate.

In summary, the two experiments reported in this paper
showed that discounting and enhancing effects found with
variable cues can also occur with constant cues. These
experiments raised an important concern about the PCM,
namely whether any conceptually acceptable set of focal
instances could be derived a priori for constant cues that
could predict the dual effect of outcome base rate and the
variable cue's contingency on the estimates of the constant
cues. Judgments of the constant cue in both experiments
were better explained by a mechanism operating on the
basis of the contiguity between the constant cue and the
outcome, a mechanism that is also constrained by the
contiguity of other cues present.
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