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Abstract

Essays on the Distributional Effects of Environmental Policy

by

Danae Hernández Cortés

This dissertation consists of three essays that explore the distributional consequences

of environmental policy and the impacts of environmental phenomena on vulnerable pop-

ulations. These chapters use causal inference methods together with pollution transport

models and remote sensing data to explain some of the causes of environmental inequities

and analyze how environmental policy affects existing environmental disparities.

The first chapter studies the distributional consequences of incomplete regulation.

Environmental policies that do not regulate all sources of pollution can be ineffective if

firms are able to shift production processes from regulated to unregulated sources. Such

incomplete regulation could affect the spatial distribution of pollution and who bears its

burden. I study the consequences of incomplete regulation in the context of a policy

intended to reduce pollution from mills that process sugarcane in Mexico. In response

of the regulation, I show that mills shifted some processing to the fields where sugarcane

is grown. I find that following the policy, sugarcane fields linked to regulated facilities

increased fires by 14% which increased PM2.5 exposure by 6%. This pollution increase is

associated with worse birth outcomes for nearby populations: I estimate decreases in birth

weight associated to pollution from fires. Pollution increases were unevenly distributed

across communities: agricultural fields tend to be located near poorer populations, and

therefore the increase in fires increased their pollution burden. These results highlight

that incomplete regulations can create environmental inequality when the unregulated

sector is located near disadvantaged populations.
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The second chapter, based on joint work with Kyle C. Meng, analyzes the environ-

mental justice consequences of environmental markets. Environmental markets have been

increasingly used to address environmental problems. By lowering the cost of regulation,

markets are widely adopted for their allocative efficiency. However, there are growing

concerns that these markets can reallocate pollution exposure, increasing pollution expo-

sure in disadvantaged communities. We combine causal inference methods together with

a pollution transport model to estimate whether California’s carbon market increased

the pollution concentration gap between disadvantaged and other communities (the en-

vironmental justice gap). We find that the environmental justice gap was increasing prior

to the introduction of the cap and trade program but it has since decreased after the

introduction of the program. This finding suggests that market-based climate policies

can have environmental justice co-benefits for disadvantaged communities.

The third chapter, based on joint work with Eva O. Arceo-Gómez and Alejandro

López-Feldman, explores the effects of extreme weather events on rural welfare in Mex-

ico. We study the poverty and labor effects of one of the worst droughts in Mexico in the

past 70 years. We find that droughts have negative effects on rural households’ wellbeing:

households that experienced a drougth had lower per capita earnings and were 5 percent-

age points more likely to experience poverty than households that did not experience a

drought. We also find that droughts have negative impacts on employment and schooling

and these effects vary by gender: droughts reduce female employment and male school

attendance. In addition, households with more experience with water scarcity are less

likely to be affected by droughts. Given that climate change will increase the frequency

and duration of droughts, our paper suggests that these extreme weather events are likely

to become an additional threat to rural households in low and middle income countries.
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Chapter 1

The Distributional Effects of

Incomplete Regulation

1.1 Introduction

Environmental policies regulate productive activities that generate pollution. How-

ever, production can be reallocated across locations and within supply chains, escaping

the reach of regulation. In such circumstances, the regulation may be “incomplete” and

a firm may substitute production from a regulated to an unregulated activity, generat-

ing more pollution than absent regulation (i.e. leakage). Incomplete regulation has well

established efficiency consequences [1, 2, 3]. Much less attention has been paid to how

incomplete pollution policies can create winners and losers. It is possible that individuals

living near regulated activities experience relative decreases in pollution while individuals

near unregulated activities experience higher pollution levels.

This paper provides evidence of supply chain leakage and its distributional conse-

quences in the context of the sugarcane industry in Mexico. Mexico is the world’s sixth

largest sugarcane exporter and the sugarcane industry is an important part of the econ-
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omy in southern and central Mexico. However, sugarcane harvest is a heavily polluting

activity: it often requires fires in order to clean and cut the sugarcane. These fires have

been found to affect in-utero health outcomes for affected populations [4].

The sugarcane sector in Mexico is an interesting setting for studying the distributional

consequences of incomplete regulation. Sugar mills have two technological options for

harvesting sugarcane: either mechanical or manual cut. When sugarcane is cut manually,

it must also be burned since fires clean excess vegetation on the sugarcane plant. If

sugarcane is not cleaned in the field using fires, it needs to go through an additional

cleaning process that uses industrial boilers. Starting in 2014, the Mexican government

implemented a policy aimed at decreasing sulfur dioxide emissions from industrial boilers

(NOM-085-SEMARNAT-2011), requiring industrial facilities in all sectors of the economy

using oil as fuel to reduce emissions each year by either substituting to less polluting

boilers or acquiring abatement technologies. Facilities using biofuels were exempt from

complying. Using rich data on sugar mills operations, technology, and production inputs

and outputs, I show that regulated mills (facilities not using biofuels) shifted some of

their processing to fields where sugarcane is grown, increasing the amount of agricultural

fires. Furthermore, I show that sugar mills shifted the type of inputs used, altering the

spatial distribution of pollution and the populations exposed to pollution.

The first part of the paper provides a conceptual framework to provide intuition

for the expected effects under the Mexican regulation. A producer decides the optimal

amount of inputs, and generates pollution associated with the use of either input. There

are two types of households: low-wealth and high-wealth households. Households choose

consumption goods, leisure, and medical expenditures to maximize utility but are affected

by pollution via damages in health. A social planner implements an emissions tax to

only one input, therefore the regulation being incomplete. This simple framework has

three main predictions: 1) regulation to one input decreases the use of this input, 2)

2
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regulation to one input increases the use of the other input (and its emissions) conditional

on being gross substitutes, and 3) incomplete regulation will be regressive, affecting

low-wealth households unless medical treatment goods are relatively low compared to

the ratio of non-labor income and wages. Therefore, incomplete regulation can create

distributional damages via pollution exposure to low-wealth households when pollution

of the unregulated input increases.

The second part of the paper provides an empirical analysis of the effects of incom-

plete regulation in Mexico’s sugarcane sector. I analyze whether the regulated facilities

(using non-biofuel boilers) substituted cleaning sugarcane in the mills using regulated

boilers with cleaning in the fields using agricultural fires, as well as the resulting pollu-

tion consequences. Using a difference-in-differences approach, I compare regulated and

exempt facilities before and after the policy was implemented. I find that fields linked to

regulated mills increased the number of sugarcane fires by 14% following the regulation

and ambient concentrations of PM2.5 over these fields increased by 6%. I then analyze

input substitution responses to the regulation using detailed data on various inputs and

outputs used in sugarcane mills and fields. Consistent with an increase in fires, I find

that fields linked to regulated mills increased manual cut workers by 5% and that the

amount of sugarcane harvested using manual cut increased by 9%. I find no evidence of

a change in the quantity of sugar produced as a result of the regulation and suggestive

evidence of a decrease in processing efficiency.

The third part of the paper examines whether this change in pollution disproportion-

ately affected vulnerable rural areas. Similar to other developing countries, the agricul-

tural fields in Mexico are located near rural areas that have higher levels of poverty and

socioeconomic vulnerability. Given my findings that fires and pollution in the sugarcane

fields increased, groups living near the sugarcane fields could experience an increase in

pollution as a result of the regulation. I use the results from my empirical analysis to

3
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predict pollution exposure in the fields as a result of the policy and link this to exposed

populations. Populations with greater socioeconomic vulnerability experienced relatively

lower pollution prior to the policy but experienced a larger share of the pollution increases

due to the policy. I find that the most vulnerable households experienced the largest in-

creases in pollution relative to less vulnerable populations. These results highlight an

important finding that has not been previously empirically documented in the literature:

incomplete regulation can contribute to environmental inequality by altering the spatial

distribution of pollution.

Finally, this paper estimates whether the increase in pollution from fires caused by

input substitution is associated with worse health outcomes in affected areas. I use

individual birth records for the period 2012-2017 obtained from the Mexican Health

Ministry to estimate the impacts of pollution exposure on birth outcomes such as birth

weight, gestational length, very low birth weight (<1,500 g), and very preterm birth (< 32

weeks). I link the fires location to the mother’s locality of residence (rural village or city)

and estimate the impact of pollution exposure associated with fires caused by the policy

on birth outcomes. I find that an additional µg/m3 increase in pollution is associated

with a decrease in birth weight of 1 gram, a 2% increase in the incidence of very low

birth weight, a 3% increase in the incidence of very preterm birth, and an insignificant

decrease in gestational length. These results add to the extensive literature examining the

impacts of air pollution on health [5], and in particular, the impact of pollution on birth

outcomes [6]. Consistent with [7], I find that increases in pollution caused by sugarcane

fires are associated with worse birth outcomes for impacted localities. These results

further document the negative impacts of incomplete regulation when producers can

subsitute the inputs they use and these create higher pollution to nearby communities.

Using the estimates found, I calculate that a tax of $39 USD per ton of sugarcane (av-

erage ton of sugarcane is $650 USD) would internalize the impacts of sugarcane burning

4
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on affected populations caused by the regulation of pollution emissions in the mill.

This paper provides two main contributions. First, it contributes to the leakage lit-

erature by documenting a specific mechanism through which firms substitute pollution

from regulated to unregulated sources: input substitution. If these substitution patterns

increase emissions or generate additional social costs, environmental regulation can back-

fire, creating more pollution than otherwise absent regulation. Others have found that

the amount of leakage induced by a regulation depends on the structure of the sector

and the producers’ responses to the regulation [2, 8]. Firms can substitute pollution

to unregulated media [1], sectors [9], other facilities [10], and countries with laxer reg-

ulations [11, 12]. By focusing ion one sector and using detailed individual production

data, I am able to unravel how leakage can alter the production processes to adjust to

the regulation. This paper highlights a previously overlooked mechanism through which

incomplete regulation can create leakage: firms can shift towards dirtier, unregulated in-

puts. In addition, this paper provides evidence of leakage from point sources (industry) to

non-point sources (agricultural fires). Shifting pollution from point sources to non-point

sources could be particularly problematic since non-point sources are harder to regulate

due to their dispersed nature [13]. In so doing, I contribute to another literature that

explores the role of regulation in incentivizing firms or individuals to adjust margins to

avoid regulation [14, 15].

Second, I contribute to the literature on environmental justice and inequality in the

distribution of pollution. Agricultural fields are mainly located in rural areas, that are

on average poorer and face higher socioeconomic vulnerability than their urban counter-

parts. By increasing the number of fires and pollution in these areas, regulation aimed

at point sources with the potential to reallocate production to non-point sources could

increase pollution in already disadvantaged areas. The environmental justice literature

has long studied the unequal distribution of environmental hazards finding that minority

5
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and poor populations face higher pollution levels than other communities [16, 17, 18, 19].

Studies have found that high polluting facilities and toxic waste sites are mostly lo-

cated in poor and minority communities in the United States [20, 21]. Recent literature

highlights the potential of environmental regulations to have distributional consequences

across sectors in the economy [22] and other studies have found that gains from environ-

mental regulation are unevenly distributed across demographic groups [23, 24, 25]. In

the case of Mexico, studies have found that larger polluters tend to be located near poor,

marginalized populations [26, 27]. This paper suggests another source of environmental

injustice: incomplete regulation can cause pollution leakage to vulnerable populations.1

Given that pollution damages could be higher in low income communities due to low

access to health care and defensive investments, regulations that increase agricultural

burning could generate disproportionate pollution damages to rural populations.

This paper also finds that despite increasing pollution in rural areas, input relocation

can have positive employment benefits. Some studies have documented the tradeoff

between health and local economic outcomes in developing countries. For instance, [29]

show the wealth-health tradeoff due to mining activities in Africa, where mines increase

asset wealth in nearby communities coexist with increases on anemia and stunting for

young children. [4] shows that the increase in economic activity during the sugarcane

harvest is also accompanied by worsening health outcomes for newborns in Brazil. By

showing that local employment for manual work increases together with increases in

pollution, this paper adds to the literature examining this health-local economic outcomes

tradeoff. However, other studies have shown that regulation of polluting technologies

might not need be accompanied by labor losses. In the case of sugarcane production,

Costa and Lima (2020) show that harvest mechanization in Brazil decreased employment

1Other studies have analyzed additional mechanisms of environmental injustices in the case of the
U.S, such as incomplete information about pollution damages and hidden pollution [28] and mergers
(Jacqz, 2020).
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in the agricultural sector but increased employment in the manufacture and services

sectors.

The results of this paper extend beyond the sugarcane industry in Mexico. For

instance, several other studies have found supporting evidence of the “pollution haven

effect” which highlights that environmental damage might be shifted towards places with

less strict regulation or unregulated places [11, 30]. Other examples of where this could

occur are global chains for processed food when regulation is incomplete between two

countries. My results suggest that regulators attempting to regulate one input need

to be aware of firms’ responses in unregulated sectors and the location of these sectors

relative to disadvantaged communities.

The rest of the paper proceeds as follows. Section 1 describes the sugarcane sector and

boiler regulation. Section 2 provides a simple conceptual framework of input substitution

when regulation is incomplete. Section 3 describes the data. Section 4 presents the

empirical specification. Section 5 explains the effects of regulation-induced pollution

redistribution towards non-point sources and its distributional consequences as well as the

health effects of incomplete regulation. Section 6 calculates a tax that would internalize

the social costs caused by sugarcane burning. Section 7 concludes.

1.2 Background

1.2.1 Sugarcane harvest and production in Mexico

Sugarcane is the main input of sugar production, which is processed in nearly 60 mills

across Mexico. The high demand for sugar in Mexico (on average 80 pounds of sugar

per capita consumption per year) makes sugarcane among the 10th highest demanded

crops in Mexico and Mexico is the 6th largest global sugar exporter. Sugar mills have

7
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two technological options for harvesting sugarcane: either mechanical or manual cut.

When sugarcane is cut manually, it must also be burned. These fires facilitate harvest

by cleaning the excess of vegetation in the sugarcane plant. If sugarcane is not cleaned

in the field using fires, it would need to go through an additional cleaning process that

uses machines powered by industrial boilers.

Sugarcane is first harvested in the field and then sent to process at the mill. Given

that there are only 60 active mills in Mexico that process nearly 865,000 hectares of

sugarcane, the harvest needs to be staggered from mid-November to late May.2 The

fields are usually located within driving distance from the mills and mills in general own

the fields where they source the sugarcane.3 This also means that mill management has

a decision power over the type of harvesting technique used. Important to note, there

is no quality difference between sugarcane cut using controlled fires and sugarcane cut

using machines. After sugarcane has been cut, the sugarcane is transported to the sugar

mill where it is then processed. Sugarcane cut using machines goes through an additional

process of cleaning the plant that uses equipment fueled by boilers. These boilers can

either use diesel, fuel oil, biofuels, or natural gas. After the sugarcane is clean, the

sugarcane goes through another process to grind the sugarcane and extract its caloric

content to then crystalize and refine the sugar in the mill.

The sugar producing industry is an important part of the sugarcane regions. The

Mexican Agricultural Agency estimates that sugarcane production has approximately

440,000 direct employees and 2,000,000 indirect employees.4 Although the harvest season

2Sugarcane needs to be processed within the same week after harvest or it might lose its chaloric
content, creating less sugar. However, after sugarcane has been converted into sugar, sugar can be
stored for long periods. After sugar has been produced, mills send the sugar to individual packaging
facilities that would distribute them for retail.

3Mills also report part from their production coming from private small landowners. However, the
smallholders have contracts with specific mills. The mills are responsible of providing inputs to these
smallholders such as machines to harvest sugarcane in the case of mechanical cut and trucks to transport
the sugarcane to the mills.

4Studies have documented the importance of sugar production for local employment and development.
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brings employment to these regions, it comes with a cost: according to [32], sugarcane

fires are harmful because they raise particulate matter concentrations (96% of these

particles are respirable), CO and NOx which have many adverse health consequences.

Moreover, sugarcane-harvest fires have been associated with negative health outcomes

to nearby communities. For instance, [4] found that in utero exposure to pollution

from sugarcane fires reduces birth weight and gestational age at birth in Brazil.5 Sugar

processing after sugarcane has been harvested is also heavily polluting. For instance, the

average sugar mill generates, on average, 2,427.65 tons of NOx per year which makes

it one of the most heavily polluting industries in the country. To put in context, the

average California cement facility generates 1,364.2 tons of NOx per year.6

1.2.2 Regulating pollution from sugar mills

In 2011, the Mexican government strengthened the maximum pollution limits of all

stationary sources via the NOM-085-SEMARNAT-2011. The regulation targeted many

sectors including cement production, chemical manufacturing, and general industrial ac-

tivities. The regulation stated that beginning in 2014-2015 all pollution sources must

decrease the emissions related to the combustion process.7 The regulation stipulated

that starting in 2011, the emissions from new and existing equipment must be reported

to the environmental agency in Mexico and after 2015, the new emission standards need

to be attained for all the combustion sources. The regulation stated an annual reduction

For example, [31] show that households living within a few kilomenters of historical sugar factories have
10% higher per-capita consumption than other households living further away.

5Other studies have shown that exposure to smoke from fires also increases early-life mortality [33, 34]
and affects children’s human capital outcomes such as exam performance [35]. Agricultural burning can
also increase deaths from respiratory problems for adults [36].

6Data on mills emissions ara available for 2017 via the National Registry of Emissions (RENE) and
data on California’s cement emissions are available in CARB pollution mapping tool.

7The regulation in 2011 stipulated that the beginning of the compliance period should be 2014.
However, in 2012 the beginning of the compliance period was extended by one year. Therefore, the
beginning of the compliance period is 2015.
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of 1,000 ppmv of SO2 in 2015 relative to pre-existing levels and a reduction of additional

100 ppmv per year until 2019. In case of non-attainment at the facility level, the facilities

will have to pay a fee to the environmental agency depending on the exceeding emissions.

Facilities that used biofuels as the main source of energy were exempt from the policy.

In the case of the sugarcane industry, the regulated equipments were mainly used

as a substitute in the cleaning process. This meant regulating the boiling of (unburnt)

sugarcane for facilities that are not using biofuels in their operations. As a result of

the policy, non-exempt facilities could respond by either complying with the regulation,

lowering the amount produced. or by shifting technologies in the field to decrease the

emissions coming from the regulated technology.

The regulation is enforced by the Mexican Environmental Protection Agency’s reg-

ulator entity, PROFEPA. However, in the case of the sugarcane industry, the Mexican

Agriculture Agency through the sugarcane regulator entity, the Comité Nacional para

el Desarrollo de la Caña de Azúcar, CONADESUCA, also monitors annual compliance.

At the time of the regulation, biofuels were not regulated. However, there have been

some recent efforts to extend environmental regulation to cover sugar mills using biofu-

els. For instance, the PROY-NOM-170-SEMARNAT-2017 is expected to regulate mills

using biofuels once it is approved by the Mexican government.

Sugarcane burning is not regulated in Mexico.8 Regarding agricultural fires, the

NOM-015-SEMARNAT/SAGARPA-2007 specifies a few rules for agricultural burning.

For instance, farmers can only burn one plot if they do not have contiguous fires in

an adjacent plot. Farmers should notify neighboring plots in case of wishing to use a

controlled fire and notify local authorities if the fire grows uncontrollably. However,

sugarcane harvest fires are not regulated.

8Other countries have started regulating sugarcane burning. For example, Brazil’s sugarcane growing
regions have started adopting mechanical harvesting methods in the last decades and has nearly complete
adoption by 2013 (Davis, 2016).
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In this paper, I leverage variation induced by the regulation to compare regulated

and unregulated facilities before and after the regulation was introduced.9 The follow-

ing section provides a simple model of input decision with incomplete regulation and

households’ welfare. The objective of the following section is to provide intuition on the

possible producer responses under the new regulation.

1.3 Conceptual framework

This section presents a conceptual framework of incomplete pollution regulation and

its welfare effects to nearby populations. The objective of this section is to explain under

which conditions incomplete regulation can create input substitution. Similarly, I derive

conditions under which incomplete regulation can be regressive, affecting poor households

via pollution damages more than when no regulation exists.

Producer maximization problem: A producer decides between labor (l) and capital (k)

that are used in the production of a homogeneous good that is competitively produced.

The producer is a price taker in both the labor and capital markets (input prices are

w and r, respectively, and both are competitive input markets) and faces a Constant

Elasticity of Substitution (CES) production function.

Y = [kσ + lσ]1/σ

The use of each technology produces pollution emissions (γl and γk) that are an increasing

9One concern using this specification is that non-exempt facilities could change regulation status
after the policy started in order to be exempt of the policy (i.e. regulation-induced technology adoption)
which changes the composition of the control and treatment groups. This is an unlikely concern in this
setting. In general, the decision to invest in boilers for the facility operations/electricity generation is
a long-run decision, whereas this paper focuses in the three years (short run) of the policy. Moreover,
I obtained data on all of the mills’ industrial investments in the recent years and electricity generation
permits and only one mill invested in a new boiler in 2016 (Ingenio San Francisco Ameca that acquired
a biofuel boiler), most of the studied mills’ last investment was done during 1980-2000.
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function of input use.

γk = f(k) and γl = f(l)

The representative producer chooses l and k to maximize:

π = p[kσ + lσ]1/σ − rk − wl (1.1)

The optimal share between l and k is given by:

l∗ =
(w
r

) 1
σ
k∗ (1.2)

Optimal use of l and k is given by:

l∗ = ȳ

[
w

σ
σ−1

r
σ

σ−1 + w
σ

σ−1

]1/σ
and k∗ = ȳ

[
r

σ
σ−1

r
σ

σ−1 + w
σ

σ−1

]1/σ
Households’ maximization problem: There are two types of households: low-wealth

households (L) and high-wealth (H) households. Low-wealth households’ utility is a

function of consumption goods xL, leisure (1− lsL), where lsL is labor supplied, and health

HL, where HL = H + βML(γl) − DL(γl).
10 H is a health stock that is determined

by external and genetic factors, ML(γl) denotes medical care, and DL(γl) is pollution

exposure created by emissions linked to the use of l.11 Low wealth households decide

the amounts of consumption goods, the labor to supply for the production of the good

explained in the producers’ maximization problem, and the amount of medical care to

consume taking prices (cM and cx) as exogenous.
12 Low-wealth households obtain wages

w associated with labor supplied and other non-labor sources of income, IL. High-wealth

10This health expression is similar to [5], however, their health function also depends on avoidance
behavior and the marginal productivity of labor also depends on pollution (w(γl) for this case).

11β is the share of medical expenses used, which means that 0 < β ≤ 1
12I also assume that damages D(γl) are an increasing function of pollution exposure γl and the demand

for medical care also increases in γl.
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households’ utility depends on consumption goods, xH , and health, HH , where HH =

H+βMH(γk)−DH(γk). DH(γk) are the damages caused by emissions associated with the

use of k andMH(γk) is the medical care, which depends on pollution emissions associated

with k. High-wealth households receive a constant share of total output produced ϕȲ

and non-labor sources of income, IH .

Low wealth households’ maximization problem is given by:

max
xL,lL,ML

{ uL(cL, l
s
L,ML) = log(xL) + log(1− lsL) + log(HL + βML(γl)−DL(γl))}

s.t. cxxL + cmML(γl) = wlsL + IL

High wealth households’ maximization problem is given by:

max
xH ,MH

{ uH(xH ,MH) = log(xH) + log(HH + βMH(γk)−DH(γk))}

s.t. cxxH + cmMH(γl) = IH + ϕȲ

The optimal lsL, xL, and ML(γl) demanded are given by:

lsL =
w(cM + β)− βIL + cM(DL(γl)−H)

w(cM + 2)

xL =
1

cx

[
w(2− β) + βIL + cM(H−DL(γl))

cM + 2

]

ML(γl) =
β(IL + w) + 2(w +DL(γl)−H)

β(cM + 2)

The optimal xH and MH(γk) demanded are given by:

MH(γk) =
1

2cM

[
IH + ϕȲ +

1

β
(D(γk)−H)

]
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xH =
1

cx
[IH + ϕȲ ]

The effect of incomplete regulation on technology use and households’ welfare: Ex-

ogenous variation from the regulation establishing pollution limits to industrial boilers

allows me to quantify the effects of incomplete regulation on input substitution between

k and l empirically. Mechanical cut implies higher use of boilers, therefore this technol-

ogy is capital intensive and is considered as k. Manual cut, on the other hand, is labor

intensive and therefore is considered as l. Given that both technologies co-exist in the

sugar production process, I model the choice between each technologies under incom-

plete regulation. The following paragraphs describe the predicted effects of incomplete

regulation on labor, capital use, emissions, and wages.

Prediction 1: a tax on capital emissions decreases the demand for capital-intensive

technology.

For this prediction, let’s assume that a regulator who aims at decreasing the produc-

tion of emissions coming from capital introduces a tax (τ) for emissions generated by

capital such that the new producers’ maximization problem becomes:

π = p[kσ + lσ]1/σ − rk − wl − τγ(k) (1.3)

∂kτ

∂τ
= −ȳ

[
1 +

(
w

r + τγ′k(k)

) γ
γ−1

] 1−γ
γ (

w

r + τγ′k(k)

) γ
γ−1
(

wγ′k(k)

(r + τγ′k(k))
2

)
< 0

Prediction 2: a tax on capital emissions increase (decrease) the demand for labor-

intensive technology if labor and capital are substitutes (complements).

Expression (1.2) becomes:

lτ =

(
w

r + τγk(k)

) 1
σ

kτ (1.4)
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The optimal demand of l is given by:

lτ = ȳ

[
w

σ
σ−1

(r + τγ′k(k))
σ

σ−1 + w
σ

σ−1

]1/σ
(1.5)

Taking the derivative of (1.5) with respect to τ :

∂lτ

∂τ
= −

(
ȳw

1
σ−1

σ − 1

) (r + τγ′k(k)))
1

σ−1γ′k(k)[
(r + τγ′k(k))

σ
σ−1 + w

σ
σ−1

] 1+σ
σ


By the CES properties, gross complements (σ > 1) implies σ − 1 > 0, which means

that ∂lτ

∂τ
< 0. Conversely, gross-substitutes implies that ∂lτ

∂τ
> 0. Therefore, regulating

the emissions from capital when labor and capital are gross-substitutes means a higher

use of the labor intensive technology and increased emissions from its use.

Prediction 3: low-wealth households will be worse off under incomplete regulation

on k unless IL
w
> cM (2−β)

β
. High-wealth households will only be worse off under regulation

on k if β(IR + ϕY (τ)) < 2D(γk)cM . For this derivation, see Appendix A.

The conceptual framework predicts that under incomplete regulation, the emissions

from the regulated technology decrease whereas the use of the unregulated technology

and its emissions increase, conditional on being substitutes in the production process.

This increase in pollution is regressive, affecting low-wealth households utility unless the

ratio between non-labor income sources, IL, and labor wages, w is larger than the price

of medical treatment discounted by β.13

These results have implications for the setting studied in this paper. Under the

new regulation of sugar mills, we can expect that regulating the technology used to

process sugarcane in the mill translates into higher use of its substitute: manual cut.

13Note that this condition only holds in the case that pollution does not affect productivity, (i.e. w
does not depend on γl).
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This prediction implies a shift from the capital intensive technology towards the labor

intensive technology, increasing its associated pollution emissions. The following sections

examine the impact of the policy on input substitution and its consequences for pollution

emissions.

1.4 Data

This paper uses a combination of remote sensing data and administrative data. The

remote sensing data allows me to measure fires, land use, and pollution. The adminis-

trative data from sugarcane producers in Mexico allows me to document input-use re-

sponses to the regulation. Combining these data sources, I created an exhaustive dataset

of weekly inputs use and outputs, and daily associated fires and pollution from 2012 to

2017. This section provides a description of the data sources and the construction of all

the relevant variables.

1.4.1 Fires data

I obtained data on the universe of daily fires in Mexico from the Active Fire Data

product based on the NASA’s Visible Infrared Imaging Radiometer Suite (VIIRS). This

product provides data on all fires occurrences starting in February 2012. NASA detects

fires in a 375 m × 375 m grid and provides the centroid of the pixel with a fire event.14 I

restricted the fires to the months November to May to cover the sugarcane harvest season

because sugar mill operations are concentrated in these months.15

14The average size of sugarcane fields in Mexico is approximately 4.7 hectares [37]. This means that
the VIIRS pixel covers approximately two average fields.

15CONADESUCA reports the start and end of the harvesting season. For the years in the sample,
the harvest begins around the third week in November and finishes at the end of May.
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1.4.2 Sugarcane coverage data

In order to identify the extent of sugarcane fields in Mexico, I used data from Mexico’s

National Committee for Sugarcane Suistainable Development (CONADESUCA). The

data include confidential information of sugarcane plots in Mexico. CONADESUCA

used Landsat 8 images from 2014-2015 to map the sugarcane plots in Mexico. To do so,

they classified sugarcane fields using the Normalized Difference Vegetation Index (NDVI)

and revalidated using Landsat data and field visits.16 Given the confidentiality of the

data, CONADESUCA linked the fires centroids from VIIRS with the sugarcane fields

polygons for this project. Therefore, I am able to identify whether a particular fire event

occurred inside a sugarcane polygon. I obtained a total of 23,106 sugarcane fires for the

study period 2012-2017.17 These fires are classified as sugarcane-harvest fires.

1.4.3 Mill characteristics

The geographic location of all sugar mills was obtained from the National Statis-

tical Directory of Economic Units from INEGI that is based on the Economic Census

2009 performed by INEGI. The location information about the mills was then linked

with detailed mill-level production data provided by the Sinfocaña system updated by

CONADESUCA.18 Figure A.1 shows the geographic coverage of the sugar mills along

with their exempt classification based on fuel use pre-policy. The fuel use pre-policy was

16After processing the NDVI, CONADESUCA calculated the average lifetime of sugarcane to estimate
the plant’s maximum growth in order to correctly monitor the NDVI changes. They estimated the
month with the highest sugarcane height and cross-validated with other SPOT images from Landsat.
Furthermore, they performed field visits to sugarcane fields in Mexico to cross-validate the information.

17In order to correct for measurement error between the VIIRS resolution and the sugarcane fires
provided by CONADESUCA, I also created a 50 m buffer around the fires and classified as sugarcane
fires other fires in the VIIRS dataset that were not classified as a sugarcane fire but that were captured
at the same date, time, and within the 50 meters of the sugarcane fires. This was done in order to
account for fires that are not classified as sugarcane fires. This procedure yielded a total of nearly 200
additional sugarcane fires.

18Source: https://www.siiba.conadesuca.gob.mx/infocana/
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obtained from CONADESUCA sustainability annual reports. A mill is considered to

be part of the non-exempt group if it did not use biofuels in their production process

or if it did not use biofuels for co-generate electricity for its production activities dur-

ing 2010 and 2011.19 Table A.1 shows descriptive statistics for facilities using biofuels

(exempt) and oil (non-exempt). Exempt facilities have on average lower daily fires and

lower mechanical and manual sugarcane harvested. The empirical specification accounts

for underlying differences in these facilities by using a difference-in-differences design.

1.4.4 Sugarcane and sugar production data

Detailed weekly administrative data of inputs and outputs at the mill level was ob-

tained from CONADESUCA’s Sinfocaña system. The data includes information on in-

puts and outputs for each mill and its associated fields. Information on inputs includes

the total number of field workers, total harvested sugarcane (tons and hectares), total

sugarcane cut used manual and mechanical cut, hours worked, among other information

from the fields.20 The outputs information includes raw processed sugarcane, processed

sugarcane per day, total sugar produced, total sugar produced per day of operation,

sugar-by products like alcohol and molasses, and indicators of sugar production effi-

ciency. The sugar mills also provide information on energy and production efficiency as

well as compliance to the NOM-085-SEMARNAT-2011 (previously known as NOM-085-

ECOL-1994).21

I also obtained agricultural wages per day for sugarcane workers at the municipality

19I obtained information on biofuel use for 50 mills. I obtained information of the 10 additional
mills that used oil either for generating electricity or oil-fueled boilers in their production using
CONADESUCA annual reports, therefore being regulated by the NOM-085-SEMARNAT-2011. I cross-
validated the exempt vs. non-exempt definition using a list of compliance at the mill level provided by
PROFEPA.

20This information includes information on the fertilizers, the number of days of active production,
pests in fields, and observed temperature and precipitation.

21Source: https://www.siiba.conadesuca.gob.mx/sicostossustentabilidad/

consultapublica/IndicadoresPublico.aspx?app=sustenta
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level. The data is based in payroll contributions to the Social Security Institute (Instituto

Mexicano del Seguro Social, IMSS). The data contains total workers by sector, age, and

gender at the district (municipality) level. IMSS covers mainly formal workers and might

not be a good representation of agricultural workers in subsistance agriculture areas.

However, in the case of sugarcane production, sugarcane harvest workers are among the

workers with social security access. The data is reported at the municipality level, not

at the mill level like the rest of the results from mills, therefore, for the analysis of wages

I drop the municipalities that have more than one mill within the municipality with

different regulation status (two municipalities, four sugar mills total).

Linking fires and sugar mills

I linked sugar mills to their distribution fields by calculating the distance from the

sugarcane fires to all existing mills and associated the fires to the closest mill. Distance

to the mill is likely a good indicator on property: sugarcane needs to be processed

within a week of being harvested or it can lose caloric content and produce less sugar.22

Indeed, Figure A.2 shows that most of the sugarcane is processed within 48 hours after

being cut. Furthermore, sugar mills usually own the sugarcane fields that supply to

them and incurr in the transportation costs from the fields using their own trucks and

lend mechanical harvest technologies to smallholders.23 To the extent that there are

not consistent differences between non-exempt and exempt facilities in misassignment on

the fires, measurement error linking facilities and mills is likely to downward bias my

estimates.

I corroborated the link by obtaining information on a random sample of the sup-

22Within this week, sugarcane needs to be transported from the mill to the field, wait to weighted by
mill workers, cleaned, and processed.

23In some cases small landholders or Ejidos own fields of sugarcane and eventually sell the sugar to a
mill. These individual transactions are very hard to track and there is no consistent record of it. However,
I performed interviews to sugar mill workers and they mentioned that this is a small percentage.
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ply fields for the mills in the state of Veracruz, Mexico and calculated the overlap of

the sugarcane harvest fires definition with these fires. The sample was obtained by the

Mexican government in collaboration with the Universidad Veracruzana and contains

sampling points of sugarcane fields in the state of Veracruz, the largest sugarcane pro-

ducer state.24 I created a buffer of 300 and 500 meters surrounding the sampling sites

and compared the mills association of these fires. I found that I correctly classified 80%

of the fires based on 2009 data. Figure A.3 shows an example of the geographic extent

of this data and the sugarcane fires data. Figure A.4 shows the classification (either

matched or missassigned) of the mills in this sample, showing that most fires and mills

are assigned correctly, except two mills were their misassigned fires are a larger share of

total fires.25 Section 4 shows the results of the empirical specification only considering

the fires inside the buffers of the sampling sites. The results show higher magnitudes and

significance level compared to the full set of fires.

Figure A.5 shows the distance distribution of the sugarcane fires with respect to mills.

As a comparison, I also show the distance to other fires, most of the sugarcane fires are

within 20-70 kilometers from a sugar mill, which is consistent with field interviews to

sugar mill administrative staff. Important to note, sugar mills sell the sugarcane that

they harvest to other mills when they do not have enough capacity to process it within

the week it was harvested. This could be a problem since I would be miscalculating the

amount of sugarcane processed with either biofuels or oil/coal. Figure A.6 shows the total

sugarcane harvested by the own mill and the amount either sold or received from other

24The data was obtained with support from Noe Aguilar Rivera who shared the data of the project
“Digitalización del Campo Cañero en México para Alcanzar la Agricultura de Precisión de la Caña
de Azúcar”. This was a sampling effort from part of the Mexican government and the Universidad
Veracruzana to collect data of a random sample of the sugar mills and their corresponding sugarcane
fields in the state of Veracruz in 2009.

25One limitation of this study is the lack of data on field ownership for other states. However, the
distance assignment is likely a smaller problem in states were sugar mills are located farther away from
each other, given the biological and production characteristics of sugarcane processing.
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mills. The vast majority of sugarcane processed by the mills is originally harvested either

in their plots or in fields owned by small landholders that sold the sugarcane directly to

the mills.

Other agricultural fires

To perform a falsification test, I obtained the number of agricultural fires that are not

associated to sugarcane areas in order to obtain a fires “placebo” group. I used the rest

of the non-sugarcane fires in the VIIRS data not classified as belonging to a sugarcane

polygon by CONADESUCA. I classified them as agricultural fires (NSHF) if they were

within an agricultural land pixel using 2012 land use data from the Mexican Land Use

data series V (Serie V de Uso de Suelo y Vegetación) from INEGI. I followed the same

procedure to classify each fire in the mill “catchment” area than for the sugarcane fires.

Figure A.5 shows the distance distribution between these agricultural fires and the mills.

Compared to the sugarcane fires, these fires are located further away from the mills,

which is what we would expect if these plots were not used as sugarcane fields. As

another robustness check, I also classified fires as “non-harvest sugarcane fires” if these

fires occurred within a sugarcane field but during the months June-October, outside the

usual harvest window for sugarcane.26

1.4.5 Pollution data

I obtained daily pollution data from NASA’s MERRA-2 aerosol optical depth prod-

uct.27 The daily pollution data has a 0.5 ◦ × 0.625 ◦ resolution. This reanalysis AOD

product has information of SO2 and I calculated PM2.5 following [38]. This methodology

26These fires are usually related to sugarcane residue burning post-harvest activity and occur after
the main harvesting season.

27In specific, we used the diurnal, time-averaged, single level assimilation, Aerosol Diagnosis V5.12.4
(M2TUNXAER).
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is analogous to other work that uses satellite data to measure pollution in areas that are

remote and without a close pollution monitoring station [39]. I linked the fires and mills

coordinates to the pollution pixels and calculated the pollution associated to the mill or

the fire in that pixel during the day of the event (in the case of the sugarcane fires) or

the day of the production season (in the case of the mills).

One limitation of the data from MERRA-2 is the spatial resolution, especially for

obtaining pollution for small areas such as the location of mills. In order to address

this problem, I used data from [40] that estimates global annual surface fine particulate

matter (PM2.5) for 2012-2017. These data have a resolution of 0.01◦× 0.01◦. The dataset

provides measurements of PM2.5 µg/m
3 from aerosol optical depth and accounts for

transport of pollutants using the GEOS-Chem chemical transport model. The data has

been used in other contexts for the U.S. [41] and its spatial definition is desirable to

annalyze detailed spatial units such as mills. The downside of the data is the temporal

scale since it only provides annual estimates of particulate matter.

1.4.6 Birth outcomes data

Data on birth outcomes was obtained from the Mexican Health Ministry (Secretaria

de Salud) that collects data from individual birth certificates and has information on all

birth records and mother’s demographic and residency information such as number of

doctor visits, age, education, employment, and locality of residence. I am able to link the

locality of the mother’s residence to the sugarcane fire catchment areas by obtaining all

the rural villages and cities located within 10 km from sugarcane fields and associating the

average pollution exposure in the last pregnancy trimester given the literature findings

linking pollution exposure and negative birth outcomes for the last pregnancy trimester

[42, 7]. I merged average daily birth outcomes at the locality (city or rural village) to
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the average monthly pollution exposure in each month of the last pregnancy trimester.

This approach is similar to [7], however, I am not able to observe some of the outcomes

the authors examine such as hospitalizations or fetal and neonatal mortality.

1.4.7 Socioeconomic characteristics

In order to analyze the distributional consequences of incomplete regulation policies

and pollution leakage, I used data from the Mexican National Marginalization index con-

structed by the Mexican government and used to classify the socioeconomic vulnerability

of urban and rural areas. The index uses several variables to calculate the marginalization

level, among them the percentage of people older than 15 without education, percentage

of households without piped water, bathroom, electricity, and refrigerator, and average

number of people living in a household. The index uses data at the locality28 level and

classifies the localities in five levels of marginalization: very low, low, medium, high,

and very high. I also use data from 2010 census in order to calculate poverty levels at

the locality level in order to analyze whether poorer communities experienced a higher

increase in fires.

1.5 Empirical Specification

1.5.1 Impact of incomplete regulation on within supply chain

leakage

The first objective of this paper is to estimate the impact of regulation on within-

supply chain leakage and pollution redistribution. I take advantage of the introduction

28In terms of urban areas a locality is analogous to a city and in terms of rural areas is analogous to
a village. A caveat with this classification is that I am not able to disentangle within-city variation in
urban areas (i.e. neighborhood). However, I plan to extend this in future work.
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of the regulation in 2015 to point-sources, comparing two groups: non-exempt facilities

(oil) and exempt facilities (biofuels). In order to analyze whether non-exempt facilities

substitute from cleaning sugarcane in the mills using regulated boilers to cleaning in the

fields using controlled fires, I use a difference-in-differences approach:

SHFidm = α + β1Di × 1[t ≥ 2015] + γi + µt + ρm +Wid + ϵidm (1.6)

Where SHFimd is the sugarcane harvest fires in day d associated to mill i as de-

scribed in section 3.4.1, Di equals one if the sugar mill is a non-exempt facility, γi are

mill fixed effects, µt are year fixed effects, ρm are month fixed effects to control for sea-

sonality in harvesting activities, Wid are weather controls, and ϵidm are two-way clustered

standard errors at the municipality and year level following [43]. β1 shows the difference-

in-difference estimate of the impact of being non-exempt from the new emission limits

after 2015.

The identifying assumption of equation 1.6 is that in the absence of treatment, fires

in both exempt and non-exempt facilities would have followed the same trend. Testing

this assumption is not possible but showing parallel trends in the outcomes of interest

allows me to informally test for differences in the groups prior to the introduction of the

policy.29 Figure 1.1 shows that pre-treatment, both exempt and non-exempt facilities

follow similar trends in the number of daily fires. This figure suggests that prior to

the start of the program, fires in exempt and non-exempt facilities followed a similar

trend. I performed two falsification tests. First, I replaced the dependent variable for

NSHFit that denotes the number of agricultural fires in non-sugarcane plots associated

to mills. Second, I restricted the timeframe of the fires to the months of June through

October, outside of the harvesting season. There is no significant increase in NSHF after

29Figure A.7 shows the total number of fires by exempt and non-exempt facilities. In general, regulated
mills have a higher number of associated harvest fires than exempt facilities.
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the policy and there is no increase in SHF outside the harvesting season. Figure A.8

shows the parallel trends controlling for international sugar prices and Mexican crude oil

prices.30

Figure 1.1: Effect on total daily sugarcane fires:

-.1

-.05

0

.05

.1

D
iff

er
en

ce
 re

gu
la

te
d 

an
d 

ex
em

pt
 fa

ci
lit

ie
s

no
n-

ex
em

pt
 X

 2
01

2

no
n-

ex
em

pt
 X

 2
01

3

no
n-

ex
em

pt
 X

 2
01

4

no
n-

ex
em

pt
 X

 2
01

5

no
n-

ex
em

pt
 X

 2
01

6

no
n-

ex
em

pt
 X

 2
01

7
Notes: This figure shows the differences in differences-year specific coefficients for the total number of
daily fires following equation 1.6. The regulation started in 2015. 95% confidence intervals calculated
using two-way fixed effects at the municipality and year level.

In a similar way, I examine whether the changes in the number of fires are associated

with the substitution of inputs related to the fire use. Following a similar approach to

equation 1.6, I estimate the following difference-in-differences specification:

Yist = α + β1Di × 1[t ≥ 2015] + γi + µt + ρs + ϵist (1.7)

Where Yist denotes the variables of interest at the sugar mill level such as number of

30I obtained monthly sugar prices from the Federal Reserve Economic Data (FRED) of St. Louis Fed.
I used the nominal sugar prices (PSUGAISAUSDM) and the US CPI (CPALTT01USA6615) to obtain
the real sugar price. I obtained daily Mexican crude oil prices from the Mexican Central Bank (SI744,
Precios del Petróleo: Mezcla Mexicana, Dolares por barril, PMI and obtained the monthly average.)
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tons harvested using manual and mechanical cut, total manual workers, total sugarcane

harvested, total sugarcane processed, and total sugar. s is the week with respect to the

beginning of the harvest,31 and ρs are week with respect to harvest fixed effects. Figure

A.10 shows parallel trends for each of the inputs: sugarcane harvested by mechanical and

manual cut, total tons harvested, and number of manual workers. Figure A.11 shows

parallel trends for outputs such as total sugarcane processed and total sugar produced.

These two figures show that there are no striking differences between regulated and

exempt facilities at the start of the policy in terms of inputs used or total sugarcane

harvested or sugar produced except for the amount of mechanical cut. Any differences

in mechanical cut associated with the policy will not be interpreted as causal.

Finally, in order to examine whether there are differences in air pollution concen-

trations due to changes in the number of fires or production patterns, I use a similar

specification than equation 1.6:

Pidm = α + β1Di × 1[t ≥ 2015] + γi + µt + ρm +Wid + ϵidm (1.8)

Where Pidm is the ambient pollution concentration of PM2.5 and SO2 at the daily

level in µg/m3 obtained using the pollution level described in the Data section. I ran two

separate versions of equation 1.8: one for the pollution associated with the pollution level

in the fires polygons and another for the pollution associated with the mills’ location.

Figure A.12 shows the parallel trends for the pollution associated with the fields and

Figure A.13 shows the pollution parallel trends associated with the mills.

31The administrative data is reported by sugar mills directly in a weekly basis and they start reporting
it at the beginning of each harvesting cycle. However, information on the date of the beginning of the
harvest for each mill is not available.
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1.5.2 Distributional effects of incomplete regulation

The second objective of this paper is to analyze the distributional consequences of

within supply chain leakage. A large body of literature has documented negative effects

of pollution on health outcomes [7, 44, 45] and how the damages of pollution could vary

across income levels [46]. Other studies have analyzed whether the damages of environ-

mental policies are distributed unevenly across populations [47, 48]. However, studies

that document emissions leakage caused by a policy have not examined the extent of

which the emissions are distributed across populations.32 Understanding how the dam-

ages of environmental policy are distributed across populations and the determinants of

the environmental damages is important for welfare analysis [23] and environmental jus-

tice [19]. Analyzing the distributional damages of incomplete regulation in the context of

this paper is important because of the characteristics of the underlying population living

close to the sugarcane fields. Figure A.14 shows the characteristics of the populations

exposed to mills and fields. In general, poorer households tend to live in rural areas that

are exposed to sugarcane fires.

In order to explore the distributional consequences of incomplete regulation, I calcu-

lated the catchment areas of all localities (either urban or rural) by creating a buffer of

10 km surrounding the centroid of the locality.33 I then merged these catchment areas

to pollution concentrations by predicting the pollution exposure coming from the pol-

icy in equation 1.8, obtaining the predicted PM2.5 and SO2 from the policy, P̂idm, and

modifying the empirical specification of [49]:

32Important to clarify, many studies that have documented leakage have done it in terms of GHG
emissions where emissions occur is not as worrying due to the nature of GHG emissions.

33I assigned pollution from fires and mills by calculating a receptor catchment area of 10km from
the centroid of the urban or rural locality. A caveat of this analysis is that pollution can follow non-
uniform transport and dispersion patterns. In future work I aim to characterize this using prevailing
wind approaches. The total people in the buffer area of fires originated in sugarcane fields is 9,834,436
and the total people in the buffer area of the mills is 5,723,850.
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P̂idm = γ0 + γ11[DACi] + γ2DACi × 1[t ≥ 2015] + τi + µt + ϵidm (1.9)

Where P̂idm is the predicted pollution exposure coming from the policy calculated in

equation 1.8 and DAC is an indicator variable that equals one if the locality is disadvan-

taged (high or very high marginalization index), τi are mills fixed effects, µt are year fixed

effects. Standard errors are clustered at the locality level. γ2 > 0 implies that disadvan-

taged communities have experienced a higher burden of the pollution change due to the

incomplete regulation than other disadvantaged localities, γ1+γ2 is the total effect of the

pollution exposure gap between disadvantaged communities and non-disadvantaged com-

munities. I also further divide localities into the marginalization categories to examine

heterogeneity across different marginalization levels. I weighted equation 1.9 by popu-

lation to account for differences in population in disadvantaged and non disadvantaged

areas.

1.5.3 Health impacts of incomplete regultation

The paper also analyzes whether the pollution exposure caused by incomplete regu-

lation translate into negative outcomes for the populations located within the catchment

area described in the previous section. In particular, I use the predicted pollution expo-

sure derived in equation (1.8) to explain changes in birth outcomes:

Hjd = α + β1P̂i(d−w)m +Xid + λi + µt + ϵid (1.10)

Where Hjd denotes average birth outcomes such as birth weight, gestation length,

very low birth weight, and very preterm births at the locality and day level. P̂i(d−w)m

is the predicted exposure coming from the policy calculated in equation (1.8) associated
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with the weeks w before the birthdate in the last trimester of the pregnancy, where

w ∈ {4, 8, 12}. Xid are controls such as mother age and total doctor visits averaged at the

locality and day level. µt denotes year fixed effects. Standard errors are clustered at the

locality level. This specification differs from [7] since the authors explore the differences

between upwind and downwind fires from the mother’s municipality in order to isolate

the impacts of pollution from the economic activity derived from the harvesting season.

To the extent that P̂i(d−w)m is obtained using variation that exploits the introduction of

regulation to sugarcane mills with a rich set of controls and fixed effects, my specification

is likely capturing pollution and not economic activity.34

1.6 Results

1.6.1 Effects on upstream fires

This section discusses the effects of incomplete regulation on within supply chain

leakage. Given that fires are a production substitute for cleaning in the plant, we would

expect the amount of fires to increase after the boiler regulation for regulated facilities

(non-biofuel users). Column (1) of Table 1.1 shows the difference-in-differences estimator,

β2, of interest. This shows that there is an approximate 14% increase in the number of

daily fires after the policy began. Column (2) shows the impact on the number of fires

using a Poisson model and the results are similar to column (1), the increase in the count

of fires is around 13.5% after the policy began.

As robustness tests, Table A.2 shows the results using the monthly number of fires

at the mill level. The effect is similar in magnitude considering the number of monthly

fires. These results are robust to controlling for oil and sugar prices: Table A.3 shows

34Exploring the upwind and downwind specification like [7] is one of the priorities for future work.
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Table 1.1: Effect of emission limits on daily fires

(1) (2)
Total SHFs Total SHFs

After 2015 × non-exempt 0.04120** 0.13506**
(0.01429) (0.06518)

Pre 2015 mean 0.286 0.292
Obs. 71,535 70,280
R-squared 0.091
Year FE Yes Yes
Month FE Yes Yes
Mill FE Yes Yes
Weather controls Yes Yes
Cluster level Mun-year Robust
Poisson No Yes

Notes: Column (1) shows the difference-in-differences estimator of the impact of being regulated by
the emission limits after the policy started on the number of fires using equation 1.6. Column (2)
estimates the same specification in equation 1.6 using a Poisson model with robust standard errors.
Standard errors for column (1) and (2) using two way clusters (munincipality and year) in parenthesis.

these results. Table A.4 shows the results from equation 1.6, analogous to column (1)

of Table 1.1 with bootstrap standard errors. Table A.5 shows the results for the first

falsification test: other agricultural fires not related to sugarcane. There is no difference

in the number of non-sugarcane agricultural daily fires after the policy for the non-exempt

facilities compared to the exempt facilities. I conducted another falsification test where

I restricted the sample to the fires outside the sugarcane harvest season. Table A.6

shows these results, showing no effect in the increase of fires outside the harvest season.

Table A.7 shows a stronger effect when restricting the dataset to the fires inside of the

mills’ distribution areas using the sampling points of several mills in the state of Veracruz.

Results in Table A.7 show that the link using distance to the mills seem appropriate: most

mills usually harvest their sugarcane from the nearest fields. As a robustness test, Table

A.8 shows the results for the mills known to be under compliance by CONADESUCA.35

35CONADESUCA verifies compliance by doing inspections to the mills every two years. Important
to mention, the regulation is enforced by the Mexican Environmental Protection Agency, PROFEPA.
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The results are stronger when restricting the data to the compliant facilities which is

what we would expect if mills are actually substituting for more manual cut. Table A.9

shows the results doing two additional sample selections. Sample restriction 1 estimates

the results without the only mill that invested in a biofuel-powered boiler in 2016 who

could have changed fuel use as a response to the policy. Sample restriction 2 estimates

the results without the mill that shows a higher rate of mismatched fields based on the

minimum distance definition according to Figure A.4.

1.6.2 Effects on input substitution

Next, I turn to analyze whether the change in the number of fires is reflected in input

substitution across firms. Consistent with the finding of an increase in the number of

fires used during the harvest, Column (1) of Table 1.2 shows that there is an increase of

9% in the total sugarcane harvested using manual cut. In the opposite direction, I find

that the amount of sugarcane harvested decreases although this result is not statistically

significant. Given that the use of fires is consistent with an increase on manual cut, I

also find that the number of field workers increase by 5%, as column (3) of Table 1.2

shows. The results of table 1.1 and 1.2 show that incomplete regultation generates within

supply chain leakage and changes in the inputs used. Using data on payroll for formal

sugarcane agricultural workers at the municipality level, Table A.10 shows that there is

no change in wages for agricultural workers throughout the period of study, even dividing

by different age categories. I cannot find a discernable impact on wages with the data

available.36

However, CONADESUCA verifies mills’ inventory every two years and reports its compliance in order
to build the Sugarcane Sustainability Index.

36Other papers have investigated whether proximity to industrial facilities have positive employment
effects despite the negative pollution exposure impacts on nearby communities. [50] found that the
share of pollution risk accruing to minority groups located near polluting facilities exceeds their share
of employment and wages.
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Table 1.2: Effects on inputs substitution

(1) (2) (3)
Manual cut (tons) Mechanical cut (tons) Total field workers

After 2015 × non-exempt 2,913.460** -274.228 81.893**
(1,188.58879) (814.47535) (34.54865)

Mean 30,971.456 6,915.284 1,453.505
Obs. 6,095 6,102 5,640
R-squared 0.749 0.727 0.913
Year FE Yes Yes Yes
Week FE Yes Yes Yes
Mill FE Yes Yes Yes
Cluster level Mun and year Mun and year Mun and year

Notes: Column (1) shows the difference-in-differences estimator of the impact of being regulated
by the emission limits after the policy started on the amount of sugarcane harvested using manual
cut (tons) following specification 1.7. Column (2) shows the difference-in-differences estimator of the
impact of being regulated by the emission limits after the policy started on the amount of sugarcane
harvested using mechanical cut (tons) following specification 1.7. Column (3) shows the difference-in-
differences estimator of the impact of being regulated by the emission limits after the policy started on
the number of manual labor workers following specification 1.7. Standard errors using two way clusters
(munincipality and year) in parenthesis.

Although there is an increase in manual cut, I do not find evidence of an increase in

total sugar produced. Table A.11 shows that there is no increase in the total amount

of sugarcane processed in the mill (column 1) and no increase in the total amount of

sugar produced in the mill (column 2). These results suggest that there is redistribution

between input use but this does not imply that final output increased.37 I find suggestive

evidence that the non-increase in total sugar produced is due to changes in production

efficiency. I estimate that changes in production efficiency by using three indicators such

as (1) the total kilograms of sugar obtained by ton of harvested sugarcane, (2) total

kilograms of sugar obtained by ton of processed sugarcane, and (3) sugar extraction

efficiency. Table A.12 show these results which suggest that there is a non-significant

37A potential problem conflicting event influencing the total amount of produced sugar is the soda tax
that started in 2014. This tax was a flat rate per liter of soda and it was uniform across the country.
However, it is not clear why this would affect my main identification strategy. (1) There is no a priori
reason why a soda tax would have affected biofuel facilities differently from non-biofuel facilities. (2)
Moreover, the Mexican sugar tax was levied in the consumers directly and thus any effect would be
driven by sugar demand not total production.
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decrease in overall sugar production efficiency, consistent with the fact of non-positive

effects in production due to the change in inputs.

1.6.3 Effects on ambient pollution

What does supply chain leakage mean in terms of total pollution generated? Table

1.3 shows the implications of an increase of fires in terms of local ambient pollution level

around the sugarcane fields (columns 1-4) and mills (columns 5-6). Columns (1)-(4) and

columns (5)-(6) are estimated using different datasets, given the spatial resolution of

the data: columns (1)-(4) are estimated using data from MERRA 2.0 with calculations

following [38] and columns (5)-(6) are estimated using [40] that includes PM2.5 only. I

find that there is an increase of 1.05 µg/m3 of PM2.5 or of 6% increase in pollution coming

from the fields associated to the 2015 regulation. I do not find a change in the SO2 levels

in the fields region.

Columns (5)-(6) of Table 1.3 show the results of pollution from the mills, suggesting

a decrease of pollution near the mills following the introduction of the new regulation.

These results translate into a decrease of 3% on PM2.5 pollution coming from mills.38

Table A.13 shows the results of pollution exposure in the mills area using MERRA 2.0.

These results are less precise and have different sign than the results in 1.3 columns

(5)-(6), which is likely due to the coarse spatial resolution of the data.

The magnitudes of my results are consistent with existing studies. I find that as a

response to the regulation, regulated mills increased fires by 14%. [1] finds that regulated

facilities under the Clean Air Act increase their production in unregulated facilities by

11% and [11] finds that regulated facilities under the Clean Air Act increased foreign

output by 9%. In terms of increase in pollution, I find that incomplete regulation in-

38Important to note, the data from [40] is annual pollution concentrations at 1km× 1km, while the
MERRA 2.0 is daily data at resolution of approximately 50km× 50km at the latitude of the fields.
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Table 1.3: Effect on pollution

(1) (2) (3) (4)
Pollution in fields Pollution in mills

PM2.5 Log(PM2.5) PM2.5 Log(PM2.5)
After 2015 × non-exempt 1.05187** 0.04638* -0.38421** -0.05121

(0.37124) (0.01972) (0.09956) (0.02569)
Mean 17.549 2.608 12.566 2.455
Obs. 20,489 20,489 295 295
R-squared 0.466 0.566 0.827 0.967
Year FE Yes Yes No No
Month FE Yes Yes Yes Yes
Mill FE Yes Yes Yes Yes
Weather controls Yes Yes Yes No
Cluster level Mun&year Mun&year Mun&year Mun&year

Notes: Columns (1)-(4) shows changes in pollution concentrations in the fields associated to mills.
Columns (5)-(6) shows changes in pollution concentrations in the mills, data of SO2 at the small-scale
mill resolution is not available. Column (1) and (2) show the difference-in-differences estimator of
the impact of being regulated by the emission limits after the policy started on the ambient pollution
level of PM2.5 and log(PM2.5), respectively following specification 1.8 using [38]. Column (3) and (4)
show the difference-in-differences estimator of the impact of being regulated by the emission limits
after the policy started on the ambient pollution level of SO2 and log(SO2), respectively following
specification 1.8 using [38]. Column (5) and (6) shows the difference-in-differences estimator of the
impact of being regulated by the emission limits after the policy started on the ambient pollution level
of PM2.5 following [40] (SO2 data for this data product is not available). Standard errors using two
way clusters (munincipality and year) in parenthesis.

creased pollution exposure by 6% in rural areas located near the agricultural fields. This

increase in pollution is higher than the documented by [51], who find an increase of 1.25%

in PM2.5 exposure as a result of increasing agricultural fires due to labor exits in India.

1.6.4 Who experiences the increased pollution?

This section analyzes whether vulnerable communities experienced a larger increase

in pollution coming from sugarcane fires after the policy. I classified vulnerable com-

munities using the marginalization index provided by the Mexican government. In this

section I will use the official index that classifies communities from “very low” to “very

high” marginalization and a classification of “disadvantaged” if the community has “very
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high” and “high” marginalization levels. Given the spatial distribution of vulnerable

communities in Mexico, we could expect that there are differences in baseline charac-

teristics between disadvantaged communities and non-disadvantaged localities. These

differences are captured by γ1 in equation 1.9. Table 1.4 shows that before the policy,

disadvantaged localities have lower levels of PM2.5 and slightly insignificant, higher levels

of SO2 levels. However, after the policy the total pollution exposure in disadvantaged

localities increased, meaning that total pollution exposure in disadvantaged localities in-

creased after the policy compared to non-disadvantaged localities. Exposure to SO2 in

the other hand, decreased but the difference is not significant. I estimate that by the

end of the policy, disadvantaged localities experienced 12% more pollution exposure than

non-disadvantaged localities.

Table 1.4: Distribution of the effects of pollution coming from fires

(1)
Predicted PM2.5 (fires)

DAC=1 -0.13900***
(0.04193)

DAC=1 × After 2015=1 0.27055***
(0.08194)

Obs. 3,627,238
R-squared 0.717
Year FE Yes
Month FE Yes
Mill FE Yes
Cluster level Municipality
Pop. weighting Yes

Notes: Columns (1) and (2) show the predicted difference in pollution exposure for disadvantaged
localities before the policy (DAC=1) and after the policy (DAC=1 × After 2015=1. Localities exposure
was calculated using catchment areas: 10km circle surrounding the locality sector. Disadvantaged
localities were classified using the 2010 Marginalization Index calculated by CONAPO. Regression uses
population weights using 2010 Census data.

These pollution redistribution impacts are heterogenous with respect to different lev-

els of marginalization: the highest level of marginalization has a higher burden of pol-
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lution exposure than localities with low or very low marginalization indices. Panel a)

supbanel (a) of Figure 1.2 shows these results. Panel a) subpanel (b) shows a robustness

check using another index of social vulnerability, the “Social Lag Index”, calculated by

CONEVAL.39 Figure 1.2 shows that the exposure from mills did not change differentially

for communities with higher levels of vulnerability, except for the “Very High” category

of the social lag index. However, it is smaller than the magnitudes from fires. The het-

erogeneity in pollution exposure after the policy could be explained by different reasons

such as ex-ante vulnerability or because mills with fields closer to disadvantaged com-

munities could strategically pollute more near these areas without facing opposition to

pollute in these areas. [27] show that in the case of Mexico, disparities could be explained

by community pressure and collective action responses. However, additional work can be

done trying to analyze whether this is the case in the sugarcane sector. These results are

relevant given that previous research shows that pollution damages are not linear with

income [46]. Moreover, given that deffensive investments are an important part of the

willingness to pay for pollution reduction [52] and they could be correlated with income,

poorer households might not be able to cope with changes in pollution exposure.

Table 1.5 shows the same specification in equaltion 1.9 for the mills (SO2 is not

available for the small scale resolution). There is no significant difference between dis-

advantaged communities and other communities after the policy began. Similarly, panel

b) of figure 1.2 show no significant difference for the different levels of marginalization.

Besides showing that the policy generated a relatively higher pollution exposure for

the most vulnerable, I tested whether locations with higher poverty levels are the most

affected by the fires. Table A.14 shows that the increase in fires is higher in localities

39This index considers data from the 2010 data based on different variables than the Marginalization
Index calculated by CONAPO. The index considers indicators of infrastructure at the locality level and
asset holding characteristics for the localities’ households.
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Figure 1.2: Distribution of the effects of pollution
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Panel b) exposure from mills
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Notes: Panel a) shows the results of pollution associated to fires by level of marginalization according
to the marginalization index and the social lag index.. Panel b) shows the results of pollution associated
to mills by level of marginalization according to the marginalization index and the social lag index.
Coefficients show the interaction between the marginalization level and an indicator after the policy.
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that have poverty levels higher than each locality’s state median. This is consistent with

[27] who found that pollution releases is higher in marginalized communities in the case

of Mexico. This is another indicator that the most vulnerable communities were affected

by incomplete regulation.

37



The Distributional Effects of Incomplete Regulation Chapter 1

Table 1.5: Distribution of the effects of pollution coming from mills

(1)
Predicted PM2.5 (mills)

DAC=1 -0.01557
(0.01044)

DAC=1 × After 2015=1 0.03893
(0.02610)

Obs. 17,075
R-squared 0.998
Year FE Yes
Month FE Yes
Mill FE Yes
Cluster level Municipality
Controls pop. Yes

Notes: Columns (1) and (2) show the predicted difference in pollution exposure for disadvantaged
localities before the policy (DAC=1) and after the policy (DAC=1 × After 2015=1. Localities exposure
was calculated using catchment areas: 10km circle surrounding the locality sector. Disadvantaged
localities were classified using the 2010 Marginalization Index calculated by CONAPO. Regression uses
population weights using 2010 Census data.

1.6.5 The impacts of incomplete regulation on health outcomes

Do changes in pollution caused by incomplete regulation affect health outcomes? I

examine this by analyzing whether the predicted pollution obtained in section 4.2 changes

birth weight, gestational weight, very low birth weight incidence, and very preterm birth

for populations located in the fires catchment area. Table 1.6 shows the main health

results of pollution exposure in the last pregnancy trimester on birth outcomes. I find

that pollution exposure in the last trimester of pregnancy significantly lowers birth weight

and increases the incidence of very low birth, and very preterm birth. These effects are

larger in the weeks 5 through 12 before giving birth.
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The results in Table 1.6 imply that an additional µg/m3 of PM2.5 in the weeks 1-8 of

the last trimester of pregnancy associate with a birth weight decrease of 1 gram on average

for all mothers. [7] estimate that a unit increase of PM10 (in µg/m
3) caused by sugarcane

fires decreases birth weight by 5.2 grams. Other estimates on the impacts of pollution

oh birth weight find that a unit increase in PM10 exposure during the last trimester is

associated with a 0.4 gram decrease in birth weight [42, 7]. My estimates are smaller in

magnitude than [7] which could be due to existing differences in fire activity intensity in

Brazil, as well as differences in the studied pollutants and identification strategies.40

For the other variables analyzed, I find that a unit increase of PM2.5 is associated with

a 3% increase in the probability of very low birth weight (< 1,500g) and a 2% increase

in the probability of very preterm birth (< 32 weeks). These results are consistent with

other studies finding increases in very low birth weight and very preterm birth associated

with an increase in fires [7].41 These results suggest that increases in pollution due to

input substitution are associated with worse health outcomes for the populations located

in the fires catchment area. These estimates will be used in Section 6 to calculate a tax

that would internalize the health costs of sugarcane burning originated by the incomplete

regulation.

1.7 Internalizing the costs of burning

The previous sections showed that incomplete regulation increases the emissions of

the unregulated input which impacts populations located nearby. One alternative to

alleviate these damages is to regulate the associated harvest burning driven by incomplete

40[7] estimate this by comparing upwind and downwind fires which likely provide a more precise
estimate of the impacts of pollution exposure. This approach is outside the scope of the paper but will
be a priority for future work.

41[7] find that an additional z-score of fire activity per week in the last trimester of pregnancy increases
the incidence of very low birth weight by 22 per 1000 and an increase in the incidence of preterm birth
of 23 per 1000, although the later results are not significant.
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regulation via a tax and compensate the damages to affected populations. The objective

of this section is to calculate a tax that internalizes the existing health costs associated

with agricultural burning. To do so, I obtain the difference between the social cost per

unit of harvested sugarcane and the private cost of production paid by consumers and

find the tax that would compensate communities affected by sugarcane burning. I then

calculate this tax in the context of the sugarcane sector in Mexico using the estimated

responses to the incomplete regulation.

Assuming a regulator that tries to maximize consumer surplus net of private costs

and environmnetal damages, The regulator’s welfare maximization problem is given by:

W =

∫ y

0

f(y)dy︸ ︷︷ ︸
Consumer surplus

− c(l, k)︸ ︷︷ ︸
Prod. Cost

−D(γk)−D(γl)︸ ︷︷ ︸
Pollution damages

Where f(y) is the demand for sugarcane, c(l, k) is the producer cost, D(γk) is the health

damages from pollution emissions of the capital intensive input γk, and D(γl) is the

health damages from pollution emissions of the labor intensive input.

The firms’ profit function is given by:

π = py − rk − wl − γlt

Where p is the price of the final output y, sugar, l is labor, k is capital, r and w are

the prices of capital and labor, and t is the tax for each unit of processed sugar. The tax

that would equate the social cost per unit of sugar and the private cost of production is

be given by:

t =
w ∂L

∂t
+ ∂D(γk)

∂γk

∂γk
∂k

∂k
∂t

+ ∂D(γl)
∂γl

∂γl
∂l

∂l
∂t
+ r ∂k

∂t
− P ∂y

∂t

∂γl
∂l

∂l
∂t
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Table 1.7: Parameters for tax calculation
w Average ag. wage $109 MXN
∂L
∂t

Own estimate 9.42%
∂D(σk)
∂σk

[46] 0.40%
∂σk

∂k
∂k
∂t

Own estimate -3.05%
∂D(σl)
∂σl

Own estimate 2%
∂σl

∂l
∂l
∂t

Own estimate 13.20%
r EPA risk free rate 0.04
∂k
∂t

Own estimate 49%
P Sugar price per ton $13,100 MXN
∂y
∂t

Own estimate .19%

Using the parameters obtained in the previous sections and in existing studies sum-

marized in Table 1.7, I calculate that the wedge between the social cost per unit of

sugarcane harvested and the private cost of production paid by consumers is given by

$39 USD ($789 MXN) per ton of sugarcane, which average price in 2017 was $650 USD,

meaning is a 6% tax per ton of sugarcane.

1.8 Conclusion

This paper showed the environmental justice consequences of incomplete regulation

when facilities are able to shift where production occurs. I investigated the distributional

consequences of incomplete regulation in the context of the sugarcane production in

Mexico. By leveraging data on fires, pollution, and detailed production information on

mills, this paper is able to identify the responses of producers to incomplete regulation.

I found that following the introduction of regulation, regulated facilities increased the

sugarcane harvest fires in their associated fields. I also found adjusting margins in the

inputs used by mills. Consistent with an increase in fires, I showed that regulated facilities

increased the manual workers and the sugarcane harvested using manual cut. I find that
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the increase in fires is accompanied by an increase in pollution near fields and a decrease

of pollution near mills. Finally, I find that the increase in pollution caused by the policy

is associated with worse birth outcomes for exposed populations.

The responses to incomplete regulation regarding pollution are concerning due to

the differences of poverty levels of the populations close to the mills and the fields. I

analyzed whether the burden of pollution caused by the policy is higher for disadvantaged

populations. This paper found that the pollution increase was higher for disadvantaged

communities. This result contributes to the current discussions on the determinants of

environmental justice. I contribute to this literature by looking a previously overlooked

mechanism: incomplete regulation.

The results of the paper are relevant for current policy debates in Mexico on whether

to regulate agricultural burning from sugarcane. Moreover, in 2017 the Mexican environ-

mental agency proposed ammendments to the existing regulation to include facilities that

use biofuels as main fuel (PROY-NOM-170-SEMARNAT-2017). The results of this paper

show that if facilities are able to substitute production processes with fires, incomplete

regulation might backfire. Therefore, considering these possible adjustment margins is

important.

There are several limitations to this study. First, the pollution level estimates should

be interpreted with caution given the geographic extent of pollution measures. How-

ever, I present consistent evidence that manual cut increased together with fires, which

suggest that populations located near fields were exposed to pollution. To the extent

that burning biomass increases pollution levels, which has been shown by other studies,

populations are likely to experience higher pollution. Second, despite the efforts to link

mills to their respective fields, the possibility of misassignment of this link remains. How-

ever, given the evidence using actual distribution areas for one of the states in Mexico,

it is likely that this measurement error downward bias my results, which means that the
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effects found in the paper could be a lower bound of the real effect. In fact, I showed

how when restricting fires to the recorded distribution areas, the estimates are higher.

Finally, there is still need to characterize other mechanisms driving distributional con-

cerns of environmental policy and other environmental justice implications. However, by

documenting a previously overlooked mechanism, this paper contributes to the literature

on disparities in environmental impacts and its implications for environmental justice.
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Chapter 2

Do Environmental Markets Cause

Environmental Injustice? Evidence

from California’s Carbon Market

2.1 Introduction

Over the last three decades, policy makers have increasingly relied on market-based

environmental policies - such as pollution trading and taxes - to address environmental

problems. Expanded use of market-based policies followed each major amendment to

the U.S. Clean Air Act since the 1970s [53]. Widespread adoption has occurred in other

environmental domains: today, market-based policies cover 30% of global fisheries [54],

account for over $36 billion in global ecosystem service payments [55], and govern 20%

of global greenhouse gas (GHG) emissions [56].

The central appeal of market-based environmental policies is allocative efficiency.

In theory, such policies reduce the total abatement cost of meeting an environmental

objective by inducing less abatement from polluters with higher abatement costs [57, 58,
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59]. This contrasts with traditional command-and-control regulations, which typically

require heterogeneous polluters to adopt uniform abatement actions.

At the same time, the particular reallocation of emissions induced by market-based

policies also spatially alters who is harmed by pollution. This is of particular concern

as a growing “environmental justice” (EJ) literature has documented that communities

with lower income, higher minority share, and/or otherwise disadvantaged, systematically

experience higher pollution concentrations than other communities, a statistic we refer

to as the environmental justice gap (or EJ gap).1 Could the adoption of environmental

markets be compounding existing EJ gaps?

Whether a market-based environmental policy widens or narrows the EJ gap de-

pends on the joint spatial distribution of polluting facilities, their abatement costs, and

disadvantaged communities. Market-based policies induce relatively less abatement from

facilities with steeper marginal abatement cost curves. If these facilities are upwind of

disadvantaged communities, such policies will widen an existing EJ gap. Conversely, if

these facilities are upwind of non-disadvantaged communities, a market-based policy will

narrow the EJ gap [68].2 Unfortunately, facility-level marginal abatement cost curves are

usually unobserved, making it hard to anticipate the direction of EJ gap effects ex-ante.

This difficulty underscores the need for ex-post empirical approaches, for which prior

studies have largely found inconclusive EJ gap effects [69, 70, 71].

This paper estimates the EJ gap consequences of California’s greenhouse gas (GHG)

cap-and-trade (C&T) program, which since 2013 has created the world’s second largest

carbon market. This program has also been a focal point of EJ concerns, as local air

pollution emissions are typically co-produced with GHG emissions.3 The possibility that

1EJ gaps across many settings have been shown through case [60, 61, 62, 63, 64] and population-level
[65, 66, 67] studies.

2Additionally, for a policy regulating global pollutants like greenhouse gases, the EJ gap effect depends
on the extent in which GHG and local pollutants are co-produced.

3Similar EJ concerns have arisen elsewhere. Recent efforts to introduce state-level U.S. climate policies
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the program could widen California’s existing EJ gaps in local air pollution has, among

other critiques, led to political opposition that temporary paused the program’s initial

development in 2011 and nearly halted renewal efforts in 2017. However, to date, there

has been limited causal evidence on whether the program has indeed widened EJ gaps.

We make two contributions, one empirical and another methodological, in order to

establish the EJ gap consequences of California’s C&T program. First, we find that

the C&T program has lowered GHG and criteria air pollution (i.e., PM2.5, PM10, NOx,

and SOx) emissions for sample facilities. Specifically, we exploit the program’s facility-

level eligibility rule based on historical emissions and its timing to estimate a break in

differential emission trends between regulated and unregulated facilities after 2013. This

research design is possible because we observe facility GHG and criteria air pollution

emissions for both regulated and unregulated facilities, and for periods before and after

the program’s introduction, data availability that is not common across cap-and-trade

programs. For example, facility-level pre-program emissions are not directly observed

for the European Union Emissions Trading System (EU-ETS), the world largest carbon

market [75, 76, 66]. Even in settings where emissions data is available, emissions-based

eligibility thresholds can sometimes be too low for there to be sufficient control units

within the same jurisdiction, as in the case of Southern California’s RECLAIM NOx C&T

program [69]. We compare regulated and unregulated units within the same jurisdiction.

Our identifying assumption requires that any existing differential emission pre-trends

between regulated and unregulated facilities would have continued after 2013 if not for

the C&T program.

We estimate that C&T reduced emissions annually at a rate of 3-9% across GHG and

criteria air pollutants during 2012-2017. To isolate the C&T effect from that of other

concurrent climate programs in California, such as renewable portfolio and low carbon

and renew the European Union Emissions Trading System were opposed on EJ grounds [72, 73, 74].
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fuel standards, we restrict attention to facilities that were only directly regulated by C&T.

Emissions abatement induced by these complementary climate programs have in general

made it difficult to discern whether C&T contributed to the recent 27.1 million ton CO2e

decline in total California GHG emissions between 2012-2017 [77, 78]. Our estimates

imply that GHG emissions across sample facilities declined by 3.2 million tons of CO2e

during this period. The exclusion of C&T-regulated facilities subject to complementary

program from our analysis suggests that this figure is a weak lower bound on the effect

of C&T on total California GHG emissions.

We demonstrate that C&T emissions effects are robust to various model specification

and sample restriction choices; to concerns about spillover effects between regulated and

unregulated facilities; and to heterogeneity in emission effects as a function of a facility’s

average emissions. In a placebo test that systematically imposes trend breaks across

sample years, we detect the largest trend break in 2013, the year when the program was

actually introduced.

Our second contribution is to develop an empirical approach for determining how

policy-driven changes in pollution emissions alter the spatial distribution of pollution

concentrations. The canonical economics framework for evaluating environmental policies

requires knowing the link between pollution “source” and “receptors” [79]. In practice,

however, this mapping is rarely characterized and is instead assumed to follow simple

spatial patterns such as assigning pollution concentrations to areas within the same

geographic unit of a facility or within a distance circle centered at a facility [64]. In

reality, the spatial and temporal patterns of pollution dispersal are far more complex and

depend on topography and time-varying atmospheric conditions. Failure to accurately

account for actual dispersal patterns can lead to bias estimates even in otherwise valid

quasi-experimental settings [80].

To address this challenge, our estimation framework explicitly embeds an atmospheric
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dispersal model, a computationally-intensive procedure that involves running over two

million pollution trajectories. Specifically, our approach combines estimates of C&T

emissions effects (and its uncertainty) at the facility level with an analysis of resulting

EJ gap changes at the location level, as determined by the atmospheric dispersal model.

In doing so, we build on prior studies using dispersal models which typically only conduct

analysis at the location-level (e.g., [81]) or facility-level (e.g., [70]). Location-only studies

insert observed (not policy-driven) emissions into a dispersal model and thus do not

consider changes in pollution concentration arising from specific policies. Facility-only

studies typically examine whether a policy’s effect on emissions varies with demographic

characteristics of downwind locations from a facility. We formally demonstrate that

estimates from such facility-level regressions do not in general equal the EJ gap effect

and need not even be of the same sign. We further show that for the EJ gap effect to

be recovered from facility-level estimates, one must assume a highly simplistic spatial

pattern of pollution dispersal, an assumption which we can reject for our setting.

Employing a definition of a “disadvantaged” zip code that serves as a basis for Cali-

fornia’s EJ policies, we detect three EJ gap findings. First, consistent with EJ concerns

in the lead up to the C&T program’s introduction, we find not only were there baseline

EJ gaps across criteria air pollutants in 2008, but that gaps were widening in the 2008-

2012 period before the program. Second, the C&T program has narrowed EJ gaps since

2013. Third, while EJ gaps have narrowed, they have not been eliminated: by 2017, the

C&T program returned EJ gaps roughly to 2008 levels. These EJ gap effects are robust

across a variety of checks. In particular, we find that allowing for heterogeneous emissions

effects as a function of a facility’s average emissions leads to slightly larger declines in

EJ gaps. We further demonstrate similar EJ gap effects when employing an alternative

atmospheric dispersal model that generates secondary PM2.5 concentrations. An analysis

of spatial heterogeneity reveals that EJ gaps narrowed most for disadvantaged zip codes
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in California’s Central Valley, while a few disadvantaged zip codes in Los Angeles County

experienced widening gaps.

We demonstrate the importance of modeling pollution dispersal for our results. Our

EJ gap effects become unstable if instead of modeling pollution dispersal, we were to

employ more conventional approaches for assigning pollution emissions to concentrations.

We posit that our empirical approach may have broader applicability. In particular, there

is a common need across many environmental policy settings to track how policy-driven

changes in pollution emissions alter the spatial distribution of pollution concentration

[82, 83, 80].

The paper is structured as follows: Section 2.2 considers a conceptual framework for

how a C&T program could widen or narrow an existing EJ gap and offers background

on California’s GHG C&T program. Section 2.3 summarizes our data. Section 2.4

details our empirical approach. Section 2.5 presents our results. Section 2.6 provides a

discussion.

2.2 Background

We begin by discussing how the introduction of a cap-and-trade (C&T) program can

either widen or narrow existing pollution concentration gaps between disadvantaged and

other communities. We then review California’s greenhouse gas (GHG) cap-and-trade

program.

2.2.1 Cap-and-trade and the environmental justice gap

In a textbook C&T program, the regulator establishes a limit (or cap) on total emis-

sions within a jurisdiction by issuing a fixed supply of emission permits. Regulated fa-

cilities are then either given, or must purchase, permits to cover their emissions. Permit
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trading allows the marginal abatement cost (MAC) of emissions to be equalized amongst

regulated facilities to the permit price.4

Two key consequences of C&T are often emphasized. First, by placing a price on

pollution, a C&T program induces polluting facilities to internalize (some of) the social

costs of their emissions.5 Second, by equalizing MACs across facilities, a C&T program

allocates emissions by inducing relatively less abatement from facilities with steeper MAC

curves and more abatement from facilities with flatter MAC curves. In theory, the

resulting allocation of abatement achieves the aggregate emissions cap at the lowest total

abatement cost across regulated facilities [59].

What is less clear is how the allocative efficiency achieved by C&T alters the spatial

distribution of pollution concentration. In particular, there is growing concern that the

same market forces resulting in allocative efficiency may also be altering the difference

in pollution concentrations experienced between disadvantaged and other communities.

This difference, which we call the “environmental justice gap” (or EJ gap) has been

shown to be positive in the many settings [60, 61, 62, 63, 64, 65, 66, 67].

The introduction of C&T can either widen or narrow an existing EJ gap. Figure 2.1

illustrates this ambiguous effect for a stylized two-facility setting with emissions (e) on

the horizontal axis and permit prices (τ) on the vertical axis. The first facility is upwind

of a disadvantaged community (DAC) with a marginal abatement curve labeled “DAC”

(in orange). The second facility is upwind of a non-disadvantaged community and has

a marginal abatement curve labeled “non-DAC” (in gray).6 To establish an existing

positive EJ gap prior to the introduction of C&T, we allow the DAC facility to have

larger emissions in the absence of C&T, or when τ = 0. When C&T is introduced, each

4The modern C&T framework was initially developed by [57] and [84].
5Whether social costs are fully internalized depends on if the cap is set at the socially optimal level.
6The horizontal axes in Figure 2.1 indicates emissions rather than abatement in order to illustrate

emissions levels prior to C&T when τ = 0.
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facility’s MAC is equated to the equilibrium permit price τ = τ ∗. What happens to the

EJ gap?

In the left panel of Figure 2.1, the DAC facility has a steeper MAC curve than

the non-DAC facility, causing the DAC facility to abate less than the non-DAC facility

under C&T. In this case, C&T widens the EJ gap. The right panel of Figure 2.1 shows

an alternative case whereby the DAC facility has a flatter MAC curve than the non-

DAC facility. Following C&T, the DAC facility abates more than the non-DAC facility,

narrowing the EJ gap.

Thus, in settings with an existing positive EJ gap, whether C&T widens or narrows

the EJ gap depends on whether facilities upwind of DAC communities have relatively

steeper or flatter MAC curves. Furthermore, for a cap-and-trade system regulating a

global pollutant such as greenhouse gases, the EJ gap effect depends on the extent in

which GHG and local air pollutants are co-produced.

Unfortunately, facility-level MAC curves are rarely observed, which limits the ability

to anticipate EJ gap effects of proposed C&T programs. Ex-post studies also face sev-

eral empirical challenges. First, isolating the effect of reallocation from cap-and-trade

requires restricting attention to facilities that are only regulated by cap-and-trade and

not additionally by complementary climate programs.7 Second, to remove the influence

of macroeconomic conditions, one needs to estimate the effect of cap-and-trade for reg-

ulated facilities relative to unregulated facilities. Third, estimated C&T-driven facility

emissions must be mapped onto location-level pollution concentrations in order to exam-

ine resulting EJ gap changes. Section 2.4 details how we overcome these challenges.

7Returning to Figure 2.1, suppose a complementary climate program binds for one facility such that
its emissions are unchanged following the introduction of cap-and-trade. Any subsequent change in the
EJ gap following cap-and-trade now depends on the complementary program, and in particular whether
it binds for the DAC or non-DAC facility and at what emissions level.
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Figure 2.1: EJ gap under cap-and-trade
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Notes: Panels illustrate how the introduction of a C&T program can widen or narrow an existing
EJ gap in a two facility setting. Horizontal axes indicate emissions. Vertical axes indicate marginal
abatement costs, and equivalently the permit price under C&T. The marginal abatement cost curve
for facility upwind of a disadvantaged community (labeled DAC) is shown in orange. The marginal
abatement cost curve for facility upwind of a non-disadvantaged community (labeled non-DAC) is shown
in gray. τ∗ indicates the permit price under C&T. In the left panel, the DAC-upwind facility has a
relatively steeper MAC curve. In the right panel, the DAC-upwind facility has a relatively flatter MAC
curve.

2.2.2 California’s GHG cap-and-trade program

California’s has one of the world’s most sophisticated and ambitious climate policies.

In 2006, California passed Assembly Bill 32 (AB 32), requiring total GHG emissions

across the state to reach 1990 emissions level by 2020. AB 32 remains the only economy-

wide climate policy in the U.S.: all other state or national climate policies regulate

specific sectors, whereas AB 32 covers all GHG emission sources.

To meet this GHG target, AB 32 established a suite of climate programs. One

key program was cap-and-trade, introduced in 2013 and administered by the California

Air Resources Board (CARB).8 The program requires participation by all stationary

8Prominent complementary programs to C&T under AB 32 include a Renewable Portfolio Standard
for electricity generation and a Low Carbon Fuel Standard for refineries.
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GHG-emitting facilities producing at least 25,000 metric tons of annual carbon dioxide

equivalent emissions, or CO2e, during any year between 2009-2012.9 This eligibility

criteria covers all sectors that directly emit GHGs from stationary sources and is unique

amongst other AB 32 climate programs.10,11 California’s C&T program has since created

the world’s second largest carbon market by permit value, following the European Union

Emissions Trading System (EU-ETS).

In 2016, California met AB 32’s 2020 GHG target four years early. That same year,

the state extended its GHG target to 40% below 1990 levels by 2030. This was shortly

followed by a 2030 extension of the C&T program. However, critical questions remain

regarding the performance and consequences of the C&T program.

First, it remains unclear whether C&T has lower GHG emissions. In particular, when

C&T coexists with complementary climate programs, an overall GHG emissions cap can

be met with little or no abatement induced by C&T if these complementary programs

bind. Indeed, an ex-ante analysis of California’s GHG C&T program demonstrated a

potentially large role played by such complementary programs on overall GHG abate-

ment [78].12 Second, even if C&T lowered GHG and local air pollution emissions, it

remains unclear whether the resulting change in the spatial distribution of air pollution

concentrations widens or narrows California’s EJ gap.

9Greenhouse gases covered by the program were CO2, CH4, N2O, HFCs, PFCs, SF6, NF3 and other
fluorinated GHGs. The 25,000 metric ton eligibility criteria is re-evaluated

10The 2013 timing of the C&T program is also unique. Most other AB 32 climate programs were
introduced earlier.

11The GHG C&T program does not directly regulate local criteria air pollution emissions. Any
changes in the spatial distribution of local air pollution concentration due to the program is driven by
the program’s reallocation of local air pollution emissions that is co-produced with GHG emissions.

12Furthermore, even a positive GHG permit price does not ensure that the C&T program caused
GHG emissions to fall. Suppose, for example that there was some form of restriction on GHG emissions
prior to the C&T program leading to a pre-program positive shadow price on GHG abatement. A C&T
program with an overall cap set equal to total emissions under the prior restriction would generate a
positive permit price despite no change in overall GHG emissions.
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2.3 Data

Our analysis involves two primary datasets: 1) GHG and criteria air pollution emis-

sions at the facility-by-year level and 2) an indicator of whether a zip code is considered

to be “disadvantaged” according to California legislation.

Facility emissions We obtain 2008-2017 facility-level annual emissions of GHG (or

CO2e), PM2.5, PM10, NOx, and SOx, all in metric tons, from CARB’s Pollution Mapping

Tool.13 We observe GHG as well as criteria air pollutions emissions for both C&T-

regulated and non-regulated stationary facilities, before and after the introduction of the

C&T program.14

Several additional facility-level variables serve as inputs for the atmospheric dispersal

model. CARB provides facility latitude and longitude as well as pollution-specific stack

heights for a subset of facilities. For other facilities, we impute missing pollution-specific

stack heights using sector averages constructed from non-missing observations.

Definition of a disadvantaged community There is no established definition of a

“disadvantaged” community. Previous papers in other settings use a location’s median

income or minority share of population as proxy measures [69, 70, 85]. For our setting,

we select a policy-relevant definition of a “disadvantaged” community. Senate Bill 535

(SB 535), passed in 2012, requires a portion of the revenue from the auction of C&T

13Available here: https://ww3.arb.ca.gov/ei/tools/pollution_map/
14Stationary facilities with annual emissions past a certain threshold must report emissions. For

GHGs, the data reporting threshold is 10,000 metric tons of CO2e, set by CARB. For criteria air
pollutants, CARB sets a reporting threshold of 10 metric tons per year, but each air district can set
lower data reporting thresholds. As a consequence, we observe criteria air pollution emissions below 10
metric tons, with no evidence of bunching at 10 tons (see histograms of sample facility-year emissions
in Figure B.1). We confirmed that emissions data in CARB’s Pollution Mapping Tool matches values
found in source datasets: CARB’s Mandatory Reporting Regulation (MRR) dataset for GHG emissions
and the California Emissions Inventory Development and Reporting System (CEIDARS) for criteria
air pollution emissions. Details on California’s emissions reporting requirements can be found: https:
//ww3.arb.ca.gov/ei/tools/pollution_map/doc/caveats%20document12_22_2017.pdf
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permits to be directed towards benefiting disadvantaged communities. SB 535 formally

defines a “disadvantaged community” using CalEnviroScreen, a scoring system based

on multiple indicators developed by the California Environmental Protection Agency.

Specifically, a zip code is considered disadvantaged if it contains all or part of a census

tract with a CalEnviroScreen score above the top 25th percentile. Zip codes designated

as disadvantaged are shaded in dark blue in Figure 2.2a. Importantly, pre-2013 data was

used in constructing CalEnviroScreen, which mitigates the concern that cap-and-trade

may have affected zip code designation. We further augment our zip code level data with

average 2008-2012 population obtained from the U.S. Census Bureau.

2.4 Empirical Approach

Our analysis proceeds along three steps. First, we use facility-by-year-level data

to estimate how the GHG C&T program altered GHG, PM2.5, PM10, NOx, and SOx

emissions. Second, we feed C&T-driven PM2.5, PM10, NOx, and SOx emissions predicted

from the first step into an atmospheric dispersal model to generate zip code-by-year-level

concentrations of these pollutants due to the program. Finally, we examine whether the

C&T program changed the concentration gap for these pollutants between disadvantaged

and other communities following its 2013 introduction.

Step 1: Estimating C&T effects on emissions We exploit the facility-level eligi-

bility criteria based on pre-program GHG emissions and the 2013 timing of the C&T

program to identify its effects on GHG, PM2.5, PM10, NOx, and SOx facility-level emis-

sions during 2008-2017. Because the program’s eligibility criteria is based on pre-C&T

GHG emissions, we expect regulated and unregulated facilities to differ in pre-program

emissions levels and perhaps also in pre-program emission trends. Our empirical test
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therefore examines whether differential emission trends exhibit a break after 2013. For

this test to have a causal interpretation, our identifying assumption requires that any

existing differential emission pre-trends to have continued if not for the introduction of

the C&T program.15

Specifically, let j index facilities. Cj ∈ {0, 1} is GHG C&T regulatory status with

Cj = 1 indicating facility j is regulated.16 For facility j in year t, Y p
jt is annual emissions

of pollutant p ∈ {GHG,PM2.5, PM10, NOx, SOx}. Because emissions exhibit a skewed

distribution and contain zero values, we apply an inverse hyperbolic sine transforma-

tion, which like a log transformation lends a percentage effect interpretation, but with

the added advantage of retaining zero-valued observations [86]. To examine differential

emission trends driven by the C&T program, we estimate the following specification:

asinh(Y p
jt) = κp1[Cj × t] + κp2[Cj × 1(t ≥ 2013)× t] + ϕp

j + γpt + νpjt (2.1)

Facility-specific dummy variables ϕp
j removes time-invariant determinants of pollution p

for facility j. Year-specific dummy variables γpt remove common determinants of emissions

affecting all sample facilities in year t, such as California-wide economic conditions.

κp1 captures the differential emission pre-trend for pollutant p between facilities that

would and would not eventually be regulated by the C&T program during 2008-2012,

15Because there is no overlap in pre-program GHG emissions for regulated and unregulated facilities,
we are unable to implement a matching estimator that matches on pre-program emissions, as is done in
[69] and [76]. Implementing such a matching approach would require emissions data from facilities outside
of California. That comparison, however, may be confounded by systematic unobserved differences
between California and non-California facilities.

16All but 39 facilities that emit local air pollution found in CARB’s Pollution Mapping Tool have time-
invariant GHG C&T regulatory status between 2008-2017. These 39 facilities all switched status in 2017.
Under the C&T program, a regulated (unregulated) facility can become unregulated (regulated) if annual
GHG emissions fall below (above) the 25,000 metric tons threshold in any year during a prior compliance
period. Of the 39 facilities that switched status in 2017, 8 switched even though annual GHG emissions
during the previous 2015-2016 compliance period should not have permitted a regulatory status change.
Because we do not know if these switches are due to actual changes in regulatory status or coding errors,
we retain these 39 facilities in our sample and re-assign them their previous (time-invariant) regulatory
status for 2017. In a robustness check, we drop observations from these 39 facilities in our estimation.
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reported in annual percentage point changes. κp2 is the change, or break, in the differential

emission trend after the program’s introduction during 2013-2017. νpjt is clustered at the

county-level to allow for arbitrary forms of heteroskedasticity and serial correlation within

a county.

We employ two sample restrictions to strengthen identification of trend break ef-

fects in equation (2.1). First, despite the C&T program’s unique eligibility criteria and

timing, the presence of other major climate programs under AB 32, such as the Renew-

able Portfolio Standard for electricity generators and the Low Carbon Fuel Standard for

refineries, may confound C&T effects for these facilities. We remove electricity genera-

tors and refineries from our sample to avoid this possibility.17 Second, to ensure better

comparability between treated and control facilities, we restrict our sample to facilities

with sample average annual GHG emissions below the 75th percentile.18 As a robustness

check, we consider smaller and larger cutoff percentiles.

Our benchmark sample contains 106 regulated and 226 unregulated facilities. Each

regulated facility is shown as a black dot in Figure 2.2a. Table B.1 shows average 2008-

2012 annual GHG and criteria emissions and sectoral distribution for sample regulated

and unregulated facilities. Since C&T regulatory status is defined by historical GHG

emissions, it is unsurprising that regulated and unregulated facilities exhibit different

average pre-program emissions, nor does this invalidate our differential emissions trend

break design, per se. Table B.1 also shows a slight sectoral imbalance between regulated

and unregulated facilities, with more regulated facilities in extraction and more unregu-

lated facilities in services. In a robustness check, we replace year fixed effects in equation

(2.1) with sector-by-year fixed effects to address concerns that this sectoral imbalance

may confound our estimates.

17This restriction also addresses concerns about the the 2013 closure of the San Onofre Nuclear Gen-
erating Station, a power plant in southern California [87].

18The 75th percentile corresponds to average annual emissions of 62,770 metric tons of CO2e.

58



Do Environmental Markets Cause Environmental Injustice? Evidence from California’s Carbon
Market Chapter 2

To construct facility-by-year emissions driven by the C&T program (relative to California-

wide determinants of pollution), we apply a hyperbolic sine transformation to the first

two terms of equation (2.1) and the estimated facility-level fixed effect.19 Because fa-

cilities differ by average emission levels, the inclusion of facility-level fixed effects allows

us to generate heterogeneous C&T-driven pollution abatement across regulated facilities

despite estimating a common percentage effect.20 This implicitly assumes that larger

emitting facilities abate more under C&T. To examine this assumption, in a robustness

check, we estimate variants of equation (2.1) that allow the post-C&T trend break to

vary as linear and quadratic functions of facility-level average annual emissions.

Step 2: Modeling pollution dispersal Our second step determines how C&T-driven

criteria air pollution disperses spatially across California. The standard approach is for

the researcher to prescribe the set of locations affected by emissions from a particular

source, either by assuming emissions only disperses within areas in the same administra-

tive unit of the source or within a radially uniform distance from the source. For example,

one may assume emissions from a facility in Los Angeles County only affect Los Angeles

County or areas within a certain radial distance of that facility. Actual affected areas,

however, may not conform to these assumptions and instead may vary depending on

topography or time-varying meteorological conditions. To fully capture the complexity

of pollution dispersal, we turn to an atmospheric dispersal model.

We feed predicted facility-by-year PM2.5, PM10, NOx, and SOx emissions from step 1,

19 Specifically, C&T-driven emissions is:

Ŷ p
jt = sinh

(
κ̂p1[Cj × t] + κ̂p2[Cj × 1(t ≥ 2013)× t] + ϕ̂pj

)
∗ e(RMSE)2/2)

where hat notation indicates estimated parameters and RMSE is the root mean squared error from
equation (2.1). In theory, the hyperbolic sine transformation can generate negative emission values.
In practice, our benchmark model predicts negative emissions for 1%, 1%, 0.2%, and 0.3% of sample
observations for PM2.5, PM10, NOx, and SOx, respectively. We replace these negative values with zeros.

20For example, a 10% abatement effect implies 10 tons of abatement for a facility with 100 tons of
average annual emissions and 5 tons of abatement for a facility with 50 tons of average annual emissions.
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together with the location and stack height of each facility, into the Hybrid Single Particle

Lagrangian Integrated Trajectory Model (HYSPLIT), an atmospheric dispersal model

developed by the U.S. National Oceanographic and Atmospheric Administration (NOAA)

with meteorological conditions from NOAA’s 40-km resolution North American Model

Data Assimilation System (NAMDAS) [88]. An emerging literature uses HYSPLIT to

convert pollution emissions to concentrations [70, 89, 90].

We choose HYSPLIT because it provides a middle-of-the-road approach for our ap-

plication, balancing atmospheric realism with computational tractability. HYSPLIT is

less computationally intensive than chemical dispersal models such as WRF-Chem, but

at the cost of not incorporating atmospheric chemistry which is important for modeling

secondary pollutant formation. At the same time, HYSPLIT is more reliable for mod-

eling pollution dispersal beyond distances of 50 kilometers, which less computationally-

intensive Gaussian-plume models like AERMOD or APEEP do poorly [91].

We note several features of our HYSPLIT implementation. First, to account for high-

frequency variation in meteorological conditions, we run forward particle trajectories at

four hour intervals, implicitly assuming that annual emissions are distributed uniformly

within the year. Each trajectory runs for 24 hours, a duration long enough to ensure

most emitted particles leave California.21 Second, because HYSPLIT does not explicitly

account for particle decay, we apply half-life parameters from the atmospheric chemistry

literature set at 24 hours for PM2.5 and PM10[93], 3.8 hours for NOx [94], and 13 hours

for SOx [95]. Third, we assume that a particle no longer contributes to surface pollution

concentrations once it exits the planetary boundary layer, beyond which there is far less

turbulent mixing. We conservatively set the boundary layer height at 1 km above the

surface, which is about double the typical height for California [96]. As a robustness

21Unlike [92], we do not discard the first hour of each particle trajectory because doing so may omit
highly localized pollution concentrations that may be important for our distributional analysis.
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check, we also consider boundary layer heights of 0.5 and 2 km. As an illustration of

pollution dispersal modeled by HYSPLIT, Figure 2.2b shows the trajectories of pollution

emitted by a regulated facility in Los Angeles during 2016. In total, we compute over 2

million particle trajectories from the roughly one hundred regulated facilities in our sam-

ple during the 2008-2017 period. This procedure takes about 24 hours to complete using

over one thousand facility-by-year parallelized nodes on a high-performance computing

cluster.

Figure 2.2: Modeling air pollution concentrations driven by the cap-and-trade program

Notes: Panels illustrates how facility-level emissions is converted to zip code-level pollution concen-
trations using an atmospheric dispersal model. Shading in panel (a) shows California zip codes that are
designated as disadvantaged (dark blue) and zip codes that are not (light blue) according to California
policy. Black dots show sample facilities regulated by California’s GHG C&T program. Panel (b) shows
HYSPLIT-generated particle trajectories every 4-hours from a regulated facility during 2016. Panel (c)
shows zip code-level average daily PM2.5 concentrations (in µg/m3/day) during 2008-2017 driven by
facilities regulated by the C&T program as modeled by HYSPLIT.

HYSPLIT generates particle-level trajectories. To convert this into concentration

units, we sum HYSPLIT trajectories for each zip code and year and divide by the volume

of the atmosphere between a zip code’s surface and the boundary layer. We further divide

by 365 days. This gives us a zip code-by-year measure of average daily C&T-driven

pollution concentration for the 1 km-high air column above each zip code in units of

µg/m3/day.22 Figure 2.2c shows our benchmark HYSPLIT-generated daily concentration

22Other HYSPLIT applications convert HYSPLIT particles into concentration units by regressing
HYSPLIT output onto concentration output from a different atmospheric dispersal model using the same
emissions sources (see for example: [97]) to obtain predicted concentrations using that fitted relationship.
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(in µg/m3/day) for each zip code, averaged across 2008-2017 for PM2.5. Figure B.4

similarly shows average 2008-2017 zip-code concentrations for PM10, NOx, and SOx.
23

Note that pollution concentration levels in Figure B.4 are generally below those recorded

in ambient monitors because we are only considering pollution concentrations driven by

C&T-driven emissions from sample regulated facilities.

Lastly, as noted, a major limitation with HYSPLIT is that it does not model sec-

ondary pollution formation. To see if secondary PM2.5 concentrations exhibits a different

spatial pattern than primary PM2.5 concentrations, in a robustness check, we replace

HYSPLIT with InMAP, a reduced-complexity dispersal model based on the WRF-Chem

model which generates secondary pollutants [98].

Step 3: Estimating C&T-driven change in EJ gap trends In our third step,

we examine whether the C&T program altered the difference in pollution concentrations

between disadvantaged and other communities, or the EJ gap. Let Di ∈ {0, 1} denote

disadvantaged status, with Di = 1 indicating that zip code i contains all or part of a

“Disadvantaged Community Census Tract,” as defined by Senate Bill 535. For zip code

i in year t, we take C&T-driven pollution concentration from HYSPLIT, Ep
it, for criteria

air pollutant p ∈ {PM2.5, PM10, NOx, SOx}, and estimate the following specification:

Ep
it = βp

1 [Di × t] + βp
2 [Di × 1(t ≥ 2013)× t] + ψp

i + δpt + ϵpit (2.2)

where ψp
i are zip code-specific dummies and δpt are year-specific dummies. βp

1 , or the pre-

C&T EJ gap trend, captures the linear trend in the EJ gap (from facilities that would

eventually be regulated by the C&T program) during 2008-2012, before the program was

We are unable to perform that adjustment as there are no alternative measures of C&T-driven pollution
concentrations in the literature.

23Figure 2.2, Figure B.4, and Table B.6 show that criteria air pollution from GHG C&T-regulated
facilities disperses across all of California and not just zip codes designated as disadvantaged.

62



Do Environmental Markets Cause Environmental Injustice? Evidence from California’s Carbon
Market Chapter 2

introduced. A positive trend (i.e., βp
1 > 0) would indicate that the EJ gap was widening

prior to the C&T program. Our main parameter of interest is βp
2 , which captures the

change in the EJ gap trend after the program’s introduction, or the post-C&T EJ gap

trend break. Conditional on βp
1 > 0, βp

2 < 0 implies that the introduction of the C&T

program slowed the previous positive EJ gap trend. We consider two additional trend

break statistics. The first statistic asks whether the post C&T EJ gap trend break is

sufficiently large such that the EJ gap has actually narrowed in level terms after the

C&T program. This would be captured by βp
1 +βp

2 , or the post-C&T EJ gap trend, with

βp
1 + βp

2 < 0 indicating that the EJ gap is narrowing.24 A second statistic examines the

relative degree in which C&T program has slowed the prior EJ gap trend. Specifically,

βp
2

βp
1
∗100 = (

(βp
1+βp

2 )−βp
1

βp
1

)∗100 captures the percentage change in the EJ gap trend following

the introduction of the C&T program.

C&T-driven pollution concentration, Ep
it, the outcome variable in equation (2.2), is

predicted C&T-driven emissions from equation (2.1) via HYSPLIT. As a consequence,

ϵpit, the error term in equation (2.2), does not account for statistical uncertainty in C&T

emission effects from equation (2.1). Instead, ϵpit may capture residuals that arise when

estimating an average EJ effect in the presence of heterogeneous EJ effects. To address

inference concerns, we conduct two standard error adjustments. First, we cluster ϵit at

the county level to allow for arbitrary forms of heteroskedasticity and serial correlation

when heterogeneous treatment effects are not independent and identically distributed.

Second, to incorporate statistical uncertainty in predicted C&T-driven emissions from

equation (2.1), we conduct a bootstrap procedure drawing multiple vectors of C&T-

driven emissions from the estimated empirical distributions of κp1 and κ
p
2, which are then

24Observe that while βp
2 < 0 alone implies that the C&T program resulted in EJ gap benefits by

slowing the growth in the EJ gap, it does not necessarily imply that this post-trend break effect is
strong enough to offset the magnitude of the pre-trend such that EJ gap is narrowing in absolute terms
following the program. For that to occur, one needs βp

2 < −βp
1 , or β

p
1 + βp

2 < 0.
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fed into steps 2 and 3. In practice, we implement 250 bootstrap draws to generate a

component of the standard error for βp
1 and βp

2 that accounts for statistical uncertainty

in equation (2.1). We add this component to the standard error from directly estimating

equation (2.2) when reporting uncertainty for βp
1 and βp

2 . Figure B.5 plots the empirical

distribution of βp
1 and βp

2 across bootstrapped draws.25 Appendix B.1.1 provides more

details on this bootstrap procedure.

Finally, to estimate an average EJ gap effect across individuals in California, we weight

each zip code-by-year observation in equation (2.2) by average zip code population during

2008-2012, the period prior to the program.

Comparison with prior uses of pollution dispersal models Our empirical ap-

proach is part of a broader effort across natural and social sciences to use atmospheric

dispersal models to map pollution emissions to concentrations. Prior studies can be

broadly classified into two groups: whether the analysis is done at the location-level or

at the facility-level.

Location-level analyses typically feed observed emissions into a dispersal model, but

without first estimating the emissions effects of environmental policies [99, 100, 81, 101,

92, 97, 102]. Because these studies omit estimation of policy-driven emissions (i.e., our

Step 1), they cannot attribute changes in pollution concentrations to specific policies.26

Facility-level studies examine whether a policy’s effect on emissions varies with the

demographic characteristics of households downwind of facilities, as determined by the at-

mospheric dispersal model [70, 85]. This approach augments the facility-level in equation

25As with prior literature, we omit uncertainty associated with atmospheric dispersal, or the mapping
between facility-level emissions and zip code-level concentration. One possibility involves resampling
meteorological conditions in HYSPLIT via a bootstrapping algorithm. Given that our use of HYSPLIT
takes 24 hours, overlaying such an approach to the existing 3-step procedure is currently unrealistic
under available computational resources.

26For example, [92] and [97] insert observed air pollution emissions from coal-fired power plants into
a version of HYSPLIT to examine how much U.S. PM2.5 concentrations are due emissions from these
plants, but cannot speak to the policies that are affecting coal-fired power plant emissions.
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(2.1) by adding a term that interacts the policy treatment with demographic character-

istics of downwind locations. However, given the complex spatial nature of pollution

disperal whereby concentrations in multiple locations may be affected by emissions from

multiple facilities, it is not obvious whether one can recover EJ gap changes, the estimand

of interest, from such an approach.

In Appendix B.1.2, we formally demonstrate that the coefficient on the interaction

term from such dispersal-augmented facility-level regressions does not in general equal

the EJ gap effect, nor does it necessarily have the same sign, making it hard to draw EJ

gap conclusions from such regressions. We then show one special case where equality does

hold but which requires - among other assumptions - a particularly strong assumption

on the spatial pattern of pollution dispersal: emissions from each regulated facility must

affect either only disadvantaged communities or only non-disadvantaged communities.

That is, facilities cannot alter pollution concentrations in both types of locations. This

assumption can be rejected in our setting: panels a and b of Figure 2.2 show how emissions

from one regulated sample facility alters pollution concentrations in both disadvantaged

and other communities.

Our approach combines both facility- and location-level analyses. As such, we are

able to attribute changes in emissions due to the C&T program and quantify the resulting

change in the EJ gap as a consequence of these emissions.

2.5 Results

This section presents our results. Section 2.5.1 shows the effect of C&T on differential

emission trends between regulated and unregulated facilities. Section 2.5.2 examines how

these C&T-driven emissions altered trends in the pollution concentration gap between

disadvantaged and other communities across California.
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2.5.1 Cap-and-trade effects on emissions

Main results Table 2.1 reports the pre-C&T differential emissions trend (i.e., κp1 from

equation (2.1)) and the post-C&T differential emissions trend break (i.e., κp2 from equa-

tion (2.1)) for GHG and criteria air pollutants. Column 1 shows a statistically significant

trend break in GHG emissions, indicating that the C&T program led to a reduction in

GHG emissions. Prior to the program, the gap in GHG emissions between regulated and

unregulated facilities increased at an annual rate of 19 percentage points. Following the

introduction of the program, this trend slowed by 30 percentage points leading the gap

in GHG emissions to fall at an annual rate of 11 percentage points between 2012-2017.

For criteria air pollutants, columns 2-4 show a statistically significant, negative emissions

trend break following the program’s introduction for PM2.5, PM10, NOx. For SOx, the

trend break is negative but not statistically significant, suggesting that all subsequent

SOx results should be interpreted with caution.

We predict C&T-driven emissions using estimates in Table 2.1 together with facility-

level fixed effects. This generates heterogeneous facility-level C&T-driven abatement

between 2012-2017, or Ŷ p
j,2017 − Ŷ p

j,2012 as defined in footnote 19, and shown in Figure

B.3 for GHG, PM2.5, PM10, NOx, and SOx. Averaged across sample regulated facilities,

between 2012 and 2017, the C&T program reduced emissions annually at a rate of 9%,

5%, 4%, 3%, and 9% for GHG, PM2.5, PM10, NOx, and SOx, respectively.
27 GHG per-

mit prices for the California C&T program have largely hovered above the program’s

price floor since 2013. Detecting emissions abatement from sectors directly regulated by

only C&T, however, is consistent with permit prices at the price floor when complemen-

tary climate programs bind for other C&T-covered sectors. When such programs bind,

aggregate demand for GHG permits fall, causing permit prices to hit the price floor.

27This is calculated by averaging (
Ŷ p
j,2017−Ŷ p

j,2012

Ŷ p
j,2012

)/5, as defined in footnote 19, across regulated sample

facilities for each pollutant p.
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Table 2.1: Trend break in emissions
Outcome is (asinh) emissions

(1) (2) (3) (4) (5)
GHG PM2.5 PM10 NOx SOx

κp1 0.187 0.058 0.083 0.075 0.006
(0.052) (0.043) (0.033) (0.039) (0.035)
[0.001] [0.183] [0.016] [0.061] [0.875]

κp2 -0.297 -0.097 -0.117 -0.104 -0.037
(0.077) (0.048) (0.039) (0.050) (0.043)
[0.000] [0.053] [0.005] [0.042] [0.393]

κp1 + κp2 -0.111 -0.039 -0.034 -0.029 -0.031
(0.036) (0.018) (0.018) (0.019) (0.019)
[0.004] [0.039] [0.068] [0.138] [0.108]

Facilities 316 302 302 303 303
Counties 41 40 40 40 40
Observations 2,054 1,968 1,968 1,970 1,965

Notes: Estimates of pre-C&T differential emissions trend (i.e.,
κp1 from equation (2.1)) and post-C&T differential emissions trend
break (i.e., κp2 from equation (2.1)) for GHG, PM2.5, PM10, NOx,
and SOx across columns. All models include facility-specific and
year-specific dummy variables. Standard errors clustered at the
county-level in parentheses, p-value in brackets.

However, provided that total abatement driven by complementary programs is insuffi-

cient for meeting the total GHG cap, C&T will still induce abatement from sectors that

are only regulated by C&T.

In total, sample regulated facilities reduced 3.2 million tons of CO2e between 2012-

2017. This figure is likely a weak lower bound on the effect of C&T on total California

GHG emissions as C&T is likely to have weakly negative emissions effects on regulated

facilities subject to complementary climate programs but are excluded from our analysis,

As a point of reference, California’s statewide GHG emissions fell by 27.1 million tons of

CO2e [103] between 2012-2017.
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Robustness checks We subject these emission effects to several robustness checks.

First, Figure B.2 considers placebo program start years, plotting κp2 for GHG, PM2.5,

PM10, NOx, and SOx emissions from variants of equation (2.1) that impose alternative

C&T start years across 2009-2016. With the exception of the SOx results, we detect

the strongest trend break coefficient when we assign the treatment year to its actual

occurrence in 2013.

Table B.2 considers several alternative specification and sample restriction choices.

Table B.1 shows that regulated and unregulated facilities are not perfectly balanced

across sectors. To address concerns that differential trends across sectors may confound

our estimates, column 1 of Table B.2 replaces year fixed effects with sector-by-year fixed

effects. Column 2 drops the handful of facilities whose treatment status switched only

in 2017. Columns 3 and 4 change the 75th percentile average GHG emissions cutoff to

the 70th and 80th percentiles.28 None of these robustness checks produces estimates that

differ meaningfully from our benchmark estimates in Table 2.1.

Our C&T-driven emissions which includes facility fixed effects, implicitly assumes

more pollution abatement from facilities that emit more on average. To examine whether

this assumption is reasonable, column 2 of Table B.3 reports a variant of equation (2.1)

that further includes an interaction between the trend break term and a linear function of

facility-level average emissions. A positive interaction coefficient would imply that larger

emitting facilities are abating less, contradicting our assumption. With the exception

of GHG emissions for which the linear interaction term is positive but of very small

magnitude, the coefficient on this interaction term for every criteria air pollution is

negative. This suggests that our benchmark model, which estimates an average trend

break coefficient across facilities (regardless of size) is understating the degree in which

28The 70th and 80th percentiles for sample average annual GHG emissions corresponds to 48,834 and
82,173 tons of CO2e, respectively.
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large-emitting facilities are also abating more under C&T. Column 3 of Table B.3 shows

that heterogeneity by average emissions does not exhibit nonlinearity, as indicated by

statistically imprecise quadratic interaction terms.

Finally, there may be a Stable Unit Treatment Value Assumption (SUTVA) as pol-

lution may shift from a regulated to unregulated facilities following the introduction of

C&T. If so, the resulting increase in unregulated facility emissions may lead to more

negative estimates of the trend break parameter κp2. Following [69], we consider two

robustness checks in Table B.4 to examine this possibility. In the first test, we observe

that a facility located in a county under U.S. Clean Air Act nonattainment for a partic-

ular pollutant is largely unable to increase pollution levels. This idea is implemented in

column 2, which restricts the sample of unregulated facilities to those located in nonat-

tainment counties for that pollutant under the Clean Air Act.29 Our second test notes

that firms with multiple facilities can more readily reallocate pollution across their facil-

ities. In column 3, we restrict the control group of unregulated facilities to those whose

parent company only operates a single plant.30 If treatment spillovers were present, the

trend break coefficient κp2 should be of smaller magnitude in columns 2 and 3 than in our

benchmark estimate, shown in column 1. This is not the case.

2.5.2 Cap-and-trade effects on EJ gaps

Validating pollution dispersal modeling We consider two sensibility checks for

our measure of C&T-driven pollution concentrations via HYSPLIT before turning to

our main EJ gap results. First, we examine whether HYSPLIT-generated criteria air

29In Table B.4, column 2 does not apply to GHG emissions because it is not a criteria pollutant
regulated under the Clean Air Act. For SOx, there are no counties in nonattainment during our sample
period. For NOx, because there were not enough counties under NO2 nonattainment to construct
a control group, we follow [69] by looking at nonattainment under Clean Air Act’s one-hour ozone
standard as NOx is a precursor pollutant to ozone.

30We link each facility from CARB with its parent company as indicated by the EPA. We employ a
fuzzy string matching algorithm as facility names are not standardized across the two datasets.
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pollution concentrations correlate with monitored ambient air pollution concentrations.

Specifically, we match zip code-level HYSPLIT-generated pollution concentration aver-

aged over 2008-2017 to the average ambient pollution concentration of that zip code as

recorded by pollution monitors averaged over the same period, obtained from the U.S.

Environmental Protection Agency.31 we do not expect a perfect fit between these two

variables as ambient pollution at any location is composed of emissions originating from

many more sources (i.e., stationary and non-stationary, within and beyond California)

than our subset of stationary sources regulated by California’s GHG C&T program.

However, a positive correlation between the two pollution concentration measures would

provide reassurance that HYSPLIT-generated pollution concentration from C&T regu-

lated facilities is detected by ambient pollution monitors. The positive correlations shown

in Table B.5 indicate that is indeed the case.32

Next, we examine the EJ gap in 2008 driven by facilities that would eventually be

regulated by the C&T program. Prior work documented strong baseline EJ gaps in

California [104]. Indeed, this baseline EJ gap informed initial EJ concerns regarding

California’s C&T program. Table B.6 shows that steps 1 and 2 of our approach reproduces

EJ gaps in 2008. Disadvantaged communities experienced higher levels of PM2.5, PM10,

NOx, and SOx concentrations in 2008 than other communities on average due to emissions

from facilities that would eventually be regulated by the C&T program.

Main results We now turn to our main results examining the time evolution of EJ

gaps between 2008-2017, shown in Table 2.2 and Figure 2.3. Across PM2.5, PM10, NOx,

and SOx, the EJ gap widens during 2008-2012, the period prior to the C&T program, as

31Available here: https://aqs.epa.gov/aqsweb/airdata/download_files.html
32We are interested in modeling where C&T-driven pollution is dispersed. As such, we do not di-

rectly use ambient pollution data (either from ground-based monitoring stations or remotely-sensed
satellites) in our analysis as it is often difficult to determine which component of any location’s ambient
pollution originates from C&T-regulated facilities. Such “backwards” atmospheric modeling often yield
indeterminate results.
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Table 2.2: Trend break in the environmental justice gap
(1) (2) (3) (4)

PM2.5 PM10 NOx SOx

βp
1 0.042 0.065 0.085 0.037

(0.015) (0.017) (0.037) (0.025)
[0.006] [0.000] [0.026] [0.151]

βp
2 -0.063 -0.090 -0.143 -0.101

(0.022) (0.029) (0.074) (0.051)
[0.006] [0.003] [0.060] [0.053]

βp
1 + βp

2 -0.021 -0.026 -0.058 -0.064
(0.015) (0.020) (0.050) (0.027)
[0.159] [0.203] [0.252] [0.024]

(βp
2/β

p
1) ∗ 100 -149.699 -139.739 -168.282 -272.291

(36.368) (29.971) (53.375) (66.043)
[0.000] [0.000] [0.002] [0.000]

Zip codes 1649 1649 1649 1649
Counties 58 58 58 58
Observations 16,416 16,416 16,416 16,416
Notes: Estimates of the pre-C&T EJ gap trend (i.e., βp

1

from equation (2.2)), the post-C&T EJ gap trend break (i.e.,
βp
2 from equation (2.2)), the post-C&T EJ gap trend (i.e,
βp
1 + βp

2), and the percentage change in the EJ gap trend fol-

lowing the introduction of the C&T program (i.e.,
βp
2

βp
1
∗ 100)

for PM2.5, PM10, NOx, and SOx, across columns. All models
include zip code-specific and year-specific dummy variables.
Observations weighted by zip code-level average population
during 2008-2012. Parentheses indicate standard errors that
account for statistical uncertainty in C&T predicted emissions
(νpit from equation (2.1) via the bootstrap procedure in Ap-
pendix B.1.1) and county-level heterogeneity in EJ gap effects
of arbitrary form (ϵpit from equation (2.2)). P-value in brack-
ets.

indicated by the positive pre-C&T EJ gap trend (i.e., βp
1 from equation (2.2)). Following

2013, the EJ gap trend falls: the post-C&T EJ gap trend break (i.e., βp
2 from equation

(2.2)) is negative and statistically significant. This drop in the EJ gap trend is sufficiently
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large such that the EJ gap is actually narrowing following C&T, as indicated by the

negative post-C&T EJ gap trend across pollutants (i.e., βp
1+β

p
2). In percentage terms (i.e.,

βp
2

βp
1
∗ 100), the EJ gap trend fell between 140-270% across pollutants after the program’s

introduction. Figure 2.3 plots this trend break as well as annual EJ gap coefficients from

a more flexible version of equation (2.1) using year-specific EJ gap coefficients.33 Figure

2.3 also highlights that while the C&T program has led EJ gaps to narrow since 2012, it

has not eliminated them. By 2017, EJ gaps are roughly at 2008 levels across pollutants.

Spatial heterogeneity Estimates from equation (2.2) shown in Table 2.2 and Figure

2.3 examine the time evolution of EJ gaps averaged across disadvantaged and other zip

codes. Additionally, one may be interested in how EJ gap effects vary spatially, par-

ticularly given the localized nature of EJ concerns. To examine spatial heterogeneity in

trend break effects across disadvantaged zip codes, we estimate a variant of equation (2.2)

allowing zip code-specific post-C&T EJ gap trend break coefficients.34 Figure 2.4 shows

the percentage change in the EJ gap trend following the introduction of C&T for each

disadvantaged zip code for PM2.5, PM10, NOx, and SOx. Across pollutants, post-C&T

EJ gaps narrowed the most for disadvantaged zip codes in California’s Central Valley.

For PM2.5, PM10, and NOx, Figure 2.4 also shows a cluster of zip codes in Los Angeles

County that experienced widening post-C&T EJ gaps. Figure B.6 shows histograms for

33Specifically, the annual coefficients in Figure 2.3 are βp
τ from

Ep
it =

∑
2008≤τ≤2017

τ ̸=2012

βp
τ [Di × 1(t = τ)] + ψp

i + δpt + ϵpit

34Specifically, we estimate the following variant of equation (2.2)

Ep
it = βp

1 [Di × t] +
∑
i

βp
2i[Di × 1(t ≥ 2013)× t] + ψp

i + δpt + ϵpit

where βp
2i is the post-C&T trend break for zip code i. Figures 2.4 and B.6 plot

βp
2i

βp
1
∗ 100, the percentage

change in the EJ gap trend following the introduction of the C&T program for zip code i relative to the
average pre-C&T EJ gap trend across disadvantaged zip codes.
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Figure 2.3: Environmental justice gap before and after the cap-and-trade program
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Notes: Panels show the estimated average daily pollution concentration gap (in µg/m3/day) between
disadvantaged and other zip codes (i.e., “EJ gap”) during 2008-2017 for PM2.5, PM10, NOx, and SOx,
respectively. Dots show year-specific EJ gap. Solid lines show linear fit for EJ gap trend before (2008-
2012) and after (2013-2017) the C&T program. Associated text indicates point estimates and standard
errors for the pre-C&T linear trend, post-C&T trend break, post-C&T linear trend, and the percentage

change in the EJ gap trend (i.e., βp
1 , β

p
2 , β

p
1 + βp

2 ,
βp
2

βp
1
∗ 100 ). 95% confidence interval and p-values (in

brackets) account for statistical uncertainty in C&T predicted emissions (νpit from equation (2.1) via the
bootstrap procedure in Appendix B.1.1) and county-level heterogeneity in EJ gap effects of arbitrary
form (ϵpit from equation (2.2)). Trend break estimates also reported in Table 2.2.

the distribution of percentage changes in EJ gap trends across disadvantaged zip codes.

Robustness checks We subject our EJ gap trend effects to several robustness checks.

Most robustness checks forgo the bootstrap procedure across steps 1-3 (detailed in Ap-

pendix B.1.1) given the computational demands of that procedure. Instead, Figure 2.5

presents only point estimates of the percentage change in the EJ gap trend following

C&T (i.e.,
βp
2

βp
1
∗100) for each robustness check and compares that with the point estimate
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Figure 2.4: Spatial heterogeneity in EJ gap effects

Notes: Panels maps the zip code-specific percentage change in the EJ gap trend following the intro-
duction of the C&T program for disadvantaged zip codes across PM2.5, PM10, NOx, and SOx. Blue
(red) shading indicates reduced (increased) EJ gap trends following C&T for disadvantaged zip codes.
Gray shading shows non-disadvantaged zip codes.

and 95% confidence interval of our benchmark result for which inference does account

for statistical uncertainty from equation (2.1) via our bootstrap procedure.35

Within step 1, we conduct eight EJ gap robustness checks, drawing on C&T emis-

35Coefficients βp
1 and βp

2 in accompanying Tables B.7 and B.8 cluster standard errors ϵpit from equation
(2.2) at the county-level but are not adjusted for statistical uncertainty in equation (2.1).
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sions effects shown in Tables B.2-B.4. Equation (2.1) models changes in the emissions

difference between C&T regulated and non-regulated facility as linear trends. We find a

similar result when we estimate a more flexible version of equation (2.1) with year-specific

emission differences (M2 of Figure 2.5 and column 1 of Table B.7); when we replace year

fixed effects with sector-by-year fixed effects in equation (2.1) (M3 of Figure 2.5 and col-

umn 2 of Table B.7); and when we drop facilities that switched regulatory status in 2017

(M4 of Figure 2.5 and column 3 of Table B.7). Next, we consider restricting facilities to

those with sample average annual GHG emissions below the 70th and 80th percentiles,

respectively (M5-6 of Figure 2.5 and columns 4-5 of Table B.7). These alternative facility

sample restrictions do not alter EJ gap trend effects.

We further allow the post C&T emissions trend break to vary as a linear function

of sample average emissions. Recall from the heterogeneous emissions effects shown in

column 2 of Table B.3 that large-emitting facilities are abating more than is assumed in

our baseline model which assumes a common percentage emissions change. For PM2.5,

PM10, and NOx, allowing for heterogeneity in emissions effects results in a slightly larger,

though not statistically different, percentage change in the EJ gap trend (M7 of Figure

2.5 and column 6 of Table B.7). That is, our baseline model without heterogeneous

emissions effects is slightly understating the EJ gap fall as a consequence of C&T. For

SOx, this dimension of heterogeneity implies much larger drops in the post-C&T EJ gap

trend. Lastly, we examine EJ gap effects after restricting the set of unregulated C&T

facilities to those in counties under Clear Air Act nonattainment and those whose parent

company only operates a single facility (M8-9 of Figure 2.5 and columns 7 and 8 of Table

B.7). SUTVA concerns do not alter EJ gap trend effects.

We conduct four robustness checks within step 2. We use pollution half-life parame-

ters taken from the atmospheric chemistry literature because HYSPLIT does not model

pollution decay over time. Our results are relatively stable to whether we allow for a
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10% larger half-life parameter which implies a slower decay rate (M10 of Figure 2.5 and

column 1 Table B.8) or a 10% smaller half-life parameter which implies a faster decay rate

(M11 of Figure 2.5 and column 2 of Table B.8). Likewise our results are little affected

when we lower the height of the planetary boundary layer to 0.5 km (M12 of Figure 2.5

and column 3 Table B.8) or raise it to 2 km (M13 of Figure 2.5 and column 4 Table B.8).

We conduct three robustness checks within step 3. The first set of checks consider

alternative error structures for ϵpit. We find that precision increases when we allow ϵpit to

be spatially correlated within a uniform kernel across a distance of 500 km distance [105],

roughly the longitudinal width of California, and serially correlated across 5 years [106]

(column 5 of Table B.8). Likewise, precision increases when we allow for error terms to be

correlated across the four local pollutants using a Seemingly Unrelated Regression (SUR)

procedure (column 6 of Table B.8). Equation (2.2) examines the EJ gap in daily pollution

levels of µg/m3/day, the concentration unit typically used for air pollution policy and

by the public health literature. In Table B.9, we detect a post-C&T EJ gap trend break

after applying an inverse hyperbolic sine transformation to our outcome variable, showing

C&T-driven concentrations in disadvantaged communities decreased as a percentage of

concentration in other communities after 2013. Standard errors reported in Table B.9 are

adjusted for statistical uncertainty from equation (2.1) using our bootstrap procedure.

Finally, to examine the potential role of secondary PM2.5, we replace HYSPLIT in step

2 of our procedure with InMAP, a reduced-complexity dispersal model based on output

from WRF-Chem, which incorporates atmospheric chemistry in order to model total (i.e.,

primary and secondary) PM2.5 concentrations from C&T-driven facility-level PM2.5, NOx,

and SOx, emissions [98].36 InMAP, however, has one major limitation: it uses dispersal

36In addition to the inputs used in HYSPLIT, InMap requires the diameter, temperature, and emissions
velocity for each smokestack. We obtain these inputs from CARB. In the case of facilities with more
than one stack, we use the mean value across stacks. In the case of facilities with missing observations,
we use the industry-level average.
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Figure 2.5: Robustness checks for EJ gap effects
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M1: benchmark M8: nonattainment counties
M2: year−specific emission effects M9: single facility firms
M3: sector−specific emission effects M10: slower pollution decay
M4: drop switchers M11: faster pollution decay
M5: 70% avg. CO2e cutoff M12: lower boundary layer
M6: 80% avg. CO2e cutoff M13: higher boundary layer
M7: heterogeneity in avg. emissions

Notes: Percentage change in the EJ gap trend following the introduction of the C&T program (i.e.,
βp
2

βp
1
∗

100) for PM2.5, PM10, NOx, and SOx across robustness checks. M1: benchmark model point estimate
and 95% confidence interval accounting for uncertainty in equations (2.1) and (2.2). Point estimate
shown for all other models. M2: using year-specific effects to estimate C&T-driven emissions. M3:
C&T-driven emissions effects estimated using sector-by-year fixed effects. M4: C&T-driven emissions
effects estimated without facilities that switched status in 2017. M5: restricting sample to facilities
with average annual GHG emissions below the 70th percentile. M6: restricting sample to facilities with
average annual GHG emissions below the 80th percentile. M7: allowing heterogeneous emissions effects
by average annual emissions. M8: restricting unregulated facilities to those in counties under Clear Air
Act nonattainment. M9: restricting unregulated facilities to those whose parent company only operates
a single plant. M10: applying a slower pollution decay (i.e., 10% larger half-life parameter). M11:
applying a faster pollution decay (i.e., 10% smaller half-life parameter). M12: applying a planetary
boundary layer set at 0.5 km. M13: applying planetary boundary layer set at 2 km. Point estimates
also reported in Tables B.7-B.8.

patterns in 2005, whereas our sample period is 2008-2017. Because InMAP does not

model dispersal patterns during our sample period, we are unable to directly compare

estimates using InMAP-generated concentrations with that using HYSPLIT-generated
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concentrations.37 Instead, we examine the role of secondary PM2.5 by comparing how EJ

gap trend estimates differ between InMAP-generated primary PM2.5 concentration and

InMAP-generated total PM2.5 concentrations. If these two InMap estimates are similar,

it is plausible that the true EJ gap effect for secondary PM2.5 is similar to effects using

HYSPLIT-generated primary PM2.5 concentrations. Table B.10 replicates the structure

of Table 2.2. Column 1 examines InMAP-generated primary PM2.5 concentrations while

column 2 examines InMAP-generated total PM2.5 concentrations. Both show similar EJ

gap effects.

The importance of modeling pollution dispersal Our empirical approach explic-

itly embeds an atmospheric dispersal model within a causal inference framework. Com-

pared with conventional methods for assigning pollution concentration from emission

sources, this approach lends two benefits. It accounts for actual pollution dispersal pat-

terns as dictated by topography and time-varying meteorological conditions. It also

determines resulting pollution concentrations across all locations in California, rather

than a subset of locations assumed to be exposed to policy-driven emissions. To demon-

strate the importance of accounting for pollution dispersal for our results, we compare

estimates from using our approach with that of more conventional methods of assigning

pollution concentrations from emission sources.

Figure 2.6 plots estimates of the pre-C&T trend, or β1
p (left panel), and the post-C&T

trend break, or β2
p (right panel), across criteria pollutants under different assumptions

about how facility-level emissions alter location-specific concentrations.38 In M1, we

show our benchmark estimate where pollution dispersal is modeled by HYSPLIT every 4

37Furthermore, there is a difference in units between HYSPLIT and InMap. For any given location,
HYSPLIT produces the stock of pollution concentration during a given period, whereas InMAP produces
that period’s average flow of pollution concentration.

38Unlike Figure 2.5, Figure 2.6 does not plot
βp
2

βp
1
∗ 100 because βp

1 and βp
2 do not have consistent sign

across the different methods for assigning emissions to concentrations.
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Figure 2.6: Importance of modeling pollution dispersal
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M1: benchmark
M2: facility zip code
M3: 1.6 km circle
M4: 4 km circle
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Notes: Left panel shows estimates of pre-C&T trend (i.e., βp
1) and right panel shows estimates of

post-C&T trend break (i.e., βp
2) for PM2.5, PM10, NOx, and SOx across different methods for assigning

pollution concentrations from emissions. M1: benchmark model with point estimate and 95% confidence
interval accounting for uncertainty in equations (2.1) and (2.2). Point estimate shown for all other
models. M2: pollution concentration assigned only to zip code of emitting facility. M3-5: pollution
concentration assigned to zip codes with centroid within 1.6 km, 4 km and 10 km circle of emitting
facility, respectively. Point estimates also reported in Table B.11.

hours throughout the 2008-2017 period. In M2 (and column 1 of Table B.11), we assume

that the area affected by a facility’s emissions is limited to the zip code of that facility,

referred to in the literature as “unit-hazard coincidence” [64]. In M3-5 (and columns 2-4

of Table B.11), we employ a distance-based measure by assuming that the area affected

by a facility’s emissions is limited to zip codes with centroids that are within 1.6, 4,

and 10 km circles around the facility. These radial distances appear in the literature

but nonetheless are chosen largely arbitrarily. Point estimates of β1
p and β2

p vary greatly

across these alternative methods for assigning pollution concentrations. Not only do

some estimates fall well outside the 95% confidence intervals of our benchmark results,

but they also have different signs.
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2.6 Discussion

Many market settings are characterized by efficiency-equity tradeoffs. We find that

California’s carbon market led to an equity co-benefit by narrowing the criteria air pollu-

tion concentration gap between disadvantaged and other communities. This result brings

causal evidence to a debate that continues to shape one of the world’s most ambitious

climate policies and climate policies elsewhere. Moreover, the integration of pollution

dispersal modeling and causal inference employed in this paper may have broader appli-

cations across a variety of environmental valuation settings.

Equity concerns regarding California’s cap-and-trade program remain. First, while

we show that the program has led the pollution concentration gap between disadvan-

taged and other communities to fall, this gap has not been eliminated five years into

the program. Second, pollution concentration constitutes only one component of the

many distributional concerns regarding the program. Questions remain over how the

program may have altered the distribution of health outcomes as well as the distribu-

tion of the program’s cost burden. A comprehensive understanding of welfare inequality

must also account for sorting as households move in response to changes in pollution

concentrations [107, 64] and for entry decisions by polluters [108]. Third, a broader no-

tion of equity must also consider the ability of disadvantaged communities to partake in

decision-making around environmental policies. Such procedural justice issues remain in

California though recent policies such as AB 617 are beginning to engage disadvantaged

communities directly in the design of local pollution regulations [109].

More generally, despite these findings for California, market-based environmental

policies should not be used explicitly to address environmental justice concerns. Market-

based policies are intended for allocative efficiency and not distributional objectives,

per se. The EJ gap consequences detected in California emerges from the state’s spa-
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tial distribution of polluting facilities and demographic characteristics. In other settings

where facilities with steeper marginal abatement cost curves are upwind of disadvan-

taged communities, an environmental market could widen the environmental justice gap.

Difficulties with observing facility-level marginal abatement cost curves make it hard to

anticipate ex-ante how proposed market-based policies will alter existing EJ gaps. As a

safeguard against potential widening EJ gaps, policies that specifically address environ-

mental justice concerns should be considered in tandem with market-based policies. In

short, environmental justice problems need environmental justice policies.
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Chapter 3

Droughts and rural households’

wellbeing: Evidence from Mexico

3.1 Introduction

Global temperature has increased during the last decades and it is likely that, com-

pared to pre-industrial levels, global warming will reach 1.5◦C at some point between

2030 and 2052 [110]. It is expected that the intensity of droughts will increase by the

end of the 21st century as a result of rising temperatures [111, 112, 113]. The adverse

impacts of these changes in climate will not be uniform across the planet. Developing

countries are more vulnerable than their developed counterparts as they depend more on

agriculture and, in many cases, are already overexposed to extreme weather events and

to higher temperature levels [114, 115, 116]. Furthermore, changes in water availability

will have major negative impacts on rural areas, disproportionately affecting those who

are already vulnerable to weather fluctuations and with limited adaptation capacity, such

as small and subsistence farmers, who tend to have low education levels and low access

to technology, information, and financial resources [117, 118].
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Understanding the impacts that extreme events have on rural households, as well as

the factors that affect their capacity to adapt, is crucial for the design of policies and in-

terventions that can improve such capacity [119]. Existing literature has found that rural

households in the developing world are indeed particularly vulnerable to weather extremes

[120, 121] and extreme rainfall [122]. Extreme rainfall and floods have been shown to in-

crease children’s labor force participation [123], have negative effects on children’s height

and cognitive tests [124], and reduce per-capita consumption while increasing poverty

[122]. Droughts can decrease farm revenues and employment in agricultural activities

[120, 125], increase risk of illness [126], and negatively affect schooling outcomes such as

math and reading scores [127].

Mexico’s location and geographic characteristics make it prone to hydrometeorolog-

ical events [128] and its socioeconomic characteristics make it highly vulnerable to the

negative effects of extreme weather events and climate change [129, 130]. Only 21% of

Mexico’s agricultural land has access to irrigation [131], which makes crop [132] and live-

stock production [133] highly dependent on rainfall. Most of the agricultural activities

take place in rural areas [134], defined as communities with less than 2500 people, where

22% of the Mexican population lives [135]. According to the official poverty measurement,

more than 55% of rural inhabitants in Mexico were poor in 2018 [136].

The current literature provides some evidence on the potential impacts that climate

change and extreme weather events can have for human populations in Mexico. Climate

change has the potential to reduce agricultural production [137, 138, 133] and land values

[116]. It could also reduce local employment, increase migration from rural areas [139]

and negatively affect human health [138]. Under some climate change scenarios, it is

possible that almost 240,000 rural households could be pushed below the poverty line

in rural Mexico [140]. Droughts and floods could increase poverty [141], while droughts

could also increase the probability of rural-urban migration [142] and of migration to
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the U.S. [143, 129]. These studies have shown that climate change and extreme weather

events can have serious negative consequences for Mexico. However, to the best of our

knowledge, the impact that droughts could have on rural households’ wellbeing has not

been studied in a comprehensive way using household level data. The present study aims

to help in closing this gap.

Droughts are certainly not a new event in Mexico. Pre-Hispanic documents provide

evidence on the occurrence of droughts going back as far as the eleventh century [144].

Furthermore, droughts were present during two of the most significant events in the

history of the country. A drought preceded the Spanish conquest and persisted for

several years affecting what is now central Mexico; arguably this could have interacted

with epidemic disease and contributed to the collapse of the indigenous population [145].

Drought conditions over most of Mexico during 1909 and 1910 have long been mentioned

as a contributing factor behind the Mexican Revolution [146, 147]. Some assert that

the drought increased the sense of injustice among rural households that were therefore

ready to take the arms when the Revolution started [148]. Finally, droughts during the

1960s where accompanied by increases in violent protests [149].

Notwithstanding this long history of droughts and the fact that Mexican agriculture

has evolved in parallel to repeated periods of dryness, the country remains highly vulner-

able to droughts, in particular households practicing subsistence agriculture [147]. More

than evidence of a lack of willingness to adapt, this reflects the fact that in many cases

farmers’ possibilities to adapt have barriers and limits [150]. Households can use ex-ante

and ex-post coping mechanisms but, in many cases, these will not be sufficient to fully

protect them against weather shocks [151].

During 2011 Mexico was affected by of one of the worst droughts in the past 70

years [133]. Agricultural production was severely reduced [147], cattle and goat stocks

decreased [133], and dams located in the northern region of the country reached critical
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levels [152]. The drought affected almost 70% of the territory [153] and the economic

losses where equivalent to 10% of the GDP [154]; the federal government had to make

use of Mexico’s Natural Disasters Fund to implement national and local programs to

mitigate the negative impacts of the drought [152, 153]. Unfortunately, this intense

drought is not likely to be an isolated event; climate projections for Mexico suggest

an increase in drought conditions during the 21st century [155, 156, 157, 158]. The

possibility that the frequency and duration of droughts might increase in Mexico as a

result of climate change [159, 160, 161] is particularly worrisome given Mexico’s low levels

of adaptive capacity [134] and high levels of poverty [162]. The burden of droughts tends

to fall disproportionately on poor households who, in many cases, have to divert their

scarce resources towards reducing the immediate negative impacts (e.g., reduction in

consumption) at the cost of future productivity [163].

A better understanding of the way in which rural households might be affected by

droughts is crucial for the adequate design of adaptation policies. Following this logic,

the objective of this paper was to estimate the impact of droughts on rural households’

wellbeing in Mexico, specifically on per-capita earnings, poverty, and children’s school

attendance. We were interested in estimating causal effects, to do so we used an empiri-

cal strategy that allowed us to isolate the drought effect from other confounding factors.

Furthermore, we looked specifically at droughts, instead of looking at variations of tem-

perature or rainfall as previous studies that use household level data for Mexico have

done.

3.2 Data and methods

In order to analyze the effects of droughts on rural households in Mexico, we combined

data from the Mexican Drought Monitor with data from Mexico’s National Labor Survey.
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We focused our analysis on the rural areas of the country as they are the more vulnerable

to the negative productivity effects of droughts. Vulnerability of the urban areas in

Mexico arises mostly from the energy sector [147] and from potential food price increases;

looking at those effects was beyond the scope of our analysis.

3.2.1 Drought and precipitation datasets

The data on droughts came from the Mexican Drought Monitor, which is part of

the North American Drought Monitor (NADM). The NADM is a joint effort between

Canada, Mexico and the United States, which began back in 2002 and has generated

monthly data on droughts since then. Monitoring droughts is not an easy task because

droughts are the result of a complex combination of various geophysical phenomena [164].

The monitor system uses data on precipitation (the Standardized Precipitation Index,

and Percent of Average Precipitation); water availability, temperatures and evaporation

(Palmer index, Palmer hydrological index, and Palmer Z index); a vegetation health index

(VHI); and soil moisture. All these data layers are overlaid in a map, and a group of

experts determines whether there is a drought and its intensity. Droughts are classified in

four different levels according to their intensity: moderate drought (D1), severe drought

(D2), extreme drought (D3), and exceptional drought (D4). The levels differ according

to their likely impact on crops and grassland, the risk of wildfires that they entail, and

the groundwater and surface water availability.

We used geographic information systems to associate each Mexican locality with the

drought it experienced, at the monthly level, during the period January 2010 to December

2012. Localities represent the smallest administrative division in Mexico (municipalities

being next). Figure 3.1 presents the percentage of Mexican municipalities affected by each

type of drought during a given month in the period January 2003 to January 2019. The
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panels for severe, extreme and exceptional droughts show that there were considerably

more municipalities exposed to those drought-levels in 2011 than during the previous

and subsequent years. This is consistent with other sources that consider 2011 to be

one of the driest years in the history of Mexico [165, 133]. In order to better illustrate

the intensity and the spatial distribution of the 2011 drought, Figure 3.2 compares the

presence of droughts during the last month of each quarter of 2010 with the same month

for 2011. The contrast between the drought conditions during 2010 and 2011 is clear. If,

for example, we look at the month of June, we notice that a few parts of Mexico were

experiencing drought conditions during 2010. Meanwhile, more than half of the country

experienced moderate to exceptional droughts during 2011; almost 10% of the territory

was under conditions of exceptional drought [152]. As Figure 3.2 shows, in addition to

the temporal variation there is spatial variation in terms of the presence of droughts

across different parts of Mexico. We used these two sources of variation as part of our

strategy to identify the causal effects of droughts on the wellbeing of rural households.

We also used historical precipitation data at the municipality level from the Euro-

pean Centre for Medium-Range Weather Forecasts ERA Interim weather product. This

weather product reports daily gridded rainfall data in a .125◦ x .125◦ pixel, approximately

13 km x 13 km. We consider this resolution appropriate for Mexico, given that the av-

erage municipality area is 793 km2. We calculated the monthly total precipitation for

the 1979-2010 period at the municipality level by overlaying the municipality polygons

to the gridded data. We then created an indicator variable, “High precipitation”, which

takes the value of one if the household is in a municipality with high historic levels of

precipitation (900mm or more of annual precipitation according to the 1979-2010 normal)

and zero otherwise.
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Figure 3.1: Municipalities affected by drought

Notes: Percent of municipalities affected by each drought classification (D1-D4). Authors’ estimations
using data from the Mexican Drought Monitor (MDM) between January, 2003 and January, 2019. The
MDM uses the drought classification of the North American Drought Monitor, which defines four
drought intensity levels: moderate drought (D1), severe drought (D2), extreme drought (D3), and
exceptional drought (D4). The four figures present the percentage of municipalities affected by each
of these four drought classifications during the period in the vertical axis, and the month-year in the
horizontal axis. The drought we focus on in this paper happened during 2011.

3.2.2 Household level data

Household level data came from the National Labor Survey (Encuesta Nacional de

Ocupación y Empleo, ENOE for its Spanish acronym) collected by Mexico’s National

Statistics Institute (INEGI for its Spanish acronym) from the first quarter of 2010 to the

last quarter of 2011. ENOE’s sample is representative of the urban and rural areas of the

country and contains data about the household members’ labor status in a quarterly basis.

Given that rural households depend heavily on agriculture and are the more vulnerable to

droughts, we restricted the sample to rural areas. In addition to labor information for all
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Figure 3.2: Drought intensity per quarter

Notes: Drought intensity during the last month of each quarter (2010-2011) over the Mexican territory.
Authors’ estimations using data from the Mexican Drought Monitor (MDM) between March, 2010 and
December, 2011. The MDM uses the drought classification of the North American Drought Monitor,
which defines four drought intensity levels: moderate drought (D1), severe drought (D2), extreme
drought (D3), and exceptional drought (D4). As an example of the severity and extent of the drought,
the heat maps present the drought level during the last month of each quarter of 2010 and 2011 at the
locality level in Mexico (a locality is the smallest geographical disaggregation in Mexico, followed by a
municipality). The drought we focus on in this paper happened during 2011.

household members 12 years of age and older, ENOE collects information on per-capita

earnings, time allocated to unpaid domestic work, and children’s school attendance,

among other variables.

ENOE captures the exact month of the interview, which allowed us to match the

household data to the monthly drought information available at the locality level. House-

holds were surveyed for five consecutive quarters and 20% of the sample was replaced

each quarter; attrition rate was 7.8%. We took advantage of the one-year span between

the household’s first and last interview (i.e. if a household first interview was in January

2010, the fifth interview took place in January 2011) to analyze households’ responses to

weather shocks in the short run. We created a short panel using households’ informa-

tion from their first and fifth interviews. This allowed us to control for seasonality and,

equally important, for time-invariant unobserved heterogeneity at the household level.

The sample that resulted from combining the drought and ENOE datasets consists
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of more than 13,000 rural households; 10,352 of such households did not experience a

drought during their first ENOE interview, those are the households that we used in our

analysis. Almost half of the households (5,186) that did not experience a drought in

2010 experienced one in 2011. The most common type of drought that rural households

experienced during 2011 was a severe drought (2,106), and the least common was an

exceptional drought (113). Panel A in Table 3.1 shows descriptive statistics for our

dependent variables as well as for the occurrence of a drought. Per-capita earnings were

slightly below 1,000 pesos per month during both 2010 and 2011; as a result, more

than 50% of the households in our sample are poor. We defined poverty following the

labor poverty trend index generated by Mexico’s National Council of Poverty Evaluation

(CONEVAL). The index calculates the share of people that are not able to acquire the

National Basic Food Basket (also defined by CONEVAL). Although this index does not

consider all income sources, it provides a proxy measure for poverty in terms of labor

income. Panel B in Table 3.1 focused on the sample of adults who were 18 years old or

more in the first interview. There is a notorious gender gap in employment: in 2010,

82% of the men and 32% of the women were employed, while 60% of the women and less

than 1% of the men were doing household work. Finally, Panel C in Table 3.1 turned to

children (aged between 12 and 17 in the first interview). Except for an increase in school

attendance and a decrease in children’s employment, all the variables are very stable over

time.

3.2.3 Data analyses

In order to estimate the causal impacts of droughts on rural household’s wellbeing,

we restricted our estimating sample to those households that were not affected by a

drought during their first ENOE interview (10,352 households), in this way we part with
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Table 3.1: Descriptive Statistics

All Men Women
2010 2011 2010 2011 2010 2011

Panel A: Households
Per-capita earnings 938.21 962.05

[1667.93] [1667.82]
Poor (=1) 0.57 0.55

[.50] [.50]
Drought (=1) - 0.499

[.500]
Observations 10352 10352

Panel B: Adults
Employed (=1) 0.56 0.57 0.82 0.83 0.32 0.32

[.50] [.50] [.39] [.37] [.47] [.47]
Housework (=1) 0.31 0.31 0.007 0.009 0.59 0.59

[.46] [.46] [.085] [.092] [.49] [.49]
Drought (=1) - 0.499 - 0.502 - 0.496

[.500] [.500] [.500]
Observations 23464 23464 11205 11205 12259 12259

Panel C: Children
School attendance (=1) 0.75 0.81 0.73 0.8 0.77 0.82

[.43] [.39] [.44] [.40] [.42] [.38]
Employment (=1) 0.26 0.21 0.37 0.32 0.14 0.1

[.44] [.41] [.48] [.47] [.34] [.30]
Housework (=1) 0.08 0.07 0.02 0.015 0.15 0.13

[.28] [.25] [.141] [.120] [.35] [.33]
Drought (=1) - 0.484 - 0.494 - 0.473

[.500] [.500] [.499]
Observations 4498 4498 2263 2263 2235 2235

Notes: Descriptive statistics of the variables in the statistical analyses. Authors’ estimations using
the Mexican labor survey (ENOE) data from 2010 (pre-drought) and 2011 (post-drought) and from the
Mexican Drought Monitor. The sample is restricted to rural households, which are those with less than
2,500 inhabitants. The table shows the descriptive statistics for both men and women (All), and for
men and women separately. The table shows the mean and below the mean is the standard deviation
in brackets. Panel A presents household level outcome and treatment (an indicator variable of the
presence of any drought) variables. Panel B presents descriptive statistics for adults, who are those
18 years of age or older in the first interview. Panel C shows the characteristics of the subsample of
children, who are between 12 and 17 years old (inclusive) in the first interview. Per-capita earnings are
measured in Mexican pesos per month. Variables with (=1) are indicator variables equal to one if the
condition described by the variable name is met and zero otherwise.
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a subset of households that started off from the same initial weather conditions. We

then followed these households to their fifth ENOE interview to estimate the effects that

droughts had on those households that had been affected by then (5,166 households in the

treatment group) as compared to households that were neither affected during the first

nor the fifth interview (5,186 households in the control group). We only exploited data

from the first and fifth interviews since these were collected in the same quarter for the

corresponding year. In this way, we ensure that our results were not due to seasonality

in agricultural production. Our estimations were based on the following equation, which

uses a difference in differences approach with fixed effects at the household (or household

member, depending on the dependent variable) level:

yit = α + βDi × Postt + δPostt + µi + εit

where i denotes the household (household member) and t denotes time (of the first

or last interview); yit is an outcome variable (e.g., poverty measured at the household

level or employment measured at the individual level); Di is a dummy variable equal to

1 if the locality where the household resides experienced a drought (i.e., any of the four

drought levels mentioned before, we do not have enough observations in each one of the

drought levels to adequately identify heterogeneous effects by drought level); Postt is a

time index equal to zero for the first interview and equal to one for the fifth; β is the

difference-in-differences estimator (our parameter of interest); α is the constant of the

regression, which absorbs the overall mean of those households (or household member)

who were not treated (experienced no drought by the 5th interview) during the pre-

drought period; δ estimates the time trend; µi are household (or household member,

according to the dependent variable) fixed effects; and εit is an error term.

A difference-in-differences estimator would identify the causal effect of the drought
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if the following two assumptions are met. First, there is no other event contemporane-

ous to the drought confounding the effect of the drought. And second, the pre-drought

trend followed by our variables of interest for households (or household members) that

experienced a drought in the fifth interview was parallel to the pre-drought trend for

households that did not experience the drought in either interview (Angrist and Pischke,

2008). Our estimator, thus, identifies the discontinuous change post-drought and the

change in trend post-drought between the treatment and the control group. Any differ-

ences in pre-drought characteristics does not threaten our identification as long as both

treatment and control groups followed the same trend pre-drought. Since we limited our

estimation sample to households that were not experiencing a drought during the first

interview, all the households in our sample start from the same initial conditions; this

provided us with greater confidence that the parallel trend assumption is in fact being

satisfied.

Moreover, given that our estimation controlled for all time invariant observed and

unobserved heterogeneity at the household or individual level through µi [166, 167], our

estimating equation did not include any time invariant variables. As such, in order

to estimate β we did not need to include the time invariant indicator variable for the

treated households, Di, but only the interaction term (Di × Postt) and the indicator

variable for the fifth interview (Postt). Likewise, since all the household and individual

information available in the ENOE dataset (age, education, marital status, etc.) was time

invariant, we could not explicitly estimate the effects of these variables. Nevertheless,

we controlled for the heterogeneity that they capture by including the fixed effects in

our regressions. Thus, our estimation used only within-household or within-individual

variation to estimate the causal effect of droughts on the outcomes of interest. We could

not control for any time-variant characteristics at the regional level, since we could not

find a causal theory that could explain simultaneous monthly changes among the control
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(treatment) households that was not affecting the treatment (control) households at the

same time. There were no federal changes in policy, no simultaneous local changes in

policy, and violent crime affected a widespread area in Mexico not limited to those that

experienced the drought.

Our first approach to estimating the impact of droughts on rural wellbeing is to look at

households’ per-capita earnings and poverty status. For poverty we use a dichotomous

variable that takes the value of one if the household is below the income poverty line

established by CONEVAL to calculate the “trend of labor poverty” [168]. Next, we look

at the effects that droughts have on the probability that adults are employed, as well

as on the probability that they are fully dedicated to domestic work. By looking at the

probability of being employed, we explore a potential transmission mechanism between

droughts and reduced earnings. We also estimate the effect of droughts on the probability

that children (between 12 and 18 years old) attend school since a reduction in schooling

can have negative wellbeing implications in the long run. In addition to estimating the

effects for all children and adults, we split our sample by gender. This allows us to

estimate heterogeneous effects by gender, as well as to indirectly test for the presence

of added worker effects (i.e., an increase in labor supply of women when their husbands

become unemployed).

There is evidence in the literature showing that rural households adapt their pro-

duction practices to local conditions so that they can cope with climate change (e.g., by

planting drought tolerant local varieties or by using water harvesting) [114]. Therefore,

in order to test if the effects of a drought are smaller for households (individuals) that are

more accustomed to relative water scarcity, for our final estimations we split our sample

using localities in municipalities with historically high precipitation levels.
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3.3 Results and discussion

The results of our econometric estimations are shown in Table 2; each cell in the table

represents an estimation of β from a different regression. Panel A shows results for the

effects of droughts on per-capita earnings as well as on the probability that the household

is considered poor. Following the literature on the negative impacts that droughts have

in the Mexican agricultural sector (see for example, [137, 133, 147]), our main hypothesis

was that rural households that experience a drought would be negatively affected in

terms of their earnings and, in many cases, this would be reflected as an increase in the

likelihood of being below the poverty line. According to our findings, households that

experienced a drought had indeed lower per-capita earnings; the reduction in earnings is

of almost 6% when compared to the average in 2010. This reduction in earnings translates

into an increase of 5 percentage points in the probability that a household affected by a

drought would be considered as poor compared to one not affected by it. These results

are in line with those reported by [141] who found that, in Mexico, droughts increased

poverty between 2.7 and 4.3 percent. Compared to [141] that used municipal-level data,

by using panel data at the household-level we were able to provide direct evidence of the

causal effects of droughts on earnings and poverty.

Ideally, we would have liked to explore all the mechanisms through which earnings

decrease and the probability of being poor increases. With the data that we had we

were able to look at one potential direct mechanism: employment. It has been reported

that droughts can lead to reductions in on-farm employment [169] as well as reductions

in employment at the national level [170], but they can also spur off-farm employment

[171] and even migration [143]. Furthermore, in the absence of formal insurance and

safety net mechanisms, households might decide to reallocate the time of family members

across different activities as a response to external shocks [172]. Therefore, in addition to
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Table 3.2: Main Results
All Men Women
Panel A: Households

Per-capita earnings -54.259**
[23.497]

Poor (=1) 0.045***
[0.015]

Observations 20704
Panel B: Adults

Employed (=1) -0.022** -0.012 -0.031**
[0.010] [0.013] [0.013]

Housework (=1) 0.014* -0.001 0.028*
[0.008] [0.002] [0.014]

Observations 46928 22410 24518
Panel C: Children

School attendance (=1) -0.016 -0.028* -0.004
[0.010] [0.015] [0.016]

Observations 8996 4526 4470
Notes: Econometric estimations of drought impacts in the locality by gender. Authors’ estimations
using the Mexican labor survey (ENOE) data from 2010 (pre-drought) and 2011 (post-drought) and
the Mexican Drought Monitor. The sample is restricted to rural households, which are those with less
than 2,500 inhabitants. The table shows the estimates for both men and women (All), and for men
and women separately. Panel A presents the results for household level outcomes, Panel B for adults
(18 years or more pre-drought) and Panel C for children (between 12- and 17-years old pre-drought).
Per-capita earnings are measured in 2010 Mexican pesos per month. Variables with (=1) are indicator
variables equal to one if the condition described by the variable name is met and zero otherwise. Each
coefficient represents a difference-in-differences estimate from a separate regression (that is, a β from
our estimating equation). Household level estimates control for household fixed effects, the estimates
for adults and children control for individual fixed effects. All estimates control for an indicator variable
of the 5th ENOE interview, thus controlling for time trends. Clustered robust standard errors at the
state level are presented in brackets. ∗ ∗ ∗ p<0.01 ∗∗ p<0.05, ∗ p<0.1

looking at employment, we also considered the effect that droughts have on time allocated

to work exclusively in household chores. This allowed us to look, at least partially, at

reallocation of time inside the household as a response to a drought. Panel B of Table 3.2

(first column) shows that the presence of a drought reduced in more than two percentage

points the probability that an adult was employed, while it increased the probability

that it would be fully dedicated to domestic work in almost one and a half percentage

points. Our results on employment suggest that households affected by a drought were
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not able to fully reassign labor to income generating activities and therefore participation

in housework increased.

The previous analysis conceals differences in labor allocation by gender. It has been

well documented that labor-supply responses after a shock can vary by gender [173,

174], therefore, this is an important issue to analyze. On one hand, it is possible that

female labor supply would increase as a response to a decrease in their partners’ level of

employment, a phenomenon known as the added worker effect [175]. On the other hand,

when there are gender differences in workforce participation, as is the case in rural Mexico

[176], an increase in female participation might not be feasible. The second and third

columns of Table 3.2, Panel B, show the effects of drought on employment and housework

by gender. Although we could not directly test if women entered the labor market as a

response to their spouse exiting the labor force, our analysis by gender shows that women

are the driving force behind the decrease in probability of employment and the increase

in domestic work. Therefore, instead of finding evidence supporting the added worker

effect, our results suggest that droughts increased the gender gap in terms of participation

in the labor market: male participation remained the same while female participation

decreased. There is evidence suggesting that differences in employment participation by

gender in rural Mexico can be attributed to gender roles within the family [176]. This

and the possibility that physical strength is considered as an important endowment for

many agricultural activities [176] can explain why females are the first ones to be left out

of the labor market when a negative shock affects agricultural productivity.

In addition to its effects on per-capita earnings and poverty, droughts could have

indirect negative effects on other aspects of households’ wellbeing, like children’s educa-

tion. There is evidence showing that children leave school to enter the labor market when

their parents become unemployed [175]. Negative shocks to commodity prices [177] as

well as crop losses have also been shown to reduce school enrollment for rural children.
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Therefore, children could be leaving school to work and partially compensate for the lost

income resulting from the drought; they could also be leaving school to replace one mem-

ber that was originally dedicated to household caring activities, and thus increase their

domestic work. Panel C of Table 3.2 shows the effects of droughts on school attendance

for children between 12 and 17 years old. The results show that droughts reduced the

probability that boys will go to school in almost three percentage points; the effect for

girls is very small and not statistically different from zero. We also tested for effects on

employment or household work for children; the estimated β are not shown in the table

since we did not find any statistically significant results for those variables. Therefore,

although there is a decrease in boys’ school attendance, we did not find direct evidence to

support the hypotheses that they get out of school to get a formal employment or to do

housework. It is possible that school attendance went down after the drought as a way

to reduce the costs associated with attendance (e.g. transportation and school supplies).

The cash transfers that parents received from the government program Oportunidades

for the attendance of children to school was higher for girls than for boys attending mid-

dle school or high school [178]; this difference in the opportunity cost of attendance could

explain why girls’ school attendance did not decrease as a consequence of the drought.

This result contrasts with the findings in [175], where teenage girls were more likely to

drop out of school than teenage boys in response to the Mexican peso crisis; however,

Oportunidades did not exist at the time.

Many rural communities in semi-arid regions of Mexico have developed ways to cope

with droughts [179]. Arguably, households located in places where low levels of precipita-

tion are the norm have already undertaken some ex-ante measures to deal with droughts,

they might also be aware of ex-post measures to deal with lack of rainfall when it happens.

If that is in fact the case, we should see that the effects of a drought differ by the level

of historical precipitation that a given place has experienced; households in places with
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precipitation levels that are usually high are less used to the lack of rainfall and would

therefore be more exposed to its negative effects. To test this hypothesis, in the last

part of our analysis we used an indicator variable to classify households according to the

historical precipitation level of the municipality in which they are located. We estimated

again the effects of droughts on per-capita earnings, poverty, employment and household

work of adults, as well as on school attendance, but this time instead of splitting the

sample according to gender we did it with respect to being in a high or low precipitation

municipality.

The results, shown in Table 3.3 Panel A, show that per-capita earnings decreased af-

ter a drought for households located in places with high historical levels of precipitation

but not for the rest of the households. Similarly, the likelihood that a household was

poor after the drought increased 6 percentage points for households in high precipitation

municipalities but not for their counterpart. The effects on employment and household

work are shown in Panel B, the probability of being employed decreased for individuals

living in households with high historical precipitation. Meanwhile, the probability that

an adult will only do housework increased by one percentage point only for households in

low precipitation municipalities. Results for school attendance, Panel C, show that chil-

dren in municipalities with high precipitation are almost 3 percentage points less likely

to go to school after a drought hits their household; there is no statistically significant

effect for children in low precipitation municipalities. The results on employment and

school attendance provide indirect evidence consistent with the hypothesis that house-

holds familiar with relative water scarcity might be less affected by a drought than those

located in places where water availability is, in general, not an issue.
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Table 3.3: Results by historical precipitation levels

Historical precipitation
High Low
Panel A: Households

Per-capita earnings -80.158* -1.993
[38.875] [38.951]

Poor=1 0.063*** 0.023
[0.014] [0.028]

Observations 8432 12272
Panel B: Adults

Employed=1 -0.033* -0.012
[0.019] [0.007]

Housework=1 0.016 0.011*
[0.015] [0.006]

Observations 18902 28026
Panel C: Children

School attendance=1 -0.029* -0.012
[0.014] [0.017]

Observations 3732 5264
Notes: Econometric estimations of drought impacts by historical precipitation in the municipality of
residence. Authors’ estimations using the Mexican labor survey (ENOE) data from 2010 (pre-drought)
and 2011 (post-drought) and the Mexican Drought Monitor. We defined historical precipitation as
high if the municipality experienced a mean precipitation level above 900mm between 1979 and 2010,
and as low otherwise. The sample is restricted to rural households, which are those with less than
2,500 inhabitants. Panel A presents the results for household level outcomes, Panel B for adults (18
years or more pre-drought) and Panel C for children (between 12- and 17-years old pre-drought). Per-
capita earnings are measured in Mexican pesos per month. Variables with (=1) are indicator variables
equal to one if the condition described by the variable name is met and zero otherwise. Each coefficient
represents a difference-in-differences estimate from a separate regression (that is, a β from our estimating
equation). Household level estimates control for household fixed effects, the estimates for adults and
children control for individual fixed effects. All estimates control for an indicator variable of the 5th
ENOE interview, thus controlling for time trends. Clustered robust standard errors at the state level
are presented in brackets. ∗ ∗ ∗ p<0.01 ∗∗ p<0.05, ∗ p<0.1

3.4 Conclusions

Our results showed that there is a causal link between droughts and a decrease in

rural households’ wellbeing. Furthermore, we provide indirect evidence supporting the

hypothesis that households in relatively dry areas have already taken some adaptation

measures, and therefore can cope with a drought more easily than households in places
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with higher precipitation levels. If that is in fact the case, public policies that inform and

promote ex-ante adaptation measures in localities less experienced with droughts, but at

risk of increased future exposure due to climate change, have the potential to ameliorate

some of the negative welfare effects of droughts.

By no means we try to imply that our results are conclusive, they have many limi-

tations given the data that we had at hand. We do not have panel data encompassing

several years, which would have allowed us to look at drought effects over time and to

have a cleaner empirical identification strategy. We cannot identify the role of specific

coping mechanisms such as savings, access to credit markets, or cash transfers, which

could potentially mitigate the impacts of a drought. Furthermore, we cannot verify that

adaptation measures are in fact what explain the heterogeneous effects that we found

for households located in relatively dry areas. Better data is needed in order to delve

deeper into these crucial issues. Given the vulnerability of Mexican rural households to

climate change, the federal administration should implement a data collection strategy

that can properly capture rural households’ adaptive capacity. Such data would pro-

vide valuable information for the design and successful implementation of public policies

aimed towards promoting adaptation and reducing the vulnerability of rural households

to climate change.
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Appendix A

Appendix to Chapter 1

A.1 Mathematical Appendix

Substituting xL, l
s
L, and ML(γl) in the utility function of low-wealth households:

u(xL, l
s
L, HL) = log

[
1

cx

[
w(2− β) + βIL + cM(H−DL(γl))

cM + 2

]]
+ log

[
1−

[
w(cM + β)− βIL + cM(DL(γl)−H)

w(cM + 2)

]]
+ log

[
HL + β

[
β(IL + w) + 2(w +DL(γl)−H)

β(cM + 2)

]
−D(γl)

]

Taking the derivative of u(·) with respect to γl:
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∂u

∂γl
=− cMD

′(γl)

w(2− β) + βIL + cM(H−D(γl)
− cMD

′(γl)

w(cM + 2)− w(cM + β) + βIL + cM(H−D(γl))︸ ︷︷ ︸
(*)

− cMD
′(γl)

H(cM + 2) + β(IL − w) + 2(w +D(γl)−H)−D(γl)(cM + 2)︸ ︷︷ ︸
(**)

Incomplete regulation causing an increase in γl will be regressive if ∂u
∂γl

< 0

First, let’s obtain conditions under which (*) is negative:

(*) can be rewritten as:

(∗) = −[4cMw − 2βcMw + 2cMβIL + 2c2M(H−D(γl))]

w2(4− 3β2) + 4βwIL + β2I2L + cM(H−D(γl))2 + (H−D(γl))(4wcM − 2cMwβ + 2βIL

Recall that 0 < β ≤ 1, which means that the denominator of (*) will only be negative

(implying the possibility of ∂u
∂γl

> 0) if the denominator of (*) is negative.

Working of the denominator of (**):

(∗∗) = w2(4−3β2)+4βwIL+β
2I2L+cM(H−D(γl))

2+(−D(γl)(4wcM+2cMwβ−2cMwβ+2βIL)

(**) would only be negative if:

4wcM + 2cMwβ − 2cMwβ + 2βIL < 0 =⇒ cM(2− β)

β
>
IL
w

Therefore, ∂u
∂γl

< 0 unless cM (2−β)
β

< IL
w
.

Substituting xH , lH , and MH(γk) in the utility function of high-wealth households:
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u(xH , lH , HH) = log

[
1

cx
(IR + ϕY )

]
+ log

[
H + β

[
1

2cM
(IR + ϕY )− 1

β
(H−D(γk))

]]

Obtaining the derivative with respect to γk:

∂u

∂γk
=

2cM
∂D(γk)
∂γk

β(IR + ϕY ) + 2D(γk)cM

The numerator of the previous expression is positive while the denominator will be

positive unless β(IR + ϕY ) < 2D(γk).

A.2 Appendix Figures

Figure A.1: Mills location

Notes: location of mills classified by exempt (biofuel use) and non-exempt or regulated by NOM-085-
SEMARNAT-2011. Shadow areas are the centroid of the sugarcane fires in 2012.
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Figure A.2: Time to process harvested sugarcane
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Notes: The figure shows the sugarcane processed (in tons) and its approximate time for processing in
the mill after it was harvested by year.

A.3 Appendix Tables
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Figure A.3: Distribution areas

Panel a)

Panel b)

Notes: Panel a) shows the geographic extent of the sample areas (obtained by the Universidad Ve-
racruzana study), sugarcane harvest fires (VIIRS), and a sugar mill. Panel b) shows the geographic
extent of a 500m buffer surrounding the sample areas obtained by the Universidad Veracruzana study,
along with the sugarcane harvest fires, and the sugar mill. The geographic area is in the city of Cordoba,
Veracruz. The sugar mill is “El Potrero”.
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Figure A.4: Distribution areas
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Notes: The figure shows the total number of fires for the sample area in the state of Veracruz by mill.
Each bar shows the total of matched or misassigned fires comparing the distance algorithm classification
and the actual sample areas for 2009.
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Figure A.5: Calculated distance between sugarcane fires and other fires and mills
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Notes: The figure shows the distribution of the distances between the fires and assigned mills. NSHF
stands for “Non-sugarcane harvest fire” which are agricultural fires in cropland other than sugarcane.
NSHF were classified using data from INEGI: Cartas de Uso de Suelo y Vegetación, Serie V. SHF stands
for sugarcane harvest fire. SHF were classified by CONADESUCA and provided to the researcher.
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Figure A.6: Sugarcane processed by ownership
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Notes: Total sugarcane processed (in tons) by type of land ownership. Total sugarcane is the sum
of sugarcane from own/associated fields, sugarcane from other mills and sugarcane sent to other mills.
Sugarcane from other mills is the total sugarcane sent from the fields owned/associated to other mills.
Sugarcane sent to other mills is the average sugarcane that is sent to other mills due to capacity
constraint associated with the own mills operations.

Figure A.7: Fires associated with exempt and non-exempt facilities
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Notes: The figure show the mean sugarcane-harvest fires by type of facility. Non-exempt facilities are
defined as facilities using oil as main fuel. Exempt facilities are defined as facilities using biofuels as
main fuel. Vertical axis is the mean fires in sugarcane plots.
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Figure A.8: Monthly fires-parallel trends controlling for sugar and oil prices

Panel a) Controls for international price of sugar
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Panel b) Controls for the price of Mexican crude oil
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Notes: This figure shows the differences in differences-year specific coefficients for the total number of
daily fires following equation 1.6 including controls of international sugar prices (Panel a)) and Mexican
crude oil prices (Panel b)). The regulation started in 2015. 95% confidence intervals calculated using
two-way fixed effects at the municipality and year level.
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Figure A.9: Inputs-parallel trends

Panel a) Manual cut (tons)
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Panel b) Mechanical cut (tons)
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Notes: Panel a) shows the differences in differences-year specific coefficients for the total sugarcane in
tons using manual cut following equation 1.7. Panel b) shows the differences in differences-year specific
coefficients for the total sugarcane in tons using mechanical cut following equation 1.7. Confidence
intervals calculated using two-way fixed effects at the municipality and year level.

111



Appendix to Chapter 1 Chapter A

Figure A.10: Inputs-parallel trends

Panel c) Hectares harvested
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Panel d) Total workers
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Notes: Panel c) shows the differences in differences-year specific coefficients for the harvested hectares
following equation 1.7. Panel d) shows the differences in differences-year specific coefficients for the
total number of manual workers following equation 1.7. Confidence intervals calculated using two-way
fixed effects at the municipality and year level.
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Figure A.11: Outputs-parallel trends

Panel a) Processed sugarcane
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Panel b) Total sugar produced
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Notes: Panel a) shows the differences in differences-year specific coefficients for the total sugarcane
processed at the mill (mills) following equation 1.7. Panel b) shows the differences in differences-
year specific coefficients for the total produced sugar at the mill (tons) using mechanical cut following
equation 1.7. Confidence intervals calculated using two-way fixed effects at the municipality and year
level.
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Figure A.12: Pollution in fields-parallel trends

Panel a) PM2.5 pollution (µg/m3)
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Notes: Panel a) shows the differences in differences-year specific coefficients for pollution from PM2.5

in the fields following equation 1.8. Panel b) shows the differences in differences-year specific coefficients
for pollution from SO2 in the fields following equation 1.8. Confidence intervals calculated using two-
way fixed effects at the municipality and year level. Confidence intervals calculated using two-way fixed
effects at the municipality and year level.

Figure A.13: Pollution in mills-parallel trends

Panel a) PM2.5 pollution (µg/m3)
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Notes: Panel a) shows the differences in differences-year specific coefficients for pollution from PM2.5

in the mills following equation 1.8 using [40]. Confidence intervals calculated using two-way fixed effects
at the municipality and year level. Confidence intervals calculated using two-way fixed effects at the
municipality and year level.
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Figure A.14: Poverty and location of fires and mills

Notes: The figure shows the percent of communities exposed to sugarcane burning and sugar pro-
duction and their corresponding poverty rate. Poverty rate was obtained from INEGI using the 2010
Mexican Census data.
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Table A.1: Descriptive statistics by type of facility before the policy
(1) (2)

Exempt facilities Non-exempt facilities
Panel a: Inputs data

Manual cut (tons) 27769.69 40982.75
(15268.95) (24692.98)

Mechanical cut (tons) 5796.26 8880.16
(6671.87) (7900.13)

Total field workers (cutting) 1325.13 1811.07
(650.75) (1116.84)

Total harvested sugarcane (hectares) 327.90 445.49
(357.74) (618.76)

Total sugarcane (tons) 3041.26 3015.94
(4286.52) (3887.12)

Sugar production efficiency 98.16 101.40
(44.40) (40.16)

Sugarcane processing efficency 111.59 111.83
(29.02) (25.07)

Sugar extraction efficiency 20.34 13.12
(281.80) (2.29)

Panel b: Outputs data
Raw processed sugarcane (t) 36006.08 51574.08

(15837.38) (23785.49)
Total sugar produced (t) 3945.55 5901.07

(1898.63) (2857.84)
Total sugar produced per day (t) 555.64 828.56

(269.05) (399.47)
Observations 3,006 1,517

Panel c: Fires and temperature data
Total SHFs 0.25 0.37

(0.75) (0.95)
Temperature (C) 21.85 21.60

(3.78) (3.17)
Observations 47,690 23,845

Notes: Panel a) shows descriptive statistics for inputs and panel b) shows descriptive statistics for
outputs at the sugar mill level at the weekly level. Panel c) shows descriptive statistics of sugarcane
harvest fires and average temperature for daily observations at the sugar mill level. Column (1) shows
the descriptive statisitcs for exempt facilities and Column (2) shows the descriptive statistics for non-
exempt facilities. Standard deviation in parentheses.
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Table A.2: Difference-in-differences estimates for monthly fires

(1) (2) (3)
Total SHFs SHF=1 Log(SHF)

After 2015 × non-exempt 1.12952*** 0.00133 0.11222***
(0.38957) (0.01743) (0.03168)

Pre 2015 mean 8.558 0.825 1.870
Obs. 2,394 2,394 1,975
R-squared 0.524 0.450 0.573
Year FE Yes Yes Yes
Month FE Yes Yes Yes
Mill FE Yes Yes Yes
Linear trend No No No
Weather Controls Yes Yes Yes
Cluster level Mun and year Mun and year Mun and year
Poisson No No No

Notes: Column (1) shows the difference-in-differences estimator of the impact of being regulated by
the emission limits after the policy started on the number of fires using equation 1.6. Column (2) shows
the same specification but the dependent variable is an indicator variable on whether there is a fire or
not in that field. Column (3) estimates the same specification in equation 1.6 with the log number of
fires at the month level. Standard errors using two way clusters (munincipality and year) in parenthesis.
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Table A.3: Difference-in-differences estimates for monthly fires controlling for sugar
and oil prices

(1) (2)
Total SHFs Total SHFs

After 2015 × non-exempt 1.13018** 1.12949**
(0.38912) (0.39060)

Pre 2015 mean 8.558 8.558
Obs. 2,394 2,394
R-squared 0.525 0.524
Year FE Yes Yes
Month FE Yes Yes
Mill FE Yes Yes
Weather controls Yes Yes
Cluster level Mun and year Mun and year
Additional controls Sugar price Oil price

Notes: Column (1) shows the difference-in-differences estimator of the impact of being regulated by
the emission limits after the policy started on the number of fires using equation 1.6 controlling for the
international sugar prices. Column (2) shows the difference-in-differences estimator of the impact of
being regulated by the emission limits after the policy started on the number of fires using equation 1.6
controlling for the Mexican mix crude oil prices. Standard errors using two way clusters (munincipality
and year) in parenthesis.

Table A.4: Effect on sugarcane fires using bootstrap standard errors

(1)
Total SHFs

After 2015 × non-exempt 0.04120**
[0.00982,0.07258]

Pre 2015 mean 0.286
Obs. 71,535
R-squared 0.091
Year FE Yes
Month FE Yes
Mill FE Yes
Weather controls Yes
Cluster level Bootstrap
Poisson Yes

Notes: The table shows the results from equation (1.6) using bootstrap standard errors. Column
(1) shows the resulting specification with dependent variable being total number of fires. Confidence
intervals reported in brackets.
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Table A.5: Effect on non-sugarcane fires

(1) (2)
Total NSHFs NSHF=1

After 2015 × non-exempt 0.24180 -0.01129
(0.25467) (0.00806)

Pre 2015 mean 3.060 0.439
Obs. 71,535 71,535
R-squared 0.321 0.387
Year FE Yes Yes
Month FE Yes Yes
Mill FE Yes Yes
Weather controls Yes Yes
Cluster level Mun and year Mun and year

Notes: Column (1) shows the difference-in-differences estimator of the impact of being regulated by
the emission limits after the policy started on the number of agricultural fires (non-sugarcane) using
equation 1.6. Non-sugarcane fires were classified using land cover data from INEGI. Standard errors
using two way clusters (munincipality and year) in parenthesis.

Table A.6: Placebo test: sugarcane fires outside the harvest season

(1) (2)
Total SHFs SHF=1

After 2015 × non-exempt 0.00218 0.00046
(0.00590) (0.00389)

Pre 2015 mean 0.034 0.024
Obs. 52,326 52,326
R-squared 0.054 0.059
Year FE Yes Yes
Month FE Yes Yes
Mill FE Yes Yes
Weather controls Yes Yes
Cluster level Mun and year Mun and year

Notes: Column (1) shows the difference-in-differences estimator of the impact of being regulated by
the emission limits after the policy started on the number of fires using equation 1.6 for the months
July-October, outside the sugarcane harvest window. Column (2) shows the same specification but
the dependent variable is an indicator variable on whether there is a fire or not in that field. Column
(3) estimates the same specification in equation 1.6 with the log number of fires at the month level.
Standard errors using two way clusters (munincipality and year) in parenthesis.
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Table A.7: Effect on sugarcane fires - distribution areas
Panel a)

(1) (2) (3)
Total SHFs SHF=1 Total SHFs

After 2015 × non-exempt 0.02284* 0.01423** 0.32656***
(0.01111) (0.00527) (0.11845)

Pre 2015 mean 0.067 0.051 0.067
Obs. 25,000 25,000 25,000
R-squared 0.027 0.031
Year FE Yes Yes Yes
Month FE Yes Yes Yes
Mill FE Yes Yes Yes
Cluster level Mun and year Mun and year Robust
Poisson No No Yes
Buffer 300 300 300

Panel b)

(1) (2) (3)
Total SHFs SHF=1 Total SHFs

After 2015 × non-exempt 0.05044* 0.01985** 0.24923**
(0.02502) (0.00710) (0.12634)

Pre 2015 mean 0.170 0.086 0.170
Obs. 25,080 25,080 25,080
R-squared 0.039 0.051
Year FE Yes Yes Yes
Month FE Yes Yes Yes
Mill FE Yes Yes Yes
Cluster level Mun and year Mun and year Robust
Poisson No No Yes
Buffer 500 500 500

Notes: Panel a) and b) show the results following the equation 1.6 considering the sugarcane distribu-
tion areas for the subset of sugar mills in Veracruz under the study “ Digitalización del Campo Cañero
en México para Alcanzar la Agricultura de Precisión de la Caña de Azúcar”. Panel a) shows the results
using a buffer of 300m surrounding the sampling points and Panel b) shows the results using a buffer of
500m surrounding the sampling points. Column (1) shows the difference-in-differences estimator of the
impact of being regulated by the emission limits after the policy started on the number of sugarcane
fires. Column (2) shows the same specification but the dependent variable is an indicator variable on
whether there is a fire or not in that field. Column (3) estimates the specification using a Poisson
model using robust standard errors. Standard errors using two way clusters (munincipality and year)
in parenthesis for Columns (1) and (2).
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Table A.8: Effect on sugarcane fires - compliant mills

(1) (2)
Total SHFs SHF=1

After 2015 × non-exempt 0.09283** 0.02223*
(0.03238) (0.01011)

Pre 2015 mean 0.314 0.177
Obs. 13,805 13,805
R-squared 0.120 0.135
Year FE Yes Yes
Month FE Yes Yes
Mill FE Yes Yes
Cluster level Mun and year Mun and year
Compliant Yes Yes

Notes: The table shows the main results for daily fires with a restricted sample for facilities with
known compliance by CONADESUCA. Column (1) shows the difference-in-differences estimator of the
impact of being regulated by the emission limits after the policy started on the number of sugarcane
harvest fires using equation 1.6. Column (2) shows the difference-in-differences estimator of the impact
of being regulated by the emission limits after the policy started on the probability of sugarcane fire.
Standard errors using two way clusters (munincipality and year) in parenthesis.

Table A.9: Effect on sugarcane fires - compliant mills

(1) (2)

Sample restriction 1 Sample restriction 2
After 2015 × non-exempt 0.03935** 0.04077**

(0.01505) (0.01540)
Pre 2015 mean 0.285 0.289
Obs. 70,280 70,280
R-squared 0.092 0.091
Year FE Yes Yes
Month FE Yes Yes
Mill FE Yes Yes
Weather controls Yes Yes
Cluster level Mun and year Mun and year
Poisson No No

Notes: The table shows the main results for daily fires with two restricted sample of facilities. Column
(1) shows the results with the sample restriction 1 that estimates the regressions dropping the mill “San
Francisco Ameca” which is the only mill that acquired a biofuel powered boiler after the treatment
started. Column (2) shows the results with the sample restriction 2 that estimates the regressions
dropping the mill “Ingenio El Potrero”, which is the only mill that has the highest rate of mismatched
fields according to Figure A4. Standard errors using two way clusters (munincipality and year) in
parenthesis.
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Table A.10: Effects on wages

(1) (2) (3) (4) (5)
Wage

After 2015 × non-exempt -1.770 -5.172 -1.236 1.722 -0.308
(6.57693) (8.05965) (8.66429) (12.50082) (5.40046)

Mean 103.484 109.047 113.478 112.093 94.440
Obs. 9,769 1,978 2,005 2,001 1,969
R-squared 0.530 0.719 0.780 0.716 0.644
Year FE Yes Yes Yes Yes Yes
Week FE Yes Yes Yes Yes Yes
Mill FE Yes Yes Yes Yes Yes
Cluster level Mun-year Mun-year Mun-year Mun-year Mun-year
Age All 15-30 30-45 45-60 60-more

Notes: Column (1) shows the difference-in-differences estimator of the impact of being regulated by
the emission limits after the policy started on the daily wages following 1.7. Column (2)-(7) shows
the difference-in-differences estimator of the impact of being regulated by the emission limits after the
policy started on the wages for the workers different age categories. Data obtained from the social
security information at the municipality level. The sample of mills was restricted to the municipalities
that have either all mills with the same treatment status (all exempt or all non-exempt), therefore
deleting 4 mills. Standard errors using two way clusters (munincipality and year) in parenthesis.

Table A.11: Effects on outputs

(1) (2)
Raw processed sugarcane (tons) Total sugar produced (tons)

After 2015 × non-exempt 83.171 78.483
(904.27822) (138.69765)

Mean 41,865.426 4,674.832
Obs. 8,568 8,568
R-squared 0.803 0.792
Year FE Yes Yes
Week FE No No
Mill FE Yes Yes
Cluster level Mun and year Mun and year

Notes: Column (1) shows the difference-in-differences estimator of the impact of being regulated by
the emission limits after the policy started on the amount of sugarcane processed at the mill (tons)
following specification 1.7. Column (2) shows the difference-in-differences estimator of the impact
of being regulated by the emission limits after the policy started on the amount of sugar produced
(tons) following specification 1.7. Standard errors using two way clusters (munincipality and year) in
parenthesis.
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Table A.12: Effects on efficiency

(1) (2) (3)
Sugarcane processing Sugar production Sugar extraction

efficency efficiency efficiency
After 2015 × non-exempt -0.857 -4.678 -7.528

(4.79311) (6.09324) (6.40081)
Mean 113.734 101.143 15.276
Obs. 5,707 5,707 5,707
R-squared 0.425 0.615 0.020
Year FE Yes Yes Yes
Week FE Yes Yes Yes
Mill FE Yes Yes Yes
Cluster level Mun and year Mun and year Mun and year

Notes: Column (1) shows the difference-in-differences estimator of the impact of being regulated
by the emission limits after the policy started on the total kilograms of sugar obtained by ton of
harvested sugarcane (measured by the KARBE indicator provided by CONADESUCA) at the mills
following specification 1.7. Column (2) shows the difference-in-differences estimator of the impact
of being regulated by the emission limits after the policy started on the total kilograms of sugar
obtained by ton of processed sugarcane (measured by the KABE indicator provided by CONADESUCA)
following specification 1.7. Column (3) shows the difference-in-differences estimator of the impact
of being regulated by the emission limits after the policy started on the sugar extraction efficiency.
Standard errors using two way clusters (munincipality and year) in parenthesis.

Table A.13: Effect on pollution in mills location

(1) (2) (3) (4)
PM2.5 Log(PM2.5) SO2 Log(SO2)

After 2015 × non-exempt 0.09699 -0.00254 0.00975 -0.00186
(0.26296) (0.01911) (0.03289) (0.01950)

Mean 15.610 2.495 1.388 0.036
Obs. 68,440 68,440 68,440 68,440
R-squared 0.444 0.532 0.385 0.485
Year FE Yes Yes Yes Yes
Month FE Yes Yes Yes Yes
Mill FE Yes Yes Yes Yes
Weather controls Yes Yes Yes Yes
Cluster level Mun and year Mun and year Mun and year Mun and year

Notes: Column (1) and (2) show the difference-in-differences estimator of the impact of being regulated
by the emission limits after the policy started on the ambient pollution level of PM2.5 and log(PM2.5),
respectively following specification 1.8. Column (3) and (4) show the difference-in-differences estimator
of the impact of being regulated by the emission limits after the policy started on the ambient pollution
level of SO2 and log(SO2), respectively following specification 1.8. Standard errors using two way
clusters (munincipality and year) in parenthesis.
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Table A.14: Effect on sugarcane fires by poverty level

(1) (2) (3)
Total SHFs Total SHFs Total SHFs

After2015=1=1 × Treatment=1=1 0.03278*** 0.02212 0.04010***
(0.00653) (0.02501) (0.00349)

Mean 0.289 0.266 0.312
Obs. 64,005 31,375 32,630
R-squared 0.087 0.074 0.096
Year FE Yes Yes Yes
Month FE Yes Yes Yes
Mill FE Yes Yes Yes
Linear trend No No No
Weather controls No No No
Cluster level Mun and year Mun and year Mun and year
Poverty level (wrt median) All Lower Higher

Notes: The table shows the results from equation (1.6) with heterogeneity by poverty level in fields
areas. Column (1) shows the resulting specification with dependent variable being total number of fires.
Column (2) shows the results for fields located near localities with poverty level lower than the national
median. Column (3) shows the results for fields located near localities with poverty level higher than
the national median. Twoway-clustered standard errors
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Appendix to Chapter 2

B.1 Mathematical Appendix

B.1.1 Bootstrap procedure for incorporating uncertainty in C&T

emission effects

This section details our bootstrap procedure over steps 1-3 to account for statistical

uncertainty in C&T-driven emission effects from equation (2.1), reproduced here:

asinh(Y p
jt) = κp1[Cj × t] + κp2[Cj × 1(t ≥ 2013)× t] + ϕp

j + γpt + νpjt

We obtain point estimates κ̂p1, κ̂
p
2 and standard errors σ̂κp

1
and σ̂κp

2
from equation (2.1).

We then iterate the following procedure for draws b = 1...250:

� Draw κ̂p1(b) ∼ N(κ̂p1, σ̂κp
1
) and κ̂p2(b) ∼ N(κ̂p2, σ̂κp

2
)

� Construct Ŷ p
jt(b) = sinh

(
κ̂p1(b)[Cj × t] + κ̂p2(b)[Cj × 1(t ≥ 2013)× t] + ϕ̂p

j

)
∗e(RMSE)2/2),

where RMSE is the root mean squared error from equation (2.1)
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� Feed Ŷ p
jt(b) into HYSPLIT to generate zip code-by-year pollution concentration,

Ep
it(b)

� Estimate equation (2.2) using Ep
it(b) as the outcome variable to obtain β̂p

1(b) and

β̂p
2(b)

Figure B.5 plots the empirical distributions for β̂p
1(b) and β̂

p
2(b) for p ∈ {PM2.5, PM10, NOx, SOx}.

Denote standard errors across 250 bootstrap runs as σ̂βp
1
(νpjt) and σ̂βp

2
(νpjt) where the νpjt

argument indicates the dependence on statistical uncertainty from equation (2.1). De-

note σ̂βp
1
(ϵpjt) as the estimated standard error arising from heterogeneity in βp

1 obtained

by directly estimating equation (2.2) with county-level clustered errors. Our reported

standard error for βp
1 is σ̂βp

1
= σ̂βp

1
(ϵpjt) + σ̂βp

1
(νpjt). Likewise, for βp

2 . σ̂βp
1
and σ̂βp

2
are

reported in Table 2.2 and used to construct the confidence intervals displayed in Figure

2.3.

B.1.2 Can the EJ gap effect be recovered using dispersal-augmented

facility-level regressions?

Facility-level analyses examine how a policy’s emissions effects vary with characteris-

tics of locations that are downwind of facilities, as determined by an atmospheric dispersal

model [70, 85]. For example, one may estimate the following dispersal-augmented facility-

level regression for the change in facility j emissions before and after the introduction of

a policy:

∆Yj = ϕ0Cj + ϕ1Cjsj + ϕ2sj + εj (B.1)

where Cj ∈ {0, 1} is regulatory status and sj ∈ [0, 1] is the share of affected downwind lo-

cations that is disadvantaged, as determined by the dispersal model. In these models, the

coefficient of interest is ϕ̂1, the added emissions effect for facilities that disproportionately
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affect disadvantaged communities.

How does ϕ̂1 relate to the EJ gap effect, the estimand of interest? As in Section 2.4,

let i index locations (e.g., California zip codes in our setting) and Di ∈ {0, 1} denote

disadvantaged status. For simplicity, assume there are the same number of disadvantaged

and non-disadvantaged locations, N =
∑

i:Di=0(1 − Di) =
∑

i:Di=1Di. The EJ gap

effect is the difference between the change in pollution concentration for disadvantaged

communities and that of non-disadvantaged communities, due to C&T-driven emission

changes from regulated facilities (relative to unregulated facilities), or ∆̂Y j. Formally,

this estimand is

θ =
1

N

∑
j

∆̂Y jsj︸ ︷︷ ︸
avg. DAC concentration

from C&T-driven
emissions

− 1

N

∑
j

∆̂Y j(1− sj)︸ ︷︷ ︸
avg. non-DAC concentration

from C&T-driven
emissions

=
1

N

∑
j

∆̂Y j(2sj − 1)

=
1

N

∑
j

(ϕ̂0 + ϕ̂1sj)(2sj − 1) (B.2)

The last line applies C&T-driven relative emissions change for regulated facilities as

∆̂Y j = ϕ̂0 + ϕ̂1sj, where ϕ̂0 and ϕ̂1 are estimated coefficients from equation (B.1).

It is clear from (B.2) that ϕ̂1 does not generally equal θ. But is the sign of ϕ̂1 at least

consistently the same as the sign of θ? The following example rejects this claim. For

simplicity, let ϕ̂0 = 0. Next, suppose s1 = 1 for the first facility and sj>1 < 0.5 for all
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other facilities. The estimand is then:

θ =
1

N

(
ϕ̂1 +

∑
j>1

ϕ̂1sj(2sj − 1)

)

=
ϕ̂1

N

1 +
∑
j>1

sj(2sj − 1)︸ ︷︷ ︸
<0︸ ︷︷ ︸

⋛0


indicating that θ and ϕ̂1 can be of different signs. Thus, simply showing, for example, that

emissions are relatively higher for facilities that disproportionately affect disadvantaged

communities (i.e., ϕ̂1 > 0) does not imply that the EJ gap has widened (i.e., θ > 0).

Lastly, can ϕ̂1 ever equal θ? Returning to equation (B.1), we explore one such special

case. Assume that exactly N facilities only affect disadvantaged communities (i.e., sj =

0), and that another N facilities only affect non-disadvantaged communities (i.e., sj = 1).

Then the estimand becomes:

θ =
1

N

∑
j:sj=0

−ϕ̂0 +
∑
j:sj=1

(ϕ̂0 + ϕ̂1)


=

1

N
(−Nϕ̂0 +Nϕ̂0 +Nϕ̂1)

= ϕ̂1

Observe how restrictive the assumptions are for this special case. It requires that facilities

only affect disadvantaged communities or only affect non-disadvantaged communities,

that is sj ⊂ {0, 1} ∀j. Facilities cannot alter pollution concentrations in both types of

locations. Furthermore, this case requires that the number of facilities in both groups

equal the number of disadvantaged communities, which must also equal the number of

128



Appendix to Chapter 2 Chapter B

non-disadvantaged communities.

B.2 Appendix Figures

Figure B.1: Distribution of sample facility-year emissions
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NOTES: Panels show the distribution of facility-year GHG, PM2.5, PM10, NOx, and SOx emissions for
sample observations. Observations above the 95th percentile are truncated.
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Figure B.2: Emissions robustness: placebo C&T program timing
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Notes: Panels show estimated (true and placebo) emissions trend break coefficients (i.e., κ2 from
eq. (2.1)) for GHG, PM2.5, PM10, NOx, and SOx emissions from varying the start year of the C&T
program. Vertical line at 2013 indicates actual introduction of the program. Shaded areas indicate 95%
confidence intervals.
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Figure B.3: Facility-level C&T-driven abatement between 2012-2017
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NOTES: Panels show the distribution of facility-level change in C&T-driven pollution between 2012-
2017 (or abatement) predicted from step 1 for GHG, PM2.5, PM10, NOx, and SOx emissions, respec-
tively.
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Figure B.4: Average pollution concentrations driven by C&T regulated facilities

Notes: Panels show daily concentrations (in µg/m3/day) for each zip code averaged across 2008-2017
from GHG C&T-regulated facilities as modeled in step 2 by HYSPLIT for PM2.5, PM10, NOx, and
SOx, respectively.
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Figure B.5: Empirical distribution of βp1 and βp2 from bootstrapping step 1
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Notes: Panels show the empirical distribution of βp
1 and βp

2 from equation (2.1) (across columns) for
PM2.5, PM10, NOx, and SOx (across rows) using the bootstrap procedure detailed in Section B.1.1 with
250 draws. Solid black line shows parameter from directly estimating equation (2.1). Solid colored line
shows the mean parameter value from the empirical bootstrapped distribution. Dotted colored lines
show the 2.5% and 97.5% percentiles of the empirical bootstrap distributions.
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Figure B.6: Zip code-level percent change in EJ gap trend following C&T

Notes: Panels show the distribution of zip code-level percentage change in the EJ gap trend following
the introduction of the C&T program, for each disadvantaged zip code across PM2.5, PM10, NOx, and

SOx. Solid line shows the average percentage change across disadvantaged zip codes, or
βp
2

βp
1
∗ 100 from

equation (2.2). Dashed line marks zero.
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Table B.1: GHG cap-and-trade regulated and non-regulated facilities
C&T regulated non-C&T regulated

facilities facilities
Number of facilities 106 226

Avg. 2008-2012 emissions (in metric tons):
CO2 38192.62 17566.48
PM2.5 8.08 3.74
PM10 14.47 6.25
NOx 53.42 16.03
SOx 10.86 2.8

Shares by sector:
Agriculture 0 .018
Manufacturing .623 .5
Mining, oil and gas extraction .151 .097
Services .066 .23
Transportation .075 .053
Utilities .075 .093
Wholesale .009 .009

Notes: Sample C&T regulated and non-regulated facilities by count, average 2008-2012 GHG
and criteria air pollution emissions, and by sector shares. Sectors shown adhere to the following
definitions: Agriculture: NAICS 11; Manufacturing: NAICS 31-33; Mining, oil, and gas extrac-
tion: NAICS 21; Services: NAICS 51, 54, 56, 61, 62, 71, 81, 92; Transportation: NAICS 48, 49;
Utilities: NAICS 22; Wholesale: NAICS 42.
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Table B.2: Emissions robustness: specification and sample restrictions
(1) (2) (3) (4)

sector-year Drop Baseline CO2e cutoff (%)
FEs switchers 70 80

Outcome is asinh(CO2e) emissions

κp1 0.172 0.220 0.194 0.174
(0.058) (0.054) (0.055) (0.050)
[0.005] [0.000] [0.001] [0.001]

κp2 -0.273 -0.317 -0.307 -0.260
(0.095) (0.079) (0.085) (0.072)
[0.006] [0.000] [0.001] [0.001]

Facilities 315 298 294 337
Observations 2,052 1,924 1,863 2,234

Outcome is asinh(PM2.5) emissions

κp1 0.059 0.065 0.071 0.046
(0.043) (0.045) (0.043) (0.043)
[0.176] [0.156] [0.111] [0.298]

κp2 -0.099 -0.092 -0.105 -0.079
(0.048) (0.051) (0.050) (0.050)
[0.046] [0.081] [0.044] [0.121]

Facilities 301 285 281 323
Observations 1,966 1,847 1,780 2,147

Outcome is asinh(PM10) emissions

κp1 0.086 0.088 0.097 0.075
(0.034) (0.035) (0.034) (0.035)
[0.014] [0.016] [0.008] [0.039]

κp2 -0.124 -0.108 -0.129 -0.103
(0.040) (0.043) (0.043) (0.042)
[0.003] [0.017] [0.005] [0.018]

Facilities 301 285 281 323
Observations 1,966 1,847 1,780 2,147

Outcome is asinh(NOx) emissions

κp1 0.085 0.057 0.085 0.058
(0.042) (0.039) (0.033) (0.037)
[0.048] [0.158] [0.015] [0.128]

κp2 -0.117 -0.079 -0.126 -0.091
(0.053) (0.050) (0.047) (0.048)
[0.035] [0.123] [0.010] [0.066]

Facilities 302 286 282 324
Observations 1,968 1,849 1,782 2,149

Outcome is asinh(SOx) emissions

κp1 0.005 0.008 -0.005 -0.004
(0.038) (0.036) (0.038) (0.035)
[0.902] [0.817] [0.890] [0.912]

κp2 -0.040 -0.040 -0.025 -0.020
(0.048) (0.046) (0.048) (0.045)
[0.407] [0.386] [0.600] [0.657]

Facilities 302 286 282 324
Observations 1,961 1,847 1,777 2,142

Notes: Estimates of pre-C&T differential emissions trend (i.e., κp
1 from equation (2.1)) and and post-C&T differential

emissions trend break (i.e., κp
2 from equation (2.1)) for GHG, PM2.5, PM10, NOx, and SOx across panels. All models

include facility-specific and year-specific dummy variables (except for column 1). Column 1 replaces year fixed effects
with sector-by-year fixed effects with sectors defined as shown in Table B.1. Column 2 drops facilities that switched
C&T regulatory status in 2017. Columns 3 and 4 restrict facilities to those with sample average annual GHG emissions
below the 70th and 80th percentile, respectively. Standard errors clustered at the county-level in parentheses, p-value in
brackets.
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Table B.3: Emissions effect robustness: heterogeneity by average emissions
(1) (2) (3)

Outcome is asinh(GHG) emissions

κp1 0.187 0.176 0.172
(0.052) (0.052) (0.052)
[0.001] [0.002] [0.002]

κp2 -0.297 -0.361 -0.354
(0.077) (0.092) (0.097)
[0.000] [0.000] [0.001]

trend break × avg. emissions 0.000 0.000
(0.000) (0.000)
[0.053] [0.090]

trend break × avg. emissions2 -0.000
(0.000)
[0.158]

Outcome is asinh(PM2.5) emissions

κp1 0.058 0.060 0.060
(0.043) (0.042) (0.043)
[0.183] [0.167] [0.165]

κp2 -0.097 -0.133 -0.146
(0.048) (0.051) (0.068)
[0.053] [0.012] [0.040]

trend break × avg. emissions -0.004 -0.005
(0.003) (0.004)
[0.197] [0.249]

trend break × avg. emissions2 0.000
(0.000)
[0.661]

Outcome is asinh(PM10) emissions

κp1 0.083 0.084 0.086
(0.033) (0.033) (0.033)
[0.016] [0.015] [0.012]

κp2 -0.117 -0.143 -0.172
(0.039) (0.042) (0.048)
[0.005] [0.002] [0.001]

trend break × avg. emissions -0.002 -0.003
(0.001) (0.002)
[0.080] [0.073]

trend break × avg. emissions2 0.000
(0.000)
[0.197]

Outcome is asinh(NOx) emissions

κp1 0.075 0.079 0.080
(0.039) (0.038) (0.039)
[0.061] [0.046] [0.046]

κp2 -0.104 -0.143 -0.157
(0.050) (0.045) (0.079)
[0.042] [0.003] [0.054]

trend break × avg. emissions -0.001 -0.001
(0.000) (0.001)
[0.002] [0.294]

trend break × avg. emissions2 0.000
(0.000)
[0.793]

Outcome is asinh(SOx) emissions

κp1 0.006 0.013 0.013
(0.035) (0.035) (0.035)
[0.875] [0.715] [0.705]

κp2 -0.037 -0.110 -0.074
(0.043) (0.048) (0.077)
[0.393] [0.026] [0.345]

trend break × avg. emissions -0.004 -0.002
(0.002) (0.003)
[0.017] [0.455]

trend break × avg. emissions2 -0.000
(0.000)
[0.438]

Notes: Estimates of pre-C&T differential emissions trend (i.e., κp
1 from equation (2.1)) and and post-C&T differential

emissions trend break (i.e., κp
2 from equation (2.1)) for GHG, PM2.5, PM10, NOx, and SOx across panels. Columns 1

shows benchmark model. Column 2 (3) further interacts post C&T differential trend break with a linear (quadratic)
function of sample average annual emissions. All models include facility-specific and year-specific dummy variables.
Standard errors clustered at the county-level in parentheses, p-value in brackets.
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Table B.4: Emissions effect robustness: restricting treatment spillovers
(1) (2) (3)

Benchmark Nonattainment Single facilities

Outcome is asinh(GHG) emissions

κp1 0.187 - 0.210
(0.052) - (0.053)
[0.001] - [0.000]

κp2 -0.297 - -0.322
(0.077) - (0.078)
[0.000] - [0.000]

Facilities 316 - 310
Observations 2,054 - 2,029

Outcome is asinh(PM2.5) emissions

κp1 0.058 0.085 0.066
(0.043) (0.049) (0.043)
[0.183] [0.092] [0.137]

κp2 -0.097 -0.119 -0.101
(0.048) (0.052) (0.049)
[0.053] [0.029] [0.046]

Facilities 302 260 299
Observations 1,968 1,729 1,952

Outcome is asinh(PM10) emissions

κp1 0.083 0.101 0.091
(0.033) (0.034) (0.033)
[0.016] [0.006] [0.008]

κp2 -0.117 -0.145 -0.121
(0.039) (0.054) (0.040)
[0.005] [0.012] [0.004]

Facilities 302 140 299
Observations 1,968 1,080 1,952

Outcome is asinh(NOx) emissions

κp1 0.075 0.057 0.065
(0.039) (0.041) (0.039)
[0.061] [0.173] [0.101]

κp2 -0.104 -0.090 -0.098
(0.050) (0.054) (0.050)
[0.042] [0.102] [0.060]

Facilities 303 287 300
Observations 1,970 1,879 1,954

Outcome is asinh(SOx) emissions

κp1 0.006 - 0.005
(0.035) - (0.036)
[0.875] - [0.892]

κp2 -0.037 - -0.036
(0.043) - (0.044)
[0.393] - [0.423]

Facilities 303 - 300
Observations 1,965 - 1,950

Notes: Estimates of pre-C&T differential emissions trend (i.e., κp
1 from equation (2.1)) and and post-C&T differential

emissions trend break (i.e., κp
2 from equation (2.1)) for GHG, PM2.5, PM10, NOx, and SOx across panels. Columns 1

shows benchmark model. Column 2 restricts unregulated facilities to those in counties under Clear Air Act nonattainment
for pollutant of interest. Nonattainment does not apply for GHG emissions and there were no counties under SOx

nonattainment during our sample period. For NOx, we use nonattainment in the one-hour ozone standard, for which
NOx is a precursor pollutant. Column 3 restricts unregulated facilities to those whose parent company only operates a
single facility. All models include facility-specific and year-specific dummy variables. Standard errors clustered at the
county-level in parentheses, p-value in brackets.
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Table B.5: Correlation between HYSPLIT-driven and ambient pollution concentrations
(1) (2) (3) (4)

Outcome is ambient asinh(concentration)
PM2.5 PM10 NOx SOx

HYSPLIT-driven asinh(concentration) 0.860 0.625 0.436 0.231
(0.154) (0.137) (0.148) (0.207)
[0.000] [0.000] [0.004] [0.272]

Zip codes 133 160 121 39
Notes: Linear coefficient from zip code-level regressions of asinh daily HYSPLIT-driven pol-
lution concentrations (in µg/m3/day) averaged across 2008-2017 on asinh daily pollution con-
centrations from ambient pollution monitors (in µg/m3/day) averaged across 2008-2017. We
employ a asinh-asinh specification because ambient pollution readings, which capture the av-
erage daily instantaneous stock of pollution, are not directly comparable to our concentration
measure, which capture average daily pollution flow from C&T-driven emissions. Ambient pol-
lution are assumed to be uniformly distributed within a monitor’s zip code. Standard errors
clustered at the county-level in parentheses, p-value in brackets.
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Table B.6: Pollution concentration difference between disadvantaged and other zip
codes in 2008

(1) (2) (3)
Disadvantaged Other Difference

PM2.5 0.256 0.093 0.163
(0.888) (0.572) (0.038)

[0.000]

PM10 0.322 0.109 0.214
(1.066) (0.532) (0.043)

[0.000]

NOx 0.451 0.387 0.064
(2.842) (6.856) (0.243)

[0.792]

SOx 0.364 0.091 0.273
(1.092) (0.217) (0.041)

[0.000]

Zip codes 722 984 1,706
Notes: Column 1 shows average 2008 pollution
concentration (µg/m3/day) across disadvantaged zip
codes, with standard deviation in parentheses. Col-
umn 2 shows average 2008 pollution concentration
(µg/m3/day) across other zip codes, with standard de-
viation in parentheses. Column 3 shows the average
difference in 2008 pollution concentrations between dis-
advantaged and other zip codes, with standard error in
parentheses and p-value in brackets. All pollution con-
centrations generated by HYSPLIT from facilities that
would eventually be regulated by the GHG C&T pro-
gram.

140



Appendix to Chapter 2 Chapter B

Table B.7: EJ gap effect robustness: step 1
(1) (2) (3) (4) (5) (6) (7) (8)

Year-specific Sector-year Drop GHG cutoff: GHG cutoff: Hetero by SUTVA SUTVA
effects FEs switchers 70% 80% avg. emissions NA Single fac.

Panel a: PM2.5

βp
1 0.040 0.041 0.040 0.025 0.043 0.041 0.048 0.043

(0.011) (0.011) (0.013) (0.006) (0.010) (0.012) (0.012) (0.012)
[0.001] [0.001] [0.003] [0.000] [0.000] [0.001] [0.000] [0.000]

βp
2 -0.061 -0.061 -0.058 -0.031 -0.063 -0.075 -0.067 -0.064

(0.019) (0.019) (0.021) (0.008) (0.019) (0.021) (0.021) (0.020)
[0.003] [0.002] [0.007] [0.000] [0.001] [0.001] [0.002] [0.002]

(βp
2/β

p
1) ∗ 100 -152.583 -148.723 -144.528 -125.385 -146.581 -182.096 -141.543 -146.262

Observations 16,416 16,416 16,413 16,387 16,426 16,416 16,416 16,416

Panel b: PM10

βp
1 0.062 0.063 0.059 0.038 0.069 0.064 0.074 0.066

(0.014) (0.014) (0.017) (0.008) (0.013) (0.014) (0.016) (0.015)
[0.000] [0.000] [0.001] [0.000] [0.000] [0.000] [0.000] [0.000]

βp
2 -0.089 -0.089 -0.079 -0.046 -0.093 -0.100 -0.105 -0.091

(0.027) (0.026) (0.028) (0.009) (0.026) (0.028) (0.030) (0.028)
[0.002] [0.001] [0.007] [0.000] [0.001] [0.001] [0.001] [0.002]

(βp
2/β

p
1) ∗ 100 -142.447 -140.455 -134.110 -121.310 -134.948 -156.155 -141.932 -136.905

Observations 16,416 16,416 16,413 16,387 16,426 16,416 16,416 16,416

Panel c: NOx

βp
1 0.079 0.091 0.077 0.043 0.087 0.079 0.079 0.082

(0.033) (0.037) (0.032) (0.026) (0.031) (0.033) (0.032) (0.034)
[0.019] [0.015] [0.021] [0.108] [0.006] [0.021] [0.018] [0.018]

βp
2 -0.132 -0.145 -0.132 -0.055 -0.149 -0.142 -0.138 -0.141

(0.066) (0.070) (0.069) (0.031) (0.069) (0.075) (0.070) (0.071)
[0.051] [0.043] [0.061] [0.084] [0.035] [0.062] [0.052] [0.053]

(βp
2/β

p
1) ∗ 100 -167.212 -158.315 -170.919 -128.157 -170.878 -180.760 -175.096 -172.408

Observations 16,416 16,416 16,413 16,387 16,426 16,416 16,416 16,416

Panel d: SOx

βp
1 0.036 0.036 0.038 0.023 0.037 0.011 - 0.037

(0.022) (0.022) (0.023) (0.015) (0.020) (0.012) - (0.023)
[0.108] [0.109] [0.104] [0.141] [0.077] [0.349] - [0.108]

βp
2 -0.103 -0.099 -0.102 -0.080 -0.099 -0.114 - -0.100

(0.050) (0.049) (0.050) (0.045) (0.046) (0.058) - (0.049)
[0.045] [0.047] [0.046] [0.084] [0.037] [0.054] - [0.047]

(βp
2/β

p
1) ∗ 100 -284.826 -275.129 -268.202 -353.380 -267.896 -1003.707 - -272.630

Observations 16,416 16,416 16,413 16,387 16,426 16,416 - 16,416

Notes: Estimates of the pre-C&T EJ gap trend (i.e., βp
1 from equation (2.2)), post-C&T EJ gap trend break (i.e., βp

2
from equation (2.2)), and the percentage change in the EJ gap trend following the introduction of the C&T program (i.e.,
β
p
2

β
p
1
∗ 100) for PM2.5, PM10, NOx, and SOx down panels. All models include zip code-specific and year-specific dummy

variables. Observations weighted by zip code-level average population during 2008-2012. Column 1 uses year-specific
effects to estimate C&T-driven emissions. Column 2 estimates C&T-driven emissions with sector-by-year fixed effects (see
column 1 of Table B.2). Column 3 estimates C&T-driven emissions after dropping facilities that switched regulatory status
in 2017 (see column 2 of Table B.2). Columns 4 and 5 restrict facilities to those with sample average GHG emissions below
the 70th and 80th percentile, respectively to estimate C&T-driven emissions (see columns 3 and 5 of Table B.2). Column
6 uses C&T-driven emissions that allow the C&T differential trend break to vary as a linear function of sample average
emissions (see column 2 of Table B.3). Column 7 restricts unregulated facilities to those in counties under Clear Air Act
nonattainment for pollutant of interest (see column 2 of Table B.4). Column 8 restricts unregulated facilities to those
whose parent company only operates a single facility (see column 3 of Table B.4). Standard errors, in parentheses, cluster
ϵpit from equation (2.2) at the county-level but are not adjusted for statistical uncertainty from equation (2.1). P-value in
brackets. Observations apply to all panels.
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Table B.8: EJ gap effect robustness: steps 2 and 3
(1) (2) (3) (4) (5) (6)

Slower Faster Lower Higher Spatial Pollution
decay decay boundary boundary corr. err. corr. err.

Panel a: PM2.5

βp
1 0.043 0.041 0.037 0.043 0.042 0.042

(0.011) (0.011) (0.010) (0.011) (0.004) (0.006)
[0.000] [0.000] [0.001] [0.000] [0.000] [0.000]

βp
2 -0.064 -0.062 -0.055 -0.064 -0.063 -0.063

(0.020) (0.020) (0.019) (0.020) (0.009) (0.010)
[0.002] [0.003] [0.007] [0.002] [0.000] [0.000]

(βp
2/β

p
1) ∗ 100 -149.007 -150.533 -148.764 -149.992 -149.699 -149.699

Panel b: PM10

βp
1 0.066 0.063 0.057 0.066 0.065 0.065

(0.015) (0.014) (0.013) (0.014) (0.006) (0.008)
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

βp
2 -0.092 -0.089 -0.079 -0.092 -0.090 -0.090

(0.027) (0.027) (0.027) (0.027) (0.011) (0.013)
[0.001] [0.002] [0.005] [0.001] [0.000] [0.000]

(βp
2/β

p
1) ∗ 100 -139.150 -140.448 -137.785 -140.161 -139.739 -139.739

Panel c: NOx

βp
1 0.089 0.081 0.083 0.085 0.085 0.085

(0.036) (0.034) (0.035) (0.035) (0.039) (0.021)
[0.018] [0.020] [0.020] [0.018] [0.030] [0.000]

βp
2 -0.148 -0.139 -0.140 -0.144 -0.143 -0.143

(0.073) (0.073) (0.073) (0.073) (0.050) (0.033)
[0.048] [0.063] [0.060] [0.054] [0.004] [0.000]

(βp
2/β

p
1) ∗ 100 -166.117 -170.804 -168.674 -168.261 -168.282 -168.282

Panel d: SOx

βp
1 0.037 0.037 0.030 0.038 0.037 0.037

(0.023) (0.022) (0.019) (0.023) (0.007) (0.006)
[0.109] [0.107] [0.133] [0.103] [0.000] [0.000]

βp
2 -0.102 -0.100 -0.087 -0.102 -0.101 -0.101

(0.050) (0.049) (0.044) (0.050) (0.012) (0.010)
[0.047] [0.047] [0.053] [0.045] [0.000] [0.000]

(βp
2/β

p
1) ∗ 100 -271.967 -272.688 -295.166 -270.107 -272.291 -272.291

Observations 16,416 16,416 16,359 16,430 16,417 16,417

Notes: Estimates of the pre-C&T EJ gap trend (i.e., βp
1 from equation (2.2)), post-C&T EJ gap trend break (i.e., βp

2
from equation (2.2)), and the percentage change in the EJ gap trend following the introduction of the C&T program

(i.e.,
β
p
2

β
p
1

∗ 100) for PM2.5, PM10, NOx, and SOx down panels. All models include zip code-specific and year-specific

dummy variables. Observations weighted by zip code-level average population during 2008-2012. Column 1 applies a
slower pollution decay to HYSPLIT pollution trajectories (i.e., 10% larger half-life parameter). Column 2 applies a faster
pollution decay to HYSPLIT pollution trajectories (i.e., 10% smaller half-life parameter). Column 3 applies a lower
planetary boundary layer set at 0.5 km. Column 4 applies a higher planetary boundary layer set at 2 km. Column 5
adjusts standard errors for spatial (500 km uniform kernel) and serial correlation (5 years). Column 6 adjusts standard
errors allowing correlation across pollutants using a Seemingly Unrelated Regression (SUR) procedure. Standard errors,
in parentheses, cluster ϵpit from equation (2.2) at the county-level but are not adjusted for statistical uncertainty from
equation (2.1). P-value in brackets. Observations apply to all panels.
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Table B.9: EJ gap effect robustness: asinh concentration
(1) (2) (3) (4)

Outcome is (asinh) concentration
PM2.5 PM10 NOx SOx

βp
1 0.027 0.037 0.032 0.017

(0.013) (0.014) (0.021) (0.017)
[0.045] [0.009] [0.137] [0.336]

βp
2 -0.032 -0.042 -0.038 -0.051

(0.014) (0.015) (0.023) (0.030)
[0.026] [0.009] [0.102] [0.095]

βp
1 + βp

2 -0.006 -0.004 -0.005 -0.034
(0.005) (0.007) (0.008) (0.015)
[0.302] [0.551] [0.487] [0.029]

Zip codes 1649 1649 1649 1649
Counties 58 58 58 58
Observations 16,416 16,416 16,416 16,416
Notes: Estimates of the pre-C&T EJ gap trend (i.e.,
βp
1 from equation (2.2)), the post-C&T EJ gap trend

break (i.e., βp
2 from equation (2.2)), and the post-

C&T EJ gap trend (i.e, βp
1 + βp

2) for asinh(PM2.5),
asinh(PM10), asinh(NOx), and asinh(SOx), across
columns. All models include zip code-specific and year-
specific dummy variables. Observations weighted by zip
code-level average population during 2008-2012. Paren-
theses indicate standard errors that account for statis-
tical uncertainty in C&T predicted emissions (νpit from
equation (2.1) via the bootstrap procedure in Appendix
B.1.1) and county-level heterogeneity in EJ gap effects
of arbitrary form (ϵpit from equation (2.2)). P-value in
brackets.
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Table B.10: EJ gap effect robustness: total PM2.5 concentration using InMAP
(1) (2)

Primary PM2.5 Total PM2.5

βp
1 0.002 0.003

(0.001) (0.001)
[0.001] [0.001]

βp
2 -0.003 -0.004

(0.001) (0.001)
[0.000] [0.000]

βp
1 + βp

2 -0.001 -0.002
(0.000) (0.001)
[0.004] [0.001]

(βp
2/β

p
1) ∗ 100 -150.559 -172.948

(16.261) (16.415)
[0.000] [0.000]

Zip codes 1648 1648
Counties 58 58
Observations 16,480 16,480
Notes: Estimates of the pre-C&T EJ gap trend
(i.e., βp

1 from equation (2.2)), the post-C&T EJ
gap trend break (i.e., βp

2 from equation (2.2)), the
post-C&T EJ gap trend (i.e, βp

1+β
p
2), and the per-

centage change in the EJ gap trend following the

introduction of the C&T program (i.e.,
βp
2

βp
1
∗ 100)

for InMAP-modeled primary PM2.5 concentration
(column 1) and for InMAP-modeled total (i.e., pri-
mary and secondary) PM2.5 concentration (col-
umn 2). InMAP employs dispersal patterns for
2005 and not for the 2008-2017 sample period. All
models include zip code-specific and year-specific
dummy variables. Observations weighted by zip
code-level average population during 2008-2012.
Standard errors, in parentheses, cluster ϵpit from
equation (2.2) at the county-level but are not ad-
justed for statistical uncertainty from equation
(2.1). P-value in brackets.
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Table B.11: Importance of modeling pollution dispersal
(1) (2) (3) (4)

Facility 1.6 km 4 km 10 km
zip code circle circle circle

Panel a: PM2.5

βp
1 0.052 -0.017 -0.075 -0.140

(0.036) (0.026) (0.040) (0.079)
[0.157] [0.527] [0.075] [0.084]

βp
2 -0.076 -0.003 0.067 0.132

(0.049) (0.023) (0.036) (0.072)
[0.134] [0.912] [0.075] [0.076]

Observations 785 1,831 3,573 7,545

Panel b: PM10

βp
1 0.105 0.020 -0.069 -0.143

(0.070) (0.030) (0.047) (0.089)
[0.142] [0.509] [0.155] [0.116]

βp
2 -0.142 -0.049 0.059 0.137

(0.091) (0.036) (0.055) (0.095)
[0.132] [0.177] [0.294] [0.157]

Observations 785 1,831 3,573 7,545

Panel c: NOx

βp
1 0.163 -0.120 -0.292 -0.417

(0.188) (0.110) (0.096) (0.175)
[0.391] [0.285] [0.005] [0.022]

βp
2 -0.213 0.103 0.311 0.480

(0.247) (0.132) (0.110) (0.179)
[0.396] [0.442] [0.008] [0.011]

Observations 785 1,831 3,573 7,545

Panel d: SOx

βp
1 0.001 -0.156 -0.273 -0.433

(0.004) (0.122) (0.183) (0.250)
[0.688] [0.210] [0.145] [0.091]

βp
2 -0.014 -0.007 0.128 0.253

(0.009) (0.030) (0.103) (0.143)
[0.125] [0.813] [0.223] [0.085]

Observations 783 1,823 3,553 7,535
Notes: Estimates of the pre-C&T EJ gap trend (i.e., βp

1 from equation (2.2)) and the post-C&T EJ gap trend break
(i.e., βp

2 from equation (2.2)) for PM2.5, PM10, NOx, and SOx down panels. All models include zip code-specific and
year-specific dummy variables. Observations weighted by zip code-level average population during 2008-2012. Column 1
assigns pollution concentration to only the zip code of the emitting facility. Columns 2-4 assign pollution concentration to
zip codes with centroid within a 1.6, 4 km and 10 km circle of emitting facility, respectively. Standard errors in parentheses
cluster ϵpit from equation (2.2) at the county-level but are not adjusted for statistical uncertainty from equation (2.1).
P-value in brackets.
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F. Murgúıa-Flores, A. Anav, Y. Liu, A. Arneth, A. Arvanitis, A. Harper, et. al.,
The carbon cycle in mexico: past, present and future of c stocks and fluxes,
Biogeosciences 13 (2016), no. 1 223–238.
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de la pobreza (itlp)., .

[169] P. D. Udmale, Y. Ichikawa, S. Manandhar, H. Ishidaira, A. S. Kiem, N. Shaowei,
and S. N. Panda, How did the 2012 drought affect rural livelihoods in vulnerable
areas? empirical evidence from india, International Journal of Disaster Risk
Reduction 13 (2015) 454–469.

[170] M. Horridge, J. Madden, and G. Wittwer, The impact of the 2002–2003 drought
on australia, Journal of Policy Modeling 27 (2005), no. 3 285–308.

[171] D. Gautier, D. Denis, and B. Locatelli, Impacts of drought and responses of rural
populations in west africa: A systematic review, Wiley Interdisciplinary Reviews:
Climate Change 7 (2016), no. 5 666–681.

[172] E. Skoufias and S. W. Parker, Job loss and family adjustments in work and
schooling during the mexican peso crisis, Journal of Population Economics 19
(2006), no. 1 163–181.

[173] A. Kochar, Explaining household vulnerability to idiosyncratic income shocks, The
American Economic Review 85 (1995), no. 2 159–164.

159

https://www.coneval.org.mx/SalaPrensa/Comunicadosprensa/Documents/Comunicado-09-Medicion-pobreza-2016.pdf
https://www.coneval.org.mx/SalaPrensa/Comunicadosprensa/Documents/Comunicado-09-Medicion-pobreza-2016.pdf


[174] A. Kochar, Smoothing consumption by smoothing income: hours-of-work
responses to idiosyncratic agricultural shocks in rural india, Review of Economics
and Statistics 81 (1999), no. 1 50–61.

[175] S. W. Parker and E. Skoufias*, The added worker effect over the business cycle:
evidence from urban mexico, Applied Economics Letters 11 (2004), no. 10
625–630.

[176] J. A. Pagán and S. M. Sánchez, Gender differences in labor market decisions:
Evidence from rural mexico, Economic Development and Cultural Change 48
(2000), no. 3 619–637.

[177] D. Cogneau and R. Jedwab, Commodity price shocks and child outcomes: the
1990 cocoa crisis in cote d’ivoire, Economic Development and Cultural Change 60
(2012), no. 3 507–534.

[178] DOF, Acuerdo por el que se emiten las reglas de operación del programa de
desarrollo humano oportunidades, para el ejercicio fiscal 2012. publicado en el
diario oficial de la federación el 30 de diciembre de 2011., .

[179] D. M. Liverman, Vulnerability and adaptation to drought in mexico, Nat.
Resources J. 39 (1999) 99.

160


	Curriculum Vitae
	Permissions and Attributions
	Abstract
	The Distributional Effects of Incomplete Regulation
	Introduction
	Background
	Conceptual framework
	Data
	Empirical Specification
	Results
	Internalizing the costs of burning
	Conclusion

	Do Environmental Markets Cause Environmental Injustice? Evidence from California's Carbon Market
	Introduction
	Background
	Data
	Empirical Approach
	Results
	Discussion

	Droughts and rural households’ wellbeing: Evidence from Mexico
	Introduction
	Data and methods
	Results and discussion
	Conclusions

	Appendix to Chapter 1 
	Mathematical Appendix
	Appendix Figures
	Appendix Tables

	Appendix to Chapter 2
	Mathematical Appendix
	Appendix Figures
	Appendix Tables

	Bibliography



