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Abstract

Reliability Analysis of the Influence of Vegetation on Levee Performance

by

Robert C Lanzafame

Doctor of Philosophy in Engineering – Civil and Environmental Engineering

University of California, Berkeley

Professor Nicholas Sitar, Chair

Much of the Central Valley of California is protected from flooding by levees, which can fail
in numerous ways. Vegetation, including large trees, has been allowed to grow over many miles
of levee, and although there is no case history of a tree leading directly to levee failure, vegetation
is considered a low-level risk factor that could lead to failure. Due to the complexity and inherent
variability of trees and their root systems, the influence of vegetation is generally not considered
in engineering evaluations of levees. Thus, the objective of this research was to quantify the in-
cremental effect on levee performance due to trees, through an assessment of root reinforcement,
weight and wind loads in the context of seepage and stability analyses.

The model levee selected for analyses represents typical conditions found in the Pocket neigh-
borhood of Sacramento. The levee is 5.2 m (17 ft) high with 2.5:1 H:V slopes and it is a sandy
embankment underlain by a relatively low hydraulic conductivity cohesive blanket layer and sandy
aquifer with an open hydraulic connection to the Sacramento River. Steady-state seepage analy-
ses were used to evaluate pore pressures that concentrate in the blanket layer and reduce effective
stress, controlling blanket layer strength. Stability of the levee slope was evaluated using Spencer’s
Method of slices to compute factor of safety (FS).

Previous work evaluating vegetation effects for slope stability analyses focuses on the root
reinforcement of shallow sliding surfaces on steep slopes. If more complex slope failures are
considered the spatial distribution of roots and their properties is often simplified. To properly
assess the influence of vegetation the three-dimensional distribution of roots must be incorporated
into a stability model. This is accomplished by the development of a biomass model that estimates
key tree parameters from trunk diameter at breast height, including maximum lateral and vertical
limits and the spatial distribution of root density and volume. The biomass model is supported by
published allometric data for woody vegetation, with an emphasis placed on data from the Central
Valley, and is incorporated into the stability model.

Reinforcement of roots in the slope is incorporated as an increase in soil cohesion and quan-
tified proportionally to root area ratio, as estimated by the biomass model. Strength of individual
roots is implicitly included by applying a probability distribution to root reinforcement represent-
ing the range of likely values; root diameter, orientation and tensile strength are not included
explicitly in the biomass or slope stability models. When effective soil cohesion due to root re-
inforcement is unrealistically high, or prevents a solution for FS from being reached by the slope
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stability model, limits on maximum values are defined which can be related to the expected rein-
forcement capacity of roots due to pullout and breakage (i.e., insufficient root-soil friction and root
rupture, respectively). The root ball represents the highest density of a root system and is consid-
ered to be the area where weight and wind loads are transferred to the soil. Measurements of root
pits from windthrow events are used to define the size of the root ball. Wind loads are implemented
as horizontal and vertical forces that are equivalent to the ultimate moment that a tree can carry
prior to uprooting. To address the three-dimensional interaction of slope failures and root distribu-
tion, two-dimensional analyses are used that incorporate tree spacing in the plane-strain direction
to determine average values of vegetation effects.

Variability and complexity of seepage, strength and vegetation parameters considered herein
are well-suited to evaluation with probabilistic analysis. Probability distributions are selected for
fifteen parameters and the first-order reliability method (FORM) is used to evaluate probability that
FS ≤ 1.0 for seepage and stability. The FORM algorithm is specifically tailored to provide an in-
variant solution for the class of problems considered, at the cost of increasing computation time and
complexity in numerical software. In addition to probability, FORM output includes an estimate
of the most likely conditions at failure (the design point) and importance and sensitivity measures
that rank the relative impact that each parameter input has on the solution. Fragility curves are de-
veloped by completing a FORM analysis at multiple levels of water level, illustrating the aleatory
uncertainty in levee stability. Sensitivity measures are used to quantify the epistemic uncertainty
in levee stability, represented by a one standard deviation confidence interval for fragility or FS.

Overall, vegetation effects are found to have a relatively small impact on levee stability with
respect to seepage and strength parameters, producing ∆FS on the order of ±0.1 for most cases.
Incremental effects are generally positive, although tree location and position can be chosen to pro-
duce adverse conditions. Root reinforcement has the biggest effect on stability, with breakage and
pullout limits for effective cohesion playing a significant role in the magnitude of ∆FS. When veg-
etation is applied to a potential sliding surface ∆FS is generally over estimated if a new minimum
FS surface search is not performed. Non-circular surfaces are necessary to find a sliding surface
geometry that is capable of avoiding the root reinforcement zone that can cause a misleadingly
high estimate of FS. Tree weight increases linearly from ∆FS < 0 with a tree at the levee crest to
∆FS > 0 as the tree is moved downslope. Wind loads generally have small effect in comparison
to the sliding mass of a slope failure and are found to produce |∆FS| . ±0.1 for the upslope and
downslope direction.

Reliability results are consistent with deterministic analyses of levee stability. Importance mea-
sures indicate vegetation random variables have a small effect on stability in comparison to seepage
and strength parameters. The most likely conditions expected for a slope failure occurrence (i.e.,
the design point) are essentially identical between reliability analyses with and without vegeta-
tion. An exception is the increased importance of root density and effective cohesion when a tree
is located near the entry or exit point of a sliding surface; however, searches for alternative slid-
ing surfaces that minimize factor of safety illustrate the ease with which slope failures can avoid
high density root zones. Fragility curves decrease when vegetation effects are included but re-
main within the one standard deviation confidence bounds on fragility, illustrating the uncertainty
in strength and seepage parameters has a bigger effect on levee performance than the effect of
vegetation overall.
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Chapter 1

Introduction

Levees are a critical component of the flood control system protecting the Central Valley of Cali-
fornia. Historically, vegetation, including large trees, has been allowed to grow along many miles
providing habitat for a variety of wildlife. In the past, engineering evaluation of levees has tended
to neglect a quantitative assessment of vegetation, tree roots in particular, when evaluating overall
levee performance due to the complexity of root-soil interaction and the highly variable subsurface
conditions. While there is little evidence that vegetation directly causes or contributes to levee fail-
ures (Punyamurthula et al., 2011), scenarios can be hypothesized where vegetation could influence
levee performance such that a failure resulting in flooding eventually occurs. The recognition of
this potential issue has led to significant recent research efforts to obtain data on woody vegeta-
tion that can be used to better understand these conditions (Shields, 2014). Although vegetation
influences many failure modes, in this study the focus is on seepage and stability. Specifically,
the objective is to quantify the incremental effects of vegetation on levee performance due to the
influence of tree size, location, weight and root density using seepage, stability and reliability
analysis.

Levee Function and Performance

Levees or embankments, are earthen structures constructed to protect an area of land from flood-
ing during a period of high water. In contrast to dams, typical levees are significantly longer than
their width or height, retaining water only occasionally, during floods. Since first established in
the mid-nineteenth century, most levees in California have been continually enlarged and length-
ened responding to changing land use and changing regulatory environment (Kelley, 1998; Seed
et al., 2012). Due to their location on a flood plain and in proximity to active stream channels,
the foundation soils underlying a levee are unconsolidated floodplain deposits ranging in size from
cobbles and gravel to clay, which can change character dramatically over a short distance (e.g.,
DWR, 2012a). The most common mechanism of failure is, of course, overtopping when the flood
exceeds the height of the levee. Once overtopped, a levee rapidly erodes and a breach develops.
Other common failure mechanism s are piping, i.e. internal erosion caused by seepage through
or under the levee, and, less frequently, slope failures induced by seepage through the levee (e.g.,
ASCE, 2010). In addition to these common modes of failure many other conditions exist that can
lead to failure, such as penetrations (e.g., pipes), mammal burrows, wave erosion and/or vegetation
(DWR, 2012a). During periods of high water a hydraulic head difference exists between the wa-
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Figure 1.1: Conceptual representation of the model levee analyzed in this research. Hy-
draulic head from channel flows primarily to landside through levee and aquifer soil lay-
ers. Blanket layer condition is characterized by a relatively low hydraulic conductivity
clay soil layer that concentrates pore pressures and reduces strength, increasing likeli-
hood of slope instability. A potential sliding surface is illustrated by the gray line and
dominant seepage paths through levee and aquifer illustrated by blue arrows. Phreatic
surface is within earthen embankment and exits slope on landside face, as well as land-
side ground surface.

terside (i.e., river channel) and landside of a levee, inducing flow through the embankment and the
foundation (e.g., Harr, 2012; Cedergren, 1997). The resulting seepage forces and pore pressures
negatively influence stability of the slope by adding to the driving force and reducing soil strength,
respectively (e.g., Duncan & Wright, 2005; Holtz & Kovacs, 1981).

Slope stability failures occur when the driving force on a slope (i.e., weight) exceeds the re-
sisting force, provided primarily by shear strength of soil. A key component of a slope evaluation
is to identify the “critical” potential sliding surface, which is geometrically defined by the specific
potential failure plane that produces the lowest factor of safety against sliding (Duncan & Wright,
2005).

The levee model considered in this research includes a blanket layer of relatively low hydraulic
conductivity clay soil that is typical of flood plain environment overbank deposits (aquifer; US-
ACE, 1956), as illustrated in Figure 1.1. Due to the hydraulic conductivity, the blanket layer has
the highest resistance to flow and as a result can induce high pore pressures, reducing soil strength
that can lead to a slope stability failure (e.g., USACE, 1956, 2005). Depending on the seepage
and strength characteristics of the embankment, the critical sliding surface can take on a variety of
shapes and orientations (Duncan & Wright, 2005). Thus, slope stability is an important compo-
nent of levee design and maintenance (DWR, 2012c), and it is prudent to consider the influence all
potential risk factors on levee stability, including vegetation.

Levees and Vegetation

Although vegetation has been identified as a relatively low risk factor for levee failure (DWR,
2012a), there is still a need to understand its influence on levee failure mechanisms through up-
dated geotechnical models that include root architecture and risk analysis methods (CLVRP, 2011).
Past research related to the influence of vegetation on slope stability primarily focuses on the ef-
fect of root reinforcement, especially for steep slopes with shallow soil layers (Bellugi et al., 2015;
Gray & Sotir, 1996; Montgomery et al., 2009; Schwarz et al., 2010) or of riverbank stability (Gray
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& MacDonald, 1989; Pollen & Simon, 2005; Pollen-Bankhead et al., 2013; Thorne, 1990). This
approach highlighted the importance of root reinforcement for shallow surfaces, but generally used
simplified models of root density and effective cohesion for the entire slope. More sophisticated
analysis methods have been used to evaluate the complexity of biomass in the subsurface for gen-
eral slopes, but they either do not incorporate seepage forces or the various loads that are applied
by a tree are greatly simplified (Greenwood, 2006; Kokutse et al., 2016; Roering et al., 2003),
which are needed for proper evaluation of levee performance (e.g., Shields, 2014).

In contrast to the positive reinforcing effect of tree roots, the weight and wind loads from
trees can have either a positive or a negative effect on slope stability depending on several factors
(Gray & Sotir, 1996). In general, loads placed at the top of a slope tend to have a destabilizing
effect whereas those placed at the bottom are reinforcing. The overall magnitude of load effects
are dependent on the size of a potential sliding mass as well as pore pressures, which influence
strength along the sliding surface. Wind loads further complicate the situation as they apply a
moment to the slope. In order for tree effects on levee stability to be properly quantified, an
assessment must be made of the three-dimensional distribution of roots. In this study an allometric
biomass model is developed to estimate tree characteristics from trunk diameter at breast height
(DBH), including: maximum root extent (MRE), maximum root depth (zmax), root ball diameter
(Lrb), root area ratio (RAR) and root volume (RV ) as a function of x,y and z. From these biomass
properties the mechanical effects of root reinforcement, tree weight and wind loading are estimated
and incorporated into stability analyses. Root area ratio is the cross-sectional area of roots per unit
area of soil, which is proportional to the increase of soil strength by roots, decreasing from a
maximum near the trunk to a negligible effect at the maximum lateral root extent and maximum
root depth. The highest density of roots is located near the trunk and is often called the root ball,
where a majority of tree weight and wind load is transferred to the soil. Wind exerts a load on the
levee slope through the root system, which reaches a maximum just prior to failure of the tree by
uprooting, or windthrow. The geometry of a root pit excavated by a fallen tree is controlled by a
combination of root and soil strength, as well as the three-dimensional distribution of roots, and is
assumed to be equivalent in lateral extent to the root ball.

Evaluation of seepage and stability underpin a majority of computations completed for analy-
ses in this document, especially for limit-state function evaluations in reliability analyses. Further-
more, a significant portion of the influence of vegetation is quantified by comparing computed ef-
fects on seepage and stability to effects of other performance parameters. Non-stochastic analyses
are often referred to as “deterministic” due to the single value nature of selected input parameters.
An alternative designation is “mechanistic,” referring to the mechanical nature of an algorithm. For
example, slope stability is a mechanical model based on a system of equations balancing forces and
moments. Existing software was modified and integrated to allow evaluation of seepage and stabil-
ity models, in addition to the incorporation of vegetation effects for a model levee representative of
the Pocket area near Sacramento, California. A saturated/unsaturated transient finite element seep-
age analysis allows pore pressures to be used with a generalized limit-equilibrium slope stability
software to solve Spencer’s method of slices for circular and non-circular surfaces. The potential
sliding surface with a geometry having the lowest safety factor for a given set of conditions is then
identified for a specific set of conditions with respect to stability.
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Stochastic Approach

Incorporating the biomass model into the deterministic models of seepage and slope stability in-
volves many additional parameters that are highly variable and uncertain due to the complex nature
of root systems, as well as the natural variability in tree size and properties (Ang & Tang, 1975;
Benjamin & Cornell, 1970). Furthermore, the soil properties needed for seepage and stability anal-
yses are often subject to natural variability and uncertainty. As a result, the effects of vegetation
on levee performance are well suited to probabilistic, or stochastic analyses. By characterizing
the variability of input parameters by probability distributions (i.e., representing them as random
variables) and performing seepage and stability analyses in combination with a stochastic method,
an assessment can be made of the probability that a levee failure occurs. The term “failure” in this
case refers to a specific event, which does not necessarily lead to failure of the entire levee. For this
reason the term failure is avoided and “probability of exceedence” or simply “probability” is used
to describe an unsafe condition instead, where driving forces are greater than resisting forces, or
FS < 1.0. A fragility curve is a useful tool for evaluating levee performance and is found by com-
puting probability of exceedence for a system under various load conditions (Casciati & Faravelli,
1985; Hall et al., 2003; Vorogushyn et al., 2009), schematically illustrated in Figure 1.2. Producing
fragility curves for various conditions and comparing the results between cases with and without
vegetation is the main method for evaluating vegetation effects in this research.

Figure 1.2: Conceptual representation of the incre-
mental effect of vegetation on levee fragility. In
this case vegetation has a positive effect overall,
as probability decreases when vegetation is consid-
ered. Uncertainty in estimate is illustrated by gray
zones, where the uncertainty due only to vegeta-
tion variables is smaller than the uncertainty for non-
vegetation variables.

Uncertainty associated with input parameters and mechanistic models can be divided into two
types, aleatory and epistemic, that control the overall probability of exceedence (Der Kiureghian
& Ditlevsen, 2009; Vick, 2002). Aleatory uncertainty is associated with the natural variability
of a phenomenon, for example, the equal probability that a value of one through six is rolled
by a single die, or the maximum water level experienced on a levee in a given year. Epistemic
uncertainty is associated with an incomplete state of knowledge, for example, insufficient data to
describe a correlation, or the actual length of a tree root buried in the ground. In the context of
this research, aleatory uncertainty represents the variation in random variables and controls the
estimated probability that an unsafe seepage or slope stability event occurs. Epistemic uncertainty
represents the effect of choosing probability distribution parameters and affects the estimate of
fragility, as illustrated by the shaded bands in Figure 1.2. While vegetation effects can be quantified
by their influence on deterministic models, greater insight is obtained by considering the effect on
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fragility, and how underlying aleatory and epistemic uncertainty compare for analyses with and
without vegetation included.

In this study the stochastic input parameters include soil properties, levee geometry, water level
and vegetation parameters. In this context, the major incremental advance over previous studies
is that we consider seepage forces and vegetation properties as random variables. Computation
of probability of an event is accomplished by solving for the probability density of the Factor of
Safety (FS) given probability distributions of the input parameters with the first-order reliability
method (FORM). FORM is similar to a traditional sensitivity study, the main difference being
consideration of probability distributions to understand how the likely values for specific variables
influences expected performance of a system, such as a levee.

A major challenge in a stochastic analysis is obtaining an efficient, invariant solution that in
addition to the computation of probability of failure also provides information on the sensitivity
of the results to the individual input variables and their variance. This is especially important for
variables with relatively small and/or localized impacts on computed probability, as occurs with
vegetation. The FORM algorithm used in the analyses presented herein is specifically tailored to
provide an invariant solution for the class of problems of interest in this study. The challenge in the
FORM analysis is that the numerical codes used to obtain the requisite solutions of the physical
problem, in this case seepage and slope stability, have to be very robust, stable, and accurate, since
multiple realizations of the same problem have to be evaluated in the process of obtaining the
solution.

In addition to probability, the FORM solution computes a value for each random variable that
gives the highest probability of failure which are collectively referred to as the design point (i.e.,
one value for each input parameter with a probability distribution). The design point corresponds
to the specific realization (values) of input parameters at which the model is most likely to reach
an unsafe condition. In the case of slope stability it indicates the combination of parameter values
that we would give the highest probability of FS ≤ 1.0. The importance and sensitivity measures
produced by the FORM analysis ranks the relative impact that each input parameter has on the
solution and indicates whether a change in value causes a positive or negative influence on the
computed FS in this case. This type of insight is not always apparent in a deterministic analysis.
Sensitivity measures then provide magnitude of the change in probability (and reliability index)
associated with each random variable and each probability distribution parameter, which gives a
direct understanding of how uncertainty (e.g., standard deviation) in the solution is affected by the
uncertainty in input parameters.

Computationally, in order to produce this extra information, a FORM analysis must repeat-
edly solve the physical problem, although this computation effort is significantly smaller than a
Monte Carlo analysis. In order to obtain a computationally efficient solution, inputs and outputs
of the mechanical model must be evaluated within the reliability software. To this end a saturated-
unsaturated seepage code was combined with a generalized limit-equilibrium slope stability soft-
ware. A biomass model was developed and added to allow the integration of trees and their root
systems into the analyses. Since FORM requires the solution to be piece-wise continuous and
differentiable it was necessary to create an allometric biomass model that could estimate key prop-
erties from DBH. Then, the stability code had to be modified to incorporate the biomass model
and convert the resulting tree variables to loads that could be used in slope stability computations.

After describing the underlying theory for methods considered herein, seepage and stability
conditions are evaluated with deterministic and stochastic analyses as a reference condition for a
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levee in the urban Pocket area of Sacramento, California. To provide context for reliability analysis
results a detailed description of the deterministic sensitivity is obtained for each random variable,
in addition to the implications of selecting various probability distributions and parameters. The
biomass model developed for evaluating vegetation effects is presented along with a description
of key data used to develop the underlying allometric relationships. It is capable of modeling
the physical response of a levee with significantly more detail than any previous analysis. While
vegetation effects are generally small, root reinforcement in particular can have a large influence
on stability computed from the model, and in general the position and tree size can be chosen to
produce adverse conditions for a levee.

The fifteen total random variables are divided into seepage (3), strength (6) and vegetation (6)
groups. Seepage variables include water surface elevation (WSE), blanket layer thickness (zB)
and hydraulic conductivity ratio (Kr) and strength parameters include unit weight (γ), cohesion (c)
and friction angle (φ ) of the embankment and blanket (foundation) soils. Three vegetation random
variables describe the spread of root density in the biomass model and three describe the variability
in mechanical loading due to root reinforcement, weight and wind. Reliability analyses confirm the
results of deterministic sensitivity studies and show that given the wide range of possible values
for vegetation parameters, their contribution to fragility and overall uncertainty is small relative
to the influence of other factors influencing levee performance, such as soil strength and seepage
properties. In fact, the incremental effect due to vegetation is generally found to be within the one
standard deviation confidence interval range for fragility and safety factor.
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Chapter 2

Analytical Tools and Methods

Seepage and stability analyses are the underlying mechanistic models used to evaluate levee per-
formance. The FORM algorithm used in the analyses in this study is able to provide an invariant
solution for the seepage and stability conditions of interest. However, the challenge of using the
FORM analysis is that the numerical software used to obtain the requisite solutions of the phys-
ical problem have to be very robust, stable, and accurate, since multiple realizations of the same
problem have to be evaluated in the process of obtaining the reliability solution.

2.1 Seepage Model
A saturated-unsaturated transient finite element code UNSAT1 (Neuman, 1972) was used to com-
pute the pore pressure distribution within the embankment. The advantage of using a saturated-
unsaturated formulation is that is allows for a fixed mesh to solve for the position of the phreatic
surface and pore pressure distribution. All analyses were extended until they reached steady state
and only the steady state pressure distributions were used in the analyses. Figure 2.1 shows the
nodes of the finite element mesh in and near the embankment, along with the phreatic surface for
the 200-yr water surface (13 ft above toe). The mesh consisted of approximately 9,000 rectangular
elements varying in size from 1.5 m at the bottom and side model boundaries to 0.2 m in and near
the embankment, with a maximum aspect ratio of 3:1. Three types of boundary conditions were
applied: constant head on the vertical sides and water-side surface; impermeable boundaries on
the aquifer base and levee crest; and constant head seepage face conditions on the land-side slope
and adjacent ground surface. The seepage model was extensively tested to make sure that the com-
puted pore pressures and a phreatic surface position were consistent and efficient. Details of the
implementation are given further in Appendix B.2.

In seepage problems containing a high contrast of hydraulic conductivity between soil layers,
the ratio is more important than absolute values for controlling the distribtuion and magnitude of
pore pressure (Batool et al., 2015; Chowdhury et al., 2012; USACE, 1999). Hydraulic conductivity
ratio, Kr = Ka,h/Kb,v relates horizontal aquifer conductivity, Ka,h, to vertical blanket conductivity,
Kb,v. Thus, Kr is included as a single variable to simplify the levee model, a useful construct
for reducing computation time in reliability analyses. Despite Kr being a single variable, specific
values for Ka,h and Kb,v are still necessary to define within the seepage code UNSAT; however,
infinite combinations of Ka,h and Kb,v can be chosen for a given Kr. Two cases were considered to
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Figure 2.1: Nodes of finite element mesh for seepage analyses in UNSAT software.
Phreatic surface is steady-state solution for 200-yr WSE (3.96 m or 13 ft)

evaluate the implications of choosing Ka,h and Kb,v from a given Kr: Case 1, hold Ka,h constant and
vary Kb,v; or Case 2, vary Ka,h and hold Kb,v constant, as discussed later in Chapter 3. For the range
of interest the difference between Case 1 and 2 is negligible. The model was found to be insensitive
to the presence of an aquitard below the aquifer, similar to findings of Benjasupattananan (2013);
therefore, to improve computation time it is not included in the model.

The potential for levee erosion is evaluated using steady-state conditions for underseepage and
throughseepage after Duncan et al. (2011). Safety factor for underseepage, FSus is estimated using
effective and total stress methods (i.e., FSus,e and FSus,t). The effective stress approach finds the
ratio of critical gradient, ic, to computed vertical gradient across the blanket, i, whereas the total
stress approach compares weight of soil to water pressure below the blanket:

FSus,e =
ic
i

and FSus,t =
FSus,ei+1

i+1
(2.1)

where ic = (γt−γw)/γw is the critical gradient and γt is total unit weight (in this case γB). The main
difference between these two approaches is that thickness of the blanket layer becomes part of the
resisting force computation for the total stress method.

Throughseepage is evaluated with the solution for stability of an infinite slope, which is depen-
dent upon γ , c′ and φ ′ for the soil in addition to slope angle, θ , and potential sliding depth, z (for
the c′ > 0) case only:

FS =
tanφ ′

tanθ

[
1− γw

γt
(1+ tan2

θ)

]
+

2
sin(2θ)

[
c′

γtzs

]
(2.2)

where θ is measured from horizontal and zs is the depth of sliding.

2.2 Slope Stability Model
Slope stability is computed using Spencer’s method of slices implemented in Matlab (MathWorks,
2015) by Tabarroki (2011). The software uses an efficient genetic algorithm (Wang et al., 2011) to
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search for circular and non-circular surfaces that minimize safety factor, FS, but required a number
of modifications to allow its integration with the seepage and reliability codes. The most significant
being direct input of pore pressures from the finite element seepage software; incorporation of line
loads and moments to facilitate evaluation of vegetation; and to search for the sliding surface with
minimum reliability index, β (or maximum probability of occurrence). All analyses described in
this document use drained strengths and steady-state seepage conditions, unless otherwise noted.

Position of the phreatic line within the embankment and seepage pressures at the base of a
stability analysis slice were interpolated from the seepage solution using a Delaunay triangulation.
Negative pore pressure found at the base of slices above the phreatic line and within the em-
bankment were set to zero and unsaturated soil properties were not considered. Computed safety
factors were generally found to be within at most ±0.01 of FS computed with commercial slope
stability software. Differences are due to geometry of the finite element mesh, numerical seepage
parameters used to reach a steady-state condition, interpolated position of the phreatic line, and the
interpolated pore pressures at the base of the slices.

2.3 Random Variables
Deterministic parameters become random variables when a probability distribution is assumed to
define the uncertainty associated with their value. A distribution generally is defined by a prob-
ability density function (PDF), cumulative density function (CDF) and distribution parameters
(typically two, but sometimes more). Distributions and associated parameters used in this research
are listed in Table 2.1; detailed descriptions can be found in Appendix A. Notation x∼ LN(λ ,ζ ),
for example, indicates a random variable x has the lognormal distribution with parameters λ and ζ .
The PDF and CDF of x are represented fx(x) and Fx(x), or if distribution parameters are included,
as fx(x|λ ,ζ ) and Fx(x|λ ,ζ ) (again for the lognormal case).

Distributions are ideally selected based on directly measured observations of empirical data,
but in many cases this is not possible. For example, sufficient geotechnical testing may not be
possible, or observation of a statistically significant number of floods is not practical. Therefore,
additional information is often used to select a distribution, such as general statistical information
from the literature (especially coefficient of variation) or physical characteristics of the variable of
interest (i.e., non-negative values). If a statistical sample is available, the Kolmogorov-Smirnov test
is used to test quality of fit for various distributions (Benjamin & Cornell, 1970). Symbols µ and σ

are generally used to refer to the parameters of the normal distribution in addition to the mean and
standard deviation of a population or sample interchangeably. When a distinction must be made
between different µ or σ , x̄ and s̄ are used for the sample mean and standard deviation. For non-
symmetric distributions or samples, the mean, median and mode are represented by subscripts xa,
x50 and xmo, respectively. Coefficient of variation, δ , is the ratio of standard deviation to the mean
(δ = σ/µ) and is a measure of dispersion for a sample or population. Small values of δ indicated
most data will lie close the mean. Although it is useful for comparing the relative variability of
different variables, δ is not as easily understood for populations with asymmetric distributions such
as the lognormal. Published values of δ , summarized well by Baecher and Christian (2003) and
Uzielli et al. (2006), guide the assumption of probability distributions for geotechnical parameters
of interest; baseline ranges used in this document are summarized in Table 2.2.
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Table 2.1: Summary of probability distributions, notation of parameters, justification and
example applications as used in analyses for this document. See Appendix A for detailed
description of distributions and additional background for certain random variables.

Normal N(µ,σ)
symmetric, widely applied and understood;
used for various soil properties, geometric

and biomass variables

Truncated
Normal

Nt(µ,σ ,xl,xu)
limits distribution tails, useful for limiting

non-physical values or preventing numerical
issues; used for blanket thickness

Lognormal LN(λ ,ζ )

skewed positive, prevents negative values
and useful for variables spanning orders of

magnitude; used for various random
variables and water surface elevation

Uniform U(a,b)
equal probability between limits, every value

is equally likely; used for tree position

Gumbel Gmb(u,α)
often used to describe rare events; used for

water surface elevation

Gamma Gam(ε,u,k)
often used to describe rare events, includes
Log-Pearson III and exponential as special

case; used for water surface elevation

Exponential Exp(λ )
a strictly decreasing family of distributions;

used for cohesion of “cohesionless”
embankment soil
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Table 2.2: Typical ranges of coefficient of variation, δ (also referred to as c.o.v.), for non-
vegetation random variables.

Property δ Rangea Notes

Unit Weight, γ 0.05 to 0.10
used δ = 0.10

normal or lognormal

Cohesion, c 0.10 to 0.30
used δ = 0.30

normal or lognormal

Friction Angle, φ 0.02 to 0.05
used δ = 0.05

normal or lognormal

Friction Angle, tanφ 0.05 to 0.15
used δ = 0.10

normal or lognormal

Hydraulic Conductivity, K
2.00 to 3.00

0.30, single layerb
δ = 2.00 and δ = 0.30
lognormal, Section 3.2

Blanket Thickness, zB
N/A

site dependent
δ = 0.25 and δ = 0.35

trunc. normal, Section 3.3

Water Surface El., WSE
N/A

site dependent
lognormal or Gumbel

Section 3.1

a Baecher and Christian (2003) and Uzielli et al. (2006)
b USACE (1999)
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2.4 First-Order Reliability Method (FORM)
Reliability of some event or condition, R, is inversely related to the probability of occurrence such
that R = 1− p, and is the eponym for reliability analyses. Probability and reliability can be used
interchangeably in engineering practice depending on the magnitude of each or the perspective of
the discussion. Regardless, these concepts are the output of stochastic analyses seeking to under-
stand how uncertain conditions relate to a particular uncertain outcome. Mathematically, reliability
methods integrate a probability density function, f (x), over the unsafe domain represented here as
Ω:

R = 1− p = 1−
∫
Ω

f (x)dx (2.3)

Where x is a vector containing values for n random variables considered; the value for a single
random variable i is represented xi. In this research unsafe domain includes all possible combina-
tions of x leading to a condition where FS(x)≤ 1.0 for levee seepage and stability. Unfortunately,
the PDF of FS(x) is not known, but can be estimated using various reliability methods. Numerous
methods for evaluating reliability have been used in geotechnical applications (see e.g., Baecher &
Christian, 2003; USACE, 1999, 2010).

First-order reliability methods use the first-order Taylor’s series approximation to evaluate re-
liability, with significant variations in how computations are performed and the solution obtained.
The First-order second moment (FOSM) algorithm (Ang & Cornell, 1974) estimates the mean and
variance assuming a normal or lognormal distribution to compute reliability. Due to its simplic-
ity it is the most common method used in geotechnical engineering. A significant problem with
FOSM is lack of invariance, a condition that produces a different solution when the problem is
formulated differently (see e.g., Phoon et al., 2003). USACE (1999) incorporates FOSM while
acknowledging the “unknown error” associated with invariance of second moment methods. In
general, FOSM functions well as a simplified method of evaluating relative differences between
various reliability analyses. The problem of invariance was solved by Hasofer and Lind (1974)
and extended by Rackwitz and Flessler (1978) using an algorithm now referred to as HL-RF (Liu
& Der Kiureghian, 1991). Although the solution is more robust, HL-RF incorporates an itera-
tive algorithm that generally requires more computations and a more sophisticated software than
FOSM. Convergence of the solution using HL-RF was improved by (Zhang & Der Kiureghian,
1995). Their formulation is referred to as iHL-RF and is used in this study. Further details of the
theoretical foundations of this approach used are given in Der Kiureghian (2005), Ditlevsen and
Madsen (2005) and Zhang and Der Kiureghian (1995).

FORM Overview

The FORM algorithm computes probability by propagating the uncertainty of input parameters
through a “physics based” model to quantify uncertainty of the numerical output. The term
physics-based model (i.e., non-stochastic or mechanistic) refers to an actual process model such
as the slope stability analysis and seepage analysis in the cases under consideration. FORM input
variables consist of parameters describing the geometry and properties of the modeled domain and
include their mean, variance, and associated probability distribution. Given the output is uncertain,
its PDF, f (x), is used to estimate probability, as illustrated in Figure 2.2 for the simple case of one
and two variables (x1 and x2). For each case the probability density of FS(x) is represented by a
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Figure 2.2: Conceptual illustration of reliability, R = 1− p, for one random variable, x1
(a), and two random variables, x1 and x2 (b). A probability distribution is assumed (not
shown) for xi and used by the reliability algorithm to estimate probability of “failure.” In
this case failure refers to an unstable condition, FS ≤ 1.0, not necessarily failure of the
levee in general. Thus reliability methods estimate P[FS≤ 1.0].

hatched region of the curve or surface, where “unsafe” is defined as the condition FS(x) ≤ 1.0,
thus FORM computes the probability P[FS(x)≤ 1.0].

For each reliability analysis the numerical condition of “safe” or “unsafe” is defined by the
limit-state function, g(x), which is dependent on random variables, x, each of which has a prob-
ability distribution. For analyses in this document, the limit-state function is defined in terms of
safety factor:

g(x) = FS(x)−1.0 (2.4)

Thus the system is stable when FS(x)> 1.0 or g(x)> 0 and reliability is computed as:

R = 1−P[FS(x)≤ 1.0] = 1−P[g(x)≤ 0] (2.5)

Obtaining a solution to Equation 2.5 is the core task of FORM and other reliability methods, all of
which require repeated evaluations of g(x) while incorporating probability information from each
random variable, xi.

For most problems, the actual probability distribution of g(x) is unknown. Furthermore, there
is no guarantee the PDF of g(x) may even match that of a known distribution (e.g., normal, Gum-
bel, etc). FORM deals with this issue by transforming all input random variables to standard
normal distributions and completing all probability computations in the standard normal space, as
illustrated in Figure 2.3. The transformation incorporates complete probability distribution infor-
mation from each random variable into the reliability analysis, unlike simplified second-moment
approaches; see Der Kiureghian (2005), Ditlevsen and Madsen (2005), Hohenbichler and Rack-
witz (1981) for more detail. Probability, P[G(u) ≤ 0], is estimated by integrating the PDF, φ(u),
beyond a linear approximation (i.e., first-order) to the limit-state function at the design point (de-
scribed below). Note that random variables in Figure 2.3 are transformed to the standard normal
variables, u, implying a mean of µu = 0 and standard deviation of σu = 1. The limit-state function
is represented by G(u) when evaluated in the transformed “standard normal” space u instead of in

13



the “original” space, x. Because G(u) is a function of standard normal variables, it has the multi-
variate standard normal distribtuion (also with µ = 0 and σ = 1), which is why, in contrast to g(x)
in Figure 2.2, probability contours of the PDF for G(u) are concentric circles with a maximum
probability density at the origin.

Design Point, x∗ and u∗

A critical aspect of the FORM solution is finding the combination of random variables, x, where
the limit-state is reached while maximizing probability density of in the standard normal space,
φ(u). In other words, FORM finds the point in Figures 2.2 and 2.3 lying on the limit-state surface
(G(u)= 0) and simultaneously reaching the highest PDF contour. This point is known as the design
point, u∗, and represents the combination of parameters most likely to result in an unsafe condition;
it is a vector containing a single value for each random variable. When u∗ is transformed back to
the original space it becomes x∗ and the values for each random variables can be used for further
deterministic analysis. In the standard normal space u∗ describes distance of the design point to
its median, scaled by standard deviation (the standard normal variate is described in Appendix
A). Thus, magnitude gives a sense for how likely the value may be while sign (i.e., ±) indicates
whether the value is above or below the median. Solving for the design point in the standard
normal space is the main reason FORM is able to produce an invariant solution for reliability.

Reliability Index, β

The reliability index, β , represents a widely used concept measuring the likelihood of some event
or condition (Cornell, 1969), and is interpreted as the distance of some value of interest, i.e. the
design point, from the mean, β = µ/σ (Figure 2.2a). If a variable u has the normal distribution,
probability can be computed using the standard normal PDF:

p = Φ(−β ) (2.6)

Thus, p and β are inversely related and non-linear (as are p and R), making references to proba-
bility, reliability or reliability index analogous. In FORM the solution is obtained in the standard
normal space. Reliability index is still related to probability by p = Φ(−β ), and represents the
distance from the mean of G(u) to the design point in the standard normal space (Figure 2.3),
given mathematically as:

β = αu∗ (2.7)

where α is a vector output of FORM relating location of u∗ to distance from the origin, β . Using
the lognormal distribution to relate β to p is common when second moment methods are applied
(e.g., Duncan & Wright, 2005; USACE, 1999); however, the probability transformation and com-
putation of FORM in the standard normal space makes this unnecessary.

Importance Vector, α

An important component of the FORM algorithm is α , an n-length vector consisting of the negative
normalized limit-state function gradient evaluated at the design point

α =− ∇G(u∗)
‖∇G(u∗)‖

, (2.8)
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Figure 2.3: Conceptual representation of FORM solution for two random variables, x1
and x2, transformed to the standard normal space, u1 and u2. Also illustrated are the
limit-state function and limit-state, G(u) = 0, design point, u∗, reliability index, β , and
importance vector, α . Note the linear approximation to the limit-state used for com-
puting probability density in the unsafe region, and location of the design point as the
combination of parameters u1 and u2 such that the limit-state is reached, G(u1,u2) = 0,
and probability density is maximized, max[φ(u1,u2)]. Probability is estimated in FORM
by integrating probability density beyond the linear approximation of G(u) at u∗. The
origin represents the mean of both random variables and the maximum probability den-
sity, a consequence of all ui having the normal distribution and G(u) the multivariate
normal distribution.
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where each element of ∇G(u∗) is a partial derivative of the limit-state function with respect to
random variable, xi, evaluated at u∗:

∇G(u∗) =

[
∂G(u∗)

∂x1

∂G(u∗)
∂x2

. . .
∂G(u∗)

∂xn

]
(2.9)

This can also be interpreted as the contribution of each random variable to the total variance of the
limit-state function. Linear algebra indicates α is the unit normal to the planar approximation of
the limit-state function at the design point, pointing into the unsafe domain (Figure 2.3). A unit
vector has the property

α
2
1 +α

2
2 + . . . +α

2
n = 1, (2.10)

allowing for a relative comparison between each random variable. A value of αi greater than
zero indicates random variable i contributes to variance of the limit-state function and is therefore
a demand variable. Variance is decrease for αi < 0, implying variable i is a capacity variable.
Furthermore, magnitude of αi determines the relative importance of variable i, which is why α

is known as the importance vector. For a three variable case importance can be represented as
follows:

|αi|> |α j|> |αk| → Imp
(
αi
)
> Imp

(
α j
)
> Imp

(
αk
)

(2.11)

Finally, it should be noted α corresponds to the design point in the standard normal space, u∗,
which is equivalent to the original space only when all random variables are statistically indepen-
dent. For statistically dependent cases an alternative importance vector γ is used, which provides
the same insight to reliability results as α for u∗.

Importance Vectors, δ and η

Sensitivity vectors can be constructed using gradient vectors similar to Equation 2.9 for alternative
parameters. For example, sensitivity of reliability index to the mean and standard deviations of
a random variable distribution: ∇µβ and ∇σ β . Taking these sensitivity vectors and scaling by
standard deviation produces the dimensionless importance vectors δ and η :

δ = ∇µβ σx =

[
∂β

∂ µ1
σ1

∂β

∂ µ2
σ2 . . .

∂β

∂ µn
σn

]
(2.12)

η = ∇σ β σx =

[
∂β

∂σ1
σ1

∂β

∂σ2
σ2 . . .

∂β

∂σn
σn

]
, (2.13)

where σx is the matrix representation for the standard deviations of x. These importance measures
quantify the relationship between absolute value and variance for each random variable on reliabil-
ity. The vector η is particularly useful as it can directly illustrate the change in probability caused
by a change in standard deviation. For example, using the importance measure to find ∆β after a
site investigation reduces σ of a sample for random variable i:

∆β =
ηi

σi
∆σi (2.14)
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Change in probability can be computed using:

∆p = Φ
[
− (β +∆β )

]
−Φ

[
−β

]
(2.15)

Numerous alternative sensitivity vectors can be constructed from a FORM analysis using the ap-
propriate partial derivatives, for example limit-state function parameters, θg, or probability distri-
bution parameters, θ f .

2.5 Fragility
Fragility curves are plots of probability of occurrence conditioned on a specific random variable
of interest, illustrated conceptually for random variable x in Figure 2.4 (e.g., Casciati & Faravelli,
1991; Shinozuka et al., 2000; Veneziano et al., 1983). They are a critical component for risk anal-
ysis methods utilizing event trees, and although the most widespread application is in earthquake
engineering (Casciati & Faravelli, 1985; Der Kiureghian & Fujimura, 2009), they have been in-
creasingly used for flood control evaluations (Buijs et al., 2005; Hall et al., 2003; HRW/UB, 2004;
Vorogushyn et al., 2009). As a single curve, fragility eliminates the aleatory variability of one
variable (i.e., the x-axis), but additional random variables are still included in the stochastic analy-
sis. For example, probability increases with rising water surface elevation (WSE) because the PDF
of FS(x) (Equation 2.3) is a function of the aleatory variability of random variables x (e.g., soil
properties and blanket geometry). Levee evaluations often incorporate fragility curves, whether
as a local system evaluation (Hui et al., 2016; Ketchum et al., 2011) or region-wide risk analysis
(DWR, 2012b; URS/JBA, 2008a). A variety of stochastic methods are available (USACE, 2010)
and this research uses FORM to compute β at various water levels.

To estimate the PDF f (x), distribution parameters must be selected for a stochastic analysis
and are one source of epistemic uncertainty, which is illustrated by the dashed bands in Figure 2.4.
Epistemic parameters are represented with the vector θ , and are implicitly present in reliability
computations:

R = 1− p = 1−
∫
Ω

f (x,θ)dx (2.16)

As such, results from FORM are essentially “best estimates” of β and p, and confidence bounds
can be found using the sensitivity vectors discussed in previous sections. Following Der Kiureghian
(1989), Gardoni et al. (2002a, 2002b), variance of β is estimated as:

σ
2
β
≈ ∇θ β Σθθ ∇θ β , (2.17)

where Σθθ is the covariance matrix, consisting of correlation coefficient and standard deviation
information for each parameter θ . Parameters representing aleatory variability are contained in
the vector θ , which can generally be taken to represent model error. In this research θ includes
the mean and standard deviation associated with all distribution parameters of x; for example, µµi

and σµi for variable xi. Typically an initial assumption is σµi = σi, with the adjustments to the
former being made as more data is collected. Although this “distribution of a distribution” concept
may seem convoluted, it provides a powerful method of comparing the relative impact of different
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Figure 2.4: Conceptual representation of fragility as a function of x. Fragility is com-
puted using FORM as p = Φ(−β ), representing the aleatory variability due to random
variables u. Epistemic uncertainty is included in FORM as θ , the set of parameters for
each random variable distribution, and implies a probability distribution on β , defined
by µβ = β and σβ . The dashed lines illustrate epistemic uncertainty as µβ ± k σβ , for
k = 1, 2, 3. Because fragility in this conceptual example used the standard normal distri-
bution, x is equivalent to −β and therefore illustrates the non-linear ∆p for a given ∆β ,
which depends on the initial value β0; for example ∆β =+1 decreases p from 1.35% to
0.003% when β0 = 3.0, but from 50% to 34% when β0 = 0.0.
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random variables. In the statistically independent case Σθθ simplifies to a diagonal matrix of σ2
j ,

and Equation 2.17 simplifies to the following:

σβ ≈
√

∑
j
(∇θ jβ σ j)

2 , (2.18)

where j is an index corresponding to each of the parameters considered. For example, σβ due to
model uncertainty from the mean value of each x would be found as follows for n random variables:

σβ ≈

√(
∂β

∂ µ1
σµ1

)2 (
∂β

∂ µ2
σµ2

)2

. . .

(
∂β

∂ µn
σµn

)2

(2.19)

Note that σβ can easily be computed from importance vectors δ and η (Equations 2.12–2.13). For
example, if σµi = σi then σβ ≈ ‖δ‖. Furthermore, if σβ were to include uncertainty from the mean
and standard deviation of each x there would be 2n terms in Equation 2.19. Fragility bounds for the
estimate of β from FORM (i.e., µβ ) are computed for specific confidence intervals, for example
the one standard deviation, or 15% and 85% probability levels µβ ±σβ :

P
[
µβ +σβ , µβ −σβ

]
=
{

Φ(−µβ −σβ ), Φ(−µβ +σβ )
}

(2.20)

Figure 2.4 illustrates bounds for one, two and three standard deviations of β , since the conceptual
example has a standard normal distribution σβ = 1. Given the non-linear relationship between
β and p, it clear that ∆p is dependent on the mean estimate of β . As shown on the log-plot of
fragility, epistemic uncertainty causes probability to vary over multiple orders of magnitude for
negative values of the arbitrary variable x, but much less so for x near zero. As p approches 1,
the differences lose engineering significance. The potentially large variation in p due to σβ is
especially important when the difference in two fragility curves is small.

For non-normal distributions sensitivity of β to the mean and standard deviation produce unre-
alistically high values of σβ due to the non-linear dependence of µ and σ on distribution parame-
ter(s), p. A distribution has n parameters, collected in the vector p = [p1 p2 . . . pn], and sensitivity
is denoted ∇pβ . To prevent computation of unrealistic uncertainty bounds for fragility, σβ can be
computed with Equation 2.17 using sensitivity to the distribution parameters directly. For exam-
ple, ∇pβ uses µt and σt instead of µ and σ for the truncated normal distribution. For the truncated
normal case the mean and standard deviation of the truncated normal distribution are similar to the
distribution parameters, as long as truncation limits are not to restrictive, and σµt ≈ σµ . This may
not be the case for other distributions, and an appropriate estimate for σ j in Equation 2.18 should
be chosen.

Results from FORM also provide information on the probability distribution for the limit-
state function, which can be an alternative method of presenting fragility. By definition, β =
µg/σg, the ratio of mean to standard deviation of the limit-state function, g(x), and α is the first-
order approximation of the variance of g(x). It follows that σg = ‖∇g(x∗)‖ and µg = βσg. The
level of conservatism incorporated into a deterministic analysis can be assessed by comparing the
confidence interval for g(x) to deterministic analysis. For example, how FS(x) for best-estimate
parameters x compares to µg. Note that when g(x) = FS(x)− 1.0 the mean of FS(x) is µFS =
µg +1.0.
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Fragility curves represent aleatory variability for random variables included in the stochastic
analysis, and model uncertainty can be incorporated by producing bounds on fragility curves.
Although the inclusion of epistemic uncertainty adds an extra level of complexity to the stochastic
model, it provides an invaluable method of comparison between the individual effects due to each
random variable, especially vegetation effects.

2.6 Analysis Software
All analyses were completed using Matlab (MathWorks, 2015), which incorporated the following
existing software: UNSAT for seepage analysis (Sitar & Cawlfield, 1984; Neuman, 1972), written
in Fortran; USlopeM for stability analysis (Tabarroki, 2011), written in Matlab; and FERUM for
reliability analysis (Bourinet, 2010; Der Kiureghian et al., 2006). In general, numerous Matlab
scripts and functions were written to facilitate communication of software input/output between
UNSAT, USlopeM and FERUM, process results of analyses and troubleshoot source code “bugs” that
arose during implementation. Deterministic results are accurate and follow methods well-defined
by standard practice for levee design (URS, 2014; USACE, 2000); however, reliability analyses
require a more stringent precision since convergence to a solution is dependent on computation of
gradients and a relatively smooth function is critical. Unfortunately standard geotechnical prac-
tice for seepage and stability evaluations do not typically use algorithms that produce sufficiently
smooth and precise levee response for FORM to function readily. As such, the software used for
analyses in this document had to be modified to address several numerical issues to be used with
FORM and are discussed in Appendix B.
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Chapter 3

Model Levee Configuration and Site
Conditions

All analyses in this document used a levee model that is representative of the Pocket area of Sacra-
mento, California, located on the East bank of the Sacramento River, approximately 5 miles South
of downtown. In this area sandy levees are typically located on top of a low hydraulic conductivity
and cohesive blanket layer. A relatively thick aquifer provides a hydraulic connection to the river,
causing pore pressures to concentrate in the blanket layer. Layer geometry and soil properties pro-
duce a condition such that the levee is marginally stable (i.e., FS ∼ 1.0) when the water surface is
at the crest, assuming a steady-state seepage condition.

The embankment is 5.2 m (17 ft) tall with a 6.6 m wide crown (25 ft) and 2.5:1 H:V slopes; a
6.1 m wide berm (20 ft) is located along the waterside toe at the top of the blanket layer, with the
river bed 10.7 m (35 ft) below the landside toe. The cross-section is shown in Figure 3.1. Design
water levels were determined from previous hydraulic studies in the area (GEI/HDR, 2015) and
recommended design practice (URS, 2014): the 200–yr WSE is 4.0 m (13 ft) above the landside
toe; hydraulic top of levee (HTOL) is 4.9 m (16 ft) above the landside toe (Table 4.1).

Soil properties are summarized in Table 3.1, in addition to seepage and strength parameters
used for drained and undrained conditions. These values are also the arithmetic means used in
reliability analyses, and along with the cross section dimensions were selected to be representative
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Figure 3.1: Levee
cross-section with
phreatic surface
for 200-yr WSE
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of the Pocket site in general, where the levee is marginally stable (i.e., FS ∼ 1.0) when WSE is
near the crest. Deterministic values in Table 3.1 are often referred to as “design” values elsewhere
in this document.

Table 3.1: Summary of design values for parameters used in deterministic stability anal-
yses, which are also mean values for random variables distributions in stochastic analyses
(drained strength parameters only).

Soil Layer
USCS

Thickness Kh Kv/Kh γ
Strength

c′ φ ′ c φ

m
(ft)

m/s - kN/m3

(pcf)
kPa
(psf)

◦ kPa
(psf)

◦

Embankment
SP-SM

5.18
(17)

8e-5 1.0
18.8
(120)

0 38 – –

Blanket
ML

5.49
(18)

2e-7 0.25
18.1
(115)

1.20
(25)

36
19.1
(400)

10

Aquifer
SP–SM

9.76
(32)

8e-5 1.0
18.8
(120)

0 35 – –

Aquitard
ML

- 2e-7 0.25
18.1
(115)

4.79
(100)

33
64.6

(1350)
10

Seepage Wall
SCB

3.10
(20)

1e-8 1.0
18.8
(120)

17.2
(360)

4
23.9
(500)

0

3.1 Water Surface Elevation, WSE

Return periods and associated exceedance probabilities for specific water surface elevations were
obtained from a levee project on the West Bank of the Sacramento River (index point 6, river mile
52.75), located directly across from the Pocket area, which represents the model levee considered
in this document (USACE, 2014b). These levels are consistent with those reported by GEI/HDR
(2015) for I Street Bridge and Freeport gauges, located several miles up and downstream, respec-
tively. Site-specific WSE for each return period was found by correlating the 200-yr WSE from
USACE (2014b) to the elevation used to define the representative Pocket cross section in Section 3
and Table 4.1 (data from GEI/HDR (2015)). Return period and equivalent exceedance probability
are summarized in Table 3.2. A PDF is approximated using the increment of cumulative probability
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Table 3.2: Return period and probability of exceedence for WSE (also WSE normalized
by levee height, H). Return periods are from hydrologic analysis in USACE (2014b) for
western levee of Sacramento River, directly across from the Pocket site. Elevations con-
verted to eastern levee by equating 200-yr WSE from GEI/HDR (2015). PDF estimated
by dividing exceedence probability by increment of WSE (Figure 3.2).

WSE
(m)

WSE/H
(–)

Return Period
(yr)

Exceedance
Probability

(–)

Approx. PDF
(–)

0.82 0.16 1 0.999 0.0012

1.83 0.35 2 0.500 0.4960

2.23 0.43 10 0.100 1.0076

3.05 0.59 25 0.040 0.0729

3.23 0.62 50 0.020 0.1093

3.42 0.66 100 0.010 0.0546

3.96 0.76 200 0.005 0.0091

4.39 0.85 500 0.002 0.0070

density between each entry divided by the difference in WSE. The PDF and CDF are plotted with
lognormal, Gumbel and gamma distributions in Figure 3.2 using best fit distribution parameters
from an algorithm in Matlab (MathWorks, 2015). Probability density fits nicely over all WSE, but
Table 3.2 shows the 200- and 500-year levels match poorly; this is problematic because these water
levels are important for common practice in deterministic levee design (URS, 2014). Alternative
parameters are selected for each distribution such that CDF for 200- and 500-yr WSE matches the
return period (i.e., 1−F(WSE200) = 0.005 and 1−F(WSE500) = 0.002), also presented in Figure
Figure 3.2 and Table 3.2. The PDF appears to fit high return period levels well, but the mode
matches poorly. Alternatively, in Figure 3.3 the upper tails of the distribution, show a good match
with the 200/500-yr fit, however, the best fit parameters are still within a percent. Interestingly,
despite being selected for high WSE, the 200/500-yr fit for mid-level WSE seems to match best.
No method or distribution seems to match the more common events better than the others. Thus,
depending on results of reliability analyses there may not be an appreciable distinction between
distributions.
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Table 3.3: Numerical comparison of WSE distribution and parameters against design
levels from USACE (2014b) for the same curves in Figure 3.2 and 3.3. All combinations
match low and moderate water levels well, but best-fit distribution parameters result in
large over-estimates of return period for high WSE. Average WSE is 0.5 m lower for
200/500-yr fit compared to best fit distributions.

Distribution
LN(λ ,ζ )

best fit
Gmb(u,α)

best fit
Gam(k,λ )

best fit
LN(λ ,ζ )

200/500-yr fit
Gmb(u,α)

200/500-yr fit

Parameter 1 0.7997 2.0746 27.8792 0.5052 1.4991

Parameter 2 0.1838 3.1029 12.3069 0.3385 2.1494

Distribution µ 2.2627 2.2606 2.2653 1.7550 1.7677

Distribution σ 1.5042 1.5035 1.5051 1.3248 1.3295

Design Level Pe = 1−F(WSE) (-) and R (yr) computed from distribution

WSE
H Pe R Pe R Pe R Pe R Pe R Pe R

0.16 0.999 1 1.000 1 1.000 1.00 1.000 1.00 0.981 1.02 0.986 1.01

0.35 0.500 2 0.857 1.17 0.883 1.13 0.848 1.18 0.385 2.59 0.389 2.57

0.43 0.100 10 0.499 2.00 0.465 2.15 0.512 1.95 0.192 5.22 0.189 5.29

0.59 0.040 25 0.043 23.1 0.048 21.1 0.044 23.0 0.036 27.9 0.035 28.5

0.64 0.020 50 0.021 47.4 0.027 36.8 0.020 50.2 0.024 41.3 0.024 42.0

0.66 0.010 100 0.010 101 0.016 64.5 0.009 118 0.016 61.2 0.016 61.9

0.76 0.005 200 0.001 1190 0.003 350 0.001 2190 0.005 200 0.005 200

0.85 0.002 500 1e-4 9180 8e-4 1320 3e-5 3.0e4 0.002 500 0.002 500
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Figure 3.2: PDF and CDF of WSE for lognormal, Gumbel and gamma distributions and
comparison to hydrologic design levels from USACE (2014b), Table 3.2. Black curves
use distribution parameters for best-fit of all design levels, gray curves match only 200-yr
and 500-yr WSE (for lognormal and Gumbel only). Figure 3.3 illustrates the same curves
for high return period events (high values of the CDF). Table 3.3 provides distribution
parameters and numeric comparison.
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Figure 3.3: CDF of WSE for high return periods, using same parameters as Figure
3.2. Lognormal and Gumbel parameters for 200/500-yr match produce identical results
in this range, and best-fit parameters are similar. The Gumbel distribution with best-
fit parameters is closer to the 200/500-yr probability. Table 3.3 provides distribution
parameters and a numeric comparison.
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3.2 Hydraulic Conductivity
Hydraulic conductivity and permeability are often used interchangeably in the literature; in this
document hydraulic conductivity refers to the flow of water through pore spaces of a soil in units
of [L/T], typically m/s. Hydraulic conductivity is most often considered a lognormal random
variable for two reasons: values for a given soil can span multiple orders of magnitude and a
there is a physical limit precluding negative values (Benson, 1993; Freeze, 1975; Law, 1944;
Lee et al., 1983). Law (1944) is commonly cited as the first to apply the lognormal distribution,
and the history of doing so is concisely described by Freeze (1975), who also acknowledges that
other distributions are acceptable. For example, Ricciardi et al. (2005) reevaluated the Law (1944)
dataset and found the beta distribution matches well.

Because it is expensive to compile a site-specific dataset of hydraulic conductivity for statisti-
cal evaluation, over the last several decades it has been common for stochastic analyses to assume
a lognormal distribution and report coefficient of variation, δ , without consideration of new data
(Fenton & Griffiths, 2008; Uzielli et al., 2006). While this is an acceptable approach, it has led an-
alysts evaluating shallow, unconsolidated and generally Quaternary-age soils to depend on a small
number of data sets for stochastic hydraulic conductivity characterization, the most prominent of
which are listed below:

• Law (1944): 59 measurements of the Dominguez formation, a regional oil producing sed-
imentary deposit in Los Angelos County, CA; widely cited as justification for lognormal
distribution applicability

• Lumb (1971): 42 measurements on 4 samples of silty sand from Hong Kong, finding δ =
22% for test accuracy and δ = 240% at a site (this is the only source with repeated tests
on the same soil); Lumb (1966): 53 measurements on alluvial sandy clay from Hong Kong;
cited by Baecher and Christian (2003) and Lee et al. (1983)

• Nielsen et al. (1973): 120 measurements of near-surface soils an approximately half mile
square field; cited by Harr (1996)

• Benson (1993): 2497 measurements of compacted clay landfill liners and covers from 57
sites in North America; cited by Baecher and Christian (2003)

The sources listed above are the predominant data sources for hydraulic conductivity δ summarized
by Baecher and Christian (2003), Fenton and Griffiths (2008), Harr (1996), Jones et al. (2002),
Uzielli et al. (2006) and their preceding publications, which generally recommend using δ up
to 200%. Phoon and F. H. Kulhawy (1999) refers to a dataset for hydraulic conductivity in F.
Kulhawy and Mayne (1990), but there is no way to obtain δ . Willardson and Hurst (1965) describe
an excellent dataset for 12 sites with nearly 1500 test data for seven shallow soils, indicating a
range of δ from 40% to 310%, with an average of 110%. Indirect measurements of hydraulic
conductivity can be found from consolidation coefficient data reported by Lumb (1971), reporting
32% for test accuracy and 47% at a site, and Harr (1996) reporting 30% to 90% for laboratory test
results. For similar stress states the coefficient of variation for coefficient of consolidation should
apply to hydraulic conductivity, since they are proportional and are scaled by stiffness and unit
weight (Holtz & Kovacs, 1981). URS (2014) provides data on 302 tests at 17 sites for alluvial
near-surface soils in California. Analysis of this data gave a δ of 60% to 210% for several soils.
When separated by soil type, direction and location (i.e., horizontal and vertical), groups with over
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5 samples had a δ of 50% to 190%, which is not a significant reduction, perhaps due to the fact
that these subgroups still represented samples from nearly 40 different boreholes. The USACE
(1999) uses δ of around 30% to represent the variability of hydraulic conductivity within a single
layer for seepage reliability analyses and explicitly assumes the large range of data found in the
literature is due to aleatory variability between sites. Note that, as a result, for the same coefficient
of variation a soil with lower hydraulic conductivity will vary over a larger range of magnitudes
than a soil with higher hydraulic conductivity.

Hydraulic Conductivity Ratio
The first and second moments of a function of random variables such as Kr can be found in terms
of the dependent variables; Table 3.4 presents distribution parameters of Kr as a function of Ka,h
and Kb,v for various values of δ , all with a constant median for Kr of x50 = 1600, which is the
deterministic value used in reference analyses. Thus if δ = 0.30 for the blanket and aquifer, Kr
has δ = 0.42, with a median value of 1600, mean of 1740 and a range of 1060 to 2420 containing
68% of the data (i.e., the normal distribution µ±σ equivalent; Table 3.4, Case A). Similarly, when
δ = 2.00 for blanket and aquifer, the high end reported in the literature, δ = 4.90 for Kr. Although
mathematically correct, δ = 4.90 implies 78% of the probability density is located between the dis-
tribution median and mode, which is highly dispersed (Table 3.4, Case C). In other words, likely
values of Kr could be almost anything. Clearly the distribution parameters should be selected such
that a smaller range of reasonable values for Kr are used in reliability analyses. USACE (1999)
uses a δ of 20% to 30% for an individual layer, which targets 20% to 30% for the blanket ratio, Kr.
Several published works following the general USACE guidelines for risk analysis seem to incor-
porate the Kr recommendation when evaluating seepage stochastically (Benjasupattananan, 2013;
Ketchum et al., 2011; Perlea & Ketchum, 2011; Sibley et al., 2017), although other researchers
have used higher values (Rice & Polanco, 2012).

Of the distributions considered in Table 3.4 only cases B and C have a significant portion of the
PDF below the sensitive threshold for Ka,h and Kb,v selection, specifically x50e−ζ 2

< 1000. For case
A, only about a 15% of the PDF is below Kr = 1000. Thus, while Cases A–C in Table 3.4 illustrate
the effect of changing variance for Kr, the wide range of possible values warrants consideration
of different central tendency measures, especially for values of Kr that are more sensitive to pore
pressure. An additional set of distribution parameters is defined such that the median, x50, is 10,
100 and 1000, keeping Ka,h constant and setting Kb,v = Ka,h/Kr for δ = 0.3 and 2.0 (Table 3.5).
In each case, spread of the distribution increases dramatically from δ = 0.3 to 2.0; however, the
ratios between values remain constant between cases A and B or 10, 100 and 1000. For example,
x50e±ζ 2

increases from about 1.66 to 60.1 for Case B–10 versus 166 to 6010 for Case B–1000,
but the ratio is 36 for each case. Case A is identical in behavior, although the ratio is only 2.3.
Thus, for a given range across the PDF increasingly larger ranges of Kr will be encountered as x50
increases. Because the sensitivity of pore pressure to Kr is essentially negligible for Kr & 1000,
the large range of possible values for high x50 becomes unimportant.
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Table 3.4: Comparison of lognormal distribution metrics of Kr for various
coefficient of variation values of the dependent variables Ka,h and Kb,v

a. The
terms x50e±ζ 2

for the lognormal distribution are equivalent to µ±σ for the
normal, containing 68.3% of the PDF. As δ increases, the likely range of
Kr increases dramatically. Appendix A plots the lognormal distribution for
various combinations of parameters λ and ζ .

Distribution
Parameter

Case A Case B Case C

δ for
Ka,v & Kb,h

0.30 1.00 2.00

δ for Kr
b 0.43 1.73 4.90

Kr F(Kr) Kr F(Kr) Kr F(Kr)

xa 1740 0.582 3200 0.722 8000 0.815

x50 1600 0.500 1600 0.500 1600 0.500

xmo 1350 0.339 400 0.120 64 0.036

x50e+ζ 2 2420 0.841 5190 0.841 9620 0.841

x50e−ζ 2 1060 0.159 493 0.159 266 0.159

a µ = 8e−5 m/s for Ka,v and 5e−8 m/s for Kb,h in Cases A–C
b ζ for Kr in Cases A–C is 0.415, 1.18 and 1.79 (λ = 7.38 for all)
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Table 3.5: Comparison of lognormal distribution metrics of Kr for x50 = 10,
100 and 1000, along with coefficient of variation values of 0.3 and 2.0 for
dependent variables Ka,h and Kb,v, equivalent to Cases A and C in Table 3.4.
The terms x50e±ζ 2

for the lognormal distribution are equivalent to µ±σ for
the normal, containing 68.3% of the PDF. Appendix A plots the lognormal
distribution for various combinations of parameters λ and ζ .

Distribution
Parameter

Case
A–10

Case
B–10

Case
A–100

Case
B–100

Case
A–1000

Case
B–1000

δ for
Ka,v & Kb,h

0.30 2.00 0.30 2.00 0.30 2.00

δ for Kr 0.43 4.90 0.43 4.90 0.43 4.90

λ 2.30 2.30 4.61 4.61 6.91 6.91

ζ 0.415 1.79 0.415 1.79 0.415 1.79

xa 10.9 50.0 109 500 1090 5000

x50 10.0 10.0 100 100 1000 1000

xmo 8.42 0.400 84.2 4.00 842 40.0

x50e+ζ 2 15.1 60.1 151 601 1510 6010

x50e−ζ 2 6.60 1.66 66.0 16.6 660 166

a Cases letter refers to δ for Ka,h and Kb,v; number refers to median of Kr

29



3.3 Blanket Layer Thickness
Thickness of the blanket layer influences stability through the concentration of pore pressures
within the blanket layer. Therefore, blanket thickness is a key component of USACE reliability
analysis for underseepage (Sibley et al., 2017; USACE, 1999), and while in some cases probability
distributions have been applied in analyses directly (Benjasupattananan, 2013; Polanco & Rice,
2014; Rice & Polanco, 2012), several studies have used expert elicitation (URS/JBA, 2008a) or
at least considered sensitivity using non-stochastic models (Batool et al., 2015; Chowdhury et al.,
2012). Site-specific data is obviously critical for this parameter, as the blanket depends largely on
gelogic and geomorphic conditions, as well as historic human activities. Field data collected by
GEI/HDR (2015) was used to evaluate blanket layer thickness variability. For the entire project
area (approximately from the American River to South of the Pocket) blanket thickness had an
average of 5.94 m (19.5 ft) and coefficient of variation of 0.39 (N = 120). For Reach 15 to 27,
which includes only the Pocket area (Station 1341+00 1640+00) blanket thickness had an average
of 5.78 m (19.0 ft) and coefficient of variation of 0.34 (N = 61), a slight decrease in average and
variability. Minimum and maximum thicknesses for the Pocket were 1.80 and 10.3 m (5.89 and
33.9 ft), a range of 8.5 m (27.9 ft).

Figure 3.4 shows how normal, truncated normal and lognormal distributions fit the data. We
want the mean and dispersion of the distribution to reflect the mean and dispersion of the data,
which means selecting parameters such that qualities of the distribution match the data. As can be
seen in the figure, preventing negative values has a visible effect on the shapes of the PDF, pushing
the mode higher and compressing the upper tail, which can also be seen at the upper end of the
CDF. Visually the lognormal distribution does not fit the data as well as the normal, especially
in the lower end of the distribution, but it seems to do better overall than the truncated normal.
Comparing each CDF shows that probability of the blanket being less than 5 m, P(zB < 5.0 m), is
0.398, 0.360 and 0.395 for each distribution; clearly the truncated normal diverges from the others.
To understand the characteristics of the truncated normal distribution consider three cases where
distribution parameters µt and σt have been matched to the data (Cases A, B and C, assuming
µ = 5.488 m and δ is 0.25, 0.35 and 0.05). Figure 3.5 shows each distribution still compresses
laterally with increasing δ . Also shown is the effect of two different truncation limits: (xl,xu) =
(3,10) and (xl,xu) = (0,∞). Each distribution still has very similar shapes for δ = 0.25 and 0.35,
but the increase in xmo is larger for higher δ because a more significant portion of the PDF is
normalized from the tails beyond xl and xu. Furthermore, we see a shift of the mode to the left for
higher δ , since the left limit, xl is closer to the center of the distribution than the right limit, xu. As
the PDF and CDF show, more stringent limits cause the data fit to become worse. For example,
P(zB < 5.0 m) goes from 0.355 to 0.361 for Case A and 0.397 to 0.399 for Case B, which could be
a significant change if a reliability solution is sensitive to blanket layer thickness.

Quantitative effects are further explored in Table 3.6, which compares central tendency mea-
sures of the normal and truncated normal distributions. Distributions presented in Figure 3.5 and
Table 3.6 have the following parameters:

• Case A: zB ∼ N(5.488,1.372) and zB ∼ tN(5.406,1.172,3,10)

• Case B: zB ∼ N(5.488,1.921) and zB ∼ tN(5.207,1.386,3,10)

• Case C: zB ∼ N(5.488,0.274) and zB ∼ tN(5.488,0.524,3,10)
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Figure 3.4: Distribution comparison for blanket layer thickness, zB, (PDF and CDF).
Normal, truncated normal and lognormal distributions evaluated with distribution pa-
rameters selected from GEI/HDR (2015) data in the Pocket area: µ = 5.78 m (19.0
ft), δ = 0.34, N = 61. Truncated normal distribution is only limited on the lower tail:
xl = 0 m and xu = ∞. Normal distribution has the best match; the truncated normal
overestimates the PDF at the mean due to weighting from the truncated tail, whereas the
lognormal has a positive skew.
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Figure 3.5: Comparison of truncated normal distribution parameters for blanket layer
thickness, zB, (PDF and CDF). Parameters µt and δt are selected such that the truncated
distribution has one of three δ values (0.25, 0.35 and 0.05 for Case A, B and C) and an
arithmetic mean matching GEI/HDR (2015) data in the Pocket area (µ = 5.78 m (19.0
ft), N = 61). Truncation limits are xl = 3 m and xu = 10 m for Cases A-C, and xl = 0 m
and xu = ∞ for Cases A and B.
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Distribution parameters are selected such that µ and δ of the data are matched by the distribution
(δt is used to represent the ratio of truncated normal distribution parameters σt/µt). Mean and
median each decrease, confirming the shift in skewness observed in Figure 3.5. For Cases A and B
dispersion decreases, evidenced by changes in δ , σ of the distribution and xa±σ , but the opposite
occurs for Case C, which is an effect of the relatively narrow distribution shape with respect to
the limits. Areas of low probability density are present for much of the region between xl and xu
and are much more affected by scaling of the PDF and CDF with probability density outside the
limits, causing an overall increase in dispersion of the distribution when compared to the normal
equivalent.

The examples presented here illustrate that the truncated normal distribution is capable of mod-
eling blanket thickness, although the normal and lognormal distributions are also sufficient, if not
better, when it is more desirable to match the PDF and CDF to data. Although distribution lim-
its can cause significant changes in probability density for site-specific data, they are acceptable
where physical justification exists. Once the design point of a reliability analysis is known and the
critical region of a random variable PDF is known, modifications to distribution parameters can be
made for subsequent analyses.

3.4 Strength and Unit Weight Properties
Considerable data is available to statistically define strength (cohesion, c, and friction angle, φ ) and
unit weight (γ). Correlations and recommended values for coefficient of variation can be found in
most of the references cited in previous sections of this document. Fortunately, site-specific data
from the Pocket (GEI/HDR, 2015) is available for γ and φ , which is summarized in Table 3.7,
along with the typical values summarized in Table 2.2 for comparison. Although the number of
tests is limited, it appears that the site-specific data generally conforms to expected δ for γ , but
given the relatively small data set for φ , it is more appropriate to use a typical value of 0.05.
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Table 3.6: Comparison of normal and truncated normal distribution statis-
tics for blanket layer thickness, zB

a. Parameters µt and δt are selected such
that the truncated distribution has one of three δ values (0.25, 0.35 and 0.05
for Case A, B and C) and an arithmetic mean matching GEI/HDR (2015)
data in the Pocket area (µ = 5.78 m (19.0 ft), N = 61).

Matched
Datab Case A Case B Case C

µ 5.488 5.488 5.488

δ 0.25 0.35 0.05

Distribution
Parameter

N tN N tN N tN

µ or µt 5.488 5.406 5.488 5.207 5.488 5.488

δ or δt 0.250 0.233 0.350 0.315 0.050 0.095

x50 5.488 5.450 5.488 5.387 5.488 5.488

xmo 5.488 5.406 5.488 5.207 5.488 5.488

σ or σt 1.372 1.172 1.921 1.386 0.274 0.524

xa +σ or σt 6.860 6.578 7.409 6.593 5.762 6.012

xa−σ or σt 4.116 4.235 3.567 3.821 5.213 4.964

a xl = 3.0 m and xl = 10.0 m for all cases
b µ and δ refer to the data; µ = 5.488 for all cases
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Table 3.7: Coefficient of variation, δ , for strength and unit weight, computed from
Pocket data reported by GEI/HDR (2015). All data fit a normal or lognormal distribution
per Kolmogorov-Smirnov tests. Expected δ are values from literature (Table 2.2).

Property Expected δ N δ from Data

Unit Weight, γ

silty sands
0.10 75 0.077

Unit Weight, γ

silts
0.10 234 0.056

Unit Weight, γ

clays
0.10 49 0.069

Friction, φ

Blanket
0.05 24 0.072

Friction, φ

Embankment
0.05 5 0.012

zB, Blanket
Thickness

N/A 61 0.340
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Chapter 4

Analysis Results: Levee Without Vegetation

4.1 Seepage Analysis
Steady-state seepage analyses determine pore pressure at finite element nodes and interpolate the
location of the phreatic surface. Breakout height is the landside slope location below which seepage
exits the soil (i.e., nodes with a saturated condition), and gradient is measured vertically across the
blanket layer. Figure 4.1 shows the elements of a seepage analysis solution across all WSE, and the
phreatic surface solution is illustrated in several figures throughout this document. For effective
and total stress methods FSus,t and FSus,e approach 1 as water level approaches the levee crest,
with FSus,t < FSus,e. Gradient has a linear relationship with WSE, and breakout height can nearly
reach the slope midpoint.

Throughseepage can occur in the embankment material when breakout height rises up the land-
slide slope. For a completely cohesionless embankment FSts becomes the worst-case scenario at
0.57. For a given slope angle, θ , and soil properties φ ′E and γE , factor of safety (FSts) is de-
pendent primarily on cohesion, c′E , and an assumed sliding depth, zs, as computed in Figure 4.2
for the Pocket levee (slope is 2.5:1 H:V). In the cohesionless case FSts is constant, but when c′E
is increased slightly FSts can increase significantly, especially for small zs. As zs increases FSts
approaches the cohesionless case.

Pore pressures from the seepage analysis are used directly in stability analyses and at a given
WSE are governed primarily by hydraulic conductivity ratio, Kr, and blanket layer thickness, zB.
Because pore pressures have such a large influence on the stability assessment, sensitivity of the
seepage solution to seepage parameters is described in the sections on stability.

4.2 Stability Analysis
With no vegetation considered, the landside slope is marginally stable when water is at the crest,
where the least stable sliding surface has FS of 1.0 for circular and 0.9 for non-circular surfaces.
Both begin at the edge of the crest and extend a couple meters into the blanket, returning to the
surface about 5 meters beyond the toe (Figure 4.3), the primary difference in geometry being the
planar segment of the non-circular surface within the embankment soil, which is the expected
failure mode in a cohesionless soil. A summary of FS (circular and non-circular) for the sliding
surface shown in Figure 4.3 at various water levels is presented in Table 4.1. Although sliding sur-
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Figure 4.3: Landside hinge potential sliding surfaces (circular and non-circular), which
are also minimum FS (i.e., critical) surfaces for all WSE, summarized in Table 4.1. The
term “critical surface” refers to stability only, not general levee performance for all failure
modes.

face changes somewhat with changes in WSE, the results presented in Table 4.1 are representative
of the overall response, as the geometry of all surfaces was similar.

Non-circular surfaces often produce lower values of FS when compared to circular surfaces
with identical properties. This is in part due to critical surfaces being linear in cohesionless material
and circular in cohesive material. For the Pocket levee the critical non-circular surface is planar
in the cohesionless embankment and curves in the cohesive blanket. In addition, the ability to
compute non-circular critical surfaces is a key factor to understanding the effects of vegetation, as
seen in Chapter 6.

To illustrate how FS changes for different slope stability failure modes, several additional po-
tential sliding surfaces are presented here, including:

• Complete crest (circular and non-circular): begins at waterside hinge and extends over two-
thirds of the way through the blanket layer before reaching the ground surface just over ten
meters beyond the landside toe; illustrated in (Figure 4.4)

• Shallow hinge/toe circle: just over one meter deep in the middle, this shallow “cosmetic”
sliding surface begins at the landside hinge and ends at the landside toe (Figure 4.4)

• Wedge surfaces: four completely planar surfaces that exit the slope at the landside toe and
enter at equal intervals along the crest (Figure 4.5)

Each of these surfaces has a FS about 0.3–0.5 greater than the minimum FS geometry, depending
on water level. Surfaces that encompass the complete crest were determined by searching for the
minimum FS geometry while fixing the left endpoint at the waterside edge of the crest. As with the
landside hinge surfaces, the non-circular case (FS = 1.213) is linear within the embankment soil
and FS is about 0.1 less than the circular geometry (FS = 1.320). The shallow hinge/toe circle is
primarily a cosmetic failure in the landside slope, and along with the steeper wedge failures can be
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WSE/H WSE WSE FSc FSnc Notes

– ft m – – –

0.177 3.0 0.9 2.041 2.108

0.353 6.0 1.8 1.851 1.896

0.500 8.5 2.6 1.672 1.692 Midpoint

0.647 11.0 3.4 1.482 1.474

0.765 13.0 4.0 1.322 1.285 200–yr

0.912 15.5 4.7 1.118 1.038

0.941 16.0 4.9 1.081 0.993 HTOL

1.000 17.0 5.2 1.002 0.898 Crest

Table 4.1: Summary of FS
versus WSE for critical (i.e.,
minimum FS) circular and
non-circular potential slip
surfaces for Pocket levee, il-
lustrated in Figure 4.3. H
is levee height, used for nor-
malization of WSE. HTOL
is hydraulic top of levee;
the 200-yr and HTOL design
levels are from GEI/HDR
(2015).
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Figure 4.4: Potential sliding
surfaces for complete crest
(circular and non-circular) and
shallow hinge/toe circle for
WSE/H = 1.

used to compare vegetation effects described in this document to other published work, of which a
large portion relies on infinite slope analyses.

Relative stability across all WSE for the potential sliding surfaces described above are com-
pared on Figures 4.6 and 4.7. Hydraulic conditions have a similar influence on FS for the non-
wedge surfaces, with ∆FS ∼ 1 as WSE rises from toe to crest (∆FS ∼ 0.25 per meter), which is a
result of rising pore pressure in the blanket layer (except for the shallow hinge/toe case). Phreatic
surface location within the embankment also influences the decrease of FS with increasing WSE,
as illustrated by the shallow hinge/toe and wedge surfaces, which are only affected as water level
rises above the half height of the embankment. This is due to the phreatic surface intersecting
each surface as it moves towards the landside slope. In general, FS has a monotonic response to
changing WSE; however, this is not the case at small scales, as described in the sections below.
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for potential wedge surfaces

4.3 Sensitivity to Selected Variables
The influence of key properties in seepage and stability analyses can be understood by evaluating
the change in FS(x) due to each variable in x for different potential slip surfaces. In this document
sensitivity is evaluated as ∆FS due to ∆xi for a single WSE, the 200-yr level, or 3.96 m (13 ft),
since the effects are generally consistent across the entire range. For very low WSE sensitivity may
change but is considered irrelevant due to extremely high values of FS(x). For very high WSE
sensitivity may be undefined if Spencer’s method is not capable of finding a solution for FS (i.e.,
FS is too low or numerically sensitive to extreme values of certain properties). The relationship
between FS(x) and each xi serves several functions: it captures the computation limits of seepage
and stability software; it is used in evaluating the partial derivative of levee response, which is
the gradient computation necessary for FORM; and it provides one of the measures of the relative
importance of each parameter.

Figure 4.8 compares sensitivity of FS to strength, unit weight and thickness of the blanket;
Figure 4.9 to strength and unit weight of the embankment; and Figure 4.10 to hydraulic conductiv-
ity ratio, including the method for implementing Ka,h and Kb,v, as described above. Although the
ranges of parameter values extend beyond what is appropriate to use in a deterministic analyses,
the plots show the computation limits for seepage and stability, which is important for certain cases
where FORM converges on relatively low probability events. The design value for each parameter
corresponds to the value used in deterministic analyses, which is why the sensitivity, ∆FS, is zero
at that plot location. Up to six potential sliding surfaces are shown for each sensitivity plot: circular
and non-circular pairs of landside hinge (Figure 4.3) and complete crest surfaces (Figure 4.4), the
shallow hinge/toe circle (Figure 4.4) and complete crest wedge (4.5). As the shallow hinge/toe and
wedge surfaces do not intersect the blanket layer, they have no sensitivity to blanket strength, unit
weight and thickness. However, hydraulic ratio influences pore pressure and the phreatic surface
within the embankment, so despite corresponding to a layer not physically intersected by these
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surfaces, FS is still influenced by Kr.
All parameters are positively correlated with FS except hydraulic conductivity ratio (for all sur-

faces) and blanket unit weight for the complete crest surfaces. Positive correlation with unit weight
is due to drained strength generally increasing more than driving load on the sliding surface, which
is not the case for the large mass of embankment material for the complete crest case, which are
negatively correlated. Furthermore, most sensitivity plots generally illustrate linear relationships,
the exceptions being hydraulic conductivity and blanket layer thickness.

Hydraulic conductivity ratio has a non-linear relationship with FS (Figure 4.10a): i.e. all po-
tential sliding surfaces are affected only after Kr decreases below 1000, reaching maximum in-
creases in FS of about 0.2–0.8 when Kr is below unity. For Kr < 1.0 the blanket layer no longer
is controlling water flow below the embankment as the underlying aquifer has a lower hydraulic
conductivity. Thus, decreasing pore pressures cause an increase in FS until no further change oc-
curs, resulting in the constant values in FS for Kr < 0.1. The effects of Kr on FS are largest for
the surfaces with the longest portion of its overall length in the blanket layer. Figure 4.10b shows
the difference in FS when Kb,v or Ka,h are held constant in seepage analyses for a given value of
Kr (Case I or II, respectively). While the difference reaches a maximum of 0.2–0.4 for various
surfaces, they occur for Kr less than one, which is not the blanket layer seepage condition charac-
teristic of the Pocket area. Although there is a difference when Kr > 1.0, the effect is generally
small (∆FS < 0.15).

Figure 4.10b compares the effect of defining Kr as a function of Ka,h and Kb,v in seepage
analyses for Cases I and II, as described previously. Constant values are set to the design value and
compared using the difference in FS of stability for each case and for various sliding surfaces. The
effect is computed as FS(Case I)−FS(Case II), indicating FS is insensitive to the absolute value
of hydraulic conductivity when Kr is greater than about 100. Reliability computations generally
converge to Kr well above 100; therefore Case 1 is used in all analyses for this document since
the seepage results do not depend on the absolute values of hydraulic conductivity in this range.
Although FS is more conservative for Case II, it is more appropriate to vary Kb,v, as it is the more
difficult property to determine in practice due to increased variation for soils with low hydraulic
conductivity (Section 3.2) in addition to less certain condition and performance of blanket layers
in general (URS, 2014). Close inspection of Figure 4.10b reveals slightly negative values of ∆FS
between Kr of about 100 to the design value of 1600. The maximum difference is ∆FS =1e–3 for
all surfaces and most are much less. Therefore, this is not expected to significantly affect results.

4.4 Reliability Analysis of Levee Stability
Reliability analyses for the levee model were performed using the FORM algorithm. Random
variables in the analysis are blanket thickness (zB) hydraulic conductivity ratio (Kr) unit weight
(γB), cohesion (cB), friction angle (φB) of the blanket layer; unit weight (γE), friction angle (φE)
of the embankment and water surface elevation (WSE). Subsets of these eight non-vegetation
properties are variously referred to as seepage, stability, blanket and/or hydraulic random variables
for convenience, although for many cases their influence is not mutually exclusive (e.g., zB could
be considered a seepage or blanket variable; γE is a stability or embankment variable). Table 4.2
summarizes the stochastic parameters used for most reliability analyses discussed in this document,
and deviations will be noted as needed. Distribution mean and standard deviation are presented
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Figure 4.8: Sensitivity of FS for stability at 200-yr WSE to blanket properties, γE , φE ,
cB and zB
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Figure 4.9: Sensitivity of FS at 200-yr WSE to embankment properties, γE and φE
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Figure 4.10: Sensitivity of FS at 200-yr WSE to (a) hydraulic conductivity and (b) im-
plementation of Kb,v and Ka,h given Kr, Case I and II. Sensitivity for (b) is computed as
the difference in FS when Kb,v or Ka,h is held constant given Kr (Case I and II, respec-
tively).
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Table 4.2: Random variable distributions for reference FORM analysis of landside hinge
circle without vegetation. These parameters and distributions are used in all reliability
analyses unless noted otherwise. Statistics µ and σ are for distributions, not data, which
are equivalent for the normal distribution only.

RV Type Distribution Unit µ σ δ a

γB Stability N(µ,σ) pcf (kN/m3) 115 (18.1) 8.05 (1.81) 0.07

cB Stability N(µ,σ) psf (kPa) 25.0 (1.20) 7.50 (0.359) 0.30

φB Stability N(µ,σ) ◦ 36.0 1.80 0.05

zB
b Seepage tN(µ,σ ,xl,xu) ft (m) 18.2 (5.54) 5.61 (1.71) 0.31

γE Stability N(µ,σ) pcf (kN/m3) 120 (18.9) 8.40 (1.32) 0.07

φE Stability N(µ,σ) ◦ 38.0 1.90 0.05

Kr
c Seepage LN(λ ,ζ ) – 8000 39200 4.90

WSEd Hydraulic Gmb(u,α) ft (m) 5.80 (1.77) 1.96 (0.597) 0.34

a µ (arithmetic mean), σ and δ are distribution, not data; δ = σ/µ is coefficient of variation
b tN(5.49,1.87,1.70,10) for landside hinge circle, δ = 0.34 for data
c median, x50 = 1600; LN(7.38,1.79) from Case C, Table 3.4
d WSE not included as RV for fragility curves; Gmb(1.50,2.15) from 200/500-yr fit, Table 3.3

for each random variable distribution, along with non-normal distribution parameters, which were
discussed previously. Note that µ and σ are equivalent for the data and distribution only for the
normal case. In general, the distribution parameters were selected to match site-specific δ , where
available.

FORM results for the circular landside hinge failure surface (minimum FS) are summarized in
Table 4.3, and are generally used as a reference case throughout this document. Reliability index
β = 2.99 implies a probability of P[FS(x)≤ 1] = 0.14%. Since the probability distribution of WSE
is chosen as an annual extreme value distribution, p represents annual probability of the landside
hinge surface failing under steady-state seepage conditions. Note that this does not necessarily
imply levee failure (i.e., flooding will occur). Because the landside hinge has the lowest FS(x),
it will likely have a relatively high p compared to other sliding geometry, but it is not guaranteed
to be the most likely surface to slide. In other words, other potential sliding surfaces (circular or
non-circular) may have a higher p or lower β . Further insight to the reference reliability case is
gained from the design point and importance vectors.
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Importance Vector, α

Each element of the importance vector, α , ranks the relative impact each random variable has
on the variance of FS(x), and the sign notes the effect as either a capacity (αi < 0) or demand
(αi > 0). For both analyses WSE is the most important variable, followed by blanket thickness
and blanket unit weight. It is interesting that despite the large variability of hydraulic conductivity
ratio, blanket properties still control the analysis (except for the obvious dominance of WSE). This
information can be used to guide further investigation of levee performance. For example, if a
limited budget is available for further field investigation, it would be most effective to spend the
money evaluating blanket unit weight or thickness rather than performing hydraulic conductivity
tests. The only two demand variables are hydraulic conductivity ratio and water surface elevation,
a logical result considering that they are inversely proportional to FS(x). Note that αi > 0 defines
a demand variable because αi ∝ β−1 and β ∝ FS(x) or p. All strength and unit weight variables
are capacities, although their importance is relatively small, given that they do not produce a large
change in FS(x) within the context of each probability distribution. Thus, importance is a reflection
of the sensitivity of the limit-state function with respect to x in combination with the associated
probability density of each random variable.

Design Point, x∗

The design point represents parameter values most likely to exist for condition FS(x) = 1.0, a
condition that is often misleadingly be labeled “failure.” For the reference analysis, values of the
design point indicate the levee is most likely to fail when WSE covers nearly three-quarters of the
embankment (WSE/H = 0.71), which is coincidentally very close to the 200-yr level. Blanket
thickness is 2.66 m (8.74 ft), just under half the mean value found from field explorations at the
Pocket site, and identical to expected results from a deterministic evaluation where the critical
geographic location of a levee system would be where a thin blanket is encountered. In the standard
normal space, u∗ indicates distance of the design point from the median (and mean for normal
distributions), of which WSE has the largest magnitude at +2.5, illustrating its dominance as
a demand variable. All other values of u∗ are within one standard deviation, except zB, with
u∗i = −1.7. Large values of u∗i indicate extreme values of specific parameters will exist when
unstable conditions occur.

Sensitivity Vector, δ and η

Vectors δ and η consist of the sensitivity of β to the distribution mean and standard deviation,
respectively, for each random variable. Sensitivity is scaled by standard deviation to make each
element unit-less and possible to be compared equally. In general, elements of both sensitivity
vectors are proportional to β and inversely proportional to p. For sensitivity to distribution mean,
capacity variables will typically have positive values and demand variables will be negative. For
sensitivity to distribution standard deviation the opposite is generally true, since increasing uncer-
tainty will lead to lower β .

Examination of the values in Table 4.3 reveals that sensitivity measures generally follow the
relationships found for α in that WSE and zB have a bigger influence (i.e., δi and ηi have greater
magnitude). However, we are also able to see that relative magnitudes have become more disparate:
δ and η range from 1 to 10−3, whereas α is 10−1 to 10−2. Because the distributions for c, φ and
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γ have relatively low coefficients of variation, the FORM solution is not very sensitive to the
distribution µ and σ . The relative magnitude of each value illustrates the contribution of aleatory
uncertainty for each random variable to reliability, since δ and η are directly proportional to σβ .

Standard deviation of the blanket layer seems to have an extremely large effect, as it is several
orders of magnitude greater than most of the other random variables. Although not tabulated
here, the values of δ and η for zB vary significantly in relative magnitude and sign for various
water surface elevations (when WSE is not a random variable); in all cases α remains the most
important variable. This behavior is caused by the non-linear relationship between the distribution
statistics (µ and σ ) and the distribution parameters (µt , σt , xl and xu). In this situation it is more
appropriate to use distribution parameter sensitivity for evaluating reliability results, which can be
found in Table 4.4, along with sensitivity to distribution mean and standard deviation (i.e., δ and
eta without being scaled by σ ). Distribution parameter sensitivity is equivalent to sensitivity to
µ and σ for random variables with the normal distribution, and generally similar for non-normal
cases (zB, Kr and WSE), with ∂β/∂σ for zB being the exception. Parameter sensitivity is much
more consistent with other reliability results such as α and u∗. Furthermore, β is sensitive to the
lower truncation limit, xl , but not to xu. In fact, xl has a larger impact on the result than nearly
every other random distribution parameter, except for WSE and γB.

4.5 Effect of Probability Distribution
Selection of distribution type and specific distribution parameters will have varying effects on the
results of a FORM analysis. Sensitivity and importance vectors such as δ and η can provide useful
insight but not the entire picture. When changing distribution type or specific parmaeters, relative
changes in β , p, α and x∗ can be evaluated to understand the overall influence for each random
variable. Distribution effects are described below for WSE, Kr and zB with respect to the reference
FORM results presented above. Due to the relatively small influence and well-known distributions
of γ , c and φ it is assumed that distribution effects are of a lower magnitude and they are not
addressed in this document.

Water Surface Elevation, WSE

FORM results for WSE are compared for the lognormal and Gumbel distributions with two com-
binations of fitting flood frequency data from USACE (2014b), as defined previously (Table 4.5).
These analyses did not include Kr and zB as random variables to preclude associated numerical
effects, thus the absolute values are different than the reference analysis. Clearly there is a quan-
tifiable but small effect due to distribution parameters causing a larger change than the distribution
choice. The design point ranges between 72–85% of the levee height, which is very close to the
200–500-yr WSE range (76–85% of H). Overall, the choice of WSE distribution and parameters
does not significantly change FORM results.

Hydraulic Conductivity Ratio, Kr

As illustrated in Figure 4.10, Kr has a very non-linear relationship to FS(x) over a large range of
magnitudes. Lognormal distributions are compared for three median values of Kr: 10, 100 and
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Table 4.3: Reliability results for reference FORM analysis of landside hinge circle without
vegetation. Importance vector, α indicates WSE is the most important variable, followed by
the blanket properties zB and γB; WSE and Kr are the only demand variables. The design point
indicates the critical WSE is very close to the 200-yr level, with a blanket thickness nearly
half of the average value. Distribution statistics for zB have the biggest influence on reliability
index, per importance measures δ and η .

RV Unit x∗ u∗ α δ η

γB kN/m3 1.74e+1 –5.24e–1 –1.75e–1 1.75e–1 –9.19e–2

cB kPa 1.13e+0 –1.94e–1 –6.51e–2 6.51e–2 –1.26e–2

φB
◦ 3.57e+1 –1.45e–1 –4.87e–2 4.87e–2 –7.08e–3

γE kN/m3 1.86e+1 –1.95e–1 –6.53e–2 6.53e–2 –1.27e–2

φE
◦ 3.77e+1 –1.40e–1 –4.70e–2 4.70e–2 –6.59e–3

zB m 2.66e+0 –1.69e+0 –5.67e–1 –1.26e+0 7.57e+0

Kr m/s 2.31e+3 2.05e–1 6.85e–2 –3.46e–1 3.25e–2

WSE m 3.69e+0 2.37e+0 7.94e–1 –3.75e–1 –1.21e+0

a β = 2.985 and p = 1.419e−03
b Order of Importance, α: WSE, zB, γB, Kr, γE , cB, φB, φE
c All vectors are unitless except design point, x∗; alternate units: γB =111 pcf, cB =23.5 psf, γE =118

pcf, zB =8.74 ft, WSE =12.11 ft (WSE/H = 0.71)
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Table 4.4: Parameter sensitivity for reference FORM analysis of
landside hinge circle without vegetation.

RV ∂β

∂ µ

∂β

∂σ

∂β

∂ p1

∂β

∂ p2

γB 1.39e–1 –7.26e–2 1.39e–1 –7.26e–2

cB 1.81e–1 –3.52e–2 1.81e–1 –3.52e–2

φB 2.71e–2 –3.93e–3 2.71e–2 –3.93e–3

γE 4.95e–2 –9.64e–3 4.95e–2 –9.64e–3

φE 2.47e–2 –3.47e–3 2.47e–2 –3.47e–3

zB –7.40e–1 4.43e+0 2.55e–1 –3.15e–1

Kr –8.84e–6 8.29e–7 –3.82e–2 –7.82e–3

WSE –6.28e–1 –2.03e+0 –6.28e–1 6.41e–1

a Order of Importance, α: WSE, zB, γB, Kr, γE , cB, φB, φE
b for zB ∼tN: ∂β/∂xl = 0.159 and ∂β/∂xu = 0.003

Table 4.5: Effect of distribution for WSE using lognormal and Gumbel with parameters,
keeping all other distributions set to reference analysis values. Random variables Kr and
zB left out of analysis to avoid numeric effects. Parameters chosen as best fit match of
return period data from USACE (2014b) or match of 200 and 500-yr water levels, and
are identical to values in Table 3.3 and Figures 3.2–3.3. Only term for WSE in α is
presented; all other values are comparable, but not identical, to the reference analysis.

Distribution Fit β p α x∗ (m) x∗ (ft)

Lognormal best fit 3.741 9.16e–5 +0.745 3.71 12.2

Gumbel best fit 3.370 3.76e–4 +0.855 4.08 13.4

Lognormal 200/500-yr 3.160 7.88e–4 +0.921 4.44 14.6

Gumbel 200/500-yr 3.161 7.86e–4 +0.917 4.42 14.5
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Table 4.6: Effect of distribution for Kr using lognormal with various median, x50 and δ ,
keeping all other distributions set to reference analysis values. Parameters match values
in Table 3.5. Only term for Kr in α is presented; all other values are comparable, but
not identical, to the reference analysis. Imp(Kr) > Imp(zB) > Imp(γB) for Case B–10
and Imp(Kr) > Imp(γB) for Case B–100, otherwise relative importance is the same as
reference analysis.

Case
Median
of Kr

δ for
Ka,v & Kb,h

β p α x∗ (–)

A–10 10 0.3 3.988 3.34e–5 +0.117 12.1

B–10 10 2.0 3.626 1.44e–4 +0.391 128

A–100 100 0.3 3.377 3.66e–4 +0.099 114

B–100 100 2.0 3.216 6.49e–4 +0.252 424

A–1000 1000 0.3 3.023 1.25e–3 +0.031 1040

B–1000 1000 2.0 3.007 1.32e–3 +0.093 1640

1000, corresponding to high, moderate and low sensitivity of FS(x) to Kr, respectively. For Cases
A and B a low and high variance condition is assumed for Ka,h and Kb,v with δ = 0.3 (A) and δ =
2.0 (B); results are summarized in Table 4.6. As variance increases, the design point, probability
and importance all increase, as expected. Interestingly, distribution parameters seems to have the
greatest effect on the importance measure, especially for lower values of the median. This effect
is understandable given FS(x) is most sensitive to Kr for relatively low values. When compared
to other random variables Imp(Kr) > Imp(zB) > Imp(γB) for Case B–10 and Imp(Kr) > Imp(γB)
for Case B–100, otherwise relative importance is the same as reference analysis. Although Kr has
more importance for lower values, it contributes to lower overall reliability of the embankment
when the median value is higher. Thus, the overall effect of Kr is controlled by the non-linear
interaction of distribution parameters and mechanical limit-state sensitivity.

Blanket Layer Thickness, zB

Of all random variables considered, distribution effects for zB have the most dramatic effect on
FORM results, but only when truncation parameters are too restrictive. Table 4.7 compares the
reference analysis to seven combinations of truncated normal distribution parameters: three dif-
ferent variance levels with δ = 0.25, 0.35 and 0.05 (case A, B or C) and three sets of truncation
limits, 3.0–10 m, 1.7–∞ m and 1.7–10 m (case 1, 2 or 3). Note that parameters µ and σ are slightly
different in Cases 2 and 3, due to δ differences in how data were matched; however, the effect is
negligible.

Although there are larger differences between FORM results for zB than WSE or Kr, β and p
are consistent. In contrast, α and x∗ vary widely, with importance dropping an order of magnitude
for the same distribution cases where the design point becomes very large. Specifically, this occurs
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Table 4.7: Effect of distribution for zB using truncated normal with parameters
tN(µt ,σt ,xl,xu), keeping all other distributions set to reference analysis values. Case
0 is the reference reliability analysis; letters refer to coefficient of variation for the data,
0.25, 0.35 and 0.05 for A, B and C, respectively; and the number indicates varying trun-
cation limits. Parameters for A–1, B–1 and C–1 match values in Table 3.6 and Figure
3.5. Only term for zB in α is presented; all other values are comparable, but not identical,
to the reference analysis.

No. tN(µ,σ ,xl,xu) β p α x∗ (m) x∗ (ft)

0 (5.486,1.865,1.700,10.00) 2.985 1.42e–3 –0.567 2.66 8.74

A–1 (5.406,1.172,3.000,10.00) 3.173 7.46e–4 –0.229 4.61 15.1

B–1 (5.207,1.386,3.000,10.00) 3.125 8.88e–4 –0.279 4.21 13.8

C–1 (5.488,0.524,3.000,10.00) 3.236 6.06e–4 –0.089 5.38 17.5

A–2 (5.486,1.372,1.700,∞) 3.144 8.33e–4 –0.311 4.16 13.6

B–2 (5.486,1.920,1.700,∞) 2.971 1.49e–3 –0.559 2.68 8.79

A–3 (5.486,1.372,1.700,10.00) 3.143 8.37e–4 –0.313 4.16 13.6

B–3 (5.486,1.920,1.700,10.00) 2.968 1.50e–3 –0.558 2.67 8.76

for Cases A–1, B–1 and C–1, where xl = 3.0 m; less than x∗ for the reference analysis. A similar,
but less dramatic effect occurs for Cases A–2 and A–3, when δ = 0.25, but not for Cases B–
2 and B–3, when δ = 0.35. These observations imply that restriction of the lower tail of the
distribution, whether by a truncation parameter or limiting variance, prevents the limit-state from
being reached. In other words, zB cannot become low enough to cause FS(x)≤ 1.0. This behavior
is evidenced by the change in relative importance for each distribution combination: for Cases A–
1, B–1 and C–1, Imp(zB) becomes less than all other random variables (except φE and Kr for B–1).
Furthermore, while Imp(zB) is still second-highest (behind WSE) for Cases A–2 and A–3, the
design point remains high due to the way a probability density is redistributed when a truncation
limit is applied. By forcing the entire CDF between 1.7 and 10 m, values of zB close to 1.7 m have
a lower probability of occurrence, and the most likely condition at the limit-state (i.e., the design
point) has a higher value.

Comparison of Cases A and B for infinite upper limit, xu, indicates a negligible effect on
importance and design point. Thus, while the truncated normal distribution can have significant
impact on FORM results, careful selection of xl with respect to the anticipated design point can
produce realistic results; a FORM solution should be checked to ensure xl or xu are not too close
to x∗. Unfortunately for evaluation of slope stability with a sliding surface that extends relatively
deep into the blanket layer selecting xl without significantly affecting x∗ may not be possible.
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4.6 Fragility
Reliability is computed using FORM at various WSE to generate fragility curves. For WSE less
than approximately half the levee height the deterministic FS(x) is relatively high and extreme
values of x are required by FORM to reach the design point. Due to the underlying mechanics of
the limit-equilibrium formulation for slope stability it is generally not possible to compute FS(x),
and thus reliability, for such extreme parameter values to reach FS(x) = 1.0.

Figure 4.11 illustrates fragility of the landside hinge sliding surface for the reference reliability
analysis discussed above; values are also presented in Table 4.8. At the levee crest, p ≈ 50%, but
decreases below 0.1% as WSE reaches half of the embankment height. Aleatory uncertainty in
levee stability is represented by the value of p (or β ) and is due to inherent randomness of the
seven random variables included in the analysis. Epistemic uncertainty is caused by imperfect
knowledge; in this case the exact probability distribution parameters for each random variable,
which could theoretically be obtained given sufficient data. Uncertainty in the reliability estimate
is represented by σβ , and computed using sensitivity of β to distribution parameters p and an
estimate of the variability for each parameter, σp: σβ = f (∇pβ ,σp). For normal distributions
σµ = σ , for truncated normal σµt = σt and for lognormal σλ = ζ , since these parameters are
generally equivalent to the mean and standard deviation of the distribution. Alternate estimates of
parameter uncertainty would be used for other distributions. In most cases σσ � σµ and can be
ignored, since σβ ∝ σ2

p . For this example σβ due to epistemic uncertainty in distribution variance
is only 4%, on average, of epistemic uncertainty due to distribution mean. As fragility results
show, σβ is approximately 0.9 for all WSE, resulting in an increasingly wide range of p as WSE
increases. For low WSE p varies across 3 orders of magnitude, which could have significant impact
for risk analyses that are controlled by these higher frequency events.

Figure 4.12 presents the aleatory uncertainty of FS(x), which is a result of inherent random-
ness of the seven random variables included in the analysis, estimated using µFS and σFS. Standard
deviation is not constant for all WSE due to the changing importance of the random variables, α .
Although not illustrated here, αi generally varies in a concave-up or concave-down relationship
with WSE; however, the variation is within an order of magnitude and relative magnitudes be-
tween random variables remains constant. The deterministic case is consistently below the mean
of FS(x), indicating an inherent level of conservatism when using “best-estimates” of parameters
x. However, the mean values for random variables for this research were purposely selected to rep-
resent the marginally stable case for WSE/H = 1.0, which is why the deterministic and stochastic
curves intersect on the figure.

Figures 4.11 and 4.12 rank each random variable by aleatory and epistemic uncertainty, and as
expected, zB is still the most important variable for both cases. For the epistemic case cB becomes
the second ranked variable, indicating uncertainty in its mean value has a more significant impact
on the estimate of reliability. In general, µβ and σβ are dominated by the uncertainty of zB because
it is the only variable which has a large enough mechanical sensitivity to cause FS(x)≤ 1. When
variance of zB is higher the likelihood of an extreme values of zB (relative to the PDF) and thus p
increases, along with sensitivity measures α , δ and η .
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Table 4.8: Fragility of landside hinge sliding surface, p = P[FS(x) ≤ 1.0], computed
using FORM as µβ for reference reliability analysis. Changing probability with WSE
is aleatory uncertainty and epistemic uncertainty is represented by confidence interval,
µβ ±σβ , where σβ uncertainty in random variable distribution parameters. FORM also
provides an estimate of the mean and standard deviation of safety factor, FS(x).

Water Surface Elevation, WSE/H 0.53 0.76 1.00

Reliability, µβ 3.112 1.537 –0.04

Fragility, p = Φ(−µβ ) 9.297e–4 6.211e–2 5.016e–1

Standard deviation, σβ 0.817 0.890 0.967

Confidence interval, µβ +σβ 3.929 2.427 0.963

Confidence interval, Φ(−µβ −σβ ) 4.26e–5 7.60e–3 1.68e–1

Confidence interval, µβ −σβ 2.294 0.647 –0.971

Confidence interval, Φ(−µβ +σβ ) 1.09e–2 2.59e–1 8.34e–1

Mean safety factor, µFS = βσFS 0.763 0.518 –0.01

Standard deviation, σFS = ‖α‖ 0.245 0.337 0.172
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4.7 Reliability Analysis of Levee Seepage
FORM analyses were performed the limit-state functions g(x) = FSus(x)− 1.0 for underseepage
and g(x) = FSts(x)− 1.0 for throughseepage. Many of the results for reliability of stability de-
scribed above apply to seepage, for example probability distribution effects and interpretation of
FORM results.

Underseepage

Up to four random variables influence the underseepage analysis used in this document: blanket
layer unit weight (γB) and thickness (zB), hydraulic conductivity ratio (Kr), and water surface ele-
vation (WSE). Results from FORM show that zB is the most important variable, followed by WSE
and γ(B) (Table 4.9). The estimated probability of the limit-state is 1.3%, and the design point
indicates a most-likely water level of 2.5 m (8.1 ft), which are both below results from the stability
case (i.e., p = 0.01% and x∗i = 3.7 m for WSE). Epistemic uncertainty for underseepage has a
larger contribution from the variance of each random variable, in contrast to stability, as illustrated
by the wide uncertainty band in Figure 4.13, as well as larger values of ∂β/∂ p2 in Table 4.10.

When WSE is included as a random variable, using effective and total stress methods pro-
duces different estimates of FSus for the deterministic case. For stochastic analyses nearly iden-
tical results are obtained from FORM regardless of the method used. When WSE is removed
from the analysis to produce fragility curves, however, a different behavior is observed. Fig-
ure 4.14 shows lower fragility than the effective stress method, much lower variance on µFS and
Imp(γB) >Imp(zB). The total stress method reduces the importance of blanket thickness because
it is incorporated as a contributor to driving and resisting forces (i.e., weight of the blanket and
vertical drainage length). Thus, when WSE is constant zB no longer has the same effect on uplift
because it is inversely proportional to i, but proportional to the total blanket weight. Thus, for
fragility of the total stress method blanket unit weight is the most important property.

Throughseepage

Throuseepage is evaluated using an infinite slope solution coupled with three random variables:
embankment unit weight (γE), cohesion (c′E) and friction angle (φ ′E). Slope angle (θ ), sliding
depth (zs) and unit weight of water (γw) are constant. For erosion to occur it is implicitly assumed
the phreatic surface exits the slope above the location of interest for a throughseepage analysis,
making the solution independent of water level and pore pressures. Since FSts(x) is evaluated with
a closed-form solution (i.e., not dependent on a finite element mesh), computations are relatively
fast and unencumbered by the numerical issues associated with underseepage. Fragility curves are
not presented for throughseepage since the value of FSts is independent of WSE when the phreatic
surface exits the slope.

In deterministic analyses the embankment is considered cohesionless (c′E = 0), but it is well-
known that small values of cohesion can have a large impact on stability. An exponential distribu-
tion is used to include c′E as a random variable while also ensuring only an extremely low amount
of cohesion is evaluated in the embankment. This single-parameter distribution, c′E ∼Exp(λ ), con-
centrates probability density near c′E = 0. For λ = 1, 5 or 10, there is an approximately 60, 8 or 1%
chance that c′E > 0.5 kPa (10 psf), illustrating the compact distribution shape. Results of a FORM
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Table 4.9: Reliability results for reference FORM analysis of underseepage without vegeta-
tion. Importance vector, α indicates zB is the most important variable, followed by WSE and
γB. Computed using effective stress method for FSus, which are nearly identical to total stress
method when WSE is a random variable.

RV Unit x∗ u∗ α δ η

γB kN/m3 1.73e+1 –5.96e–1 –2.68e–1 2.68e–1 –1.60e–1

zB m 2.55e+0 –1.78e+0 –7.99e–1 –1.33e+0 9.74e+0

Kr m/s 2.23e+3 1.85e–1 8.29e–2 –4.21e–1 3.98e–2

WSE m 2.47e+0 1.19e+0 5.33e–1 –3.83e–1 –4.48e–1

a β = 2.227 and p = 1.297e−02
b Order of Importance, α: zB, WSE, γB, Kr
c All vectors are unitless except design point, x∗; alternate units: γB =110 pcf, zB =8.37 ft,

WSE =8.09 ft (WSE/H = 0.48)

Table 4.10: Parameter sensitivity for reference FORM analysis of
underseepage without vegetation. Computed using effective stress
method for FSus, which are nearly identical to total stress method
when WSE is a random variable.

RV ∂β

∂ µ

∂β

∂σ

∂β

∂ p1

∂β

∂ p2

γB 2.12e–1 –1.26e–1 2.12e–1 –1.26e–1

zB –7.80e–1 5.70e+0 3.54e–1 –4.55e–1

Kr –1.07e–5 1.01e–6 –4.62e–2 –8.55e–3

WSE –6.41e–1 –7.50e–1 –6.41e–1 2.88e–1

a Order of Importance, α: zB, WSE, γB, Kr
b for zB ∼tN: ∂β/∂xl = 0.263 and ∂β/∂xu = 0.004
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Figure 4.13: Fragility and µFS for underseepage using effective stress method.
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Figure 4.14: Fragility and µFS for underseepage using total stress method.
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Table 4.11: Reliability results for reference FORM analysis of throughseepage without vege-
tation. The exponential distribution with λ = 10 is applied to c′E to account for non-zero, yet
very small values. Importance vector, α indicates c′E is the most important variable, followed
by γE and φ ′E . Sliding depth is assumed to be zs = 0.3 m (1.0 ft).

RV Unit x∗ u∗ α δ η

γE kN/m3 1.87e+1 –1.17e–1 –1.85e–1 1.85e–1 –2.18e–2

φE
◦ 3.78e+1 –9.69e–2 –1.53e–1 1.53e+0 –3.10e+1

cE kPa 3.15e–2 –6.13e–1 –9.71e–1 2.14e+0 –1.47e+0

a β = 0.632 and p = 2.638e−01
b Order of Importance, α: cE , γE , φE
c All vectors are unitless except design point, x∗; alternate units: γE =119 pcf, cE =0.7 psf

analysis are presented in Table 4.11, with c′E having greatest importance despite an extremely low
design point value of 0.03 kPa (0.70 psf). Selection of alternate values for parameters λ and zs
change the computed β but not relationships between random variables for the design point and
sensitivity vectors. For example, P[FSts ≤ 1.0] is 0.14, 3.1 and 26% for λ = 1, 5 or 10.

Epistemic uncertainty results in σβ = 0.24, with the contribution from parameter µ for γE and
φE (3e-2 and 2e-2) being much more significant than λ for cE (5e-5). The mean value of FSts is
µFS = 1.23, with a standard deviation σFS = 0.36.

4.8 Summary
The analyses presented in this chapter provide deterministic and stochastic reference cases for
levee seepage and stability that will be used to compare the effects of vegetation. Sensitivity of
each parameter was evaluated to understand important characteristics of the mechanistic models
and their role in reliability analyses. Key results regarding the model levee include:

• marginal performance in terms of FS approaching 1 for seepage and stability as WSE reaches
the levee crest

• the minimum FS slope stability surface enters the slope at the landside hinge, travels through
the blanket and exits beyone the toe with FS = 1.322 for the circular case and 1.285 for the
non-circular case for the 200-yr WSE

• reliabiltiy analyses show that blanket layer properties control stability, particularly blanket
layer thickness (zB) and unit weight (γB)

• based on deterministic sensitivity analyses, cohesion of the blanket (cB) and friction angle of
the embankment (φE) produce the largest magnitude change in FS across the entire range of
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possible values; however, results of reliability analyses show these parameters are the least
important in terms of their contribution to the uncertainty in FS

• although hydraulic conductivity is commonly considered to be a critical variable due to its
variability over orders of magnitude, reliability analyses show it is only moderately important
to overall stability

• most random variables are insensitive to selection of distribution type with the exception of
zB, which must be revisited after FORM analyses are completed to ensure that convergence
to the design point is not limited by truncation of the normal distribution

• fragility curves illustrate the relatively high probability of an unsafe condition for seepage
and stability, with distribution parameters for blanket layer properties controlling epistemic
uncertainty
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Chapter 5

Tree Root Biomass Model

To properly quantify the effects of vegetation a robust model of root distribution in the subsurface
was developed principally using data from studies in the Central Valley of California. A rich data
set was developed from detailed terrestrial LiDAR scans of Central Valley trees and their root
systems within levee slopes completed by Berry and Chung (2013) and Chung (2013). A total
of 20 trees was measured at 3 different locations in the Central Valley: five cottonwood (DBH
0.22 to 0.36 m) and fifteen valley oak (DBH 0.08 to 0.32 m), where DBH is diameter at breast
height, a common allometric parameter. This data set is enhanced with data from other studies, as
appropriate, concentrating on data from the Central Valley of California. The specific focus was
on Populus fremontii (Fremont cottonwood) and Quercus lobata (valley oak) due to the extensive
data set collected by Berry and Chung (2013). These trees are hereafter referred to as simply
cottonwood and oak.

The term “biomass” is used to describe root cross-sectional area (RCSA), root area ratio (RAR)
or root volume (RV ) as a function of x, y and z (dimensions illustrated in Figure 5.1 and 5.15),
where:

• the x̂ direction is perpendicular to the levee alignment in the horizontal plane; the local origin
for a specific tree is x = 0 and represents the trunk center

• the ŷ direction is parallel to the levee alignment in the horizontal plane; y = 0 is the origin
and trunk center

• the ẑ direction measures vertical depth; local origin, z= 0, is the ground surface, with positive
values representing increasing depth

• subscripts u and d upslope and downslope directions (+x̂ and −x̂, respectively)

• subscript y is applied to lateral direction (ŷ is symmetric); lateral root zone parameters are
generally an average of the up and downslope directions

• the l̂ direction is radial distance in the horizontal plane; l = 0 is the origin and trunk center

• θ is angle in the horizontal plane; θ = 0 is aligned with the +x̂, thus polar coordinates can
be found per x = l cosθ and y = l sinθ

When results are presented for a single tree the local coordinate system is defined with the trunk
center and ground surface as the origin. For biomass on sloped ground all coordinates are computed
in horizontal and vertical planes and mapped vertically to the sloped surface.
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5.1 Root Area Ratio
The most commmon measure used to represent the root system is root area ratio, RAR, the cross-
sectional area of roots per unit area of soil. In general, 10−4, or 0.01%, is considered to be the
measurable limit for RAR, especially with respect to studies of root systems for trees. This value
corresponds to a single 1.1 cm diameter root per 1 m2 area of soil, or a 0.14 in diameter root per 1
ft2 area of soil. Single equivalent root diameters for RAR = 10−5 and 10−6 are 0.36 and 0.11 cm
(or 0.04 and 0.01 in). In this study RAR = 10−4 is generally used by the biomass model to define
lateral root limits, unless otherwise stated, as it matches observed data well.

Berry and Chung (2013) quantify biomass with an exponential regression model that relates
root cross-sectional area, RCSA to radial distance from the tree trunk, l:

ln(RCSA) = α0−ν l (5.1)

RCSA is measured on a vertically oriented cylinder with radius l, called virtual trench profiles
(VTP), illustrated schematically in Figure 5.1. By evaluating data in the appropriate quadrant,
parameters were also developed in the upslope and downslope directions. Estimates of α0 and ν

were found using a mixed linear regression model in Berry and Chung (2013) and Chung (2013)
for the processed 3D LiDAR data; reported regression parameters produced RCSA ∼ [cm2]. RAR
can be determined from RCSA as determined from the VTP concept.

Beginning with the regression model described above, α0 can be represented by A0 = expα0,
which leads to a direct equation for root cross sectional area for a virtual trench profile:

RCSA = A0 exp(−ν l) (5.2)

where A0 = exp(α0) is the interpolated intercept of RCSA in [L2] at the trunk center. Note there is
little physical meaning of this parameter at the exact trunk center point; it primarily contributes the
biomass distribution shape away from the trunk, along with ν . RCSA will decrease rapidly with
distance due to the exponential dependence on ν : 39 %/m for ν = 0.5, 63 %/m for ν = 1.0 and 98
%/m for ν = 4.0.

The virtual trench concept of Equation 5.1 provides cross-sectional root area, RCSA(l), that
would be evaluated on the wall of a circular trench excavated distance l from the trunk center, where
l =
√

x2 + y2, with infinitesimal area A = dy. Each VTP cylinder has surface area Acyl = 2πlzmax,
where zmax is maximum root depth considered, as illustrated in Figure 5.1. Dividing RCSA(l) by
the cylindrical surface area represents root area ratio averaged vertically over the entire root zone
at distance l from the trunk, denoted RARl(l):

RARl(l) =
RCSA(l)

Acyl
=

A0 exp(−ν l)
2πlzmax

(5.3)

This equation describes RAR in the horizontal plane, but must be expressed in terms of x and y for
incorporation into levee analyses.

Biomass decreases more rapidly in the upslope than downslope direction, thus the parameter ν

is spatially dependent. Berry and Chung (2013) provide parameters in the upslope and downslope
directions, νu and νd (Table 5.2), and it may be assumed that the transverse direction (+ŷ) is an
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Figure 5.1: Virtual trench profile and biomass coordinate system. ŷ is parallel to the
levee alignment and x̂ is perpendicular, with downslope positive with respect to the land-
side. Radial distance from the trunk center is l.

average of the two: νt = (νu +νd)/2. An interpolating function can be defined to describe radial
biomass decrease away from the primary axes using a smoothly varying function:

ν(θ) =
νd−νu

2
cosθ +

νd +νu

2
(5.4)

where θ = 0 is aligned with the down-slope direction (i.e., νd and +x̂) and νt is average of νu and
νd when θ = π/2 and 3π/2 (+ŷ and −ŷ, respectively). In (x,y) coordinates, θ = cos−1(x/l) and
l =
√

x2 + y2, as measured from the tree center. Combining with Equations 5.3 and 5.4 gives

RARxy(x,y) = A0

exp
{
−
[

νd−νu
2 cos

(
cos−1( x√

x2+y2
)
)
+ νd+νu

2

]√
x2 + y2

}
2πzmax

√
x2 + y2

(5.5)

which can be rearranged as the complete equation for RARxy(x,y):

RARxy(x,y) = A0
exp
{√

x2 + y2 νd+νu
2 − xνd−νu

2

}
2πzmax

√
x2 + y2

(5.6)

Equation 5.6 defines the depth-averaged root area ratio at any position (x,y) as measured from the
tree center. Figure 5.2 shows RARl for two values of A0 and three values of ν , averaged over a
maximum root depth of 1 m. Because νd and νd are equal in this example and y= 0, RAR computed
in Figure 5.2 represents a tree on level ground, and l is radial distance from the tree trunk center.
The νu = νd case is also equivalent to RARxy(x = l,y = 0) and RARxy(x = 0,y = l). Values for ν of
0.5, 1.0 and 5.0 approximately correspond to trees of diameter 1.0, 0.5 and 0.1 m (respectively; any
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Figure 5.2: Depth-averaged root area ratio, RARl(l), from biomass model with varying
A0 and ν . Distance l is the virtual trench cylinder radius, measured from trunk center.
Computed for level ground case νu = νd , which is equivalent to RARxy(x = l,y = 0) and
RARxy(x = 0,y = l). Scaling by fRAR(z) provides 3D point-estimate of RAR (along the x
and y axis only for this plot).

species), whereas A0 of 0.1 and 0.3 are equivalent to the regression results for oak and cottonwood.
Biomass decreases exponentially and it is clear that ν has a much larger impact on the magnitude
of RAR than A0.

Due to the VTP model applied by Berry and Chung (2013), RAR(x,y) exponentially decreases
with distance and reaches an infinite value directly beneath the tree center. This is potentially
problematic, as the maximum physical value of RAR is 1, where a given cross-sectional area in the
subsurface is entirely root material. Setting RARl(l) = 1 in Equation 5.3 and solving for the radial
distance l1 requires use of the Lambert W function:

2πl1zmax = A0 exp(−ν l1)

ν l1 exp(ν l1) =
νA0

2πz

zmax = W (zmax expzmax) → ν l1 = W (ν l1 exp(ν l1)) = W

(
νA0

2πzmax

)
l1 =

1
ν

W

(
νA0

2πzmax

)
(5.7)

For the possible range of values for A0, ν and z, l1 is always less than 0.1 m, which generally
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lies within the trunk diameter of the tree. This result intimates the interesting physical meaning of
RAR at the trunk, which is entirely woody material. However, incorporating the physical transition
from above to below ground biomass at the trunk origin would add unreasonable complexity to
the biomass model given the relatively small area it represents. Therefore, RAR is incorporated as
presented in Equation 5.6 such that RARxy ≤ 1.0. In addition, Equation 5.7 can be generalized to
identify the distance at which RAR takes on any value:

l(RAR) =
1
ν

W

(
νA0

2πzmax RAR

)
(5.8)

which is useful for definition and evaluation of several components of the biomass model.

Biomass Regression Intercept, A0

Parameter α0 represents the horizontal intercept of RCSA (tree trunk center) and was reported
by Chung (2013) to be 0.29 for cottonwood and 7.93 for oak trees with standard errors of 0.50
and 0.34, respectively (Table 5.1); values of α0 computed by Berry and Chung (2013) were not
reported. Note that α0 are converted to A0 for the biomass model herein. Given the relatively small
influence on RAR with respect to ν (Figure 5.2) and lack of reported values, A0 is assumed to be
constant and generally set to 0.30 for cottonwood and 0.10 for oak.

Rate of Biomass Decrease, ν

Parameter ν represents the exponential biomass reduction with distance and was reported by Chung
(2013) as 0.47 and 2.12 for cottonwood and oak, corresponding to an exponential reduction of 38%
and 88% per meter, respectively, summarized in Table 5.1 and illustrated as dashed lines in Figure
5.3). Upslope and downslope values of reduction rate (νu and νd) are also presented in Berry and
Chung (2013), summarized in Table 5.2 and illustrated as points in Figure 5.3. Biomass consis-
tently has a smaller spread in the upslope direction when looking at values averaged by species:
4.64 and 3.30 for cottonwood, 5.65 and 1.40 for oak. However, there are two problems with the
reported results. First, it is unclear why the computed regression parameters for ν (by species)
by Chung (2013) are outside the upslope and downslope values as presented in Berry and Chung
(2013) (Figure 5.3). For each species νu and νd range from 0.78 to 8.08 for cottonwood and 1.24
to 10.28 for oak, well above the values of 0.47 and 2.12 from Chung (2013) (Table 5.1). In other
words, the lines should be average values of the points, but they clearly represent minimum values.
Standard deviations from Berry and Chung (2013, Table 5.1) are also much higher than standard
error from Chung (2013, ; 5.2). Furthermore, there seems to be a decrease in νu and νd with
increasing DBH (Figure 5.3). The trend becomes much more obvious when the lower-left and
upper-right data points in Figure 5.3 are excluded. The second issue with Berry and Chung (2013)
concerns the implication that rate of biomass decrease is greater for oak than for cottonwood.
While comparing νu and νd for each species supports this conclusion, it may overlook correlation
of ν with DBH. Figure 5.3 shows that the sample of trees includes larger DBH oaks than cotton-
woods. If there is indeed a correlation between ν and DBH, the conclusion that ν is greater for oak
than cottonwood is may be incorrect. Unfortunately there is not enough data available to resolve
this issue. As such, we choose to assume an exponentially decreasing correlation between ν and
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Table 5.1: Regression parameter summary from log-linear regression of root cross-sectional area
(RCSA) with radial distance from trunk (l) after Chung (2013). Standard error, σ , is from mixed
model linear regression and δ = µ/σ .

A0 (m2)b α0 σα0 δα ν σν δν

Cottonwood 0.2890 7.969 0.5006 0.0628 0.4705 0.1421 0.3020

Oak 0.0793 6.676 0.3416 0.0512 2.121 0.2102 0.0991

b A0 = 10−4 expα0 = [m2] computed here from α0 of Berry and Chung (2013) and Chung (2013)

Table 5.2: Regression parameter ν from log-linear regression of root area, after Berry
and Chung (2013). Standard deviation, σ , computed independently from values from
Berry and Chung (2013).

Species n DBH (m) ν ν_u ν_d

µ σ µ σ µ σ µ σ

Cottonwood 3 0.16 0.06 3.97 1.85 4.64 2.24 3.30 1.05

Oak 13 0.27 0.08 3.53 3.47 5.65 4.06 1.40 0.24
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Figure 5.3: Comparison of parameter ν from log-
linear regression of root area. Data from Berry
and Chung (2013) are reported for each tree and
generally decrease with increasing DBH; data from
Chung (2013) is reported as a constant value for all
trees (dashed lines).
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DBH that is independent of species to control the rate of biomass decrease, allowing for different
values of A0 to control the absolute value of RAR for each species.

The species-independent log-linear relation of ν and DBH is defined:

lnν = βν ,0 +βν ,1 ln(DBH) (5.9)

Parameters βν ,0 and βν ,1 are selected using the slope of a log-linear regression analysis for νd ,
which had the higher R2. To simplify the biomass model, the downslope parameter, νd is computed
directly using Equation 5.9, and the upslope parameter, νu, is determined as a function of νd , offset
by a constant value ∆νud:

νu = νd +∆νud (5.10)

where ∆νud is set to 0.5, which is approximately the average distance between the two data sets,
νu−νd . This simplification incorporates the observation by Berry and Chung (2013) that biomass
decreases faster in the upslope than downslope direction when a tree is located on a slope. If a
level-ground condition is desired then the average value of νu and νd is used for both directions.
The regression lines and data from Berry and Chung (2013) are shown in Figure 5.4 along with fit
lines using parameters βν ,0 =−0.8, βν ,1 =−1.0 and ∆νud = 0.5.

5.2 Vertical Root Distribution
Root density variation in the vertical direction is non-uniform and can be described by average
depth, za, depth containing 90% of biomass (z90) and maximum depth, zmax. Due to apparent
inconsistencies between Berry and Chung (2013) and Chung (2013) only 15 of the 20 scanned trees
were used herein. As illustrated in Figure 5.5 there is a moderate correlation between the depth
descriptors and DBH: R2 is 0.39 for za, 0.60 for z90, and 0.59 for zmax. Table 5.3 summarizes the
vertical root data, and compares the ratio between each parameter: while there is some variation,
in general there is a doubling in value from za to z90 and from z90 to zmax. Average rooting depth
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Table 5.3: Summary of vertical root distribution data from trees excavated by Berry and
Chung (2013), computed herein from 15 of the 20 trees reported. Ratios are computed
using the data from each tree, not the ratio of computed averages. All R2 values are
recomputed using the subset of 15 trees.

DBH
(m)

za (m) z90 (m) zmax (m) za/zmax z90/zmax za/z90

Average 0.17 0.54 0.96 1.57 0.36 0.62 0.58

Minimum 0.08 0.36 0.38 0.62 0.27 0.43 0.42

Maximum 0.36 0.80 1.55 2.61 0.58 0.70 0.95

R2 with
DBH

– 0.39 0.59 0.60 0.27 0.01 0.16

was around 0.5 m and although zmax reaches a peak value of 2.61 m, the peak value for z90 of
1.55 m shows that most of the root mass is generally below 2 m. These data are consistent with:
observation by Berry (personal communication) that nearly all roots are located in the upper 1.0
to 1.5 m; maximum root pit depth of 2 m for larger trees reported by Coder (2010) and USACE
(2014a); and with maximum root pit data of around 1.7 m for larger trees reported by Peterson
and Claassen (2012) for larger trees. With taproot excluded, za was essentially uncorrelated with
DBH (R2 = 0.1), having an average value of around 0.5–0.6 m. Figure 5.5 shows that if the
correlations is extended beyond the dataset limit of DBH = 0.4 the values of za, z90 to zmax will
become unrealistically large. For example, at DBH = 1.0m, z90 would be on the order of 4.0 m,
which is more than twice the maximum pit depth reported by Peterson and Claassen (2012) at that
tree size. Thus, for large trees zmax should be considered independent of DBH.

As a part of the work by Berry and Chung (2013) and Chung (2013) virtual horizontal planes
were used to evaluate biomass in a similar manner to the VTP discussed above. While these
results would provide extremely useful details on the shape of root distribution with depth, they
were not included in either document. Unfortunately, all attempts to obtain the information were
unsuccessful.

The low R2 of 0.27, 0.01 and 0.016 for za/zmax, z90/zmax and za/z90 with respect to DBH
(Table 5.3) indicate the proportional relationship between depth parameters is consistent across
all tree sizes. To explore further za and z90 were regressed to zmax and za to z90, producing much
higher R2 than with DBH:

zavg = 0.18+0.23 · zmax, R2 = 0.75 (5.11)

z90 = 0.13+0.52 · zmax, R2 = 0.82 (5.12)

za = 0.20+0.35 · z90, R2 = 0.61 (5.13)

Figure 5.6 illustrates the regressions (solid lines) and visually confirms higher R2 when compared
to Figure 5.5. Due to the small data set, and to simplify the biomass model, a set of ratios is used to
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Figure 5.5: Average, maximum and 90% root depth versus DBH (Berry & Chung, 2013)

relate za, z90 and zmax, rather than using the linear regression equations. As can be seen in 5.6 and
Equations 5.11–5.13, za is about 1/4–1/3 of zmax and z90 is about 1/2–2/3 of zmax. These ratios
are also illustrated on Figure 5.6 as dotted lines.

A point-estimate of root-area ratio can be described as a function of depth, RAR(x,y,z), which
is equivalent to the measurement in a trench wall survey over an infinitesimal area A = dydz. A
density function is defined, fRAR(z), to describe the relative change in RAR with depth. When
integrated over z this function produces an average of root area ratio, RARz:

RARz =
1

z2− z1

∫ z2

z1

fRAR(z)dz (5.14)

The lateral component of the biomass model RARxy is computed for a given tree at location (x,y).
Vertical distribution of RAR with depth is needed to compute the point-estimate in three dimen-
sions, RAR(x,y,z) (or RARPS(x,yPS,z), described below) and is accomplished by scaling fRAR(z)
such that the integral in Equation 5.14 equals 1:

1
zmax

∫ zmax

0
fRAR(z)dz = 1 (5.15)

This allows the scaling function to provide the point-estimate in three dimensions as:

RAR(x,y,z) = fRAR(z) ·RARxy(x,y) (5.16)

Note that Equation 5.15 may imply the scaling function to be greater than 1 for certain z. This is
generally acceptable due to the exponential decay of RARxy which will prevent RAR(x,y,z) from
exceeding 1. For simplification in this section RAR(x,y,z) is referred to as RAR(z)

This work uses the lognormal distribution for the shape of fRAR(z) and is defined by param-
eters λ and ζ . Note that in this application it is not used as a probability density function for
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Figure 5.6: Comparison of vertical root distribution parameters to data reported by Berry
and Chung (2013). Dotted lines illustrate ratios of 1/4, 1/3, 1/2 and 2/3 for za/zmax(a),
z90/zmax(a) and za/z90(b).

RAR(z), but rather as a geometric description of changing root density with depth, scaled such
that depth-averaged root area is matched when integrated and averaged across the entire root zone.
Furthermore, the statistics of this shape function are known, making computations straightforward.
The mean and standard deviation of z (µz and σz) are used to find the mean and standard deviation
of ln(z) (i.e., λ and ζ ) with Equations 5.17 and 5.18:

ζ =

√
ln(1+

σz

µz

2
) (5.17)

λ = lnza−
1
2

ζ
2 (5.18)

Although σz is not provided by Berry and Chung (2013) or Chung (2013), it is possible to use
µz = za and z90 to define the spread of fRAR(z)(z). Parameter z90a is defined as the ratio of 90th

biomass percentile to average rooting depth (z90a = z90/za). The standard lognormal variate, Z%,
for any cumulative percentile (in this case 90%; Z90 = 1.282) relates za, z90a, λ and ζ :

P(Z90) = Φ(Z90) = Φ

(
lnz90−λ

ζ

)
→ Z90 =

lnz90−λ

ζ
(5.19)

Combining Equations 5.17, 5.18 and 5.19 and solving for ζ and λ in terms of za, z90a, and Z90:

ζ = Z90±
√

Z2
90−2lnz90a (5.20)

λ = ln(2za)−ζ Z90 (5.21)
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The two quadratic roots of Equation 5.20 produce different shapes of the lognormal distribution;
the larger value (i.e., the + in Eq. 5.20) produces an exponential shape, whereas the smaller root
produces a lognormal shape and is used for all computations herein. All that remains is to set the
values of za and z90a.

Consider the case where za = 0.33 m, z90 = 0.66 m and zmax = 1.00 m. Using the Z90 = 1.282
to set distribution spread (i.e., Equation 5.19) results in λ =−1.41 and ζ = 0.77. This combination
of parameters keeps 97% of the biomass distribution within the upper 1 m; thus 3% of biomass is
below zmax, which is supposed to be the max value for the model. Solving for the depth at which
fRAR(z) = 1×10−4, the typical value for max root extent in the lateral direction gives z = 4.36 m;
this is much deeper than the values obtained by either Berry and Chung (2013) or Peterson and
Claassen (2012). Thus, while za and z90 are appropriate fractions of zmax, the spread of biomass
at zmax and beyond is not as well represented. Fortunately the problem can be addressed by using
za = 0.25 m and z90 = 0.50 m (see Figure 5.6). Following the same math as above places only 1% of
biomass below zmax, and a depth for RAR(z) = 1×10−4 at z = 3.3 m. The distribution is illustrated
in Figure 5.7 and the key central tendencies are compared in Figure 5.8. This combination of
parameters is deemed to be the best balance between matching the existing data (i.e., the lines for
za and z90; Figure 5.8 are near the bottom of the data) and limiting excessive vertical spread for the
biomass model (i.e., zmax contains 99% of cumulative biomass; Figure 5.7).

Numerous studies have observed and applied the exponential decrease of root density with
depth and fit parameters to site-specific data (e.g., Bellugi et al., 2015; Jackson et al., 1996; Roer-
ing, 2008; Shields & Gray, 1992). These efforts are usually focused on capturing root distribution
over a vegetated region to capture the reinforcing effects on shallow landsliding, whereas this re-
search is focused on evaluating reinforcing effects of a single tree at a specific location within the
root zone. An exponential shape for root density places the maximum reinforcement at the ground
surface, which can cause problems in slope stability analyses, as discussed in the next chapter.
Bellugi et al. (2015) acknowledge problems fitting an exponential distribution within 10–20 cm
and Coder (2010) recommends a gamma distribution, which gives the mode of root density the
option of being zero or non-zero (i.e., similar to the exponential or lognormal, respectively); data
reported by Bischetti et al. (2005) is fit to a lognormal or gamma shape. The gamma distribution
was not used in this research because it requires three parameters and would be difficult to fit to
the available data.

Site-specific data of vertical root distribution is generally needed to fit a function for fRAR(z),
consisting of measured root diameter or RAR with depth. These data were interpreted by Berry
and Chung (2013) but unfortunately not made available for this study. Instead, statistical measures
of vertical root distribution from their report were be used (i.e., za, z90 and zmax), as described
above. To provide a comparison to published research, an exponential distribution was evaluated
of the form α exp−β z for fRAR(z), where α ∼ [−] is a scaling parameter and β ∼ [1/L] is a
shape parameter. Selecting α = 5 and β = 5 m−1 satisfies Equation 5.15 and is comparable to the
relationship used by Montgomery et al. (2009) and Bellugi et al. (2015) for conifer forests. As
illustrated in Figure 5.7, the exponential and lognormal models produce similar relationships, but
differ in statistical characteristics. Average, median and 90th percentile rooting depths are 0.20,
0.14 and 0.46 for the exponential model and 0.25, 0.19 and 0.50 for the lognormal. Although
similar statistically, the lognormal distribution is better able to match the parameters reported by
Berry and Chung (2013) while also preventing numerical issues with stability computations.

There is no depth at which computed RAR(z) becomes zero because the lognormal distribution
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Figure 5.7: Lognormal RAR density function, fRAR(z), and cumulative density, F(z).
Function is scaled to zmax by statistical parameters za/zmax = 0.25 and z90/zmax = 0.50 to
match data reported by Berry and Chung (2013) and RARz = 1.0 such that RAR(x,y,z) =
fRAR(z)RARxy(x,y). Due to asymptotic form RARz = F(zmax) = 0.99 and z =3.3 m when
fRAR =1e–4. An exponential model is shown for comparison with rate parameter of 5
m−1 and za = 0.20, z50 = 0.14, RARz(zmax) = 0.99 and z =2.2 m when fRAR =1e–4.

is asymptotic with increasing z. Despite what the name may indicate, RAR(z) is not set to zero
when z > zmax for analyses herein to prevent numerical discontinuities causing computation prob-
lems. Alternatively, zmax is used as an analytic index to: scale za and z90; calibrate the biomass
model output with empirical data; and to serve as a random variable in reliability analyses. Ex-
cept for sensitivity studies, zmax is not varied with DBH. While this is consistent with the data
described above it ignores the possible correlation between vertical root distribution and DBH for
small trees (i.e., DBH < 1 m). However, there is sufficient variation in the rate of biomass de-
crease (ν) with DBH to represent the full range of possible values because RAR(z) simply scales
the depth-averaged value RARxy. Thus, in the analyses herein zmax is essentially considered to be
a constant from 1.0 to 2.0 m, where za/zmax = 0.25 and za/z90 = 0.50 are selected to balance a
match of empirical data and to limit the biomass predicted for z > zmax.

5.3 Maximum Root Extent
Maximum root extent, MRE, defines the maximum distance of roots in the horizontal x̂–ŷ plane;
Lu, Ld and Ly are used to define this dimension in the upslope, downslope and lateral direction.
Berry and Chung (2013) correlated MRE to DBH in the up and downslope direction (shown in
Figure 5.9), finding upslope root extent is around half of downslope extent. Results are generally
below the correlation of MRE from Schwarz et al. (2010), compiled from 6 data sets on flat and
sloping ground for roots with diameters greater than 1–2 mm. All roots less than 8 mm were
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Figure 5.8: Central tendency parameters for lognormal distribution of roots with depth.

trimmed during field excavation of the root system (Chung, 2013) and it is assumed this is the
smallest size of an individual root at MRE. Ranges of MRE reported Coder (2010) and Coder
(2014) were compared to those of Berry and Chung (2013) as an additional source for the biomass
model and were found to match well with the line for upslope direction in Figure 5.9.

Data for MRE data has an acceptable correlation with DBH, but given the exponential decrease
of RAR from trunk center would produce insignificantly small values of RAR when used in levee
seepage and stability analyses. For example, RAR is 10−6 to 10−5 at MRE for DBH > 0.2 m in
the downslope direction (Figure 5.10). Specifying a minimum RAR beyond which no roots are as-
sumed to exist, RARmin, can minimize computation time, especially when numerical integration is
concerned (i.e., for plane-strain averaged values). Using Equation 5.8, the upslope and downslope
limits for MRE, Lu and Ld , can be computed for a given RARmin (as done in Figure 5.10). Lu and
Ld are radial distances measured in the horizontal plane, with respect to the tree trunk center. MRE
in the lateral direction is set to yMRE = (Lu +Ld)/2, and Equation 5.4 is applied to define MRE
as a function of θ . Due to the presence of Acyl in Equation 5.3, the RCSA implied by RARmin is
dependent on distance from the trunk (i.e., Lu or Ld) and depth of the root zone (i.e., zmax). Com-
bining the cross-sectional area of a single circular root (d = πd2/4) with Equation 5.3 produces
the equivalent diameter of a single root, d1, at distance l given RAR and zmax:

d1 =
√

8 · l(RAR) ·RAR · zmax (5.22)

where l is a function of RAR. The single-root equivalent diameter scaled by the square root of unit
length

√
l can be used as a reference value for visualizing the amount of biomass at a constant

RAR. Scaled single-root equivalent diameter, d1/
√

l, is presented in Table 5.4 in cm for various
values of RARmin and zmax. An estimate of d1 at the maximum root extent is found by multiplying
d1/
√

l by MRE. Considering most trees measured by Berry and Chung (2013) had MRE of 1 to 5
m, the values of d1 are generally consistent with the 0.8 cm limit that defines MRE for that study.
In other words, most of the values in Table 5.4 are on the order of 1 cm when multiplied by 1–2.2.
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d1/
√

l zmax

d1 in cm, l in m 1.0 m 1.5 m 2.0 m

RARmin

1×10−3 8.9 11 12

1×10−4 2.8 3.5 4.0

1×10−5 0.9 1.1 1.3

Table 5.4: Scaled single-root equiva-
lent diameter, d1/

√
l, of a single root

for specified combination of RARmin
and zmax. Computed for a unit dis-
tance from trunk (1 m) per Equation
5.22; actual equivalent root diameter
at MRE for a specific tree is found by
multiplying by

√
l. Units are cm for

d1 and m for l.

Figure 5.10 illustrates the predicted MRE for RARmin =1e–4, 1e–5 and 1e–6. All predictions
match the data well for low DBH; however RARmin =1e–4 is very low for DBH beyond 0.2 m.
Relatively small roots would be expected at large MRE, consistent with the 1–2 mm diameter limit
for data from Schwarz et al. (2010), and even the 8 mm diameter limit of Berry and Chung (2013).
Although larger diameter roots can travel long distances, the reinforcing capacity of a small number
of outliers is small relative to the potential slide mass in slope stability analyses. Thus, despite the
under prediction of MRE for RARmin, using a lower value can be acceptable for the engineering
applications considered herein. Based on remarks above, the general match between Berry and
Chung (2013), Coder (2010) and Schwarz et al. (2010) data, and the small amount of root volume
in the vicinity of MRE (see Section 5.6), it seems appropriate to limit biomass computations to
RAR > 10−4. If an analyses are found to be sensitive to RAR below 1e–4, RARmin can be adjusted
accordingly, at the cost of more time-consuming computations.

5.4 Root Ball Radius and Pit Depth
Root ball radius, Lrb defines the portion of the root zone where weight and wind loading are
transferred to the soil and acts with more rigidity than the roots further from the trunk. This zone is
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Figure 5.10: Comparison of maximum root extent, Ld , computed by the biomass model
and data reported by Berry and Chung (2013) and Coder (2010) for various values of
parameter RARmin. Curves also can be interpreted as distance from the trunk to a contour
of RARxy = RARmin. Schwarz et al. (2010) is a correlation of 6 literature sources for roots
down to 1–2 mm diameter: MRE = 18.5 ·DBH (R2 = 0.76). MRE is under predicted for
RARmin =1e-4, which does not have significance to engineering applications herein.

also considered to be the portion of the root zone that pulls out of the ground when a tree fails due
to wind loading. After windthrow occurs the resulting divot is described by root pit depth, zB, and
Lrb. Berry and Chung (2013) and Chung (2013) studies made no assessment of root ball radius,
but fortunately there is a wide body of literature reporting root pit dimensions and DBH.

Numerous windthrow studies have been analyzed by the USACE (2014a) to make recommen-
dations for root ball radius and pit depth. A consistent relationship was found between 676 obser-
vations across many species and locations for root ball, Lrb = 19.5 ·DBH + 43.9 with R2 = 0.64.
While a useful correlation was not found for root pit depth, over 100 observations from four sources
were used to confirm the field recommendation by Coder (2010) that zpit = 3.6 ·DBH forms an up-
per bound for the majority of windthrow pits, up to a maximum of zpit = 2.0 m. Furthermore,
46.5% of the almost 3,500 observations considered had zpit less than 1 m, 50% were between 1
and 2 m and 3.5% were greater than 2 m. Interpretations of data from a California study on cot-
tonwood and oak trees by Peterson and Claassen (2012) matched well the recommendations by
USACE (2014a) and is used herein for site-specific correlations of root ball, root depth and wind
load components of the biomass model.

Peterson and Claassen (2012) studied root pits formed after cottonwood and oak trees with
DBH of 0.13 to 1.28 m were winched to failure. A total of 70 trees were loaded with a winch until
failure occurred, 40 of which resulted in uprooting and 30 in broken trunks; the latter tended to be
smaller diameter trees. Critical overturning moment was computed from winch load and tree mass
(i.e., moment due to tree bending from vertical); Figure 5.11 illustrates the relationship of critical
moment with DBH for uprooted trees only.
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Area and depth were measured for each pit excavated by uprooted trees, but pit volume was too
variable in shape to measure consistently. Pit radii ranged from 0.5 to 2.3 m with an average of 1.3
m, whereas depth ranged from 0.4 to 1.7 m with an average of 1.0 m (most pits were less than 1.0
m). As illustrated in Figure 5.12, a consistent trend exists for smaller pits in oak when compared
to a similar diameter cottonwood; however, root pit is very scattered, appearing to increase with
diameter until a maximum value between 0.5 to 2.0 m is reached for diameters greater than 0.5
m. Furthermore, the largest cottonwood trees did not produce the largest pit radii and Peterson
and Claassen (2012) hypothesize this behavior has to do with either: large cottonwood roots cover
a smaller area than for oak; or, a larger percentage of biomass is left in the ground due to the
failure location of cottonwood roots. The lower biomass reduction rate, ν , found by Berry and
Chung (2013) for cottonwood compared to oak indicates the second hypothesis is more viable;
perhaps the strength of woody material controls. It is anticipated that the root pit depths from
Peterson and Claassen (2012) are upper limits of what most trees would excavate when failing
under natural circumstances. Since trees are more likely fall when their root systems have been
compromised with rot or soil erosion it would also be expected that the root pit dimensions would
decrease, seeking out the weaker root zone. Furthermore soil excavation would decrease under wet
conditions that exist for flood events; increased saturation of the soil results in a tendency for roots
to fail by pulling out of soil rather than breaking (Section 6.1). Finally, field observations of the
root systems of trees that have fallen in storms over the last two winter seasons were made as a part
of this project. Based on observations from dozens of trees, primarily large eucalyptus, oak and
cottonwood, the vast majority produce an extremely shallow root plate when failed by root pullout.
Coder (2014) summarizes Lrb that are nearly double the radius from Peterson and Claassen (2012).
Since the data from Coder (2014) has no description of methods and Peterson and Claassen (2012)
is specific to the Central Valley trees considered in this document Coder (2014) data for Lrb is
ignored.

Unfortunately there is not sufficient data to directly incorporate an allometric relationship for
zpit that captures the complex 3D structure of windthrow pits observed in the literature in addition
to matching other root distribution dimensions described herein. Figure 5.13 combines za, z90 and
zmax from Berry and Chung (2013) with zpit of Peterson and Claassen (2012); immediately it is
apparent only a few tens of centimeters overlap the coverage of DBH in the two data sets. Despite
this, zpit appears to be consistently less than z90 for DBH < 0.5 m; beyond this zpit seems to reach
a maximum of 1.5 to 1.7 m, and is well below the trend line for z90. This behavior is part of the
reason for not relating vertical root distribution to DBH in the biomass model (Section 5.2). If zmax
increases and zpit remains constant, a smaller portion of total biomass is predicted within the root
ball as DBH increases (i.e., growing distance from zmax and z90 in Figure 5.13). Furthermore, there
is significant evidence in data sources described herein supporting upper limits on vertical root
dimensions, especially as DBH increases. For a larger root ball enough soil mass is incorporated
that roots begin to break at a certain depth regardless of the tree size. This is analogous to the fiber
break phenomena observed and modeled by Pollen and Simon (2006), where roots break rather
than pull out of the soil (Section 6.1). Although root pit does not match up with a consistent value
of RAR(z), applying a maximum value for zpit provides a conservative means of evaluating the
effect that an excavated root pit might have on the subsurface seepage conditions and load transfer
to the levee.

Implementation of root ball radius, Lrb, in the biomass model uses the linear regression from
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Figure 5.11: Critical moment, Mcrit , for trees failed by uprooting and computed using
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Figure 5.12: Root ball radius, Lrb, and pit depth, zpit , from winching tests by Peterson
and Claassen (2012), separated by tree species. Lrb is computed from reported diameter
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βRB,0 βRB,1

Cottonwood 1.0289 0.3865

Oak 0.1723 2.2169

Average 0.8014 0.8573

Table 5.5: Linear regression parameters
for root ball radius, Lrb, and DBH after
data reported by Peterson and Claassen
(2012). Average parameters are used for
analyses with unspecified tree species.

Peterson and Claassen (2012):
Lrb = βrb,0 +βrb,1 ·DBH (5.23)

which has been modified from its original presentation in terms of area to use radius by assuming
a circular root ball. Parameters βrb,0 and βrb,1 are summarized in Table 5.5 and plotted in Figure
5.12

5.5 Plane-Strain Interpretation
A plane-strain equivalent of RARxy is necessary for incorporating the biomass model into stability
analyses. This value can be found at any location x along the levee transect through trunk center
by integrating Equation 5.6 over the root zone parallel to the levee axis (ŷ) and dividing by the
integration interval, yPS:

RARPS(x) =
∫

RARxy(x,y)dy
yPS

(5.24)

Equation 5.24 computes RARPS(x), the depth- and plane-strain averaged value of RAR(x,y,z)
at some horizontal distance x from the tree trunk center, illustrated in Figure 5.14, which uses

78



0 1 2 3 4 5 6 7 8 9 10
Distance from Tree Center, x (m)

10-4

10-3

10-2

10-1

100

P
la

n
e

S
tr

ai
n

R
o
ot

A
re

a
R
at

io
,
R

A
R

P
S
(x

)
(-
)

A0 = 0:3, v = 0:5

A0 = 0:1, v = 0:5

A0 = 0:3, v = 1:0

A0 = 0:1, v = 1:0

A0 = 0:3, v = 5:0

A0 = 0:1, v = 5:0

Figure 5.14: Plane-strain depth-averaged root area ratio, RARPS(x), from biomass model
with varying A0 and ν and yPS = 15 m, averaged in levee parallel direction. Computed for
level ground case νu = νd . Scaling by fRAR(z) provides 2D point-estimate of RARPS(x,z).

the same values of A0 and ν as Figure 5.2 in Section 5.1. Integration limits in ŷ are set to the
maximum root extent for each combination of A0 and ν . As with root cross-sectional area, the
depth and plane-strain averaged RARPS(x) decreases exponentially with distance from tree center
as shown in; however, due to the relatively small values of RAR at large y, the function decreases
more rapidly than a simple exponential reduction as x increases.

Note that applying Equation 5.24 with integration limits across the root zone (yMRE) is equiv-
alent to a plane-strain slope stability analysis RAR(x) representing trees spaced such that the max-
imum extent of one root system exactly matches with the root zone edge of the next tree. A more
sparse tree spacing can be incorporated by using a length such that yT S > yMRE , as shown in Figure
5.15. Numerical implementation of the root function forces RAR to zero when beyond MRE, so
setting yPS = yT S > yMRE limits the stability analysis to one tree and root system. A condition
where yPS = yT S < yMRE represents a tree spacing results with overlapping root systems. In this
case the RAR due to root ends of adjacent trees is not counted, as the numerical value is far less
than that of the root zone near the trunk, and implementation would unnecessarily complicate the
algorithm.

Unfortunately, Equation 5.24 does not have an analytic solution and must be evaluated numer-
ically; to minimize the number of computations, integration limits are set to the maximum root
extent, as RAR = 0 is assumed outside these bounds. Even with this truncation the small values of
RAR make numerical integration a time consuming component analyses. To maximize efficiency
an approximating function is matched to RARPS(x) for Lu ≤ x ≤ Ld whenever a new tree config-
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Figure 5.15: Plane-strain tree spacing schematic.

uration is called for. Parameters for the approximating function are subsequently passed through
functions in the analysis as long as that configuration is needed. For example, a suite of minimum
FS surface search in a stability evaluation, or one iteration of a FORM analysis with DBH as a
random variable. This approach only requires the numerical integration be completed once per
configuration.

5.6 Root Volume
Root volume, RV (x,y,z), is computed by integrating root area ratio over a volume of interest. The
integral can be thought of as an extrusion of RCSA with length and is integrated numerically:

RV =
∫∫∫

V
RAR(x,y,z)dV (5.25)

where the integration volume can take several forms, for example: dV = dxdydz or dV = d ldθ dz.
The most common form used in this research is:

RV (x1,x2) =

x2∫
x1

RARPS(x)dx (5.26)

where integrals over ŷ and ẑ are incorporated into RARPS(x). Root volume is used to determine
the distribution of weight and wind loading that is applied to soil in the root ball. It is assumed
that load transfer is proportional to root density, represented by the fraction of root volume within
region (x1,x2), normalized by the total root volume in the root ball: RV (x1,x2)/RV (−Lrb,+Lrb).

Root volume can also be computed across the MRE of the tree to understand how biomass
is distributed. As shown in Figure 5.16, 60% of biomass is located within the root ball when
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Figure 5.16: Cumulative root volume, RV , in-
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integrated radially (i.e., 3D). For the plane-strain case on a slope, about 38% and 62% of biomass
is located up and downslope, respectively. Within the root ball the upslope and downslope biomass
is more similar, with both close to 40%. Furthermore, it is interesting to note that nearly the entire
upslope biomass is located within the root ball (about 35% inside, 3% outside). Finally, when
upslope and downslope are considered together, the plane-strain case has just over 75% of biomass
inside the root ball.

Log-linear correlations of biomass (as mass) and DBH are available for numerous tree species
(e.g., Bolte et al., 2004; Drexhage & Colin, 2001; Goff & Ottorini, 2001; Pellinen, 1986), and
can be used with wood density to estimate root volume (e.g., Namm & Berrill, 2012). Attempts
to verify the biomass model with published correlations produced estimates of root volume that
were generally within an order of magnitude for smaller diameter trees, but incapable of matching
across the entire range of interest. Estimates of mass were lower than empirical correlations for
larger diameter trees, which may be due to a bias in the databases used for small trees. Another
more likely reason is that roots smaller than 8 mm were removed from the roots collected by Berry
and Chung (2013), which may dramatically underestimate the amount of biomass in the subsurface.
Therefore, root volume is only used as a general scaling parameter for comparing other biomass
properties, for example, cumulative biomass within a subset of the root zone as in Figure 5.16.

5.7 Tree Weight
Regressions for mass as a function of DBH are presented by Jenkins et al. (2004), which are also
used by the USACE in their vegetation analyses. However, regressions in Jenkins et al. (2004)
should be increased by 20% as they apply only to above-ground biomass and do not include mass
of the root system (Jenkins et al., 2003). Due to scatter in the empirical correlations and the
disregard of roots smaller than 8 mm by Berry and Chung (2013) and it is difficult to estimate the
true subsurface biomass for Central Valley tree. The log-linear regression for mass in kg and DBH
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Hardwood βmt,0 βmt,1

Aspen, alder, cottonwood,
willow

-2.2094 2.3867

Hard maple, oak, hickory, beech -2.0127 2.4342

Composite -2.1 2.4

Table 5.6: Tree mass parameters
for log-linear regression of mass
(kg) and diameter (cm) as reported
by Jenkins et al. (2004) for hard-
wood species. Composite values
can be used to represent a generic
tree species.

in cm for DBH > 2.5 cm is presented below, with parameters in Table 5.6):

ln mt = βmt,0 +βmt,1 ln(DBH)+ εW (5.27)

The term εW is root mean squared error estimate of standard deviation in natural log units, reported
as 0.507 for hardwood species including cottonwood and 0.236 for hardwood species including
oak. For a 1 m DBH tree predicted mass is approximately 7800 kg (17 kips) and 1200 kg (2.6
kips) for cottonwood and oak, or 9300 kg (21 kips) using composite parameters. When εRMSE
is applied to the composite parameters predicted mass ranges from 7200–12000 kg (16–26 kips)
εRMSE = 0.25 and 5600–15000 kg (12–33 kips) εRMSE = 0.50. The range of one standard deviation
encompasses the difference in predicted mass between each species. Using 3εRMSE = 1.50 predicts
a range of 2100–42000 kg (5–93 kips).

5.8 Model Results
Biomass model results are presented in Tables 5.7 and 5.8 for oak and cottonwood trees with 0.5,
1.0 and 1.5 m DBH. Maximum root extent (Lu and Ld) is larger for cottonwood but the root
ball(Lrb) is larger for oak, all of which increase with DBH. Biomass density at the root ball edge
(RARPS(Lrb)) is an order of magnitude greater for cottonwood than oak, a results of the greater
dispersion of from the trunk. This is also reflected in the single-root equivalent diameter (d1).

RAR and d1 when measured at the root ball seem to be lower than expected. Personal observa-
tions by the author of trees uprooted due to wind loading seem to have much greater than 10–20
cm2 of root cross-sectional area along the perimeter of exposed root plate. Because Lrb is estimated
as a circle, RAR and d1 are different in the upslope and downslope direction, yet both are similar
in magnitude. Although a definition of Lrb that is correlated to RAR from the biomass distribution
relationship might provide a more realistic estimate of actual root conditions, given the lack of
correlation to DBH the current approach is a reasonable approximation.

The log-linear correlation used for weight causes large diameter trees to quickly become large.
In addition to kg and lb, tree weight is expressed as an equivalent number of light-duty trucks for
comparison (assuming 2,300 kg or 5,000 lb per truck). A large variation of 1–14 trucks is found
between the 0.5 m cottonwood and the 1.5 m oak, but only 1–9 for the cottonwood. It should be
noted that cottonwood trees generally reach a much larger size than oaks. While an oak is at least
50% heavier than a cottonwood of the same diameter, its root ball radius is also larger, spreading
weight and wind forces over a larger area. However, biomass decreases more rapidly with the oak,
as evidenced by RAR at the root ball edge and shorter maximum root extent. Further insight of
biomass can be gained through spatial distribution of RAR.
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Table 5.7: Biomass model results for 0.5, 1.0 and 1.5 m DBH cottonwood trees.

Variable Tree 1 Tree 2 Tree 3

SI USC SI USC SI USC

DBH (m, ft) 0.5 1.6 1.0 3.3 1.5 4.9

Lu (m, ft) 3.51 11.50 4.84 15.90 5.57 18.30

Ld (m, ft) 5.06 16.60 8.87 29.10 12.20 40.10

Lrb (m, ft) 1.22 4.01 1.42 4.64 1.61 5.28

yPS (m, ft) 15.0 49.2 15.0 49.2 15.0 49.2

RARPS(+Lrb) (%) 0.104 0.104 0.181 0.181 0.204 0.204

RARPS(−Lrb) (%) 0.213 0.213 0.389 0.389 0.468 0.468

mt , Wt (kg, lb) 1490 3300 7820 17200 20600 45400

mt , Wt (trucks) 1 1 3 3 9 9

d1(Lu) (cm2, in2) 5.3 0.8 6.2 1.0 6.7 1.0

d1(Ld) (cm2, in2) 6.4 1.0 8.4 1.3 9.9 1.5

d1(Lrb,u) (cm2, in2) 10.1 1.6 14.3 2.2 16.2 2.5

d1(Lrb,d) (cm2, in2) 14.4 2.2 21.0 3.3 24.5 3.8
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Table 5.8: Biomass model results for 0.5, 1.0 and 1.5 m DBH oak trees.

Variable Tree 1 Tree 2 Tree 3

SI USC SI USC SI USC

DBH (m, ft) 0.5 1.6 1.0 3.3 1.5 4.9

Lu (m, ft) 2.87 9.42 3.91 12.80 4.47 14.70

Ld (m, ft) 4.08 13.40 6.96 22.80 9.43 30.90

Lrb (m, ft) 1.28 4.20 2.39 7.84 3.50 11.50

yPS (m, ft) 15.0 49.2 15.0 49.2 15.0 49.2

RARPS(+Lrb) (%) 0.033 0.033 0.018 0.018 0.009 0.009

RARPS(−Lrb) (%) 0.057 0.057 0.061 0.061 0.057 0.057

mt , Wt (kg, lb) 2190 4830 11800 26100 31800 70100

mt , Wt (trucks) 1 1 5 5 14 14

d1(Lu) (cm2, in2) 4.8 0.7 5.6 0.9 6.0 0.9

d1(Ld) (cm2, in2) 5.7 0.9 7.5 1.2 8.7 1.4

d1(Lrb,u) (cm2, in2) 5.8 0.9 5.9 0.9 4.9 0.8

d1(Lrb,d) (cm2, in2) 7.6 1.2 10.8 1.7 12.6 2.0
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Figure 5.17: Depth-averaged plane-strain root area ratio, RARPS(x), compared to field
data of Shriro et al. (2014) for a 1.0–1.5 m DBH eucalyptus. Reported data is from
root cross sectional area logged in four 1.8 m deep trenches that has been converted to
RARPS(x). Biomass model is computed for oak and cottonwood with two tree diameters
and plane-strain widths, with solid black line being best estimate of field conditions.

Computed RAR is comparable to empirical data reported for California levee sites other than
those of Berry and Chung (2013). Gray et al. (1991) and Shields and Gray (1992) measured RAR
from 1e–5 to 1e–2 in 1 m deep trenches on levees for oak, willow, elderberry, black locust and
non-tree vegetation. However, most of the data between 0.1–1.0 m had RAR from 1e-3 to 5e-3
(0.1%–0.5%), which is consistent with values outside the biomass model root ball. While the
trenches were located along the tree dripline, exact distance from each trunk and DBH are not
provided and cannot be directly compared to the biomass model. Shriro et al. (2014) recorded root
position and diameter in four 1.8 m deep trenches downslope of an approximately 1.0–1.5 m DBH
eucalyptus tree stump. The data was converted to RAR by finding the total root area measured in
each trench and dividing by the estimated area, which is equivalent to depth-averaged plane-strain
root area ratio from the biomass model, RARPS(x). Figure 5.17 compares computed RARPS(x)
of an oak and cottonwood for several combination of DBH and yPS. All four estimates for the
trench compare well with predicted biomass, although the cottonwood parameters over estimate
more than those for oak. The trench data closest to the trunk shows a decrease in biomass, which
is likely caused by a lack of large roots near the surface being recorded on the trench profiles.
Overall, the biomass model is capable of estimating biomass for real root systems.

Figure 5.18 illustrates plane-strain RAR for a 1.0 m cottonwood tree from the biomass model.
Contours in the plot represent values that would be measured in a root zone trench through the
trunk centerline from upslope to downslope direction (x̂). RAR decreases from 10% near the origin
(contour not visible) to RARmin = 10−4 at the maximum root extents (Lu and Ld). The model
estimates that RAR decreases to the minimum value within 3–9 m of the trunk, depending on the
slope direction, which is consistent with empirical data. Note the relatively small diameter of the
root ball when compared to the overall size of the root zone; this illustrates the small area over
which weight and wind effects are applied versus root reinforcement. Despite asymmetry in the up
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Figure 5.19: Plan view of waterside levee slope at Pocket site illustrating maximum root
extent, root ball radius and contours of RAR for 13 trees.

and downslope directions, RAR is about 1% near the edges of the root ball. Finally, the influence
of vertical biomass distribution causes RAR to diminish rapidly with depth, especially away from
the trunk and out of the root ball. This area is characterized by the presence of a handful of single
roots which would be noticeable in an excavation, but have a limited impact on levee performance.

To further illustrate the spatial distribution of root density for various trees, Figure 5.19 is a
plot of RAR contours for the 13 trees measured along the Pocket Levee waterside slope (DBH
ranged from 0.2 to 1.1 m). The plan view starts at the waterside hinge where the y-axis is zero,
and measures horizontal distance along the slope to the waterside toe, at about 25 m. Maximum
root extents are mapped, along with root ball limits; as with the profile view of RAR, note the
significantly smaller region covered by the root ball compared to the entire root zone. It is also
possible to observe the cumulative effect of RAR for trees that are spaced close enough to have
overlapping roots systems. While the RAR increases at these locations (e.g., 32 m along the x-axis
and 14 m along the y-axis), the effect is not large; RAR generally does not increase more than an
order of magnitude.

Figure 5.19 is especially useful for identifying locations where a potential failure surface may
be located. Although the root systems cover a significant portion of the slope, there are definite
regions where RAR is small nor non-existent and would provide no reinforcing effect to the lateral
edge of a failure surface. Alternatively, it is clear that if the top or bottom edge of a failure surface
were located along a line of trees (e.g., between 5 to 15 m along the y-axis) there would definitely
be a reinforcing effect on that surface.
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Chapter 6

Influence of Vegetation on Levee Seepage
and Stability

Tree objective of the analyses presented herein is to evaluate the influence of root reinforcement,
tree weight and wind loading on levee stability. Root reinforcement is determined from root area
ratio, whereas weight and wind utilize root volume (Figure 6.1). All computations are performed
for each slice in a potential slope stability failure surface. If the slice is determined to be within the
root zone of any tree, an evaluation of RAR and RV is made, subject to the particular settings for
root system geometry and vegetation settings. When tree weight and wind forces are determined,
the proportion of root volume in any slice relative to the total root ball volume is used to distribute
loads (Figure 6.2). Weight and wind loads are only applied within the root ball and are scaled by
root volume in the root ball.

6.1 Root Reinforcement
Roots are known to have a reinforcing effect on soil by increasing its compressive and tensile
strength, as well as its erosion resistance. Increased soil strength due to roots can be estimated
in two ways within a slope stability analysis: increasing the apparent cohesion of a soil layer or
applying single root elements within the root zone (equivalent to reinforcing elements in slope sta-

Figure 6.1: Schematic of tree effects on slope stability
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Figure 6.2: Proportion of root volume and root area ratio used for scaling the contri-
bution of weight and wind loads to slice i in a slope stability analysis, represented by
hatched area. Root reinforcement is only applied if the slice base midpoint is located
within the root zone.

bility literature; e.g., Duncan and Wright (2005)). Cohesion is the simplest method to implement
and there are published relationships available relating cohesion to RAR; however, it can cause
numerical problems within the slope stability algorithm. Single root elements do not cause numer-
ical problems, but it is difficult incorporate the location of the required elements into the soil for a
given root zone, as well as determine an appropriate value for those loads. Computing a reinforce-
ment load for an individual root is relatively straightforward given the diameter, species and soil
strength; however, the biomass model is based on RAR and there are infinite combinations of root
diameter with distance from a tree that depend on an assumed number of roots. Although Berry
and Chung (2013) report root numbers for surveyed trees, it is difficult to apply this to an individual
root-based model for root reinforcement; therefore, a cohesion-based model was selected.

Root density is proportional to the increase in soil cohesion, ∆cR, due to root reinforcement:

∆cR =CR RAR(x,y) (6.1)

Where CR has been reduced to a single value (units of stress) that depends on a variety of factors,
including: vegetation species, soil type and moisture content, geometry of root and sliding surface
and failure mode of root. Background for this model and appropriate parameter values can be found
in Gray and Ohashi (1983), Gray and Sotir (1996), Shields and Gray (1992), Ziemer (1981) and
Wu et al. (1979). Although the linear relationship between RAR and ∆cR is a simplification of the
non-linear relationship between reinforcement concentration and strength increment (Shewbridge
& Sitar, 1989), it is considered impractical to develop a more representative relationship in the
biomass model. This would require estimates of root diameter and stiffness, for which data is
not available to estimate with confidence. Instead, the non-linear relationship is represented by
the root reinforcement parameters Crb and Cpo, described below, which are generally based on the
fiber bundle models of Pollen and Simon (2005) and Pollen and Simon (2006). A typical value for
CR is approximately 2300 kPa, as used by Shields and Gray (1992) to analyze sandy levees in the
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Central Valley of California with root densities of 640 kg m−3 (40 pcf). Thus, a RAR value of 0.01
results in an increased cohesion of 23 kPa (480 psf), which is what would be found near the root
ball boundary (refer to Figure 5.18). Although implementation of CR as a single-valued constant
may over simplify the physical problem, modeling CR as a random variable provides an estimate of
its influence on slope stability. Within slope stability computations ∆cR is computed by evaluating
RAR(x,z) at the midpoint and bottom of any slice located within a root zone. Consequently, root
reinforcement is only included in the analysis when a potential sliding surface intersects the root
zone.

A numerical problem is encountered when root reinforcement is included as cohesion in stabil-
ity computations. Slope stability analyses use Spencer’s Method of slices to solve for FS, which is
formulated with Mohr-Coulomb model of soil strength, S, with soil parameters cohesion, c′, and
friction angle, φ ′:

S = c′+N tanφ
′ (6.2)

Normal force on each slice, N, along with FS, is solved for iteratively as part of the stability
algorithm. When cohesive soils (i.e., c′> 0) are included near the surface of a slope and N becomes
small due to low overburden, stability computations can produce negative normal forces. This can
prevent the stability algorithm from converging on a solution for N and FS, and also implies tension
between slices at the top of the slope. Fortunately this issue is most common with very shallow
surfaces, which are a small subset of failure geometries that generally unlikely to cause complete
levee failure (e.g., the non-linear surface in Figure 4.3). Despite this, the numerical issue must be
prevented to understand the incremental effect of vegetation on levee stability.

Soil is typically considered incapable of supporting tensile loads, and a common practice is
to truncate the sliding surface such that tensile forces do not occur, referred to as a tension crack
(Duncan & Wright, 2005). Rankine active earth pressure theory is used to estimate the maximum
possible crack depth by solving for the depth where horizontal stresses are zero (i.e., the transition
from tension to compression forces):

zcrack =
2c

γ tan(45−φ/2)
(6.3)

An alternative solution is to eliminate strength when tensile forces are present (Duncan & Wright,
2005) by which tension can occur in soil. This is problematic because the inability of (rootless)
soil to carry tension is used to justify the two solutions to the numerical problem, which no longer
applies. Fortunately, the physical characteristics of root reinforcement can be used to justify limits
on ∆cR, preventing a majority of numerical issues in addition to addressing the shortcomings of a
linear reinforcement model.

Roots are limited in their capacity for soil reinforcement by failing in two modes: rupture,
when the maximum strength of individual roots is exceeded; and pullout, when shear resistance of
the bond between root and soil is exceeded. Rupture is governed by tensile strength of the root,
whereas pullout is controlled primarily by properties of the soil (Waldron & Dakessian, 1981);
specifically shear strength and moisture. Pollen and Simon (2005) provide good background on the
various root models and their deficiencies. Large roots are certainly capable of resisting significant
tensile forces; however, the relatively shallow depth of large roots makes mobilization of entire
capacity unlikely. Further justification comes from maximum rooting depths on the order of 2m
and the local variations in actual failure surface geometry that are capable of finding a path to avoid
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the largest roots. Parameters Crb and Cpo are defined as limiting values for ∆cR and are introduced
to account for the limiting effect of reinforcement due to rupture (i.e., root breakage, “rb,” or
rupture) and pullout (“po”), respectively. Crb is the maximum stress that can be added to the soil
before root rupture would occur, whereas Cpo is a fraction of the estimated vertical effective stress,
defined by the following equation:

Cpo = f ·σ ′v = f · (Wi−ui) (6.4)

Subscript i indicates the weight and pore pressure (W and u) are found for an individual slice.
Although a proportional coefficient for CR over estimates root reinforcement due to the as-

sumption that all roots are perpendicular to the shear surface and break simultaneously (Pollen-
Bankhead et al., 2013) and by ignoring pullout (Sonnenberg et al., 2011), the root limits Crb and
Cpo provide a mechanism for limiting the unrealistic values of ∆cR. However, lack of available
data and numerous influencing factors make it difficult to set appropriate values. Various estimates
are available for small roots, for example, Waldron and Dakessian (1981) measured reinforcement
of around 2.5 kPa in saturated clay loam, limited by pullout failure of the 2 mm diameter (average)
roots. Pollen and Simon (2005) considered both failure modes and found a maximum reinforce-
ment of 5 kPa for roots under 1 cm in diameter. Pollen and Shields (2007) applied maximum root
reinforcement of 0.84–20 kPa to low cohesion silty sand channel slopes with vegetation conditions
varying from grass to mature trees. These are lower values than would be realized in the high RAR
zone near the trunk and ground surface, so care must be taken to prevent ∆cR from being too low.
Therefore, Crb and Cpo parameters are only used to limit tension forces when numerical issues
prevent FS from being computed. When Crb and Cpo are applied the complete root reinforcement
model is defined by Equation 6.5:

∆cR =


Cpo ·σ ′p, if CR ·RAR(x,y)>Cpo ·σ ′p
Crb, if CR ·RAR(x,y)>Crb
min{Cpo,Crb}, if Cpo and Crb apply
CR ·RAR(x,y), otherwise

(6.5)

These limits can dramatically influence computed FS and should be used with caution. Numerical
issues generally occur for very shallow slices and that are located close to the trunk center where
RAR is relatively high. As will be seen, it is relatively easy for a slope failure surface to avoid
zones of high cohesion which results in a lower computed FS; it is not realistic to force a potential
sliding surface through a high root density zone. Thus, root reinforcement limits can be applied
within reason despite a lack of data as long as a new minimum FS surface is found relative to the
non-vegetation case. Furthermore, since root reinforcement has a positive effect on stability and
Crb and Cpo scales the magnitude of ∆FS, root limits provide a conservative estimate of FS for
slope stability.

In summary, RAR can adequately capture soil reinforcement due to roots with a linear model,
although numerical problems may occur when ∆cR causes tension at the top of the sliding surface.
There is clear physical justification for limiting root reinforcement to mitigate the problem in high
RAR zones near the trunk and near the ground surface, especially when vertical effective stress is
low due to rupture and pullout failure of roots. Unfortunately there is insufficient data to set the
limiting values for every case; however, the parameters are easily applied when needed to allow
computation of FS.
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6.2 Tree Weight
Due to the small proportion of root volume at large distances from the trunk, it is inappropriate
to apply tree weight across the entire root zone of a tree. The root ball is used as a structurally
significant zone where most of the tree loads are concentrated; since it marks the limit where trees
pulled out of the ground, it should be close to the zone over which they transfer loads into the
ground. Root ball radius is used to represent the area where tree weight (and wind) forces are
applied to the soil. Total tree weight is computed from mass, Wt = g ·mt , and is applied to a
particular slope stability slice as a proportion of root volume within slice i to total root volume in
the root ball, RVrb:

Wi =Wt
RVi

RVtot
(6.6)

Given the exponential decay of root density with distance, most of the total weight is applied
near the trunk center. Weight is divided by plane-strain spacing, yPS, when applied in the slope
stability analysis. Since root volume is a relatively smooth function it better represents reality than
a single line load. Furthermore, a smooth function avoids numerical issues that may occur due to
discontinuities from a single line load during minimum FS searches or reliability analyses.

6.3 Effect of Root Reinforcement and Weight on Stability
Incremental effects of a tree on safety factor are evaluated using two strategies: the tree location
is fixed and the biomass parameters are varied; and, the biomass parameters are fixed and tree
location is allowed to vary. A 1 m diameter cottonwood is used as a base case scenario, using a
plane-strain tree spacing of 15 m. Since the lateral maximum root extent for a tree of this size is
13.7 m, the spacing is analogous to a case where a majority of the levee has roots present, but there
is no overlap between the root zones of adjacent trees.

Figure 6.3 shows how FS is changed for the landside hinge circle (minimum FS) given 4 dif-
ferent diameter cottonwood trees located 1 m downslope of the landside levee hinge (the landside
hinge has a X-coordinate of 80 m). The smallest tree (0.5 m) has a small positive effect and the
largest tree (2.0 m) has a larger negative effect; the 1.0 m tree has a nearly neutral effect. As hy-
draulic loading increases the magnitude of change to FS decreases. Incremental change in FS is
0.1–0.2.

A similar analysis is presented in Figure 6.4 for four additional slip surface types. The tree size
increases stability for the shallow and wedge surfaces (plots c and d), with the opposite (and much
smaller magnitude) true for the entire crest failure (b). Although only the circular failure surface
is shown in Figure 6.4b, the same behavior was observed in the non-circular case. For the lower
water levels and landside hinge non-circular surface (plot a), FS increases with tree size; however
the trend changes for higher water, and FS cannot be computed, which is problematic. This is
an example of tensile stresses near the crest preventing convergence of the stability algorithm,
caused by root reinforcement of the tree. This is a scenario when root reinforcement limits can
allow Spencer’s method to converge. The magnitude of ∆FS is greatest for the surface with the
smallest cross-sectional area, which is a two-part effect. Shallow surfaces have higher root density
and any reinforcement has a larger relative impact on strength. An additional consideration is that
tree weight with respect to overall sliding mass. For the complete crest circle a negligible root
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Figure 6.3: Slope stability FS for
landside hinge sliding surface and
a 0.5–2 m DBH tree located 1
m downslope from hinge (Xtree =
81 m). Computed with yPS = 15
m. Root reinforcement produces
net positive effect due to tree when
DBH is 0.5 and 1.0 m, with weight
increasing and causing net negative
effect when DBH is 1.5 and 2.0 m.

density influences stability, and ∆FS is entirely due to weight, which is small. Further insight can
be gained by separating these effects.

Influence of tree location is shown in Figure 6.5, found by changing the position of various
diameter trees from waterside slope to beyond the landside toe. Plots in the left column include root
reinforcement and weight while plots on the right have root reinforcement removed for different
failure surfaces: complete crest wedge (e), landside hinge (a) and complete crest circle (c), in
order of largest to smallest vegetation effects. Deeper sliding masses are affected less by the tree
due to root reinforcement and weight having a smaller impact. No decrease in FS occurs for the
wedge surface; this is a result of the planar geometry, which precludes a change in moment when
tree weight is incorporated into the analysis. This is also observed to a lesser extent in other non-
circular surfaces where the upper sliding surface is located within the cohesionless soil layer in the
embankment.

In general, a tree has a effect on computed FS as the root zone approaches the entry or exit
point for each circle. The exponential increase in ∆FS is related to increasing RAR at the sliding
surface edge, and maximum increase in FS occurs when the tree is located directly on the circle
entry/exit. This is due to the influence of cohesion in the root zone, and the computed values of
FS asymptotically approach +∞, which is not realistic. All sliding surfaces considered show this
effect. As the tree increasingly overlaps upslope sliding surface (i.e., left edge) a negative influence
on FS is seen, caused by the reduction in root reinforcement and increasing influence of weight.

The right side of Figure 6.5 has ∆FS with only weight considered, which has an effect on the
two circular surfaces, decreasing FS by about 0.10 and 0.02 when near the crest and increasing FS
by 0.2 and 0.1 when near the toe for shallow and deep circles, respectively. Figures 6.5f illustrates
the negligible influence weight has on planar failure surfaces. When the tree is located within the
sliding mass near the levee crest there is a negative effect on stability due to an increase in driving
force, whereas the opposite is true on the downslope end. For each case the positive effect of
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weight, i.e. a combined effect of resisting force and increased soil strength, is greater in magnitude
than the negative effect. Although the sliding surface might be of similar depth at the top and
bottom of the slope, high pore pressures in the blanket layer reduce effective stress and thus affect
the strength more near the levee toe. Thus, the applied tree weight increases FS more in this area.
All weight is applied through the root ball, which causes a linear increase in FS as the root ball
moves downslope and is entirely within the sliding mass. The neutral point occurs when the tree
is located below the radius origin for the circular surface, as no moment is applied to the sliding
mass at this point. Weight does not have an influence on the wedge surface because moments have
no effect on the stability of a planar wedge and the increase in weight results in a counteracting
increase in strength.

Root reinforcement limits, Crb and Cpo, are applied to the tree position analyses and are pre-
sented in Figure 6.6. Crb is set to 23 kPa and is an independent maximum value placed on ∆cR. For
reference, this value represents the root reinforcement expected where RAR is about 1%, which
is near the root ball area of a tree (Figures 6.6a, c and e). Cpo limits ∆cR to a fraction of vertical
effective stress, in this case 1.0 (Figures 6.6b, d and f). Both parameters are effective at limiting the
dominating (and unrealistic) asymptotic effect of root reinforcement. The peaks near sliding sur-
face entry and exit are still present, and they are much less pronounced; although still a noticeable
effect, weight has taken a larger share of the vegetation effect.

Slope stability analyses with root reinforcement limits removed illustrates the significant effect
on FS by the cohesion term CR. Although results show the numerical effect of these parameters in
preventing unrealistic results, in reality a lower FS sliding surface exists within close proximity to
the surface. As such, the true estimate of ∆FS can be found by fixing tree location and performing
a search for minimum FS using the biomass model.

Minimum Safety Factor Surface with Vegetation

A critical component of geotechnical slope stability analyses is finding the potential sliding surface
with the minimum safety factor given a set of conditions. Once found, sensitivity studies can
be performed to evaluate the effect of changing parameters. This approach is sufficient when
parameters are applied to soil layers that contain large portions of the minimum FS surface because
a changed value has a consistent effect on all surfaces with similar geometry. This is not the case
when vegetation is considered on a slope, as tree effects are concentrated in a relatively small area
relative to sliding surface extent. Previous discussion has considered the numerical effect on FS
when trees are added in various locations on the slope and sliding surfaces are defined relative
to the non-vegetation case. The true assessment of ∆FS, however, is found by comparing ∆FS
between the minimum FS surface without vegetation, Fmin, and the new minimum FS surface
when vegetation has been added to the slope, FSmin,V . Although circular surfaces can capture
some of these effects, the flexible geometry of non-circular surfaces is capable of finding lower
FSmin,V ; however, the planar geometry and shallow depth found in non-circular surfaces requires
limits for root reinforcement.

Figures 6.7–6.9 present three suites of results that are representative of the interaction between
FSmin and FSmin,V , circular and non-circular surfaces and four tree scenarios. For each suite of
analyses subfigures (b)–(d) compare FSmin and FSmin,V surfaces for the tree scenario shown, which
are shown in combination on subfigure (a) compares all surfaces. Root reinforcement and weight
effects are applied to the slope for a 1 m DBH cottonwood in all cases with zmax = 1 m and
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(a) Landside hinge, non-circular
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(b) Complete crest, circular
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(c) Shallow circular cosmetic surface
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(d) Wedge, complete crest

Figure 6.4: Slope stability FS for 4 sliding surfaces and a 0.5–2 m DBH tree located 1
m downslope from hinge (Xtree = 81 m). Computed with yPS = 15 m.
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(a) Landside hinge, circular
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(b) Landside hinge, circular; weight only
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(c) Complete crest, circular
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(d) Complete crest, circular; weight only
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(e) Complete crest, wedge
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(f) Complete crest, wedge; weight only

Figure 6.5: Slope stability FS for four sliding surfaces and a 0.5–2 m DBH with tree
position varied. Results in a, c and e include root reinforcement, ∆cR, and weight, Wt ; b,
d and f only include weight. Computed with yPS = 15 m. Scale of FS is the same as for
wind loading in Figures 6.10a–6.10d.
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(a) Minimum FS, circular; Crb = 23 kPa
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(b) Minimum FS, circular; Cpo = 1.0
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(c) Complete crest, circular; Crb = 23 kPa
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(d) Complete crest, circular; Cpo = 1.0
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(e) Complete crest, wedge; Crb = 23 kPa
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(f) Complete crest, wedge; Cpo = 1.0

Figure 6.6: Slope stability FS with reinforcement limits for four sliding surfaces and a
0.5–2 m DBH with tree position varied. Results in a, c and e use root breakage limit
Crb = 23 kPa; b, d and f use pullout limit Cpo = 1.0. Computed with yPS = 15 m. Scale
of FS is the same as for wind loading in Figures 6.10a–6.10d.
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yPS = 15 m located at xtree = 81 m (1 m from landside hinge), 86.5 m (slope midpoint), 93 m (toe)
or at all three locations. Maximum root extent is illustrated by the shaded area within the contour of
RARmin =1e–4, along with a darker zone illustrating root ball limits; the tree itself is not drawn to
scale. Results of FS on each figure report the minimum FS surface found with no tree considered
(“no tree, FSmin”), the same surface considering the tree scenario shown (i.e., no new search;
FSmin) and the minimum FS surface found considering the tree scenario shown (FSmin,V ). In all
cases the most important observation is that new minimum FS surfaces do not change significantly
for the tree scenarios considered, and differences between all three values computed for FS are
small, generally |∆FS|< 0.1, with a few exceptions.

Tree effects increase FS for all locations when evaluating stability with circular surfaces, al-
though the maximum increase is only ∆FS = +0.043 for a tree located at the levee toe. The
minimum FS search produces a ∆FS for FSmin,V on the order of 0.01 below the original minimum
FS surface. Tree location has a significant influence in the small values observed for ∆FS, since
only small adjustments in the circular geometry are necessary to move away from the root ball.
This effect is most clearly illustrated in Figures 6.7b and 6.7d, where the tree is located close to
the surface. For the mid-slope case the change in sliding surface is negligible because root rein-
forcement is not a factor. As such, there is only a small increase in FS of 0.005 due to weight. The
FS computed without vegetation for each FSmin,V surface in subfigures (b)–(d) is 1.338, 1.324 and
1.328, greater than FSmin by a maximum of ∆FS = 0.016.

When non-circular surfaces are considered stability is only improved when the tree is located
at the toe, in this case by ∆FS =+0.043. In this case the geometry changes more significantly than
the circular surface, as it is topologically capable of completely avoiding the entire root zone of the
tree, following the contour of RARmin =1e–4 closely. Furthermore, FSmin,V is 1.328 for the non-
circular case, which is lower than FSmin,V =1.365 for the circular case. Although the non-circular
sliding surface does not enter the root zone, the tree still has an effect on the slope by forcing the
minimum FS surface to a more stable condition.

Stability is negatively impacted when the tree is higher on the slope, decreasing by 0.078 when
located at the hinge and 0.040 at the slope midpoint as a result of weight. The surface completely
avoids the root zone of the tree at the slope midpoint, thus there is no root reinforcement effect.
There is little difference in geometry between minimum FS surfaces, but it is sufficient to cause a
completely different levee response, as the FSmin case has an increase in FS of 0.003. As shown
in the previous section, weight has little impact on the landside hinge surface when the tree is
located near the slope midpoint. However, when the sliding surface is allowed to vary, only a small
adjustment is necessary to maximize the effect of weight as a driving force on the sliding mass and
result in a lower value for FSmin,V .

A more significant change in geometry is found for the non-circular case when the tree is
at the levee hinge. The surface cannot completely avoid the root zone, but it does move away
from the root ball, avoiding the highest zone of root reinforcement. Root reinforcement plays a
significant role in this scenario, as FSmin,V cannot be computed without a tree. Computations fail
when CR in the first slice falls below about 20 kPa (Cpo . 6), implying a high tensile strength in the
smallest portion of the sliding mass that is likely not realistic. If Cpo is reduced, the non-circular
failure surface search produces a shape that becomes more non-linear as the upper end avoids the
high RAR zone, causing additional problems in the method of slice computations. Furthermore,
computation of FS using the FSmin surface is only possible with Cpo & 0.75, as the applied CR is too
high near the trunk center. It is impossible to determine an appropriate limit for root reinforcement
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when the tree is located within shallow stability slices at the top of a slope without assuming the
number and size of individual roots. However, it is clear that despite root reinforcement, tree
weight causes a slight decrease in FS when located at the top of the slope.

Evaluating three trees on the levee at once produces the most dramatic changes in sliding
surface geometry, with circular and non-circular cases moving deeper to avoid root reinforcement
at the entry and exit points and shallow locations on the slope. Overall stability is increased in
every case, which is a logical result considering the positive effects of trees located at the levee toe
are generally greater than the negative effects at the hinge. Reported FSmin,V are lower than FSmin
by 0.050 for the circular surface and 0.190 for the non-circular case, the most significant difference
in the suite of analyses described in this section. Given the plane-strain condition of yPS = 15 m
and inclusion of three large trees on the levee slope, this scenario represents a highly vegetated
condition. Thus, it seems that an upper limit for ∆FS due to root reinforcement and weight is on
the order of +0.1 for landside slope failures.

Results reported in Figure 6.9c illustrate the influence of root reinforcement with respect to
overall levee stability. The FSmin,V surface finds the least stable condition by avoiding root rein-
forcement at the top of the slope, which is limited by Cpo = 1 to allow a solution to be reached for
the FSmin surface. With respect to the no vegetation case of FSmin = 1.285, a maximum increase
on the order of 0.2 is computed. If root reinforcement is eliminated entirely, ∆FS = +0.049, due
entirely to weight. Thus, selection of Cpo effectively scales the magnitude of the predicted positive
effect on stability for the three tree scenario. Unfortunately an assessment of root number and
diameter must be made to determine an appropriate value for this increase.

When the sliding surface is forced to exit the levee toe it cannot avoid the root zone as ef-
fectively as the other surfaces considered. Given the relatively low soil mass represented by this
geometry, problems with high tensile stresses due to root reinforcement become more problematic.
As reported in Figure 6.9d, Cpo must be set to 1 to obtain a solution, with ∆FS limited to +0.006
if root reinforcement is eliminated entirely. As described above, while Cpo allows computation of
a solution, it directly controls FS through CR.

Evaluating the change in minimum FS surface due to root reinforcement and weight illus-
trates the change in FS due to trees, as well as behavior of the biomass model when included in
slope stability analyses. Relatively small changes in surface geometry can significantly reduce the
magnitude of computed vegetation effects relative to a fixed surface analysis. A smaller, but still
significant reduction is found even when only the root ball can be avoided. This observation has
implications for understanding the interaction of the root zone and 3D sliding surface geometry on
the levee slope. Even though tree crowns may be closely spaced in a dense tree arrangement, the
root ball extents are much smaller (see e.g., Figure 5.18) and a critical sliding surface could easily
find a path of least resistance between them. Although it is expected the response would be similar
for sliding surfaces with higher mass (i.e., the complete crest case), the magnitudes of ∆FS found
in this section would be greatly reduced.

6.4 Wind Loading and Effect on Stability
Wind loading is dependent on tree size and wind velocity and is transferred to the slope through
the root system. Because the acting location of the load is above ground (i.e., somewhere in the
canopy) and the tree is not rigid, wind also applies a moment to the soil. Wind loads are transferred
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(b) Tree at landside hinge.
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(c) Tree at slope midpoint.
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(d) Tree at toe.

Figure 6.7: Minimum FS circular surfaces for 1 m DBH cottonwood on crest, slope or
toe. Computed with zmax = 1 m, yPS = 15 m for root reinforcement and weight effects.
FSmin is the minimum FS circular surface found without vegetation effects, computed
with and without the tree condition shown. FSmin,V is the minimum FS surface found
with the tree condition shown. Maximum root extent is represented by shaded contour
of RARmin =1e–4 and root ball by darker shaded region. Tree not drawn to scale.
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(b) Tree at landside hinge.
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(c) Tree at slope midpoint.
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(d) Tree at toe.

Figure 6.8: Minimum FS non-circular surfaces for 1 m DBH cottonwood on crest, slope
or toe. Computed with zmax = 1 m, yPS = 15 m for root reinforcement and weight ef-
fects. FSmin is the minimum FS non-circular surface found without vegetation effects,
computed with and without the tree condition shown. FSmin,V is the minimum FS surface
found with the tree condition shown. Value of Cpo reported when necessary to obtain so-
lution for FS. Maximum root extent is represented by shaded contour of RARmin =1e–4
and root ball by darker shaded region. Tree not drawn to scale.
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(b) Circular surfaces with three trees.
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(c) Non-circular surfaces with three trees.
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(d) Shallow surface exiting toe with three trees.

Figure 6.9: Minimum FS surfaces for 1 m DBH cottonwood on crest, slope and toe.
Computed with zmax = 1 m, yPS = 15 m for root reinforcement and weight effects. FSmin
is the minimum FS surface found without vegetation effects, computed with and without
the tree condition shown. FSmin,V is the minimum FS surface found with the tree condi-
tions shown. Value of Cpo reported when necessary to obtain solution for FS. Maximum
root extent is represented by shaded contour of RARmin =1e–4 and root ball by darker
shaded region. Tree not drawn to scale.
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to the relatively stiff part of the root system, the root ball (as with weight; Figure 6.1), and can be
separated into a horizontal force due to the wind itself and vertical forces due to the overturning
moment transferred from tree to soil by the roots (Figure 6.1).

A typical approach for estimating wind load would require canopy area, drag coefficient and
wind velocity for a tree (Coder, 2014; Stathers et al., 1994; USACE, 2011). Once these parameters
are estimated a horizontal load can be estimated along with an equivalent moment if an acting
height is assumed. Unfortunately, the parameters required to complete the analysis for this re-
search are difficult to estimate using allometric relationships, even if they were well supported by
existing data. As an alternative, critical moment data from Peterson and Claassen (2012) can be
used as an upper limit to wind loads, which were calculated from winching tests discussed above.
Critical moment, Mcrit , represents the ultimate load a tree can transmit to the soil before failing in
windthrow, after which it is no longer capable of transferring wind loads to an embankment. As
illustrated on Figure 5.11, a crude upper bound to wind load is Mcrit = 1000 ·DBH, measured in
kN−m (per 1 m width). While some data are above this ratio, the majority are below, with every
result greater than Mcrit = 100 ·DBH. In general, Mcrit is closer to 100 kN-m for DBH below 0.5
m. The parameter Cw is defined as the moment coefficient for wind, relating DBH to moment
applied to a slope due to wind load, having units of [kN] (per 1 m width): Mw =Cw ·DBH. Using
Mw to evaluate the effect of wind loads on levee stability is similar to the deterministic approach
for setting WSE at a high level, since it assumes an event has occurred when performing compu-
tations. As such, FS with wind load effects can be considered the worst-case scenario for a levee
when subjected to a wind velocity that causes uprooting for the specified tree.

Data related to stresses in a root system subjected to external loads is sparse. In general,
it is difficult to obtain data experimentally, as strain must be actively measured in roots during
winching tests (Watson, 2000); although Stokes (1999), for example, was able to obtain strain
data illustrating the formation of tension and compression zones. Coder (2010) and Coder (2014)
summarize available data and provide guidance for wind loading computations, although emphasis
in the literature is on evaluation of tree failure rather than load transfer to a slope, as needed for
this research.

To quantify wind loads in slope stability analyses using a method of slices, Fw,h and Fw,v must
be computed for any slice i intersecting the root ball of a tree, denoted Fw,h,i and Fw,v,i. The force
on each slice is computed using an assumed distribution within the root ball. Horizontal loads are
found from the following equations, which require an assumption for acting heigh, hw:

Fw,h =
Mw

hw
= ∑

i
Fw,h,i Fw,h,i = Fw,h

RVi(∆xi,yPS,∆zi)

RVrb
(6.7)

where RVrb is total root volume in the root ball and RVi(∆xi,yPS,∆zi) is the fraction of root volume
in slice i , resulting in the higher horizontal loads near the trunk that decrease towards the root
ball edge. Root volume is integrated over slice width ∆xi and depth ∆zi, measured vertically from
the midpoint and bottom of slice i. Vertical forces are computed from overall wind moment using
several possible shapes of distributed load, fw,v(x). All distributions are applied such that the
vertical forces sum to zero and are equivalent to the total wind moment:

Fw,v = ∑
i

Fw,v,i = 0 Mw =

+Lrb∫
−Lrb

x fw(x)dx = ∑xr,iFw,v,i (6.8)
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where xr,i is the moment arm of each force relative to the trunk for slice i. The vertical load applied
to each slice is found by integrating the distributed load across slice width ∆xi and scaling by
vertical biomass using the RAR density function:

Fw,v,i =
∫

∆zi

fRAR(z)dz ·
∫

∆xi

x fw,v(x)dx (6.9)

Because the density function fRAR(z) integrates to 1 over zmax, integrating over ∆zi is the fraction
of biomass in slice i relative to the entire root zone at xi. While Equation 6.9 should be normalized
to zpit instead of zmax, given the rapid decay of RAR with depth the quantitative difference does not
warrant incorporating an extra paramter and computations into the biomass model. Furthermore,
consistent application of fRAR(x) across the root zone implies the computed proportionality is
consistent for biomass fraction in the root ball. All wind forces are applied at the midpoint of
each slice in the horizontal and vertical plane when the slice is within the root zone. If the slice
base is below the root zone wind forces are applied at ∆zi/2. Note that vertical forces due to the
overturning moment balance to zero; however, the vertical force magnitude on each slice in a slope
stability analysis will influence the safety factor, especially if only part of the root ball overlaps the
sliding surface analyzed.

Wind is a rapid loading phenomenon, as maximum wind gusts generally only occur for a few
seconds at a time (Oliver & Mayhead, 1974), typically 1.5–2.0 times the sustained average wind
speed (Coder, 2014). Furthermore, the natural frequency of oscillation for a tree makes it sensitive
to short gusts with respect to windthrow failure (see e.g., Stathers et al., 1994). As such, wind acts
like an undrained loading condition for soil, although that term is avoided to prevent confusion with
other methods of standard geotechnical practice. The slope stability algorithm used for analyses
herein was modified to conservatively ignore the increase in soil strength due to wind. In other
words, Fw,h and Fw,v should be incorporated into the limit equilibrium equations as external forces
which interact with normal and interslice forces, but should not allowed to modify soil strength.
Unfortunately, within the method of slices normal forces are dependent on external loads and
are also used in strength computations. To isolate these effects the algorithm for simultaneously
satisfying force and moment equilibrium was completed twice: first, ignoring wind forces to solve
for FS and obtain the strengths computed along the base of each slice; then, solving for FS again
with wind forces included but strengths from the first analysis held constant. This method allows
wind forces to act on the sliding mass but not influence soil strength.

Incorporation of the wind load into a plane-strain analysis is accomplished by dividing wind
forces by the plane-strain spacing, yPS, which represents the average loading on a levee for a given
tree spacing, yT S (for analyses presented herein yPS = yT S). Note that it is inappropriate to use a
plane-strain spacing equivalent to the root ball diameter (yPS = 2Lrb), as this implies continuously
spaced trees adjacent root balls, dramatically over-estimating the load applied to a levee. With
yPS applied, the horizontal force applied to the sliding mass in a slope stability analysis can be
computed as:

Fw,h =
Mw

hwyPS
=

CwDBH
hwyPS

(6.10)

per 1 m width. Using the upper limit for moment capacity of a tree, Mw = 1000 kN–m, Fw,h
is computed in Table 6.1 for various combinations of hw and yPS, which is useful for evaluating
parameter selection. In general, hw and yPS are correlated, since both increase with increasing

103



Table 6.1: Horizontal wind load, Fw,h for varied acting height (hw), plane-strain spacing
(yPS) and moment coefficient Cw = 1000 kN, computed as Fw,h = Cw DBH h−1

w Y−1
PS for

DBH = 1 m. Values in table are the magnitude of load applied in 2D slope stability
analyses as kN (per 1 m width), with kips in parenthesis. An appropriate upper limit
for Fw,h used in slope stability analyses is on the order of 1DBH–10DBH kN, given
Cw ∼ O(100−1000) kN, hw ∼ O(10) m and yPS ∼ O(10) m.

Fw,h in kN (kip)

(Mw = 1000 kN−m)

Plane-Strain Width, yPS (m)

3 5 10 15

Wind Load

Acting Height, hw

(m)

1 330 (75) 200 (45) 100 (22) 67 (15)

5 67 (15) 40 (9.0) 20 (4.5) 13 (3.0)

10 33 (7.5) 20 (4.5) 10 (2.2) 6.7 (1.5)

15 22 (5.0) 13 (3.0) 6.7 (1.5) 4.4 (1.0)

DBH. As such, values in the lower right corner of the table are more appropriate for stability
analyses. It should not be forgotten that the lower-bound for tree moment capacity is one-tenth the
values in the table (i.e., Cw = 100). Considering trees with DBH = 1 m have a height above ground
on the order of 30 m and hw is typically in the middle third, even the worst case of Cw = 1000 kN
produces a horizontal load on the order of 1–10 kN (1 kip), which corresponds to the lowest values
in Table 6.1. Most importantly, since ∆FS must be computed with a specific DBH tree, Equation
6.10 and Table 6.1 provide a means of equating different assumptions to the same horizontal load
applied to a slope.

Results of slope stability analyses with wind forces are presented in Figure 6.10 using a range
of loading conditions: Fw,v =0.67, 6.7 and 67 kN (per 1 m width). Root reinforcement and weight
are not included. Subfigures on the left are for wind in the downslope (i.e., destabilizing) direction
and those on the right are for wind in the upslope direction. For each of the three potential sliding
surfaces used a similar shape response is produced, with the maximum ∆FS for Cw = 1000 kN
approximately –0.3, –0.2 and –1.5 for landside hinge, complete crest circle and wedge surfaces
with wind in the downslope direction, and +0.6, +0.3 and +2.0 for the upslope direction. Although
the Cw = 1000 case represents an inappropriately high load condition, it illustrates the numerical
effect on FS when wind is included in slope stability analyses. Broken lines in the figures reflect
the inability of Spencer’s method to reach convergence for a solution due to high loads in limit
equilibrium equations, especially for the wedge case, which is a planar surface. High frequency
variations in ∆FS are caused by edge effects as the root zone begins to overlap the sliding surface
edge and individual slices receive a wind load, defined at the slice midpoint. For lower (and more
reasonable) values of Cw the response becomes more regular, with |∆FS| gradually increasing as
the root zone overlaps the sliding surface edge. For circular surfaces, maximum values of |∆FS|
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are less than 0.025, and less than 0.2 for the wedge surface.
Three different models of vertical force distributions were tested, all of which assume a hinge

point, the location xw,v0 within the root ball such that fw,v0(xw,v0) = 0 at a distance one-third of
the root ball width from the leeward end, per Coder (2010). Vertical forces imply a tension zone
upslope from the hinge point and a compression zone downslope. Models 1, 2 and 3 incorporate
constant, linear and triangular distributions, respectively, in each zone. Thus, models 1 and 2
imply non-zero vertical loads at the edge of the root ball; however, scaling by relative biomass
proportion in the root ball prevents large forces from being incorporated at the limits. Note that
due to the asymmetry of tension and compression zones, the maximum absolute magnitude of
force distribution must be larger for compression to satisfy ∑Fw,v,i = 0.

Wind effects are generally constant for reasonable values of horizontal load when the tree root
zone is located entirely within the horizontal limits of the sliding mass. Figure 6.11 examines the
response of FS as the root zone becomes overlapped with the upslope edges of the complete crest
circle and wedge surface for a 1 m DBH cottonwood with Lrb = 1.4 m (total root ball with of 2.8
m; downslope edge effects were similar). Computed ∆FS is plotted for total wind load, horizontal
only and vertical only, for models 1–3 of ditributed load. Clearly the model choice for vertical
load distribution has a minimal effect on FS, and once the root ball overlaps the sliding surface
all models produce a small ∆FS, approximately +0.01 for the circle and –0.001 for the wedge. A
positive change for the circle is due to a stabilizing moment from the downslope wind direction;
a similar negative change is obtained when wind is in the upslope direction. There is essentially
not change for the wedge surface because moments do not influence limit equilibrium equations
for the planar geometry. Horizontal loads steadily increase as the root ball overlaps the sliding
surface edge, reaching maximum values in each case of approximately –0.15 and –1.15. Finally,
it is apparent that the overall effect on FS is a superposition of the individual effects from vertical
and horizontal loads.

Although not presented herein, vertical force distributions were varied to evaluate the effect on
stability, such as the location of xw,v0 and alternate distribution shapes. All alternatives considered
had a negligible effect on the response of FS, except predictable changes in edge effects where the
root zone begins to overlap the sliding surface, as discussed above. Due to the scaling of vertical
loads by biomass proportion, only very small loads are applied at the root ball limits, ±Lrb. This
is inconsistent with the physical breakage or pullout of roots that control the root pit dimensions,
implying a critically high tension within the roots at x = ±Lrb. As such, lateral limits for vertical
force application were extended beyond x =±Lrb by ∆x and maximum values of fw,v matched with
x = ±Lrb. This modifies the integration limits of Equation 6.8 to x = (−Lrb−∆x,Lrb +∆x). As
with other variations of vertical load distribution that were examined, this had a negligible effect
on FS, except slightly altering the tree position where edge effects began.

Wind effects were evaluated for a range of loading using three sliding surfaces in Figure 6.12:
landside hinge, complete crest circle and wedge. For each evaluation, a single tree is located
entirely within the sliding mass, thus the scenario represents maximum |∆FS| for any tree location,
and Equation 6.10 can be used to extend results to any load condition. Actual computations were
completed for a 1 m DBH cottonwood with hw = 1 m, yPS = 10 m and tree location at the levee toe
(x = 93 m), or x = 89 m for the wedge surface. Given that reasonable wind loads should be on the
order of 1–10 kN, results in Figure 6.12 show that |∆FS| due to wind loading should be no more
than ±0.1. Finally, in summary:
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Figure 6.10: Slope stability FS for three upslope and downslope horizontal wind loads,
Fw,h = 0.67, 6.70 and 67.0 kN, with tree position varied across three potential sliding
surfaces. Computed for a 1 m DBH cottonwood with yPS = 15 m, hw = 1 m and Cw = 1,
10 and 1000 kN (per 1 m width). A triangular distribution was used for vertical loads.
Scale of FS in a–d is the same as for root reinforcement and weight in Figures 6.5 and
6.6. Root reinforcement and weight not included in these analyses.
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Figure 6.11: Wind loading effect at edge of for three models of vertical force distributed
load: uniform, linearly and triangular. Hinge point is located 1/3 of the root ball width
from the leeward edge. Computed for a 1 m DBH cottonwood with Fw,h = 67 kN (yPS =
15 m, hw = 1 m and Cw = 1000 kN) applied to the complete crest circle and wedge
surfaces on left and right, respectively (per 1 m width). Downslope edge effects were
similar; root reinforcement and weight are not included here.
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Figure 6.12: Change in FS for various loading conditions, represented by total hori-
zontal load, Fw,h. Wind forces are applied to the landside hinge, complete crest circle
and wedge sliding surfaces (per 1 m width). Using Fw,h allows non-parameterized pre-
sentation of ∆FS using Equation 6.10. Actual values of ∆FS computed for a 1 m DBH
cottonwood (i.e., Cw = Mw) with hw = 1 m and yPS = 10 m, with tree located at levee toe
(x = 93 m; x = 89 m for the wedge), although ∆FS is constant when root ball is entirely
within sliding mass. Root reinforcement and weight are not included here.

• DBH, horizontal load acting height, hw, and plane-strain spacing, yPS play a significant role
in determination of horizontal load, Fw,h, which control ∆FS

• vertical loads, Fw,v, have a small overall effect on ∆FS

• although there is a wide range in the ultimate moment that could be transferred to soil, for
typical conditions Fw,h should be on the order of 1–10 kN

• ∆FS is independent of tree position when the root zone is not crossed by the sliding surface

• for typical conditions (i.e., 1–10 kN) wind effects should result in |∆FS|< 0.1

6.5 Vegetation Random Variables for Stability Analyses
There are many possibilities for implementation of vegetation parameters as random variables in
FORM analyses, although many of them would likely have a small effect on reliability. To sim-
plify results, vegetation random variables are grouped into two classes: biomass and load factors.
Biomass analyses consider the variability of biomass parameters and choices, while the load factor
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analyses consider the variability in loading. These random variables are generally selected to eval-
uate the effect of parameter choice and probability distribution parameters are selected to represent
a reasonable range of possible values for each factor since appropriate data is not readily available.

The analyses were performed using tree position and DBH as random variables; however, they
did not produce additional insights beyond those already described in sensitivity studies and deter-
ministic slope stability results. Using deterministic analyses to evaluate the influence of position
and DBH avoids the necessity of selecting a probability model for each variable, which is not
readily available. Given the allometric basis of the biomass model, variability in DBH is implicit
in the inclusion of biomass factors as random variables. Finally, because the response of slope
stability evaluations is so dependent on tree position, including it as a random variable complicates
interpretation of the effect of biomass and load factors.

Biomass Factors

To evaluate the variability of biomass model parameters a generic multiplication factor, Bx, can
be defined to modify the deterministic values discussed in the previous chapter. Three different
factors are presented herein, Bν , Brb and Bz, which are applied as a product to the following:

• rate of biomass decrease: Bν ·ν
• root ball radius factor: modifies Brb ·Lrb

• maximum rooting depth: Bz · zmax

These three parameters were selected to emphasize the distinct behavior of overall root density
(Bν ), width over which weight and wind loads are applied (Brb) and vertical distribution (Bz).
Each factor is assigned lognormal distribution to preclude negative values and is assigned λ = 1.0
to preserve the deterministic value as the distribution median. Parameter ζ controls the variance
of each factor, with the one standard deviation (68.3%) confidence interval computed as ±expζ

(Appendix A). Thus, Bx is essentially a scaling parameter that changes the related variable by
factor 0.7–1.3 for ζ = 0.3 or 0.4–2.7 for ζ = 1.0 at the first confidence interval. The range of
possible values for ν , Lrb and zmax considered in the previous chapter generally fall within the
range provided by Bx when ζ = 1.0. For example, νd ∼ 2 for a 0.2 DBH tree, which would result
in a confidence interval of 0.8–5.4, whereas the maximum range of data for all ν is approximately
1–8 for DBH < 0.2 m but only 1–4 for DBH > 0.2 m.

Due to the sensitivity of FS computations for shallow sliding surfaces, reliability analyses have
difficulty converging when the variability of Bz is high. Furthermore, the data supports a low value
of ζ = 0.25 for the probability distribution, which results in a confidence interval of 0.8–1.3 m. If
the 99.7% confidence interval (3σ ) is considered, zmax ranges from 0.5–2.1 m, which aligns well
with the upper limit recommended by Coder (2010).

Mechanical Load Variables

Biomass model parameters influence the spatial distribution and magnitude of root density in a
levee, but are not directly related to specification of mechanical loads on the slope. Parameters
directly related to the magnitude of root reinforcement, weight and wind can be represented by
random variables to evaluate their effect. A normal or lognormal distribution is used herein to
evaluate the following parameters:
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• CR, root cohesion factor; N(µ = 2300kPa,δ ) (4.7e+4 psf)

• εW , root mean squared error of tree mass regression; N(µ = 0,σ)

• Cw, moment coefficient describing load transfer from wind to soil; LN(λ = 5,ζ )

Note that εW is an error term in log units and when the normal distribution is applied it causes
the prediction of weight from the log-linear regression to have a lognormal response. For wind
loading, parameters λ = 5 and ζ = 0.5 give Cw a median value of 150 kN and mean of 170
kN, which is within the range of values described above (i.e., 10–100 kN), and produces and
appropriate horizontal load, Fw,h, for tree conditions considered herein.

6.6 Reliability of Levee Stability with Tree Effects
Reliability analyses for the levee model with vegetation random variables were performed using
the FORM algorithm. In addition to the seven seepage and stability random variables described
previously up to 6 vegetation random variables were included in three suites of analyses:

1. Mechanical load factors for root reinforcement, CR, and tree weight, εW

2. Biomass factors (Bν , Brb and Bz) and mechanical factors CR and εW (i.e., all but Cw)

3. Wind loading, with root reinforcement and weight (i.e., all six)

The reliability analyses presented in this section incorporated yPS = 15 m for a 1 m DBH
cottonwood tree located at the landside hinge or 3 m away from the toe. When at the hinge the root
zone overlaps the landside hinge surface but not the complete crest circle. The toe location was
selected to have a similar overlap by the root zone of both surfaces.

Landside Hinge, Case 1 (CR and εW )

It should be no surprise that importance measures for the two vegetation variables are small in
comparison to WSE, zB and γB. However, comparison to the reference analysis indicates the inclu-
sion of vegetation has several effects on the FORM analysis when the tree is located at the landside
hinge (ie., Tables 4.3 and 6.2), beginning with an increase of β from 2.99 to 3.05 and decrease of p
from 1.4e–3 to 1.2e–3. Although changes in the design point are small, they reflect the additional
stability due to the tree, for example, x∗i for zB decreases from 2.7 m to 2.6 m, indicating a slightly
thinner blanket will be necessary for sliding to occur.

When the tree is located at the toe several results are found indicating a higher effect on stability,
for example β = 3.28 and p =5.2e–4 (Table 6.3). Importance of tree weight is still relatively low,
but has increased by an order of magnitude since it is now providing resistance at the bottom of the
slope, counteracting low effective stresses. More important is the root reinforcement variable, CR,
which has become the fourth most important variable, after WSE, zB and γB. Sensitivity measures
indicate the mean of CR has a significant effect on reliability, consistent with deterministic results.

Fragility curves and µFS provide further insight into reliability results across the upper range
of WSE (Figure 6.13). Each plot compares fragility and µFS with and without vegetation, where
confidence intervals for the vegetation case only include uncertainty due to vegetation probability
distributions. The contribution of all random variables included in the analysis are ranked on each

110



figure. For both tree scenarios a small but positive improvement in is found, reflected by a lowering
of the dark line for fragility and raising for FS (also evidenced by the increase in deterministic FS
line). The shaded bands for the confidence intervals confirm a small overall effect of vegetation
random variables on stability. Since root reinforcement has a much larger impact on computed FS
when the tree is at the levee toe, uncertainty in the CR leads to a wider confidence interval. Despite
the increasing dependence on this parameter, it should be noted that even an extremely low value
of CR is unlikely to reduce FS or β significantly, as the uncertainty band with for both vegetation
random variables does not even reach the best-estimate for the reference analysis that excludes
vegetation.

Landside Hinge, Case 2 and Case 3

Cases 2 and 3 add more vegetation variables to the reliability analysis, resulting a more nuanced
understanding of the problem at the cost of increasing complexity (Tables 6.4 and 6.5). For Case
2 results, water level was not included in the analysis since it was completed as part of a fragility
curve. Furthermore, zB and Kr were left out of the Case 3 analyses to facilitate FORM computations
when WSE is included, since the large number of random variables makes convergence difficult to
achieve. Because the random variables are different, the design point and β are not comparable,
but importance vectors will maintain the same relative magnitudes. Together, these analyses show
that WSE, γB and zB still dominate stability with |αi| for each generally on the order of 0.1. All
vegetation variables have |αi| an order of magnitude less with a consistent exception being the
biomass factor Bν , with α ∼ +0.2, it is a demand variable. Ranked uncertainty contributions
on the fragility curves in Figure 6.14confirm these observations. Since ν controls the decrease
in biomass, higher values concentrate root density closer to the trunk, thus limiting the lateral
extent of root reinforcement. While this would seemingly imply weight would also be affected and
should have a more significant role in stabilizing the slope, the importance of Brb and εW indicate
the opposite. In fact, the mechanical load CR is not as important as Bν for Case 3, as α is on the
order of 1e–2. Although the difference is less significant in the Case 2 analysis, it is still less than
αi for Bν . Thus, while deterministic analyses illustrate the effect of root reinforcement on stability,
the reliability analysis illustrates that the rate of biomass decrease with distance from the trunk has
a larger impact on FS than the reinforcing load itself. In other words, given the range of possible
values at a specific location for RAR is more important than CR.

Tables 6.5 and 6.6 present Case 3 results for wind in the downslope and upslope direction,
respectively. For each case, the predicted probability of slope failure is 2.5e–2 and 2.7e–4, a
difference that produces large differences between the two fragility curves in Figure 6.14, although
both cases are safer than the case without vegetation. In comparison to Case 1, Cases 2 and 3
introduce greater uncertainty in the analysis, evidenced by the wider confidence interval bands in
comparison to Figure 6.13. Relative changes in µFS are analagous, with a decrease in FS that still
remains above the non-vegetation case. Since the tree is located at the levee toe it stabilizes the
slope with weight and root reinforcement, thus increasing overall reliability.

Although not presented herein, additional fragility curves were produced with root reinforce-
ment limited by Cpo = 1. These analyses produced nearly identical results for β and p with
predictable changes to sensitivity and fragility. As found in deterministic analyses, Cpo directly
controls the magnitude of ∆FS due to root reinforcement; in reliability analyses the same effect is
evidenced as a reduction of importance measures for Bν and CR. The positive change with respect
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Table 6.2: Reliability results for vegetation Case 1 (CR and εW ) for circular landside hinge
sliding surface with 1 m DBH cottonwood located at levee hinge.

RV Unit x∗ u∗ α δ η

γB kN/m3 1.74e+1 –5.29e–1 –1.73e–1 1.73e–1 –9.16e–2

cB kPa 1.13e+0 –1.94e–1 –6.35e–2 6.35e–2 –1.23e–2

φB
◦ 3.58e+1 –1.22e–1 –3.94e–2 3.94e–2 –4.80e–3

γE kN/m3 1.86e+1 –2.01e–1 –6.57e–2 6.57e–2 –1.32e–2

φE
◦ 3.77e+1 –1.36e–1 –4.46e–2 4.46e–2 –6.05e–3

zB m 2.62e+0 –1.73e+0 –5.67e–1 –1.15e+0 7.33e+0

Kr m/s 2.34e+3 2.12e–1 7.00e–2 –3.53e–1 3.30e–2

WSE m 3.76e+0 2.42e+0 7.94e–1 –3.69e–1 –1.23e+0

CR kPa 2.15e+3 –9.55e–2 –3.11e–2 3.11e–2 –2.97e–3

εW ln kN 6.13e–3 1.23e–2 4.01e–3 –4.01e–3 –4.92e–5

a β = 3.045 and p = 1.163e−03
b Order of Importance, α: WSE, zB, γB, Kr, γE , cB, φE , φB, CR, Wt
c All vectors are unitless except design point, x∗; alternate units: γB =111 pcf, cB =23.5 psf, γE =118

pcf, zB =8.59 ft, WSE =12.32 ft (WSE/H = 0.72)
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Table 6.3: Reliability results for vegetation Case 1 (CR and εW ) for circular landside hinge
sliding surface with 1 m DBH cottonwood located at levee toe.

RV Unit x∗ u∗ α δ η

γB kN/m3 1.74e+1 –5.12e–1 –1.55e–1 1.55e–1 –7.95e–2

cB kPa 1.13e+0 –1.88e–1 –5.71e–2 5.71e–2 –1.07e–2

φB
◦ 3.58e+1 –1.29e–1 –3.89e–2 3.89e–2 –5.02e–3

γE kN/m3 1.86e+1 –1.95e–1 –5.90e–2 5.90e–2 –1.15e–2

φE
◦ 3.78e+1 –1.30e–1 –3.94e–2 3.94e–2 –5.11e–3

zB m 2.42e+0 –1.88e+0 –5.71e–1 –4.24e–1 6.05e+0

Kr m/s 2.45e+3 2.38e–1 7.29e–2 –3.65e–1 3.38e–2

WSE m 3.97e+0 2.58e+0 7.88e–1 –3.48e–1 –1.28e+0

CR kPa 1.85e+3 –3.65e–1 –1.11e–1 1.11e–1 –4.04e–2

εW ln kN –6.81e–2 –1.36e–1 –4.13e–2 4.13e–2 –5.63e–3

a β = 3.283 and p = 5.138e−04
b Order of Importance, α: WSE, zB, γB, CR, Kr, γE , cB, Wt , φE , φB
c All vectors are unitless except design point, x∗; alternate units: γB =111 pcf, cB =23.6 psf, γE =118

pcf, zB =7.95 ft, WSE =13.02 ft (WSE/H = 0.77)
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Figure 6.13: Reliability results for vegetation Case 1 (CR and εW ) for circular landside
hinge sliding surface with 1 m DBH cottonwood located at levee hinge and toe. Fragility
curves compare FORM analysis with vegetation effects included to a reference analysis
of the same sliding surface without vegetation (light gray). Confidence intervals for
vegetation case only include uncertainty from vegetation variables.
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to the non-vegetation case is reduced for fragility curves, in addition to the confidence interval
band decreasing in width. However, even with root reinforcement limited, there is still a positive
overall influence of vegetation on levee response.

Reliability results for the landside hinge sliding surface indicate that the influence of vegetation
on stability is within the confidence interval bounds on aleatory uncertainty for fragility and within
a standard deviation of the mean estimate of FS. Vegetation parameters are generally less important
for overall stability than the strength and seepage parameters that were also included in the analysis,
although the distribution of root density and root reinforcement parameter can come close. Finally,
while these observations can be generalized for various tree locations, they must take into account
the size of the potential sliding mass and proximity of the root zone to the sliding surface.

Complete Crest Circle

Reliability results for the complete crest circular sliding surface are illustrated with fragility curves
for vegetation Cases 2 and 3 in Figure 6.15. Importance and sensitivity results can be obtained
from the rankings on the fragility curves. In comparison to the landside hinge surface, fragility of
the complete crest geometry is much more stable. As found with deterministic analyses, the effect
of vegetation is relatively small, illustrated by the deviation of vegetation curves from the results of
cases without vegetation. Sensitivity due to vegetation parameters is essentially negligible, imply-
ing no combination of unfavorable parameters could significantly affect the stability assessment of
this surface. Since wind is included in this analysis, it implies that even the most extreme wind
loading event would be unlikely to be problematic.

Of all the vegetation variables, weight (εW ) has the largest impact, as it is located on a portion
of the slope where weight has a positive effect on stability. However, it is still less important than
all other non-vegetation variables. Since the tree is located away from the sliding surface root
reinforcement has negligible influence on stability.

Overall, reliability results for the complete crest sliding surface illustrate that vegetation has
a small effect on stability for such a large mass, and even the large range of possible values for
biomass and mechanical loading parameters are insignificant when compared to the range and
likely values of strength and seepage properties.
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Table 6.4: Reliability results for vegetation Case 2 (Bν , Brb, Bz, CR and εW ) for circular
landside hinge sliding surface with 1 m DBH cottonwood located at levee toe. Results are
from a fragility curve analysis, therefore WSE is not included as a random variable.

RV Unit x∗ u∗ α δ η

γB kN/m3 1.74e+1 –4.99e–1 –2.54e–1 2.54e–1 –1.27e–1

cB kPa 1.13e+0 –1.84e–1 –9.35e–2 9.35e–2 –1.72e–2

φB
◦ 3.58e+1 –1.34e–1 –6.83e–2 6.83e–2 –9.17e–3

γE kN/m3 1.86e+1 –1.88e–1 –9.60e–2 9.60e–2 –1.81e–2

φE
◦ 3.78e+1 –1.28e–1 –6.50e–2 6.50e–2 –8.31e–3

zB m 2.55e+0 –1.78e+0 –9.05e–1 –1.51e+0 1.11e+1

Kr m/s 2.38e+3 2.20e–1 1.12e–1 –5.64e–1 5.26e–2

Bν − 1.61e+0 4.79e–1 2.43e–1 –4.24e–1 8.00e–2

Brb − 1.01e+0 5.04e–3 2.55e–3 –5.45e–3 1.61e–3

Bz − 1.03e+0 1.28e–1 4.62e–2 –4.84e–2 5.49e–3

CR kPa 2.03e+3 –2.05e–1 –1.03e–1 1.03e–1 –2.11e–2

εW ln kN –6.69e–2 –1.34e–1 –6.81e–2 6.81e–2 –9.10e–3

a β = 1.967 and p = 2.462e−02
b Order of Importance, α: zB, γB, Bν , Kr, CR, γE , cB, φB, Wt , φE , Bz, Brb
c All vectors are unitless except design point, x∗; alternate units: γB =111 pcf, cB =23.6 psf, γE =119

pcf, zB =8.37 ft
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Table 6.5: Reliability results for vegetation Case 3 (Bν , Brb, Bz, CR, εW and Cw) for circular
landside hinge sliding surface with 1 m DBH cottonwood located at levee toe. Wind is in the
downslope direction. Random variables z−B and Kr were left out to facilitate convergence of
a FORM solution.

RV Unit x∗ u∗ α δ η

γB kN/m3 1.71e+1 –7.74e–1 –2.23e–1 2.23e–1 –1.73e–1

cB kPa 1.09e+0 –2.89e–1 –8.31e–2 8.31e–2 –2.40e–2

φB
◦ 3.54e+1 –3.37e–1 –9.68e–2 9.68e–2 –3.26e–2

γE kN/m3 1.85e+1 –2.96e–1 –8.51e–2 8.51e–2 –2.52e–2

φE
◦ 3.77e+1 –1.73e–1 –4.99e–2 4.99e–2 –8.64e–3

WSE m 4.95e+0 3.24e+0 9.34e–1 –3.42e–1 –1.82e+0

Bν − 1.93e+0 6.59e–1 1.87e–1 –2.99e–1 4.04e–2

Brb − 1.05e+0 5.21e–2 1.51e–2 –3.17e–2 9.06e–3

Bz − 1.03e+0 1.10e–1 6.80e–2 –7.14e–2 9.20e–3

CR kPa 1.97e+3 –2.52e–1 –7.15e–2 7.15e–2 –1.80e–2

εW ln kN –1.01e–1 –2.01e–1 –5.79e–2 5.79e–2 –1.16e–2

Cw kN 1.64e+2 2.04e–1 5.86e–2 –7.07e–2 1.54e–2

a β = 3.462 and p = 2.685e−04
b Order of Importance, α: WSE, γB, Bν , φB, γE , cB, CR, Bz, Cw, Wt , φE , Brb
c All vectors are unitless except design point, x∗; alternate units: γB =109 pcf, cB =22.8 psf, γE =118

pcf, WSE =16.24 ft (WSE/H = 0.96)
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Table 6.6: Reliability results for vegetation Case 3 (Bν , Brb, Bz, CR, εW and Cw) for circular
landside hinge sliding surface with 1 m DBH cottonwood located at levee toe. Wind is in the
upslope direction. Random variables z−B and Kr were left out to facilitate convergence of a
FORM solution.

RV Unit x∗ u∗ α δ η

γB kN/m3 1.70e+1 –8.66e–1 –2.37e–1 2.37e–1 –2.05e–1

cB kPa 1.08e+0 –3.25e–1 –8.87e–2 8.87e–2 –2.88e–2

φB
◦ 3.54e+1 –3.42e–1 –9.30e–2 9.30e–2 –3.18e–2

γE kN/m3 1.84e+1 –3.13e–1 –8.59e–2 8.59e–2 –2.69e–2

φE
◦ 3.77e+1 –1.66e–1 –4.52e–2 4.52e–2 –7.52e–3

WSE m 5.25e+0 3.42e+0 9.33e–1 –3.26e–1 –1.90e+0

Bν − 1.98e+0 6.85e–1 1.85e–1 –2.90e–1 3.68e–2

Brb − 1.05e+0 4.80e–2 1.28e–2 –2.68e–2 7.67e–3

Bz − 1.03e+0 1.18e–1 3.23e–2 –3.38e–2 4.12e–3

CR kPa 1.94e+3 –2.83e–1 –7.54e–2 7.54e–2 –2.13e–2

εW ln kN –1.13e–1 –2.25e–1 –6.14e–2 6.14e–2 –1.38e–2

Cw kN 1.36e+2 –1.78e–1 –4.85e–2 6.73e–2 –2.91e–2

a β = 3.665 and p = 1.237e−04
b Order of Importance, α: WSE, γB, Bν , φB, cB, γE , CR, Wt , Cw, φE , Bz, Brb
c All vectors are unitless except design point, x∗; alternate units: γB =108 pcf, cB =22.6 psf, γE =117

pcf, WSE =17.22 ft (WSE/H = 1.01)
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Figure 6.14: Reliability results for vegetation Case 2 (Bν , Brb, Bz, CR and εW ) and Case
3 (Case 2 with Cw for wind) for circular landside hinge sliding surface with 1 m DBH
cottonwood located at levee toe. Wind is in the downslope direction. Fragility curves
compare FORM analysis with vegetation effects included to a reference analysis of the
same sliding surface without vegetation (light gray). Confidence intervals for vegetation
case only include uncertainty from vegetation variables.
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(b) µFS with tree at levee toe, Case 2.
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(d) µFS with tree at levee toe, Case 3.

Figure 6.15: Reliability results for vegetation Case 2 (Bν , Brb, Bz, CR and εW ) and Case
3 (Case 2 with Cw for wind) for complete crest circular sliding surface with 1 m DBH
cottonwood located at levee toe. Wind is in the downslope direction. Fragility curves
compare FORM analysis with vegetation effects included to a reference analysis of the
same sliding surface without vegetation (light gray). Confidence intervals for vegetation
case only include uncertainty from vegetation variables.
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Chapter 7

Conclusions and Recommendations

A reliability model of levee stability incorporating a robust model of tree roots, weight and wind
loads in the presence of seepage forces has been developed. This model has been used to quan-
tify the effect of vegetation for different scenarios and evaluate the sensitivity of the solutions to
the input parameters. Stability is assessed with factor of safety against sliding (FS) for deter-
ministic analyses and probability of the factor of safety less than one (p) for stochastic analyses,
using the first-order reliability method (FORM) to compute a reliability index. Results show that
under steady-state seepage conditions blanket layer properties control slope stability with vegeta-
tion generally an order of magnitude or less in importance. However, there are scenarios where
the quantitative effects of vegetation are more significant, which can be understood through the
paradigm of small and large potential sliding surfaces (corresponding primarily to results from the
landside hinge and complete crest surfaces).

When the geometry of a potential sliding surface is fixed, effects due to root reinforcement,
weight and wind are generally determined by tree location and are scaled by the size of the sliding
mass. For small slope failures, root reinforcement can have a large effect on FS, reaching a max-
imum when the tree is located directly at the sliding surface entry or exit point. For large slope
failures the effect on FS is reduced due to sliding mass and the small proportion of the sliding
surface that can be influenced by root reinforcement. Root reinforcement, weight and wind effects
were generally found to have an additive effect on ∆FS and p.

Root reinforcement is computed proportionally to RAR and has a greater effect on stability than
weight when the tree center is close to the sliding surface, although for RAR &1–10% root rein-
forcement produces unreasonably high ∆FS. Root limits are applied that are related to breakage
and pullout of roots and are effective at keeping root reinforcement values reasonable and prevent-
ing numerical issues with FS computations, but specific values for the limits were not possible to
incorporate in the biomass model due to lack of data describing the lateral distribution of root num-
ber and diameter. Root reinforcement limits Crb and Cpo were generally used to prevent unrealistic
tension forces between slices in the upslope portion of the sliding mass and their numerical effect
resulted in scaling of ∆FS between zero and the value without reinforcement limits. When needed,
Crb and Cpo were consistent with ultimate capacities reported by published root studies and result
in a conservative estimate of FS as long as a search is performed for the minimum FS surface.

Tree weight decreases stability when a tree is located near the crest and linearly increases
stability as it moves towards the toe, with a neutral point located near the center of a circular
sliding surface centroid (and a similar location for non-circular surfaces). The increment of ∆FS is
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greater at the toe due to a greater relative increase in effective stress for the blanket layer soil with
relatively low pore pressure. Overall, tree weight resulted in a change to FS on the order of ±1%.

Wind loads are included by specifying the ultimate moment that can be carried by a tree, which
is then applied to the slope as equivalent vertical and horizontal forces. When appropriate plane-
strain averaging and horizontal force acting height are used to distribute wind load the effect on
FS is small and independent of tree position when the root ball is completely within the sliding
mass. Upslope and downslope wind directions have roughly equal and opposite effects on FS, and
an upper limit for most sliding surfaces should be on the order ∆FS = ±0.01–0.1 (i.e., . 1%).
Although high wind loads for marginally stable slopes can be applied to a slope stability analysis
and produce a condition where FS < 1.0, reliability analyses show that the uncertainty in estimated
FS due to aleatory and epistemic uncertainty in strength and seepage properties is far greater than
the relative change in FS due to wind.

Using a fixed sliding surface and evaluating the effect of vegetation on stability overestimates
the magnitude of ∆FS and because the minimum FS surface is highly sensitive to the local vari-
ations of biomass. To properly quantify ∆FS due to vegetation a potential sliding surface search
must be performed with vegetation effects included in the model. For a small non-circular sliding
surface with FS = 1.285 for no vegetation, the inclusion of root reinforcement and weight resulted
in ∆FS =–0.059, +0.003 and +0.224 for a tree located at hinge, slope midpoint and toe. When
a search was performed with vegetation included, minimum FS surfaces were found with similar
geometry but with ∆FS =–0.078, –0.040 and +0.043 for identical tree conditions. Furthermore,
non-circular sliding surfaces must be used to evaluate vegetation effects, as circular surfaces can-
not accomodate the contours of root density in the subsurface. For a small circular sliding surface
with FS = 1.322 the same suite of tree conditions produced ∆FS of +0.043, +0.005 and +0.055
for the minimum FS surface without vegetation, and +0.025, +0.005 and +0.043 for the minimum
FS surface with vegetation. Although similar effects were observed for a large sliding mass, the
quantitative differences were at least an order of magnitude less.

Aleatory uncertainty is represented by the unknown values of input parameters used in levee
seepage and stability models, and is quantified with fragility curves, p(WSE), and reliability index.
Epistemic uncertainty is represented herein by the choice of probability distribution and parameters
for each random variable, and is quantified using parameter sensitivities from FORM. Epistemic
uncertainty is graphically reported as confidence bounds on fragility curves and mean estimate of
safety factor, µFS. These curves were reported several vegetation conditions and compared to the
non-vegetation case for the same potential sliding surface. In all cases the effect on p and µFS due
to vegetation reflected those reported for deterministic results, but more importantly, the change
in p and µFS due to vegetation is within than the single standard deviation confidence interval
estimate for each. In other words, the range of possible values for the best estimate of FS and p
is greater than the ∆FS or ∆p due to vegetation effects. This condition becomes more dramatic as
the sliding mass increases and root reinforcement effects are minimized.

Results for µFS illustrate the inherent conservatism of deterministic analyses, as FS consis-
tently plots below µFS. The difference is due to evaluation of the probability density of FS at the
design point for FORM analyses as opposed to evaluation of FS at the best-estimate or mean value
of each random variable for deterministic analyses.

A biomass model was developed that incorporated an exponential decrease in root area ratio
in the lateral direction and a lognormal distribution with depth. Scaling of root area ratio in three
dimensions using allometric relationships with DBH that were verified using existing empirical
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data. Outputs of the biomass model were used to determine the mechanical effect of trees on slope
stability using the method of slices. Overall, results show that the biomass model can provide
useful insight into the incremental effect of vegetation on levee stability, especially with respect to
the spatial extent of roots and the root ball. While uniform root reinforcement effects and point
loads may be sufficient to analyze infinite or large circular failure surfaces, incorporating the lateral
extent of roots in 2D analyses is critical for the deeper circular and non-circular failure geometries
that control levee stability.

The term “failure” has been consciously avoided throughout this document because the occur-
rence of a slope failure does not necessarily result in failure of an entire levee system. As such,
conclusions described herein are generally applicable to vegetation effects for an individual slope
stability assessment, but not for the overall performance of a levee. To evaluate the true overall
effect of vegetation, results presented herein should be incorporated in an event tree analysis. How-
ever, given the relatively small magnitude of effects quantified herein, the influence of vegetation
is expected to be small.

Vegetation effects can be quantified effectively using the methods described herein, and while
there are endless scenarios that can be constructed to illustrate the potential for vegetation to cause
levee failure, the overall effect on the levee is small when compared to other influencing factors
such as strength or seepage. Although reliability analyses require extra computational effort and
introduce cumbersome numerical issues, the FORM approach provides useful insight to the levee
seepage and stability problem and incremental effects due to vegetation.

7.1 Future Research
While certain aspects of the biomass model could be improved through consideration of additional
data, given the relatively small impact of vegetation on levee performance, additional effort may
not be warranted. Regardless, an allometric spatial relationship of root diameter is necessary to
appropriately define the reinforcing effect of roots, which is fundamentally related to root size and
tensile strength for a given species. It is likely that the 3D LiDAR data such as obtained by Berry
and Chung (2013) could provide such information.

Given the problems associated with high cohesion values from roots in the active zone of a
slope stability surface, better modeling of root reinforcement effects may be had if tensile forces
are used instead. This would require assumptions be made regarding the number and size of roots
spatially in the root zone. Although it would be more difficult to implement in the slope stability
source it may produce results with higher numerical stability.

Managing FORM analyses when convergence was difficult to achieve is time consuming. Fu-
ture work with levee seepage and reliability, or any problem with the potential for discontinuous
function response (e.g., finite element solutions or method of slices) should consider implementa-
tion of a response surface approach. A response surface uses discrete function evaluations to pro-
duce a smooth parametric surface for reliability analysis, thus eliminating discontinuities. While
the function may lead to unrealistic design points, a solution can be checked for validity by evalu-
ating the limit-state function at the response surface design point.

The source code developed for this research is capable of searching for minimum β surfaces;
however, reaching a solution is computationally intensive. Incorporation of a response surface as
described above would greatly improve computation time and allow for this functionality.

123



Parameter List

General:

FS = Factor of safety; ratio of resisting forces to driving forces, [–]

WSE = Water surface elevation, measured from base of levee, [m]

H = Levee height, [m]

γ = Unit weight of soil, [kN/m3] or [pcf]

c = Soil cohesion, [kPa] or [psf]

φ = Soil friction angle, [◦]

K = Hydraulic conductivity, [m/s]

zB = Thickness of blanket layer, [m]

Reliability and Probability:

R = Reliability of an event or condition, related to probability by R = 1− p

P, p = Probaility of an event or condition, related to reliability by p = 1−R

β = Reliability index, related to probability by: p = Φ(−β )

xi = Random variable i, of n total

x = Vector of n random variables

u = Vector of n random variables transformed to the standard normal space

g(x) = Limit-state function

x∗ = Design point in the original space

u∗ = Design point in the standard normal space

α = Importance vector; sensitivity of β with respect to x
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δ = Sensitivity vector of β with respect to mean, δi = µi
∂β

∂ µi

η = Sensitivity vector of β with respect to standard deviation, ηi = σi
∂β

∂σi

θ = Vector of parameters, θi, in reliability analysis, e.g., distribution, g(x), etc.,

p = Vector of probability distribution parameters, pi

Biomass, General:

x̂ = Levee perpendicular direction, positive to land side of levee

ŷ = Levee parallel direction

ẑ = Depth below surface, downward positive

l̂ = Radial distance from tree trunk center

θ = Angle in the horizontal plane relative to the downslope direction aligned with x̂;

counterclockwise positive from above

O,C = Subscripts for oak (Quercas lobata) and cottonwood (Populus fremontii)

DBH = Diameter at breast height, [m]

RAR = Root Area Ratio, [−]

RAR(x,y,z) = Point estimate of RAR(z); RAR(x,y,z) = fRAR(z) ·RAR(z), [−]

RARmin = Minimum Root Area Ratio considered in biomass model, [−]

RAR = Depth-averaged root area ratio, [−]

RARxy = RAR at (x,y), integrated from surface to zmax, [−]

RARz = RAR integrated from z1 to z2, [−]

RCSA = Root cross-sectional area, [m2]

α0 = Biomass regression intercept ((Berry & Chung, 2013)), [ln m2];

Acyl = Area of cylindrical virtual trench profile, per Berry and Chung (2013)

A0 = Biomass regression intercept, [m2]; A0 = exp(α0)

ν = Rate of biomass decrease, [−]; νu, νd for upslope and downslope direction

(−x̂ and + x̂, respectively)

∆νud = Difference in biomass reduction rate, [−]; typically 0.5

125



β0, β1 = Regression parameters, where subscripts refer to regressed variable;

linear regressions in arithmetic and logarithmic space

Bx = Random variable for evaluating effects of biomass model parameters;

subscript refers to specific parameter x, e.g., Brb for root ball, [−]

Biomass Lateral Extent:

MRE = Maximum root extent measured across tree width (i.e., not radial), [m]

LMRE = MRE computed by biomass model using RARmin, from trunk center, [m]

Lu, Ld = LMRE in upslope and downslope directions, measured from trunk center, [m]

Lrb = Root ball radius measured from trunk center, [m]

yMRE = Maximum root extent in ŷ direction, [m]

yPS = Plane-strain integration interval, measured along ŷ, [m]; typically set to yT S

yT S = Tree spacing, measured along ŷ between trunks, [m]

RARPS = Depth-averaged plane-strain Root Area Ratio, [−]; defined along x̂

RV = Root volume, [m3]

l1 = Radial distance where RAR = 1.0, [m]

d1 = Single-root equivalent diameter; represents RAR at distance l, [m]

Biomass Vertical Extent:

zpit = Pit depth from uprooting by Peterson and Claassen (2012), [m]

za = Average rooting depth, [m]

z% = Depth above which specified percentage lies, [m]

z50 = Median rooting depth, [m]

zmo = Mode rooting depth, [m]

zmax = Maximum rooting depth, [m]

z90a = Ratio of z90/za, used for setting vertical distribution spread, [−]

fRAR(z) = Density function of RAR with z,

integrated over 0 < z < zmax) becomes RAR, [−]
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Biomass Engineering Parameters:

∆cR = Effective soil cohesion increment due to roots, [kPa]

CR = Root reinforcement factor, relating cohesion, ∆cR, to RAR, [kPa]

Cpo = Root reinforcement limit, related to pullout, [kPa]

Crb = Root reinforcement limit, related to root breakage, or rupture, [kPa]

mt = Tree mass, [kg]

Wt = Tree weight, [kN]

εW = Root mean squared error of mass regression, [ln kg]

FW = Force due to tree weight, [kN]

Mcrit = Critical moment for uproting by Peterson and Claassen (2012), [kN· m]

Mw = Moment due to wind on tree, [kN· m]

Cw = Moment coefficient, relating Mw to DBH, [kN]

hw = Acting heigh of wind load on tree, [m]

Fw,h = Horizontal force due to wind on tree, [kN]

Fw,v = Vertical force due to wind moment on tree, [kN]

fw,v = Vertical force distribution function within the root ball, [kN/m]

xw,v0 = Hinge point location, where fw,v(xw,v0) = 0, [m]

Vw = Wind velocity, [m/s]

At = Cross-sectional tree canopy, for computing wind load, [m2]

Xt = Tree position for reliability analysis, measured in x̂ direction relative to

levee coordinate system, [m]

Dt = Diameter of tree for reliability analysis, [m]
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Appendix A

Probability Distributions

A.1 Normal
The normal, or Gaussian, distribution is commonly used to evaluate probabilistic science and engi-
neering problems and also as a paradigm for understanding statistics and variability in general. It
is also widely understood that 68.3, 95.4 and 99.7% of data from a sample will fall within 1, 2 and
3 standard deviations from the mean, denoted: µ ±σ , µ ± 2σ and µ ± 3σ . Alternatively stated,
if the concept is applied to the possible value of a variable described by the normal distribution:
there is a 68.3% the value will be within 1 standard deviations from the mean, µ±σ . Coefficient
of variation, δ , is best understood as a measure of dispersion in the context of these bounds.

A normal distribution is symmetric about the mean, median and mode (all of which are equal)
and has two parameters, µ and σ , equivalent to the population mean and standard deviation, x̄
and s̄. Although easy to understand and apply, the distribution can cause problems due to the
asymptotic (i.e., non-zero) probability density for extreme values, which is why the lognormal
distribution is often used as a substitute.

Distribution parameters µ and σ are scale and shape parameters, respectively. Increasing µ

shifts the position of the distribution, whereas increasing σ flattens the bell-shaped curve that is
such an iconic symbol of the normal. The title scale parameter refers to scaling of thex-axis, which
has no effect on the overall shape of the distribution. Although they behave differently for each
distribution, scale and shape parameters are a useful paradigm for understanding how probability
density changes with changing parameter values.

Standard Normal
A random variable, U , with the standard normal distribution has a mean of zero and standard de-
viation of 1: U ∼ N(0,1). All distributions can be tranformed to the standard normal distribution
X →U , which is a critical component of the FORM procedure. This is a useful construct for de-
scribing the value of a particular parameter with respect to the distribution average and standard
deviation: the sign of u indicates a value above or below the median; magnitude of u is the distance
from a central tendency measure scaled by fraction of standard deviation. For example, u=−1.0 is
one standard deviation below the mean whereas u =+2.3 is 2.3σ above. Transformations between
the standard normal space (“U-space”) and original space (“X-space”) provide a consistent frame-
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work for discussing variability and interpreting results of reliability analyses. For a non-standard
normal variable, transformation to the standard normal space is:

u =
x−µ

σ
(A.1)

The PDF and CDF of the standard normal are often denoted φ(·) and Φ(·), respectively.

A.2 Truncated Normal
Truncation of the normal distribution by specifying minimum or maximum values prevents the
distribution carrying probability density to ±∞. Referred to as the truncated normal distribution
(Kottegoda & Rosso, 2008), it is used when extreme values are not physically possible or may
cause problems with numerical computations; see, for example, Baecher and Christian (2003)
or Rice and Polanco (2012). Although typically used to cap the distribution tails, which have
negligible probabiltiy density, truncation limits can have significant influence on the resulting PDF
and CDF if care is not taken to consider the imposed changes. Notation of the truncated normal
is: X ∼ Nt(µ,σ ,xl,xu). Due to its relation to the normal distribution, the truncated normal uses
parameters µ and σ ; where needed, distribution paramters of the truncated normal will be labeled
with a subscript t, thus X ∼ Nt(µt ,σt ,xl,xu) and δt . The PDF is found by scaling the normal PDF
by cumulative probability density within the truncated limit(s) using the same parameters µ and
σ . Thus, after Bourinet (2010):

f (x) =

{
1
σ

φ(x)
Φ(xu)−Φ(xl)

, if xl ≤ x≤ xu

0, otherwise.
(A.2)

F(x) =


0, if x < xl
Φ(x)−Φ(xl)
Φ(xu)−Φ(xl)

, if xl ≤ x≤ xu

1, if x > xu

(A.3)

Central tendency measures are:

xa = µ−σ
φ(xu)−φ(xl)

Φ(xu)−Φ(xl)
(A.4)

x50 = µ +σΦ
−1
(

Φ(xu)+Φ(xl)

2

)
(A.5)

xmo =


xl, if µ < xl
µ, if xl ≤ µ ≤ xu
xu, if µ > xu

(A.6)

Variance of the distribution, σ2
t , in terms of the distribution mean, xa, is:

σ
2
t = µ

2 +σ
2−σ

{
σ

[(xu−µ

σ

)
φ(xu)−

(xl−µ

σ

)
φ(xl)

]
+2µ

[
φ(xu)−φ(xl)

]
Φ(xu)−Φ(xl)

}
− x2

a (A.7)
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A.3 Lognormal
Many civil engineering applications have incorporated the lognormal distribution (Benjamin &
Cornell, 1970), and it is widely used in other scientific fields (Aitchison & Brown, 1957; Crow &
Shimizu, 1988). A random variable, X , is lognormally distributed if the logarithm of X is normally
distributed, and is described by parameters λ and ζ such that X ∼ LN(λ ,ζ ). This distribution is
skewed right, defined only for non-negative values and has non-equal mean, median and mode;
see Ang and Tang (1975) for a derivation of the distribution and notable properties. As illustrated
in Figure A.1, the distribution becomes more narrow and skewed for increasing ζ , and although
the median (x50 = λ ) is held fixed, the mean (xa) and mode (xmo) diverge. Since the logarithm
of X is normal, λ and ζ can also be thought of as the distribution parameters of lnX such that
lnX ∼ N(µlnX = λ ,σlnX = ζ ). The right side of Figure A.1 illustrates the Gaussian shape of the
distribution when plotted as lnX on the horizontal axis. This property causes statistical paradigms
of the normal distribution to be used for understanding variability of the lognormal variable; how-
ever, care must be taken to heed the mathematical implications (Limpert et al., 2001). For example,
rather than µ±σ containing 68.3% of the distribution it is actually X = exp(λ±ζ ). While the log-
normal distribution is widely used in geotechnical literature (Baecher & Christian, 2003; Benjamin
& Cornell, 1970; Crow & Shimizu, 1988; Harr, 1996; USACE, 1999; Uzielli et al., 2006), varied
nomenclature used by different scientific fields make interpretation of the distribution, parameters
and population statistics difficult. Thus, care is taken in this document to define and adhere to the
following concepts and nomenclature:

• λ and ζ are distribution parameters of the lognormally distributed random variable X ; they
also represent the mean and standard deviation of the normally distributed random variable
lnX

• µ is the arithmetic mean of the lognormally distributed variable X

• σ is the standard deviation the lognormally distributed variable X

• δ is the coefficient of variation of the lognormally distributed random variable X (δ = σ/µ)

Distribution parameters can be found from sample mean and standard deviation:

λ = ln µ−0.5ζ 2

ζ =
√

ln(1+δ 2)
(A.8)

Furthermore, when δ is relatively small (below about 0.30) ζ ' δ (Ang & Tang, 1975). Central
tendency measures of X can be related to the distribution parameters:

mean : µ = xa = eλ+0.5ζ 2 → λ = ln µ−0.5ζ 2

median : x50 = eλ → λ = lnx50

mode : xmo = eλ−ζ 2 → λ = lnxmo +ζ 2
(A.9)

Finally, σ can be found in terms of distribution parameters:

σ = eλ+0.5ζ 2
√

eζ 2−1 (A.10)
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Figure A.1: Lognormal Distribution PDF for λ = 0 and Various ζ

Transformation of a lognormal variable to the standard normal space is:

U =
lnX−λ

ζ
(A.11)

When compared with Equation A.1 it is easy to see the relationship of λ and ζ to a normally
distributed lnX as an analogue for the relationship of µ and σ to a normally distributed X . Note
that the translation of lnX by λ implies the standard variate U represents distance from the median
of the variable, since distribution parameter λ represents the sample median.

Understanding dispersion of the distribution is essential for evaluating the influence of lognor-
mal variables in reliability analyses. Unfortunately empirical data is almost always described in
terms of the sample mean, which is a misleading measure of central tendency for a skewed distri-
bution since xa is dominated by extreme values. Inequalities za > z50 and z50 > zmo are always true
(Ang & Tang, 1975), and the differences become larger as ζ and δ increase. Because the median
is a much more stable statistical value for skewed distributions, and is actually the parameter λ ,
it should be used to evaluate dispersion. Equation A.9 can be used to show the ratio of mean and
mode to the median are only dependent on ζ :

Xa/X50 = exp(0.5ζ 2)
Xmo/X50 = exp(−ζ 2)

(A.12)

Thus, as dispersion increases the mean and mode become increasingly far apart, with the mean
quickly diverging for ζ & 1 (Figure A.2). Rewriting the standard normal transformation (Equation
A.11) shows the dependence of confidence intervals on ζ :

Xλ+ζ = exp(λ ±ζ ) = X50 exp(±ζ ) (A.13)
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Figure A.2: Dispersion Effects of the Lognormal Distribution

As analogue to the normal distribution, 68.3% of the lognormal distribution is within the bounds
defined by the multiplication and division of the median by exp(ζ ), which is illustrated in Figure
A.2. The mode is very close to the exp(−ζ ) for all values of ζ ; however, the mean remains well
below the upper confidence bound until steeply rising beyond ζ & 1.5. In summary, evaluation of
the dispersion characteristics show the lognormal distribution to be similar to the normal distribu-
tion in shape for low values of ζ . Alternatively, as ζ increases the measures of central tendency
and distribution spread becomes increasingly extreme. Thus, care should be taken when selecting
lognormal distribution parameters that they are representative of the random variable population.

A.4 Extreme Value Distributions
Many problems are governed by the smallest or largest possible values that might be encountered
from a population, which represent tail regions of a random variable probability distribution. Flood
frequency is an excellent example of this case: while the flow at any given point in time may
follow a normal distribution, it is the infrequent peak flows that drive design of a flood control
system. Extreme value distributions are used to model the frequency with which maximum or
minimum values are expected to occur. While Gumbel (1958) is often cited as a classical reference,
Kottegoda and Rosso (2008) present the generalized form succinctly, and numerous modern texts
describe other important applications and characteristics (Baecher & Christian, 2003; Benjamin &
Cornell, 1970; Haldar & Mahadevan, 2000). Only the Type I Largest, or Gumbel distribution was
used for analyses in this document, which has two parameters, u and α controlling location and
scale of the PDF. Sampling of extreme values from a distribution with an exponential tail, such as
the normal, converge to the Gumbel∼ Gmb(u,α). Expressions for the PDF and CDF are:
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f (x) = α e−α(x−u) exp
[
− e−α(x−u)

]
(A.14)

F(x) = exp
[
− e−α(x−u)

]
(A.15)

Central tendency measures and standard deviation can be computed from the distribution parame-
ters:

xa = u+
γ

α
(A.16)

x50 = u− ln(ln(2))
α

(A.17)

xmo = u (A.18)

σ =
π√
6 α

(A.19)

where γ is Euler’s constant, 0.57721566.

A.5 Gamma
The gamma distribution has several forms and special cases that include other distributions, includ-
ing the exponential and chi-squared. Time to the kth arrival in a Poisson process can be modeled
with a gamma distribution, although it is not necessary to limit k to the integer case (Kottegoda &
Rosso, 2008). Represented Gam(k,λ ), the distribution PDF and CDF are:

f (x) =
λ (λx)k−1 exp(−λx)

Γ(k)
(A.20)

F(x) =
Γ(k,λx)

Γ(k)
(A.21)

where Γ(k) is the gamma function and Γ(k,λx) is the incomplete gamma function. Parameters
k and λ represent shape and rate of the distribution; other forms of the gamma often use a scale
parameter, which is the inverse of rate. Changing only the shape parameter, k, modifies the ap-
pearance of the PDF, with higher values moving the mode further to the right, reducing skew; for
k ≤ 1 the distribution has an exponential shape (i.e., a Poisson process). Changing only the rate
parameter, λ , scales the x-axis without changing the PDF shape. Central tendency measures and
standard deviation are found from the distribution parameters:

xa =
k
λ

(A.22)

xmo =
k−1

λ
when k ≥ 1 (A.23)

σ =

√
k

λ
(A.24)

There is no general form for the median x50.
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In United States practice, WSE is often modeled with a Log-Pearson III distribution (Section
A.7), which is a shifted form of the gamma distribution. Log-Pearson is similar to relationship
between lognormal and normal distribution, where a variable X has Log-Pearson III if lnX has
Pearson III.

A.6 Functions of Random Variables
A stochastic parameter of interest is sometimes most easily understood as a mathematical combi-
nation of other random variables, for example, the ratio of hydraulic conductivity, Kr. Probability
distributions can be derived for the function of random variables in terms of the stochastic param-
eters of the participating variables. While there are many exact and approximate strategies (Ang
& Tang, 1975; Baecher & Christian, 2003; Fenton & Griffiths, 2008; Harr, 1996; USACE, 1999),
only two simple cases will be discussed here. As proven by the central limit theorem, a random
variable, X , represented by the sum of normally distributed random variables, xi, is itself normally
distributed. It follows that the mean and standard deviation of X are given by:

µX = ∑
i

µi σX =
√

∑
i

σ2
i (A.25)

Now consider a function of random variables, X , represented by the product of logrnomally dis-
tributed random variables xi and take the logarithm of the function:

X = ∏
i

xi → lnX = ∑
i

lnxi (A.26)

This is why the lognormal distribution is often referred to as a multiplicative distribution (Baecher
& Christian, 2003; Benjamin & Cornell, 1970). Since lnX is normal when X is normal, it follows
that the lognormal distribution parameters of X can be found similarly to the normal case:

λX = ∑
i

λi ζX =
√

∑
i

ζ 2
i (A.27)

Thus, for the example of hydraulic conductivity ratio, Kr = Ka,h/Kb,v:

λKr = λKa,h−λKb,v ζKr =
√

ζ 2
Ka,h

+ζ 2
Kb,v

(A.28)

A.7 Flood Frequency
Hydrologic Records

Flood control systems must be designed to withstand the highest water level experienced in a
given year, which are aleatory events that can vary substantially between watersheds and over
time as watershed development occurs. Flood frequency relations are used to describe the annual
probability of exceeding a given water level and are created using a number of analytic methods
that typically consider a record of annual peak flow (Helsel & Hirsch, 2002). Although there
are different approaches to processing flow data depending on dataset condition and application

142



(U.S. Bureau of Reclamation & U.S. Army Corps of Engineers, 2015), the Weibull (1939) formula
is widely used in practice, which computes the mean fraction of trials exceeding x in n trials:

fX>x =
x

n+1
(A.29)

Hydrologic records are processed such that maximum flow from each year is identified and ranked
against all years in the record from 1 to N for smallest to largest data. Thus, when applied to flood
frequency, the Weibull formula represents the mean value of probability, P, that the peak annual
flow of rank m is exceeded in N trials (Langbein, 1960):

P =
m

N +1
(A.30)

Note that the mean value, P, is not probability of exceedance for a water level associated with
rank m in N years, which must be found using the binomial distribution. Equations for exceedance
probability, Pe, and associated return period, R, described succinctly by Makkonen (2006), are:

Pe = 1−P =
N−m+1

N +1
R =

1
1−P

=
1
Pe

=
N +1

N−m+1
(A.31)

Common practice has long plotted the result on Gumbel paper (a type of scaled probability paper)
for estimating return period, where the Weibull equation (and other similar ranked estimators)
for P is referred to as plotting position (Dalrymple, 1960; Helsel & Hirsch, 2002; U.S. Bureau
of Reclamation & U.S. Army Corps of Engineers, 2015). Equations A.30 and A.31 are mean
probability estimates of extreme values observed in any given year, and the empirical data can
be modeled with a number of distributions to evaluate the probability associated a flood level of
interest.

Probability Distributions for High Water Events

Numerous probability distributions have been used for flood frequency evaluations, including
(Benjamin & Cornell, 1970; Dalrymple, 1960; Gumbel, 1958; Helsel & Hirsch, 2002); see Ap-
pendix 14 of IACWD (1982) for a select overview, and Vogel et al. (1993) for a quantitative
comparison of several distributions. The Hydrology Commission of the Water Resources Coun-
cil, charged by United States law with assessing water supplies and regional river basin plans,
has recommended use of the Log-Pearson III distribution for estimating flood frequency since
1967 (IACWD, 1982; WRC, 1967). US policy is to use plotting position functions and a speci-
fied procedure to fit the three parameters of to hydrologic records. Although there may be room
for improvement in fitting procedures, the distribution has proven generally successful (Stedinger
& Griffis, 2008); Singh (1998) provides a succinct history and formulation of the distribution.
URS/JBA (2008b) used the Log-Pearson III in for flows in the Delta. Bayesian statistics have been
used to create composite weighted distribution models (Wood & Rodríguez-Iturbe, 1975); a rela-
tively recent study considered Lognormal, Gumbel, Weibull and Log-Pearson III, corresponding
to increasing weight assigned from the analysis (Apel et al., 2004).
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Appendix B

Numeric Considerations

This Appendix summarizes numerical issues encountered with integration of the seepage, stabil-
ity and reliability source code used for this research. All analyses were completed using Matlab
(MathWorks, 2015), which incorporated the following existing applications: UNSAT for seepage
analysis (Sitar & Cawlfield, 1984; Neuman, 1972), written in Fortran; USlopeM for stability anal-
ysis (Tabarroki, 2011), written in Matlab; and FERUM for reliability analysis (Bourinet, 2010; Der
Kiureghian et al., 2006). In general, numerous Matlab scripts and functions were written to facili-
tate communication of software input/output between UNSAT, USlopeM and FERUM, process results
of analyses and troubleshoot source code “bugs” that arose during implementation. Most numerical
issues were related to precision of various parameters and computation of the limit-state function
gradient.

Analyses were run on three different computers with the following specifications:

• 4-core Intel Core i5-3330 processor at 3.00GHz with 8 GB memory running Windows 7

• 4-core Intel Core i7-2600 processor at 3.40GHz with 16 GB memory running Windows 7

• 12-core Intel Xeon E5-2630 processor at 2.60GHz with 32 GB memory running Windows 8

A steady-state seepage solution generally requires 10 seconds to solve, whereas a single evaluation
of FS for stability requires 0.1 seconds. A minimum FS search requires anywhere from tens of
minutes to tens of hours depending on the whether a circular or non-circular surface is analyzed,
the number of kinematically admissible surfaces found by the search algorithm and the number of
processor cores available. In general, the maximum number of FS evaluations is on the order of
1e4 for circular surfaces, whereas non-circular surfaces are on the order of 1e+5. If a coarse set
of vertices is used for non-circular surfaces (i.e., if a jagged or block-like surface is acceptable)
non-circular surface searches could be reduced closer to 1e+4 FS evaluations.

Reliability analyses are dependent on the number of random variables and whether seepage
must be evaluated; no parallel capability was implemented. Each random variable adds a func-
tion evaluation due to the finite difference approximation required to estimate ∇g(x). For FOSM
methods, the number of evaluations is thus on the order of 1+ nrv. A FORM analysis is iterative
and the number of iterations, ni is dependent on convergence criteria described in this Appendix,
thus, the number of function evaluations is on the order of ni(1+nrv). Given that a ni is typically
greater than three, a reliability analysis with seepage generally takes 5–10 minutes for FORM and
1 minute with FOSM methods. Without seepage parameters as random variables, computation
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times drop to tens of seconds. For minimum reliability index sliding surface searches, computa-
tions times increase dramatically, since 1e4 to 1e5 reliability evaluations are required; these can
take over a day for non-circular surfaces even when the parallel processing is employed.

B.1 Precision in Seepage and Stability Analyses
Quantitative analyses for levee failure modes (e.g., FS against blanket heave or stability) need
not be reported with more precision that three or four significant digits due to the uncertainty of
underlying geotechnical parameters. However, some computational algorithms require increased
precision to reach a solution; for example, slope stability methods of slices should be solved with
a precision of at least 0.0001 to search for an solve the minimum FS failure surface (Duncan &
Wright, 2005). Because the method of slices used for stability computations solves system of
equations for force and moment balances using an implicit iteration scheme, a single tolerance
determines precision of the resulting FS. Precision of seepage solutions is more subtle, as a stable
result is dependent on a transient analysis reaching a steady state. Furthermore, coupling of pore
pressures from a seepage solution into the stability computation results in a dependence of stability
precision on that of the seepage algorithm. As such, stability results can be used to understand the
effect of various parameters on precision of levee failure modes. To illustrate, Figure B.1a plots 501
values of FS for a 0.5 m range of WSE, corresponding to an increment of ∆WSE = 0.001 m (using
the landside hinge circle from Figure 4.3. There are obvious steps in what should theoretically be a
smooth relationship between increasing pore pressures from higher WSE and decreasing FS. The
steps are discontinuities caused by the discrete finite element seepage solution. WSE is specified as
head at every finite element node on the waterside levee slope and there exists a set of consecutive
nodes where pressure head switches from a positive value to zero, defining the beginning of the
phreatic surface as it enters the embankment prism. When the pair of bounding nodes changes and
discrete nature of the finite element mesh cause the resulting steps in the pore pressure solution.
When an arbitrary range of WSE from Figure B.1a (i.e., WSE from 4.60 to 4.68 m) is used to
create a least-squares linear regression of FS(WSE) and subtracted from computed values, an
estimate of the numeric error can be found, as presented in Figure B.1b. Each step is approximately
∆FS = 0.002 and occurs for an increase in WSE on the order of 10 cm.

Other variables used in seepage and stability analyses cause the discontinuous step effect in
computed values, although the scale is much smaller than that for WSE described above due to fi-
nite element discretization. Critical increments for each parameter of interest are described below:

• Strength and unit weight properties (i.e., c, φ and γ , referred to here as X ,) cause a step of
∆FS =1e−7 at increments of ∆X =1e−5 (1e−6 for cB) in SI units; controlled directly by a
method of slice precision of 1e−6 in this case

• Hydraulic conductivity ratio, Kr causes a step of ∆FS =1e−8 at increments of ∆Kr =1e−8

• Blanket layer thickness, zB causes a step of ∆FS =1e−5 at increments of ∆zB =1e−3 m; due
to limit in precision of finite element mesh geometry, but issues may also arise if the bottom
of the blanket layer intersects the sliding surface being analyzed (Section B.2)

• Water surface elevation, WSE causes a step of ∆FS =1e−7 at increments of ∆WSE =1e−5
m; this is a smaller scale effect than that of finite element discretization described above
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Figure B.1: Precision of FS with changing WSE using an increment of ∆WSE = 0.001.
Portion between dotted lines in (a) is used to compute a trendline for calculating deviation
of FS in (b). Results in this Figure are used for gradient (∇FS) computations in Figure
B.2.

Strength, unit weight and hydraulic conductivity ratio cause discontinuities in FS, but their occur-
rence is generally small and can be directly controlled by tolerance and precision settings within the
software. Blanket layer thickness produces a ∆FS that is orders of magnitude greater and cannot
be controlled without significant source code modification; however, since the step in ∆FS occurs
over a small ∆zB, a relatively large increment can be selected to minimize the resulting error. In
contrast, discontinuities in FS caused by changes in ∆WSE on the order of 0.1 m are significant
and must be considered when performing reliability analyses.

B.2 Seepage Model
Seepage analyses are completed using a modified version of program UNSAT1, written in Fortran
by Neuman (1972) and modified by Sitar and Cawlfield (1984). Several changes were made to
UNSAT1 (elsewhere in this document referred to as UNSAT) to allow compatibility with reliability
analyses completed with FERUM, including:

• implemented dynamic memory allocation for finite element solver

• increased precision of hydraulic conductivity (K) material property from E10.3 to E22.15
to allow sufficient precision of output

• increased precision of pressure head (ψ) input and solution output from E10.3 to E24.15

• increased maximum number of materials defined by input file

The source code was compiled with Parallel Studio XE by Intel (2016) on a PC running Windows
7, 64-bit. All other modifications consisted of relatively minor reformatting of input and output
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files and command line printing. Initial precision of K and ψ UNSAT were not accurate enough
to allow for small changes in WSE, Kr or zB required for converging to a the FORM solution
(Lanzafame et al., 2017).

Blanket Layer and Finite Element Mesh

There are two numerical issues associated with the blanket layer: precision of zB in the finite
element mesh and numerical noise in computed pore pressures. Nodal positions in UNSAT were
originally specified with a precision of E10.3, which unfortunately cannot be modified without
significant restructuring of the Fortran source code due to the maximum input file line width. As
such, increments of zB less than 1e−3 may not produce a change in seepage or stability response,
which is consistent with the behavior recognized in Section B.1. Numerical noise arises in results
when the finite element mesh is changed due to an adjusted blanket layer thickness. Pore pressures
applied at the base of each slice in the slope stability algorithm are interpolated between finite
element nodes using shape functions is therefore dependent on the finite element mesh. Input
files for UNSAT specify coordinates of FEM nodes, the position of which are determined from
the bottom of the model up. As such, a change in blanket layer thickness changes the vertical
coordinates of all nodes within the blanket layer. Early attempts at solving the seepage-stability
algorithm with FORM could not find a solution due to small-scale variations in the computed
FS, caused by a mesh that was changing at each iteration. For example, ∆zB = 1.0 m generally
resulted in ∆FS ∼ 0.05 but local variations of ∆FS ∼ 0.005 occurred on a much smaller scale of
zB. Since FORM requires a continuously differentiable limit-state function local variations in the
derivative prevented convergence to a design point. The solution was to allow nodal points nearest
the blanket layer base to be adjusted vertically to match the value of zB required by each FORM
iteration; only a single row of nodes at the bottom of the blanket layer were adjusted, keeping all
other nodes constant. Furthermore, the minimum value of the truncated normal distribution for
zB was set to a value greater than the deepest potential slip surface to be considered, preventing
the FORM algorithm from modifying the finite element mesh within the sliding mass during an
iteration and/or minimum β slip surface search.

B.3 Stability Model
A copy of the Matlab source code for USlopeM (Tabarroki, 2011) was used to develop the slope
stability application used for analyses in this document, along with documentation of the algo-
rithm by Rickard and Sitar (2012). The software uses the generalized limit equilibrium (GLE)
formulation (Fredlund & Krahn, 1977) to solve Spencer’s method of slices (Spencer, 1967) and
incorporates a search algorithm unique to slope stability applications to find the minimum safety
factor sliding surface (Rickard & Sitar, 2012; Wang et al., 2011). To produce software capable
of integrating seepage, stability and reliability together significant modifications to USlopeM were
needed, as listed below:

• integration of cross-section geometry and material properties with UNSAT

• evaluation of pore pressure at position (x,y) of slice base midpoints using Delaunay triangu-
lation of finite element solution of UNSAT
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• inclusion of line loads and moments into GLE formulas for solving Spencer’s method of
slices

• limiting strength in the passive zone (bottom of slope) to maximum shear strength on the
failure plane defined by a Mohr-Coulomb failure envelope (Duncan & Wright, 2005)

• modification of GLE equations and Newton-Raphson solution for FS to apply rapid loading
(e.g., wind) to a sliding mass but prevent it from influencing drained soil strength

• correcting a sign error for pore pressure in the GLE normal force equation

• integration of random variable values and software input/output with reliability software
FERUM (Bourinet, 2010) allowing USlopeM to perform evaluation of limit-state function

• integration of FERUM within search algorithm of USlopeM to search for minimum reliability
index (maximum probability) sliding surface

Justification of and analytic results from these modifications are presented elsewhere in this docu-
ment.

Gradient of Stability Response

Levee response can be measured in terms of safety factor against heave, piping or stability, pore
pressures for a specific location, breakout height or any number of computed parameters. Gradient
of the response with respect to a specific input parameter, xi, can be represented by ∇X f (X),
computed with a forward finite difference scheme:

∇xi f (xi) =
∂ f (xi)

∂xi
=

f (xi +∆xi)− f (xi)

∆xi
+ ε (B.1)

Thus if the error term is left off, the gradient can be approximated:

∇xi f (xi)'
∆ f (xi)

∆xi
=

f (xi +∆xi)− f (xi)

∆xi
(B.2)

The response gradient is closely related to gradient of the limit-state function; therefore, it is impor-
tant to understand the sources of numerical discontinuities that prevent computation of a smooth
function.

Gradient must be approximated using a discrete selection of ∆xi. As illustrated in Figure B.2a
(using the same values as in Figure B.1), ∇WSEFS(WSE) (hereafter referred to as ∇FS) is com-
puted for various ∆WSE using WSE = 4.60 m as a reference point; all values are plotted such that
the x–axis represents WSE = 4.60+∆WSE. Clearly the numerical noise in ∇FS is significant and
localized, where values range between−0.38 and−0.23, and the sawtooth relationship is such that
each discontinuity corresponds to the steps described in the previous section. Thus, the response of
FS to WSE may appear smooth locally, however, there is enough noise that the gradient becomes
erratic. Using the approximation of ∇FS over WSE 4.60 to 4.68 as a reference, the error term ε

from Equation B.1 can be approximated, which is plotted in Figure B.2b. Depending on step size
∆WSE there is a maximum numerical noise on the order of 0.02 when the step size is above 0.1 m,
although error decreases to the order of 0.001 for step sizes below 0.1 m. These results show that
care must be taken to select finite difference step sizes in context of the discrete steps of ∆X and
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Figure B.2: Precision of gradient, ∇FS, for various finite difference increments, ∆WSE.
The 200-yr WSE is used as the origin point for finding ∆WSE and ∇FS is plotted against
WSE =WSE200 +∆WSE in (a). Error in ∇FS is computed with respect to the trendline
in Figure B.1

∆ f (X) implicit to the seepage and stability algorithms. While errors in gradient approximations
may be small in the region between steps, computed values can be infinite if ∆xi happens to cross
one.

B.4 Reliability Model
FERUM (Bourinet, 2010; Der Kiureghian et al., 2006) is used to conduct FORM analyses and must
repeatedly evaluate the limit-state function for various combinations of random variables in x. The
limit-state function is dependent on seepage and stability analysis, therefore, FERUM was integrated
with the software UNSAT and USlopeM in Matlab. Careful attention must be given to numerical
details to ensure the FORM algorithm converges to a solution, which are described in this sec-
tion. Convergence of FORM becomes problematic when no closed-form solution of the limit-state
function or its derivative is available, especially when finite element method (FEM) solutions are
involved (Haukaas, 2003; Koduru & Haukaas, 2010; Sudret & Der Kiureghian, 2002); fortunately
the iHL-RF algorithm (Zhang & Der Kiureghian, 1995) is most stable and least computationally
expensive (Sudret & Der Kiureghian, 2000). In this research two problems prevented convergence
during the iterative solution process: a) values of x were reached that had no solution for g(x); and
b) discontinuities in the limit-state function gradient, ∇g(x), prevented satisfaction of convergence
criteria.

The limit-state function cannot be computed for all possible values of all random variables. For
example, negative hydraulic conductivity ratio has no physical meaning, and therefore no solution
in seepage or stability problems. Values of x required by FORM during the iHL-RF algorithm are
directed by probability density and ∇g(x), and though an inadmissible solution does not neces-
sarily stop the algorithm, it increases computation time at best and prevents convergence at worst.
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To limit this occurrence, random variables can be truncated due to physical and numerical limits
on parameters; however, as described for the truncated normal distribution, this has a quantitative
effect on the PDF for the random variable. If a phyiscal limit for a random variable exists, for
example with Kr or φ , it is logical that the PDF reflect this condition. Alternatively, if numeri-
cal limits may exist, for example, high effective cohesion due to root reinforcement may prevent
Spencer’s method from converging for a potential sliding surface. In this case, values should be
limited to facilitate computation of a solution, but should not affect the PDF. Thus, physical lim-
its should result in scaling of the PDF, whereas numerical limits should not. Fortunately FORM
doesn’t necessarily evaluate g(x) across a wide range of the PDF for a specific random variable.
For relatively reliable system components, extreme values of the most important parameters will
be reached to result in g(X) ≤ 0; it is in this region that numerical issues might occur. For exam-
ple, for low WSE the blanket would need to be exceptionally thin to allow pore pressures to cause
FS ≤ 1.0, and convergence to steady-state pore pressures might not occur, or the mesh geometry
must change within the sliding surface region, causing instability in the approximated limit-state
function gradient. In this situation, an accurate assessment of β may not be possible, and relative
comparisons should be employed for random variable importance and sensitivity measures. Al-
ternatively, FORM iterations may reach the limit of a truncated distribution, for example, if the
design point reaches the lower limit selected for zB. For this case, physical distribution limits may
be altered (while still preserving the desired PDF characteristics) to allow a solution, after which
convergence to β may be achieved. In summary, consideration of the iteration values of x and
the non-convergence design point can be used to adjust distribution parameters to reach FORM
convergence.

For case b, above, the two criteria for assessing convergence of the FORM solution in the
iHL-RF algorithm must be considered: ∣∣∣∣∣ G(u)

G(µx)

∣∣∣∣∣ ≤ ε1 (B.3)∥∥ui−α iuiα
T
i
∥∥ ≤ ε2 (B.4)

where the subscript refers to iteration i. The condition for ε1 ensures the design point, u∗, lies on the
limit state surface (i.e., g(u∗) is sufficiently close to zero), whereas ε2 forces the design point to be
normal to the origin, ensuring the design point is located in a maximum probability density region.
Der Kiureghian et al. (2006), Haukaas (2003) recommend 0.001 for ε1 and ε2. Numerical noise
in FEM analysis causes difficulty in reaching FORM convergence due to discontinuities in the
limit-state function gradient (Haukaas & Der Kiureghian, 2006), which directly affects equation
B.4 since α is a function of ∇g(x). This research uses a forward finite difference scheme (FFD) to
evaluate ∇g(x) (Equation B.2), and as described in Section B.1, zB and WSE are the two random
variables that cause relatively large discontinuities in FS(x) that cannot be controlled with software
parameters or simple source code modification. As such, forward finite difference step size, ∆x f f d ,
must be selected to minimize gradient discontinuities. Ideally a ∆x f f d should be chosen much
larger than the increment causing a discontinuity, which would minimize the error in gradient
computations. Fortunately this is possible for zB, since discontinuities occur for relatively small
∆zB of about 0.001 m. For WSE, the discontinuities are much larger (0.1 m), and are close to
the second (and larger scale) ∆WSE that causes gradient errors. If the design point is located
close to a discontinuity in g(WSE) modifications to the FERUM algorithm for FFD computations
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is necessary. FERUM uses a single parameter, f , to select ∆x f d as a function of the standard
deviation for a random variable: ∆x f d = σi/ f . If f or ∆x f d can be selected as an absolute value
for each parameter, better control over FORM convergence can be achieved. For the case of zB,
∆x f d � 0.001m, and for WSE, 1e− 5m� ∆WSE f d � 0.1m. Because the distance between
problematic step scales is small for WSE, if the direction of the finite difference step can switch
(i.e., ∆WSE f d < 0) depending on the estimated error of ∇g(WSE), convergence could be improved,
thus “avoiding” the step in g(WSE). Definition of x f d as a specific value is referred to in this
document as a Type I finite difference approximation; definition as a specific value with dynamic
direction selection is referred to as Type II.

Selection of x f d for Type I FD should simply be selected to span discontinuous step(s) and
provide an acceptable approximation for ∇g(x). For Type II, g(·) must evaluated twice at x± x f d ,
effectively setting up a forward or backward finite difference approximation. The differences dg f =
|g(x0 + x f d)−g(x0)| and dgb = |g(x0− x f d)−g(x0)| are compared to a user-defined value, dgmin,
which corresponds to the minimum expected discontinuous step. For the example of WSE, this
would be ∼ 0.002 m (Figure B.1b). If a single step exists in the region x ∈ (x0− x f d,x0 + x f d)
then it will be implicitly added to dg f or dgb, thus if (dg f − dgb) > dgmin a step is assumed to
be present. As implemented in the modified source code of FERUM, if dg f and dgb are less than
dgmin the averaged value is used for ∇g(x). If dg f or dgb is greater than dgmin a discontinuity is
assumed and the other value is used for ∇g(x). If dg f and dgb are greater than dgmin the average
is used (and Type II FD is ineffective). This approach successfully allowed for convergence of the
FORM algorithm in the order of 10 iterations for ε1 = ε2 = 0.001 where convergence could not
be reached in at least 250 iterations otherwise. It is especially useful when used with the random
variable WSE. Note, however, that if ∇g(xi) ∼ 0 for x ∈ (x0,x0 + x f d) or x ∈ (x0− x f d,x0) Type
II FD will fail, although the unmodified version of FORM will also not likely reach convergence.
Using Type I or II FD has a numerical effect on the solution; however, the effect is typically small
and should result in a better estimate of reliability since ∆x f d is chosen with respect to the specific
numerical characteristics of each random variable. For example, when ∆ f f d = 0.01 (in SI units)
for γ , c and φ , 0.1 m for zB, 100 for Kr and 0.01 m for WSE convergence is achieved in 9 iterations
instead of 10 with β changing from 2.949 to 2.984 (p goes from 0.16% to 0.14%). Although
differences in importance vectors with and without the Type I correction are generally 10%, the
relative magnitudes of each are random variable are preserved.

Although the iHL-RF algorithm is generally capable of finding the FORM design point con-
sistently numerical issues can prevent convergence. Preliminary analyses with FORM using re-
laxed tolerances to find an approximate solution can provide guidance for adjusting parameters
to improve convergence and reach a more precise solution. Careful selection of random variable
distribution parameters and FFD step size and direction are the best methods available. Although
this approach adds additional analyses and complexity to the algorithm, it is likely to reduce over-
all computation time by eliminating unnecessary iterations due to oscillating steps in the FORM
algorithm caused by numeric noise.
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