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H I V / A I D S M A J O R A R T I C L E

Mitochondrial DNA Haplogroups and
Neurocognitive Impairment During HIV
Infection

Todd Hulgan,1 David C. Samuels,1 William Bush,1,a Ronald J. Ellis,2 Scott L. Letendre,2 Robert K. Heaton,2

Donald R. Franklin,2 Peter Straub,1 Deborah G. Murdock,1,b David B. Clifford,3 Ann C. Collier,4 Benjamin B. Gelman,5

Christina M. Marra,4 Justin C. McArthur,6 J. Allen McCutchan,2 Susan Morgello,7 David M. Simpson,7 Igor Grant,2 and
Asha R. Kallianpur8; for the CHARTER Groupc

1Vanderbilt University, Nashville, Tennessee; 2University of California-San Diego, California; 3Washington University, St. Louis, Missouri; 4University of
Washington, Seattle; 5University of Texas Medical Branch, Galveston; 6Johns Hopkins University, Baltimore, Maryland; 7Icahn School of Medicine at
Mount Sinai, New York, New York; and 8Cleveland Clinic Foundation/Lerner Research Institute and Cleveland Clinic Lerner College of Medicine, Ohio

Background. Neurocognitive impairment (NCI) remains an important complication in persons infected with
human immunodeficiency virus (HIV). Ancestry-related mitochondrial DNA (mtDNA) haplogroups have been
associated with outcomes of HIV infection and combination antiretroviral therapy (CART), and with neuro-
degenerative diseases. We hypothesize that mtDNA haplogroups are associated with NCI in HIV-infected adults
and performed a genetic association study in the CNS HIV Antiretroviral Therapy Effects Research (CHARTER)
cohort.

Methods. CHARTER is an observational study of ambulatory HIV-infected adults. Haplogroups were assigned using
mtDNA sequence, and principal components were derived from ancestry-informative nuclear DNA variants. Outcomes
were cross-sectional global deficit score (GDS) as a continuous measure, GDS impairment (GDS≥ 0.50), and HIV-
associated neurocognitive disorder (HAND) using international criteria. Multivariable models were adjusted for comor-
bidity status (incidental vs contributing), current CART, plasma HIV RNA, reading ability, and CD4 cell nadir.

Results. Haplogroups were available from 1027 persons; median age 43 years, median CD4 nadir 178 cells/mm3, 72%
on CART, and 46% with HAND. The 102 (9.9%) persons of genetically determined admixed Hispanic ancestry had more
impairment by GDS or HAND than persons of European or African ancestry (P < .001 for all). In multivariate models
including persons of admixed Hispanic ancestry, those with haplogroup B had lower GDS (β =−0.34; P = .008) and less
GDS impairment (odds ratio = 0.16; 95% confidence interval, .04, .63; P = .009) than other haplogroups. There were no
significant haplogroup associations among persons of European or African ancestry.

Conclusions. In these mostly CART-treated persons, mtDNA haplogroup B was associated with less NCI among
persons of genetically determined Hispanic ancestry. mtDNA variation may represent an ancestry-specific factor influ-
encing NCI in HIV-infected persons.

Keywords. HIV; AIDS; cognitive disorders; DNA, mitochondrial.

Neurocognitive impairment (NCI) remains an impor-
tant complication of human immunodeficiency virus
(HIV) infection in the combination antiretroviral thera-
py (CART) era [1]. Severe neurologic complications of
HIV are less common, but up to one-half of HIV-
infected individuals experience milder forms of NCI
that are associated with symptomatic decline [2, 3]. In
the CNS HIV Antiretroviral Therapy Effects Research
(CHARTER) cohort, more than 50% of the >1500 indi-
viduals studied had evidence of NCI at enrollment,
with increased rates across three levels of increasing
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comorbidity [4]. Given the potential impact of these untreatable
disorders in aging CART-treated populations, understanding,
predicting, and preventing them is important. Although host fac-
tors have been associated with HAND [4,5], genetic predictors of
HAND should be more thoroughly characterized.

Early studies of HAND genetics examined HIV-associated
dementia (HAD), AIDS dementia complex, or HIV-associated
encephalitis, phenotypes that are uncommon in the CART era,
and identified associations with chemokine coreceptor 5
(CCR5) [6] and apolipoprotein E (ApoE) [7] gene variants. Re-
cent analyses have included milder NCI phenotypes and have
continued to primarily examine the ApoE ε4 allele, with incon-
sistent results [8, 9]. Reviews on this topic provide additional
background and highlight the limitations of relatively small
sample sizes and heterogeneous phenotypes [10]. One ge-
nome-wide association study (GWAS) of HAND has been re-
ported in a sample of 1287 adults of predominantly European
ancestry enrolled in the Multicenter AIDS Cohort Study [11].
This analysis did not find associations meeting GWAS-level sig-
nificance (P < 5 × 10–8) but did identify associations between
processing speed and 2 single-nucleotide polymorphisms
(SNPs) in ion channel transporters (SLC8A1 and NALCN)
that approached statistical significance.

The critical and complex roles of mitochondria in energy
production, reactive oxygen species (ROS) homeostasis, and ap-
optotic regulation make them vulnerable targets and key medi-
ators of cellular damage in response to environmental stresses.
Given high-energy demands of the central nervous system
(CNS), mitochondrial function is critically important in neuro-
nal function and neurodegenerative diseases. Mitochondrial
DNA (mtDNA) is maternally inherited and encodes 13 electron
transport chain polypeptides. Patterns of mtDNA variants—
haplogroups—define maternal ancestry, may influence success-
ful aging, and have been associated with human diseases [12].
The potential importance of mtDNA variation in NCI is
supported by the prominence of neurologic phenotypes in in-
herited mtDNA diseases and associations between mtDNA
haplogroups and neurodegenerative diseases [13]. Several stud-
ies have reported associations between mtDNA haplogroups
and HIV- or CART-associated outcomes, including peripheral
neuropathy and neuroretinal disease [14]. Furthermore, hap-
logroup-defining mtDNA variants have recently been linked
to altered expression of inflammation, complement, and apo-
ptosis genes, raising the possibility that mitochondrial-nuclear
interactions play a role in immune regulation [15].

We hypothesized that genetic variation in mtDNAmodulates
susceptibility to or severity of NCI in HIV infection, perhaps
through neuroinflammation. There are data in HIV-uninfected
populations supporting a link between mitochondrial dysfunc-
tion and neuroinflammation in neurodegenerative processes
[16], and associations with these diseases and mtDNAvariation

cited above provide indirect evidence for this hypothesis. This
link is yet to be established in HAND. Characterizing associa-
tions between mtDNA haplogroups and NCI in this population
may facilitate risk stratification of patients and identify targets
for prevention or therapy. Because studies of the role of
mtDNA haplogroups in HAND have not been published, we
used stored DNA and cross-sectional data from the CHARTER
study to address this question, and present the first report of a
genetic association.

METHODS

Where appropriate, methods followed recommendations from
the STrengthening the Reporting of Genetic Association Studies
Statement (Supplementary Table 1) [17].

Study Design and Participants
CHARTER is a prospective, observational study conducted at 6
US locations: Baltimore, Maryland; New York, New York;
San Diego, California; Galveston, Texas; Seattle, Washington;
and St Louis, Missouri. Institutional review boards at each site
approved this research, and each participant provided written
informed consent. Data were collected between 2003 and
2007 according to a protocol of comprehensive neuromedical,
neurobehavioral, and laboratory assessments that were stan-
dardized across sites [4]. The data reported herein are a cross-
sectional genetic association analysis of a subgroup of CHAR-
TER participants.

Assessments of Neurocognitive Impairment
Participants were English-speaking and underwent a compre-
hensive test battery that included seven neurocognitive domains
affected by HIV-associated CNS dysfunction [4]. Composite
global deficit score (GDS) was derived from standard T-scores
using best available normative standards to correct for learning,
age, education, sex, and ethnicity, as appropriate. For self-
reported Hispanics, 3 of 15 measures were corrected for
English-speaking Hispanic normative standards; the remainder
was adjusted for Caucasian normative standards [18, 19]. The
GDS as a continuous variable reflects the number and severity
of neurocognitive deficits across the battery; it is the average of
the deficit scores on each test, where T≥ 40 = 0 (no deficit), 35–
39 = 1(mild deficit), 30–34 = 2 (mild to moderate deficit); 25–
29 = 3 (moderate deficit), 20–24 = 4 (moderate to severe deficit),
and <20 = 5 (severe deficit). An established cutoff of GDS≥ 0.50
defines NCI [20]. To further classify presence and severity of
HAND, we applied a published objective algorithm that has
been shown to yield excellent inter-rater reliability in previous
multisite studies [21]. This algorithm conforms to the Frascati
criteria for diagnosing HAND [22], requiring at least mild im-
pairment in ≥2 of seven domains, and includes functional
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assessment by self-report or performance-based criteria or
both, as well as exclusions based upon comorbidities (non-
HIV related risks for NCI). Categories of HAND include
asymptomatic neurocognitive impairment (ANI), mild neuro-
cognitive disorder (MND), and HAD. Standardized assess-
ments were performed by physicians, nurse practitioners, or
trained nurses and research associates certified by the CHAR-
TER coordinating center. As described previously [4], HAND
categorization required a determination that NCI and func-
tional impairment were likely due to HIV-related effects on
the brain rather than comorbid conditions. Detailed review
by 2 senior CHARTER investigators using published guide-
lines [22] provided categorization of comorbid conditions
for all CHARTER participants as incidental, contributing,
and confounding. Several conditions (eg, brain trauma, epilep-
sy or other seizure history, CNS opportunistic diseases) in-
formed this categorization; detailed information on their
frequencies are presented elsewhere [4]. Individuals with con-
founded neurocognitive comorbidities (15% of the total
CHARTER cohort) that precluded an assessment of the con-
tribution of HIV to their NCI were not eligible for a diagnosis
of HAND according to Frascati criteria [4, 22] and were ex-
cluded from genetic analyses.

Mitochondrial DNA Sequencing and Haplogroup Determination
Isolation of DNA from whole blood samples was performed
using PUREGENE (Gentra Systems Inc, Minneapolis, Minne-
sota ). Full mtDNA sequencing was performed using the Gen-
eChip Human Mitochondrial Resequencing Array v2.0
(Affymetrix, Inc, Santa Clara, California).

Array intensity data were processed using the MitoChip Filter-
ing Protocol [23], and variants were called relative to the Revised
Cambridge Reference Sequence [24],Haplogroups were assigned
using HaploGrep (http://haplogrep.uibk.ac.at/) [25].

Most participants also underwent nuclear DNA genotyping
using the Affymetrix Genome-Wide Human SNP Array 6.0
(Affymetrix, Inc, Santa Clara, California). Ancestry-informative
markers were analyzed using EIGENSTRAT software [26] to
generate principal components (PC) (Supplementary Figure 1).
Model-based clustering on the top 3 PCs, using the mclust R
package, was used to assign individuals to genetic ancestry clus-
ters using an ellipsoidal model [27]. Genetic ancestry clusters
showed 97.4% agreement with self-reported race and ethnicity
(Supplementary Table 2). All analyses used PC-ancestry based
stratifications (European, African, or admixed Hispanic).

Statistical Analyses
Three outcomes were analyzed: (1) Continuous GDS; (2) di-
chotomous NCI (defined as GDS ≥ 0.50) vs no impairment
(GDS < 0.50); and (3) HAND (any HAND category vs normal)
[22]. Prior research has shown strong agreement between the

latter 2 methods of classifying NCI, such that NCI by GDS cri-
teria virtually guarantees the presence of HAND, but a minor-
ity of HAND cases are classified as within normal limits by the
GDS [20]. Primary analyses were stratified by PC-derived ge-
netic ancestry. Univariate analyses included nonparametric
Wilcoxon tests for continuous variables and Fisher exact
tests for dichotomous variables. Multivariable regression of as-
sociations between mtDNA haplogroups and GDS and HAND
were adjusted for: comorbidity status (incidental vs contribut-
ing); current CART use (yes vs no); plasma HIV RNA; reading
ability (by Wide-Range Achievement Test-III [WRAT] Read-
ing subtest score); and self-reported nadir CD4+ T-cell count.
Adjustments for multiple comparisons were not performed
given the exploratory nature of these analyses, the limited
number of exposure (genetic) variables within stratified groups,
and the relatively limited number of outcomes assessed. Stat-
istical analyses were conducted using R (version 2.15.1) and
Stata Statistical Software, Release 13 (College Station, Texas:
StataCorp LP).

RESULTS

Participant Characteristics
Haplogroups were available from 1068 participants. Of these,
1027 (96%) had nuclear DNA genotypes that allowed for PC
assessment of genetic ancestry (Supplementary Figure 2). The
median age for the analysis group (Table 1) was 43 years, median
CD4+ T-cell nadir was 178 cells/mm3, 736 (72%) were on CART
at initial assessment, 474 (46%) had HAND, and the median (in-
terquartile range [IQR]) GDS was 0.32 (0.11–0.63). Haplogroup
frequencies within each ancestry category were consistent with
US population based data [28] (Supplementary Table 3) and
did not differ across CHARTER sites (data not shown).

Univariate Analyses of Global Deficit Score and HIV-associated
Neurocognitive Disorders
Persons of admixed Hispanic ancestry had a higher median
(IQR) GDS (0.53; 0.21–0.94) than persons of African (0.26;
0.11–0.53; P < .0001) or European (0.37; 0.16–0.68; P = .003)
ancestry (Supplementary Figure 3A). Persons of admixed His-
panic ancestry also had a greater likelihood of either impaired
GDS (52% vs 29% African [P < .0001] and 37% European
[P = .009]; Supplementary Figure 3B) or HAND diagnosis
(64% vs 40% African [P < .0001] and 48% European [P = .003];
Supplementary Figure 3C and 3D).

Median GDS did not differ significantly by mtDNA hap-
logroup in participants of African or European ancestry (Fig-
ure 1A and 1B). Among the 102 persons of admixed Hispanic
ancestry, WRAT-III, GDS, and percentage with GDS impair-
ment or HAND differed significantly across haplogroups in
univariate analyses (Table 1). Persons belonging to haplogroup
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Table 1. Subject Characteristics at CNS HIVAntiretroviral Therapy Effects Research Entry, Overall, Among Those of European, African, and Admixed Hispanic Ancestry, and by Major
Hispanic Mitochondrial DNA Haplogroups

Variable
Overall

(N = 1027)
European Ancestry

(N = 440)
African Ancestry

(N = 485)
Admixed Hispanic
Ancestry (N = 102)

Haplogroup A
(N = 35)

Haplogroup B
(N = 20)

Haplogroup C
(N = 14)

Other Hispanic
Haplogroups (N = 33)

P
Value*

Age, median (range) 43 (18–69) 44 (19–68) 44 (18–69) 40 (21–61) 43 (30–54) 39 (22–61) 42 (32–52) 40 (21–53) .31

Female sex 235 (23%) 52 (12%) 161 (33%) 22 (22%) 9 (26%) 2 (10%) 4 (29%) 7 (21%) .50
Genetic Ancestry

European 440 (43%) 440 (100%) . . . . . . . . . . . . . . . . . . . . .

African 485 (47%) . . . 485 (100%) . . . . . . . . . . . . . . . . . .
Admixed Hispanic 102 (10%) . . . . . . 102 (100%) 35 (34%) 20 (20%) 14 (14%) 33 (33%) . . .

CD4 nadir, cells/mm3 178 (51–307) 193 (78–330) 159 (29–285) 167 (52–279) 110 (52–221) 188 (93–345) 129 (35–187) 205 (60–354) .23

Plasma HIV RNA, log10
copies/mL

2.3 (1.7–4.0) 2.1 (1.7–4.0) 2.5 (1.7–4.0) 2.0 (1.7–3.6) 2.0 (1.7–3.6) 1.7 (1.7–3.5) 1.8 (1.7–2.1) 2.5 (1.7–4.2) .49

Estimated duration of
HIV infection,
months

120 (55–184) 120 (47–190) 125 (71–180) 108 (37–164) 124 (58–177) 105 (34–125) 152 (95–178) 49 (17–135) .10

On CART 736 (72%) 308 (70%) 350 (72%) 78 (76%) 26 (74%) 16 (80%) 12 (86%) 24 (73%) .83

Estimated time on
CART, months

48 (9–88) 53 (8–98) 45 (10–79) 45 (5–95) 65 (32–100) 73 (15–103) 60 (3–138) 17 (1–73) .05

Comorbidity .25

Incidental 660 (64%) 304 (69%) 296 (61%) 60 (59%) 18 (51%) 14 (70%) 6 (43%) 22 (67%)

Contributing 367 (36%) 136 (31%) 189 (39%) 42 (41%) 17 (49%) 6 (30%) 8 (57%) 11 (33%)
WRAT-III 96 (83–105) 102 (96–109) 87 (76–96) 96 (83–102) 93 (79–105) 100 (96–109) 88 (83–96) 94 (87–100) .04

HAND

NCN 553 (54%) 228 (52%) 289 (60%) 36 (35%) 8 (23%) 12 (60%) 2 (14%) 14 (42%) .01**
Any HAND 474 (46%) 212 (48%) 195 (40%) 66 (65%) 27 (77%) 8 (40%) 12 (86%) 19 (58%)

ANI 354 (34%) 150 (34%) 158 (33%) 46 (45%) 17 (49%) 6 (30%) 8 (57%) 15 (45%) .06***

MND 88 (9%) 44 (10%) 30 (6%) 14 (14%) 6 (17%) 2 (10%) 2 (14%) 4 (12%)
HAD 31 (3%) 18 (4%) 7 (1%) 6 (6%) 4 (11%) 0 (. . .) 2 (14%) 0 (. . .)

GDS 0.32 (0.11–0.63) 0.37 (0.16–0.68) 0.26 (0.10–0.53) 0.53 (0.21–0.94) 0.68 (0.42–1.0) 0.21 (0.08–0.32) 0.58 (0.43–1.4) 0.53 (0.16–0.89) .003

GDS impaired 359 (35) 164 (37%) 142 (29%) 53 (52) 24 (69) 4 (20) 8 (57) 17 (52) .006

Values are N (%) or median (interquartile rages), except where noted.

Abbreviations: ANI, asymptomatic neurocognitive impairment; CART, combination antiretroviral therapy; GDS, global deficit score; HAD, HIV-associated dementia; HAND, HIV-associated neurocognitive disorder; HIV,
human immunodeficiency virus; MND, mild neurocognitive disorder; NCN, neurocognitively normal; WRAT, wide-range achievement test.
*P-values by analysis of variance (ANOVA) or exact test comparisons across Admixed Hispanic Ancestry haplogroups except where noted.
** P for comparison of any HAND vs NCN.
*** P for ANOVA comparison across all HAND categories.
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B (N = 20; 20%) had a lower median GDS (0.21 vs 0.63;
P = .002; Figure 1C and Table 1), and lower likelihood of either
GDS impairment (odds ratio [OR] 0.17; 95% confidence inter-
val [CI], .05, .55; P = .001; Figure 2A and Supplementary
Table 4) or HAND (OR 0.27; 95% CI, .10, .75; P = .013; Fig-
ure 2B and Supplementary Table 5) than Hispanic persons
with other haplogroups. These relationships persisted in analy-
ses of subgroups on CART, with detectable plasma HIV RNA,
and with only incidental neurocognitive comorbidities (data
not shown). Among persons of European or African ancestry,
there were no statistically significant haplogroup associations
with GDS, proportion with GDS impairment, or HAND (data
not shown).

Figure 1. Box and dotplots of global deficit scores among participants
of African ( panel A), European ( panel B), and Hispanic ( panel C) ancestry,
by major mtDNA haplogroups. Boxes denote median and interquartile
range; whiskers denote 95th percentiles. P-value = .002 by univariate lin-
ear regression for haplogroup B vs other haplogroups among the admixed
Hispanic population in Panel C. Abbreviation: mtDNA, mitochondrial
DNA.

Figure 2. Bar graphs of percentage of participants with global deficit
score (GDS) impairment (GDS ≥ 0.50; panel A) and HIV-associated neu-
rocognitive disorder (HAND) of any severity ( panel B), by ancestry and
major mtDNA haplogroups. Error bars for frequency estimates were cal-
culated as 2 × Standard Error. P-values from univariate logistic regres-
sion models are shown. Abbreviations: HIV, human immunodeficiency
virus; mtDNA, mitochondrial DNA; NS, not significant.
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Multivariate Analyses of Global Deficit Score and HIV-associated
Neurocognitive Disorders
In adjusted models of persons of admixed Hispanic ancestry,
haplogroup B was associated with a lower GDS (β = −0.34;
−0.59, −0.09; P = .008; Table 2) compared with non-B hap-
logroups, and a lower likelihood of GDS impairment (adjusted
OR 0.16; 0.04, 0.63; P = .009; Supplementary Table 4), indepen-
dent of comorbidity status, WRAT-III score, CART status, nadir
CD4+ T-cell count, and plasma HIV RNA level. Although per-
sons with haplogroup B were less likely to have HAND of any
severity in univariate analyses, this association was not statisti-
cally significant in adjusted analyses (adjusted OR 0.36; 0.11,
1.14; P = .08; Supplementary Table 5).

DISCUSSION

In this analysis of chronically HIV-infected, mostly CART-
treated CHARTER participants, persons of Hispanic ancestry
had more NCI overall, but a common mtDNA haplogroup
within the population was associated with significantly lower
prevalence of NCI. Specifically, among the almost 20% of per-
sons of admixed Hispanic ancestry having mtDNA haplogroup
B, median GDS and the proportion with impaired GDS were
significantly lower than in persons with other haplogroups
after adjustment for potential confounders. Mitochondrial
DNA variants, including haplogroups, have been studied in re-
lation to neurodegenerative diseases in HIV-negative popula-
tions. Several studies have explored host genetic risks for
HIV-associated NCI [10] and associations between mtDNA
haplogroups and non-CNS HIV-related outcomes [14]. This
is the first analysis to our knowledge of mtDNA variation and
NCI in an HIV-infected population.

Haplogroup B is a major haplogroup seen in persons of East
Asian, Native American, and admixed Hispanic ancestry [29,
30], is part of the R superhaplogroup, and includes variations
common to the related European haplogroups J and T [31]
(Supplementary Figure 4). Haplogroup B has been associated

with nonneurocognitive phenotypes in recent studies [32, 33].
The B haplogroup was also recently associated with changes
in epidermal nerve fiber density (ENFD, a measure of small
fiber neuropathy) in lower extremity skin biopsies from HIV-
infected persons starting CART as part of a clinical trial in Thai-
land [34]. In that study, persons with the B haplogroup had an
increase in ENFD and plasma 8-oxo-deoxyguanosine (a marker
of oxidative DNA damage also associated with HAND and
mtDNA damage in brain tissue [35]) on CART. Our data
cannot address apparently discrepant associations between
haplogroup B and what may be an adverse peripheral nerve
phenotype in HIV-infected Thais and less NCI in US Hispanics.
A recent publication reported an association between subha-
plogroup B5a and increased risk for Alzheimer’s disease in
Han Chinese [36]. Lymphoblastoid and HeLa cells harboring
haplogroup B5a and a nonsynonymous SNP (m.8584G > A)
found in B5a, respectively, demonstrated adverse mitochondrial
phenotypes compared to control cells. Importantly, although
B5 was the predominant subhaplogroup in this Han Chinese
population and the study of HIV-infected Thais [34], B5 is
not represented in our population of admixed Hispanics from
the United States. We speculate that this population-specific
subhaplogroup could determine whether the B haplogroup is
associated with neurodegeneration or neuroprotection.

Potential mechanisms by which mtDNAvariation could alter
susceptibility to NCI would be similar to those posited for other
neurodegenerative processes in aging populations, including
differences in ROS production, oxidative stress, inflammation,
and apoptotic regulation. In chronic HIV infection, systemic
or CNS inflammation or both may contribute to NCI. Given
the role of mitochondria in inflammatory processes [37],
mtDNA variation could be an additional susceptibility factor.
A potential confounder in this population is exposure to
older mitochondria-toxic CART drugs, particularly “d-drug”
NRTIs zalcitabine, didanosine, or stavudine. Among these
CHARTER participants, 13% were taking 1 or more of these
at enrollment; 39% had a history of exposure. In secondary

Table 2. Linear Regression of Global Deficit Score in Persons of Admixed Hispanic Ancestry

Variable
Unadjusted

P Value
Adjusted

P ValueCoefficient (95% CI) Coefficient (95% CI)

Haplogroup B (vs all others) −0.37 (−.61, −.13) .002 −0.34 (−.59, −.09) .008
Comorbidity (incidental vs contributing) −0.26 (−.46, −.07) .008 −0.16 (−.36, .04) .12

WRAT-III score −0.008 (−.016, −.001) .022 −0.003 (−.01, .004) .40

On CART (yes vs no) 0.24 (.009, .464) .041 −0.02 (−.36, .33) .92
Nadir CD4 (per cell/mm3) −0.0006 (−.0011, −.00009) .020 −0.0004 (−.001, .0002) .16

Plasma HIV RNA (per log10 copies/mL) −0.09 (−.17, −.01) .023 −0.06 (−.17, .04) .23

N = 96, Model P-value = .001, R2 = 0.16.

Abbreviations: CART, combination antiretroviral therapy; CI, confidence interval; HIV, human immunodeficiency virus; WRAT, wide-range achievement test.
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multivariate models, neither d-drug exposure at enrollment nor
past exposure were associated with NCI in the admixed Hispan-
ic population, and associations between mtDNA haplogroup B
did not change substantially (data not shown). There tended to
be variability in the duration of CART exposure by haplogroup
among the admixed Hispanic population (Table 1). We there-
fore also performed a secondary model adjusting for CART du-
ration, and did not observe substantial differences in the
haplogroup B results (data not shown).

A strength of our study is the well-characterized and racially
and geographically diverse population with NCI and HAND di-
agnoses and confounders identified in a standardized fashion.
Limitations include those inherent to cross-sectional analyses
and the lack of an HIV-uninfected control population. Longitu-
dinal approaches to NCI in CHARTER have recently been pub-
lished [2, 3], and genetic analyses of longitudinal changes in
NCI are needed. Although this analysis includes an overall
large sample, numbers of persons from minority genetic ances-
try groups and within individual mtDNA haplogroups are rel-
atively small. The small sample size of adults of admixed
Hispanic ancestry suggests that although the effect sizes identi-
fied were large enough to reach statistical significance, the find-
ings may not generalize to other populations of HIV-infected
adults of Hispanic ancestry. We did not observe statistically sig-
nificant associations between mtDNA haplogroup and NCI or
HAND in persons of European or African genetic ancestry in
CHARTER. Despite relatively large sample sizes, our analyses
may be underpowered to detect small but potentially clinically
relevant differences, or that subhaplogroups or mtDNAvariants
not specifically included in our analysis are associated with NCI.
The relevance of ANI, the most common HAND category in
this population, has been questioned [38].Recent data, however,
have demonstrated that persons with ANI are at risk for symp-
tomatic decline, supporting its clinical and prognostic value [3].
We performed sensitivity analyses of the HAND outcome in ad-
mixed Hispanic participants excluding those with ANI (ie,
comparing neurocognitively normal vs MND or HAD). With
this smaller population (N = 54), the adjusted OR for the B hap-
logroup was of a similar direction and magnitude (0.22), with
an increase of P-value from .08 to .14.

Utility of standardized NCI measures in persons of non-
European ancestry is less well established, an important consid-
eration given that we observed both greater prevalence of and
haplogroup associations with NCI only in the admixed Hispan-
ic ancestry population. Because specific Hispanic neurocogni-
tive norms exist for only 3 of the tests in the CHARTER
battery, use of Caucasian norms for the other tests may have
contributed to higher rates of impairment among Hispanics.
The choice of norms was based upon evidence that per-
formance of US Hispanics on multiple neurocognitive tests
is closer to that of Caucasian than African Americans [39].

In addition, recent longitudinal CHARTER analyses found
self-reported Hispanic ethnicity to be a risk factor for decline
in neurocognitive performance from baseline over a mean
of 36 months of follow-up [2]; those analyses did not use cross-
sectional neurocognitive norms and also found Hispanic ethnicity
to be associated with NCI. Although self-identified Hispanic par-
ticipants were drawn from CHARTER sites across the United
States, haplogroup frequency did not differ significantly across
sites, and the B haplogroup was associated with NCI independent
of WRAT-III, a measure of premorbid intelligence and quality of
educational background. In addition, birthplace (US or Canada vs
other) and primary language (English vs other) did not differ sig-
nificantly between B and other haplogroups among participants
of admixed Hispanic ancestry (data not shown), but there may be
other unmeasured or unknown biologic or sociodemographic
confounders associated with both mtDNA haplogroup and
NCI. Due to genetic diversity and admixture of persons of self-
identified Hispanic-American ethnicity, genotype-phenotype as-
sociations are complex [40], and definitive conclusions must be
drawn cautiously and only after replication.

Future analyses should examine associations between hap-
logroups and CSF neuroinflammation and non-haplogroup-
defining SNPs and NCI, and interactions between mtDNA
variants and SNPs in nuclear genes relevant for mitochondrial
function and inflammation. Prospective studies may also ex-
plore targeted genetic testing for risk-stratification and person-
alized interventions. Should this association be validated,
mtDNA variation may be a novel, ancestry-specific host factor
influencing HAND in chronically HIV-infected persons and
may provide pathogenic clues that will lead to a better under-
standing of this condition.
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