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IMMEDIATE COMMUNICATION OPEN

Genome-wide association study of problematic opioid
prescription use in 132,113 23andMe research participants
of European ancestry
Sandra Sanchez-Roige 1,2✉, Pierre Fontanillas3, Mariela V. Jennings1, Sevim B. Bianchi1, Yuye Huang 1, Alexander S. Hatoum4,
Julia Sealock 2, Lea K. Davis 2,5,6, Sarah L. Elson3, 23andMe Research Team* and Abraham A. Palmer 1,7✉

© The Author(s) 2021, corrected publication 2022

The growing prevalence of opioid use disorder (OUD) constitutes an urgent health crisis. Ample evidence indicates that risk for OUD
is heritable. As a surrogate (or proxy) for OUD, we explored the genetic basis of using prescription opioids ‘not as prescribed’. We
hypothesized that misuse of opiates might be a heritable risk factor for OUD. To test this hypothesis, we performed a genome-wide
association study (GWAS) of problematic opioid use (POU) in 23andMe research participants of European ancestry (N= 132,113;
21% cases). We identified two genome-wide significant loci (rs3791033, an intronic variant of KDM4A; rs640561, an intergenic
variant near LRRIQ3). POU showed positive genetic correlations with the two largest available GWAS of OUD and opioid
dependence (rg = 0.64, 0.80, respectively). We also identified numerous additional genetic correlations with POU, including alcohol
dependence (rg = 0.74), smoking initiation (rg = 0.63), pain relief medication intake (rg= 0.49), major depressive disorder (rg =
0.44), chronic pain (rg = 0.42), insomnia (rg = 0.39), and loneliness (rg = 0.28). Although POU was positively genetically correlated
with risk-taking (rg= 0.38), conditioning POU on risk-taking did not substantially alter the magnitude or direction of these genetic
correlations, suggesting that POU does not simply reflect a genetic tendency towards risky behavior. Lastly, we performed
phenome- and lab-wide association analyses, which uncovered additional phenotypes that were associated with POU, including
respiratory failure, insomnia, ischemic heart disease, and metabolic and blood-related biomarkers. We conclude that opioid misuse
can be measured in population-based cohorts and provides a cost-effective complementary strategy for understanding the genetic
basis of OUD.

Molecular Psychiatry (2021) 26:6209–6217; https://doi.org/10.1038/s41380-021-01335-3

INTRODUCTION
Opioid use disorders (OUD) represent a global epidemic [1]. Every
day, 128 people in the United States die after overdosing on opiates.
The pathway to opiate addiction has changed over the last few
decades. In the 1960s, more than 80% of people who began using
opioids initiated with heroin [2]; by 2013, nearly 80% of opioid users
reported that their first regular opioid was a prescription pain
reliever [3]. The misuse of and addiction to opiates—including
prescription pain relievers, heroin, and synthetic opioids such as
fentanyl—is thus a serious emergency that affects public health as
well as social and economic welfare. More recently, the COVID-19
pandemic made it increasingly difficult for individuals with OUD to
access treatment and impacted mental health, triggering both initial
and continued use of opioids [4], which is likely to further increase
rates of OUD [5].
Although OUD is known to be moderately heritable [6, 7],

genomic discovery has been severely limited due to the
complexity of obtaining large, well-characterized samples of cases

and opiate-exposed controls [6, 8–14]. The largest genome-wide
association study (GWAS) to date (~10 K cases) identified only one
locus in OPRM1, which encodes the µ-opioid receptor [7]. Larger
sample sizes are urgently needed to identify additional loci
associated with OUD.
An alternative, complementary approach is to study the genetic

liability for OUD across different stages, particularly the transition
from use to misuse. By taking this approach, we can explore
specific aspects of OUD liability, such as initial use, subjective drug
response, transition to hazardous use, dependence, withdrawal,
and relapse. This strategy can be applied in population-based
cohorts, allowing for a dramatic increase in sample sizes for a
fraction of the cost.
In the present study, we pursued a novel strategy in which we

measured problematic prescription opioid use (POU) in 23andMe
research participants (n= 132,113) of European ancestry. We
asked a single question “Have you ever in your life used
prescription painkillers (taken not as prescribed), e.g., Vicodin,
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Oxycontin?”, and conducted a GWAS defining cases as those who
answered ‘yes’. We used a variety of bioinformatic analyses to
explore the relationship between POU and OUD as well as other
substance use disorder-related behaviors. We also explored
POU’s genetic relationship with various psychiatric, behavioral,
and medical conditions.

MATERIALS AND METHODS
GWAS cohort and phenotype
We utilized a cohort of 132,113 male and female research participants of
European ancestry. All participants were drawn from the customer base of
23andMe, Inc., a direct-to-consumer genetics company. Participants
provided informed consent and participated in the research online, under
a protocol approved by the external AAHRPP-accredited IRB, Ethical &
Independent Review Services (www.eandireview.com). During 4 months in
2015 and 14 months in 2018–2020, participants responded to a decision-
making survey that, depending on branching logic, included up to 139
questions pertaining to aspects of impulsivity and substance use and
abuse. A single item in this survey asked, “Have you ever in your life used
prescription painkillers (taken not as prescribed), e.g., Vicodin, Oxycontin?”.
A total of 132,113 individuals responded, with 27,805 (10,164 males)
answering ‘yes’ (cases) and the remaining 104,308 (36,246 males)
answering ‘no’ (controls). Controls were not screened for prior opioid
use, so they represent a combination of individuals who have taken
opioids but only as prescribed, and others who have never taken an opioid.
Only individuals who were categorized as being of European ancestry
based on empirical genotype data [15] were included in this study.
Demographic information about this sample is presented in Supplemen-
tary Table 1.

Genome-wide association analysis
DNA extraction and genotyping were performed on saliva samples by
CLIA-certified and CAP-accredited clinical laboratories of Laboratory
Corporation of America. Quality control, imputation, and genome-wide
analysis were performed by 23andMe (Supplementary Table 2; see Supple-
mental Material and [16, 17] for further information about genotyping,
imputation, and quality control).
As previously described [17, 18], 23andMe’s analysis pipeline performs

logistic regression assuming an additive model for allelic effects
(Supplementary Material). Covariates included age (inverse-normal
transformed), sex, the top five principal components of ancestry, and
indicator variables for genotyping platforms. P values were not corrected
for genomic control.

Biological annotation, gene, and transcriptome-based
association analyses
We used a variety of bioinformatic methods to further characterize the loci
identified by the GWAS. First, we used the default version (v1.3.6a) of the
FUMA web-based platform [19] to identify independent SNPs (r2 < 0.10)
and to study their functional consequences. We also used MAGMA v1.08
[19, 20] to perform competitive gene-set and pathway analyses. SNPs were
mapped to 18,546 protein-coding genes from Ensembl (build 85). We
applied a Bonferroni correction based on the total number of genes tested
(p < 2.56E−06). Gene sets were obtained from Msigdb v7.0 (“Curated gene
sets”, “GO terms”). We also used Hi-C coupled MAGMA (H-MAGMA; [21]) to
assign non-coding (intergenic and intronic) SNPs to genes based on their
chromatin interactions. Exonic and promoter SNPs were assigned to genes
based on physical position. H-MAGMA uses four Hi-C datasets, which were
derived from fetal brain, adult brain, iPSC-derived neurons, and iPSC-
derived astrocytes (https://github.com/thewonlab/H-MAGMA). We applied
a Bonferroni correction based on the total number of gene-tissue pairs
tested (p < 9.55E−07).
Lastly, we used S-MultiXcan v0.7.0 (an extension of S-PrediXcan v0.6.2

[22]) to identify specific eQTL-linked genes associated with POU. This
approach uses genetic information to predict transcript abundance in 13
brain tissues, and tests whether the predicted transcripts correlate with
POU. S-PrediXcan uses pre-computed tissue weights from the Genotype-
Tissue Expression (GTEx) v8 project database (https://www.gtexportal.
org/) as the reference transcriptome dataset. For S-PrediXcan and
S-MultiXcan analyses, we chose to use sparse (elastic net) prediction
models, which are available at http://predictdb.hakyimlab.org/.
We applied a conservative Bonferroni correction based on the total

number of gene-tissue pairs tested (14,159 gene-tissue pairs tested; p <
3.53E−06).

Gene–drug interaction analysis
We examined the 17 genes that were significantly associated with POU in
the MAGMA gene-based analysis (10% FDR) for known interactions with
prescription medications using the Drug Gene Interaction Database v3.0
(dgidb.genome.wustl.edu) [23]. We used the Anatomical Therapeutic
Chemical (ATC) classification system to determine the second-level
classification of each medication we identified. ATC classifications for
medications were retrieved from the Kyoto Encyclopedia of Genes and
Genomics (KEGG; https://www.genome.jp/kegg/drug/) and the World
Health Organization Collaborating Center for Drug Statistics Methodology
(https://www.whocc.no/atc_ddd_index/). We used the R package circlize
v0.4.1 [24] to visualize the interactions between each gene and the ATC
classifications of drugs it interacts with.

Heritability
We used the LD Score regression (LDSC [25]) python package to estimate
the heritability explained by SNPs (SNP-h2). We used pre-computed LD
scores (“eur_w_ld_chr/”), which are publicly available (https://data.
broadinstitute.org/alkesgroup/LDSCORE/). LD scores were computed for
every SNP using individuals from European ancestry from the 1000
Genomes Project. We restricted the analysis to well-imputed SNPs, filtered
to HapMap3 SNPs, with MAF above 1%. We removed InDels, structural
variants, strand-ambiguous SNPs and SNPs with extremely large effect
sizes (χ2 > 80). Heritability was calculated on the liability scale by
accounting for differences in population prevalence (4%) and sample
prevalence (21%). The population prevalence was retrieved from the 2018
National Survey on Drug Use and Health [26].

Genetic correlation analyses
We used LDhub or local LDSC [25] to calculate genetic correlations (rg)
between POU and 935 other traits or diseases (852 from LDHub and 83
local) [25]. Local traits were selected based on previously known
phenotypic associations between OUD and other substance use disorder
phenotypes and related traits (e.g., cannabis use disorder, various
measures of impulsivity) not available on LDhub. We used the standard
Benjamini–Hochberg false discovery rate correction (FDR 5%) to correct for
multiple testing. We also calculated a Bonferroni correction for 935
comparisons (p < 5.35E−05); however, this correction is overly conservative
because many of the 935 traits are highly correlated with one another.

mtCOJO
We used mtCOJO [24] to individually condition the POU summary statistics
on loci associated with other comorbid traits, including risk-taking
behavior [27], smoking [28], cannabis use disorder [29], alcohol depen-
dence [30], chronic pain [31], and OUD [32]. This analysis allowed us to
examine whether the genetic associations with POU would be preserved
when controlling for those covariate phenotypes. To test as many SNPs
while preserving computational efficiency, we used a p value threshold of
2.00E−05, 5.00E−08,1.00E−05, 1.00E−05, 5.00E−08, and 1.00E−05,
respectively, for risk-taking behavior, smoking, cannabis use disorder,
alcohol dependence, chronic pain, and OUD. We then computed genetic
correlations using the POU summary statistics adjusted for the covariates
of interest.

Unsupervised learning to determine POU clustering
Previous studies have shown that consumption and misuse/dependence
phenotypes have a distinct genetic architecture. To explore whether POU
clustered more with consumption or misuse/dependence phenotypes, we
used a data-driven unsupervised machine learning method known as
agglomerative hierarchical clustering analysis (HCA) [33]. HCA forms
clusters iteratively by creating groups and successively joining or splitting
those groups based on a prespecified algorithm [33]. Agglomerative
nesting (AGNES) is a bottom-up process focused on individual traits to
structure. Agglomerative clustering was chosen as this allowed us to
compare different algorithms to maximize for the dissimilarity on each
branch, with Ward’s minimum variance method performing best. All
models were fit in R using the cluster package [33].
The product of HCA is a dendrogram, formed with multiple brackets

called “branches”. Phenotypes on the same branch are more similar to
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each other based on their pairwise genetic associations with each other
and with all other phenotypes on that branch. Branches can form
subbranches of more specific clustering.

Polygenic risk score phenome-wide and lab-wide association
scans in BioVU
To explore whether pleiotropic effects for POU are associated with an array
of other medical ailments and biomarkers, we performed phenome-wide
and lab-wide association scans (PheWAS, LabWAS), respectively. These
analyses were conducted using data from the Vanderbilt University
Medical Center (VUMC). The project was approved by the VUMC
Institutional Review Board (IRB #160302, #172020, #190418). VUMC is an
integrated health system with individual-level health data from electronic
health records (EHR) for about 3.2 million patients. The VUMC biobank
contains clinical data from EHR as well as biomarkers obtained from
laboratory assessments. A portion of the individuals from VUMC also have
accompanying array genotyping data. This cohort, with over 66,903
patients, is called BioVU [34, 35].
For each of the unrelated genotyped individuals of European ancestry

from BioVU, we computed polygenic risk scores (PRS) for POU using the
PRS-CS “auto” version [34]. Genotyping and quality control for this cohort
have been extensively described [35, 36].
To identify associations between the PRS for POU and clinical

phenotypes, we performed a PheWAS in BioVU. We fitted a logistic
regression model to each of 1338 case/control disease phenotypes
(“phecodes”) to estimate the odds of each diagnosis given the POU PRS,
while adjusting for sex, median age of the longitudinal EHR, and the first
ten PCs. Analyses were conducted using the PheWAS v0.12R package [37].
We required the presence of at least two International Disease
Classification codes mapped to a PheWAS disease category (Phecode
Map 1.2; https://phewascatalog.org/phecodes) and a minimum of 100
cases for inclusion of a phecode. The disease phenotypes included 145
circulatory system, 120 genitourinary, 119 endocrine/metabolic, 125
digestive, 117 neoplasms, 91 musculoskeletal, 85 sense organs, 76 injuries
& poisonings, 65 dermatological, 76 respiratory, 69 neurological, 64 mental
disorders, 42 infectious diseases, 42 hematopoietic, 34 congenital
anomalies, 37 symptoms, and 31 pregnancy complications.
To identify associations between POU PRS and biomarkers, we performed

a LabWAS [36] in BioVU. We implemented the pipeline already established by
Dennis et al. [36]. Broadly, LabWAS uses the median, INT-transformed age-
adjusted values from the QualityLab pipeline in a linear regression to
determine the association with the input POU PRS variable. We controlled for
the same covariates as for the PheWAS analyses, excluding median age
because the pipeline corrects for age using cubic splines with four knots.
Lastly, to explore whether the POU PRS effects could be mediated by the

diagnosis of substance use disorders (SUD) or OUD in EHR, we repeated
the PheWAS and LabWAS analyses after adjustment for SUD (N= 2304
cases) and OUD (N= 1799 cases). We applied FDR (5%) correction for both
PheWAS and LabWAS analyses.

RESULTS
Genome-wide association analysis, biological annotation,
gene, and transcriptome-based association analyses
We examined 11,311,983 SNPs in all 132,113 study participants.
The inflation factor of the GWAS was λGC= 1.097 with an LDSC

intercept of 1.004 (SE= 0.008), suggesting that the majority of the
inflation was due to polygenicity. The SNP heritability of POU on
the liability scale was SNP-h2= 0.04 ± 0.01.
We identified two genome-wide significant loci: rs3791033

near the genes KDM4A and PTPRF (p= 3.80E−08), and rs640561
near LRRIQ3 (p= 3.80E−08; Fig. 1, Supplementary Table 3 and
Supplementary Fig. 1 and 2 for locus zoom plots). Both loci are on
chromosome 1, but rs3791033 and rs640561 are independent
(r2 < 0.001).
A phenome-wide scan in the UK Biobank (UKB; N > 360,000)

revealed that rs3791033 has been previously implicated in
smoking phenotypes (e.g., ever smoked regularly, p= 1.01E−12),
other psychiatric conditions, such as ADHD (p= 2.76E−10), and
educational outcomes, such as educational attainment (p= 1.01E
−10). KDM4A, which is the nearest gene, has been previously
implicated with similar traits across several independent GWAS
studies (e.g. [27, 38, 39]; Supplementary Table 4). The other gene
in this region, PTPRF, has been previously identified in studies
of smoking and other substance use behaviors [18, 27, 40];
Supplementary Table 4).
For the second genome-wide significant SNP (rs640561), a

phenome-wide scan in UKB revealed nominal associations (p >
7.00E-03) with neurological, metabolic and other psychiatric traits,
such as ADHD (Supplementary Table 4). LRRIQ3, which is the nearest
gene, has previously been associated with lifetime smoking [27].
We did not observe any GWAS-significant (p= 5.00E−08) or

even nominally significant (p < 0.05) associations with any of the
SNPs that have been previously associated with OUD and opioid
dependence ([6, 8–13] Supplementary Table 5). However, the
largest available GWAS of OUD supported our finding for rs640561
(p= 6.42E-03; Supplementary Table 5).
In addition to the GWAS, we performed several gene-based

analyses. KDM4A was implicated by both MAGMA (FDR 5%) and
H-MAGMA (Supplementary Tables 6 and 7). PTPRF was implicated
by H-MAGMA (Supplementary Table 7). None of these analyses
identified LRRIQ3. H-MAGMA analysis also identified ARTN (pre-
viously showing a nominal association with tea consumption in
UKB; Supplementary Table 7). S-MultiXcan did not identify any
significant genes (Supplementary Table 8).
Lastly, gene-set analysis in MAGMA identified one significant

gene set, which is involved in the activation of Phospholipase D
(Supplementary Table 9). Intriguingly, activation of Phospholipase
D2 modulates agonist-induced µ-opioid receptor desensitization
and resensitization [41].

Gene-drug analysis
For this analysis we relaxed the MAGMA FDR threshold from 5 to
10%, which produced a set of 17 genes; 3 of these 17 genes (KDM4A,
PTPRF, CACNA2D2) had a total of 464 interactions with drugs
belonging to ATC drug classes (see Fig. 2 and Supplementary
Table 10). The most abundant second-level ATC classifications
identified were antibacterials for systemic use, psycholeptics, and

Fig. 1 Genome-wide association analysis for problematic opioid use. The nearest genes are labeled for the 2 lead SNPs (rs3791033,
rs640561). The x-axis shows chromosomal position and the y-axis shows significance on –log10 scale. The horizontal red line denotes genome-
wide significance (p= 5.00E–08).
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gynecological antiinfectives and antiseptics. Interactions with KDM4A
included both dopamine agonists and agents, as well as adrenergic
agents, drugs used in alcohol dependence such as disulfiram, opioid
anesthetics, such as sufentanil citrate, and antidepressants.

Genetic correlation analyses, and clustering solution
We performed a series of genetic correlations and identified
consistent, moderate-to-strong associations with well-known OUD
comorbid factors. We considered 935 traits, which represented 17
categories (substance use, psychiatric, impulsivity, personality,
lifestyle, education, cognitive, health, longevity, metabolic, eyes,
teeth, sleep, pain, reproductive, medication and anthropometric).
We identified significant genetic associations between POU and
253 of these 935 traits (FDR 5%; Fig. 3, Supplementary Table 11).
Notably, POU showed positive genetic correlations with OUD as

measured by the Million Veteran Program (MVP, rg= 0.64, p=
9.97E−09, European), with opioid dependence versus unexposed

controls (European) as measured by the Psychiatric Genomics
Consortium (PGC, rg= 0.80, p= 3.24E−04; opioid dependence
versus opioid exposed controls showed no significant heritability
and therefore could not be tested), and with opioid medication
use (rg= 0.46, p= 2.25E−12) in participants from UKB.
Beyond opioid-related traits, we also identified strong genetic

correlations with alcohol, nicotine, and cannabis-related traits,
from initiation (nicotine, rg= 0.63, p= 7.14E−38; cannabis, rg=
0.35, p= 1.06E−06), to high levels of consumption (drinks per
week, rg= 0.36; p= 2.11E−15), to misuse (AUDIT-P: rg= 0.42, p=
5.60E−08) and dependence (alcohol, rg= 0.74, p= 7.21E−08; the
Fagerström Test for Nicotine Dependence, rg= 0.60, p= 2.98E
−10; cannabis use disorder, rg= 0.63, p= 2.36E−13), and other
smoking behaviors, such as maternal smoking around birth (rg=
0.64, p= 3.44E−26). Interestingly, hierarchical HCA with AGNES
found that POU clustered closely with substance use disorders, as
opposed to consumption phenotypes (Supplementary Fig. 3).

Fig. 2 Chord diagram of genes significantly associated with POU at 10% FDR and the Anatomical Therapeutic Chemical classifications of
drugs. The width of each line is determined by the number of drugs known to interact with each gene.

Fig. 3 LDSC FDR-significant genetic correlations with POU. Traits with positive genetic correlation (rg) values are plotted above the line;
traits with negative rg values are plotted below the line. All traits surpass 5% FDR correction for multiple testing.
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We also identified a number of associations with UKB pain
phenotypes, including positive genetic correlations with several
pain ICD diagnoses (e.g., pain in throat, pelvic pain, rg range=
[0.37–0.39], p < 8.22E−05), and prevalent pain conditions such as
back and knee pain, and headaches (rg range= [0.21–0.42], p <
8.50E−03). As expected, we found positive genetic associations
with chronic pain (rg= 0.42, p= 4.04E−17) and higher pain relief
medication intake (e.g., Ibuprofen, rg= 0.49; p= 1.61E−10).
We also identified positive genetic associations between POU

and other behavioral and psychiatric traits, such as mood swings
(rg= 0.40, p= 1.04E−13), risk-taking behavior (rg= 0.38, p= 2.09E
−08), major depressive disorder (rg= 0.44, p= 1.59E−10), insom-
nia (rg= 0.39, p= 6.88E−11), loneliness (rg= 0.28, p= 4.81E−06),
and irritability (rg= 0.27, p= 1.74E−05).
Lastly, POU was negatively correlated with educational attain-

ment (e.g., obtaining a college or university degree, rg=−0.47;
p= 6.13E−25) and intelligence (rg=−0.41; p= 7.22E−11).
These genetic correlations generally remained consistent after

conditioning POU on risk-taking behavior, nicotine, and cannabis
use disorders (Supplementary Tables 12, 13, and 14, respectively;
Fig. 4). These associations were also broadly consistent when we
conditioned on pain (Supplementary Tables 16) and OUD
(Supplementary Tables 17). Intriguingly, when we corrected for
alcohol dependence some of the associations increased, particu-
larly with OUD and opioid dependence, cannabis use disorder,
and depressive symptoms, whereas some associations dramati-
cally decreased, such as nicotine dependence as measured via
FTND (Supplementary Table 15) [42].

Phenome-wide association analyses
We conducted a PheWAS with EHR data to test the association
between polygenic risk for POU and liability across thousands of
medical conditions from hospital-based cohorts. Our PheWAS
identified significant associations between POU and 53 medical
traits across 13 categories (i.e., psychiatric disorders, respiratory,
circulatory system, symptoms, sense organs, dermatologic, injuries
and poisonings, neurological, digestive, infectious diseases,
neoplasms, genitourinary, endocrine/metabolic; Supplementary
Table 18 and Fig. 5). Similar to the genetic correlations, the
strongest associations were with substance use disorders, includ-
ing tobacco use disorder (OR= 1.15, p= 7.47E−25), alcohol-
related disorders (OR= 1.12, p= 7.69E−05) and substance addic-
tion and disorders (OR= 1.17, p= 4.67E−12), which included both
opiates and other substances.

Another similarity between the PheWAS and the genetic
correlations was the positive association between POU and pain
phenotypes measured in EHR, such as acute pain (OR= 1.05, p=
2.09E−04) and chest pain (OR= 1.04, p= 8.90E−04). POU was also
significantly associated with various psychiatric disorders, including
mood disorders (OR= 1.08, p= 1.01E−11), anxiety disorders (OR=
1.09, p= 1.98E−11), depression (OR= 1.07, p= 1.29E−08) and
posttraumatic stress disorder (OR= 1.18, p= 1.60E−07).
Finally, we discovered additional associations between POU and

other EHR traits, including respiratory failure (OR= 1.06, p= 4.70E
−05), insomnia (OR= 1.06, p= 1.75E-03) and ischemic heart
disease (OR= 1.06, p= 3.57E−06).
We repeated the PheWAS analyses after adjusting for SUD and

OUD diagnoses (Supplementary Tables 19 and 20). The magnitude
of the effects persisted for most traits even though the strength of
the association for a few conditions was diminished, particularly
when controlling for general SUD.

Lab-wide association analyses (LabWAS)
In addition to the PheWAS, we also examined laboratory results,
which we refer to as LabWAS. The LabWAS identified 15
biomarkers significantly associated with POU (Supplementary
Table 21 and Fig. 5). For instance, POU was associated with
metabolic biomarkers, including increased triglyceride in serum
or plasma (beta= 0.04, p= 1.41E−12) and blood glucose
(beta= 0.02, p= 4.02E−5), and lower HDL cholesterol (beta=
−0.03, p= 7.21E−07), calcium (beta=−0.01, p= 8.00E-04),
folate (beta=−0.04, p= 8.70E-04), and calcitriol (beta=−0.02,
p= 1.97E−03). We also found associations with blood-related
biomarkers, such as high erythrocyte distribution (beta= 0.03,
p= 3.14E−11), increased leukocytes (beta= 0.02, p= 9.68E
−07), reduced carbon dioxide in serum/plasma (beta=−0.02,
p= 3.42E−7) and creatinine (beta=−0.04, p= 2.15E−04).
Similar to the PheWAS results, the above-mentioned associa-

tions persisted after we corrected for SUD and OUD diagnoses
(Supplementary Tables 22 and 23), suggesting the biomarkers are
primarily affected by genetic liability for POU rather than
substance use status.

DISCUSSION
In this study, we performed a GWAS of problematic opioid
use (‘ever taking prescription painkillers not as prescribed’)
in 132,113 23andMe research participants of European ancestry.

Fig. 4 Genetic correlations (rg) with POU before and after conditioning on risk-taking behavior. All FDR-significant results are plotted on
the left panel, selected relevant traits are shown on the right panel (original rg in grey; corrected rg in red). The top 5 traits with biggest change
in rg value are labelled (left).
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This represented a novel approach to studying OUD in a
population-based cohort. Our results show that this single
question captured a genetic signal that is correlated with signals
from well-characterized cohorts that have been clinically diag-
nosed with OUD. Notably, the genetic correlations with OUD
persisted even after correcting for risk-taking behavior and other
putatively similar dimensional phenotypes. We also identified
novel associations with laboratory-based biomarkers, demonstrat-
ing the overarching impact of POU on health. While previous
GWAS of OUD have used clinically ascertained cohorts, our results
suggest that POU provides a cost-effective alternative to
diagnosed OUD that is viable in non-clinically ascertained
populations, making it possible to rapidly obtain large sample
sizes that can aid in OUD gene discovery.
Obtaining a large enough sample size to effectively identify

risk loci has been a common obstacle for OUD GWAS [43]. Our
study represents a new and qualitatively different way of
characterizing individuals at high risk for OUD. Our approach is
stimulated by the idea of fractionating OUD and looking at POU
as an early stage of misuse [44]. In particular, we were motivated
to characterize the common mechanism of taking opioids not as
prescribed, which can lead to abuse. Sometimes referred to as
minimal phenotyping, where a complex trait is reduced to a
single (yes or no) question [44], the polygenic signal of POU
is nevertheless informative for aspects of OUD risk that is not
intended to be a ‘noisy’ measurement of the true underlying
disease.

The most important finding in this study is the identification of
the polygenic architecture of POU that is highly comparable to the
findings from GWAS of clinically ascertained OUD cohorts. We
observed a positive association of POU with OUD and opioid
dependence measured by two of the largest available GWAS, MVP,
and PGC, and with a GWAS of opioid medication use in UKB
participants. As might have been expected, we also observed strong
positive genetic correlations with alcohol dependence and tobacco
smoking, as well as with various psychiatric traits associated with
OUD, including mood swings, risk-taking, anxiety, depression, and
insomnia. These sets of genetic correlations mirror those from
previous GWAS of clinically ascertained OUD samples [6–8].
However, we also showed that the overlap is not complete, and
whether POU could be an early manifestation of risk for subsequent
OUD is not directly explored by our study.
We initially speculated that some of the genetic signal

associated with POU could be confounded by genetic factors
unrelated to opioid misuse, such as risk-taking behaviors,
comorbid substance use (such as tobacco or cannabis use
disorders, and even OUD diagnosis) or pain. Previous reports
have indicated that genetic studies using an unscreened sample
for relevant comorbid conditions [6], including all individuals
being exposed to opioids at least once, can introduce biases in the
genetic analyses. However, when we adjusted for these known
risk factors, the signal remained consistent, suggesting that we are
capturing a signal that is specific to opioids and not merely
confounded by signals associated with the secondary phenotypes.

Fig. 5 Phenome-wide (top) and lab-wide (bottom) association studies of polygenic risk scores for POU against 1,338 diseases and 315
biomarkers (respectively) available from BioVU. The top and bottom red dashed lines indicate the threshold for Bonferroni correction
(PheWAS p= 3.74E–05; LabWAS p= 1.59E–04). Only FDR significant results are presented. The sizes of the dots correspond to the magnitude
of the effect. Y-axis represents the negative logarithm of the p-value for each trait multiplied by the sign of the effect.
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This study has also revealed novel biological insights for opioid
misuse. While we were unable to replicate the previously
reported GWAS signals associated with OUD, we discovered
two novel loci associated with POU. Rs640561 replicated in the
largest available GWAS of OUD ([7]). Both lead SNPs (rs3791033,
rs640561) and nearby genes have shown previous associations
with other psychiatric traits, particularly smoking phenotypes,
which are known to be highly comorbid with OUD and were also
strongly correlated with POU. In particular, one of the strongest
signals included variants in KDM4A, which is a protein-coding
gene that belongs to the Jumonji domain 2 (JMJD2) family of
histone demethylases [45]. KDM4 demethylases catalyze the
removal of the methyl marks (H3K9me3, H3K36me3), thereby
regulating a range of crucial biological functions [46], including
cell differentiation and proliferation. Intriguingly, the JMJD2 or
KDM4 family have been shown to be important epigenetic
regulators in cancer cells [47–49] and, relevant to this study,
reward circuitry in depression [50] and alcohol withdrawal
[51, 52]. The fact that KDM4A has known interactions with
medications that are used to treat other psychiatric conditions,
such as depression, or target dopaminergic or serotonergic
systems, as well as drugs used in opioid anesthetics, suggests
that KDM4 demethylases may be implicated in relevant biology
for opioid behaviors and could represent promising druggable
targets [53]. However, the biology of this locus could be more
complex. Although the credible set analysis suggested that the
most probable causal variants are located in KDM4A, the lead
variant in this region, rs3791033, is an eQTL for several other
nearby genes PTPRF, HYI, ST3GAL3, MED8, CCDC24, ATP6V0B,
WDR65, ARTN, TIE1. Our second strongest signal was rs640561,
which is near the gene LRRIQ3, which is a protein-coding gene of
leucine rich repeats and IQ Motif Containing 3. rs640561, or SNPs
in strong LD, have been previously associated with other
substance use traits, including smoking [54–56] and alcohol
consumption [56], schizophrenia [57], education attainment and
math ability [58], but the mechanism whereby this SNP affects
OUD liability is largely unknown. Lastly, the gene-set analyses
revealed that the polygenic signal for POU is implicated in
pathways that modulate µ‐opioid receptor sensitization. Taken
together, these findings suggest a potential avenue for identify-
ing new therapeutic targets for problematic opioid use.
We examined the genetic associations between POU PRS and

thousands of clinical diagnoses and biomarkers measured in a
hospital-based setting via PheWAS and LabWAS analyses. These
analyses revealed significant associations for a wide range of
health conditions, implicating POU across all major body systems,
some of which had been previously associated with various
clinical OUD cohorts and others that are novel.
For example, we consistently identified strong associations

between POU and poor metabolic function (e.g., increased
triglyceride levels, lower HDL cholesterol, high blood glucose
levels), which can result in serious downstream health conse-
quences. These results are consistent with previous studies
showing poor metabolic function in individuals who misuse
opioids [59], and in morphine-induced rats [60]. Some metabolic
markers, such as calcium and folate, have been previously
associated with opioid misuse [61, 62], whereas others (calcitriol)
were identified as novel. Although it has been previously
speculated that reduced metabolic biomarkers (calcium, folate)
in high opioid users could be a direct consequence of repeated
exposure to opioids, our results suggest that at least part of the
previously reported correlations are due to common genetic
factors that influence opiate use, calcium and folate. POU PRS was
also associated with blood-related biomarkers, including increased
erythrocyte and decreased lymphocyte counts, consistent with
previous phenotypic studies [63, 64]. We observed an association
between POU PRS and decreased carbon dioxide and creatinine
levels, contrary to a previous finding showing that opioids can

decrease sensitivity of peripheral chemoreceptors in the lung,
leading to increased carbon dioxide levels [65], or no significant
difference of creatinine levels among the heroin and opium
participants studied [61], suggesting that some of these dis-
crepancies may be associated with environmental consequences
of OUD. It is also possible that some of the relationships that we
identified could be a consequence of smoking and alcohol
consumption, since high POU PRS was associated with tobacco
and alcohol use disorders; whether the associations we report are
a consequence of those relatively common behaviors is not
directly tested in this study.
This study is not without limitations. The screening and

composition of the control group is crucial for studies of
substance use and abuse [6, 31, 43]. Our controls indicated they
had never used opiates not as prescribed, which could include
individuals who had simply never used an opiate, along with
individuals who had anywhere from minimal to extensive
experience with opiates but had never deviated from their
prescribed use. POU might be even more useful if we had
additional data that allowed us to exclude individuals that have
never used opioids. Using an unscreened control group can lead
to considerable phenotypic heterogeneity across samples [7, 66].
Similarly, it is unclear what type of prescription painkillers the
subjects included in our study may have used. Future studies with
improved phenotyping around this topic and greater sample size
could be even more productive. A second important limitation is
our inability to evaluate whether the individuals included in our
analyses suffered from mild versus severe pain. Although high
genetic predisposition for chronic pain may itself be a risk factor
for OUD, this concern was partially addressed by our mtCOJO
analysis in which we conditioned on pain. That analysis revealed
that the association between POU and OUD persevered even after
correcting for pain, suggesting that POU was not correlated with
OUD via its ability to capture genetic predisposition to pain. Lastly,
the 23andme participant base was not ascertained for OUD and is
more educated and has a higher socioeconomic status than the
broader population; therefore, it is possible that a similar misuse
phenotype captured in other higher risk populations may yield
different results.
In summary, we have shown that the genetic signature for

opioid misuse that we were able to capture via self-report in an
unselected population is similar to genetic risk for OUD. Our work
sets the stage for future analyses incorporating a multivariate
framework (e.g., genomic Structural Equation Modeling), and
larger sample sizes. Our approach provides new, cost-efficient
tools for genetic research related to OUD and provides insights
into an intermediate behavior that may set the stage for later
transition to OUD.

DATA AVAILABILITY
We have provided summary statistics for the top 10,000 SNPs (Supplementary
Table 24). Full GWAS summary statistics will be made available through 23andMe to
qualified researchers under an agreement with 23andMe that protects the privacy of
the 23andMe participants. Interested investigators should email dataset-reques-
t@23andme.com and reference this paper for more information.
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