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Analysis of stochastic stem cell models with control

Jienian Yang, Zheng Sun, and Natalia L. Komarova*

Department of Mathematics, University of California Irvine, Irvine, CA 92617

Abstract

Understanding the dynamics of stem cell lineages is of central importance both for healthy and 

cancerous tissues. We study stochastic population dynamics of stem cells and differentiated cells, 

where cell decisions, such as proliferation vs differentiation decisions, or division and death 

decisions, are under regulation from surrounding cells. The goal is to understand how different 

types of control mechanisms affect the means and variances of cell numbers. We use the 

assumption of weak dependencies of the regulatory functions (the controls) on the cell populations 

near the equilibrium to formulate moment equations. We then study three different methods of 

closure, showing that they all lead to the same results for the highest order terms in the expressions 

for the moments. We derive simple explicit expressions for the means and the variances of stem 

cell and differentiated cell numbers. It turns out that the variance is expressed as an algebraic 

function of partial derivatives of the controls with respect to the population sizes at the 

equilibrium. We demonstrate that these findings are consistent with the results previously obtained 

in the context of particular systems, and also present two novel examples with negative and 

positive control of division and differentiation decisions. This methodology is formulated without 

any specific assumptions on the functional form of the controls, and thus can be used for any 

biological system.

1 Introduction

Tissue turnover dynamics, especially in the context of stem cell regulation, have attracted the 

attention of many researchers. Cell populations are assumed to possess a hierarchical 

structure, where different classes of cells can interact in intricate ways. In the simplest case, 

there are stem cells capable of self-renewing and regenerating the tissue, and differentiated 

cells which can perform the tissue’s specific functions.

Differentiated cells are subject to relatively frequent cell death and need to be replenished by 

stem cell divisions. These divisions can be of several types. Specifically, a stem cell can 

differentiate by dividing into two differentiated cells, or it can proliferate, by dividing into 

two stem cells. Differentiation/proliferation decisions are thought to be under regulation 

coming from surrounding cells in the tissue. Various control loops help maintain a roughly 
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constant overall tissue size, and keep variations in the numbers of stem and differentiated 

cells to a minimum.

There is significant theoretical literature exploring various aspects of stem cell dynamics. 

Conceptual theoretical issues for the studies of stem cells have been identified in [1, 2, 3]. 

Discrete and continuous models relevant for carcinogenesis have been studied [4, 5, 6, 7, 8, 

9, 10, 11, 12, 13, 14, 15]. Evolutionary modeling of stem cells in systems other than cancer 

was introduced in [16]. Modeling of stem cells in the hematopoietic system was proposed by 

several authors [17, 18, 19, 20, 21]. In these and other papers, both deterministic and 

stochastic models have been introduced and studied (see a great review of many modeling 

approaches provided in [22]). The deterministic (ODE) approach provides useful analytical 

insights into the dynamics and long-term behavior of cell lineages. Two- and multi-

compartment models with several types of the regulation function have been studied in [23, 

24], where the authors discuss important conceptual issues about stem cell regulation from 

the engineering prospective. A systematic linear stability analysis of two- and three-

compartment models with regulation of self-renewal fractions or regulation of proliferation 

rates was performed in [25]. Another type of regulation was studied in two-compartment 

models by [26]. Analysis of the structure of stationary solutions in the n-compartment 

version of the model was presented in [27].

The stochastic approach allows to quantify the role of fluctuations in the behavior of the 

system of interest [28, 29, 30, 31]. Apart from several exceptions [32, 33], most of the 

literature is devoted to numerical explorations of stochastic stem cell systems. Recently, we 

performed analytical studies of two stochastic stem cell systems involving nonlinear control 

[34, 35] and found how the strength of control determines the amount of stochastic 

fluctuations in the numbers of stem and differentiated cells. This was done for several 

particular types of control functions. Unfortunately, the methods used in those papers cannot 

be extended to study other types of control loops.

In the present paper we develop a general, analytical methodology for studying the behavior 

of hierarchical, two-compartment (stem and differentiated cells) systems with nonlinear 

control. We assume that division, death, and differentiation/proliferation decisions are given 

by some (unspecified) functions of the numbers of stem and differentiated cells, and provide 

tools to calculate the moments of the cell numbers, and importantly, the means and the 

variances of the numbers of cells.

It turns out that under some general assumptions, the amount of variation in the system is a 

function of the local behavior of the control functions near the equilibrium. For example, in 

the simplest case of the constant total population systems, the variance in the number of 

stem cells is inversely proportional to the derivative of the control function with respect to 

the number of stem cells, evaluated at the equilibrium. For non-constant populations, we 

develop similarly general methods and provide explicit formulas approximating cell number 

means and variances.

The method developed here is algorithmically different, and simpler, than the linear noise 

approximation [36]. We studied the connection between the two methods and proved that 
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they give the same result to all orders of accuracy. Therefore, our method could be 

considered a short-cut compared with the Van Kampen power series expansion. We 

developed a computer program (written for Mathematica and presented in a supplement) 

which allows to apply our method to any system of stem and differentiated cells with given 

control functions. In other words, if we assign the rates of divisions, differentiation/

proliferation, and death to be some functions of the numbers of stem and differentiated cells, 

our tools allow to calculate analytically the means and the variances of the stem and 

differentiated cell numbers as functions of the system parameters, and to study stability and 

robustness of the system.

The rest of this paper is organized as follows. In Section 2 we discuss systems with constant 

total populations, where only differentiation/proliferation decisions are under nonlinear 

regulation. In Section 3 we generalize this methodology to non-constant populations, where 

three types of processes (divisions, deaths, and differentiation/proliferation decisions) are 

under nonlinear regulation. In section 4, the results are illustrated by using previously solved 

regulation problems as well as two novel examples. In the first example, both division and 

differentiation decisions are under negative control from the population sizes. In the second 

example, divisions are negatively regulated while differentiation decisions are under a 

positive control loop. Section 5 compares and contrasts our new method with the power 

series expansion method of Van Kampen. Discussion is provided in section 6.

2 Modeling constant total cell populations

In the first set of models we will assume that the population consists of I stem cells and J 
differentiated cells, and that the total population size remains constant, I + J = N. This 

corresponds to a generalization of the well-known Moran process [37] in the presence of two 

sub-populations of different properties. In the classical Moran process, each update consists 

of a division event followed by a death event. All cells have an equal probability to die, and 

any cell has a chance to divide. A division event is a replacement of the dividing parent cell 

with two cells, which in the absence of mutations are both identical to the parent cell.

In the processes considered here, only differentiated cells die (with equal probabilities), and 

only stem cells divide (also with equal probabilities), see figure 1. Moreover, there are two 

types of stem cell divisions. A proliferation event results in two daughter cells which are 

both stem cells. A differentiation event leads to the creation of two differentiated cells. The 

probability of differentiation, p, is assumed to be under some regulatory loops from the stem 

and/or differentiated cell populations. Since J = N − I, we can simply say that p = pI, a 

function of the number of stem cells, I.

The above model gives rise to a 1D Markov process with Prob(I → I − 1) = pI and Prob(I 
→ I + 1) = 1 − pI. Denoting by φI(t) the probability to find the system at state I at time t, we 

can write down the following Kolmogorov forward equation:

(1)
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Depending on the functional form of the differentiation probability pI, the system can exhibit 

different types of behavior, from oscillating around an equilibrium, to an unstable behavior 

resulting in extinction/overflow.

2.1 Previous results for specific cases

In [34], several types of the differentiation probability pI have been studied.

• No control. It was shown that for pI = p = const, the system rapidly drifts to one 

of the two extinction states: either the I = 0 state with no stem cells, or the I = N 
state with no differentiated cells. This case corresponds to the absence of stem 

cell regulation.

• A hyperbolic law. In this case, we assume the following functional dependence:

(2)

where β and h are parameters. The magnitude of h defines the degree of control, 

and the case h = 0 corresponds to the constant probability model. We obtained 

the following results for the mean and the variance of the stem cell numbers in 

this case:

(3)

• A Hill-type law. Consider the following functional form of differentiation 

probability:

(4)

with 0 < k < N and α ≥ 0. Here, α = 0 is the constant-p model, and α → ∞ 
corresponds to the Heaviside function. If we assume that k ≫ 1, then the 

following approximations for the mean and the variance of the stem cell number 

have been obtained:

(5)

The methodology used to obtain the above formulas relies on formulating the moment 

equations from the Kolmogorov forward equation, and decoupling them by means of a 

truncation procedure (a cumulant and a central moment closure method). Because 

probability functions pI in the hyperbolic and the Hill-type laws are not polynomials of I, 
obtaining the equations for the moments is a complicated procedure, which requires using 

some auxiliary probability functions, and cannot be generalized to different functional forms 
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of pI. Thus the analytical results of [34] have very limited applicability. We would like to 

design a method that would allow to calculate means and variances for the stem cell 

populations under a general, nonlinear control function. This method is presented below.

2.2 The linearization method

Suppose that we have a 1D Markov process with Prob(I → I − 1) = pI and Prob(I → I + 1) 

= 1 − pI, where pI is a nondecreasing function of I. The mean value for I can be obtained by 

simply solving the equation

for the value I. Let us denote this value of I as i0: pi0 = 1/2.

The variance is obtained in the following way. Let us denote by i = I − i0, the difference 

between the current number of stem cells and the equilibrium number, i0. The variable i 
satisfies |i| ≪ i0, and can take positive or negative values. Let us assume that the dependence 

of the differentiation probability pi on its variable i is slow. In the examples above this would 

mean that

Then we can expand the function pi in terms of small i/i0 to obtain

where px is the derivative of pi with respect to i evaluated at i = 0. For the hyperbolic law 

described above (equation (2)), we have i0 = (1 − 2β)/h and

For the Hill-type law, equation (4), we obtain i0 = k and

We have the following Kolmogorov forward equation for the probability function φi(t):

(6)

or
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Let us use the following notation for the moments:

Forming the equations for the first two moments, we obtain in steady state,

(7)

(8)

which corresponds to

(9)

This reproduces the first approximation to the mean and variance values.

To improve the precision of the method, let us consider higher terms in the expansion of the 

function pi in terms of i. Let us present the expansion of pi around the steady state as

where the derivatives are evaluated at i = 0 and the cut-off N is defined by our desired 

precision. In the master equation, equation (6), we can use this expansion to replace the 

function pi, and obtain equations for the unknown moments xj by multiplying equation (6) 

by ij and summing over i. We obtain in the jth order,

(10)

where [.] stands for the integer part. For a particular choice of truncation N, equations (10) 

do not comprise a closed system, and an approximate method must be used to decouple the 

first N equations from the rest. There are at least 3 different truncation methods that can be 

readily implemented to solve this system.
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• Simple truncation method assumes that all the higher moments are 0, that is, xk 

= 0, for k > N, where N is defined by the desired precision.

• Central moment truncation method assumes that the central moments are 

equal to 0 for higher orders, that is, E[(i−E[i])k] = 0, where k > N.

• Cumulant truncation method assumes that the higher order cumulants are 

equal to 0, that is, κk = 0, where k > N.

Below we demonstrate these methods by taking into account the second order terms in the 

Taylor expansion. We will use the notation

evaluated at i = 0. We start by writing the Komogorov forward equation with the probability 

functions expanded up to the second order terms:

Multiplying this equation by i and i2 on both sides, we obtain in steady state:

(12)

(13)

In the simple truncation method, we simply assume that x3 = 0. In the central moment and 

cumulant truncation methods, we assume that . Therefore, xi, i = 1, 2, 3 

can be found by solving system (12–13). The results for the mean and variance are as 

follows:

The hyperbolic model—In this case, we have , which corresponds to the 

expansion coefficients

The simple truncation method yields:
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To express the mean and the variance of the variable i in terms of these quantities, we note 

that

and that

This yields

The central moment and cumulant truncation methods give the following solution:

which corresponds to

The Hill-type model—In this case, we have , and the expansion 

coefficients are:

The simple truncation method gives:

The results for the mean and the variance are:

Yang et al. Page 8

Math Biosci. Author manuscript; available in PMC 2017 November 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The central moment and cumulant truncation methods yield:

and the formulas for the mean and the variance are

3 General approach: modeling non-constant total cell populations

In a more general setting, the total number of cells in the system is not a constant number. 

The number of stem cells, I, and the number of differentiated cells, J, vary independently, 

giving rise to a 2D Markov process. Let us suppose that in an infinitesimal time-interval, Δt, 
the following events can occur:

• With probability LI,JΔt a stem cell divides. Two types of division are possible.

– With probability LI,JPI,JΔt a stem cell differentiation takes place 

resulting in a creation of two differentiated cells, (I, J) → (I − 1, J + 2).

– With probability LI,J(1 − PI,J)Δt a stem cell proliferation takes place 

resulting in a creation of a stem cell, (I, J) → (I + 1, J).

• With probability DI,JΔt, a differentiated cell dies, (I, J) → (I, J − 1).

All other events are assumed to happen with zero probability. The processes described above 

are illustrated schematically in figure 2. Let us denote by φIJ(t) the probability to have I stem 

cells and J differentiated cells at time t. The Kolmogorov forward equation corresponding to 

the above processes is given by:

(14)

3.1 Previous results for a specific case

A specific form of this process was studied in [35], where we assumed

(15)

and parameters h and g are small. In this case, the probabilities of divisions and deaths are 

functions of the variable N = I + J, and the probability of differentiation is a function of the 

number of differentiated cells, J, only. The resulting means and variances are listed below:
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(16)

(17)

It is easier to interpret the results for the differentiated cells if we consider the behavior in 

the limit of weak control, that is when h → 0 or g → 0. We have

(18)

(19)

In the following we will develop a general method of calculating the means and the 

variances of non-constant population systems. It will be demonstrated how the above results 

can be obtained in a way much simpler than that of [35].

3.2 The general 2D model of control

Let us define the steady state of the system, (i0, j0), by the the following equations:

(20)

Similar to the previous section, we will use lower-case letters to measure the difference 

between the current cell numbers and their equilibrium numbers: i = I − i0, j = J − j0.

Define  such that , and , where ZI,J denotes any of the functions LI,J, 
PI,J, DI,J. Then equation (14) can be expressed as:
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(21)

Let us use the following short-hand notation for the moments:

(22)

Then, we obtain:

(23)

(24)

(25)

Similarily, we have:

(26)

Our goal now is to find the quantities x01, x10, x02, x20, which are essential for calculating 

the expectation and variance for I and J. In order to derive equations for these quantities, we 

multiply equation (21) by iαjβ with α+β ≤ 2, and perform the summation in i and j in the 

quasi-stationary state. Each of the resulting 5 moment equations involve higher moments, 

which means that the number of the unknowns is larger than the number of equations. More 

precisely, these 5 equations involve 20 unknown variables, xαβ, with 1 ≤ α + β ≤ 5. In order 

to proceed, we need to implement a truncation methods to close the system. In other words, 

we need to derive the missing equations for the higher moments, xαβ, 3 ≤ α + β ≤ 5.

As in the 1D case, there are at least 3 different truncation methods that can be readily 

implemented to solve this system:

• Simple truncation method assumes that all the higher moments are 0, that is, 

xαβ = 0, for α + β ≥ 3. This method requires the least amount of calculations, 
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because by assuming that all the higher moments are 0, we get a 5 × 5 linear 

system of equations.

• Central moment truncation method assumes that the central moments are 

equal to 0 for higher orders, that is, E[(i−E[i])α(j−E[j])β] = 0, where α + β ≥ 3.

• Cumulant truncation method assumes that the higher order multivariate 

cumulants are equal to 0, that is, κα,β = 0, where α + β ≥ 3.

The three methods are compared and contrasted in Appendix C.

In order to solve the resulting system of algebraic equations, we use the approximation of 

weak dependencies of the control functions on the cell numbers. Let us suppose that we can 

represent the functions LI,J, DI,J, and PI,J near the equilibrium as LI,J = L(εI, εJ), PI,J = P (εI, 
εJ), and DI,J = D(εI, εJ), where the parameter ε ≪ 1 defines the weakness of the 

dependence. It is convenient to denote x = εI, y = εJ. Then we can expand the functions LI,J, 

PI,J and DI,J around the steady state in Taylor series:

(27)

(28)

(29)

where the subscripts denote the partial derivatives of the functions with respect to its 

argument, evaluated at the equilibrium, (I, J) = (i0, j0), and I = i0 + i, J = j0 + j. We further 

adopt the following convention: lx = Lxε, lxx = Lxxε2, etc. In this description, the upper case 

constants Lx = O(1), Lxx = O(1), etc are all of order one, and all the derivatives expressed by 

lower-case letters contain a power of ε. In particular, the first derivatives lx, ly, px, etc 

contain a factor ε, and all the second derivatives lxx, lxy, lyy, pxx, etc contain a factor ε2. In 

Appendix C we demonstrate that all three truncation methods give the same result in the 

highest order of expansion in terms of ε.

3.3 Results for the cell number means and variances

Here we present the results for the means and the variances of the cell numbers. Let use 

define the pair (i0, j0) by equation (20), and derive the equations for the moments (the 

summation equations) by expanding the probability functions around this point, see 
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Appendix A. By the simple truncation method we set xαβ = 0 for all α + β > 2 and obtain 

the following five equations for the first and second moments:

(1, 0)

(30)

(0, 1)

(31)

(2, 0)
(32)

(1, 1)

(33)

(0, 2)

(34)

Solving these to the highest order terms in ε and using (23), (25), and (26), we obtain the 

following result:

(35)

(36)

(37)
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(38)

where we used the following notations:

(39)

Appendix B demonstrates the application of our methods to system (15). As discussed, all 

three methods yield the same result in the highest order of expansion, and the results 

coincide with the ones previously obtained. The correction terms are different in different 

methods.

Quantities Δ and B, equation (39), are key for determining the stability properties of the 

stem cell lineage. It was shown in [38] that conditions Δ > 0, B > 0 are necessary and 

sufficient for stability. Furthermore, equations (37) and (38) relate these quantities with the 

size of variance experienced by the cells in the stem and differentiated compartment. 

Expressions (39) define a subset in the four-dimensional parameter space, (qx, qy, px, py), 

that is compatible with stability. Minimizing the variance in expressions (37, 38) restricts 

this subset further to identify the most general parameter region that is consistent with stable 

homeostasis. Note that only local properties (the derivatives at the steady state) of the 

control functions are needed to characterize homeostasis.

4 Numerical Simulations

In this section, we will demonstrate that the formulas given by equations (35–38) agree with 

the results from numerical simulations via two examples on two different types of control.

Throughout this section, let us denote x = εI, y = εJ, , . Thus, 

and  are the partial derivatives of the net growth rate, L − D, with respect to x and y. To 

clarify the biological meaning of these parameters, consider the quantity Ly. If it is nonzero, 

it means that the probability of stem cell division is controlled by the differentiated cell 

population. Moreover, if Ly < 0, this means that the control is negative (the more 

differentiated cells in the system, the less likely the stem cells are to divide); Ly > 0 means 

the existence of a positive control loop. The other three quantities can be interpreted in a 

similar manner. Below are two examples.

Negative control of differentiation and division

Consider the following functional forms of negatively controlled rates of division and 

differentiation:
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(40)

We therefore have Px = 0, Py = −e−εJ < 0, , . The steady state of the 

system can be obtained by solving , and L(x, y) = D(x, y):

By equations (35–38), we can obtain the means and the variances of the system:

(41)

(42)

(43)

(44)

where all the partial derivatives are evaluated at (i0, j0), and L0 = L(εi0, εj0) = 1/2.

For each value of ε, we ran numerical simulations starting at the expected values of the cell 

population given above, and finishing either when the number of time-steps reached 2 · 105, 

or if any of the cell types went extinct. We then computed the means and the variances of the 

cell population over the time-course of each simulation. A typical run for a particular value 

of ε is presented in figure 3.

From figure 4, we observe that the theoretical results for the means and the variances show a 

good agreement with the numerical results for smaller values of ε, which is what we expect. 

Also, the means and the variances of the cell population decrease as the value of ε increases, 

which is already predicted by the formulas given by equations (41–44).
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Positive control of differentiation and negative regulation of division

The second example is given by equations:

(45)

A typical stochastic simulation of system (45) for a particular value of ε is presented in 

figure 5.

To calculate the variances, we calculate Px = 0.7 · sech2(εI) > 0, Py = 0, , 

. The steady state of the system can be obtained by solving 

, and L(x, y) = D(x, y):

By equations (35–38), we can obtain the means and the variances of the system:

(46)

(47)

(48)

(49)

where all the partial derivatives are evaluated at (i0, j0), and L0 = 1/2, 

, .

We used the same numerical scheme as in the previous example with 2 · 106 time steps. As 

observed in figure 6, the theoretical results are in good agreement with the numerical results 

for smaller values of ε, which is consistent with the previous example. The means and the 
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variances of the cell population decrease as the value of ε increases, which is foretold by 

equations (46–49). From figure 7, we can see the overall pattern of the relative error: the 

smaller the value of ε, the smaller the relative error, which is what we expect.

5 Connection with the power series expansion method of Van Kampen

In this section, we will show that the simple truncation method described here and the well-

known power series expansion method of Van Kampen [36] give exactly the same results, up 

to any order of expansion. First, we demonsrate how the Van Kampen method can be used 

for our system of stem and differentiated cells (as was done in [38]), and then argue that the 

two methods give the same results.

5.1 The method of Van Kampen: review and notations

Let us introduce the operators  and , such that

Then equation (14) can be rewritten more conveniently,

(50)

Equation (50) is nonlinear, and a general solution cannot be found. Therefore, we will use 

approximate methods to solve it. Let us assume that the functions LI,J, PI,J, and DI,J depend 

weakly on their arguments:

where ε ≪ 1. We will use this parameter to perform the Van Kampen master equation 

expansion, in order to formulate the linear noise approximation [39]. We expect that in the 

long run, the probability distribution, φI,J, will have a peak somewhere around the (large) 

values

with ϕI ∼ ε0, ϕJ ∼ ε0. Let us suppose that the width of those peaks scales with 1/ε1/2. This is 

expressed in the following change of variables,

(51)

This change of variables will be used in the master equation (50). First of all, the probability 

function φI,J(t) is now a function of ξ and η:
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Its time-derivative can be written as follows,

Because the left hand sides of expressions (51) are time-independent, we have , 

. Also, we will introduce a slow time-scale,

(the necessity for this rescaling will become apparent once all the terms at different orders of 

ε are collected in the master equation). Therefore, we have for the time-derivative of φI,J:

(52)

Next, we evaluate the shift operators. A jump of size k in the value of I is reflected by the 

jump of size kε1/2 in the value of ξ:

Similar arguments hold for the values of J. This allows us to express the shift operators 

and  in terms of a (Taylor) series of differential operators,

(53)

and similarly for the shift in the J-direction.

Finally, we use ansatz (51) to expand the functions LI,J, PI,J, and DI,J. We have

It is convenient to denote x = εI, y = εJ, such that , and denote by the 

subscripts the derivatives of this function with respect to its argument, evaluated at 

, , etc. We have
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Similarly, we expand the functions  and . These expressions, together with the operator 

expansions (53) and the time-derivative (52), are substituted into the master equation (50). 

Then the terms in different orders of ε are equated. At order ε1/2 we have

This equation gives rise to two “macroscopic laws”,

(54)

or in steady state simply

(55)

Let us introduce the notations

where qx, qy are defined in section 3.3. At order ε of the master equation expansion, after 

rescaling time once more by

we obtain the following linear Fokker-Planck equation:

(56)

This is the linear noise approximation of Van Kampen [39]. The validity of this 

approximation has been studied extensively, see e.g. [40, 41]. Here we mention that the 

relative size of typical fluctuations scales with ε1/2, and thus for sufficiently small values of 

ε, the system will remain near the equilibrium and stochastic extinction is an unlikely event, 
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at least for a time-duration which grows with 1/ε. For a rigorous study of extinction times of 

birth-death processes see e.g. [42, 43].

From equation (56) we can obtain the equations for the first and second moments in a 

standard way:

(57)

(58)

(59)

(60)

(61)

As we will show in the next section, the above moment equations are exactly the same as the 

summation equations (30)–(34) if we only keep the leading order terms, and hence Van 

Kampen method and simple truncation method give the same results to the leading order, see 

(35)–(38).

5.2 Comparison of the simple truncation method and the Van Kampen method

Before we illustrate the equivalence of the two methods, we state for convenience some 

fundamental facts that we will use later:

• Taylor series expansion. We know the Taylor expansion of f(j) = jn center at j = a 
is: jn = an +nan−1(j − a)+…+na(j − a)n−1 +(j − a)n. Notice that the second to the 

last term is a product of the jump size a and the derivative of the last term (j − 
a)n.

• Integration by parts. When we compute ∫ ηn (·)η dη, integration by parts will 

give ηn (·) − ∫ n ηn−1 (·) dη.

The leading order—By using the ansatz (51) in the previous section, we have in steady 

states:
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(62)

where xαβ is defined in (22).

By using (62), we can rewrite the summation equations from section 3.3 in terms of . 

It turns out that they are the same as moment equations (57–61) if we only keep the leading 

order terms. Since the moment equations agree to the leading order, the two methods give 

the same results to the leading order.

The next order—Next, we investigate if the two methods provide the same result in the 

next order of accuracy. To this end, we will investigate the structure of a moment equation in 

depth from both methods by looking at a particular term. For illustration, we will analyze the 

first term in equation (60) and its counterpart in equation (34) from section 3.3:

(63)

(64)

If we trace back the terms which contribute to  in (63), we will have the 

following diagram:

Let us focus on the third term at the first level, we have the following observation: 

is the second term of Taylor series of ;  is the first term of PI,J in Taylor 

expansion; ε1/2ηLy is the third term of Taylor series of LI,J.

To draw comparison, we will also trace back the terms which contribute to 2ε(−Dy + Ly 

+2L0Py)x02 in (64). We obtain the following picture:
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Let us look at the corresponding counterpart at the first level. Observe that 1/2 is the first 

term of Taylor expansion of Pi+1,j−2; Lyε(j − 2) is the third term of Li+1,j−2 in Taylor 

expansion; 4(j − 2) is the second to the last term of Taylor expansion of j2 centered at j = 2. 

It is not hard to see that the term 4(j − 2) “captures” the jump size of ; namely 2, and the 

derivative of η2 (obtained from integration by parts in the first diagram); moreover, the 

differential operator  will be offset after integration by parts. Hence, the two terms are 

exactly the same. In fact, it can be shown that any two corresponding terms at the first level 

(from both diagrams) are the same by similar analysis, which are due to the fundamental 

properties mentioned at the beginning of this section. This methodology is essentially 

carried over in any two corresponding terms in a homologous pair of moment equations.

To see whether the two methods agree to the next order corrections, we need to assume γ is 

sufficiently large, where γ is the constant for which xαβ = 0 for α + β ≥ γ in the simple 

truncation method. It turns out that the moment equations that are used to compute the next 

order correction are the same for the two methods if we set γ = 5, see Appendix E for 

details.

Generalization to higher orders of accuracy—By the methodology presented in the 

previous section, we can deduce that the two methods will produce the same moment 

equations for computing any order corrections if we set γ sufficiently large, hence the two 

methods give exactly the same results (up to any order) to the general two-step model as 

stated at the beginning. However, as the value of γ increases, the computation of moment 

equations will become more and more tedious. So, there is a trade off between efficiency 

and accuracy.

Under the same value of γ, cumulant truncation method is the most accurate among the 

three truncation methods presented in section 3.2. To see this, set γ = 3 and look at the 

leading order of the terms xαβ for α + β = 4. From Appendix D, we see that the leading 

order is  and  from central moment truncation and cumulant closure method, 

respectively. On the other hand, we can obtain the leading order of 〈ξαηβ〉 is O(1) for α + β 
= 4 from Van Kampen method, as shown in E of appendix. By (62), the leading order of xαβ 

is  for α + β = 4. Therefore, cumulant truncation method is the most accurate though 

it’s the most expensive in terms of computation, which verdicts the trade off between 

efficiency and accuracy.

In conclusion, simple truncation method produces the same results as Van Kampen method 

up to any order by setting γ sufficiently large. The advantage of simple truncation method is 

the straightforward calculations that it involves. To see this, we can compare the steps used 
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to obtain the moment/summation equations in each method. For simple truncation method, 

we only use Taylor expansion on the probability functions of the master equation. On the 

other hand, Van Kampen method uses integration besides the master equation expansion in 

Taylor series. Our method could be regarded as a short-cut compared to the Van Kampen 

derivation. To see this, recall that we multiplied the equation (56) by ξαηβ, and then 

integrated to obtain the moment equations given by (57–61), for α + β ≤ 2. This extra step 

requires more computational work. Clearly, there will be more terms to integrate in order to 

compute the moment equations for the next order corrections, since we extend the equation 

(56) to order O(ε1/2), see appendix E.1. In the Supplementary Materials, we provide a 

Mathematica program that implements our methodology to compute the summation 

equations.

6 Discussion and conclusions

In this paper we presented a very general approach to the studies of stem cell/differentiated 

cell dynamics. We assumed that cell divisions and deaths happen according to a Markov 

process, where the probability rates for different events are some functions of the current 

populations. Our methodology allows us to compute the means and the variances of the stem 

and differentiated cell populations. It is based on the linearization of the control functions 

near the steady state and truncating the moment equations by using three different 

techniques. We have shown that all three techniques yield identical results for the highest 

order term in the mean and the variance. Therefore, it is to one’s advantage to use the easiest 

of the three methods, namely, what we called the simple truncation method. We have shown 

that while the result of this method coincides with a variation of the Van Kampen power 

series expansion, our method is easier to implement in practice, as it requires only a Taylor 

series expansion, while the Van Kampen method also includes integration.

For the system with constant populations, the method yields 2 linear algebraic equations for 

the moments, which can be solved to give simple expressions for the cell number variances. 

For non-constant populations, we obtain 5 linear algebraic equations for the moments.

In the case of constant overall populations, where only differentiation/proliferation decisions 

lead to fluctuations of the stem cell numbers, we demonstrated that the variance of the stem 

cell numbers is given by 1/4 times the inverse of the derivative of the control function with 

respect to the number of stem cells, taken at the equilibrium, formula (9).

In the case where the overall population varies, we have derived an equivalent formula for 

the variances, expressed as a function of the partial derivatives of the controls with respect to 

the two population sizes, taken at the equilibrium, equations (37–38). The analytical 

expressions for the means and variances of the stem and differentiated cell populations are 

compared with numerical simulations for two different examples.

Applications

There are several general areas of application of this kind of modeling. Firstly, one can study 

the questions about the tissue architecture of different organs. Why does mouse epithelium 

at different locations have different structure and different division symmetry? We are 
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currently using a modification of the models presented here to explain this. Secondly, one 

could implement a parameterized model of stem cell lineage control and ask questions about 

the dynamics of cell renewal both in healthy tissues, and in cancer. What type of mutations 

can lead to rapid expansion? What is the effect of a given mutation on cell population 

dynamics, given the underlying control system? This is a continuation of the work started in 

[44], but with a more general theoretical basis for the description of control networks. 

Finally, one can attempt to solve the “inverse problem”: suppose we know the cell numbers 

in different compartments. Can we then reconstruct the underlying control network that 

governs the dynamics?

Our present study differs from previous theoretical literature on the subject because we do 

not make any prior assumptions on the type and direction of control loops, apart from the 

fact that a stable equilibrium exists, which biologically corresponds to the existence of 

homeostatic control. Instead of looking at particular functional forms of regulatory 

mechanisms, we investigate the population dynamics of cell lineages in the most general 

setting. The particular functional forms of control loops can be inferred from careful 

measurements of biological systems of interest.

Model parameterization

What defines the shape of the control loops, that is, the functional forms of the functions L(I, 
J), D(I, J), and P (I, J)? Stem cell regulation is often described in the context of the so-called 

stem cell niche, an anatomic location that regulates how stem cells participate in tissue 

generation, maintenance and repair [45]. The niche includes both cellular and non-cellular 

components that interact in order to control the adult stem cell [46]. Within a niche, the stem 

cell fate - that is, its division and differentiation decisions - are under the regulation of many 

different factors, including structural and physical forces, paracrine and endocrine signaling 

from neighboring and distant cells, metabolic factors and neural signaling [47].

The regulatory mechanisms that have been discussed in the literature include growth factors, 

cell-cell contacts, and cell-matrix adhesions [48], regulation by microRNAs [49, 50], 

signaling from mesenchymal cells, as well as differentiated cells [51]. In [46], both physical 

contact with the niche, and diffusible factors that regulate stem cell behavior, have been 

catalogued for neural, epidermal, haematopoietic, and intestinal stem cells. Many more 

mechanisms exist that are responsible for controlling cell decisions of both stem cells and 

other cell types, see e.g. [52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68].

For example, there is evidence in the literature that the differentiation probability, P (I, J), is 

a decaying function of I, because of cell crowding and contact inhibition effects that take 

place inside the stem cell niche [62]. In our example (15) the function P was assumed a 

decaying function of the stem cell number.

In other circumstances, P (I, J) could be a growing function of its variables [69], because in 

some systems, mechanical strain has been shown to increase cell differentiation [62, 53, 61]. 

In our example (45), P is increases as a function of the stem cell population.
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Negative control of differentiation from downstream (that is, by differentiated cells) has 

been reported in the context of the adult neurogenesis [52], in colon [51], in the 

haematopoietic system [64] and in the olfactory epithelium [23]. Our example (40) assumes 

that P decays with J, the number of differentiated cells.

It has been observed that the rate of cell divisions, L(I, J), like the division type, is also under 

regulation of several types of control loops [67]. A “crowd-control” model is described in 

[58] consistent with L(I, J) – D(I, J) being a decreasing function of cell numbers. In 

examples (40) and (45), the function L − D is assumed to be a decreasing function of the 

number of stem cells and differentiated cells, respectively, while in example (15) it is a 

decreasing function of the total population I + J.

Outlook

In the present paper we show how the biological information of this kind can be 

incorporated in a rather transparent way to inform us about the efficiency of control in 

maintaining the homeostasis by keeping the variance of cell populations low. This is a first 

step in the direction of understanding the dynamics of different types of control loops. 

Future directions include generalizing this model to multiple cell compartments, and 

including a variety of other cellular processes such as de-differentiation and asymmetric 

stem cell divisions. Furthermore, the present model is non-spatial. Incorporation of spatial 

information about the geometry of the stem cell niche would be very useful. Cell signaling is 

mediated by soluble compounds and its effectiveness is intrinsically a function of distance. 

Cellular compartments that are separated in space will by necessity have weaker influence 

on each other’s cell decisions compared to neighboring compartments. Therefore, 

developing effective analysis methods, which take explicit account of spatial interactions is 

an important future direction.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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A The summation equations

Here we consider the patterns for the 5 summation equations which are derived from 

equation (21) by multiplying by iαjβ and summing over i and j, for α + β ≤ 2. Let us denote 

the summation equation derived from multiplying by iαjβ by the pair of numbers (α,β).

We present the example of equation (1, 0). Multiplying equation (21) by i and summing over 

i and j, we obtain
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(65)

From the above equation, we notice that the power of ε is consistent with the power of iαjβ. 

Indeed, every term containing εk term multiplies a term of the form iαjβ, where α + β = k. 

The reason for this can be seen by examining the structure of equation (21). In this equation, 

every term containing the power k of ε (as follows from the number of derivatives of the 

probability functions), is multiplied by iαjβ with α + β = k.

The same property holds for the other four summation equations, which we do not present 

here. To derive all the summation equations, we need to perform the summations in i and j 
and use definition (22) for the moments. Each equation will be coupled to other equations 

containing higher order moments. The easiest way to close the system is to use the simple 

truncation method. The resulting system of 5 equations is given by (30–34). The other two 

truncation methods are worked out below.

B A case study

In this section, we will consider a special case of the general model equation (14). We will 

see that the results for the general case coincide with the results found previously by a 

different methodology in [35] and reported in Section 3.1. In particular, we will demonstrate 

that all three truncation methods have the same result for , but different results for , 

where , α + β ≤ 2.

In this example, we assume that

where h, g ≪ 1 and b, r = O(1) are two constants. The corresponding Kolmogorov forward 

equation is given by:
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(66)

Let n0 and j0 be the steady state, and n = N − n0, j = J − j0. n0 and j0 are defined to satisfy the 

deterministic equations:

1. ,

2. .

We can easily see that .

Define  such that , and , , then (66) can be rewritten 

as:

(67)

Expanding Q(N) and P(J) in Taylor series, we obtain

Let us multiply both sides of equation (67) by jαnβ and sum over j, n in the quasi-stationary 

state. We obtain the following 5 summation equations, where :
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As in the general case, we expand every term in the Taylor series:

where we introduce the following short-hand notations:

We will use the truncation equations of Appendix D for central moment and cumulant 

closure method to solve the system for , α + β ≤ 2. The solutions are 

presented below.

1. Simple truncation method
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Comparing with the old results in formulas (16)–(19), here we have

2. Central moment truncation method

(68)
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3. Cumulant truncation method

From the above results, all three truncation methods have the same solution for , but 

different solutions for , where , α + β ≤ 2.

As we can see, the simple truncation, central moment truncation and cumulant truncation 

methods yield the same result for the highest order terms in xαβ, where α + β ≤ 2. 

Therefore, all three methods have the same result for the mean and variance of N and J, if 

we only keep the highest order term, as summarized below:

(69)

(70)

(71)
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(72)

To compare the above results with formulas (16)–(19), derived from direct calculations in 

Section 3.1, we expand formulas (16)–(19) with respect to h0, and then only keep the highest 

order terms. The results are identical to equations (69–72).

C Comparison of the three truncation methods

Each of the three truncation methods has its own advantages and disadvantages. The 

advantage of the simple truncation method is its simplicity. Compared to the simple 

truncation method, both the central moment and cumulant truncation method require more 

extensive calculations. However, these methods can give more accurate results, as shown 

below.

The order of magnitude for the lower moments

Let us expand the moments xαβ in a power series in terms of ε, . We 

will consider only the two highest order terms in this expansion, with the corresponding 

coefficients denoted as  and . That is, we write

where ,  are unknown constants that we need to find. Next, we prove that for 

xαβ, where α + β ≤ 2, all three truncation methods yield the same result for , but the 

results of the three methods differ for .

To determine the largest contributions to the expansions for xαβ, we consider the five 

moment equations. At order (m, k), we multiply equation (21) by imjk and perform a double-

summations in i and j. We call the resulting equations the summation equations. Because of 

expansion (27–29), coefficients in front of different variables xαβ will have a different order 

in terms of ε. In general, such an equation will contain terms multiplying xm+s,k+r with s = 0, 

1, … and r = 0, 1, …. The coefficient in front of the term xm+s,k+r is of the order εs+r. The 

summation equations may also contain a nonhomogeneous (constant) term of order O(1).

Because x01 = E[j], and j = J − j0 is a small perturbation around the steady state, it is 

reasonable to assume that  and . Because x02 = E[j2], x02 

should be at least of order . But if x02 is of order  or higher, then from the 5 

summation equations, the coefficient of the terms with power  with k ≥ 2 should be 
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0, which is not the case. Therefore, . Similarly, we have  and 

. Calculations presented in Appendix A demonstrate these arguments in detail. 

As it will be discussed in E.3 of Appendix, these assumptions are indeed valid.

The order of magnitude of the higher moments

For the 3rd order truncation equations, the central moment and the cumulant closure 

methods have the same truncation equations, because for α + β = 3 we have E[(i − E[i])α(j − 
E[j])β] = κα,β. Setting these moments to zero yields 4 equations (equations (73)–(76) in 

Appendix D). Because xαβ = O(1) for α + β = 1 and  for α + β = 2, in order to 

balance equations (73–76), xαβ with α + β = 3 has to be of the order of .

For α+β ≥ 4, the central moment and the cumulant closure methods have different truncation 

equations (see Appendix D.2). For the central moment truncation method, we have 

 with α+β = 4, 5. For the cumulant truncation method, we have , 

where α + β = 4, 5 (see Appendix D).

All three methods coincide for , but differ for 

Next, we will show that all three truncation methods give the same result for , but 

different results for , where  and α + β ≤ 2.

First, we look for the highest order term of ε in the 5 summation equations. By the above 

and equation (65) in Appendix A, the highest order term in the 5 summation equations is

where f1 is a function of x01, x10 and f2 is a function of x02, x11, x20. Presenting xαβ with α 
+ β ≤ 2 as a series, and keeping only the highest order terms in the summation equations, we 

obtain a linear system for . Because the linear system derived from the moment equations 

is independent of the truncation methods, we can see that all three truncation methods yield 

the same result for , where α +β ≤ 2. This is also the reason why the highest order 

contributions to the expectation and variance for i and j are the same for all the three 

methods, and so are the leading order to the expectation and variance for I and J by 

equations (23), (25), and (26).

Next, we will show that  with α+β ≤ 2 are different in the 3 truncation methods by 

looking for the second highest order terms of ε in the 5 summation equations.
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In the simple truncation method, the second highest order terms are , α + β ≤ 2, 

because we simply assume that all the higher moments are 0. Thus, we get a linear system 

for , α + β ≤ 2.

In the central moment truncation method, the second highest order terms are  for α + β 

≤ 2, and  for α + β = 3, because when α + β ≥ 4, the power is at least O(ε3), by 

equation (65). Therefore, we obtain a linear system for , α + β ≤ 2, which contains terms 

 with α + β = 3. We can solve the system for coefficients  with α + β = 3 from the 

third order central moment truncation equations.

Finally, for the cumulant truncation method, the second highest order terms are  for α 

+ β ≤ 2, and  for α + β = 3, 4 (the argument is similar to the one presented above). The 

difference from the central moment closure method is that the linear system for  with α + 

β ≤ 2 does not only contain terms  with α + β = 3, but also contains terms  with α + β 

= 4. Similarly,  with α + β = 4 can be obtained from the cumulant truncation equations.

From the above considerations, we can see that the equations for  with α + β ≤ 2 for the 

simple truncation method contain no information about the higher order terms xαβ, α + β ≥ 

3. For the central moment truncation method, these equations contain some information 

about the higher order terms, which is xαβ with α + β = 3. Finally, for the cumulant 

truncation method, these equations contain information about xαβ with α + β = 3, 4.

In conclusion, the three truncation methods produce the same result to the leading order of 

the mean and variance for the cell population. While we expect the central moment and 

cumulant truncation methods to give more accurate results to the next order correction, they 

require more extensive computations. In section 5.2, we show that the cumulant truncation is 

the most accurate among the three methods. The advantage of the simple truncation method 

is the straightforward calculations that it involves.

D Truncation equations

For more sophisticated truncation techniques employed here, we need to use truncation 

equations that express the higher moments in terms of the lower moments. Here we present 

these truncation equations for the central moment truncation method and the cumulant 

truncation method.

D.1 Truncation equations for xαβ, where α + β = 3

These two methods have the same truncation equations for xαβ, where α+β = 3:

(73)
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(74)

(75)

(76)

Because x10, x01 = O(1) and x20, x11, , we can see that  with α + β 
= 3.

D.2 Truncation equations for xαβ, where α + β = 4, 5

When α + β = 4, 5, central moment closure method has different truncation equations 

compared to cumulant closure method.

(a). Central moment closure method

Because x10, x01 = O(1), x20, x11,  and x30, x21, x12, , by the above 

truncation equations, , for α + β = 4, 5.

(b). Cumulant closure method

The truncation equations for cumulant closure method for xαβ, where α + β = 4, 5 are:
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By these truncation equations, we get , for α + β = 4, 5.
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E Moment Equations

E.1 Linear Noise Approximation

To find the next order correction, we will collect terms up to O(ε3/2) in the master equation 

expansion. After rescaling time by T = L0τ = L0εt, we will extend the Fokker-Planck 

equation (56) to O(ε1/2). Then, we can obtain the moment equations by integrations. Here 

we will only illustrate several of them:

(77)

(78)

(79)

(80)

E.2 Simple Trunciation

Correspond with (77) – (80), we have:
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(1, 0)

(81)

(2, 0)

(82)

(3, 0)

(83)

(4, 0)

(84)

By using (62), equations (77)–(79) coincide with equations (81)–(83) to O(ε1/2), and 

equations (80) agrees with (84) to O(1). In fact, all the first, second, and third order moment 

equations from the two methods coincide to O(ε1/2), and so are the fourth order moment 

equations to O(1).

E.3 Methodology

To find O(ε1/2) terms of the first order moments 〈ξ〉, 〈η〉, (77) shows we only need O(1) 

terms of 〈ξ2〉, 〈η2〉,〈ξη〉. Since the two methods give the same results to the leading order of 
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the second order moments, O(ε1/2) terms of the first order moments (which turn out to be 

non-zero) are the same for the two methods. It follows that the next order correction to the 

first order moments are the same for the two methods.

To find O(ε1/2) terms of the second order moments 〈ξ2〉, 〈ξη〉, 〈η2〉, (78) shows we only 

need O(1) terms of 〈ξαβ〉 for α + β = 3, and O(1) terms of 〈ξ〉, 〈η〉. Through (79) and the 

other third order moment equations, we have O(1) terms of 〈ξαβ〉 for α + β = 3 are all zero 

since O(1) terms of 〈ξ〉, 〈η〉 are zero. It follows that O(ε1/2) terms of the second order 

moments 〈ξ2〉, 〈ξη〉, 〈η2〉 are all zero.

To O(ε) terms of the second order moments 〈ξ2〉, 〈ξη〉, 〈η2〉, (78) shows we need O(ε1/2) 

terms of 〈ξαβ〉 for α + β = 3, and O(ε1/2) terms of 〈ξ〉, 〈η〉. We know O(ε1/2) terms of 〈ξ〉, 
〈η〉 are the same for the two methods. To find O(ε1/2) terms of 〈ξαβ〉 for α + β = 4, and 

O(1) terms of 〈ξαηβ〉 for α + β = 2 other (79). Now, (80) and the other fourth order moment 

equations show that O(1) terms of 〈ξαηβ〉 coincide for the two methods, for α + β = 4, since 

both methods give the same results to the leading order of the second order moments. It 

follows that the next order corrections to the second order moments (which turn out to be 

non-zero) are the same for the two methods.

By using (62), we have just shown that Van Kampen method and simple truncation give the 

same results to the next order correction of the mean and variance of the cell population. In 

particular, let I and i0 denote the number of stem cells and its steady state; respectively, then 

we have the following results:

(85)

(86)

(87)

(88)
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Highlights

• We study stochastic population dynamics of stem cells and differentiated cells

• We ask how different types of control affect means and variances of cell 

numbers

• Simple explicit expressions for the means and variances are derived

• The method is general and works for any functional form of the controls
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Figure 1. 
A schematic showing one step of the update for the constant total population model. Circles 

represent stem cells (“S”) and differentiated cells (“D”). Following a death of a randomly 

chosen differentiated cells, one of the stem cells is chosen for division. With probability pI 

(where I is the current number of stem cells in the system) it will differentiate, that is, divide 

into two daughter differentiated cells. With probability 1 − pI, it will proliferate, that is, 

divide into two stem cells.
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Figure 2. 
A non-constant total population process. A schematics showing the cellular processes and 

their probabilities. Circles represent stem cells (“S”) and differentiated cells (“D”). A stem 

cell divides with probability LI,J, where I and J are the current populations of stem and 

differentiated cells respectively. The division can be a differentiation event (with probability 

PI,J) or a proliferation event (with probability 1 − PI,J). A differentiated cell dies with the rate 

DI,J.
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Figure 3. 
A numerical simulation of the system in (40) with ε = 0.01 ran for 105 time steps. (‘I’) 

stands for the stem cell population, and (‘J’) stands for the differentiated cell population.
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Figure 4. 
The behavior of the means and the variances of the cell population described by equation 

(40). The analytical results given by equations (41–44) (X’s) are compared with the values 

obtained by numerical simulations (stars), for different values of ε. (‘T’) stands for the 

theoretical results, and (‘N’) stands for the numerical results.
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Figure 5. 
A typical numerical simulation of example (45) with ε = 10−4 and 3 · 106 time steps. (‘I’) 

stands for the stem cell population, and (‘J’) stands for the differentiated cell population.
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Figure 6. 
Same as in figure 4, except the means and variances are calculated of system (45).
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Figure 7. 
The behavior of the relative error of the means and the variances for different values of ε. 

We used the relative error = .
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