Title
Quadratic ideals and Rogers–Ramanujan recursions

Permalink
https://escholarship.org/uc/item/8r4727pj

Journal
The Ramanujan Journal, 52(1)

ISSN
1382-4090

Authors
Bai, Yuzhe
Gorsky, Eugene
Kivinen, Oscar

Publication Date
2020-05-01

DOI
10.1007/s11139-018-0127-3

Peer reviewed
Abstract. We give an explicit recursive description of the Hilbert series and Gröbner bases for the family of quadratic ideals defining the jet schemes of a double point. We relate these recursions to the Rogers-Ramanujan identity and prove a conjecture of the second author, Oblomkov and Rasmussen.

1. Introduction

In this paper, we study a family of quadratic ideals defining the jet schemes for the double point $D = \text{Spec} \ k[x]/x^2$. Here k is a field of characteristic zero. Recall that the $(n-1)$-jet scheme of X is defined as the space of formal maps $\text{Spec} \ k[t]/t^n \to X$. In the case of the double point, such a formal map is defined by a polynomial $x(t) = x_0 + x_1 t + \cdots + x_{n-1} t^{n-1}$, such that $x(t)^2 \equiv 0 \mod t^n$. By expanding this equation, we get a system of equations

$$f_1 = x_0^2, f_2 = 2x_0x_1, \ldots, f_n = \sum_{i=0}^{n-1} x_ix_{n-1-i}.$$

We denote the defining ideal of Jet$^{n-1}D \subseteq \mathbb{A}^n$ by

$$I_n := \langle f_1, \ldots, f_n \rangle \subseteq R_n := k[x_0, \ldots, x_{n-1}].$$

The ring R_n is $\mathbb{Z}_{\geq 0}$-graded by assigning the grading $(i, 1)$ to x_i. It is then clear that the ideal I_n is bihomogeneous. Let

$$H_n(q, t) = \sum_{i,j \geq 0} \dim_k(R_n/I_n)_{i,j}q^it^j \in \mathbb{Z}[\![q, t]\!].$$

denote the bigraded Hilbert series for R_n/I_n. Our first main result is the following.

Theorem 1.1. The series $H_n(q, t)$ satisfies the recursion relation

$$H_n(q, t) = H_{n-2}(q, qt) + tH_{n-3}(q, q^2t)$$

with initial conditions

$$H_0(q, t) = 1, \ H_1(q, t) = 1 + t, \ H_2(q, t) = \frac{1}{1 - qt} + t.$$

Using this recursion relation, we obtain explicit combinatorial formulas for $H_n(q, t)$:

Theorem 1.2. The Hilbert series $H_n(q, t)$ is given by the following explicit formula:

$$H_n(q, t) = \sum_{p=0}^{\infty} \frac{\binom{h(n,p)+1}{p}_q \cdot q^{p(p-1)t^p}}{(1 - q^{n-h(n,p)t}) \cdots (1 - q^{n-1}t)},$$

where $h(n, p) = \left\lfloor \frac{n-p}{2} \right\rfloor$.

In the limit $n \to \infty$, we reprove the theorem of Bruschek, Mourtada and Schepers \cite{[1]}, which relates the Hilbert series of the arc space for the double point to the Rogers-Ramanujan identity. In fact, we refine their result by considering an additional grading, see equation (7.1). Similar results for $n = \infty$ were obtained by Feigin-Stoyanovsky \cite{[9]} \cite{[10]}. Lepowsky et al. \cite{[5]} \cite{[6]}, and the second author, Oblomkov and Rasmussen in \cite{[8]}. Although our approach to the computation of the Hilbert series is inspired by \cite{[4]}, it is quite different. The key result in \cite{[4]} shows that for $n = \infty$ the polynomials f_k form a Gröbner basis of the ideal I_∞. As we will see below, the Gröbner basis of the ideal I_n for finite n is larger and has a very subtle recursive structure. We completely describe such a basis in Theorems 1.2 and 1.6. In particular, we prove the following.

Theorem 1.3. Let $k > 2$. Then the reduced Gröbner basis for I_n contains $\binom{n+2}{k-2}$ polynomials of degree k.

Our proof of Theorem 1.3 does not use Gröbner bases at all. First, by an explicit inductive argument in Theorem 2.2 we give a complete description of the first syzygy module for f_i. Then, we define a “shift operator” $S : R_n \to R_{n+1}$, which sends x_i to x_{i+1}, and identify $I_n \cap x_0 R_n$ and $I_n / (I_n \cap x_0 R_n)$ with the images of I_{n-3} and I_{n-2} under appropriate powers of S. This implies the recursion relation in Theorem 1.4.

We also observe a recursive structure in the minimal free resolution of R_n / I_n. In particular, we prove the following:

Theorem 1.4. Let $b(i,n)$ denote the rank of the i-th term in the minimal free resolution for R_n / I_n, in other words the i-th Betti number. Then

$$b(i,n) = b(i, n-1) + b(i-1, n-3) + b(i-2, n-3).$$

As a consequence, we can compute the projective dimension of R_n / I_n.

Corollary 1.5. The projective dimension of R_n / I_n equals $\lceil \frac{2n}{3} \rceil$.

Remark 1.6. It is easy to see that the reduced scheme $(\text{Jet}^{n-1}D)_{\text{red}}$ is a linear subspace given by the equations $x_0 = \ldots = x_i^{n+1} = 0$ and has dimension

$$\dim \text{Jet}^{n-1}D = n - 1 - \left\lfloor \frac{n-1}{2} \right\rfloor = \left\lceil \frac{n-1}{2} \right\rceil.$$

A more careful analysis of the gradings in Theorem 1.4 implies another formula for the series $H_n(q,t)$ which was first conjectured in \cite{[8]}.

Theorem 1.7. The Hilbert series of R_n / I_n has the following form:

$$H_n(q,t) = \prod_{i=0}^{n-1} \frac{1}{(1 - qt)} \sum_{p=0}^{\infty} (-1)^p \prod_{k=0}^{p-1} \left(1 - q^{k+1}t\right) \times$$

$$q^{\frac{5p^2+2p}{2}} t_{2p} \binom{n-2p+1}{p} q^{\frac{5p^2+5p}{2}} t_{2p+2} \binom{n-2p-1}{p}.$$
Acknowledgments

E. G. would like to thank Boris Feigin, Mikhail Bershtein, James Lepowsky, Kirill Paramonov and Anne Schilling for useful discussions, and Russian Academic Excellence Project 5-100 for its support. O. K. thanks Eric Babson and Jesús de Loera for discussions in the initial stages of the project. The work of E. G. and O. K. was supported by the NSF grants DMS-1700814 and DMS-1559338. The work of E. G. in section 6 was supported by the Ville, Kalle and Yrjö Väisälä foundation of the Finnish Academy of Science and Letters.

2. Ideals and syzygies

2.1. Ideals. Let \(R_n = k[x_0, \ldots, x_{n-1}] \) and \(f_k = \sum_{i=0}^{k-1} x_ix_{k-1-i} \). Define \(I_n \subseteq R_n \) to be the ideal generated by \(f_1, \ldots, f_n \). Let \(F_n \) be the free \(R_n \)-module with the basis \(e_1, \ldots, e_n \).

Consider the map \(\phi_n : F_n \to R_n \) given by the equation

\[
\phi_n(\alpha_1, \ldots, \alpha_n) = f_1\alpha_1 + \ldots + f_n\alpha_n.
\]

The \(R_n \)-module \(\ker(\phi_n) \) is called the first syzygy module of \(I_n \).

Lemma 2.1. One has

\[
\sum_{i=0}^{n} (n - 3i)x_if_{n+1-i} = 0.
\]

Proof. Indeed,

\[
\sum_{i=0}^{n} (n - 3i)x_if_{n+1-i} = \sum_{i+k+l=n} (n - 3i)x_ix_l.
\]

The coefficient at each monomial \(x_ix_l \) equals

\[
(n - 3i) + (n - 3k) + (n - 3l) = 3n - 3(i + k + l) = 3n - 3n = 0.
\]

For \(0 < k < n \), define

\[
\mu_k := (-2kx_k, (-2k+3)x_{k-1}, \ldots, kx_0, 0, \ldots, 0) \in F_n.
\]

By (2.1), we have \(\phi_n(\mu_k) = 0 \). Denote also \(\nu_{ij} = f_ie_j - f_je_i \) (for \(i \neq j \)). It is clear that \(\phi_n(\nu_{ij}) = 0 \). The main result of this section is the following.

Theorem 2.2. The first syzygy module \(\ker(\phi_n) \) is generated by \(\mu_k \) and \(\nu_{i,j} \) over \(R_n \).

We prove Theorem 2.2 in Section 2.4.

2.2. The shift operator. We define a ring homomorphism \(S : R_n \to R_{n+1} \) by the equation \(S(x_i) = x_{i+1} \). Note that \(S \) is injective and we can uniquely write any polynomial in \(R_n \) in the form

\[
f = x_0f' + S(f''), \ f' \in R_n, f'' \in R_{n-1}.
\]

The following equation is clear from the definition and will be very useful below:

\[
f_n = 2x_0x_{n-1} + S(f_{n-2}).
\]

By abuse of notation, denote also \(S : F_n \to F_{n+2} \) the map which is given by

\[
S(\alpha_1, \ldots, \alpha_n) = (0, 0, S(\alpha_1), \ldots, S(\alpha_n)).
\]

Lemma 2.3. Let \(\alpha \in F_n \). Then \(\phi_{n+2}(S(\alpha)) \) is divisible by \(x_0 \) if and only if \(\phi_n(\alpha) = 0 \).
Proof. By \((2.2) \) we have
\[
\phi_{n+2}(S(\alpha)) = \sum_{i=1}^{n} S(\alpha_i)f_{i+2} \equiv S\left(\sum_{i=1}^{n} \alpha_if_i \right) \mod x_0.
\]
Therefore \(\phi_{n+2}(S(\alpha)) \) is divisible by \(x_0 \) if and only if \(S(\sum \alpha_if_i) \) is divisible by \(x_0 \). But since no shift contains \(x_0 \), this happens if and only if
\[
S\left(\sum \alpha_if_i \right) = 0 \iff \sum \alpha_if_i = \phi_n(\alpha) = 0.
\]

Since \(\phi_n(\mu_k) = \phi_n(\nu_{ij}) = 0 \), by Lemma \([2,3] \) the images of \(S(\mu_k) \) and \(S(\nu_{ij}) \) under \(\phi_{n+2} \) are divisible by \(x_0 \). The following lemma describes these images explicitly.

Lemma 2.4. One has \(\phi_{n+2}(S(\mu_k)) = (2k + 6)x_{k+3}f_1 + (2k + 3)x_{k+2}f_2 - (k + 3)x_0f_{k+4} \), \(\phi_{n+2}(S(\nu_{ij})) = 2x_0x_{j+1}f_{i+2} - 2x_0x_{i+1}f_{j+2} \).

Proof. By definition,
\[
S(\mu_k) = (0, 0, -2kx_{k+1}, (-2k + 3)x_k, \ldots, kx_1, 0, \ldots, 0) = \\
\mu_{k+3} + (2k + 6)x_{k+3}e_1 + (2k + 3)x_{k+2}e_2 - (k + 3)x_0e_{k+4},
\]
so
\[
\phi_{n+2}(S(\mu_k)) = (2k + 6)x_{k+3}f_1 + (2k + 3)x_{k+2}f_2 - (k + 3)x_0f_{k+4}.
\]
Also, \(S(\nu_{ij}) = S(f_i)e_{j+2} - S(f_j)e_{i+2} \), so
\[
\phi_{n+2}(S(\nu_{ij})) = S(f_i)f_{j+2} - S(f_j)f_{i+2} = (f_{i+2} - 2x_0x_{i+1})f_{j+2} - (f_{j+2} - 2x_0x_{j+1})f_{i+2} = \\
2x_0x_{j+1}f_{i+2} - 2x_0x_{i+1}f_{j+2}.
\]

Corollary 2.5. One has
\[
\phi_{n+2}(S(\mu_k)) = (2k + 3)x_{k+2}f_2 - (k + 3)x_0S(f_{k+2}) = kx_{k+2}f_2 - (k + 3)x_0S^2(f_k).
\]

Proof.
\[
\phi_{n+2}(S(\mu_k)) = (2k + 6)x_{k+3}f_1 + (2k + 3)x_{k+2}f_2 - (k + 3)x_0f_{k+4} = \\
(2k + 6)x_{k+3}f_1 + (2k + 3)x_{k+2}f_2 - (k + 3)(2x_0^2x_{k+3} + 2x_0x_{k+1}x_{k+2} + x_0S^2(f_k)) = \\
(2k + 3)x_{k+2}f_2 - (k + 3)x_0S(f_{k+2}) = kx_{k+2}f_2 - (k + 3)x_0S^2(f_k).
\]

Example 2.6. \(\mu_1 = (-2x_1, x_0) \), so \(S(\mu_1) = (0, 0, -2x_2, x_1) \), and
\[
\phi_4(S(\mu_1)) = -2x_2(2x_0x_2 + x_1^2) + x_1(2x_0x_3 + 2x_1x_2) = \\
2x_3x_0x_1 - 4x_0x_2^2 = x_3f_2 - 4x_0S^2(x_0^2).
\]

Lemma 2.7. The polynomial \(x_1S(f_{n-2}) \) can be expressed via \(f_1, \ldots, f_{n-1} \) modulo \(x_0 \).

Proof. We have \((n - 3)x_0f_{n-2} + (n - 6)x_1f_{n-3} + \ldots + 2(n - 3)x_{n-2}f_0 = 0 \), so
\[
(n - 3)x_1S(f_{n-2}) + (n - 6)x_2S(f_{n-3}) + \ldots + 2(n - 3)x_{n-1}S(f_0) = 0.
\]
It remains to notice that \(S(f_i) \equiv f_{i+2} \mod x_0 \).

Lemma 2.8. Assume that \(\text{Ker}(\phi_{n-2}) \) is generated by \(\mu_k \) and \(\nu_{ij} \) and suppose that \(\phi_n(\alpha) \) is divisible by \(x_0 \). Then \(\alpha_n = Ax_0 + Bx_1 + \sum_{i=3}^{n-1} \gamma_if_i \) for some \(A, B \) and \(\gamma_i \).
Proof. As above, we can write $\alpha_i = x_0\alpha'_i + S(\alpha''_{i-2})$ for $i \geq 3$. Since f_1 and f_2 are divisible by x_0, we get

$$\phi_n(S(\alpha'')) = \sum_{i=3}^{n} S(\alpha''_{i-2})f_i \equiv \sum_{i=1}^{n} \alpha_if_i \equiv 0 \mod x_0.$$

By Lemma 2.3 we get $\phi_{n-2}(\alpha'') = 0$. By the assumption, we can write

$$\alpha'' = \sum_{k<n-2} \beta_k\mu_k + \sum_{i<j\leq n-2} \gamma_{i,j}\nu_{ij}.$$

Therefore

$$\alpha''_{n-2} = \beta_{n-1}x_0 + \sum_{j\leq n-3} \gamma_{j,n-2}f_j,$$

and

$$\alpha_n = x_0\alpha'_1 + S(\alpha''_{n-2}) = x_0\alpha'_1 + S(\beta_{n-1})x_1 + \sum_{j\leq n-3} S(\gamma_{j,n-2})(f_{j+2} - 2x_0x_{j+1}).$$

\square

2.3. Examples. Before proving Theorem 2.2 we would like to present the proof for $n \leq 4$.

Example 2.9. For $n = 2$ we have $f_1 = x_0^2$ and $f_2 = 2x_0x_1$, so the module of syzygies is clearly generated by $(-2x_1, x_0) = \mu_1$.

Example 2.10. Let $n = 3$, suppose that $\alpha_1f_1 + \alpha_2f_2 + \alpha_3f_3 = 0$. We can write $\alpha_3 = \alpha'_3x_0 + \alpha''_3$, where α''_3 does not contain x_0. Since f_1 and f_2 are divisible by x_0 and $f_3 = 2x_0x_2 + x_1^2$, we get $x_1^2\alpha''_3 = 0$, so $\alpha''_3 = 0$. Now $\alpha = \frac{1}{2}\alpha'_3\mu_2 + \gamma$, where γ is a syzygy between f_i with $\gamma_3 = 0$. By the previous example, γ is a multiple of μ_1, so the module of syzygies is actually generated by μ_1 and μ_2.

Example 2.11. Let $n = 4$, suppose that α is a syzygy. We can write $\alpha_3 = \alpha'_3x_0 + \alpha''_3$ and $\alpha_4 = \alpha'_4x_0 + \alpha''_4$ where α''_i do not contain x_0. Similarly to the previous case, we obtain

$$\alpha''_3x_0^2 + \alpha''_4 \cdot 2x_1x_2 = 0.$$

This means that there exists some β such that $\alpha''_3 = -2x_2\beta$ and $\alpha''_4 = x_1\beta$. Now

$$\alpha_1x_0^2 + 2\cdot 2x_0x_1 + (\alpha'_3x_0 - 2x_2\beta)(2x_0x_2 + x_1^2) + (\alpha'_4x_0 + x_1\beta)(2x_0x_3 + 2x_1x_2) = 0.$$

The terms without x_0 cancel, and the linear terms in x_0 are the following:

$$x_0(2\alpha_2x_1 + \alpha'_3x_1^2 - 4x_2^2\beta + 2\alpha'_4x_1x_2 + 2\beta x_1x_3) = 0.$$

Note that all terms but $-4x_2^2\beta$ are divisible by x_1, so β is divisible by x_1, $\beta = mx_1$. Then

$$\alpha_4 = \alpha'_4x_0 + mx_1^2 = (\alpha'_4 - 2x_2m)x_0 + mf_3.$$

By subtracting $m\nu_{3,4} + \frac{1}{3}(\alpha'_4 - 2x_2m)\mu_3$ from α, we obtain a syzygy between f_1, f_2, f_3 and reduce to the previous case.
2.4. Syzygies. In this section, we prove Theorem 2.2 by induction on \(n \). The base cases were covered in Section 2.3. Suppose that \(\alpha = (\alpha_1, \ldots, \alpha_n) \in \Ker(\phi_n) \), i.e., is a linear relation between \(f_1, \ldots, f_n \). As above, write \(\alpha_i = \alpha'_i x_0 + S(\alpha''_i) \) for \(i \geq 3 \). Without loss of generality, we can assume that \(\alpha'_i \) do not contain \(x_0 \) (otherwise we can subtract a multiple of \(\nu_{1,i} \)). Since

\[
\alpha'' = \sum_{i=3}^{n-1} \beta_{i+1} \mu_{i-2} + \sum_{3 \leq j < k \leq n, j \neq k} \beta_{j,k} v_{j-2,k-2}.
\]

Because

\[
S(\nu_{j-2,k-2}) = -S(f_{k-2}) e_j + S(f_{j-2}) e_k = \nu_{j,k} + 2x_0 x_k e_j - 2x_0 x_j e_k,
\]

without loss of generality we can assume \(\alpha'' = S(\sum_{i=3}^{n-1} \beta_{i+1} \mu_{i-2}) \). By Corollary 2.5 we get

\[
\phi_n(S(\mu_{i-2})) = -(i + 1)x_0 S(f_i) + (2i - 1)x_{i-1}f_2,
\]

hence

\[
\phi_n(\alpha) = \alpha_1 f_1 + (\alpha_2 + \sum_{i=3}^{n-1} (2i - 1) S(\beta_{i+1}) x_{i-1}) f_2 + \sum_{i=3}^{n} x_0 \alpha'_i f_i - \sum_{i=3}^{n-1} (i + 1) S(\beta_{i+1}) x_0 S(f_i) = 0.
\]

By collecting the terms linear in \(x_0 \), we get

\[
(\alpha_2 + \sum_{i=3}^{n-1} (2i - 1) S(\beta_{i+1}) x_{i-1}) 2x_1 + \sum_{i=3}^{n} \alpha'_i S(f_{i-2}) - \sum_{i=3}^{n-1} (i + 1) S(\beta_{i+1}) S(f_i) = 0,
\]

so

\[
\sum_{i=3}^{n} \alpha'_i S(f_{i-2}) - \sum_{i=3}^{n-1} (i + 1) S(\beta_{i+1}) S(f_i)
\]

is divisible by \(x_1 \), and

\[
\sum_{i=3}^{n} \alpha''_{i-2} f_{i-2} - \sum_{i=3}^{n-1} (i + 1) \beta_{i+1} f_i
\]

is divisible by \(x_0 \), where \(\alpha'_i = S(\alpha''_i) \). By Lemma 2.8 this implies

\[
\beta_n = Bx_0 + Cx_1 + \sum_{i=3}^{n-2} \gamma_i f_i
\]

for some constants \(B, C \). Now we can rewrite

\[
\alpha_n = \alpha'_n x_0 + S(\beta_n x_0) = \alpha'_n x_0 + Bx_1^2 + C x_1 x_2 + \sum_{i=3}^{n-3} \gamma_i x_1 (f_{i+2} - 2x_0 x_{n-1}) + \gamma_{n-2} x_1 S(f_{n-2}).
\]

Observe that \(x_1^2 = f_3 - 2x_0 x_2, x_1 x_2 = \frac{1}{2}(f_3 - 2x_0 x_3) \) and by Lemma 2.7 \(x_1 S(f_{n-2}) \) can be expressed via \(f_1, \ldots, f_{n-1} \) modulo \(x_0 \). In other words,

\[
\alpha_n = \delta x_0 + \sum_{i=3}^{n-1} \delta_i f_i
\]

for some coefficients \(\delta_i \). Then \(\alpha - \frac{1}{n-1} \delta \mu_{n-1} - \sum_{i=3}^{n-1} \delta_i \nu_{i,j} \) is a syzygy between \(f_1, \ldots, f_{n-1} \), so by the induction assumption it can be expressed as an \(R_{n-1} \)-linear combination of the \(\mu_i \) and \(\nu_{i,j} \).
Remark 2.12. The above proof shows that the syzygies $\nu_{1,k}$ and $\nu_{2,k}$ are not necessary, and can be expressed as linear combinations of other syzygies. Indeed, since the coefficients at e_k are divisible by x_0, one can subtract an appropriate multiple of μ_{k-1}^{-1} and get a syzygy involving e_1, \ldots, e_{k-1} only.

3. Hilbert Series

In this section, we prove Theorem 3.5 by studying the relation between the ideals I_n and x_0R_n.

Lemma 3.1. One has

$$R_n/(x_0R_n + I_n) \simeq S(R_{n-2}/I_{n-2})[x_{n-1}]$$

as R_n-modules, the module structure on the right coming from $S : R_{n-1} \to R_n$.

Proof. We have $x_0R_n + I_n = \langle x_0, f_1, \ldots, f_n \rangle = \langle x_0, S(f_1), \ldots, S(f_{n-2}) \rangle$, so

$$R_n/(x_0R_n + I_n) = R_n/\langle x_0, S(f_1), \ldots, S(f_{n-2}) \rangle = S(R_{n-2}/I_{n-2})[x_{n-1}] .$$

Lemma 3.2. The subspace $x_0S^2(I_{n-3})[x_{n-1}]$ does not intersect the ideal $\langle f_1, f_2 \rangle$ in R_n. Furthermore, $x_0S^2(I_{n-3})[x_{n-1}] + \langle f_1, f_2 \rangle$ is an ideal in R_n which is contained in $I_n \cap x_0R_n$.

Proof. Given a nonzero polynomial $g \in I_{n-3}$, the iterated shift $S^2(g)$ does not contain x_0 or x_1, so that $x_0S^2(g)$ is not contained in $\langle f_1, f_2 \rangle$. Furthermore, I_{n-3} is stable under multiplication by x_0, \ldots, x_{n-4}, so $S^2(I_{n-3})$ is stable under multiplication by x_2, \ldots, x_{n-2}, and $x_0S^2(I_{n-3})[x_{n-1}]$ is stable under multiplication by x_2, \ldots, x_{n-1}. Multiplication by x_0 or x_1 sends the latter subspace to $\langle f_1, f_2 \rangle$, so $x_0S^2(I_{n-3})[x_{n-1}] + \langle f_1, f_2 \rangle$ is an ideal in R_n.

Finally, to prove that this ideal is contained in I_n, it is sufficient to prove that $x_0S^2(f_k) \in I_n$ for $k \leq n - 3$. On the other hand, by Corollary 2.5

$$x_0S^2(f_k) = \frac{1}{k+3} \phi_n(S(\mu_k)) \mod \langle f_1, f_2 \rangle .$$

Lemma 3.3. One has

$$I_n \cap x_0R_n = x_0S^2(I_{n-3})[x_{n-1}] + \langle f_1, f_2 \rangle .$$

Proof. By Lemma 3.2, the right hand side is a submodule of the left hand side, so it remains to prove the reverse inclusion. We have

$$f_i = 2x_0x_{i-1} + S(f_{i-2}) = 2x_0x_{i-1} + 2x_1x_{i-2} + S^2(f_{i-4}) .$$

Suppose that $\sum_{i=1}^n \alpha_if_i \in I_n \cap x_0R_n$. Then by Lemma 2.3

$$\alpha_n = Ax_0 + Bx_1 + \sum_j \gamma_jf_j = A'x_0 + B'x_1 + \sum_j \gamma_jS^2(f_{j-4}) .$$

Now by (2.1) and Corollary 2.5 x_0f_n and x_1f_n can be expressed as R_n-linear combinations of f_1, \ldots, f_{n-1} and elements of $x_0S^2(I_{n-3})[x_{n-1}] + \langle f_1, f_2 \rangle$, so $\sum_{i=1}^n \alpha_if_i$ can be expressed as such a combination as well. Induction on n finishes the proof.

Corollary 3.4. One has

$$x_0R_n/(I_n \cap x_0R_n) = x_0S^2(R_{n-3}/I_{n-3})[x_{n-1}] .$$
Proof. We have
\[x_0R_n/(f_1, f_2) = x_0R_n/(x_0^2, x_0x_1) = x_0k[x_2, \ldots, x_{n-1}] = x_0S^2(R_{n-3})[x_{n-1}] \]
Therefore
\[x_0R_n/(I_n \cap x_0R_n) = x_0R_n/(x_0S^2(I_{n-3})[x_{n-1}] + \langle f_1, f_2 \rangle) = x_0S^2(R_{n-3}/I_{n-3})[x_{n-1}] \]
\[\square \]

Theorem 3.5. Let \(H_n(q, t) \) denote the bigraded Hilbert series of the quotient \(R_n/I_n \). Then one has the following recursion relation
\[H_n(q, t) = \frac{H_{n-2}(q, qt) + tH_{n-3}(q, q^2t)}{1 - q^{n-1}t} \]
with initial conditions
\[H_0(q, t) = 1, \quad H_1(q, t) = 1 + t, \quad H_2(q, t) = \frac{1}{1 - qt} + t. \]

Remark 3.6. This recursion is similar, but not identical to the various recursions considered by Andrews \([1, 2, 3]\) in his proofs of the Rogers-Ramanujan identity. It is also similar to the recursions recently considered by Paramonov \([12]\) in a different context.

Proof. We have an exact sequence
\[0 \to x_0R_n/(x_0R_n \cap I_n) \to R_n/I_n \to R_n/(x_0R_n + I_n) \to 0. \]
By Lemma \(3.1\) the Hilbert series of \(R_n/(x_0R_n + I_n) \) equals \(\frac{H_{n-2}(q, qt)}{1 - q^{n-1}t} \), and by Corollary \(3.4\) the Hilbert series of \(x_0R_n/(x_0R_n \cap I_n) \) equals \(\frac{tH_{n-3}(q, q^2t)}{1 - q^{n-1}t} \).
\[\square \]

4. **Gröbner bases**

We will now compute Gröbner bases for the ideals \(I_n \). Recall that a Gröbner basis for an ideal \(I \) is a subset \(G = \{g_1, \ldots, g_s\} \subset I \) such that, for a chosen monomial ordering \(<\),
\[\langle \text{LT}_<(g_1), \ldots, \text{LT}_<(g_s) \rangle = \text{LT}_<(I), \]
where \(\text{LT}_< \) denotes leading term.

Let us order the monomials in \(R_n \) in grevlex order, that is
\[x^\alpha < x^\beta \]
if \(|\alpha| < |\beta|\) or \(|\alpha| = |\beta|\) and the rightmost entry of \(\alpha - \beta \) is negative.

Remark 4.1. In fact, any order refining the reverse lexicographic order will work, but for definiteness and its popularity in computer algebra systems we shall fix grevlex order throughout.

Theorem 4.2. Let \(G_1 = \{f_1\} \subseteq R_1, G_2 = \{f_1, f_2\} \subset R_2 \)
and recursively define the sets \(G_n, n \geq 3 \) as follows:
\[G_n = x_0S^2(G_{n-3}) \cup \{f_1, f_2\} \cup \tilde{S}(G_{n-2}), \]
where \(\tilde{S} \) is a modified shift operator as explained below. Then \(G_n \) is a Gröbner basis for \(I_n \).
Remark 4.3. The notation requires explanation. Note that any G_m is naturally a subset of R_n, $n \geq m$ so we can and will identify G_m inside a larger polynomial ring without explicit mention. Furthermore, we denote by $x_0S^2(G_{n-3})$ the image of G_{n-3} under $S^2 : R_{n-2} \to R_n$ multiplied by x_0. The “operator” \tilde{S} is defined on elements $p \in I_{n-2}$ as follows: write $p = \sum_{i=1}^n \varphi_i f_i$, and let

$$\tilde{S}(p) = \sum_{i=1}^n S(\varphi_i)f_{i+2}.$$

Note that by (2.22), we have $\tilde{S}(p) = S(p) + \sum_{i=1}^n x_0 x_{i+2} S(\varphi_i) \in I_{n+2}$. In particular, if $p \neq 0$ and p is homogeneous then $\text{LT}_<(\tilde{S}(p)) = S(\text{LT}_<(p))$. Therefore the construction of $\tilde{S}(p)$ requires a choice if φ_i, but the leading term of the result does not depend on this choice.

Proof. We will proceed by induction. The base cases $n = 1, 2$ are clear because the ideals are monomial. Consider now the ideal $\text{LT}_<(I_n)$ generated by all the leading terms of elements of I_n. It is clear by Lemma 3.1 and the fact that S respects the reverse lexicographic order that if $g \in I_n$ is not divisible by x_0, its leading term is the image of a leading term in I_{n-2} under S. Since we assumed G_{n-2} to be a Gröbner basis, we must have $\text{LT}_<(g)$ divisible by some monomial in $S(\text{LT}_<(G_{n-2}))$.

Similarly, if g is divisible by x_0, we know by Lemma 3.2 and order preservation that its leading term is the image under x_0S^2 of a leading term in I_{n-3} or divisible by f_1, f_2. By the induction assumption $\text{LT}_<(g)$ is then divisible by an element of $x_0S^2(\text{LT}_<(G_{n-3})) \cup \{f_1, f_2\}$. In particular, $\text{LT}_<(I_n) \subseteq (\text{LT}_<(G_n))$. But the reverse inclusion is clear, so we have

$$\text{LT}_<(I_n) = (\text{LT}_<(G_n))$$

as desired, and G_n is a Gröbner basis for I_n. \hfill \Box

Example 4.4. We have

- $G_3 = \{f_1, f_2, f_3\}$
- $G_4 = \{f_1, f_2, f_3, f_4, x_0x_2^2\}$
- $G_5 = \{f_1, f_2, f_3, f_4, f_5, x_0x_2x_3\}$
- $G_6 = \{f_1, \ldots, f_6, x_0x_2^2 + 2x_0x_2x_4, 2x_1x_3^2 + 3x_0x_3x_4 - x_0x_2x_5\}$

Note that the last polynomial in G_6 can be identified with $\tilde{S}(x_0x_2^2) \in \tilde{S}(G_4)$. Indeed, $4x_0x_2^2 = 2x_2(2x_0x_2 + x_1^2) - x_1(2x_0x_3 + 2x_1x_2) + x_3(2x_0x_1) = 2x_2f_3 - x_1f_4 + x_3f_2$.

so

$$\tilde{S}(4x_0x_2^2) = 2x_3f_5 - x_2f_6 + x_4f_4 =$$

$$2x_3(2x_0x_4 + 2x_1x_3 + x_2^2) - x_2(2x_0x_5 + 2x_1x_4 + 2x_2x_3) + x_4(2x_0x_3 + 2x_1x_2) =$$

$$4x_1x_3^2 + 6x_0x_3x_4 - 2x_0x_2x_5.$$

Remark 4.5. The Gröbner basis constructed in Theorem 1.2 is far from being reduced. The following theorem describes the reduced basis implicitly.

Since all G_n contain $\{f_1, \ldots, f_n\}$ and none of their leading terms divides one another, we can throw away other polynomials in G_n in a controlled manner to obtain a minimal Gröbner basis. That is to say, if the leading terms of $G_n \setminus \{g\}$ still generate the leading ideal we are in business. Therefore after appropriate reduction [7 Proposition 6 on p. 92] we get a reduced Gröbner basis with the same leading terms.
Let us call a monomial $\prod x_i^{a_i}$ admissible if $a_i + a_{i+1} \leq 1$ for all i, that is, it is not divisible by x_i^2 or by x_ix_{i+1}.

Theorem 4.6. Fix $k > 2$. The leading terms of (t-)degree k in a reduced Gröbner basis for I_n have the form $m(x)LT_<(f_{n+k-2})$ where $m(x)$ is an admissible monomial of degree $k-2$ in variables $x_0, \ldots, x_{\left\lfloor \frac{n-4}{2} \right\rfloor}$. The number of degree k polynomials in the reduced Gröbner basis equals $\left(\frac{n-1}{k-2} \right)$.

Remark 4.7. It is easy to see that there are no linear polynomials in the Gröbner basis (or in the ideal I_n), and f_1, \ldots, f_n are the only quadratic polynomials in the reduced Gröbner basis.

Proof. We prove the statement by induction in n. Suppose that it is true for G_{n-2} and G_{n-3}. By Theorem 4.2 the leading monomials in the degree k part of G_n consist of shifted degree k monomials in G_{n-2}, and twice shifted degree $(k-1)$ monomials in G_{n-3}, multiplied by x_0.

Consider first the case $k = 3$. We will prove that the leading terms in the reduced Gröbner basis have the form $x_j LT_<(f_{n+1})$ for $j \leq \left\lfloor \frac{n-1}{2} \right\rfloor$. Indeed, in the first case we get $S(x_j LT_<(f_{n+1})) = x_j+1 LT_<(f_{n+1})$. In the second case we have to consider the polynomials $x_0S^2(f_i)$ for all $i \leq n-3$. Observe that for $i \leq n-4$ we get $LT_<(x_0S^2(f_i)) = x_0 LT_<(f_{i+4})$ and hence divisible by the leading term of f_{i+4} and can be eliminated. For $i = n-3$ we get $LT_<(x_0S^2(f_{n-3})) = x_0 LT_<(f_{n+1})$.

Assume now that $k > 3$. In the first case we get

$$S(m(x)LT_<(f_{(n-2)+k-2})) = S(m(x))LT_<(f_{n+k-2}).$$

If $m(x)$ is an admissible monomial in x_j, $0 \leq j \leq \left\lfloor \frac{n-2+k-7}{2} \right\rfloor$ then $S(m(x))$ is an admissible monomial in x_j, $1 \leq j \leq \left\lfloor \frac{n-3+k-7}{2} \right\rfloor + 1 = \left\lfloor \frac{n+k-7}{2} \right\rfloor$.

In the second case we get

$$x_0S^2(m(x))LT_<(f_{(n-3)+(k-1)-2}) = x_0S^2(m(x))LT_<(f_{n+k-2}).$$

Now $S^2(m(x))$ is an admissible monomial in x_j, $2 \leq j \leq \left\lfloor \frac{n-3+(k-1)-7}{2} \right\rfloor + 2 = \left\lfloor \frac{n+k-7}{2} \right\rfloor$, so $x_0S^2(m(x))$ is also an admissible in a correct set of variables. In fact, all such monomials not divisible by x_0 appear from the first case, and the ones divisible by x_0 appear from the second case.

It is easy to see that none of these leading monomials are divisible by each other. Therefore after appropriate reduction we get a reduced Gröbner basis with the same leading terms.

Finally, we can count monomials of given degree k. The number of admissible monomials of degree l in s variables equals $\binom{s-l+1}{l}$, so the number of polynomials in G_n of degree k equals

$$\left(1 + \left\lfloor \frac{n+k-7}{2} \right\rfloor - (k-2) + 1 \right) = \binom{n+k-6}{k-2}. \tag*{□}$$

Example 4.8. Let $n = 12$. The reduced Gröbner basis for I_{12} contains quadratic polynomials f_1, \ldots, f_{12}. It also contains 5 cubic polynomials with leading terms

$$x_0x_6^2, x_1x_6^2, x_2x_6^2, x_3x_6^2, x_4x_6^2,$$

6 quartic polynomials with leading terms

$$x_0x_2x_6x_7, x_2x_3x_6x_7, x_0x_4x_6x_7, x_1x_3x_6x_7, x_1x_4x_6x_7, x_2x_4x_6x_7$$
and 4 quintic polynomials with leading terms
\[x_0x_2x_4x_7^2, x_0x_2x_5x_7^2, x_0x_3x_5x_7^2, x_1x_3x_5x_7^2. \]
Observe that \(\text{LT}_< (f_{13}) = x_0^2 \), \(\text{LT}_< (f_{14}) = x_6x_7 \) and \(\text{LT}_< (f_{15}) = x_7^2 \).

5. Minimal resolution

In this section we describe the bigraded minimal free resolutions of \(I_n \) and \(R_n/I_n \). We write them as follows:

\[
0 \leftarrow I_n \leftarrow F(1, n) \leftarrow F(2, n) \leftarrow F(3, n) \cdots
\]

and

\[
0 \leftarrow R_n/I_n \leftarrow R_n = F(0, n) \leftarrow F(1, n) \leftarrow F(2, n) \leftarrow F(3, n) \cdots
\]

Theorem 5.1. Let \(F(i, n) \) be the \(i \)-th term in the minimal free resolution for \(I_n \). Then there is an injection \(F(i, n - 1) \hookrightarrow F(i, n) \), and

\[
F(i, n)/F(i, n - 1) \cong S(F(i - 1, n - 3)) \oplus x_0S(F(i - 2, n - 3))
\]

as \(R_n \)-modules, and the shift of a free \(R_n \)-module is as in \((2, 3)\). Note that the gradings in the right hand side are shifted by the bidegree of \(f_n \) (which equals \(q^{n-1}t^2 \)).

Proof. Observe that the ideal generated by \(f_1, \ldots, f_{n-1} \) in \(R_n \) is isomorphic to \(I_{n-1}[x_{n-1}] \), so its minimal resolution over \(R_n \) is identical to the one for \(I_{n-1} \) over \(R_{n-1} \) tensored over \(R_n \). Moreover, since \(I_n = \langle f_1, \ldots, f_n \rangle \), the minimal free \(R_n \)-resolution of \(I_{n-1}[x_{n-1}] \) is naturally a subcomplex of the minimal free resolution for \(I_n \). In other words, \(F(i, n - 1) \cong R_n \otimes_{R_{n-1}} R_n \) can be identified with a subspace in \(F(i, n) \), which we will by abuse of notation also denote \(F(i, n - 1) \). We have a short exact sequence

\[
0 \to F(i, n - 1) \to F(i, n) \to F(i, n)/F(i, n - 1) \to 0.
\]

From the long exact sequence in cohomology, it is easy to see that \(F(i, n)/F(i, n - 1) \) is acyclic in positive degrees. Now \(I_n = \langle f_1, \ldots, f_n \rangle \), so \(F(1, n)/F(1, n - 1) \cong R_n \) is generated by a single vector corresponding to \(f_n \). Furthermore, by Theorem 2.2 \(F(2, n) \) has generators corresponding to \(\mu_1, \ldots, \mu_{n-1} \) and \(\nu_{i,j} \) for \(3 \leq i < j \leq n \), so \(F(2, n)/F(2, n - 1) \cong R_n^{n-2} \) is spanned by the basis elements corresponding to \(\mu_{n-1} \) and \(\nu_{i,n} \) for \(3 \leq i \leq n - 1 \). The differential \(d : F(2, n) \to F(1, n) \) descends to \(d : F(2, n)/F(2, n - 1) \to F(1, n)/F(1, n - 1) \), sending \(\mu_{n-1} \) to \(x_0f_n \) and \(\nu_{i,n} \) to \(f_i \cdot f_n \).

Therefore, the quotient complex with terms \(F(i, n)/F(i, n - 1) \) is isomorphic to the minimal resolution of \(R_n/\langle x_0, f_3, \ldots, f_{n-1} \rangle = R_n/\langle x_0, S(f_1), \ldots, S(f_{n-3}) \rangle \). The latter is nothing but the (shifted) minimal resolution for \(I_{n-3} \) tensored with the two-term complex \(R_n \overset{x_0}{\longrightarrow} R_n \).

Corollary 5.2. Let \(b(i, n) \) denote the rank of \(F(i, n) \). Then

\[
(5.1) \quad b(i, n) = b(i, n - 1) + b(i - 1, n - 3) + b(i - 2, n - 3).
\]

Corollary 5.3. Let \(H_n(q, t) \) denote the Hilbert series for \(R_n/I_n \), and let \(\tilde{H}_n(q, t) = H_n(q, t) \prod_{i=0}^{n-1} (1 - q^it) \). Then \(\tilde{H}_n(q, t) \) satisfies the following recursion relation:

\[
(5.2) \quad \tilde{H}_n(q, t) = \tilde{H}_{n-1}(q, t) - q^{n-1}t^2(1 - t^2)\tilde{H}_{n-3}(q, qt).
\]

Corollary 5.4. The projective dimension of \(I_n \) equals \(\left\lceil \frac{2n}{3} \right\rceil - 1 \). The projective dimension of \(R_n/I_n \) equals \(\left\lceil \frac{2n}{3} \right\rceil \).
Proof. By definition, the projective dimension $\text{pd}(I_n)$ is equal to the length of the minimal free (or projective) resolution. By (5.1) we have $\text{pd}(I_n) = \text{pd}(I_{n-3}) + 2$. The minimal free resolutions for I_1, I_2 and I_3 are easy to compute:

$$I_1 \leftarrow \frac{(f_1)}{R_1}$$

$$I_2 \leftarrow \frac{(f_1 \ f_2)}{R_2} \leftarrow \frac{(-2x_1) \ x_0}{R_2}$$

$$I_3 \leftarrow \frac{(f_1 \ f_2 \ f_3)}{R_3} \leftarrow \frac{(-2x_0 \ -4x_2 \ x_1 \ -x_1 \ 0 \ 2x_0)}{R_3}$$

The minimal resolution of R_n/I_n is one step longer than the one for I_n. \qed

6. COMBINATORIAL IDENTITIES

We define

$$\binom{a}{b}_q = \frac{(1 - q) \cdots (1 - q^a)}{(1 - q) \cdots (1 - q^b) \cdot (1 - q) \cdots (1 - q^{a-b})}.$$ If $a < b$, we set $\binom{a}{b}_q = 0$. The following lemma is well known.

Lemma 6.1. The following identities holds:

$$\binom{a}{b}_q + q^{b+1} \binom{a + 1}{b + 1}_q = \binom{a + 1}{b + 1}_q = q^{a-b} \binom{a}{b}_q + \binom{a}{b + 1}_q.$$

Proof. One has

$$\binom{a}{b + 1}_q = \frac{(1 - q^{a-b})}{(1 - q^{b+1})} \binom{a}{b}_q,$$

hence

$$\binom{a}{b}_q + q^{b+1} \binom{a + 1}{b + 1}_q = \binom{a}{b}_q \left(1 + q^{b+1} \frac{1 - q^{a-b}}{(1 - q^{b+1})} \right) = \binom{a}{b}_q \frac{1 - q^{a+1}}{(1 - q^{b+1})} = \binom{a + 1}{b + 1}_q.$$

\qed

Theorem 6.2. The Hilbert series $H_n(q, t)$ is given by the following explicit formula:

$$H_n(q, t) = \sum_{p=0}^{\infty} \frac{\binom{h(n,p)+1}{p}_q \cdot q^{p(p-1)t}p}{(1 - q^{n-h(n,p)t}) \cdots (1 - q^{n-1})},$$

where $h(n, p) = \left\lfloor \frac{n-2p}{2} \right\rfloor$.

Proof. By Theorem 3.3 it is sufficient to prove that the right hand side of (6.1) satisfies the recursion relation (3.1). Let us denote the p-th term in (6.1) by $H_{n,p}(q, t)$ so that $H_n(q, t) = \sum_p H_{n,p}(q, t)$. We have $h(n - 2, p) = h(n - 3, p - 1) = h(n, p) - 1$, so

$$H_{n-2,p}(q, t) = \frac{\binom{h(n,p)}{p}_q \cdot q^{p(p-1)t}p \cdot q^p}{(1 - q^{n-h(n,p)t}) \cdots (1 - q^{n-2t})},$$

$$H_{n-3,p-1}(q, t^2) = \frac{\binom{h(n,p)}{p-1}_q \cdot q^{(p-1)(p-2)t}p \cdot q^{2p^2}}{(1 - q^{n-h(n,p)t}) \cdots (1 - q^{n-2t})}.$$
therefore

\begin{equation}
H_{n-2,p}(q,t) + tH_{n-3,p-1}(q,q^2t) = \frac{q^{p(p-1)p}}{(1 - q^{n-h(n,p)t}) \cdots (1 - q^{n-2t})} \left[q^{p} \left(\begin{array}{c} h(n,p) \\ p \end{array} \right)_q + \left(\begin{array}{c} h(n,p) \\ p-1 \end{array} \right)_q \right] = \frac{q^{p(p-1)p}}{(1 - q^{n-h(n,p)t}) \cdots (1 - q^{n-2t})} \left(h(n,p) + 1 \right) \left(\begin{array}{c} p \\ n \end{array} \right)_q = (1 - q^{n-1t})H_{n,p}(q,t).
\end{equation}

This proves (5.1), and the initial conditions are easy to check. \qed

The free resolution of I_n gives another formula for the Hilbert series of R_n/I_n.

Proposition 6.3. Let $b(i,n)$, as above, denote the rank of i-th module in the free resolution of R_n/I_n. Then

\begin{equation}
b(i,n) = \sum_p \left[\left(\begin{array}{c} n-2p+1 \\ p \end{array} \right)_i \left(\begin{array}{c} p \\ i-p \end{array} \right) + \left(\begin{array}{c} n-2p-1 \\ p \end{array} \right)_i \left(\begin{array}{c} p \\ i-p-1 \end{array} \right) \right]
\end{equation}

Remark 6.4. The terms in the first sum are nonzero if $p \leq (n+1)/3$ and $i/2 \leq p \leq i$. The terms in the second sum are nonzero if $p \leq (n-1)/3$ and $(i-1)/2 \leq p \leq (i-1)$.

Proof. Let

$$A(n,p,i) = \left(\begin{array}{c} n-2p+1 \\ p \end{array} \right)_i \left(\begin{array}{c} p \\ i-p \end{array} \right),
B(n,p,i) = \left(\begin{array}{c} n-2p-1 \\ p \end{array} \right)_i \left(\begin{array}{c} p \\ i-p-1 \end{array} \right).$$

Then

$$A(n-1,p,i) + A(n-3,p-1,i-1) + A(n-3,p-1,i-2) =
\left(\begin{array}{c} n-2p \\ p \end{array} \right)_i \left(\begin{array}{c} p \\ i-p \end{array} \right) + \left(\begin{array}{c} n-2p \\ p-1 \end{array} \right)_i \left(\begin{array}{c} p-1 \\ i-p \end{array} \right) + \left(\begin{array}{c} n-2p \\ p-1 \end{array} \right)_i \left(\begin{array}{c} p-1 \\ i-p-1 \end{array} \right) =
\left(\begin{array}{c} n-2p \\ p \end{array} \right)_i \left(\begin{array}{c} p \\ i-p \end{array} \right) + \left(\begin{array}{c} n-2p \\ p-1 \end{array} \right)_i \left(\begin{array}{c} p \\ i-p \end{array} \right) = \left(\begin{array}{c} n-2p+1 \\ p \end{array} \right)_i \left(\begin{array}{c} p \\ i-p \end{array} \right) = A(n,p,i).$$

Similarly, $B(n-1,p,i) + B(n-3,p-1,i-1) + B(n-3,p-1,i-2) = B(n,p,i)$, so the right hand side satisfies the recursion relation (5.1). It remains to check the base cases:

$$f(0,n) = 1 = \left(\begin{array}{c} n-1 \\ 0 \end{array} \right),
\quad
f(1,n) = n = \left(\begin{array}{c} n-1 \\ 1 \end{array} \right) + \left(\begin{array}{c} n-3 \\ 0 \end{array} \right),
\quad
f(2,n) = (n-1) + \left(\begin{array}{c} n-2 \\ 2 \end{array} \right) = \left(\begin{array}{c} n-1 \\ 1 \end{array} \right) + \left(\begin{array}{c} n-3 \\ 1 \end{array} \right) + \left(\begin{array}{c} n-3 \\ 2 \end{array} \right).$$

By Corollary 5.1 $b(i,n) = 0$ for $i > 2$ and $n \leq 3$. \qed

We have the following (q,t)-analogue of Proposition 6.3.
Proposition 6.5. Let \(\hat{b}(i, n) \) denote the bigraded Hilbert polynomial for the generating set in \(F(i, n) \). Then

\[
\begin{align*}
\hat{b}(i, n) &= \sum_{p>0} q^{\frac{5p^2 - 3p + (i-p)(i-p-1)}{2}} t^{2p+(i-p)} (n - 2p + 1) \binom{n - 2p + 1}{p} q^i \binom{i-p}{q} \\
&+ q^{\frac{5p^2 + 5p + (i-p)(i-p-1)}{2}} t^{2p+2+(i-p)} (n - 2p - 1) \binom{n - 2p - 1}{p} q^{i-p-1} \binom{i-p}{q}
\end{align*}
\]

Proof. The proof is completely analogous to the proof of Proposition 6.3, but we include it here for completeness. By Theorem 5.1 we have a recursion relation

\[
\hat{b}(i, n) = \hat{b}(i, n - 1) + q^{n-1} t^2 \hat{b}(i-1, n-3)(q, qt) + q^{n-1} t^3 \hat{b}(i-2, n-3)(q, qt).
\]

We need to prove that the right hand side of (6.3) satisfies (6.4). Let

\[
\hat{A}(n, p, i) = q^{\frac{5p^2 - 3p + (i-p)(i-p-1)}{2}} t^{2p+(i-p)} (n - 2p + 1) \binom{n - 2p + 1}{p} q^i \binom{i-p}{q}.
\]

Then

\[
\begin{align*}
\hat{A}(n-3, p-1, i-1)(q, qt) &= q^{\frac{5p^2 - 9p + 4(i-p)(i-p-1)}{2}} t^{2p-2+(i-p)} (n - 2p) \binom{n - 2p}{p-1} q^{i-1} \binom{i-p}{q}, \\
\hat{A}(n-3, p-1, i-2)(q, qt) &= q^{\frac{5p^2 - 9p + 4(i-p)(i-p-1)}{2}} t^{2p-2+(i-p-1)} (n - 2p) \binom{n - 2p}{p-1} q^{i-2} \binom{i-p-1}{q},
\end{align*}
\]

so

\[
\hat{A}(n-3, p-1, i-1)(q, qt) + t \hat{A}(n-3, p-1, i-2)(q, qt) = q^{\frac{5p^2 - 9p + 4(i-p)(i-p-1)}{2}} t^{2p-2+(i-p)} (n - 2p) \binom{n - 2p}{p-1} q^i \binom{i-p}{q}.
\]

Now

\[
\begin{align*}
\hat{A}(n-1, p, i) + q^{n-1} t^2 \hat{A}(n-3, p-1, i-1)(q, qt) + q^{n-1} t^3 \hat{A}(n-3, p-1, i-2)(q, qt) =
\end{align*}
\]

\[
\begin{align*}
q^{\frac{5p^2 - 3p + (i-p)(i-p-1)}{2}} t^{2p+(i-p)} &\left[(n - 2p) \binom{n - 2p}{p} q^i \binom{i-p}{q} + q^{n-3p+1} \binom{n - 2p}{p-1} q^i \binom{i-p}{q} \right] \\
= q^{\frac{5p^2 - 3p + (i-p)(i-p-1)}{2}} t^{2p+(i-p)} (n - 2p + 1) \binom{n - 2p + 1}{p} q^i \binom{i-p}{q} = \hat{A}(n, p, i).
\end{align*}
\]

A similar recursion holds for \(\hat{B}(n, p, i) \). It remains to check the initial conditions:

\[
\begin{align*}
\hat{b}(0, n) &= 1, \\
\hat{b}(1, n) &= (t^2 + qt^2 + \ldots + q^{n-1}t^2) = q^{\frac{n-1}{2}} t^2 \binom{n-1}{1}, \\
\hat{b}(2, n) &= qt^3 \binom{n - 2}{2} = qt^3 \binom{n-1}{1} + q^5 t^4 \binom{n-3}{1} + q^7 t^4 \binom{n-3}{2}.
\end{align*}
\]

The following result was conjectured by the second author, Oblomkov and Rasmussen in \(\square \) Conjecture 4.1].
Theorem 6.6. The Hilbert series of R_n/I_n has the following form:

\[
H_n(q,t) = \frac{1}{\prod_{i=0}^{n-1} (1-q^it)} \sum_{p=0}^{n-1} (-1)^p \prod_{k=0}^{p-1} (1-q^kt) \times \left(q^{\frac{5p^2-3p}{2}}i^p \left(\frac{n-2p+1}{p} \right)_q - q^{\frac{5p^2+5p}{2}}i^{p+2} \left(\frac{n-2p-1}{p} \right)_q \right).
\]

Proof. It is clear that $H_n(q,t) = \frac{1}{\prod_{i=0}^{n-1} (1-q^it)} \sum_{i=0}^{\infty} (-1)^i \hat{b}(i,n)$. The latter can be computed by (6.3), and it remains to use the identity

\[
\prod_{k=0}^{p-1} (1-q^kt) = \sum_{j=0}^{p} (-1)^j q^{j(j-1)/2} t^j \binom{p}{j}.
\]

\[\square\]

7. LIMIT AT $n \to \infty$

In the limit $n \to \infty$ both formulas for the Hilbert series simplify. Indeed, for fixed p we have

\[
\lim_{n \to \infty} \binom{n}{p}_q = \frac{1}{(1-q)\cdots(1-q^p)},
\]

so we can take the limit of all the above results.

Proposition 7.1. The limit of the Hilbert series $H_n(q,t)$ has the following form:

\[
H_\infty(q,t) = \sum_{p=0}^{\infty} \frac{q^{p(p-1)} t^p}{(1-q)(1-q^2)\cdots(1-q^p)}.
\]

Proposition 7.2. The limit of the bigraded rank of the i-th syzygy module $F(i,n)$ equals

\[
\hat{b}(i, \infty) = \sum_{p>0} q^{\frac{5p^2-3p+i(p-1)}{2}} t^{p+(i-p)} \binom{p}{i-p} q^{\frac{5p^2+5p+i(p-1)}{2}} t^{2p+2+(i-p)} \binom{p}{i-p-1}.
\]

Proposition 7.3. The limit of the Hilbert series $H_n(q,t)$ has the following form:

\[
H_n(q,t) = \frac{1}{\prod_{i=0}^{\infty} (1-q^it)} \sum_{p=0}^{\infty} (-1)^p \prod_{k=0}^{p-1} \frac{1-q^kt}{1-q^{k+1}} \left(q^{\frac{5p^2-3p}{2}} t^{2p} - q^{\frac{5p^2+5p}{2}} t^{2p+2} \right).
\]

The equality between the right hand sides of (7.3) and (7.1) was proved in [10, Theorem 3.3.2(b)]. At $t=1$ and $t=q$ one recovers more familiar Rogers-Ramanujan identities.

The following proposition concerning Gröbner bases in the limit was proved first in [4, but we give an alternative proof here. In fact, [4] use a slightly different basis of Bell polynomials. Yet another proof can be obtained by taking the limit in Theorem 4.6.

Proposition 7.4. For $n \to \infty$ the polynomials f_i form a Gröbner basis for the ideal I_∞.

Before embarking on the proof, we record the following lemmas concerning Gröbner bases here for the convenience of the reader.

Lemma 7.5 ([7] Proposition 8 on p. 106). Given \((g_1, \ldots, g_s) \in F_s\), the S-pairs

\[
S_{ij} := \frac{\text{lcm}(\text{LT}_<(g_i), \text{LT}_<(g_j))}{\text{LT}_<(g_i)} e_i - \frac{\text{lcm}(\text{LT}_<(g_i), \text{LT}_<(g_j))}{\text{LT}_<(g_j)} e_j
\]

form a homogeneous basis for the syzygies on \(\{\text{LT}_<(g_1), \ldots, \text{LT}_<(g_s)\}\).

Lemma 7.6 ([7] Proposition 9 on p. 107). Let \(I = \langle g_1, \ldots, g_s \rangle\). Then \(G = \{g_1, \ldots, g_s\}\) is a Gröbner basis for \(I\) if and only if every element of a homogeneous basis for the syzygies on \(\text{LT}_<(G)\) reduces to zero modulo \(G\).

Lemma 7.7 ([7] Proposition 4 on p. 103). \(G = \{g_1, \ldots, g_s\} \subseteq R_n\), and suppose \(g_i, g_j \in G\) have relatively prime leading monomials. Then the S-polynomial

\[
S(g_i, g_j) := \phi_n(S_{ij}) = \frac{\text{lcm}(\text{LT}_<(g_i), \text{LT}_<(g_j))}{\text{LT}_<(g_i)} g_i - \frac{\text{lcm}(\text{LT}_<(g_i), \text{LT}_<(g_j))}{\text{LT}_<(g_j)} g_j
\]

reduces to zero modulo \(G\).

Proof of Proposition 7.4. Consider \(S(f_i, f_j)\). By Lemma 7.7 \(\gcd(\text{LT}_<(f_i), \text{LT}_<(f_j)) = 1\) implies that \(S(f_i, f_j)\) reduces to zero modulo \(\{f_k\}_{k=1}^\infty\). Write \(i = 2q + r\), where \(r = 0, 1\). Then \(\text{LT}_<(f_i) = x^2_q\) if \(i\) is even and \(\text{LT}_<(f_i) = 2x_q x_{q+1}\) if \(i\) is odd. So the only case we need to consider is \(j = i + 1\). In this case, we have

\[
\text{lcm}(\text{LT}_<(f_i), \text{LT}_<(f_{i+1})) = \begin{cases} 2x^2_q x_{q+1}, & \text{i even} \\ 2x_q x^2_{q+1}, & \text{i odd} \end{cases}
\]

Additionally

\[
S(f_i, f_{i+1}) = \begin{cases} 2x_{q+1} f_i - x_q f_{i+1}, & \text{i even} \\ x_q f_i - 2x_{q+1} f_{i+1}, & \text{i odd} \end{cases}
\]

But from (2.1) it follows that these S-pairs appear in the relations \(\phi_n(\mu_{n-1}) = 0\) for \(n \gg 0\). Since \(n = \infty\), we always have these relations in \(I_\infty\). Additionally, moving the S-pair to the right-hand side we reduce \(S(f_i, f_{i+1}) \equiv 0\) modulo \(\{f_k\}_{k=1}^\infty\). In particular, Lemma 7.6 implies that \(\{f_k\}_{k=1}^\infty\) is a Gröbner basis for \(I_\infty\). \(\square\)

References

Department of Mathematics, University of California, Davis, One Shields Avenue, 95616 Davis, CA
E-mail address: yzbai@ucdavis.edu

Department of Mathematics, University of California, Davis, One Shields Avenue, 95616 Davis, CA

International Laboratory of Representation Theory and Mathematical Physics, National Research University Higher School of Economics, Moscow, Russia
E-mail address: egorskiy@math.ucdavis.edu

Department of Mathematics, University of California, Davis, One Shields Avenue, 95616 Davis, CA
E-mail address: kivineo1@math.ucdavis.edu